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Abstract

This paper investigates the global existence and long-term behavior of solutions to a logarithmic wave
equation incorporating infinite memory, fractional derivative, and strong damping in a bounded do-
main. The equation features a nonlinear logarithmic source term, which is significant in various phys-
ical applications such as structural vibrations, fluid dynamics, and quantum mechanics. The presence
of strong damping and fractional derivative terms is crucial in ensuring well-posedness and stabilizing
the system, while the infinite memory term introduces a complex history-dependent dynamic. This
manuscript is a continuation of recent work by the first two authors (Nonlinear logarithmic wave
equations: Blow-up phenomena and the influence of fractional damping, infinite memory, and strong
dissipation, Evol. Equ. Control Theory, 13(2024), 1423–1435). In addition, numerical simulations are
presented to illustrate the asymptotic behavior of solutions.
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1. Introduction

We investigate the following problem: ωtt − λ∆ω −∆ωt +
∫ +∞
0 q(s)∆ω(t− s)ds+ ∂ϖ,ς

t ω(t) = ω|ω|ϱ−2 ln |ω|, in Ω× (0,∞),
ω = 0, on ∂Ω× (0,∞),
ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x), in Ω

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, q : R+ → R+ is a C1 function such
that

q(0) > 0, q0 =

∫ ∞

0
q(s)ds = 1− λ > 0, q′(t) ≤ −ϑq(t), ∀ t ≥ 0,
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for some positive constant ϑ, and ϱ satisfies

ϱ > 2 if n = 1, 2 or 2 < ϱ <
2n

n− 2
if n ≥ 3.

The symbol ∂ϖ,ς
t denote the modified Caputo’s fractional derivative which was first defined by Choi

and Maccamy [2].

∂ϖ,ς
t ω(t) =

1

Γ(1−ϖ)

∫ t

0
(t− τ)−ϖe−ς(t−τ)ωτ (τ)dτ, 0 < ϖ < 1, ς ≥ 0.

In the modern age, numerous studies have been conducted on the nonlinear logarithmic term in (1.1),
which is a theoretically rich and physically significant nonlinear component. This term plays a crucial
role in the study of viscoelastic wave equations, partial differential equations, and related fields. It is
particularly relevant to control theory, where the goal is to develop control laws and strategies that
guide a system described by PDEs toward a desired trajectory or state.

In recent years, there has been a notable increase in interest surrounding nonlinear wave equations
that incorporate logarithmic source terms. In the physical sciences, the logarithmic nonlinearity
present in this wave equation model has broad implications. Such nonlinear terms arise in a wide
range of theoretical and applied contexts, including nuclear physics, optics, geophysics, symmetry
principles in cosmology, quantum mechanics, and fluid dynamics.

This nonlinearity captures two significant vibration events in the specific model considered here,
equation (1.1): longitudinal oscillations in structural elements like bars and transverse motions in
viscous strings. There are still many unanswered questions about the complex dynamics of these
logarithmic wave processes, which have profound effects on both our fundamental understanding of
the physical universe and our ability to describe and control complex wave-based systems.

Despite its importance, there is limited research on partial differential equations with strong damp-
ing, particularly in the context of wave equations with logarithmic nonlinearity. Strong damping en-
sures the existence and uniqueness of solutions, significantly enhances stability, and prevents blow-up
phenomena in nonlinear logarithmic systems. It improves robustness against disturbances, efficiently
dissipates energy, and simplifies numerical analysis, making it essential for both theoretical studies
and practical applications. Over the past few decades, extensive research has focused on the charac-
teristics of solutions for wave equations influenced by strong damping and source effects, investigating
the existence and nonexistence of solutions, their stability, and blow-up phenomena.

The fields of biology, physics, vibrations, electronics, and other sciences extensively use partial
differential equations with fractional derivatives. Recent studies have focused on the regulation of
PDEs through the application of fractional derivatives (see [4, 5, 6]). In the context of linear wave
equations with fractional derivatives, Matignon et al. [7] have investigated fractional damping in
PDEs, demonstrating well-posedness and asymptotic stability, which was a significant contribution.
Tatar and Kirane [8] studied wave equations with fractional derivatives for exponential growth. For
additional literature on fractional derivatives, see [9, 10, 11].

Recently, Aslam and Hao [12] investigated the effects of strong damping and infinite memory,
focusing on the blow-up phenomena of solutions under specific conditions. Their investigation into
strongly damped wave equations featuring a logarithmic nonlinear source term, as well as the analy-
sis of PDEs involving fractional derivatives, has provided significant insights into the dynamics and
characteristics of these systems. This research represents a pioneering effort in exploring a nonlinear
fractional wave equation within a bounded domain, characterized by fractional damping and logarith-
mic nonlinearity that incorporates infinite memory in Rn. The findings have important implications
across various scientific fields.
The author intends to use semigroup theory and appropriate Lyapunov functionals to address this
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research gap by examining the global existence and asymptotic system’s behavior. This current doc-
ument is outlined as follows: The presumptions and results required to establish the primary findings
are given in Section 2. The global solution is demonstrated in Section 3 through the application of
semi-group theory [13]. The exponential stability has been discussed in Section 4. Finally, in Section
5, we present numerical examples based on the finite-volume method for spatial discretization and
the Newmark method for time integration. A carefully designed discretization is employed for the
nonlinear term to ensure energy conservation in the absence of dissipation and a monotonic decrease
in energy when dissipation is present.

2. PRELIMINARIES

Several key lemmas which are helpful throughout the work will be pointed out in this section.

Lemma 1. ([14]) Let ζ be defined as: ζ(ξ) = |ξ|
(2ϖ−1)

2 for ξ ∈ R and 0 < ϖ < 1. Additionally, let

b = sin(ϖπ)
π . Then, the relationship between the input U and the output O of the system

∂tθ(ξ, t)− U(x, t)ζ(ξ) + (ξ2 + ς)θ(ξ, t) = 0, t > 0, ξ ∈ R, ς ≥ 0,

O(t) := b
∫ +∞
−∞ θ(ξ, t)ζ(ξ) dξ

θ(ξ, 0) = 0,

(2.1)

is given by
O := I1−ϖ,ςU,

where

Iϖ,ςu(t) :=
1

Γ(ϖ)

∫ t

0
u(τ)(t− τ)ϖ−1e−ς(t−τ)dτ.

Lemma 2. ([15]) For all y ∈ Dς = {y ∈ C : Re(y) + ς > 0}
⋃
{y ∈ C : Im(y) ̸= 0}, we have

Ay :=

∫ +∞

−∞

ζ2(ξ)

y + ς + ξ2
dξ =

π

sin(ϖπ)
(y + ς)ϖ−1.

Now, similarly to [3], we define a new variable:

ot(x, s) = ω(x, t)− ω(x, t− s),

The variable ot represents the relative history of ω that fulfills the following equation:

ott(x, s)− ωt(x, t) + ots(x, s) = 0, x ∈ Ω, t, s > 0. (2.2)

By using Lemma 1 and equation (2.2), the system (1.1) turns into:

ωtt − λ∆ω(t)−
∫ +∞

0
q(s)∆ot(x, s)ds−∆ωt

+b

∫ +∞

−∞
θ(ξ, t)ζ(ξ)dξ = ω|ω|ϱ−2 ln |ω|, x ∈ Ω, t > 0,

∂tθ(ξ, t) + (ξ2 + ς)θ(ξ, t)− ωt(x, t)ζ(ξ) = 0, ξ ∈ R, t > 0, ς ≥ 0,
ott(x, s) + ots(x, s) = ωt(x, t), x ∈ Ω, t, s > 0,
ω = ot(x, s) = 0, x ∈ ∂Ω, t, s > 0,
ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x), x ∈ Ω,
ot(x, 0) = 0, o0(x, s) = ω0(x)− ω0(x,−s), x ∈ Ω, t, s > 0,
θ(ξ, 0) = 0, x ∈ Ω, ξ ∈ R.

(2.3)
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The energy of system (2.3) is given by

E(t) :=
1

2
||ωt(t)||22 +

b

2

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2dξdx+

λ

2
||∇ω(t)||22

+
1

ϱ2
||ω(t)||ϱϱ −

1

ϱ

∫
Ω
ln |ω|ωϱdx+

1

2

∫ +∞

0
q(s)||∇ot(s)||22ds

(2.4)

and satisfies

dE(t)

dt
=

1

2

∫ +∞

0
q′(s)||∇ot(s)||22ds−

1

2
||∇ω||22

− b

∫
Ω

∫ +∞

−∞
(ξ2 + ς)|θ(ξ, t)|2dξdx ≤ 0.

(2.5)

The energy space H is defined as follows:

H = H1
0 (Ω)× L2(Ω)× L2(Ω,R)× L2

q(R+, H
1
0 (Ω)),

where

L2
q(R+, H

1
0 (Ω)) =

{
w : R+ → H1

0 (Ω) |
∫ +∞

0
q(s)||∇w(s)||22ds < ∞

}
.

The space L2
q(R+, H

1
0 (Ω)) is equipped with the inner product:〈

w1, w2

〉
L2
q(R+,H1

0 (Ω))
=

∫ +∞

0
q(s)

∫
Ω
∇w1(s)∇w2(s)dxds.

Consequently, the inner product defined on H is given by:〈
U, Ū

〉
H =

∫
Ω
[λ∇ω.∇ω̄ + uū]dx+ b

∫
Ω

∫ +∞

−∞
θθ̄dξdx+

∫ +∞

0
q(s)

∫
Ω
∇ot(s)∇ōt(s)dxds,

where U = (ω, u, θ, ot)T ∈ H and Ū = (ω̄, ū, θ̄, ōt)T ∈ H. The system (2.3) can be written as:{
Ut(t) +AU(t) = J(U(t)),
U(0) = U0.

where

AU =



−u

−λ∆ω −
∫ +∞

0
q(s)∆ot(x, s)ds+ b

∫ +∞

−∞
θ(x, ξ, t)ζ(ξ)dξ −∆ωt

(ζ2 + ς)θ − u(x)ζ(ξ)

ots(s)− u


,

with domain

D(A) =


U = (ω, u, θ, ot)T ∈ H;ω ∈ H2(Ω);u ∈ H1

0 (Ω);
(ξ2 + ς)θ − uζ(ξ) ∈ L2(Ω,R);
|ξ|θ ∈ L2(Ω,R); ots ∈ L2

q(R+, H
1
0 (Ω))


and

J(U) = (0, |ω|ϱ−2ω ln |ω|, 0, 0)T .
Now, we present the local existence result [12] of the solution to problem (2.3).

Theorem 1. Let T > 0. The system (2.3) possesses a unique solution U = (ω, u, θ, ot)T that satisfies
the following conditions:

1. If U0 ∈ H, then U ∈ C([0, T );H).
2. If U0 ∈ D(A), then U ∈ C1([0, T );H) ∩ C([0, T );D(A)).
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3. Global existence

In this section, we focus on proving the global existence of the solution for the given problem (2.3).
To begin, we define the following functionals:

I(t) = λ∥∇ω(t)∥22 + b

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2 dξdx +

1

2

∫ +∞

0
q(s)

∥∥∇ot(t)
∥∥2
2
ds−

∫
Ω
ln |ω|ωϱdx,

J(t) =
λ

2
∥∇ω(t)∥22 +

1

ϱ2
||ω(t)||ϱϱ −

1

ϱ

∫
Ω
ln |ω|ωϱdx+

b

2

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2 dξdx +

1

2

∫ +∞

0
q(s)

∥∥∇ot(t)
∥∥2
2
ds.

We have

E(t) = J(t) +
1

2
∥ωt(t)∥22 .

In what follows, we denote by C∗
r the Sobolev embedding constant H1

0 (Ω) ↪→ Lr(Ω), i.e.

∥w∥rr ≤ C∗
r ∥∇w∥r2,

for any 2 < r < 2n
n−2 .

Lemma 3. For any U0 ∈ H satisfying χ =
2C∗

ϱ+l

ϱλ

(
2ϱ

λ(ϱ−2)E(0)
) ϱ−2+l

2
< 1

I(0) > 0,
(3.1)

we have I(t) > 0,∀ t > 0.

Proof. Given the continuity of ω and the condition I(0) > 0, it follows that there exists a T ∗ < T
such that I(t) ≥ 0, ∀ t ∈ [0, T ∗]. Besides, we have

J(t) =λ

(
ϱ− 2

2ϱ

)
∥∇ω(t)∥22 +

1

ϱ2
∥ω(t)∥ϱϱ + b

(
ϱ− 2

2ϱ

)∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2 dξ dx

+

(
ϱ− 1

2ϱ

)∫ +∞

0
q(s)

∥∥∇ot(t)
∥∥2
2
ds+

1

ϱ
I(t).

Therefore,

λ∥∇ω(t))∥22 ≤
2ϱ

ϱ− 2
J(t) ≤ 2ϱ

ϱ− 2
E(t) ≤ 2ϱ

ϱ− 2
E(0). (3.2)

By using the fact ln |ω| < |ω|l, we get∫
Ω
ln |ω|ωϱdx ≤

∫
Ω
|ω|ϱ+ldx.

where l is chosen to be 1
e < l < 2

n−2 , so that

ϱ+ l <
2n− 2

n− 2
+ l <

2n

n− 2
.

Therefore, by embedding H1
0 (Ω) ↪→ Lϱ+l(Ω), it holds that

1

ϱ

∫
Ω
ln |ω|ωϱdx ≤

C∗
ϱ+l

ϱ
∥∇ω∥ϱ+l

2 ≤
2C∗

ϱ+l

ϱλ
∥∇ω∥ϱ+l−2

2

(
λ

2
∥∇ω∥22

)
≤

2C∗
ϱ+l

ϱλ

((
2ϱ

λ(ϱ− 2)
E(0)

)) ϱ−2+l
2
(
λ

2
∥∇ω∥22

)
<

λ

2
∥∇ω∥22 (3.3)
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Thus, I(t) > 0,∀ t ∈ [0, T ∗]. Repeating this process and taking into account the fact that

lim
t→T ∗

2C∗
ϱ+l

ϱλ

(
2ϱ

λ(ϱ− 2)
E(0)

) ϱ−2+l
2

< 1,

yields to T ∗ = T . Furthermore, we have

1

2
∥ωt(t)∥22 +

λ(ϱ− 2)

2ϱ
∥∇ω∥22 ≤

1

2
∥ωt(t)∥22 + J(t) = E(t) ≤ E(0),

which implies that the solution of system (2.3) is both global in time and bounded.

4. Exponential stability

Let us define the functional L(t) by

L(t) = NE(t) + N1φ(t), (4.1)

where N and N1 are positive constants that will be fixed later, and

φ(t) =

∫
Ω
ωtωdx+

b

2

∫
Ω

∫ +∞

−∞

(
ξ2 + ς

)
| M(x, ξ) |2 dξdx,

where

M(x, ξ) =
ω0(x)ζ(ξ)

(ξ2 + ς)
+

∫ t

0
θ(x, ξ, s)ds.

Lemma 4. Let (ω, ωt, θ, o
t)T be a regular solution of the problem (2.3). Then, we have∫

Ω

∫ +∞

−∞

(
ξ2 + ς

)
θ(ξ, t)M(x, ξ)dξdx =

∫
Ω
ω(x, t)

∫ +∞

−∞
θ(ξ, t)ζ(ξ)dξdx−

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2dξdx.

(4.2)

Proof. Clearly, by using the second equation of (2.3) we obtain(
ξ2 + ς

)
θ(ξ, t) = ωt(x, t)ζ(ξ)− ∂tθ(ξ, t), ∀x ∈ Ω. (4.3)

Integrating (4.3) between 0 and t yields to∫ t

0

(
ξ2 + ς

)
θ(ξ, s)ds = ω(x, t)ζ(ξ)− θ(ξ, t)− ω0(x)ζ(ξ), ∀x ∈ Ω,

So, (
ξ2 + ς

)(∫ t

0
θ(ξ, s)ds+

ω0(x)ζ(ξ)

(ξ2 + ς)

)
= ω(x, t)ζ(ξ)− θ(ξ, t), ∀x ∈ Ω. (4.4)

Multiplying (4.4) by θ and integrating over Ω× (−∞,+∞), we obtain (4.2).

By following the same steps as in [1, Lemma 4.4], we easily obtain:

Lemma 5. Let (ω, ωt, θ, o
t) be the solution of problem (2.3). Therefore,

|φ(t)| ≤ 1

2
∥ωt∥22 +

C∗
2

2
(1 + 4A0) ∥∇ω∥22 +

2

ς

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2 dξ dx.
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This last lemma and (3.3) give that L(t) ∼ E(t) for N large enough, i.e., there exist a positive
constants c1 and c2 such that

c1E(t) ≤ L(t) ≤ c2E(t), ∀ t ≥ 0.

Theorem 2. Assume that (3.1) holds true. Then, there exist positive constants k and K such that

E(t) ≤ Ke−kt, ∀ t ≥ 0.

Proof. We will work with regular solutions, and the decay holds true for weak solutions according to
classic density arguments. We differentiate (4.1) to obtain

L′(t) = NE′(t) + N1φ
′(t)

=
N

2

∫ +∞

0
q′(s)||∇ot(s)||22ds−

N

2
||∇ωt||22 −Nb

∫
Ω

∫ +∞

−∞
(ξ2 + ς)|θ(ξ, t)|2dξdx+N1∥ωt∥22 −N1λ∥∇ω∥22

−N1

∫ +∞

0
q(s)

∫
Ω
∇ω∇otdxdξ −N1

∫
Ω
∇ω∇ωtdx−N1b

∫
Ω
ω

∫ ∞

−∞
θ(ξ, t)ζ(ξ)dξdx+N1

∫
Ω
|ω|ϱ ln |ω|dx

+N1b

∫
Ω

∫ +∞

−∞

(
ξ2 + ς

)
θ(ξ, t)M(x, ξ)dξdx

=
N

2

∫ +∞

0
q′(s)||∇ot(s)||22ds−

N

2
||∇ωt||22 −Nb

∫
Ω

∫ +∞

−∞
(ξ2 + ς)|θ(ξ, t)|2dξdx+N1∥ωt∥22 −N1λ∥∇ω∥22

−N1

∫ +∞

0
q(s)

∫
Ω
∇ω∇otdxdξ −N1

∫
Ω
∇ω∇ωtdx+N1

∫
Ω
|ω|ϱ ln |ω|dx−N1b

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2dξdx.(4.5)

By combining Young’s inequality and Hölder’s inequality, we find that:

−
∫ +∞

0
q(s)

∫
Ω
∇ω∇otdxdξ ≤ λ

4
∥∇ω∥22 +

1− λ

λ

∫ +∞

0
q(s)

∥∥∇ot(x, s)
∥∥2
2
ds, (4.6)

and ∫
Ω
∇ω∇ωtdx ≤ λ

4
∥∇ω∥22 +

1

λ
∥∇ωt∥22. (4.7)

Inserting (4.6) and (4.7) in (4.5) and using the fact that q′(s) ≤ −ϑq(s), ∥ωt∥22 ≤ C∗
2∥∇ωt∥22 (since

ωt ∈ H1
0 (Ω)) and (3.2), we obtain

L′(t) ≤ −N1∥ωt∥22 −
(
N

2
−N1(2C

∗
2 +

1

λ
)

)
∥∇ωt∥22 −

(
N1λ

2
−

C∗
ϱ

ϱ2

(
2pE(0)

λ(ϱ− 2)

) ϱ−2
2

)
∥∇ω∥22 +N1

∫
Ω
|ω|ϱ ln |ω|dx

− 1

ϱ2
∥ωt∥ϱϱ −

(
Nϑ

2
− N1(1− λ)

λ

)∫ +∞

0
q(s)

∥∥∇ot(x, s)
∥∥2
2
ds−N1b

∫
Ω

∫ +∞

−∞
|θ(ξ, t)|2dξdx. (4.8)

Now, first choose N1 such that

N1 >
2C∗

ϱ

λϱ2

(
2pE(0)

λ(ϱ− 2)

) ϱ−2
2

,

and then N so that

N > max
{
2N1(2C

∗
2 +

1

λ
),
2N1(1− λ)

ϑλ

}
.

Consequently, from above, we deduce that there exists a positive m such that (4.8) becomes

L′(t) ≤ −mE(t), for all t ≥ 0.

Using Gronwall’s inequality and the fact that L(t) ∼ E(t), we deduce that

E(t) ≤ c2
c1
E(0)e

−m
c2

t
, t ≥ 0.

This ends the proof of Theorem 2.
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5. Numerical Approximation

In this section, we will numerically verify the exponential decay rate of the energy obtained in the
previous section for the case n = 1.

5.1. Finite Volume Approximation

We consider the finite volume method (FVM) for spatial discretization of the variable ω = ω(x, t),
based on a discretization of the finite difference of the flux [16]. In this sense, let there be for the
one-dimensional space case (n = 1), a uniform discretization of the domain Ω = (0, l) in small J

control volumes Kj = (xj− 1
2
, xj+ 1

2
), with xj+ 1

2
= jδx, δx =

l

J
, j = 1, . . . , J . The unknown ω(x, t),

are approximated by ωj(t) in the control volume Kj . Given the uniformity of the mesh, the Laplacian
operator terms are approximated as:

∆ω = ωxx ≈
(
D2ω

)
j
=

ωj−1 − 2ωj + ωj+1

δx2
, j = 1, . . . , J (5.1)

with ω0 = ωJ+1 = 0.

5.2. Linear equations of Motion

Let the vector w(t) = [ω1(t), . . . , ωJ(t)]
⊤, an approximation of ω(x, t) in RJ . Considering (5.1),

we have the following system of equations of motion

Mẅ(t) +Kw(t) +Cẇ(t) = J(w) (5.2)

where M = IJ×J is the identity matrix of size J , K = −λD2 is the stiffness matrix, and

C = C∆ωt +Cmemo +Cfrac

is the dissipation matrix given by the sum of the three matrices taking part in the approximation of
the three dissipative terms of the equation (1.1):

• C∆ωt which characterizes the Kelvin-Voight dissipative term −∆ωt;

• Cmemo which characterizes the infinite memory dissipative term
∫∞
0 q(s)∆w(t− s) ds;

• Cfrac which characterizes the fractional derivative dissipative term ∂ϖ,ς
t ω(t);

In the case of the Kelvin-Voight dissipative term, the matrix is simply given by C∆ωt = −D2. In
the other two cases, since both terms are non-local in time, it is important to first specify the time
discretization of our scheme.

5.3. Time discretization

In order to preserve the energy with a second-order scheme in time, we choose a β-Newmark
scheme for w. The method consists of updating the displacement, velocity and acceleration vectors at
the current time tn = nδt to the time tn+1 = (n+ 1)δt, a small time interval δt later. The Newmark
algorithm [18] is based on a set of two relations expressing the forward displacement wn+1 and velocity
ẇn+1 in terms of their current values and the forward and current values of the acceleration:

ẇn+1 = ẇn + (1− γ)δt ẅn + γδt ẅn+1, (5.3)

wn+1 = wn + δtẇn +

(
1

2
− β

)
δt2 ẅn + βδt2 ẅn+1, (5.4)

where β and γ are parameters of the methods that will be fixed later. Returning now to the description
of nonlocal dissipative matrices, we have the following.
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5.4. Infinite memory term.

The infinite memory term
∫∞
0 q(s)∆w(t− s) ds taking part in the equation (1.1), can be approx-

imated by Cmemow. Before specifying the matrix associated with this decay, we must note that this
type of infinite memory terms have already been treated numerically in multiple works, for example
in [17] in which reasonable results are obtained, however the energy is not conserved and spurious
oscillations occur in the decay. In order to avoid these unwanted oscillations, we consider another
approximation in which we use the modified model (2.3), and we discretize the variable ot introduced
in (2.2). This allows us to obtain a conservative scheme whose energy will be numerically decreasing.
To do this, we approximate ot(x, s) by om,n

j , for j = 1, . . . , J , n = 1, . . . , N and m = 1, . . . ,M in the
equation (2.2), and defining

om,n
j := ωn

j − ωn−m
j (5.5)

Replacing (5.3)-(5.4) in (5.5), we obtain

om,n+1
j − om−1,n

j = ωn+1
j − ωn

j

= δt

(
β

γ
ω̇n+1
j +

(
1− β

γ

)
ω̇n+1
j

)
− 2β − γ

2γ
δt2ω̈n

j

Then γ =
1

2
, β =

1

2
γ is chosen, in order to obtain the following conservative scheme

om,n+1
j = om−1,n

j + δtω̇
n+ 1

2
j (5.6)

with ω̇
n+ 1

2
j =

ω̇n
j + ω̇n+1

j

2
. Then from (2.3), the approximation of the infinite-memory term at time

t = tn+1 can be written as

−
∫ +∞

0
q(s)∆otn+1(x, s)ds ≈ −δt

M∑
m=1

qmD2om,n+1

= −δt
M∑

m=1

qmD2om−1,n − δt2

(
M∑

m=1

qm

)
D2ẇn+ 1

2 (5.7)

5.5. Fractional derivative term.

In order to numerically simulate the improper integral (2.1)2, we consider R > 0 sufficiently large,
so that

∂ϖ,ς
t ω(t) ≈ 2b

∫ R

0
θ(ξ, t)ζ(ξ)dξ

(we note the parity of the function θζ with respect to ξ from (2.1)). Let ξℓ := ℓδξ ℓ = 1, . . . , L,
δξ = L/R. From (2.1), we define

ζℓ = |ξℓ|(2ϖ−1)/2, ℓ = 1, . . . , L, 0 < ϖ < 1.

In the case of this dissipative term, we will simply be inspired by the work of [20], where considering
the augmented model of [14] results in a conservative scheme and decreasing numerical energy. Thus,
an approximation of the fractional derivative term, is given by

∂ϖ,ς
t ω(t) ≈ 2bδξ

L∑
ℓ=1

ζℓθ
n
ℓ . (5.8)
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On the other hand, the system (2.1) can be discretized using the Crank–Nicolson method [19], in order
to maintain the conservation of energy, or its nondecrease in case of dissipation. Then, we obtain the
following conservative numerical scheme:

θn+1
ℓ = θnℓ − δt

(
ξ2ℓ + ς

)
θ
n+ 1

2
ℓ + δtζℓẇ

n+ 1
2 (5.9)

Combining then (5.7) and (5.9) with (5.3) and (5.4), and replacing these expressions in (5.2) for
t = tn+1 gives the following system of nonlinear equations describing the first part of the conservative
scheme: (

M+ γδtC+ βδt2K
)
ẅn+1 − J(wn+1) =

−C (ẇn + (1− γ) δtẅn)−K

(
wn + δtẇn +

(
1

2
− β

)
δt2ẅn

)
,

− δt
M∑

m=1

qkD
2om−1,n − δt2

2

(
M∑

m=1

qk

)
D2ẇn − bδξ

L∑
ℓ=1

ζ̃ℓθ
n
ℓ (5.10)

with C = C∆ωt +Cmemo +Cfrac and

C∆ωt = −D2

Cmemo = −δt

2

(
M∑

m=1

qk

)
D2

Cfrac = δtb

(
L∑

ℓ=1

2ζ̃2ℓ
2 + δt

(
ξ2ℓ + ς

)) IJ , with ζ̃ℓ =
2− δt

(
ξ2ℓ + ς

)
2 + δt

(
ξ2ℓ + ς

)ζℓ
5.6. Source term J(w)

In the first instance we propose a discretization of the nonlinear term J(w) for the scheme (5.10),
in a quite natural and naive way as

J(wn+1)j = J(ωn+1
j ) = ωn+1

j |ωn+1
j |ϱ ln |ωn+1

j | (5.11)

This choice is reasonable; however, it does not preserve the system’s energy when the dissipative terms
in equation (1.1) and the corresponding (5.10) scheme are not taken into account. Specifically, when
analyzing the (5.10) scheme combined with (5.11), a numerical dissipation of energy is observed, as
shown in Figure 1, along with persistent oscillations around this decay. While dissipation is desirable,
we aim for a more accurate scheme free of spurious numerical effects, enabling a clearer assessment of
the performance of the approximate dissipative terms. For this reason, we subsequently propose the
following conservative scheme:(

M+ γδtC+ βδt2K
)
ẅn+1 − J (wn,wn+1) = L(wn, ẇn, ẅn,o·,n, θn)

−C (ẇn + (1− γ) δtẅn)−K

(
wn + δtẇn +

(
1

2
− β

)
δt2ẅn

)
,

− δt
M∑

m=1

qmD2om−1,n − δt2

2

(
M∑

m=1

qm

)
D2ẇn − bδξ

L∑
ℓ=1

ζ̃ℓθ
n
ℓ (5.12)

where

J (wn,wn+1)j =


F(ωn+1

j )− F(ωn
j )

ωn+1
j − ωn

j

if ωn
j ̸= ωn+1

j

0 otherwise,

j = 1, . . . , J, (5.13)
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with F(w)j =
1

ϱ2
|ωj |ϱ(ln |ωj |ϱ − 1) and

L(wn, ẇn, ẅn,o·,n, θn) = − (Mẅn +Kwn +Kẇn)

− δt
M∑

m=1

qmD2om,n − bδξ
L∑

ℓ=1

ζℓθ
n
ℓ (5.14)

Remark 1. • The function F(·) is a primitive of the function J(·), so the term J defined in (5.13)
represents a finite difference of J and, therefore, the scheme (5.12) is consistent with (2.3). This
approach to discretizing the nonlinear term, aimed at ensuring energy conservation, is partially
inspired by the work of Delfour et al. [21].”

• The so-called scheme without the dissipative physical terms can be rewritten and is given by

Mẅn+ 1
2 +Kwn+ 1

2 = J (wn,wn+1) (5.15)

where wn+ 1
2 =

wn +wn+1

2
. The scheme (5.15) represents a discretization of the equation

ωtt −∆ω = ω|ω|ϱ−2 ln |ω|

in which there is conservation of energy, and therefore the similar is expected with respect to the
scheme (5.15). In fact, let the discrete energy be defined for the conservative case by

En
∆,cons =

δx

2

(ẇn)T Mẇn + (wn)T Kwn −
J∑

j=1

F(ωn
j )

 (5.16)

Lemma 6. Choosing γ =
1

2
and β =

1

4
, the numerical solution of (5.12) with (5.3)-(5.4) and (5.13)

verifies the following conservation property in time

En+1
∆,cons = En

∆,cons

Proof. By multiplying (5.12) by δtẇn+ 1
2 and applying (5.3)-(5.4) with γ = 1

2 and β = 1
4 , we derive the

desired identity. Observe that J is explicitly defined in (5.13), which allows us to express F(ωn+1
j )−

F(ωn
j ) directly as the product of J (wn,wn+1) and δtẇn+ 1

2 , thereby yielding the expected result.

In Figure 1, a comparative simulation of the conservative numerical energy (5.16) is presented for
two methods: the implicit method (5.10) (assuming the three dissipative terms are null in this case)
and the conservative method (5.12). The initial conditions for this example are given by

ω0(x) = sin (10πx), ω1(x) = 0, ∀x ∈ (0, 1).

The domain is defined as Ω = (0, 1), with non-linearity characterized by ϱ = 3 and parameter λ = 1.
The discretization parameters are set to J = 250, T = 5, N = 500, M = 10, 000, R = 100, and
dξ = R/M .

As shown in Figure 1, the conservative method demonstrates greater accuracy in preserving energy
and effectively avoids numerical dissipation when compared to the implicit method.
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Figure 1: Comparison of Energy Computation Using Two Methods: Implicit and Conservative Approaches

In the case of the complete system (1.1) with all its dissipative terms and their numerical approx-
imation given by (5.10), the energy to be considered is defined by the following:

En
∆ =

δx

2

[
(ẇn)T Mẇn + (wn)T Kwn −

J∑
j=1

F(ωn
j )

− δt
M∑

m=1

qm (om,n)T D2ok,n − bδξ
L∑

ℓ=1

J∑
j=1

ζℓ|θnℓ,j |2
]

(5.17)

Lemma 7. Choosing γ =
1

2
and β =

1

4
, the numerical solution of (5.10) with (5.3)-(5.4), (5.6), (5.9),

(5.13) and (5.14) verifies the following conservation property in time

En+1
∆ −En

∆ =
δx

2

[(
ẇn+ 1

2

)T
D2ẇn+ 1

2 − bδξ

L∑
ℓ=1

(
ξ2ℓ + ς

) ∣∣∣∣θn+ 1
2

ℓ

∣∣∣∣2

− δt

M∑
m=1

(qm+1 − qm) (om,n)T D2om,n − δt2
M∑

m=1

(qm+1 − qm) (om,n)T D2ẇn+ 1
2

]
(5.18)

Proof. The basis of the proof is similar to Lemma 6, with the additional dissipative terms. By
multiplying (5.10) by δtẇn+ 1

2 and applying (5.3)-(5.4), (5.6), (5.9), (5.13) and (5.14), with γ = 1
2 and

β = 1
4 , we derive the desired identity.

Remark 2. • Similarly, the discrete energy (5.18) provides a good numerical approximation to
the continuous energy (2.4), and the inequality (5.18) in Lemma 7 corresponds to its analogous
inequality in the continuous case (2.5).

• The first three terms on the right-hand side of (5.18) are clearly negative, thereby contributing to
the strict decrease in energy. However, the fourth term has a changing sign and, being of order
O(δt2), is expected to take small values for sufficiently small δt, as observed in the numerical
examples presented in this study.
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5.7. Numerical examples

5.7.1. Exponential decay of the energy

Here, we simulate the discretized energy (5.17) from the numerical simulation (5.10), for different
physical and discretization parameters. We first consider a simple initial condition given by

ω0(x) = sin (pπx), ω1(x) = 0, ∀x ∈ (0, 1).

The computational domain is defined as Ω = (0, 1). The discretization parameters are set as follows:
J = 250, T = 35, N = 3500, M = 10, 000, R = 100, and dξ = R/M . Numerical simulations are
performed for p = 4, ϱ = 3, and various values of λ, as presented in Table 1 and Figure 2. The
results indicate that the decay rates exhibit a significant sensitivity to the parameter λ. In contrast,
additional simulations were performed for a range of values of p (from 4 to 100) and ϱ (from 3 to 20).
These results revealed an almost negligible sensitivity of the decay rates to variations in these two
parameters.

λ 0.1 0.3 0.5 0.7 0.9

C 3.962 11.6826 19.3526 26.7489 32.9054

k -0.8970 -1.1053 -1.3316 -1.5781 -1.8446

Table 1: Asymptotic behavior of the energy compared with an exponential function of the form y = Cekx for different
values of λ
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Figure 2: Exponential decay of the energy for different values of λ.

5.7.2. Blow up and exponential decay of the energy

In this numerical example, we will show the importance of hypothesis (3.1) in order to obtain the
exponential decay of Theorem 2. To do this we simulate with two initial conditions:

ω1
0(x) = sin (4πx), ω1

1(x) = 0, (5.19)

ω2
0(x) = 20 sin (4πx), ω2

1(x) = 0, (5.20)

∀x ∈ (0, 1). The computational domain is defined as Ω = (0, 1). The discretization parameters are set
as follows: J = 250, T = 3.5, N = 350, M = 10, 000, R = 100, and dξ = R/M . Numerical simulations
are performed for p = 4, ϱ = 3, and λ = 0.5.
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The initial condition (5.19) is sufficiently small to satisfy hypothesis (3.1), ensuring the exponential
decay observed in the left graph of Figure 3. In contrast, when the initial condition (5.20) is large
enough, hypothesis (3.1) is no longer satisfied, leading to the blow-up predicted in [12] and clearly
visible in the right graph of Figure 3. In particular, condition (5.20) corresponds to an amplification
by a factor of 20 of the amplitude of (5.19). In a linear model, such a scaling would not alter the
asymptotic behavior of the energy; however, in our model, the presence of logarithmic nonlinearity
significantly affects the dynamics. Some numerical tests are carried out to illustrate these asymptotic
behaviors.
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Figure 3: Comparison between two different asymptotic behaviours of the energy depending on the size of the initial
condition.
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Matemático, Universidad de Chile (FB210005).

14



References

[1] R. Aounallah, A. Choucha and S. Boulaaras, Asymptotic behavior of a logarithmic-
viscoelastic wave equation with internal fractional damping. Period. Math. Hung., (2024).
https://doi.org/10.1007/s10998-024-00611-3.

[2] J. Choi and R. Maccamy, Fractional order Volterra equations with applications to elasticity. J.
Math. Anal. Appl., 139(1989), 448–464.

[3] C. M. Dafermos, Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal., 37(1970) 297—
308.

[4] D. Valerio, J. T. Machado and V. Kiryakova, Some pioneers of the applications of fractional
calculus. Fract. Calc. Appl. Anal., 17(2014), 552–578.

[5] J. T. Machado and A. M. Lopes, Analysis of natural and artificial phenomena using signal pro-
cessing and fractional calculus. Fract. Calc. Appl. Anal., 18(2015), 459–478.

[6] R. Magin, Fractional calculus in bioengineering. Begell House, USA, 2006.

[7] D. Matignon, J. Audounet and G. Montseny, Energy decay for wave equations with damping of
fractional order. In Fourth International Conference on Mathematical and Numerical Aspects of
Wave Propagation Phenomena, 1998.

[8] M. Kirane and N-E. Tatar, Exponential growth for a fractionally damped wave equation. Z. Anal.
Anwend., 22(2003), 167–178.

[9] R. Aounallah, S. Boulaaras, A. Zarai and B. Cherif, General decay and blow up of solution for a
nonlinear wave equation with a fractional boundary damping. Math. Methods Appl. Sci., 43(2020),
7175–7193.

[10] S. Boulaaras, F. Kamache, Y. Bouizem and R. Guefaifia, General decay and blow-up of solutions
for a nonlinear wave equation with memory and fractional boundary damping terms. Bound. Value
Probl., 2020 (2020), 172.

[11] R. Aounallah, A. Benaissa and A. Zarai, Blow-up and asymptotic behavior for a wave equation
with a time delay condition of fractional type. Rend. Rend. Circ. Mat. Palermo, II. Ser., 70(2021),
1061-–1081.

[12] M. F. Aslam and J. Hao, Nonlinear logarithmic wave equations: Blow-up phenomena and the
influence of fractional damping, infinite memory, and strong dissipation. Evol. Equ. Control Theory,
13(2024), 1423–1435.

[13] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer,
New York, 1983.

[14] B. Mbodje, Wave energy decay under fractional derivative controls. IMA J. Math. Control In-
form., 23(2006), 237–257.

[15] M. Kafini and S. Messaoudi, Local existence and blow up of solutions to a logarithmic nonlinear
wave equation with delay. Appl. Anal., 99(2020), 530–547.
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[17] A. Guesmia, J. Muñoz-Rivera, M. Sepúlveda, O. Vera, Laminated Timoshenko beams with inter-
facial slip and infinite memories. Math. Methods Appl. Sci. 45 (2022), no. 8, 4408–4427.

[18] N.M. Newmark. A method of computation for structural dynamics. J. Engrg. Mech. Div., ASCE.
85 (1959).

[19] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial
differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43 (1), (1947), 50—67
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