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Abstract

In this paper, we analyze a pseudostress-based mixed finite element method for the
Stokes problem that ensures both mass and momentum conservation. Mass conservation
is achieved by approximating the velocity using the lowest-order Raviart–Thomas elements,
while momentum conservation is enforced through a discrete Helmholtz decomposition of the
piecewise-constant vector space. We establish the well-posedness of the method and derive
theoretical convergence rates, including a superconvergence result for the velocity gradient
approximation. A key advantage of the proposed method is its computational efficiency,
as it is slightly less expensive than the classical pseudostress-based approach studied in
[5, 11], while also guaranteeing mass and momentum conservation. Additionally, we extend
our analysis to the Stokes problem with mixed boundary conditions and present numerical
experiments that confirm the theoretical results.

Key words: Stokes problem; pseudostress; mass and momentum conservation; divergence-free
velocities, Helmholtz descomposition

1 Introduction

In this paper, we propose and analyze a mass- and momentum-conservative numerical scheme
for a pseudostress-based formulation of the Stokes problem.

To provide more details on our approach, we begin by recalling the classical Stokes problem,
governed by the following system of partial differential equations:

−ν∆u +∇p = f in Ω, div u = 0 in Ω, u = uD on Γ,

∫
Ω
p = 0. (1.1)
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This system describes the motion of an incompressible fluid with velocity u = (u1, . . . , ud)
t,

pressure p, and viscosity ν > 0 in a region Ω ⊆ Rd (d = 2, 3), subjected to a source force
f = (f1, . . . , fd)

t and a prescribed velocity uD = (uD,1, . . . , uD,d)
t on the boundary Γ := ∂Ω,

satisfying the compatibility condition: ∫
Γ

uD · n = 0. (1.2)

Here, n = (n1, . . . , nd)
t denotes the outward unit normal vector on Γ.

In [5] and [11] (see also [10] for a similar approach), the so-called pseudostress tensor given
by:

σ := ν∇u− p I in Ω, (1.3)

is introduced to reformulate (1.1) as follows:

σd = ν∇u in Ω, −divσ = f in Ω, u = uD on Γ,

∫
Ω

tr (σ) = 0, (1.4)

where I denotes the identity matrix, tr (σ) is the trace of the tensor σ, σd := σ − 1
dtr (σ)I

denotes the deviatoric part of σ, and div τ is the divergence operator div acting along the rows
of τ for any tensor field τ = (τij)i,j=1,d.

Based on (1.4), the works [5] and [11] study conforming numerical discretizations for the
following variational problem: Find σ ∈ H0(div ; Ω) and u ∈ L2(Ω) = [L2(Ω)]d such that

1

ν
(σd, τ d)Ω + (u,div τ )Ω = 〈τn,uD〉Γ , ∀τ ∈ H0(div ; Ω),

(v,divσ)Ω = −(f ,v)Ω, ∀v ∈ L2(Ω),

(1.5)

where, for simplicity, we use the following notation:

(v, w)Ω :=

∫
Ω
vw, (v,w)Ω :=

∫
Ω

v ·w, (τ , ζ)Ω :=
d∑

i,j=1

∫
Ω
τijζij ,

for any scalars v, w, vectors v = (vi)i=1,d, w = (wi)i=1,d, and tensor fields ζ = (ζij)i,j=1,n,
τ = (τij)i,j=1,n. In addition, 〈·, ·〉Γ denotes the duality pairing between the trace space H1/2(Γ)
and its dual H−1/2(Γ), which coincides with the L2(Γ)-inner product when applied to functions
in L2(Γ).

Here, H(div ; Ω) denotes the space of tensors whose rows belong to

H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},

and H0(div ; Ω) is the subspace of H(div ; Ω) given by

H0(div ; Ω) := {τ ∈ H(div ; Ω) : (tr (τ ), 1)Ω = 0}.

In [5] and [11], it is shown that selecting Raviart–Thomas elements of degree k ≥ 0 or
Brezzi–Douglas–Marini (BDM) elements of order k+1 for H(div ; Ω) and piecewise polynomials
of degree k for L2(Ω) leads to a well-posed and optimally convergent conforming discretization
of (1.5). In addition, from the second equation of (1.5) it can be seen that the equilibrium
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equation divσ = −f is exactly satisfied if f belongs to the same discrete space as the velocity.
Consequently, the method preserves momentum. However, since the condition div u = 0 in Ω
cannot be ensured at the discrete level, the method lacks mass conservation (see Example 4 in
Section 5). To overcome this the lack of mass conservation, in [6] is introduced the following
variational formulation based on (1.4): Find σ ∈ H0(div ; Ω), u ∈ H(div0; Ω) and ϕ ∈ H1

0(Ω),
such that

1

ν
(σd, τ d)Ω +

1

ν
(divσ,div τ )Ω + (u +∇ϕ,div τ )Ω = 〈τn,uD〉Γ −

1

ν
(f ,div τ )Ω,

(v +∇ψ,divσ)Ω = −(f ,v +∇ψ)Ω,

(1.6)

for all τ ∈ H0(div ; Ω) and (v, ψ) ∈ H(div0; Ω)×H1
0(Ω), where

H1
0(Ω) := {ψ ∈ H1(Ω) : ψ = 0 on Γ} and H(div0; Ω) := {v ∈ H(div; Ω) : div v = 0 in Ω}.

In [6], it is proven that ϕ = 0 in Ω and consequently, problems (1.6) and (1.5) are equivalent,
with the key argument relying on the Helmholtz decomposition:

L2(Ω) = H(div0; Ω)⊕H1
0(Ω).

Furthermore, by selecting Raviart–Thomas elements of degree k ≥ 0 or BDM elements of degree
k+ 1 for the tensor σ, Raviart–Thomas elements of degree k for the velocity u, and continuous
piecewise polynomials of degree k + 1 for H1

0(Ω), it is shown that the resulting conforming
Galerkin discretization is well-posed, optimally convergent, and mass-conservative. However, the
approach proposed in [6] fails to ensure momentum conservation. This is because the equation

(v +∇ψ,divσ + f)Ω = 0, (1.7)

for all discrete functions v and ψ in their respective discrete spaces does not necessarily imply
that the equilibrium equation divσ = −f is exactly satisfied in Ω, even when f is approximated
by piecewise polynomials.

Building on the above discussion and aiming to contribute to the development of numerical
schemes for fluid flow problems that preserve conservation laws, we propose a new pseudostress-
based numerical scheme that exactly preserves mass and momentum, where the latter holds for
f in a suitably chosen piecewise polynomial space.

To achieve this, we discretize an equivalent reduced version of the three-field variational
formulation (1.6), employing BDM elements of order 1 or Raviart–Thomas elements of order 0
for σ and τ , Raviart–Thomas elements of order 0 for u and v, and the lowest-order Crouzeix–
Raviart element (see [7]) for ϕ and ψ.

The key argument for ensuring momentum conservation is the discrete Helmholtz decom-
position of piecewise constant functions into divergence-free Raviart–Thomas elements of order
zero and gradients of Crouzeix–Raviart elements, as established in [2] (see also [17]). The above
allows us to conclude from (1.7) that the momentum equation is exactly satisfied in Ω if f is
piecewise constant.

It is important to note that, in this approach, as well as in the previous works [5], [11] and
[6], the momentum equation divσ = −f is imposed in the L2 sense at both the continuous and
discrete levels. As discussed in [16], this enforcement comes at the expense of losing pressure
robustness, which can be regarded as a trade-off for achieving momentum conservation.
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The rest of the article is organized as follows: In Section 2, we introduce the three-field
continuous problem and analyze its well-posedness. Then, in Section 3, we propose the numerical
scheme and study its well-posedness and convergence. In Section 4 we address the extension to
the Stokes problem with mixed boundary conditions. Finally, in 5 we illustrate the performance
of the method by providing some numerical examples.

We conclude this section by introducing some notations and definitions. Throughout this
work, we adopt standard notation for the Lebesgue and Sobolev spaces L2(Ω) and H1(Ω),
equipped with the norms ‖ · ‖0,Ω and ‖ · ‖1,Ω, respectively. The seminorm | · |1,Ω is also used for
H1(Ω) and serves as a norm in the subspace H1

0(Ω) introduced earlier.
Furthermore, we use S and S to represent the vectorial and tensorial counterparts of a generic

scalar function space S. For a vector field v = (vi)i=1,d, the differential operators ∇v and divv
employed above are defined as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=

d∑
j=1

∂vj
∂xj

.

As usual, the spaces H(div; Ω) and H(div ; Ω) are equipped with the norms

‖v‖div,Ω :=
(
‖v‖20,Ω + ‖div v‖20,Ω

)1/2
, ‖τ‖div ,Ω :=

(
‖τ‖20,Ω + ‖div τ‖20,Ω

)1/2
,

respectively. Moreover, using [9, Lemma 2.3], it can be shown that the seminorm

|τ |div ,Ω :=
(
‖τ d‖20,Ω + ‖div τ‖20,Ω

)1/2
is also a norm in H0(div ; Ω), equivalent to ‖ · ‖div ,Ω, that is, there exist c1, c2 > 0, such that

c1‖τ‖div ,Ω ≤ |τ |div ,Ω ≤ c2‖τ‖div ,Ω, ∀ τ ∈ H0(div ; Ω). (1.8)

Finally, throughout our analysis, we will use C and c, with or without subscripts, bars, tildes,
or hats, to denote generic positive constants independent of the discretization parameters. These
constants may take different values in different contexts.

2 Continuous Problem

As previously mentioned, we introduce an equivalent reduced version of (1.6). To this end, we
first redefine the pseudostress tensor as

σ := ∇u− 1

ν
p, I in Ω, (2.1)

which leads to the ν-scaled version of (1.4):

σd = ∇u in Ω, −divσ =
1

ν
f in Ω, u = uD on Γ, (tr (σ), 1)Ω = 0. (2.2)

Notice that the pseudostress (2.1) is essentially a viscosity-scaled version of the tensor (1.3)
introduced in [5] and [11]. We adopt this new definition of σ because, as we will see in Section
2, it ensures that the stability estimates for the associated bilinear forms remain valid with con-
stants independent of the viscosity. Furthermore, this property guarantees that the theoretical
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convergence rates for all unknowns are achieved with constants independent of ν. Based on
this reasoning, for the remainder of this paper, we consider σ as defined in (2.1) and focus on
deriving a finite element scheme that satisfies the conservation laws:

div u = 0 in Ω, and divσ = −1

ν
f in Ω.

To achieve this, we introduce the following variational formulation based on (2.2): Find σ ∈
H0(div ; Ω), u ∈ H(div0; Ω), and ϕ ∈ H1

0(Ω) such that

(σd, τ d)Ω + (u +∇ϕ,div τ )Ω = 〈τn,uD〉Γ , ∀τ ∈ H0(div ; Ω),

(v +∇ψ,divσ)Ω = −1

ν
(f ,v +∇ψ)Ω, ∀ (v, ψ) ∈ H(div0; Ω)×H1

0(Ω).
(2.3)

From the fact that L2(Ω) = H(div0; Ω) ⊕ H1
0(Ω), it is clear that, after scaling by ν, problems

(1.6) and (2.3) are equivalent and consequently, problem (2.3) is well-posed. However, for the
sake of completeness, in what follows we establish its unique solvability and stability.

As usual in the context of mixed problems, first we introduce the bilinear forms a : H(div ; Ω)×
H(div ; Ω)→ R, b : H(div ; Ω)×(H(div0; Ω)×H1

0(Ω))→ R and the functionals F : H(div ; Ω)→
R and G : H(div0; Ω)×H1

0(Ω)→ R, as follows:

a(σ, τ ) := (σd, τ d)Ω, b(τ , (v, ψ)) := (div τ ,v +∇ψ)Ω, (2.4)

F (τ ) := 〈τn,uD〉Γ and G(v, ψ) := −1

ν
(f ,v +∇ψ)Ω. (2.5)

Then, problem (2.3) can be rewritten with a mixed structure as follows: Find (σ, (u, ϕ)) ∈
H0(div ; Ω)× (H(div0; Ω)×H1

0(Ω)), such that:

a(σ, τ ) + b(τ , (u, ϕ)) = F (τ ) ∀ τ ∈ H0(div ; Ω),

b(σ, (v, ψ)) = G(v, ψ) ∀ (v, ψ) ∈ H(div0; Ω)×H1
0(Ω).

(2.6)

The following theorem establishes the well-posedness of problem (2.6).

Theorem 2.1 There exists a unique (σ, (u, ϕ)) ∈ H0(div ; Ω)× (H(div0; Ω)× H1
0(Ω)) solution

to (2.6) with ϕ = 0 in Ω. Furthermore, there exists C > 0, independent of ν, such that

|σ|div ,Ω + ‖u‖0,Ω ≤ C
(
‖f‖0,Ω
ν

+ ‖uD‖1/2,Γ
)
. (2.7)

Proof. In what follows, we apply the classical Babuška–Brezzi theory (see [9, Theorem 2.3]) to
establish the well-posedness of (2.6).

We begin by noting that, using the Cauchy–Schwarz inequality, estimate (1.8) and [9, The-
orem 1.7], we can readily deduce that the bilinear forms a and b, as well as the functionals G
and F , satisfy the following boundedness estimates:

|a(σ, τ )| ≤ |σ|div ,Ω|τ |div ,Ω, |b(τ , (v, ψ))| ≤ |τ |div ,Ω(‖v‖div,Ω + |ψ|1,Ω),

|G(v, ψ)| ≤ 1

ν
‖f‖0,Ω(‖v‖div,Ω + |ψ|1,Ω), |F (τ )| ≤ C‖uD‖1/2,Γ|τ |div ,Ω,

(2.8)
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where C > 0 is a constant independent of ν. Furthermore, a simple rescaling by ν allows us to
deduce from [6, Lemma 2.3] that the following inf-sup condition holds:

sup
0 6=τ∈H0(div ;Ω)

b(τ , (v, ψ))

|τ |div ,Ω
≥ β(‖v‖div,Ω + |ψ|1,Ω) ∀ (v, ψ) ∈ H(div0; Ω)×H1

0(Ω), (2.9)

where β > 0 is a constant independent of ν.
Next, we define the kernel of b as

V := {τ ∈ H0(div ; Ω) : b(τ , (v, ψ)) = 0 ∀ (v, ψ) ∈ H(div0; Ω)×H1
0(Ω)}.

Using the Helmholtz decomposition L2(Ω) = H(div0; Ω) ⊕ H1
0(Ω), it follows that V can be

characterized as
V = {τ ∈ H0(div ; Ω) : div τ = 0 in Ω}.

Moreover, for each τ ∈ V, the bilinear form a satisfies

a(τ , τ ) = |τ |2div ,Ω, (2.10)

which establishes the ellipticity of a on V.
In this way, from (2.8), (2.9), (2.10) and the classical Babuška–Brezzi theory, we readily

obtain the unique solvability of problem (2.6).
Now, to deduce that ϕ = 0 in Ω, given ψ ∈ H1

0(Ω), we simply take τ =
(
ψ − |Ω|−1(ψ, 1)Ω

)
I ∈

H0(div ; Ω) in the first equation of (2.6) and recall that 〈n,uD〉Γ = 0 (see (1.2)), to obtain

(∇ψ,∇ϕ)Ω = 0,

which together with the fact that ψ is arbitrary, implies that ϕ = 0 in Ω.
We conclude the proof by observing that estimate (2.7) is a direct consequence of the

Babuška–Brezzi theory and the fact that ϕ = 0. �

3 Galerkin scheme

In this section, we introduce and analyze the mass and momentum conservative Galerkin scheme
for the mixed formulation (2.6). Moreover, we derive the corresponding theoretical rates of
convergence.

3.1 Discrete scheme

Let Th be a regular family of regular triangulations of the polygonal region Ω by triangles T
in R2 or tetrahedra in R3 of diameter hT , such that Ω = ∪{T : T ∈ Th} and define h :=
max{hT : T ∈ Th}. Given an integer l ≥ 0 and a subset S of Rd, we denote by Pl(S) the space
of polynomials of total degree at most l defined on S. Hence, for each T ∈ Th, we define the
local Raviart–Thomas space of lowest order and the Brezzi–Douglas–Marini (BDM) element of
order 1, respectively as (see, for instance [4]):

RT0(T ) := [P0(T )]d ⊕ P0(T )x and BDM1(T ) = [P1(T )]d

where x := (x1, . . . , xd)
t is a generic vector of Rd.
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In addition, we let Eh be the set of edges (in 2D) or faces (in 3D) of Th, whose corresponding
diameters are denoted he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

We also let [[·]] be the usual jump operator across internal edges or faces defined for piecewise
continuous functions v, by

[[v]] = (v
∣∣
T+

)
∣∣
e
− (v

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face. Then, we introduce
the well-known Crouzeix–Raviart space (see [7]):

Ψϕ
h :=

{
vh : Ω→ R : vh|T ∈ P1(T ), ∀T ∈ Th,

∫
e

[[vh]] = 0, ∀ e ∈ Eh(Ω)

and

∫
e
vh = 0, ∀e ∈ Eh(Γ)

}
,

(3.1)

equipped with the norm

|vh|h =

( ∑
T∈Th

|vh|21,T
)1/2

, ∀vh ∈ Ψϕ
h .

In this way, defining the discrete spaces

Hσ
h := {τ h ∈ H(div ; Ω) : ctτ h ∈ BDM1(T ) ∀ c ∈ Rd, ∀T ∈ Th},

Hu
h := {zh ∈ H(div; Ω) : zh|T ∈ RT0(T ), ∀T ∈ Th},

Hσ
h,0 := Hσ

h ∩H0(div ; Ω), Hu
h,0 := Hu

h ∩H(div0; Ω),

(3.2)

the Galerkin scheme associated to (2.6) reads: Find (σh, (uh, ϕh)) ∈ Hσ
h,0 × (Hu

h,0 × Ψϕ
h), such

that:

a(σh, τ h) + bh(τ h, (uh, ϕh)) = F (τ h) ∀ τ h ∈ Hσ
h,0,

bh(σh, (vh, ψh)) = Gh(vh, ψh) ∀ (vh, ψh) ∈ Hu
h,0 ×Ψϕ

h ,
(3.3)

where the form a and the functional F are defined in (2.4) and (2.5), respectively, whereas
bh : H0(div ; Ω)×H(h)→ R and the functional Gh : H(h)→ R are defined as follows

bh(τ , (vh, ψh)) := (div τ ,vh +∇hψh)Ω, (3.4)

Gh(vh, ψh) := −1

ν
(f ,vh +∇hψh)Ω, (3.5)

where ∇h is the discrete gradient for discontinuous functions, that is, ∇hψh|T = ∇(ψh|T ),∀T ∈
Th and H(h) := H1

0(Ω) + Ψϕ
h .
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3.2 Well-posedness of the discrete scheme

In what follows we address the unique solvability and stability of problem (3.3) by adapting to
the discrete case the analysis described in Section 2. We begin by noticing that using Hölder
inequality, the form bh and the functional Gh are bounded with the same constants as for b
and G in (2.8).

Now we let Vh be discrete kernel of bh, that is

Vh := {τ h ∈ Xh,0 : bh(τ h, (vh, ψh)) = 0, ∀ (vh, ψh) ∈ Hu
h,0 ×Ψϕ

h}.

Recalling from [2, Theorem 4.1] and [17, Theorem 4.9] that the following orthogonal decompo-
sition holds:

Qh = Hu
h,0 ⊕∇hΨϕ

h , (3.6)

where Qh is the corresponding vectorial counterpart of the space

Qh := {q ∈ L2(Ω) : q|T ∈ P0(T ), ∀T ∈ Th},

and
∇hΨϕ

h := {sh|T ∈ P0(T ) : ∃ vh ∈ Ψϕ
h such that sh|T = ∇(vh|T ), ∀T ∈ Th},

we observe that for each τ h ∈ Vh,

(div τ h,vh +∇hψh)Ω = 0, ∀ (vh, ψh) ∈ Hu
h,0 ×Ψϕ

h ,

is equivalent to
(div τ h, zh)Ω = 0, ∀ zh ∈ Qh,

which implies that Vh can be characterized as follows

Vh := {τ h ∈ Xh,0 : div τ h = 0 in Ω}.

In this way, a satisfies
a(τ h, τ h) = |τ h|2div ,Ω ∀τ h ∈ Vh,

that is, a is elliptic on the kernel of bh.
Now we establish the discrete inf-sup condition of bh. To that end, we recall from [4, Section

2.5] that there exist interpolator operators ΠRT
h : H1(Ω) → Hu

h and ΠBDM
h : H1(Ω) → Xh :=

{τh ∈ H(div; Ω) : τh|T ∈ BDM1(T ), ∀T ∈ Th}, satisfying the approximation property

‖Π?
h(τ)− τ‖0,T ≤ chmT |τ |m,T , ∀τ ∈ Hm(T ), ∀T ∈ Th, (3.7)

for all 1 ≤ m ≤ l? and ? ∈ {RT,BDM}, with lRT = 1 and lBDM = 2, and the commutative
property

div(Π?
h(τ)) = Ph(div τ), ∀τ ∈ H1(Ω), ∀ ? ∈ {RT,BDM}, (3.8)

where Ph is the L2-projection on Qh, which satisfies

(Ph(v)− v, zh)Ω = 0 ∀ zh ∈ Qh,

and the local approximation property

‖v − Ph(v)‖0,T ≤ Chm|v|m,T , ∀T ∈ Th, (3.9)
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for all 0 ≤ m ≤ 1 and for all v ∈ Hm(Ω). Notice that from (3.8) and (3.9) we have that

‖div τ − div(Π?
h(τ))‖0,T ≤ Chm|div τ |m,T , ∀T ∈ Th,

for all 0 ≤ m ≤ 1 and for all τ ∈ H1(Ω) with div τ ∈ Hm(Ω).
In what follows we will employ a tensor version of ΠBDM

h , denoted by ΠBDM
h : H1(Ω)→ Hσ

h ,
which is defined row-wise by ΠBDM

h , and the vector version of Ph, denoted by Ph : L2(Ω)→ Qh,
defined component-wise by Ph.

Now we are in position of establishing the inf-sup condition of bh.

Lemma 3.1 There exists β̃ > 0, independent of h and ν, such that

sup
0 6=τh∈Hσ

h,0

bh(τ h, (vh, ψh))

|τ h|div ,Ω
≥ β̃(‖vh‖div,Ω + |ψh|h) ∀ (vh, ψh) ∈ Hu

h,0 ×Ψϕ
h .

Proof. We proceed similary to the proof of [6, Lemma 3.2]. In fact, we let B ⊆ Rd be a bounded
and open convex domain such that Ω ⊂ B, and given (vh, ψh) ∈ Hu

h,0 × Ψϕ
h , we let z ∈ H1

0(B)
be the unique weak solution of the auxiliary problem

−∆z = h(vh, ψh) in B, z = 0 on ∂B,

with

h(vh, ψh) :=

{
vh +∇hψh, in Ω,

0, in B\Ω.

It is well known that z ∈ H2(B) (see [12]) and

‖z‖2,Ω ≤ C‖h(vh, ψh)‖0,B = C‖vh +∇hψh‖0,Ω ≤ C (‖vh‖div,Ω + |ψh|h) . (3.10)

Note that as vh ∈ Hu
h,0, then in accordance with [4, Corollary 2.3.1], vh ∈ Qh. Now, we define

τ̂ h := −ΠBDM
h (∇z|Ω) +

1

d|Ω|
(
tr (ΠBDM

h (∇z|Ω)), 1
)

Ω
I in Ω,

and observe from (3.8) and (3.10) that

div τ̂ h = vh +∇hψh ∈ Qh and |τ̂ h|div ,Ω ≤ Ĉ(‖vh‖div,Ω + |ψh|h).

From the latter, we obtain

sup
0 6=τh∈Hσ

h,0

bh(τ h, (vh, ψh))

|τ h|div ,Ω
≥ b(τ̂ h, (vh, ψh))

|τ̂ h|div ,Ω
≥ Ĉ−1

‖vh‖2div,Ω + |ψh|2h
‖vh‖div,Ω + |ψh|h

≥ β̃(‖vh‖div,Ω + |ψh|h),

(3.11)
with β̃ > 0 independent of h and ν.

�
These properties and the Babuška–Brezzi theory allow us to conclude the well-posedness of

(3.3). This result is summarized in the following theorem.

Theorem 3.2 There exists a unique (σh, (uh, ϕh)) ∈ Hσ
h,0×(Hu

h,0×Ψϕ
h) solution to the Galerkin

scheme (3.3). In addition, there exists C > 0, independent of h and ν, such that

|σh|div ,Ω + ‖uh‖0,Ω + |ϕh|h ≤ C
(
‖f‖0,Ω
ν

+ ‖uD‖1/2,Ω
)
.
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Remark 3.3 Observe that the discrete space Hu
h,0 becomes

Hu
h,0 = {vh ∈ Hu

h : div vh = 0 in Ω},

which implies that the numerical scheme (3.3) produces exactly divergence-free approximations
for the velocity u.

Furthermore, from the second equation of (3.3) and the discrete Helmholtz decomposition
(3.6), we deduce that (

div σh + ν−1f , zh
)

Ω
= 0 ∀ zh ∈ Qh.

This implies that div σh = −ν−1Ph(f), meaning that the method exactly preserves the discrete
equilibrium equation when f ∈ Qh. In other words, the scheme is momentum conservative
whenever f ∈ Qh. Moreover, if f ∈ H1(Ω), from (3.9) we obtain the estimate

‖ν−1f + div σh‖0,Ω = ν−1‖f −Ph(f)‖0,Ω ≤ cν−1h‖f‖1,Ω, (3.12)

showing that, for sufficiently smooth f , the momentum equation is approximated with an optimal
rate of convergence.

We also emphasize that the achieved momentum conservation comes at the cost of losing
pressure robustness. More specifically, since our method enforces the equilibrium equation in
L2(Ω), the gradient component of the Helmholtz decomposition of the source term f affects the
solution, leading to a lack of pressure robustness, as discussed in [16].

On the other hand, note that if (σh, (uh, ϕh)) is a solution to (3.3), ϕh is not necessarily
identically zero in Ω. However, as shown in Theorem 3.4, ϕh converges to zero (see (3.16)). Fur-
thermore, as demonstrated in Example 4, Section 5, despite introducing an additional unknown,
the proposed numerical scheme remains slightly less expensive than the standard formulation
studied in [5] and [11]. The computational cost can be further reduced by employing the exactly
divergence-free discrete basis for Hu

h,0 introduced in [1], optimizing implementation efficiency.
Finally, we note that, to the best of the authors’ knowledge, the Helmholtz decomposition

(3.6) is only available in the literature for the lowest-order case. This limitation prevents a
straightforward extension of the above analysis to higher-order cases.

3.3 Convergence analysis

We now analyze the convergence of (3.1) and establish the corresponding theoretical rate of
convergence. We begin by noting that the gradient operator ∇ and its discrete counterpart ∇h
coincide in H1

0(Ω), which implies that

bh(τ , (v, ψ)) = b(τ , (v, ψ)), ∀ (τ , (v, ψ)) ∈ H(div ; Ω)× (H(div0; Ω)×H1
0(Ω)), (3.13)

and
Gh(v, ψ) = G(v, ψ), ∀ (v, ψ) ∈ H(div0; Ω)×H1

0(Ω). (3.14)

Thus, if (σ, (u, ϕ)) ∈ H(div ; Ω)× (H(div0; Ω)× H1
0(Ω)) is the unique solution of (2.6), we can

replace b with bh and G with Gh in (2.6) without altering the validity of the equations.

The following theorem establishes the theoretical rate of convergence for the numerical
scheme (3.3). Instead of relying on the a priori error estimate given, for instance, in [9, Theorem
2.6], we derive the estimate from scratch, utilizing the orthogonality property of the scheme.
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This approach allows us to obtain error bounds with constants independent of ν, which, as we
shall see, differs from the results in [6]. Moreover, it allows us to establish a superconvergence
result for the deviatoric part of σh.

Theorem 3.4 Let (σ, (u, 0)) ∈ H0(div ; Ω)× (H(div0; Ω)×H1
0(Ω)) and (σh, (uh, ϕh)) ∈ Hσ

h,0×
Hu
h,0 × Ψϕ

h be the unique solutions of (2.6) and (3.3), respectively, and assume that the exact

solution satisfies σ ∈ H2(Ω) and u ∈ H1(Ω), Then, there exist positive constants c1, c2 and c3,
independent of ν and h, such that,

‖σd − σd
h‖0,Ω ≤ c1h

2|σ|2,Ω (3.15)

and
‖u− uh‖0,Ω + |ϕh|h ≤ c2h|σ|2,Ω + c3h|u|1,Ω. (3.16)

Proof. From (2.6), (3.3), (3.13), (3.14) and the fact that ϕ = 0 in Ω, we readily obtain the
orthogonality property:

((σ − σh)d, τ d
h)Ω + (u− uh −∇hϕh,div τ h)Ω = 0, ∀τ h ∈ Hσ

h,0,

(vh +∇hψh,div (σ − σh))Ω = 0, ∀(vh, ψh) ∈ Hu
h,0 ×Ψϕ

h .
(3.17)

Now, let σ̂h := ΠBDM
h (σ) and ûh := ΠRT

h (u). From (3.8) and using that divσ = − 1
ν f in Ω

and divσh = − 1
νPh(f) in Ω (see Remark 3.3), it is clear that

div (σ̂h) = Ph(divσ) = −1

ν
Ph(f) = div (σh) in Ω,

thus div (σ̂h − σh) = 0 in Ω. Then, adding and subtracting σ̂h in the first equation of (3.17)
and taking τ h = σ̂h − σh, we deduce that

((σ̂h − σh)d, (σ̂h − σh)d)Ω = −((σ − σ̂h)d, (σ̂h − σh)d)Ω,

which implies
‖(σ̂h − σh)d‖0,Ω ≤ ‖(σ − σ̂h)d‖0,Ω.

In this way, from the latter, the triangle inequality, estimate (3.7) and the regularity of the
mesh, we deduce that

‖(σ − σh)d‖0,Ω ≤ 2‖(σ − σ̂h)d‖0,Ω ≤ 2‖σ − σ̂h‖0,Ω ≤ c1h
2‖σ‖2,Ω,

with c1 > 0 in dependent of h and ν.
Now, to deduce (3.16) we add and subtract ûh in the first equation of (3.17) to obtain

(ûh − uh −∇hϕh,div τ h)Ω = −(u− ûh,div τ h)Ω − ((σ − σh)d, τ d
h)Ω,

for all τ h ∈ Hσ
h,0. Then, from this identity and the discrete inf-sup condition (3.11) we obtain

β̃(‖ûh − uh‖0,Ω + |ϕh|h) ≤ sup
0 6=τh∈Hσ

h,0

∣∣(u− ûh,div τ h)Ω + ((σ − σh)d, τ d
h)Ω

∣∣
|τ h|div ,Ω

,

≤ C(‖u− ûh‖0,Ω + ‖(σ − σh)d‖0,Ω),

which combined with (3.7), (3.15) and the triangle inequality imply (3.16). �
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Remark 3.5 Recalling that σd = ∇u, the previous theorem confirms that the method provides
a superconvergent approximation for the velocity gradient. Specifically, we obtain the following
estimate:

‖∇u− σd
h‖0,Ω ≤ c1h

2|σ|2,Ω,

where c1 is independent of ν.

4 Stokes problem with mixed boundary conditions

Now we briefly discuss how to extend the method for the case of mixed boundary conditions.
To that end, now we let ΓD ⊆ ∂Ω and ΓN ⊆ ∂Ω satisfying |ΓN | 6= 0, |ΓD| 6= 0, ΓD ∩ΓN = ∅ and
ΓD ∪ ΓN = ∂Ω, and consider the following Stokes problem with mixed boundary conditions:

−ν∆u +∇p = f in Ω, div u = 0 in Ω, u = uD on ΓD, (ν∇u− pI)n = 0 on ΓN ,

where the last equation on ΓN is the so-called do-nothing condition (see eg. [14, Section 2.4]).
Introducing the pseudostress tensor (2.1) the equations above can be rewritten equivalently

as follows:

σd = ∇u in Ω, −divσ =
1

ν
f in Ω, u = uD on ΓD, σn = 0 on ΓN , (4.1)

which lead to the variational formulation: Find σ ∈ HN (div ; Ω), u ∈ H(div0; Ω) and ϕ ∈ H1
0(Ω),

such that

a(σ, τ ) + b(τ , (u, ϕ)) = FD(τ ), ∀τ ∈ HN (div ; Ω),

b(σ, (v, ψ)) = G(v, ψ), ∀(v, ψ) ∈ H(div0; Ω)×H1
0(Ω),

(4.2)

where a, b and G are defined in (2.4) and (2.5), whereas FD : HN (div ; Ω)→ R si given by

FD(τ ) := 〈τn,uD〉ΓD
, (4.3)

with
HN (div ; Ω) := {τ ∈ H(div ; Ω) : τn = 0 on ΓN},

and 〈·, ·〉ΓD
denoting the product of duality between the trace space H1/2(ΓD) and its dual

H−1/2(ΓD).
The well-posedness of (4.2) is established next.

Theorem 4.1 There exists a unique (σ, (u, ϕ)) ∈ HN (div ; Ω)× (H(div0; Ω)×H1
0(Ω)) solution

to (4.2) with ϕ = 0 in Ω. Furthermore, there exists C > 0, independent of ν, such that

|σ|div ,Ω + ‖u‖div,Ω ≤ C
(
‖f‖0,Ω
ν

+ ‖uD‖1/2,ΓD

)
. (4.4)

Proof. Employing similar arguments to those utilized in the proof of Theorem 2.1 it is possible
to prove existence and uniqueness of solution of problem (4.2) and estimate (4.4). In particular,
the ellipticity of the bilinear form a on the kernel of b can be derived by combining (1.8) and
[9, Lemma 2.5]. In addition, by taking τ = ψI ∈ HN (div ; Ω) with ψ ∈ H1

0(Ω) in the second
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equation of (4.2), and proceeding analogously to the proof of Theorem 2.1 we easily prove that
ϕ = 0 in Ω. We omit further details. �

As for the Galerkin discretization of problem (4.2), here we consider the spaces defined in
(3.1) and (3.2) and additionally let

Hσ
h,N := Hσ

h ∩HN (div ; Ω).

Then, the mass and momentum conservative Galerkin scheme associated to (4.2) reads: Find
(σh, (uh, ϕh)) ∈ Hσ

h,N × (Hu
h,0 ×Ψϕ

h), such that

a(σh, τ h) + bh(τ h, (uh, ϕh)) = FD(τ h) ∀ τ h ∈ Hσ
h,N ,

bh(σh, (vh, ψh)) = Gh(vh, ψh) ∀ (vh, ψh) ∈ Hu
h,0 ×Ψϕ

h ,
(4.5)

where the form a is defined in (2.4), bh and Gh are defined in (3.4) and (3.5), respectively, and
the functional FD is given by (4.3).

The well-posedness of (4.5), along with the derivation of the optimal convergence rates, can
be established with minor modifications to the analysis presented in Sections 3.2 and 3.3. The
following theorem summarizes these results, with the proofs omitted for brevity.

Theorem 4.2 There exists a unique (σh, (uh, ϕh)) ∈ Hσ
h,N×(Hu

h,0×Ψϕ
h) solution to the Galerkin

scheme (3.3). In addition, there exists C > 0, independent of h and ν, such that

|σh|div ,Ω + ‖uh‖0,Ω + |ϕh|h ≤ C
(
‖f‖0,Ω
ν

+ ‖uD‖1/2,ΓD

)
.

In addition, if (σ, (u, 0)) ∈ HN (div ; Ω)× (H(div0; Ω)× H1
0(Ω)) is the unique solution of (4.2)

satisfying σ ∈ H2(Ω) and u ∈ H1(Ω), then there exist positive constants c̃1, c̃2 and c̃3 indepen-
dent of ν and h, such that,

‖σd − σd
h‖0,Ω ≤ c̃1h

2|σ|2,Ω
and

‖u− uh‖0,Ω + |ϕh|h ≤ c̃2h|σ|2,Ω + c̃3h|u|1,Ω.

5 Numerical tests

In this section we present four numerical examples illustrating the performance of our finite
element scheme and confirming the theoretical rates of convergence. We begin by mentioning
that the numerical results that follow are attained by imposing the condition of (tr (σh), 1)Ω = 0
through a penalty strategy using a scalar Lagrange multiplier (adding one row and one column
to the system). Also, the divergence-free constraint for the velocity is imposed by means of an
appropriate Lagrange multiplier rh ∈ Qh. More precisely, we replace the numerical scheme (3.3)
by the system: Find (σh,uh, ϕh, rh, λh) ∈ Hσ

h,0 ×Hu
h,0 ×Ψh ×Qh × R, such that:

a(σh, τ h) + bh(τ h, (uh, ϕh)) + λh(tr (τ h), 1)Ω = F (τ h),

bh(σh, (vh, ψh)) + (rh, div vh)Ω = G(vh, ψh),

(sh,div uh)Ω = 0,

ηh( tr (σh), 1)Ω = 0,
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for all (τ h,vh, ψh, sh, ηh) ∈ Hσ
h,0 × Hu

h,0 × Ψϕ
h × Qh × R. Our implementation is based on

Freefem++ code (see [13]), in conjunction with the direct linear solver UMFPACK (see [8]).
Now we introduce some additional notations. In what follows, N stands for the total number

of degrees of freedom defining Hσ
h,0 × Hu

h,0 × Ψϕ
h × Qh × R associated to the system (3.3), or

Hσ
h,N ×Hu

h,0 ×Ψϕ
h ×Qh for the system (4.5). We denote the individual errors by

e(σd) := ‖σd − σd
h‖0,Ω , e(u) := ‖u− uh‖0,Ω , e(p) := ‖p− ph‖0,Ω ,

e(ϕ) := |ϕh|h , e(f) := ‖f −Ph(f)‖0,Ω

where p is the exact pressure that can be recovered through the identity p = −ν
d tr (σ) and the

approximate pressure ph is computed through the postprocessing formula ph = −ν
d tr (σh).

In addition, we let r(%) be the experimental rate of convergence given by

r(%) :=
log(e(%)/e′(%))

log(h/h′)
,

where e(%) is any of the errors defined above and h and h′ are two consecutive meshsizes with
errors e and e′.

Example 1: Rates of convergence

The first example focuses on illustrating the performance of the two dimensional mixed finite
element scheme under a quasi-uniform refinement, by considering manufactured exact solution
(u, p) in the domain Ω = (0, 1)2 given by

u(x1, x2) =

 π exp(x1) cos(πx2)

− exp(x1) sin(πx2)

 , p(x1, x2) = x3
1 + x3

2 − 0.5 .

In this case,

f =

 3x2
1 + νπ exp(x1) cos(πx2)(π2 − 1)

3x2
2 − ν exp(x1) sin(π2x2)(π2 − 1)

 .

In Table 5.1, we summarize the convergence history for a sequence of quasi-uniform triangula-
tions, considering the viscosity ν = 1 and ν =1.0E-3. We see there that the rate of convergence
provided by Theorem 3.4 is attained by all the unknowns. We emphasize that, when comparing
the errors obtained for ν = 1 and ν=1.0E-3, the numerical results indicate that these errors
are not amplified by the factor ν−1. In addition, the l∞–norm of div uh in each mesh is close
to 0 which shows that this method is mass conserving. From the columns corresponding to
‖divσh + ν−1f‖0,Ω and e(f), we observe that for ν = 1.0, both columns exhibit similar magni-
tudes. In contrast, for ν=1.0E-3, the column corresponding to ‖divσh + ν−1f‖0,Ω matches the
column for e(f) scaled by a factor of ν−1, and the convergence rate is of order 1. This numerical
evidence confirms the theoretical prediction given in (3.12).

Example 2: Momentum conservation

The second example addresses the momentum conservation of the method when the datum
f ∈ Qh. To that end, we consider the manufactured solution (u, p) in the domain Ω = (0, 1)2
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Numerical results for ν=1.0

N h e(σd) r(σd) e(u) r(u) e(p) r(p) e(ϕ) r(ϕh)

409 0.372 3.941E-1 – 1.138 – 3.253E-1 – 0.765 –
1637 0.190 0.741E-1 2.483 0.487 1.261 0.557E-1 2.619 0.323 1.279
6213 0.095 0.192E-1 1.944 0.246 0.987 0.148E-1 1.909 0.160 1.017
24445 0.049 0.046E-1 2.178 0.122 1.058 0.036E-1 2.132 0.080 1.052
97129 0.024 0.012E-1 1.898 0.062 0.970 0.009E-1 1.993 0.040 0.960
391577 0.014 0.003E-1 2.581 0.031 1.268 0.002E-1 2.447 0.020 1.280

‖div uh‖l∞ ‖divσh + ν−1f‖0,Ω e(f) r(f)

7.1E-15 7.500 7.531 –
5.7E-14 3.244 3.248 1.249
8.7E-14 1.662 1.662 0.966
2.3E-13 0.823 0.823 1.063
4.5E-13 0.416 0.417 0.977
9.1E-13 0.206 0.206 1.258

Numerical results for ν=1.0E-3

N h e(σd) r(σd) e(u) r(u) e(p) r(p) e(ϕ) r(ϕh)

409 0.372 6.083 – 1.148 – 1.418E-2 – 0.777 –
1637 0.190 1.276 2.320 0.488 1.261 0.300E-2 2.307 0.322 1.311
6213 0.095 0.323 1.983 0.246 0.987 0.072E-2 2.049 0.159 1.014
24445 0.049 0.078 2.139 0.122 1.058 0.017E-2 2.159 0.080 1.049
97129 0.024 0.019 1.999 0.062 0.970 0.005E-2 1.934 0.040 0.960
391577 0.014 0.005 2.526 0.031 1.268 0.001E-2 2.537 0.020 1.280

‖div uh‖l∞ ‖divσh + ν−1f‖0,Ω e(f) r(f)

9.3E-15 288.009 0.288 –
2.8E-14 132.239 0.132 1.158
5.7E-14 65.772 0.065 1.008
1.7E-13 32.422 0.032 1.068
3.4E-13 16.399 0.016 0.989
9.1E-13 8.119 0.008 1.257

Table 5.1: Example 1: Degrees of freedom, mesh sizes, errors, convergence rates, L∞-norm
of div uh, L2-norm of the discrete momentum equation, error in the projection of f , and its
convergence rate for the Galerkin scheme with ν = 1.0 and ν = 1.0E-3.

given by:

u(x1, x2) =

 x2
2

−x2
1

 , p(x1, x2) = x1 + x2 − 1 ,
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so that the datum f becomes,

f =

 1− 2ν

1 + 2ν

 ∈ Qh.

We run the code for viscosity values ν = 1.0 and ν = 1.0E-3, using a sequence of quasi-
uniform triangulations.

Table 5.2 presents the l∞-norm of div uh and divσh + ν−1f . From these results, we observe
that both quantities remain close to zero, confirming that the method is mass conservative and
preserves momentum when f ∈ Qh.

Furthermore, by comparing both tables, we observe that the l∞-norm of divσh+ν−1f scales
with ν−1, whereas the l∞-norm of div uh appears to remain unaffected by ν.

Mass and momentum conservation for ν=1.0

h ‖div uh‖l∞ ‖divσh + ν−1f‖l∞

0.372 1.78E-15 3.55E-15
0.190 4.44E-15 1.24E-14
0.095 1.42E-14 2.84E-14
0.049 2.84E-14 1.14E-13
0.024 5.68E-14 2.27E-10
0.014 1.42E-13 4.55E-10

Mass and momentum conservation for ν=1.0E-3

h ‖div uh‖l∞ ‖divσh + ν−1f‖l∞

0.372 1.78E-15 2.96E-12
0.190 3.55E-15 7.05E-12
0.095 1.07E-14 1.82E-11
0.049 2.84E-14 4.37E-11
0.024 5.68E-14 1.02E-10
0.014 1.26E-13 2.91E-10

Table 5.2: Example 2: Mesh sizes, L∞-norm of div uh and divσh + ν−1f , with ν = 1.0 and ν
= 1.0E-3.

Example 3: Lack of pressure robustness

The third example examines the lack of pressure robustness of the method. To this end, we
use the data presented in [15, Example 1.1]. Specifically, we consider the exact solutions:

u(x1, x2) = 0 and p(x1, x2) = Ra

(
x3

2 −
1

2
x2

2 + x2 −
7

12

)
,

which results in the forcing term:

f =

 0

Ra(1− x2 + 3x2
2)

 ∈ Qh,
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where Ra > 0 is a given parameter that affects only the pressure and will be assigned different
values in the analysis.

In Table 5.3 we present the errors for each variable for different values of Ra. We consider a
fix triangulation of size h = 0.0244. There, it can be appreciated that when Ra increases, all the
errors increase in the same order, which confirms the aforementioned lack of pressure robustness
of the method.

Lack of pressure robustness

Ra e(σd) e(u) e(p) e(ϕ)

1.0E+0 1.593E-5 8.903E-8 2.759E-5 4.123E-8
1.0E+1 1.593E-4 8.903E-7 2.759E-4 4.123E-7
1.0E+2 1.593E-3 8.903E-6 2.759E-3 4.123E-6
1.0E+3 1.593E-2 8.903E-5 2.759E-2 4.123E-5
1.0E+4 1.593E-1 8.903E-4 2.759E-1 4.123E-4

Table 5.3: Example 3: Errors for each variable, considering different values of Ra.

Example 4: Backward-facing step flow

Finally, the fourth example examines mass loss in the standard backward-facing step flow
test, similarly as in [3]. For this test, we consider a rectangular domain Ω = [0, 10] × [0, 1]
with a re-entrant corner at (2, 0.5). The boundary Γ is partitioned into three segments: the
inflow boundary Γin, the outflow boundary Γout, and the wall boundary Γwall, where Γwall =
Γ \

(
Γin ∪ Γout

)
(see Figure 5.1). We consider ν = 1.0 and f(x1, x2) = 0 in Ω. The boundary

Γin
Γout

Γwall

Γwall

1.0

0.5

10.02.0

S

Figure 5.1: Example 4: Geometry for the backward-facing step flow test.

conditions are prescribed as follows: a parabolic inflow profile uD(x1, x2) = (8(x2 − 0.5)(1 −
x2), 0)t on Γin, a no-slip condition uD(x1, x2) = 0 on Γwall, and, unlike [3], a do-nothing boundary
condition is imposed on Γout, given by σn = 0 on Γout.

To evaluate mass conservation in the discrete solution, we measure the total mass flow across
a sequence of vertical surfaces connecting the top and bottom boundaries of the computational
domain. The line labeled “S” in Figure 5.1 illustrates a representative example of such a surface
for the test problem.

Since div u = 0 in Ω, from the divergence theorem it follows that∫
Γin

u · n =

∫
S

u · nS ,

for any S connecting the top and bottom walls of the domain. Then, suggested by the above,
in what follows, mass conservation in the discrete solution will be quantified by the percentage
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mass loss across the surface S, defined as

%mloss := 100

∣∣∣∣∫
Γin

uh · n−
∫
S

uh · nS
∣∣∣∣∣∣∣∣∫

Γin

uh · n
∣∣∣∣ . (5.1)

We compare the mass loss in (4.5) against the standard discrete pseudostress-based scheme for
(4.1), formulated as follows: find σh ∈ Hσ

h,N and uh ∈ Qh such that

(σd
h, τ

d
h)Ω + (uh,div τ h)Ω = 〈τ hn,uD〉ΓD

, ∀τ h ∈ Hσ
h,N ,

(vh,divσh)Ω = −1

ν
(f ,vh)Ω, ∀vh ∈ Qh,

(5.2)

with ΓN = Γout and ΓD = Γ \ Γout.
We use a computational grid consisting of 120.926 triangles with a mesh size of h = 0.0212,

leading to a total of N = 1.214.540 degrees of freedom for the mass-conservative scheme (4.5)
and N = 1.274.123 for (5.2). Notice that, despite the fact that (4.5) involves three unknowns
while (5.2) considers only two, the former is slightly less computationally expensive than the
latter.

The results of our study are summarized in Figure 5.2, where we compare the mass losses
obtained using formulation (4.5) with those from (5.2), considering 100 lines S equally dis-
tributed in Ω. The figure clearly demonstrates a significant improvement in mass conservation,
as quantified by the percent mass loss formula (5.1). Specifically, in (4.5), the maximum mass
loss remains below 0.1%, whereas in (5.2), it exceeds 1.0%.

In Figure 5.3, we present the pressure distribution (top panel), velocity magnitude (center
panel), and streamlines (bottom panel) obtained using the scheme (4.5). The results exhibit
the expected behavior: high pressure near the inlet, a characteristic parabolic velocity profile
throughout the full length of the domain with higher velocity near the inlet, and the formation
of the expected vortex below the re-entrant corner.

References
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