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Abstract

We introduce and analyze new Banach spaces-based fully-mixed finite element methods for the
convective Brinkman–Forchheimer equations coupled with a nonlinear transport phenomenon. Our
approach is based on the incorporation of the fluid velocity gradient, the incomplete nonlinear
fluid pseudostress, the concentration gradient, and the total (diffusive plus advective) flux for the
concentration, as auxiliary variables, which, along with the velocity and concentration themselves,
constitute the set of unknowns of the model. The resulting mixed variational formulation can be
written as two coupled nonlinear saddle point systems, which are then reformulated as an equivalent
fixed-point equation defined in terms of the operators solving the corresponding decoupled problems.
An analogue approach is utilized for the associated Galerkin scheme. In this way, the Babuška–
Brezzi theory, some abstract results on monotone operators, and the classical Banach fixed-point
theorem are employed to establish the well-posedness of both the continuous and discrete schemes.
In particular, for each integer k ≥ 0, vector and tensor Raviart–Thomas subspaces of order k
for the pseudostress and the total flux, respectively, as well as piecewise polynomial subspaces of
degree ≤ k for the velocity, the concentration, and their respective gradients, yield stable Galerkin
schemes. Optimal a priori error estimates along with the corresponding rates of convergence are
also established. Finally, several numerical experiments confirming the latter and illustrating the
good performance of the method in 2D and 3D, are reported.

Key words: convective Brinkman–Forchheimer equations, nonlinear transport, pseudostress-velocity
formulation, fixed point theory, mixed finite elements
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1 Introduction

The transport of species density in a saturated porous medium fluid, which involves three main fields:
the velocity of the flow, pressure, and local solids concentration, has a wide range of applications in
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chemical, environmental, and petroleum engineering. Examples include chemical distillation processes,
sedimentation-consolidation processes, solid-liquid separation, aluminum production, and natural and
thermal convection, among others. Accurate modeling and simulation of such flows are essential to
optimize processes, ensure safety, and minimize environmental impact. Over the years, mathematical
models have been developed to capture various aspects of these flows, with much of the research focus-
ing on coupling the Stokes (or Brinkman) model with transport equations. However, these equations
may be inadequate for modeling fluid flow through porous media with high Reynolds numbers or
highly porous materials. To address these limitations, the convective Brinkman–Forchheimer (CBF)
equations have been proposed (see, e.g., [18], [32], [30], [13], and [14]). The CBF equations extend
both the Stokes and Brinkman models by incorporating additional terms to account for the physical
phenomena described above. Accordingly, the present work focuses on the coupled flow and transport
problem governed by a nonlinear convection-diffusion equation interacting with the CBF equations.

Concerning the literature devoted to studying the coupling of the Stokes and transport equations,
we begin by mentioning [1], where an augmented mixed formulation for the fluid equations and the
standard primal scheme for the transport equation were proposed and analyzed. Subsequently, in
[2], the approach from [1] was extended to the case of a strongly coupled flow and transport system.
This system was modeled using the Brinkman problem with variable viscosity, expressed in terms
of Cauchy pseudo-stresses and the bulk velocity of the mixture, coupled with a nonlinear advection-
diffusion equation describing the transport of the solids volume fraction. Furthermore, the existence
of solutions to a related model for chemically reacting non-Newtonian fluids was established in [8].
Regarding the analysis developed in [2], an augmented mixed approach was employed for the Brinkman
problem, while the usual primal weak formulation was applied to the transport equation to derive the
variational formulation of the coupled problem. Similarly to [1], the continuous and discrete solvability
analyses were carried out by combining fixed-point arguments, elliptic regularity estimates, sufficiently
small data assumptions, and classical results on Hilbert space frameworks [7, 19, 23]. More recently, in
[3], a model describing the flow-transport interaction in a porous-fluidic domain was analyzed using the
techniques developed in [1] and [2]. In this case, the medium consists of a highly permeable material,
where the flow of an incompressible viscous fluid is governed by the Brinkman equations formulated
in terms of vorticity, velocity, and pressure, and a porous medium, where Darcy’s law describes fluid
motion in terms of filtration velocity and pressure. Additionally, an augmented fully-mixed variational
formulation for the model introduced in [1] was proposed and analyzed in [25]. In this work, the authors
employed a dual-mixed method and an augmentation procedure for both the Stokes and transport
equations. We conclude by mentioning [5] and [6], where a mixed-primal formulation and a fully-mixed
formulation for the coupled problem analyzed in [1] and [25], respectively, both posed within Banach
space frameworks, were proposed and analyzed.

Regarding the analysis of the CBF equations in the literature, we first refer to [18], where the authors
studied the continuous dependence of solutions to the CBF equations, expressed in velocity-pressure
formulation, on the Forchheimer coefficient in the H1 norm. Subsequently, [32] proposed and developed
an approximation of solutions for the incompressible CBF equations using the artificial compressibility
method. Furthermore, [30] analyzed the well-posedness of the velocity-pressure variational formulation
for the two-dimensional stationary CBF equations. This study also included error estimates for a
mixed finite element approximation and proposed a one-step Newton iteration algorithm initialized
with a fixed-point iteration. More recently, [13] examined an augmented mixed pseudostress-velocity
formulation. In this case, the well-posedness of the problem was achieved through a combination of the
Lax–Milgram theorem, Schauder and Banach fixed-point theorems, and a fixed-point strategy. In [14],
a mixed formulation in Banach spaces was proposed and analyzed for the CBF problem. Unlike the
approach in [13], this formulation did not require an augmentation procedure for either the formulation
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itself or the solvability analysis. Instead, the non-augmented scheme was equivalently reformulated
as a fixed-point equation, enabling the use of results from [21] on perturbed saddle-point problems in
Banach spaces. These results, together with the Banach–Nečas–Babuška and Banach theorems, were
applied to establish the well-posedness of both the continuous and discrete systems.

The purpose of this work is to develop and analyze a new fully mixed formulation for the coupling
of the CBF and nonlinear transport equations, as well as to study a suitable numerical discretization.
Motivated by [20], [15], [17], and [4], we introduce additional unknowns, including the fluid velocity
gradient, the incomplete nonlinear fluid pseudostress, the concentration gradient, and the total (dif-
fusive plus advective) flux for the concentration, alongside the fluid velocity and concentration, while
eliminating the pressure using the incompressibility condition. The resulting mixed variational formu-
lation consists of two coupled nonlinear saddle-point systems, which are reformulated as an equivalent
fixed-point equation defined by the operators solving the corresponding decoupled problems. Following
a methodology similar to [20] and [4], we establish the existence and uniqueness of solutions for both
the continuous and discrete formulations by combining a fixed-point argument, the Babuška–Brezzi
theory, abstract results on monotone operators, sufficiently small data assumptions, and the classical
Banach fixed-point theorem. Additionally, we derive the corresponding a priori error estimates using
ad-hoc Strang-type lemmas in Banach spaces. Finally, employing Raviart–Thomas spaces of order
k ≥ 0 for the pseudostress and total flux, along with discontinuous piecewise polynomials of degree
≤ k for the velocity, concentration, and their respective gradients, we prove that the method converges
with optimal rates.

This work is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. In Section 2 we introduce the model problem.
Next, in Section 3 we derive the mixed variational formulation in Banach spaces and establish the well-
posedness of this continuous scheme. The corresponding Galerkin system is introduced and analyzed in
Section 4, where the discrete counterpart of the theory applied in the continuous case is used to prove
the existence and uniqueness of the solution, as well as the a priori error estimates for general discrete
spaces. Convergence rates for specific finite element subspaces are derived in Section 5. Finally, the
performance of the method is illustrated in Section 6 through numerical examples in both 2D and
3D, including cases with and without manufactured solutions, validating the accuracy and flexibility
of our Banach spaces-based mixed finite element method.

Preliminary notations

Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let ν be the outward
unit normal vector on Γ. In what follows, standard notation is adopted for Lebesgue spaces Lp(Ω)
and Sobolev spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar,
vectorial, or tensorial case, are denoted by ∥ · ∥0,p;Ω and ∥ · ∥s,p;Ω, respectively. In particular, given
a non-negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and
seminorm are simplified to || · ||m,Ω and | · |m,Ω, respectively. In addition, H1/2(Γ) is the space of traces
of functions of H1(Ω), and H−1/2(Γ) denotes its dual. On the other hand, given any generic scalar
functional space S, we let S and S be the corresponding vectorial and tensorial counterparts, whereas
∥ · ∥, with no subscripts, will be employed for the norm of any element or operator whenever there
is no confusion about the space to which they belong. Also, | · | denotes the Euclidean norm in both
Rn and Rn×n, and as usual, I stands for the identity tensor in Rn×n. In addition, for normed vector
spaces H and Q, with norms ∥ · ∥H and ∥ · ∥Q respectively, we endow the product space H ×Q with
the natural norm

∥(u, v)∥H×Q := ∥u∥H + ∥v∥Q ∀ (u, v) ∈ H ×Q .
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Also, given any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we set the gradient, divergence, and
tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=

n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n ,

whereas for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the deviatoric tensor, and
the tensor inner product, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=

n∑
i=1

τii, τ d := τ − 1

n
tr(τ ) I, and τ : ζ :=

n∑
i,j=1

τij ζij .

Next, for each t ∈ [1,+∞) we introduce the Banach spaces

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
and

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

which are equipped, respectively, with the natural norms

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) and (1.1)

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) .

Furthermore, we consider the canonical injections ip,q : L
p(Ω) → Lq(Ω) for all p, q ∈ [1,+∞), p ≥ q,

and iH, p : H1(Ω) → Lp(Ω) for all p ∈ (1,+∞), which are continuous with norms depending on the
domain. In particular, we have

∥ip,q∥ ≤ |Ω|(p−q)/(pq) . (1.2)

In turn, we let ip,q and iH, p be the corresponding vector counterparts of ip,q and iH, p, respectively.
Note that the norm of ip,q also achieves the bound (1.2). Additionally, we recall that, proceeding as
in [23, eq. (1.43), Section 1.3.4] (see also [9, Section 4.1] and [20, Section 3.1]), one can prove that for

t ∈

{
(1,+∞] in R2 ,

[65 ,+∞] in R3 ,
there holds

⟨ξ · ν, φ⟩ =
∫
Ω

{
ξ · ∇φ+ φdiv(ξ)

}
∀ (ξ, φ) ∈ H(divt; Ω) × H1(Ω) and (1.3)

⟨τν,v⟩ =
∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω) × H1(Ω) , (1.4)

where ⟨·, ·⟩ in (1.3) and (1.4) denotes the duality pairing between H−1/2(Γ) and H1/2(Γ), and between
H−1/2(Γ) and H1/2(Γ), respectively.

2 The model problem

We consider a porous medium occupying the region Ω, and assume that a viscous fluid governed by
the convective Brinkman–Forchheimer equations flows through it, so that the sought variables are
its pressure p and velocity u. In addition, we let ϕ be the concentration of a chemical component
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transported by the fluid, which is advected and diffused in Ω according to the corresponding physical
principle. Alternatively, ϕ could represent the temperature of the fluid, among several other possibil-
ities. In this way, the coupled model of interest is given by the following system of partial differential
equations:

−µ∆u +
(
∇u
)
u + Du + F |u|ρ−2 u + ∇p = ϕ f in Ω ,

div(u) = 0 in Ω ,

div
(
κ(|∇ϕ|)∇ϕ− ϕu − f(ϕ)g

)
= g in Ω ,

u = uD and ϕ = ϕD on Γ ,

(2.1)

where µ is the constant viscosity of the fluid, D, F > 0 are the Darcy and Forchheimer coefficients,
respectively, ρ is a given number in [3, 4], κ : R+ → R+ is a nonlinear diffusivity function, f is
a nonlinear flux acting in the direction of g, which, in turn, is a constant vector pointing in the
direction of gravity, f and g are given source functions, and uD and ϕD are Dirichlet data for u and
ϕ, respectively. Regarding κ, we assume that there exist constants κ1, κ2 > 0 such that

κ1 ≤ κ(t) ≤ κ2 and κ1 ≤ κ(t) + t κ′(t) ≤ κ2 ∀ t ∈ R+ . (2.2)

In addition, f is required to be bounded and Lipschitz-continuous, which means that there exist
constants f1, f2, Lf > 0 such that

f1 ≤ f(t) ≤ f2 and |f(t)− f(s)| ≤ Lf |s− t| ∀ s, t ∈ R+ . (2.3)

Now, due to the incompressibility of the fluid (cf. second row of (2.1)), uD must formally satisfy
the compatibility condition ∫

Γ
uD · ν = 0 . (2.4)

On the other hand, for the uniqueness of p we look for this unknown in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a fully-mixed formulation for (2.1), in which the Dirichlet boundary condition
becomes natural, we first define as auxiliary unknowns the velocity gradient

χ := ∇u ,

and the incomplete nonlinear fluid pseudostress

σ := µχ − 1

2
(u⊗ u) − p I , (2.5)

so that the first row of (2.1) becomes

−div(σ) +
1

2
χu + Du + F |u|ρ−2 u = ϕ f .

Thus, taking matrix trace along with the fact that tr(χ) = tr(∇u) = div(u) = 0, and applying the
deviatoric operator, we deduce from (2.5) that

p = − 1

n
tr
(
σ +

1

2
(u⊗ u)

)
and σd := µχ − 1

2
(u⊗ u)d , (2.6)
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which are equivalent to the pair of equations formed by the incompressibility condition and (2.5). In
turn, regarding the concentration equation, we introduce the further unknowns given by the concen-
tration gradient

t := ∇ϕ

and its total flux
η := κ(|t|) t− ϕu − f(ϕ)g ,

so that the third row of (2.1) is rewritten as

div(η) = g .

Hence, eliminating the unknown p, and computing it afterwards according to the identity provided by
(2.6), the original system (2.1) can be stated, equivalently, as: Find χ, u, σ, t, ϕ, and η in suitable
spaces to be indicated below, such that

∇u = χ in Ω ,

µχ − 1

2
(u⊗ u)d = σd in Ω ,

−div(σ) +
1

2
χu + Du + F |u|ρ−2 u = ϕ f in Ω ,

∇ϕ = t in Ω ,

κ(|t|) t− ϕu − f(ϕ)g = η in Ω ,

div(η) = g in Ω ,

u = uD and ϕ = ϕD on Γ ,∫
Ω
tr
(
σ +

1

2
(u⊗ u)

)
= 0 .

(2.7)

3 The continuous formulation

3.1 The variational formulation

In this section, we deduce the fully mixed formulation of our coupled model, for which we begin with
the convective Brinkman–Forchheimer equations. Indeed, testing the second row of (2.7) with a tensor
field ϑ ∈ L2(Ω) we formally get

µ

∫
Ω
χ : ϑ− 1

2

∫
Ω
(u⊗ u)d : ϑ−

∫
Ω
σd : ϑ = 0 , (3.1)

whose first and third terms are well-defined if χ and σ belong to L2(Ω) as well. In turn, straightforward
applications of the Cauchy–Schwarz inequality yield∣∣∣∣ ∫

Ω
(u⊗ u)d : ϑ

∣∣∣∣ ≤ ∥(u⊗ u)d∥0,Ω ∥ϑ∥0,Ω ≤ ∥u⊗ u∥0,Ω ∥ϑ∥0,Ω ≤ n1/2 ∥u∥20,4;Ω ∥ϑ∥0,Ω ,

from which we deduce that the second term of (3.1) is well-defined if u ∈ L4(Ω). In addition, looking
at (3.1) with the particular choice ϑ := ζ I and ζ ∈ C∞

0 (Ω), we readily find that tr(χ) = 0, whence χ
must be sought in L2

tr(Ω), where

L2
tr(Ω) :=

{
ϑ ∈ L2(Ω) : tr(ϑ) = 0

}
.
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Alternatively, the above can also be derived by applying the matrix trace to the second row of (2.7).
Moreover, from the decomposition L2(Ω) = L2

tr(Ω)⊕ L2
tr(Ω)

⊥, where L2
tr(Ω)

⊥ :=
{
ζ I : ζ ∈ L2(Ω)

}
,

we readily deduce that testing (3.1) against L2(Ω) is equivalent to doing it against L2
tr(Ω), which, noting

that
∫
Ω τ d : ϑ =

∫
Ω τ : ϑ for all (τ ,ϑ) ∈ L2(Ω)× L2

tr(Ω), becomes

µ

∫
Ω
χ : ϑ− 1

2

∫
Ω
(u⊗ u) : ϑ−

∫
Ω
σ : ϑ = 0 ∀ϑ ∈ L2

tr(Ω) . (3.2)

Next, we formally test the third equation of (2.7) with a vector field v, which gives

−
∫
Ω
v · div(σ) + 1

2

∫
Ω
χu · v + D

∫
Ω
u · v + F

∫
Ω
|u|ρ−2u · v =

∫
Ω
ϕ f · v . (3.3)

Then, knowing where to look for u, we notice that the third term on the left-hand side of (3.3) is
well-defined if v belongs to L4(Ω) as well, whence for the first one to also make sense we need that
div(σ) ∈ L4/3(Ω), thus requiring finally that σ ∈ H(div4/3; Ω). Additionally, since 2(ρ− 2) ≤ 4, the

space L4(Ω) is continuously embedded into L2(ρ−2)(Ω), so that employing Cauchy–Schwarz’s inequality
and the estimate (1.2), we easily find that∫

Ω
|z|ρ−2u · v ≤ |Ω|(4−ρ)/4 ∥z∥ρ−2

0,4;Ω ∥u∥0,4;Ω ∥v∥0,4;Ω ∀ z, u, v ∈ L4(Ω) ,

which says that the fourth term on the left-hand side of (3.3) is well-defined for u and v in the space
indicated. Similarly, but employing only Cauchy–Schwarz’s inequality again, we obtain∣∣∣∣ ∫

Ω
χu · v

∣∣∣∣ ≤ ∥χ∥0,Ω ∥u∥0,4;Ω ∥v∥0,4;Ω ,

which, given that χ ∈ L2(Ω), guarantees that the second term on the left-hand side of (3.3) is also
well-defined. The right-hand side of (3.3) will be addressed when deriving the variational formulation
for the transport equations. In this way, adding (3.2) and (3.3), and reordering some of the terms, we
arrive at

µ

∫
Ω
χ : ϑ +

1

2

∫
Ω
(χu · v − (u⊗ u) : ϑ) + D

∫
Ω
u · v + F

∫
Ω
|u|ρ−2u · v

−
∫
Ω
σ : ϑ −

∫
Ω
v · div(σ) =

∫
Ω
ϕ f · v ∀ (ϑ,v) ∈ L2

tr(Ω)× L4(Ω) .

(3.4)

Furthermore, the first equation of (2.7) and the fact that χ ∈ L2(Ω) imply that u ∈ H1(Ω), so that
applying the integration by parts formula (1.4) to (τ ,u) ∈ H(div4/3; Ω)×H1(Ω), and assuming that

the Dirichlet datum uD belongs to H1/2(Γ), we get∫
Ω
χ : τ +

∫
Ω
u · div(τ ) = ⟨τν,uD⟩ ∀ τ ∈ H(div4/3; Ω) , (3.5)

from which we see that it suffices to look for u in L4(Ω), thus reconfirming the previous choice for it.
In addition, according to the decomposition H(divt; Ω) = H0(divt; Ω) ⊕ R I, which is valid for each
t ∈ (1,+∞), where

H0(divt; Ω) :=
{
τ ∈ H(divt; Ω) :

∫
Ω
tr(τ ) = 0

}
,

σ can be decomposed uniquely as σ = σ0 + d I, with σ0 ∈ H0(div4/3; Ω) and d ∈ R, where, invoking
the last equation of (2.7), there holds

d :=
1

n |Ω|

∫
Ω
tr(σ) = − 1

2n |Ω|

∫
Ω
tr(u⊗ u) .
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Thus, having expressed d in terms of u, and realizing that σ can be replaced by σ0 in (3.4) without
altering the meaning of that equation, in what follows we redenote the remaining unknown σ0 as
simply σ ∈ H0(div4/3; Ω). Moreover, thanks to the compatibility condition given by (2.4), (3.5) is
trivially satisfied for τ = I, and hence imposing this equation with τ ∈ H(div4/3; Ω) is equivalent to
doing it with τ ∈ H0(div4/3; Ω).

We continue the derivation of the fully-mixed formulation by dealing now with the equations forming
the nonlinear transport part. In fact, testing the fifth row of (2.7) against s ∈ L2(Ω), we obtain∫

Ω
κ(|t|) t · s −

∫
Ω
ϕu · s −

∫
Ω
f(ϕ)g · s =

∫
Ω
η · s , (3.6)

from which, bearing in mind the boundedness of κ and f (cf. (2.2), (2.3)), we deduce that all the
terms, except the second one on the left-hand side, are well-defined if t, g, and η belong to L2(Ω) as
well. However, we remark in advance that in Section 3.4 we will actually require the datum g to be
in L4(Ω) (see (3.53)), so that for simplicity we adopt this latter assumption from now on. In turn,
regarding the aforementioned second term, and recalling from the previous analysis that u ∈ L4(Ω),
straightforward applications of the Cauchy–Schwarz’s inequality yield∣∣∣∣∫

Ω
ϕu · s

∣∣∣∣ ≤ ∥ϕ∥0,4;Ω ∥u∥0,4;Ω ∥s∥0,Ω ,

thus showing that the above expression makes sense if the unknown ϕ is sought in L4(Ω). Having
observed this, and as previously announced, we now notice that the right-hand side of (3.3) is well
defined if we ask for f to be in L2(Ω). Next, in order to use L4(Ω) as both the unknown and test
spaces associated with ϕ, we assume the datum g to belong to L4/3(Ω), which yields η to be sought
in H(div4/3; Ω), and hence the sixth equation of (2.7) is tested as∫

Ω
φdiv(η) =

∫
Ω
g φ ∀φ ∈ L4(Ω) . (3.7)

Thus, suitably gathering (3.6) and (3.7), we arrive at∫
Ω
κ(|t|) t · s −

∫
Ω
ϕu · s −

∫
Ω
η · s −

∫
Ω
φdiv(η) = −

∫
Ω
g φ+

∫
Ω
f(ϕ)g · s

∀ (s, φ) ∈ L2(Ω)× L4(Ω) .

(3.8)

On the other hand, thanks to the fourth equation of (2.7) and the fact that t ∈ L2(Ω), we see that
ϕ ∈ H1(Ω), so that applying the integration by parts formula (1.3) to (ξ, ϕ) ∈ H(div4/3; Ω) × H1(Ω),

and assuming that ϕD ∈ H1/2(Γ), we get∫
Ω
t · ξ +

∫
Ω
ϕ div(ξ) = ⟨ξ · ν, ϕD⟩ ∀ ξ ∈ H(div4/3; Ω) , (3.9)

from which we reconfirm L4(Ω) as the space where to seek ϕ.

In this way, defining the spaces

H1 := L2
tr(Ω) , H2 := L4(Ω) , Q := H0(div4/3; Ω) ,

X1 := L2(Ω) , X2 : = L4(Ω) , Y := H(div4/3; Ω) ,
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introducing the notations

χ⃗ := (χ,u) , ϑ⃗ := (ϑ,v) , ϱ⃗ := (ϱ,w) ∈ H := H1 ×H2 ,

t⃗ := (t, ϕ) , s⃗ := (s, φ) , r⃗ := (r, ψ) ∈ X := X1 ×X2 ,

and denoting by [ ·, · ] the duality pairing between X′ and X, we conclude that the fully mixed variational
formulation of the coupled problem (2.7), which consists of (3.4), (3.5), (3.8), and (3.9), can be stated
as: Find (χ⃗,σ) ∈ H×Q and (⃗t,η) ∈ X×Y such that

Au(χ⃗, ϑ⃗) +B(ϑ⃗,σ) = Fϕ(ϑ⃗) ∀ ϑ⃗ ∈ H ,

B(χ⃗, τ ) = G(τ ) ∀ τ ∈ Q ,

[au(⃗t), s⃗] + b(⃗s,η) = Fϕ(⃗s) ∀ s⃗ ∈ X ,

b(⃗t, ξ) = G(ξ) ∀ ξ ∈ Y ,

(3.10)

where the bilinear forms Az : H × H → R, for each z ∈ H2, and B : H × Q → R, and the linear
functionals Fψ : H → R, for each ψ ∈ X2, and G : Q → R, are defined as

Az(ϱ⃗, ϑ⃗) := µ

∫
Ω
ϱ : ϑ+

1

2

∫
Ω

(
ϱ z · v − (w ⊗ z) : ϑ

)
+ D

∫
Ω
w · v + F

∫
Ω
|z|ρ−2w · v , (3.11)

B(ϑ⃗, τ ) := −
∫
Ω
τ : ϑ −

∫
Ω
v · div(τ ) ,

Fψ(ϑ⃗) := −
∫
Ω
ψ f · v , and G(τ ) := −⟨τ ν,uD⟩ ,

for all ϱ⃗, ϑ⃗ ∈ H, for all τ ∈ Q, whereas the nonlinear operator az : X → X′, for each z ∈ H2, the
bilinear form b : X× Y → R, and the functionals Fψ : X → R, for each ψ ∈ X2, and G : Y → R, are
given by

[az(⃗r), s⃗] :=

∫
Ω
κ(|r|)r · s −

∫
Ω
ψ z · s , b(⃗s, ξ) := −

∫
Ω
ξ · s−

∫
Ω
φdiv(ξ) , (3.12)

Fψ (⃗s) := −
∫
Ω
g φ+

∫
Ω
f(ψ)g · s, and G(ξ) := −⟨ξ · ν, ϕD⟩ , (3.13)

for all r⃗, s⃗ ∈ X, for all ξ ∈ Y.

3.2 A fixed-point strategy

We now employ a fixed-point approach to reformulate (3.10). Indeed, we first let S : H2 × X2 → H2

be the operator defined by
S(z, ψ) := u˜ ∀(z, ψ) ∈ H2 ×X2,

where (χ⃗˜,σ˜) :=
(
(χ˜,u˜),σ˜) ∈ (H1 ×H2)×Q is the unique solution of the problem arising from the

first two rows of (3.10) after replacing Au and Fϕ by Az and Fψ, respectively, that is

Az

(
χ⃗˜, ϑ⃗)+B(ϑ⃗,σ˜) = Fψ(ϑ⃗) ∀ ϑ⃗ ∈ H ,

B
(
χ⃗˜, τ) = G(τ ) ∀ τ ∈ Q .

(3.14)
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Similarly, we let T : H2 ×X2 → X2 be the operator defined by

T(z, ψ) := ϕ˜ ∀(z, ψ) ∈ H2 ×X2,

where (⃗t˜,η˜) := ((t˜, ϕ˜),η˜) ∈ (X1 ×X2)×Y is the unique solution of the problem arising from the last

two rows of (3.10) after replacing au and Fϕ by az and Fψ, respectively, that is[
az(⃗t˜), s⃗]+ b(⃗s,η˜) = Fψ (⃗s) ∀ s⃗ ∈ X ,

b
(⃗
t˜, ξ) = G(ξ) ∀ ξ ∈ Y .

(3.15)

Finally, we define the operator Θ : H2 ×X2 → H2 ×X2 by

Θ(z, ψ) :=
(
S(z, ψ),T(z, ψ)

)
∀ (z, ψ) ∈ H2 ×X2, (3.16)

and see that solving (3.10) is equivalent to finding a fixed point of Θ, that is (u, ϕ) ∈ H2 × X2 such
that

Θ(u, ϕ) = (u, ϕ). (3.17)

We stress that, as an alternative to the definition adopted for the operator Θ in (3.16), and similarly
to [6], we can consider either Θ(z, ψ) := T(S(z, ψ), ψ) or Θ(z, ψ) := S(z,T(z, ψ)). Both definitions
lead to a well-defined fixed-point approach, and the analysis developed in the next section remains
valid with slight modifications to Lemma 3.10 and Theorem 3.13.

In the next section, we prove that S and T are well defined (equivalently, that (3.14) and (3.15)
are uniquely solvable), and, as a consequence, that Θ is well defined. Finally, we prove that, under
suitable assumptions on the data, Θ has a unique fixed-point.

3.3 Well-posedness of the uncoupled problems

In what follows we address the solvability analysis of the uncoupled problems (3.14) and (3.15).
We begin with the stability properties of the previously defined bilinear forms and functionals. In
fact, applying the Cauchy–Schwarz and Hölder inequalities, and employing the boundedness of the
normal trace operators γν : H(div4/3; Ω) → H−1/2(Γ) and γν : H(div4/3; Ω) → H−1/2(Γ) along with

corresponding duality parings, we deduce that, for each z ∈ H2, ψ ∈ X2, ϑ⃗, ϱ⃗ ∈ H, τ ∈ Q, s⃗ ∈ X, and
ξ ∈ Y, there hold:

|Az(ϱ⃗, ϑ⃗)| ≤ ∥Az∥ ∥ϱ⃗∥H ∥ϑ⃗∥H , |B(ϑ⃗, τ )| ≤ ∥B∥ ∥ϑ⃗∥H ∥τ∥Q ,

|Fψ(ϑ⃗)| ≤ ∥Fψ∥ ∥ϑ⃗∥H , |G(τ )| ≤ ∥G∥ ∥τ∥Q ,
|b(⃗s, ξ)| ≤ ∥b∥ ∥⃗s∥X ∥ξ∥Y , |Fψ (⃗s)| ≤ ∥Fψ∥ ∥⃗s∥X ,

and |G(ξ)| ≤ ∥G∥ ∥ξ∥Y ,

(3.18)

where
∥Az∥ := µ+ ∥z∥0,4;Ω + D |Ω|1/2 + F |Ω|(4−ρ)/4 ∥z∥ρ−2

0,4;Ω , ∥B∥ := 1,

∥Fψ∥ := ∥ψ∥0,4;Ω ∥f∥0,Ω , ∥G∥ := ∥γν∥ ∥uD∥1/2,Γ ,

∥b∥ := 1 , ∥Fψ∥ := ∥g∥0,4/3;Ω + f2 |Ω|1/4 ∥g∥0,4;Ω ,
and ∥G∥ := ∥γν∥ ∥ϕD∥1/2,Γ .

(3.19)

For the well-posedness of (3.14) we need to recall next the Babuška–Brezzi theorem in Banach
spaces, whose proof can be found, among several other places, in [22, Theorem 2.34].
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Theorem 3.1 Let H and Q be reflexive Banach spaces, and let a : H ×H → R and b : H ×Q → R
be bounded bilinear forms with induced operators A ∈ L(H,H ′) and B ∈ L(H,Q′), respectively. In
addition, let V be the null space of B, and assume that

i) there exists α > 0 such that

sup
v∈V
v ̸=0

a(u, v)

∥v∥H
≥ α∥u∥H ∀u ∈ V ,

ii) there holds
sup
u∈V

a(u, v) > 0 ∀ v ∈ V, v ̸= 0 ,

iii) there exists β such that

sup
v∈H
v ̸=0

b(v, τ)

∥v∥H
≥ β∥τ∥Q ∀τ ∈ Q.

Then, there exists a unique (u, σ) ∈ H ×Q such that

a(u, v) + b(v, σ) = F (v) ∀ v ∈ H,

b(v, τ) = G(τ) ∀ τ ∈ Q ,

and the following a priori estimates hold:

∥u∥ ≤ 1

α
∥F∥+ 1

β

(
1 +

∥A∥
α

)
∥G∥ , and (3.20)

∥σ∥ ≤ 1

β

(
1 +

∥A∥
α

)
∥F∥+ ∥A∥

β2

(
1 +

∥A∥
α

)
∥G∥ . (3.21)

We remark here that if a is V -elliptic, that is, if there exists a positive constant α such that
there holds a(v, v) ≥ α ∥v∥2 ∀ v ∈ V , then the first two hypotheses of Theorem 3.1 are satisfied
straightforwardly with the same constant α. In particular, regarding (3.14), we notice that the null
space of the linear and bounded operator induced by B is given by

V :=

{
(ϑ,v) ∈ L2

tr(Ω)× L4(Ω) :

∫
Ω
τ : ϑ+

∫
Ω
v · div(τ ) = 0 ∀ τ ∈ H0(div4/3; Ω)

}
,

from which we easily deduce that

V =
{
(ϑ,v) ∈ L2

tr(Ω)× L4(Ω) : ϑ = ∇v and v ∈ H1
0(Ω)

}
. (3.22)

In the next lemma we prove precisely that the family
{
Az

}
z∈H2

is uniformly V-elliptic.

Lemma 3.2 There exists a positive constant α, depending only on µ, D and |Ω|, such that for each
z ∈ H2 there holds

Az(ϑ⃗, ϑ⃗) ≥ α ∥ϑ⃗∥2H ∀ ϑ⃗ ∈ V . (3.23)
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Proof. Given z ∈ H2 and ϑ⃗ := (ϑ,v) ∈ V, it follows from (3.11) that

Az(ϑ⃗, ϑ⃗) = µ ∥ϑ∥20,Ω +
1

2

∫
Ω

(
ϑ z · v − (z⊗ v) : ϑ

)
+ D ∥v∥20,Ω + F

∫
Ω
|z|ρ−2 |v|2 ,

from which, noting that ϑ z ·v− (z⊗v) : ϑ = 0, the last term in positive, and using that v ∈ H1
0(Ω)

and ϑ = ∇v, we get

Az(ϑ⃗, ϑ⃗) = µ ∥ϑ∥20,Ω + D ∥v∥20,Ω + F

∫
Ω
|z|ρ−2 |v|2 ≥ µ ∥ϑ∥20,Ω + D ∥v∥20,Ω

=
µ

2
∥ϑ∥20,Ω +

µ

2
∥∇v∥20,Ω + D∥v∥20,Ω ≥ min

{µ
2
, D
} (

∥ϑ∥20,Ω + ∥v∥21,Ω
)
.

Then, invoking the continuous injection iH,4 : H
1(Ω) → L4(Ω), whose norm depends on |Ω| (cf. (1.2)),

we arrive at the required inequality (3.23) with α :=
1

2
min

{µ
2
, D
}
min

{
1, ∥iH, 4∥−2

}
. □

Next, we recall that a slight modification of the proof of [23, Lemma 2.3] allows to show that for

each t ∈

{
(1,+∞) if n = 2

[6/5,+∞) if n = 3
, there exists a positive constant Ct, depending only on Ω, such that

Ct ∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div(τ )∥20,t;Ω ∀ τ ∈ H0(divt; Ω) . (3.24)

Then, the inf-sup condition for B, originally proved in [20] (cf. [20, Lemma 3.3, eq. (3.44)]), is
established as follows (see also [11, eq. (3.16)]).

Lemma 3.3 There exists a positive constant β, depending only on C4/3 (cf. (3.24)), such that

sup
ϑ⃗∈H
ϑ⃗ ̸=0

B(ϑ⃗, τ )

∥ϑ⃗∥H
≥ β ∥τ∥Q ∀ τ ∈ Q .

We are now in position to show that the operator S is well defined.

Lemma 3.4 For each (z, ψ) ∈ H2 ×X2 there exists a unique (χ⃗˜,σ˜) :=
(
(χ˜,u˜),σ˜) ∈ (H1 ×H2)×Q

solution of (3.14), and hence one can define S(z, ψ) := u˜ ∈ H2. Moreover, there exists a positive
constant CBF, depending only on α, β, ∥Az∥, and ∥γν∥, such that

∥S(z, ψ)∥ ≤ CBF

{
∥ψ∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
. (3.25)

Proof. Since L2
tr(Ω), L

4(Ω), and H0(div4/3; Ω) are clearly reflexive Banach spaces, the well-posedness
of (3.14) follows from Lemmas 3.2 and 3.3, and a straightforward application of Theorem 3.1. In
particular, the a priori estimate (3.20) yields

∥S(z, ψ)∥ = ∥u˜∥0,4;Ω ≤ ∥χ⃗˜∥H ≤ 1

α
∥Fψ∥ +

1

β

(
1 +

∥Az∥
α

)
∥G∥ ,

which, along with the bounds for ∥Fψ∥ and ∥G∥ (cf. (3.19)), implies (3.25) and ends the proof. □

We remark here that for each z ∈ L4(Ω) satisfying ∥z∥0,4;Ω ≤ δ, with δ > 0 given, and thanks
to the corresponding bound in (3.19), ∥Az∥ can be bounded by a constant depending only on δ, µ,
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D, F, |Ω| and ρ. Hence, according to the dependence specified in Lemmas 3.2 and 3.3 regarding the
constants α and β, we rephrase (3.25) by stating the existence of a positive constant CBF, depending
only on α, β, δ, µ, D, F, |Ω|, ρ, C4/3, and ∥γν∥, such that

∥S(z, ψ)∥ = ∥u˜∥0,4;Ω ≤ ∥χ⃗˜∥H ≤ CBF

{
∥ψ∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
(3.26)

for all (z, ψ) ∈ H2 × X2 such that ∥z∥0,4;Ω ≤ δ. Moreover, according to the a priori estimate (3.21),
the second component of the solution of (3.14) is bounded as

∥σ˜∥Q ≤ ĈBF

{
∥ψ∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
, (3.27)

where ĈBF is a positive constant having a similar dependence to that of CBF.

We now address the well-posedness of the uncoupled transport problem (3.15). Due to the nonlinear
character of the operator az, instead of the Babuška–Brezzi theory in Banach spaces (cf. Theorem
3.1), we now need to consider the abstract result given by the following theorem.

Theorem 3.5 Let X and Y be separable and reflexive Banach spaces, with X being uniformly convex,
and denote by [ ·, · ] the duality paring between X′ and X. In addition, let a : X → X′ be a nonlinear
operator and b ∈ L(X,Y′). In turn, let V be the null space of b, and assume that

i) a is Lipschitz continuous, that is there exists a positive constant L such that

∥a(v)− a(w)∥X′ ≤ L ∥v − w∥X ∀ v, w ∈ X ,

ii) the family of operators a(· + z) : V → V′, with z ∈ X, is uniformly strongly monotone, that is
there exists a positive constant α̃ such that

[a(v + z)− a(w + z), v − w] ≥ α̃ ∥v − w∥2X ∀ z ∈ X, ∀ v, w ∈ V ,

iii) there exists a positive constant β̃ such that

sup
v∈X
v ̸=0

[b(v), ξ]

∥v∥X
≥ β̃ ∥ξ∥Y ∀ ξ ∈ Y .

Then, for each (F,G) ∈ X′ ×Y′ there exists a unique pair (u, η) ∈ X×Y such that

[a(u), v] + b(v, η) = F(v) ∀ v ∈ X ,

b(u, ξ) = G(ξ) ∀ ξ ∈ Y .

Moreover, there hold

∥u∥X ≤ 1

α̃
∥F∥X′ +

1

β̃

(
1 +

L

α̃

)
∥G∥Y′ +

1

α̃
∥a(0)∥X′ , and (3.28)

∥η∥Y ≤ 1

β̃

(
1 +

L

α̃

)
∥F∥X′ +

L

β̃2

(
1 +

L

α̃

)
∥G∥Y′ +

1

β̃

(
1 +

L

α̃

)
∥a(0)∥X′ . (3.29)
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Proof. It reduces to the particular case arising from [12, Theorem 3.1] when the corresponding index
there is taken as p = 2. Further details are omitted. □

In what follows we apply Theorem 3.5 to the context given by (3.15). We begin by noticing that
the uniform convexity and separability of the Lt spaces, with t ∈ (1,+∞), imply the same properties
on the spaces involved, thus guaranteeing that the corresponding assumptions required by Theorem
3.5, are satisfied. Next, regarding the nonlinear part of az (cf. first term of the respective definition in
(3.12)), and bearing in mind the hypotheses on κ (cf. (2.2)), we recall from the proof of [26, Theorem
3.8] that, denoting Lκ := max

{
κ2, 2κ2 − κ1

}
= 2κ2 − κ1, there hold∫

Ω

(
κ(|r|) r− κ(|s|) s

)
· t ≤ Lκ ∥r− s∥X1 ∥t∥X1 ∀ r, s, t ∈ X1 , (3.30)

and ∫
Ω

(
κ(|r|) r − κ(|s|) s

)
· (r− s) ≥ κ1 ∥r− s∥2X1

∀ r, s ∈ X1 . (3.31)

On the other hand, we now let V be the null space of the operator induced by b, which, similarly
as for the derivation of (3.22), becomes

V :=
{⃗
s := (s, φ) ∈ L2(Ω)× L4(Ω) : φ ∈ H1

0(Ω) and s = ∇φ
}
. (3.32)

Also, we recall the well-known Poincaré inequality (see, for instance, [29, Theorem 5.11.2]), which
guarantees the existence of a positive constant cp, depending only on Ω, such that

∥φ∥1,Ω ≤ cp |φ|1,Ω ∀φ ∈ H1
0(Ω) . (3.33)

We are now ready to establish the Lipschitz-continuity and strong monotonicity properties of az,
as required by hypotheses i) and ii) of Theorem 3.5. Indeed, we have the following results.

Lemma 3.6 For each z ∈ H2 there exists a positive constant Lz, depending only on κ1, κ2, and
∥z∥0,4;Ω, such that

∥az(⃗r)− az(⃗s)∥X′ ≤ Lz ∥⃗r− s⃗∥X ∀ r⃗, s⃗ ∈ X . (3.34)

Proof. Given z ∈ H2, and r⃗ := (r, ψ), s⃗ := (s, φ), t⃗ := (t, ϕ) ∈ X, we invoke the definition of az (cf.
(3.12)) to obtain

[az(⃗r)− az(⃗s), t⃗ ] =

∫
Ω

(
κ(|r|) r− κ(|s|) s

)
· t −

∫
Ω
(ψ − φ) z · t . (3.35)

Then, using (3.30) and applying Cauchy–Schwarz’s inequality twice, it follows from (3.35) that

[az(⃗r)− az(⃗s), t⃗ ] ≤ Lκ ∥r− s∥X1 ∥t∥X1 + ∥z∥H2 ∥ψ − φ∥X2 ∥t∥X1

≤
{
Lκ ∥r− s∥X1 + ∥z∥H2 ∥ψ − φ∥X2

}
∥⃗t∥X ,

which readily yields (3.34) with Lz := max
{
Lκ, ∥z∥H2

}
. □

Lemma 3.7 There exists a positive constant α̃, depending only on κ1, cp, and ∥iH,4∥ (cf. (1.2)), such
that, for each z ∈ H2 satisfying ∥z∥H2 ≤ κ1

2 ∥iH,4∥ cp , there holds

[az(⃗r+ k⃗)− az(⃗s+ k⃗), r⃗− s⃗ ] ≥ α̃ ∥⃗r− s⃗∥2X ∀ k⃗ ∈ X , ∀ r⃗, s⃗ ∈ V . (3.36)
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Proof. Given z ∈ H2, k⃗ := (k, θ) ∈ X, and r⃗ := (r, ψ), s⃗ := (s, φ) ∈ V, we get from the definition of
az (cf. (3.12)) that

[az(⃗r+ k⃗)− az(⃗s+ k⃗), r⃗− s⃗ ] = [az(⃗r+ k⃗)− az(⃗s+ k⃗), (⃗r+ k⃗)− (⃗s+ k⃗) ]

=

∫
Ω

(
κ(|r+ k|) (r+ k)− κ(|s+ k|) (s+ k)

)
·
(
(r+ k)− (s+ k)

)
−
∫
Ω
(ψ − φ) z · (r− s) ,

which, employing (3.31) and Cauchy–Schwarz’s inequality, yields

[az(⃗r+ k⃗)− az(⃗s+ k⃗), r⃗− s⃗ ] ≥ κ1 ∥r− s∥20,Ω − ∥z∥0,4;Ω ∥ψ − φ∥0,4;Ω ∥r− s∥0,Ω .

Then, using from the characterization of V (cf. (3.32)) that r = ∇ψ and s = ∇φ, with ψ, φ ∈ H1
0(Ω),

and applying the continuous injection iH,4 : H
1(Ω) → L4(Ω) and (3.33), we deduce that

∥ψ − φ∥0,4;Ω ∥r− s∥0,Ω = ∥ψ − φ∥0,4;Ω |ψ − φ|1,Ω ≤ ∥iH,4∥ cp |ψ − φ|21,Ω = ∥iH,4∥ cp ∥r− s∥20,Ω ,

which replaced back in the foregoing inequality implies

[az(⃗r+ k⃗)− az(⃗s+ k⃗), r⃗− s⃗ ] ≥
{
κ1 − ∥z∥0,4;Ω ∥iH,4∥ cp

}
∥r− s∥20,Ω ≥ κ1

2
∥r− s∥20,Ω

for each z ∈ H2 such that ∥z∥H2 ≤ κ1
2 ∥iH,4∥ cp . Finally, splitting ∥r−s∥20,Ω as 1

2 ∥r−s∥20,Ω+ 1
2 |ψ−φ|21,Ω,

we readily arrive at (3.36) with α̃ := κ1
4 min

{
1, c−2

p ∥iH,4∥−2
}
. □

The inf-sup condition for b, originally stated in [20, Lemma 3.3, eq. (3.45)], is established next.

Lemma 3.8 There exists a positive constant β̃ such that

sup
s⃗∈X
s̸⃗=0

b(⃗s, ξ)

∥⃗s∥X
≥ β̃ ∥ξ∥Y ∀ ξ ∈ Y . (3.37)

Proof. While the main arguments of this proof are given in the aforementioned reference, for sake of
completeness we provide all details in what follows. Indeed, given ξ ∈ Y := H(div4/3; Ω), we first let
r⃗ = (r, ψ) := (−ξ, 0) ∈ X := L2(Ω)× L4(Ω) and easily obtain

sup
s⃗∈X
s̸⃗=0

b(⃗s, ξ)

∥⃗s∥X
≥ b(⃗r, ξ)

∥⃗r∥X
= ∥ξ∥0,Ω ,

whereas, letting r⃗ = (r, ψ) :=
(
0,−

(
div(ξ)

)1/3) ∈ X := L2(Ω)× L4(Ω), we are led to

sup
s⃗∈X
s̸⃗=0

b(⃗s, ξ)

∥⃗s∥X
≥ b(⃗r, ξ)

∥⃗r∥X
=

∥div(ξ)∥4/30,4/3;Ω

∥div(ξ)∥1/30,4/3;Ω

= ∥div(ξ)∥0,4/3;Ω .

In this way, the above inequalities along with (1.1) yield (3.37) with β̃ = 1/2. □

The well-posedness of problem (3.15) can be stated now.

Lemma 3.9 For each (z, ψ) ∈ H2 × X2 such that ∥z∥H2 ≤ κ1
2 ∥iH,4∥ cp , there exists a unique solution

(⃗t˜,η˜) := ((t˜, ϕ˜),η˜) ∈ (X1×X2)×Y of (3.15), and hence one can define T(z, ψ) := ϕ˜ ∈ X2. Moreover,

there exists a positive constant CNT, depending only on κ1, κ2, ∥iH,4∥, cp, f2, |Ω|, and ∥γν∥, such that

∥T(z, ψ)∥ = ∥ϕ˜∥0,4;Ω ≤ ∥⃗t˜∥X ≤ CNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
. (3.38)
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Proof. Being the spaces X = X1×X2 := L2(Ω)×L4(Ω) and Y := H(div4/3; Ω) clearly reflexive, and X
uniformly convex, and bearing in mind Lemmas 3.6 and 3.7, the well-posedness of (3.15) follows from
a direct application of Theorem 3.5. In particular, noting from (3.12) that az(0⃗) = 0, the a priori
estimate (3.28) yields

∥T(z, ψ)∥ = ∥ϕ˜∥0,4;Ω ≤ ∥⃗t˜∥X ≤ 1

α̃
∥Fψ∥X′ +

1

β̃

(
1 +

Lz

α̃

)
∥G∥Y′ ,

which, according to the upper bounds of ∥Fψ∥X′ and ∥G∥Y′ (cf. (3.19)), and the fact that (see the
end of the proof of Lemma 3.6)

Lz := max
{
Lκ, ∥z∥H2

}
≤ max

{
Lκ,

κ1
2 ∥iH,4∥ cp

}
, with Lκ := 2κ2 − κ1 ,

implies (3.38) and completes the proof. □

Analogously to (3.27), and employing now the a priori estimate (3.29), the second component of
the solution of (3.15) is bounded as

∥η˜∥Y ≤ ĈNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
, (3.39)

where, as for CNT, ĈNT is a positive constant depending on κ1, κ2, ∥iH,4∥, cp, f2, |Ω|, and ∥γν∥.

3.4 Solvability analysis of the fixed point equation

In this section we apply the classical Banach theorem (see, e.g. [19, Lemma 3.7-1]) to prove that,
under suitable assumptions on the data, the operator Θ (cf. (3.16)) has a unique fixed point. To this
end, and coherently with (3.26) and the assumption on z in Lemma 3.9, we first let δ := κ1

2 ∥iH,4∥ cp ,

consider an arbitrary positive constant r, and introduce the closed subset of H2 × X2, and hence
complete metric space,

W(r) :=
{
(z, ψ) ∈ H2 ×X2 : ∥z∥0,4;Ω ≤ δ , ∥ψ∥0,4;Ω ≤ r

}
. (3.40)

Then, it is easily seen from Lemmas 3.4 and 3.9 that the restriction of Θ to W(r) is well-defined. In
turn, the next lemma provides necessary conditions guaranteeing that Θ maps W(r) into itself.

Lemma 3.10 Assume that there hold

CBF

{
r ∥f∥0,Ω + ∥uD∥1/2,Γ

}
≤ δ , and (3.41)

CNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
≤ r . (3.42)

Then, Θ
(
W(r)

)
⊆ W(r).

Proof. It follows straightforwardly from the definition of Θ (cf. (3.16)) along with the estimates (3.26)
and (3.38), and the assumptions (3.41) and (3.42). Further details are omitted. □

In order to prove that Θ is a contraction, we need to show first the Lipschitz continuity properties
of S and T. In fact, we have the results provided by the following lemmas.
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Lemma 3.11 There exists a positive constant LS, depending only on α, n, F, |Ω|, ρ, δ, r, and CBF,
such that

∥S(z, ψ)− S(w, φ)∥H2 ≤ LS

{
∥f∥0,Ω + ∥uD∥1/2,Γ

}
∥(z, ψ)− (w, φ)∥H2×X2 (3.43)

for all (z, ψ), (w, φ) ∈ W(r).

Proof. Given (z, ψ) and (w, φ) in W(r), we let

(χ⃗˜,σ˜) :=
(
(χ˜,u˜),σ˜) ∈ (H1 ×H2)×Q and (χ⃗,σ) :=

(
(χ,u),σ

)
∈ (H1 ×H2)×Q

be the respective solutions of (3.14), so that

S(z, ψ) := u˜ and S(w, φ) := u .

Then, subtracting the corresponding equations defining (3.14), we obtain

Az(χ⃗˜, ϑ⃗)−Aw(χ⃗, ϑ⃗) + B(ϑ⃗,σ˜ − σ) = Fψ(ϑ⃗)− Fφ(ϑ⃗) ∀ ϑ⃗ ∈ H ,

B(χ⃗˜ − χ⃗, τ ) = 0 ∀ τ ∈ Q .
(3.44)

It is clear from the second equation of (3.44) that χ⃗˜ − χ⃗ ∈ V (cf. (3.22)), so that taking ϑ⃗ = χ⃗˜ − χ⃗

in the first one, and invoking the definitions of Fψ and Fφ (cf. (3.13)), we deduce that

Az(χ⃗˜, χ⃗˜ − χ⃗)−Aw(χ⃗, χ⃗˜ − χ⃗) = −
∫
Ω
(ψ − φ) f · (u˜ − u) . (3.45)

In turn, applying the V-ellipticity for Az (cf. Lemma 3.2), employing the identity (3.45), and bearing
in mind the definitions of Aw and Az (cf. (3.11)), we find that

α ∥χ⃗˜ − χ⃗∥2H ≤ Az

(
χ⃗˜ − χ⃗, χ⃗˜ − χ⃗

)
= Az

(
χ⃗˜, χ⃗˜ − χ⃗

)
− Az

(
χ⃗, χ⃗˜ − χ⃗

)
= Aw(χ⃗, χ⃗˜ − χ⃗) − Az

(
χ⃗, χ⃗˜ − χ⃗

)
−
∫
Ω
(ψ − φ) f · (u˜ − u)

=
1

2

∫
Ω
χ (w − z) · (u˜ − u) − 1

2

∫
Ω
u⊗ (w − z) : (χ˜ − χ)

+ F

∫
Ω

(
|w|ρ−2 − |z|ρ−2

)
u · (u˜ − u) +

∫
Ω
(φ− ψ) f · (u˜ − u) .

(3.46)

Then, simple applications of the Cauchy–Schwarz inequality yield∣∣∣∣∫
Ω
χ (w − z) · (u˜ − u)

∣∣∣∣ ≤ ∥χ∥0,Ω ∥w − z∥0,4;Ω ∥u˜ − u∥0,4;Ω , (3.47)∣∣∣∣∫
Ω
u⊗ (w − z) : (χ˜ − χ)

∣∣∣∣ ≤ √
n ∥u∥0,4;Ω ∥w − z∥0,4;Ω ∥χ˜ − χ∥0,Ω , and∣∣∣∣∫

Ω
(φ− ψ) f · (u˜ − u)

∣∣∣∣ ≤ ∥f∥0,Ω ∥φ− ψ∥0,4;Ω ∥u˜ − u∥0,4;Ω .

On the other hand, proceeding exactly as for the proof of [10, Lemma 4.4, eq. (4.33)], which, in turn,
makes use of the key estimate provided by [27, Lemma 5.3], we derive the existence of a positive
constant LF, depending only on F, |Ω|, and ρ, such that∣∣∣∣F ∫

Ω

(
|w|ρ−2 − |z|ρ−2

)
u · (u˜ − u)

∣∣∣∣
≤ LF

{
∥w∥0,4;Ω + ∥z∥0,4;Ω

}ρ−3
∥u∥0,4;Ω ∥w − z∥0,4;Ω ∥u˜ − u∥0,4;Ω .

(3.48)
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In this way, replacing (3.47) up to (3.48) back into (3.46), using that ∥w∥0,4;Ω, ∥z∥0,4;Ω ≤ δ (cf.
(3.40)), and performing some algebraic manipulations, in particular bounding both ∥χ˜ − χ∥0,Ω and

∥u˜ − u∥0,4;Ω by ∥χ⃗˜ − χ⃗∥H, and then simplifying the latter, we arrive at

∥χ⃗˜ − χ⃗∥H ≤ α−1 max
{√

n, 2LF (2δ)
ρ−3
}{

∥f∥0,Ω + ∥χ⃗∥H
}
∥(z, ψ)− (w, φ)∥H2×X2 . (3.49)

Finally, recalling that ∥S(z, ψ)−S(w, φ)∥H2 = ∥u˜−u∥0,4;Ω ≤ ∥χ⃗˜ − χ⃗∥H, and using from (3.26) and

(3.40) that

∥χ⃗∥H ≤ CBF

{
r ∥f∥0,Ω + ∥uD∥1/2,Γ

}
,

we conclude from (3.49) the required inequality (3.43) with a positive constant LS depending only on
α, n, LF, δ, ρ, r, and CBF, and hence as originally indicated. □

Lemma 3.12 There exists a positive constant LT, depending only on α̃, CNT, and Lf , such that

∥T(z, ψ)−T(w, φ)∥X2 ≤ LT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
∥(z, ψ)− (w, φ)∥H2×X2 (3.50)

for all (z, ψ), (w, φ) ∈ W(r).

Proof. It proceeds analogously to that of Lemma 3.11. In fact, given (z, ψ) and (w, φ) in W(r), we
first let

(⃗t˜,η˜) := ((t˜, ϕ˜),η˜) ∈ (X1 ×X2)×Y and (⃗t,η) := ((t, ϕ),η) ∈ (X1 ×X2)×Y

be the respective solutions of (3.15), so that

T(z, ψ) := ϕ˜ and T(w, φ) := ϕ .

Thus, similarly to the derivation of (3.44), the subtraction of the equations defining (3.15) leads to[
az(⃗t˜), s⃗] − [

aw(⃗t), s⃗
]
+ b(⃗s,η˜ − η) = Fψ (⃗s)− Fφ(⃗s) ∀ s⃗ ∈ X ,

b
(⃗
t˜− t⃗, ξ

)
= 0 ∀ ξ ∈ Y ,

(3.51)

so that, taking in the first row of (3.51) s⃗ = t⃗˜− t⃗, which clearly belongs to V (cf. (3.32)), and bearing
in mind the definitions of Fψ and Fφ (cf. (3.13)), we find that[

az(⃗t˜), t⃗˜− t⃗
]
=
[
aw(⃗t), t⃗˜− t⃗

]
+

∫
Ω

(
f(ψ)− f(φ)

)
g · (t˜− t) . (3.52)

Next, applying the strong monotonicity of az (cf. (3.36)) with k⃗ = t⃗ ∈ X, r⃗ = t⃗˜ − t⃗ ∈ V, and

s⃗ = 0⃗ ∈ V, employing (3.52), and invoking the definitions of aw and az (cf. (3.12)), we obtain

α̃ ∥⃗t˜− t⃗∥2X ≤
[
az(⃗t˜)− az(⃗t), t⃗˜− t⃗

]
=
[
aw(⃗t)− az(⃗t), t⃗˜− t⃗

]
+

∫
Ω

(
f(ψ)− f(φ)

)
g · (t˜− t)

=

∫
Ω
ϕ (z−w) · (t˜− t) +

∫
Ω

(
f(ψ)− f(φ)

)
g · (t˜− t) ,

from which, employing Cauchy–Schwarz’s inequality, using the Lipschitz-continuity of f (cf. (2.3)),
bounding ∥t˜− t∥0,Ω by ∥⃗t˜− t⃗∥X, and then simplifying the latter, we arrive at

∥⃗t˜− t⃗∥X ≤ α̃−1
{
∥ϕ∥0,4;Ω + Lf ∥g∥0,4;Ω

}
∥(z, ψ)− (w, φ)∥H2×X2 . (3.53)
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In this way, noting that ∥T(z, ψ) − T(w, φ)∥X2 = ∥ϕ˜ − ϕ∥0,4;Ω ≤ ∥⃗t˜− t⃗∥X, and using the a priori

estimate (3.38) for ∥ϕ∥0,4;Ω, we deduce from (3.53) the required inequality (3.50). □

As a straightforward consequence of Lemmas 3.11 and 3.12 we conclude the Lipschitz-continuity of
the operator Θ. Indeed, given (z, ψ), (w, φ) ∈ W(r), we readily obtain from (3.16), (3.43), and (3.50)
that

∥Θ(z, ψ)−Θ(w, φ)∥H2×X2 ≤ LΘ C(data) ∥(z, ψ)− (w, φ)∥H2×X2 ,

where LΘ := max
{
LS, LT

}
and

C(data) := ∥f∥0,Ω + ∥uD∥1/2,Γ + ∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ . (3.54)

We are now in position to establish the main result of this section.

Theorem 3.13 Given r > 0, assume that, in addition to the hypotheses of Lemma 3.10, the data
satisfy

LΘ C(data) < 1 . (3.55)

Then, there exists a unique (u, ϕ) ∈ W(r) (cf. (3.40)) fixed point of Θ (cf. (3.17)). Equivalently, (3.10)
has a unique solution (χ⃗,σ) := (χ⃗˜,σ˜) ∈ H × Q and (⃗t,η) := (⃗t˜,η˜) ∈ X × Y, with (u, ϕ) ∈ W(r),

where (χ⃗˜,σ˜) and (⃗t˜,η˜) are the unique solution of (3.14)–(3.15) with (z, ψ) = (u, ϕ). Moreover, there
hold

∥χ⃗∥H ≤ CBF

{
r ∥f∥0,Ω + ∥uD∥1/2,Γ

}
,

∥σ∥Q ≤ ĈBF

{
r ∥f∥0,Ω + ∥uD∥1/2,Γ

}
,

∥⃗t∥X ≤ CNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
,

∥η∥Y ≤ ĈNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
.

(3.56)

Proof. Since (3.55) guarantees that Θ is a contraction, the unique solvability of (3.17), and hence of
(3.10), with (u, ϕ) ∈ W(r), follows from Lemma 3.10 and a direct application of the Banach fixed-point
theorem. In turn, (3.26), (3.27), (3.38), and (3.39) yield the a priori estimates provided by (3.56). □

4 The Galerkin scheme

In this section, we introduce and analyze a Galerkin scheme associated with the problem (3.10). In
particular, the solvability analysis is carried out using a discrete adaptation of the fixed-point strategy
from Section 3.2. After decoupling the problems, we provide conditions on the finite element subspaces
that ensure their well-posedness. Then, under certain conditions on the data, it is proven that the
discrete fixed-point equation has a unique solution, thereby ensuring the stability of the Galerkin
scheme. Finally, we deduce a priori error estimates for each uncoupled problem, which lead to a global
Céa estimate.

4.1 The discrete problem

We first let {Th}h>0 be a regular family of triangulations of Ω made up of triangles K (when n = 2)

or tetrahedra K (when n = 3) of diameter hK , and set h := max {hK : K ∈ Th}. We let Hχ
h , H

u
h , Q̃h,
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Xt
h, X

ϕ
h and Yh be arbitrary finite element subspaces of L2

tr(Ω), L
4(Ω), H(div4/3; Ω), L

2(Ω), L4(Ω) and
H(div4/3; Ω), respectively, each endowed with the corresponding subspace topology. Specific choices
of them, satisfying suitable hypotheses to be introduced along the discussion, will be described later.
Next, we also define the product spaces

Qh := Q̃h ∩H0(div4/3; Ω), Hh := Hχ
h ×Hu

h , Xh := Xt
h ×Xϕh,

and set the notations

χ⃗h := (χh,uh) , ϑ⃗h := (ϑh,vh) , ϱ⃗h := (ϱh,wh) ∈ Hh,

t⃗h := (th, ϕh) , s⃗h := (sh, φh) , r⃗h := (rh, ψh) ∈ Xh.

Thus, the Galerkin scheme associated with (3.10) reads: Find (χ⃗h,σh) ∈ Hh ×Qh and (⃗th,ηh) ∈
Xh ×Yh such that

Auh
(χ⃗h, ϑ⃗h) +B(ϑ⃗h,σh) = Fϕh(ϑ⃗h) ∀ ϑ⃗h ∈ Hh ,

B(χ⃗h, τ h) = G(τ h) ∀ τ h ∈ Qh ,

[auh
(⃗th), s⃗h] + b(⃗sh,ηh) = Fϕh (⃗sh) ∀ s⃗h ∈ Xh ,

b(⃗th, ξh) = G(ξh) ∀ ξh ∈ Yh .

(4.1)

4.2 Discrete fixed point strategy

In order to address the solvability of (4.1), we adopt the discrete analogue of the fixed point strategy

employed in section (3.2). To do so, we first introduce Sh : Hu
h ×Xϕh → Hu

h as the operator defined by

Sh(zh, ψh) := u˜h ∀ (zh, ψh) ∈ Hu
h ×Xϕh ,

where (χ⃗˜h,σ˜h) := ((χ˜h,u˜h),σ˜h) ∈ (Hχ
h ×Hu

h)×Qh is the unique solution of the problem arising from

the first two rows of (4.1) after replacing Auh
and Fϕh by Azh and Fψh

, respectively, which serves as
the discrete counterpart to (3.14)

Azh(χ⃗˜h, ϑ⃗h) +B(ϑ⃗h,σ˜h) = Fψh
(ϑ⃗h) ∀ ϑ⃗h ∈ Hh ,

B(χ⃗˜h, τ h) = G(τ h) ∀ τ h ∈ Qh .
(4.2)

Similarly, let Th : Hu
h ×Xϕh → Xϕh be the operator defined by

Th(zh, ψh) := ϕ˜h ∀(zh, ψh) ∈ Hu
h ×Xϕh,

where (⃗t˜h,η˜h) := ((t˜h, ϕ˜h),η˜h) ∈ (Xt
h×Xϕh)×Yh is the unique solution of the discrete counterpart of

the uncoupled nonlinear transport problem (3.15)

[azh (⃗t˜h), s⃗h] + b(⃗sh,η˜h) = Fψh
(⃗sh) ∀ s⃗h ∈ Xh ,

b(⃗t˜h, ξh) = G(ξh) ∀ ξh ∈ Yh ,
(4.3)

with the given pair (zh, ψh). In addition, we define the operator Θh : Hu
h ×Xϕh → Hu

h ×Xϕh by

Θh(zh, ψh) :=
(
Sh(zh, ψh),Th(zh, ψh)

)
∀ (zh, ψh) ∈ Hu

h ×Xϕh , (4.4)
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and observe that solving (4.1) is equivalent to finding a fixed point of the operator Θh, i.e., seeking

(uh, ϕh) ∈ Hu
h ×Xϕh such that

Θh(uh, ϕh) = (uh, ϕh). (4.5)

In the following section, we prove that Sh and Th are well-defined (equivalently, that the problems
(4.2) and (4.3) have unique solutions), and, consequently, that Θh is well defined. Finally, we will
show that, under appropriate assumptions, there exists a unique fixed point of Θh.

4.3 Well-posedness of the discrete uncoupled problems

In order to carry out the solvability analysis of the uncoupled problems, we shall introduce hypotheses
concerning the arbitrary finite element spaces. We begin by introducing the auxiliary spaces defined
by

Q0,h :=
{
τ h ∈ Qh : B

(
(0,vh), τ h

)
= 0 ∀vh ∈ Hu

h

}
and

Qd
0,h :=

{
τ d
h : τ h ∈ Q0,h

}
.

In addition, from now on, we assume that Hχ
h , H

u
h , and Q̃h satisfy:

(H.1) Q̃h contains the multiples of the identity tensor I,

(H.2) div(Qh) ⊂ Hu
h ,

(H.3) Qd
0,h ⊂ Hχ

h , and

(H.4) there exists a positive constant βd,1, independent of h, such that

sup
τh∈Qh
τh ̸=0

∫
Ω
vh · div(τ h)

∥τ h∥div4/3;Ω
≥ βd,1 ∥vh∥0,4;Ω ∀vh ∈ Hu

h . (4.6)

According to the decomposition H(div4/3; Ω) = H0(div4/3; Ω) ⊕ R I and (H.1), one can deduce
that

Qh =

{
τ h −

(
1

n |Ω|

∫
Ω
tr(τ h)

)
I : τ h ∈ Q̃h

}
.

In turn, the remaining hypotheses enable us to deduce the discrete analogues of Lemmas 3.2 and 3.3.
We first observe that, thanks to hypothesis (H.2), the space Q0,h can be reduced to

Q0,h =
{
τ h ∈ Qh : div(τ h) = 0 in Ω

}
. (4.7)

Now, given τ h ∈ Q0,h, (H.3) ensures that τ d
h ∈ Hχ

h . Thus, using (3.24) with t = 4/3 and the fact
that div(τ h) = 0, we obtain

sup
ϑh∈Hχ

h
ϑh ̸=0

∫
Ω
τ h : ϑh

∥ϑh∥0,Ω
≥

∫
Ω
τ h : τ d

h

∥τ d
h∥0,Ω

= ∥τ d
h∥0,Ω

≥ C
1/2
4/3 ∥τ h∥div4/3;Ω .

(4.8)
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Certainly, the inf-sup condition (4.6), and the above inequality (4.8), can be rewritten in terms of

the bilinear form B. In fact, denoting βd,2 := C
1/2
4/3 , we have

sup
τh∈Qh
τh ̸=0

B
(
(0,vh), τ h

)
∥τ h∥div4/3;Ω

≥ βd,1 ∥vh∥0,4;Ω and

sup
ϑh∈Hχ

h
ϑh ̸=0

B
(
(ϑh, 0), τ h

)
∥ϑh∥0,Ω

≥ βd,2 ∥τ h∥div4/3;Ω ,
(4.9)

for all vh ∈ Hu
h and τ h ∈ Q0,h, which provide the necessary conditions for establishing both the

discrete analogue of Lemma 3.3 and an intermediate result that is required in the proof of the discrete
analogue of Lemma 3.2. More precisely, recalling that the discrete kernel of B is defined as

Vh :=
{
ϑ⃗h ∈ Hh : B(ϑ⃗h, τ h) = 0 ∀ τ h ∈ Qh

}
,

we can state the following results.

Lemma 4.1 There exist positive constants βd and cd, independent of h, such that

sup
ϑ⃗h∈Hh

ϑ⃗h ̸=0

B(ϑ⃗h, τ h)

∥ϑ⃗h∥H
≥ βd ∥τ h∥div4/3;Ω ∀ τ h ∈ Qh and (4.10)

∥ϑh∥0,Ω ≥ cd ∥vh∥0,4;Ω ∀ ϑ⃗h := (ϑh,vh) ∈ Vh . (4.11)

Proof. Thanks to the abstract result given by [20, Lemma 5.1] with local notation X = Hu
h , Y =

Y1 = Hχ
h , Y2 = {0}, Z = Qh, and b

(
(vh,ϑh), τ h

)
:= B

(
(ϑh,vh), τ h

)
, for all vh ∈ Hu

h , ϑh ∈ Hχ
h and

τ h ∈ Qh, we deduce that (4.9) is equivalent to (4.10) along with (4.11). □

Lemma 4.2 For all zh ∈ Hu
h , the bilinear form Azh is Vh-elliptic, that is, there exists a positive

constant αd, independent of h, such that∣∣Azh(ϑ⃗h, ϑ⃗h)
∣∣ ≥ αd ∥ϑ⃗h∥2H ∀ ϑ⃗h ∈ Vh . (4.12)

Proof. Given ϑ⃗h := (ϑh,vh) ∈ Vh, we easily deduce, as in the continuous case (see Lemma 3.2), that

Azh(ϑ⃗h, ϑ⃗h) = µ ∥ϑh∥20,Ω + D ∥vh∥20,Ω + F

∫
Ω
|zh|ρ−2 |vh|2 .

Then, employing (4.11), we obtain

Azh(ϑ⃗h, ϑ⃗h) ≥ µ ∥ϑh∥20,Ω ≥ µ

2
∥ϑh∥20,Ω +

µ c2d
2

∥vh∥20,4;Ω ,

which easily yields (4.12) with αd := µ
2 min{1, c2d}. □

Lemma 4.3 For each (zh, ψh) ∈ Hu
h ×Xϕh there exists a unique solution (χ⃗˜h,σ˜h) := ((χ˜h,u˜h),σ˜h) ∈(Hχ

h ×Hu
h)×Qh of (4.2), and hence one can define Sh(zh, ψh) := u˜h ∈ Hu

h . Moreover, there exists
a positive constant CBF,d, depending only on αd, βd, and ∥Azh∥, such that

∥Sh(z, ψ)∥ ≤ CBF,d

{
∥ψh∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
. (4.13)
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Proof. Thanks to (4.10) and Lemma 4.2, Theorem 3.1 ensures that (4.2) is well-posed. Moreover, the
a priori estimate (3.20) yields

∥Sh(zh, ψh)∥ = ∥u˜h∥ ≤ ∥χ⃗˜h∥ ≤ 1

αd
∥Fψh

∥+ 1

βd

(
1 +

∥Azh∥
αd

)
∥G∥.

Then, employing the stability properties to bound ∥Fψh
∥ and ∥G∥, we arrive at (4.13). □

At this point, similarly to the continuous case, we remark that, given δ > 0, for each zh ∈ Hu
h

satisfying ∥zh∥0,4;Ω ≤ δ, and according to (3.19), ∥Azh∥ can be bounded by a constant depending
only on δ, µ, ρ and |Ω|. Therefore, we can restate the a priori estimate (4.13) as the existence of a
positive constant CBF,d, depending only on αd, βd, δ, µ, ρ and |Ω|, such that

∥Sh(zh, ψh)∥ = ∥u˜h∥ ≤ ∥χ⃗˜h∥H ≤ CBF,d

{
∥ψh∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
, (4.14)

for all (zh, ψh) ∈ Hu
h × Xϕh satisfying ∥zh∥0,4;Ω ≤ δ. Moreover, according to the a priori estimate

(3.21), the second component of the solution of (4.2) is bounded as

∥σ˜h∥ ≤ ĈBF,d

{
∥ψh∥0,4;Ω ∥f∥0,Ω + ∥uD∥1/2,Γ

}
, (4.15)

where ĈBF,d is a positive constant having a similar dependence to that of CBF,d.

Our next goal is to show that the uncoupled problem (4.3) is well-posed. To this end, we will provide
sufficient assumptions on the finite element spaces to prove the discrete versions of Lemmas 3.6, 3.7
and 3.8. Finally, we apply Theorem 3.5 to conclude the desired result. Similarly to the discrete
analysis of the convective Brinkman–Forchheimer equations, we begin by introducing the auxiliary
space

Y0,h :=
{
ξh ∈ Yh : b

(
(0, φh), ξh

)
= 0 ∀φh ∈ Xϕh

}
.

Furthermore, in what follows, we assume that Xt
h, X

ϕ
h, and Yh are such that:

(H.5) div(Yh) ⊂ Xϕh,

(H.6) Y0,h ⊂ Xt
h, and

(H.7) there exists a positive constant β̃d,1, independent of h, such that

sup
ξh∈Yh
ξh ̸=0

∫
Ω
φh div(ξh)

∥ξh∥div4/3;Ω
≥ β̃d,1 ∥φh∥0,4;Ω ∀φh ∈ Xϕh. (4.16)

We notice that these hypotheses are similar to (H.2), (H.3), and (H.4). Indeed, the analysis of
this uncoupled problem follows a similar approach to the previous one. In particular, we note that
hypothesis (H.5) provides the convenient characterization

Y0,h =
{
ξh ∈ Yh : div(ξh) = 0 in Ω

}
.

Consequently, according to (H.6), for each ξh ∈ Y0,h we readily obtain

sup
sh∈Xt

h
sh ̸=0

∫
Ω
ξh · sh

∥sh∥0,Ω
≥ ∥ξh∥0,Ω = ∥ξh∥div4/3;Ω, (4.17)

23



which, along with (4.16), yields the discrete inf-sup condition for b, as well as an inequality that will
be instrumental in the discrete version of Lemma 3.7. To this end, we now let Vh be the discrete
kernel of b, that is

Vh :=

{
s⃗h ∈ Xh :

∫
Ω
ξh · sh +

∫
Ω
φh div(ξh) = 0 ∀ ξh ∈ Yh

}
.

Then, we have the following lemma.

Lemma 4.4 There exist positive constants β̃d and c̃d, independent of h, such that

sup
s⃗h∈Xh
s⃗h ̸=0

b(⃗sh, ξh)

∥⃗sh∥X
≥ β̃d ∥ξh∥div4/3;Ω ∀ ξh ∈ Yh , and

∥sh∥0,Ω ≥ c̃d ∥φh∥0,4;Ω ∀ s⃗h := (sh, φh) ∈ Vh (4.18)

Proof. From (4.16) and (4.17), and using [20, Lemma 5.1] in a similar way as in the proof of Lemma
4.1, we obtain the result. Further details are omitted. □

Next, we present results regarding the Lipschitz continuity and strong monotonicity properties of
azh |Xh

, which constitute the discrete analogues of Lemmas 3.6 and 3.7, respectively.

Lemma 4.5 For each zh ∈ Hu
h , there exists a positive constant Lzh, depending on κ1, κ2, and

∥zh∥0,4;Ω, such that

∥azh (⃗rh)− azh (⃗sh)∥X′
h
≤ Lzh ∥⃗rh − s⃗h∥X ∀ r⃗h, s⃗h ∈ Xh . (4.19)

Proof. Noticing that
∥azh (⃗rh)− azh (⃗sh)∥X′

h
≤ ∥azh (⃗rh)− azh (⃗sh)∥X′ ,

and then applying Lemma 3.6, we conclude (4.19) with Lzh := max
{
Lκ, ∥zh∥H2

}
. □

Lemma 4.6 There exists a positive constant α̃d, depending only on κ1 and c̃d, such that, for each
zh ∈ Hu

h satisfying ∥zh∥0,4;Ω ≤ κ1
2 min{1, c̃2d}, there holds

[azh (⃗rh + k⃗h)− azh (⃗sh + k⃗h), r⃗h − s⃗h ] ≥ α̃d ∥⃗rh − s⃗h∥2X ∀ k⃗h ∈ Xh , ∀ r⃗h, s⃗h ∈ Vh . (4.20)

Proof. Given zh ∈ Hu
h , k⃗h ∈ Xh, and r⃗h := (rh, ψh), s⃗h := (sh, φh) ∈ Vh, we proceed as in the

beginning of the proof of Lemma 3.7 to obtain

[azh (⃗rh + k⃗h)− azh (⃗sh + k⃗h), r⃗h − s⃗h ] ≥ ∥rh − sh∥20,Ω − ∥zh∥0,4;Ω ∥ψh − φh∥0,4;Ω ∥rh − sh∥0,Ω .

Next, splitting ∥rh − sh∥20,Ω in two halves, applying (4.18) to r⃗h − s⃗h ∈ Vh, and employing Young’s
inequality, we find that

[azh (⃗rh + k⃗h) − azh (⃗sh + k⃗h), r⃗h − s⃗h ]

≥ 1

2
(κ1 − ∥zh∥0,4;Ω) ∥rh − sh∥20,Ω +

1

2

(
κ1 c̃

2
d − ∥zh∥0,4;Ω

)
∥ψh − φh∥20,4;Ω ,

from which, assuming additionally that ∥zh∥0,4;Ω ≤ κ1
2 min{1, c̃2d}, we deduce (4.20) with the constant

α̃d := κ1
4 min

{
1, c̃2d

}
. □

As a straight consequence of the previous lemmas, we are ready now to establish the well-posedness
of (4.3).
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Lemma 4.7 For each (zh, ψh) ∈ Hu
h ×Xϕh such that ∥zh∥0,4;Ω ≤ κ1

2 min{1, c̃2d}, there exists a unique

solution (⃗t˜h,η˜h) := ((t˜h, ϕ˜h),η˜h) ∈ (Xt
h×Xϕh)×Yh of (4.3), and hence one can define Th(zh, ψh) :=

ϕ˜h ∈ Xϕh. Moreover, there exists a positive constant CNT,d depending only on β̃d, κ1, κ2, c̃d, f2, |Ω|
and ∥γν∥ such that

∥Th(zh, ψh)∥ ≤ CNT,d

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
. (4.21)

Proof. In virtue of Lemmas 4.4, 4.5, and 4.6, the application of Theorem 3.5 to this context yields the
desired result. □

In a similar way to that of estimate (4.15), employing (3.29), we are able to bound the second
component of the solution of (4.3) as

∥η˜h∥Yh
≤ ĈNT,d

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
, (4.22)

where ĈNT,d is a constant with similar dependence to that of CNT,d.

4.4 Solvability analysis of the discrete fixed point equation

In the same fashion as in Section 3.4, we now aim to apply the Banach theorem to prove that,
under suitable assumptions on the data, the operator Θh has a fixed point. To this end, following
the continuous analysis, and according to estimate (4.14) and the assumption of Lemma 4.7, we set
δd := κ1

2 min{1, c̃2d}, consider a positive real number r, and define

Wh(r) :=
{
(zh, ψh) ∈ Hu

h ×Xϕh : ∥zh∥0,4;Ω ≤ δd , ∥ψh∥0,4;Ω ≤ r
}
, (4.23)

which is a closed subset of Hu
h × Xϕh and hence a complete metric space. It is clear from lemmas 4.3

and 4.7 that the restriction of Θh to Wh(r) is well-defined. The following result provides sufficient
conditions to ensure that Θh maps Wh(r) into itself. We stress here that, as stated in Section 4.3, we
are certainly assuming that the finite element subspaces satisfy (H.1)–(H.7).

Lemma 4.8 Assume that there hold

CBF,d

{
r ∥f∥0,Ω + ∥uD∥1/2,Γ

}
≤ δd , and (4.24)

CNT,d

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
≤ r . (4.25)

Then, Θh(Wh(r)) ⊆ Wh(r).

Proof. It follows from the definition of Θh (see (4.4)), together with the a priori estimates (4.14) and
(4.21), and the assumptions (4.24) and (4.25). □

In turn, the following two lemmas establish the Lipschitz continuity of the operators Sh and Th.
Since their proofs are completely analogous to those of Lemmas 3.11 and 3.12, respectively, we omit
further details.

Lemma 4.9 There exists a positive constant LS,d independent of h, but depending on αd, n, F, |Ω|,
ρ, δd, r, and CBF,d, such that

∥Sh(zh, ψh)− Sh(wh, φh)∥H2 ≤ LS,d

(
∥f∥0,Ω + ∥uD∥1/2,Γ

)
∥(zh, ψh)− (wh, φh)∥H2×X2 ,

for all (zh, ψh), (wh, φh) ∈ Wh(r).
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Lemma 4.10 There exists a positive constant LT,d independent of h, but depending on α̃d, CNT,d

and Lf , such that

∥Th(zh, ψh)−Th(wh, φh)∥X2

≤ LT,d

(
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

)
∥(zh, ψh)− (wh, φh)∥H2×X2 ,

for all (zh, ψh), (wh, φh) ∈ Wh(r).

Note that, as in the continuous part, the previous two lemmas have as a direct consequence, the
Lipschitz continuity of the (discrete) global fixed point operator Θh. In fact, given (zh, ψh), (wh, φh) ∈
Wh(r), according to the preceding two lemmas, we are able to write

∥Θh(zh, ψh)−Θh(wh, φh)∥H2×X2 ≤ LΘ,dC(data) ∥(zh, ψh)− (wh, φh)∥H2×X2 ,

where LΘ,d := max{LS,d, LT,d} and C(data) is already defined in (3.54).

Theorem 4.11 Given r > 0, assume that, in addition to the hypotheses of Lemma 4.8, the data
satisfy

LΘ,d C(data) < 1. (4.26)

Then, there exists a unique (uh, ϕh) ∈ Wh(r) (cf. (4.23)) fixed point of Θh (cf. (4.5)). Equivalently,
(4.1) has a unique solution (χ⃗h,σh) := (χ⃗˜h,σ˜h) ∈ Hh ×Qh and (⃗th,ηh) := (⃗t˜h,η˜h) ∈ Xh ×Yh, with

(uh, ϕh) ∈ Wh(r), where (χ⃗˜h,σ˜h) and (⃗t˜h,η˜h) are the unique solution of (4.2)–(4.3) with (zh, ψh) =

(uh, ϕh). Moreover, there hold

∥χ⃗h∥Hh
≤ CBF,d

{
∥f∥0,Ω + ∥uD∥1/2,Γ

}
,

∥σh∥Qh
≤ ĈBF,d

{
∥f∥0,Ω + ∥uD∥1/2,Γ

}
,

∥⃗th∥Xh
≤ CNT,d

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
,

∥ηh∥Yh
≤ ĈNT,d

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
.

(4.27)

Proof. Recalling that solving the Galerkin scheme is equivalent to finding a fixed point of Θh and
noting that (4.26) ensures that Θh is a contraction, according to the Banach fixed-point theorem, we
have existence and uniqueness of solution for the problem (4.1). In addition, (4.14), (4.15), (4.21) and
(4.22) yield the a priori estimates (4.27). □

4.5 A priori error analysis

In this section, our main goal is to deduce optimal a priori error estimates. To this end, given r > 0
we let (χ⃗,σ, t⃗,η) ∈ H × Q × X × Y and (χ⃗h,σh, t⃗h,ηh) ∈ Hh × Qh × Xh × Yh be the solutions
of the coupled problem (3.10) and its Galerkin scheme (4.1), respectively, with (u, ϕ) ∈ W(r) and
(uh, ϕh) ∈ Wh(r). We stress once more that, in order for this to make sense, the data must satisfy the
assumptions studied in the previous sections, and the finite element spaces must fulfill the conditions
(H.1) through (H.7). Given a subspace Vh of a generic Banach space (V, ∥ · ∥V ), it is customary to
set the distance of v ∈ V to Vh as

dist(v, Vh) := inf
vh∈Vh

∥v − vh∥V .
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In order to derive an a priori estimate for the global error

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q + ∥(⃗t,η)− (⃗th,ηh)∥X×Y , (4.28)

we establish error estimates for each problem separately, that is, we derive optimal error estimates
for ∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q and ∥(⃗t,η)− (⃗th,ηh)∥X×Y. The following lemma addresses the estimate
corresponding to the convective Brinkman–Forchheimer problem.

Lemma 4.12 There exists a positive constant CST,1, independent of h, such that

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q ≤ CST,1
{
dist((χ⃗,σ),Hh ×Qh)

+
(
∥f∥0,Ω + ∥uD∥1/2,Γ

)
∥(u, ϕ)− (uh, ϕh)∥H2×X2

}
.

(4.29)

Proof. First, we recall that Lemmas 3.2 and 3.3 provide sufficient conditions to establish the well-
posedness of (3.14), as summarized in Lemma 3.4, by applying the Babuška–Brezzi theory (cf. The-
orem 3.1). On the other hand, the discrete counterpart, provided by Lemmas 4.1 and 4.2, leads
to Lemma 4.3. These results enable the application of [24, Theorem 2.2] in our context, yielding
a Strang-type error estimate for this uncoupled problem. Specifically, by setting X1 = X2 = H,
M1 = M2 = Q, F = Fϕ, G = G, a = Au, b1 = b2 = B, {X1,h}h>0 = {X2,h}h>0 = {Hh}h>0,
{M1,h}h>0 = {M2,h}h>0 = {Qh}h>0, ah = Auh

|Hh×Hh
, b1,h = b2,h = B|Hh×Qh

, Fh = Fϕh |Hh
, and

Gh = G|Qh
, we deduce the existence of a positive constant ΛST depending only on α, β, αd, βd, δ, δd,

µ, D, F, |Ω|, and ρ, such that

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q

≤ ΛST

{
dist(χ⃗,Hh) + dist(σ,Qh) + ∥(Au −Auh

)(χ⃗, ·)∥V ′
h
+ ∥Fϕ − Fϕh∥V ′

h

}
.

(4.30)

Next, we proceed to bound the last two terms on the right-hand side of (4.30). Specifically, for the
last term, we apply the Cauchy–Schwarz inequality twice to obtain

|Fϕ(ϑ⃗h)− Fϕh(ϑ⃗h)| ≤ ∥f∥0,Ω ∥ϕ− ϕh∥0,4;Ω ∥vh∥0,4;Ω ∀ ϑ⃗h ∈ Hh . (4.31)

In turn, given ϱ⃗h, ϑ⃗h ∈ Hh, the triangle inequality allows us to bound the third term as∣∣∣Auh
(ϱ⃗h, ϑ⃗h)−Au(ϱ⃗h, ϑ⃗h)

∣∣∣ ≤ ∣∣∣Au(χ⃗− ϱ⃗h, ϑ⃗h)
∣∣∣+ ∣∣∣Auh

(ϱ⃗h− χ⃗, ϑ⃗h)
∣∣∣+ ∣∣∣(Auh

−Au)(χ⃗, ϑ⃗h)
∣∣∣, (4.32)

where we observe that the first two terms can be bounded using the stability properties of Au and
Auh

(cf. (3.18)), namely∣∣Au(χ⃗− ϱ⃗h, ϑ⃗h)
∣∣+ ∣∣Auh

(ϱ⃗h − χ⃗, ϑ⃗h)
∣∣ ≤ (

∥Au∥+ ∥Auh
∥
)
∥χ⃗− ϱ⃗h∥H ∥ϑ⃗h∥H . (4.33)

On the other hand, the third term on the right-hand side of (4.32) can be estimated using similar
arguments as in (3.46), yielding

|(Au −Auh
)(χ⃗, ϑ⃗h)|

≤
∣∣∣∣12
∫
Ω
χ(uh − u) · vh −

1

2

∫
Ω
(u⊗ (uh − u)) : ϑh + F

∫
Ω
(|uh|ρ−2 − |u|ρ−2)u · vh

∣∣∣∣
≤
(
1 + Fβ |Ω|(4−ρ)/4 (δd + δ)ρ−3

)
∥χ⃗∥H ∥u− uh∥0,4;Ω ∥ϑ⃗h∥H.

(4.34)
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Thus, by substituting (4.33) and (4.34) back into (4.32), and using the fact that ∥χ⃗∥H is bounded as
shown in (3.26) in conjunction with the estimate ∥ϕh∥0,4;Ω ≤ r, we deduce the existence of a positive

constant Λ̃, independent of h, such that∣∣∣Auh
(ϱ⃗h, ϑ⃗h)−Au(ϱ⃗h, ϑ⃗h)

∣∣∣ ≤ Λ̃
{
∥χ⃗− ϱ⃗h∥H +

(
∥f∥0,Ω + ∥uD∥1/2,Γ

)
∥u− uh∥0,4;Ω

}
∥ϑ⃗h∥H, (4.35)

for all ϱ⃗h, ϑ⃗h ∈ Hh. Finally, by combining (4.30), (4.31), and (4.35), and performing simple algebraic
manipulations, we obtain (4.29), thus completing the proof. □

Lemma 4.13 There exists a positive constant CST,2, independent of h, such that

∥(⃗t,η)− (⃗th,ηh)∥X×Y ≤ CST,2
{
dist

(
(⃗t,η),Xh ×Yh

)
+
(
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

)
∥(u, ϕ)− (uh, ϕh)∥H2×X2

}
.

(4.36)

Proof. We first apply [6, Lemma 5.1] with H = X, Q = Y, a = au, b = b, {Hh}h>0 = {Xh}h>0,
{Qh}h>0 = {Yh}h>0, ah = auh

|Xh×Xh
, F = Fϕ, G = G, Fh = Fϕh |Xh

, Gh = G|Yh
, to get

∥⃗t− t⃗h∥X + ∥η − ηh∥Y ≤ CS,1 dist(⃗t,Xh) + CS,2 dist(η,Yh)

+CS,3

(
∥Fϕ − Fϕh∥+ ∥au(⃗t)− auh

(⃗t)∥
)
,

(4.37)

where CS,1, CS,2 and CS,3 are positive constants depending only on Lu, α̃uh,d, β̃d and Luh
(cf. Lemmas

3.6, 4.6, 4.4 and 4.5).

Next, we bound the last two terms on the right-hand side of (4.37). In fact, let us consider s⃗h ∈ Xh,
and by applying Cauchy–Schwarz’s inequality twice and the Lipschitz continuity of f , we deduce that∣∣∣Fϕ(⃗sh)− Fϕh (⃗sh)

∣∣∣ = ∣∣∣∣∫
Ω

(
f(ϕ)− f(ϕh)

)
g · sh

∣∣∣∣ ≤ Lf ∥ϕ− ϕh∥0,4;Ω ∥g∥0,4;Ω ∥sh∥0,Ω ,

which directly implies that

∥Fϕ − Fϕh∥ ≤ Lf ∥g∥0,4;Ω ∥ϕ− ϕh∥0,4;Ω . (4.38)

On the other hand, by using again Cauchy–Schwarz’s inequality twice, we obtain∣∣[au(⃗t)− auh
(⃗t), s⃗h]

∣∣ = ∣∣∣∣∫
Ω
ϕ (uh − u) · sh

∣∣∣∣ ≤ ∥ϕ∥0,4;Ω∥uh − u∥0,4;Ω∥sh∥0,Ω ,

which, along with the a priori bound for ϕ (cf. (3.56)), implies that

∥au(⃗t)− auh
(⃗t)∥ ≤ CNT

{
∥g∥0,4/3;Ω + ∥g∥0,4;Ω + ∥ϕD∥1/2,Γ

}
∥uh − u∥0,4;Ω . (4.39)

Finally, replacing back (4.38) and (4.39) into (4.37) and performing simple algebraic manipulations,
we arrive at (4.36). □

The required Céa estimate will now follow from Lemmas 4.12 and 4.13. In fact, from (4.29) and
(4.36) we easily obtain

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q + ∥(⃗t,η)− (⃗th,ηh)∥X×Y ≤ CST
{
dist

(
(χ⃗,σ),Hh ×Qh

)
+ dist

(
(⃗t,η),Xh ×Yh

)}
+ CST C(data) ∥(u, ϕ)− (uh, ϕh)∥H2×X2 ,

(4.40)
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where CST := max
{
CST,1, CST,2

}
and C(data) is defined in (3.54). Thus, by imposing that the term

multiplying ∥(u, ϕ)− (uh, ϕh)∥H2×X2 is sufficiently small, say ≤ 1/2, the aforementioned Céa estimate
for our Galerkin scheme (4.1) can be deduced. More precisely, we have proved the following result.

Theorem 4.14 Assume that the data f , g,g,uD and ϕD (cf. (3.54)) are sufficiently small so that

CST C(data) ≤ 1

2
.

Then there holds

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q + ∥(⃗t,η)− (⃗th,ηh)∥X×Y

≤ 2 CST
{
dist

(
(χ⃗,σ),Hh ×Qh

)
+ dist

(
(⃗t,η),Xh ×Yh

)}
.

(4.41)

5 Specific finite element subspaces

In this section, we provide specific examples for the choice of the spaces Hχ
h , H

u
h , Q̃h, X

t
h, X

ϕ
h, and

Yh that satisfy the hypotheses (H.1) through (H.7) introduced in Section 4.3. In order to do this,
we introduce some preliminary notations. Given an integer k ≥ 0 and a subset S of Rn, we denote
by Pk(S) the space of polynomials of total degree at most k defined on S, and Pk(S) its vector
counterpart. For each integer k ≥ 0 and K ∈ Th, we define the local Raviart–Thomas space of
order k as RTk(K) := Pk(K) ⊕ P̃k(K)x, where x := (x1, . . . , xn)

t is a generic vector of Rn and
P̃k(K) is the space of polynomials of total degree equal to k defined on K. Lastly, we define the
tensorial counterpart of the Raviart–Thomas space of order k by RTk(K) :=

{
(τij) : (τi1, . . . , τin)

t ∈
RTk(K), ∀i ∈ {1, . . . , n}

}
.

Next, we introduce the following finite element subspaces:

Hχ
h :=

{
χh ∈ L2

tr(Ω) : χh
∣∣
K

∈ Pk(K) ∀K ∈ Th
}
,

Hu
h :=

{
uh ∈ L4(Ω) : uh

∣∣
K

∈ Pk(K) ∀K ∈ Th
}
,

Q̃h :=
{
σh ∈ H(div4/3; Ω) : σh

∣∣
K

∈ RTk(K) ∀K ∈ Th
}
,

Xt
h :=

{
th ∈ L2(Ω) : th

∣∣
K

∈ Pk(K) ∀K ∈ Th
}
,

Xϕh :=
{
ϕh ∈ L4(Ω) : ϕh

∣∣
K

∈ Pk(K) ∀K ∈ Th
}
,

Yh :=
{
ηh ∈ H(div4/3; Ω) : ηh

∣∣
K

∈ RTk(K) ∀K ∈ Th
}
.

(5.1)

It is clear from its definition that Q̃h satisfies (H.1). Moreover, the definition of the Raviart–Thomas
space guarantee that div(Qh) is contained into Hu

h , i.e., (H.2) holds. This allows us to obtain the
characterization (4.7), which, according to the properties of Raviart–Thomas spaces, implies that Q0,h

is contained in the space of piecewise polynomials of total degree at most k, and therefore (H.3) is
also verified. The inf-sup condition of hypothesis (H.4), with this space setting, was proved in [6,
Lemma 5.5].

On the other hand, (H.5) and (H.6) hold as well. In fact, these follow from the same arguments
used for (H.2) and (H.3). We also refer to [6, Lemma 5.5], for a modification for the vectorial case
instead of the tensorial one, to verify that hypothesis (H.7) holds.
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The previous discussion shows that this discrete space setting provides an appropiate family of
finite elements, in the sense that the results of the preceding sections hold. Now, our interest lies in
the deduction of the rates of convergence. To this end, approximation properties of the finite element
subspaces Hχ

h , H
u
h , Qh, X

t
h, X

ϕ
h and Yh are presented below, which follow from well-known interpo-

lation estimates of Sobolev spaces and the approximation properties of the orthogonal projectors and
the interpolation operators involved in their definitions (see, for instance, [7], [9], [20], [22], [23]).

(APχ
h ) there exists C > 0, independent of h, such that for each ℓ ∈ [0, k + 1], and for each ϑ ∈

Hℓ(Ω) ∩ L2
tr(Ω) there holds

dist(ϑ,Hχ
h ) ≤ C hℓ ∥ϑ∥ℓ,Ω ,

(APu
h) there exists C > 0, independent of h, such that for each ℓ ∈ [0, k+1], and for each v ∈ Wℓ,4(Ω)

there holds
dist(v,Hu

h) ≤ C hℓ ∥v∥ℓ,4;Ω ,

(APσ
h ) there exists C > 0, independent of h, such that for each ℓ ∈ (0, k + 1], and for each τ ∈

Hℓ(Ω) ∩H0(div4/3; Ω) with div(τ ) ∈ Wℓ,4/3(Ω), there holds

dist(τ ,Qh) ≤ C hℓ
{
∥τ∥ℓ,Ω + ∥div(τ )∥ℓ,4/3;Ω

}
,

(APt
h) there exists C > 0, independent of h, such that for each ℓ ∈ [0, k + 1], and for each s ∈ Hℓ(Ω)

there holds
dist(s,Xt

h) ≤ C hℓ ∥s∥ℓ,Ω ,

(APϕ
h) there exists C > 0, independent of h, such that for each ℓ ∈ [0, k+1], and for each φ ∈ Wℓ,4(Ω)

there holds
dist(φ,Xϕh) ≤ C hℓ ∥φ∥ℓ,4;Ω ,

(APη
h) there exists C > 0, independent of h, such that for each ℓ ∈ (0, k + 1], and for each ξ ∈

Hℓ(Ω) ∩H(div4/3; Ω) with div(ξ) ∈ Wℓ,4/3(Ω), there holds

dist(ξ,Yh) ≤ C hℓ
{
∥ξ∥ℓ,Ω + ∥div(ξ)∥ℓ,4/3;Ω

}
.

We conclude this section with the rates of convergence of the Galerkin scheme (4.1).

Theorem 5.1 In addition to the hypotheses of Theorems 3.13, 4.11 and 4.14, assume that there
exists ℓ ∈ (0, k+1] such that χ ∈ Hℓ(Ω)∩L2

tr(Ω), u ∈ Wℓ,4(Ω), σ ∈ Hℓ(Ω)∩H0(div4/3; Ω), div(σ) ∈
Wℓ,4/3(Ω), t ∈ Hℓ(Ω), ϕ ∈ Wℓ,4(Ω), η ∈ Hℓ(Ω) ∩H(div4/3; Ω) and div(η) ∈ Wℓ,4/3(Ω). Then, there
exists a positive constant C, independent of h, such that

∥(χ⃗,σ)− (χ⃗h,σh)∥H×Q + ∥(⃗t,η)− (⃗th,ηh)∥X×Y ≤ C hℓ
{
∥χ∥ℓ,Ω + ∥u∥ℓ,4;Ω

+ ∥σ∥ℓ,Ω + ∥div(σ)∥ℓ,4/3;Ω + ∥t∥ℓ,Ω + ∥ϕ∥ℓ,4;Ω + ∥η∥ℓ,Ω + ∥div(η)∥ℓ,4/3;Ω
}
.

Proof. It follows straightforwardly from (4.41) (cf. Theorem 4.14) and the approximation properties

(APχ
h ), (APu

h), (APσ
h ), (APt

h), (APϕ
h), and (APη

h). □
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6 Numerical results

In this section we present three examples illustrating the performance of the fully mixed finite element
method (4.1) on a set of quasi-uniform triangulations of the respective domains, and considering the
finite element subspaces defined by (5.1) (cf. Section 5). In what follows, we refer to the corresponding
sets of finite element subspaces generated by k = 0 and k = 1, as simply P0−P0−RT0−P0−P0−RT0

and P1 − P1 − RT1 − P1 − P1 −RT1, respectively. The implementation of the numerical method is
based on a FreeFEM code [28]. A Newton–Raphson algorithm with a fixed tolerance tol = 1E − 06
is used for the resolution of the nonlinear problem (4.1). As usual, the iterative method is finished
when the relative error between two consecutive iterations of the complete coefficient vector, namely
coeffm and coeffm+1, is sufficiently small, that is,

∥coeffm+1 − coeffm∥DoF
∥coeffm+1∥DoF

≤ tol ,

where ∥ · ∥DoF stands for the usual Euclidean norm in RDoF with DoF denoting the total number of

degrees of freedom defining the finite element subspaces Hχ
h ,H

u
h ,Qh,X

t
h,X

ϕ
h and Yh.

We now introduce some additional notation. The individual errors are denoted by

e(χ) := ∥χ− χh∥0,Ω , e(u) := ∥u− uh∥0,4;Ω , e(σ) := ∥σ − σh∥div4/3;Ω , e(p) := ∥p− ph∥0,Ω ,

e(t) := ∥t− th∥0,Ω , e(ϕ) := ∥ϕ− ϕh∥0,4;Ω , and e(η) := ∥η − ηh∥div4/3;Ω ,

where ph stands for the post-processed pressure suggested by the first formula of (2.6), that is

ph = − 1

n
tr
(
σh +

1

2
(uh ⊗ uh)

)
− dh , with dh := − 1

2n |Ω|

∫
Ω
tr(uh ⊗ uh) . (6.1)

As usual, for each ⋄ ∈
{
χ,u,σ, p, t, ϕ,η

}
we let r(⋄) be the experimental rate of convergence given by

r(⋄) :=
log(e(⋄)/ê(⋄))

log(h/ĥ)
,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. In all of them, for the sake of
simplicity, we take g = (0,−1) when n = 2 and g = (0, 0,−1) when n = 3, and similarly to [1, 5, 6],
we choose the nonlinear functions κ and f , respectively, as:

κ(|t|) = m1 +m2 (1 + |t|2)m3/2−1 and f(ϕ) = c ϕ (1− c ϕ)2 ,

where c = m1 = m2 = 1/2 and m3 = 3/2. In addition, the mean value of tr(σh) over Ω is fixed via a
Lagrange multiplier strategy (adding one row and one column to the matrix system that solves (4.2)
for χ⃗h = (χh,uh) and σh).

Example 1: 2D smooth exact solution with varying D, F, and ρ parameters

In this test we corroborate the rates of convergence in a two-dimensional domain and also study the
performance of the numerical method with respect to the number of Newton iterations required to
achieve a tolerance of tol = 1E − 6 for different values of the parameters D, F, and ρ. The domain is
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the square Ω = (0, 1)2. We set µ = 1 and adjust the data f and g in (2.7) so that the exact solution
is given by

u(x1, x2) =

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(π x1) sin

(π
2
x2

)
,

and ϕ(x1, x2) = 15− 15 exp(−x1(x1 − 1)x2(x2 − 1)) .

Notice that ϕ vanishes at Γ and uD is imposed accordingly to the exact solution. Tables 6.1–6.2 show
the convergence history for a sequence of quasi-uniform mesh refinements, including the number of
Newton iterations when D = 1, F = 10, and ρ = 3. Notice that we are able not only to approximate the
original unknowns but also the pressure field through the formula (6.1). The results confirm that the
optimal rates of convergence O(hk+1), provided by Theorem 5.1 are attained for k = 0, 1. The Newton
method exhibits a behavior independent of the meshsize, converging in six iterations in all cases. In
Figure 6.1 we display some solutions obtained with the fully mixed P1 − P1 − RT1 − P1 − P1 −
RT1 approximation with meshsize h = 0.0135 and 41, 146 triangle elements (actually representing
1, 606, 278 DoF). On the other hand, in Table 6.3 we report the number of Newton iterations as a
function of the parameters D, F, and ρ, considering polynomial degree k = 0 and different meshsizes
h. We observe that Newton’s method is robust with respect to both h and ρ, although the number of
iterations increases slightly for larger values of D and F. This behavior is consistent with the growing
influence of the nonlinear term F |u|u.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second example, we consider the cube domain Ω = (0, 1)3 and the parameters µ = 1, D = 1, F =
10 and ρ = 3.5. The manufactured solution is given by

u(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3),

 , p = cos(π x1) exp(x2 + x3) ,

and ϕ(x1, x2, x3) = 15− 15 exp(−x1(x1 − 1)x2(x2 − 1)x3(x3 − 1)) .

Similarly to the first example, the data f , g,uD, and ϕD are computed from (2.7) using the above
solution. The convergence history for a set of quasi-uniform mesh refinements using k = 0 is shown
in Table 6.4. Again, the fully mixed finite element method converges optimally with order O(h), as
it was proved by Theorem 5.1. In addition, some components of the numerical solution are displayed
in Figure 6.2, which were built using the fully mixed P0 −P0 −RT0 −P0 −P0 −RT0 approximation
with meshsize h = 0.0866 and 48, 000 tetrahedral elements (actually representing 1, 113, 600 DoF).

Example 3: Fluid flow through a rectangular domain with circular obstacles

Inspired by [31, Chapter 1], we finally focus on a flow through a rectangular porous medium with
circular obstacles and a non-manufactured solution. More precisely, we consider the domain Ω =
(0, 2)× (0, 0.25) \ Ωc, where Ωc :=

⋃3
i=1Ω

up,i
c ∪

⋃2
j=1Ω

down,j
c ,

Ωup,i
c =

{
(x1, x2) : (x1 − 0.8 i+ 0.6)2 + (x2 − 0.15)2 < 0.052

}
, i = {1, 2, 3} ,

and
Ωdown,j
c =

{
(x1, x2) : (x1 − 0.8 j + 0.2)2 + (x2 − 0.1)2 < 0.052

}
, j = {1, 2} ,
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with boundary Γ = ∂Ω, where the input and output parts are defined as Γin = {0} × (0, 0.25) and
Γout = {2} × (0, 0.25), respectively. We consider the parameters µ = exp(−x1 x2), D = 1, F = 10, and
ρ = 4, while the data is chosen as f = (0,−9.81) and g = 0. The boundary conditions are given by

u = (−10x2(x2 − 0.25), 0)t on Γin ∪ Γout , u = 0 on Γ \
(
Γin ∪ Γout

)
,

ϕ = 1 on Γin , ϕ = 5 on Γout , η · ν = 0 on Γ \
(
Γin ∪ Γout

)
,

which drive the flow through a parabolic fluid velocity from left to right of the rectangular domain
Ω. We remark that the analysis presented in the previous sections can be extended, with minor
modifications, to the case of mixed boundary conditions considered in this example (see, e.g., [11,
Section 2.4] and [16] for details). Additionally, the analysis can be readily adapted to scenarios where
the parameter µ is spatially varying, provided it is bounded above and below by positive constants.

In Figure 6.3, we show the computed magnitudes of the velocity and concentration gradients,
along with the pressure and concentration fields. These results were obtained using the fully mixed
P0 − P0 − RT0 − P0 − P0 − RT0 scheme on a mesh with h = 0.0126 and 18, 916 triangle elements
(corresponding to 237, 674 DoF). As expected, the velocity moves from left to right. In addition, due
to the gravitational force imposed in f and the fact that the flow cannot enter or exit through the
top, bottom, and circular boundaries, a sinusoidal behavior is observed. This behavior is consistent
with the pressure distribution, which decreases from left to right. In turn, the concentration is smaller
on the left side of the domain and increases towards the right, which is consistent with the behavior
observed in the magnitude of the concentration gradients. In particular, a higher concentration is
observed at the right-bottom corner of the domain.

DoF h iter e(χ) r(χ) e(u) r(u) e(σ) r(σ)

1948 0.1964 6 4.42E-01 – 1.09E-01 – 1.96E+00 –
4372 0.1267 6 2.93E-01 0.9361 7.18E-02 0.9443 1.28E+00 0.9814
12020 0.0776 6 1.80E-01 0.9958 4.20E-02 1.0933 7.57E-01 1.0655
39291 0.0443 6 9.87E-02 1.0682 2.35E-02 1.0336 4.17E-01 1.0610

137358 0.0244 6 5.28E-02 1.0516 1.25E-02 1.0668 2.22E-01 1.0621
515117 0.0135 6 2.72E-02 1.1203 6.50E-03 1.1005 1.15E-01 1.1097

e(p) r(p) e(t) r(t) e(ϕ) r(ϕ) e(η) r(η)

1.48E-01 – 3.57E-01 – 7.74E-01 – 7.11E-01 –
9.18E-02 1.0978 2.37E-01 0.9393 5.08E-01 0.9587 4.78E-01 0.9093
5.60E-02 1.0040 1.38E-01 1.0941 3.24E-01 0.9191 2.81E-01 1.0785
3.00E-02 1.1148 7.67E-02 1.0521 1.69E-01 1.1549 1.54E-01 1.0679
1.60E-02 1.0591 4.14E-02 1.0353 9.22E-02 1.0229 8.36E-02 1.0322
8.35E-03 1.0953 2.13E-02 1.1241 4.79E-02 1.1059 4.32E-02 1.1157

Table 6.1: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully mixed P0 −P0 − RT0 −P0 − P0 −RT0 approximation.
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