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Abstract

We introduce the necessary conditions for existence and uniqueness of coefficients deter-
mination problem in a class of reaction-diffusion systems from a knowledge of an ap-
proximation of the state variables at the end of the processes. The system considered is
a generalization of the susceptible-infectado-susceptible (SIS) model disease transmission
under the assumption of diffusion. We introduce a formulation of the inverse problem as a
constrained optimization problem for an appropriate cost functional. In the main results
of the paper, we prove the existence of a minimizer for the cost functional, introduce a first
order necessary optimality condition, deduce stability of the inverse problem unknowns
with respect to the observations, and demonstrate the uniqueness up an additive constant
of identification problem. In addition, we introduce a numerical approach of the inverse
problem in the case of parameter identification problem and consider a numerical example.
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1. Introduction

The current literature well documented the mathematical modeling of epidemic spread [1,
2, 3, 4, 5, 6, 7]. Despite the advances, there are still aspects where mathematical analysis
needs to be precise; an example of such a case is the problem of identifying coefficients from
observations of state variables. In a broad sense, the approaches used to model the dynam-
ics of epidemics are based on differential and difference equations, both deterministic and
stochastic. One of the most used methodologies to formulate those mathematical models
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is the compartmental approach, pioneered by Kermack-McKendrick [8]. In this context,
the most basic model considers that the total population N is divided into two classes of
individuals called susceptible and infected, denoted by S and I. Then, assuming that the
compartment populations change by direct contact of infected individuals with susceptible
ones or after having completed the infection period, the following mathematical model is
deduced

dS

dt
= −βSI + γI,

dI

dt
= βSI − γI. (1)

Here, βSI models the interaction of infected and susceptible individuals by applying the
mass-action law, and γI models the recovery. If we additionally assume that the diffusion
influences the dynamics of epidemics, we deduce that the model (1) is generalized to obtain
the system

∂S

∂t
−∆S = −βSI + γI,

∂I

∂t
−∆I = βSI − γI. (2)

We can extensively discuss the possible generalizations, which can be formulated by con-
sidering other variables affecting the dynamics spread. However, we focus on the analytical
and numerical study of identifying reaction terms in (2) by assuming an observed profile
for the infected population at finite time T .

An essential point in the mathematical modeling of epidemics is the selection of the
function modeling the flow rate out of the susceptible class into the infectious class, well-
known as horizontal incidence or infection force [9, 10]. Even though the most used in-
cidence function in the mathematical epidemic articles is the mass-action-type function,
other nonlinear functions have also been considered in the literature [11, 12, 13, 14], where
the authors consider f(S, I) = βSσ(S, I) with σ is defined by

σ(S, I) =



I, (mass action),
I

N
, N > 0, (frequency dependent),
I

S + I
, (proportionate mixing),

(S)p−1(I)q, 0 < p < 1, 0 < q < 1, (power law),
I

c+ S + I
, c > 0 (asymptotic law).

(3)

For more information and discussion on other nonlinear models we refer to [12].
In this paper, we are interested in the determination of coefficients (β, γ) with a general

function σ. Then, we propose a generalization of the functions given in (3), by considering
the following properties of σ:

σ : R+
0 × R+

0 → R+
0 with R+

0 = R+ ∪ {0}, where R+ = (0,∞); (4a)
σ(S, I) > 0 for (S, I) ∈ R+ × R+; σ(S, 0) = 0 for S ∈ R+; (4b)
|σ(S, I)| ≤ c1(S

r + Ir) + c2 for (S, I) ∈ R+ × R+ and some c1, c2 ≥ 0 and r > 0; (4c)
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∂1σ(S, I), ∂2σ(S, I), ∂12σ(S, I) > 0 for (S, I) ∈ R+ × R+; (4d)
∂11σ(S, I) > 0, ∂22σ(S, I) > 0 for (S, I) ∈ R+ × R+. (4e)

Hence, in this paper, we study the determination of coefficients (β, γ) in a reaction-diffusion
system of the following type

St −∆S = −β(x)Sσ(S, I) + γ(x)I, in QT := Ω× [0, T ], (5)
It −∆I = β(x)Sσ(S, I)− γ(x)I, in QT , (6)
∇S · n = ∇I · n = 0, on Γ := ∂Ω× [0, T ], (7)

(S, I)(x, 0) = (S0, I0)(x), in Ω, (8)

from knowledge of σ and an observed measurement for (S, I)t at t = T given by the
function (Sobs, Iobs)t defined on Ω ⊂ Rd (d ≥ 1). This inverse problem is formulated more
appropriately as follows

Given the functions S0, I0, S
obs, and Iobs defined on Ω, and the func-

tion σ satisfying (4), find the functions β and γ defined on Ω, such
that (S, I)(·, T ), the solution of the initial boundary value problem
l(5)-(8) at t = T , is as close as to the observation data (Sobs, Iobs).

 (9)

The notation ∂Ω is used for the boundary of Ω with outer unit normal vector field n. We
notice that, the problem (9) is introduced to validate the proposed mathematical models
with experimental data or to solve well known model calibration problem.

We approach the analysis of (9) by considering both an analytical and a numerical
perspectives. Firstly, in the case of our analytical study, we consider an equivalent refor-
mulation of the inverse problem (9) as the constrained optimization problem

inf
(β,γ)∈Uad(Ω)

J(β, γ) subject to (S(β,γ), I(β,γ)) solution of (5)-(8), (10)

where the cost functional and the admissible set are defined by

J(β, γ) :=
1

2
∥(S(β,γ), I(β,γ))(·, T )− (Sobs, Iobs)∥2L2(Ω)2 +

Γ

2
∥∇(β, γ)∥2L2(Ω)2 , Γ > 0, (11)

Uad(Ω) = A(Ω) ∩H |[d/2]|+1(Ω)2, (12)

A(Ω) =
{
(β, γ) ∈ Cα(Ω)2 : (β, γ)(x) ∈]0, 1[2 on Ω and ∇(β, γ) ∈ L2(Ω)2

}
. (13)

Here Hm(Ω) and Cα(Ω) denote the standard Sobolev and Hölder spaces Wm,2(Ω) and
C0,α(Ω), respectively. The first term of J is introduced to make mathematical precise
sense of the term “as close as” in (9) and the second term is proposed to regularize the cost
function with an appropriate selection of the regularization parameter Γ. Then by applying
the applying the methodology of optimal control theory we get the following seven main
results results: (i) the global classical solutions of (5)-(8), (ii) the existence of solutions of
the optimization problem (10), (iii) the definition of an adjoint system, (iv) the definition of
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a first order necessary optimality condition for (10), (v) the stability of the direct problem
solution with respect to the coefficients, (vi) the stability of the adjoint problem solution
with respect to the coefficients and the observations, and (vii) the necessary condition for
local uniqueness of (10). Second, in the case of our numerical study, we consider the adjoint
based methodology with the discretize-then-differentiate strategy as is described in [15].
We begin discretizing the direct problem by an IMEX ( implicit for the diffusion term and
explicit for the advection) scheme and proving that the approximation is consistent with
the biological model in the sense that it is positivity preserving and convergent. Then
by considering the parameter identification, we introduce a discrete cost function, define
a discrete adjoint state and calculate a discrete gradient. This exact gradient and BFGS
method allows the develop the numerical examples for the parameter identification.

We remark that there are several works focused on the analytical approaches for optimal
control problems for reaction-diffusion problems, for instance [16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26]. Particularly, the study of the inverse problem (10), was initiated by Xiang and
Liu in [26], where the authors develop a well detailed analysis of one-dimensional (d = 1)
problem with σ give by the “proportionate mixing” given in (3). An extension to d ≥ 1
was developed in [19], by introducing appropriate assumptions and functional framework
such that the results of [26] are still valid in higher spatial dimensions. Some advances,
in order to research the application of the methodology to similar systems and to define
the consistent general assumptions are recently given in [18], where the authors consider σ
give by the “power law” given in (3).

The paper is organized as follows. In Section 2, we present the assumptions, statement
and results for our theoretical study. In Section 3, we present the results for the numerical
analysis of the inverse problem. Meanwhile, in Section 4, we present a numerical example.

2. Analytical study of the inverse problem

We consider that the inverse problem (9) is equivalent to the optimization problem (10).

2.1. Assumptions on coefficients, initial-boundary conditions and the spatial domain
Throughout the paper, we consider the assumptions:

(A1) The set Ω ⊂ Rd is an open bounded and convex set with smooth boundary of
class C∞.

(A2) The initial condition is considered with the regularity (S0, I0) ∈ C2,α(Ω)2 × L∞(Ω)2

and such that (S0, I0)(x) ∈ R+
0 × R+

0 and (S0 + I0)(x) ∈ R+ on Ω.

(A3) The function σ is assumed to be satisfy the properties given on (4).

(A4) The functions (β, γ) ∈ Uad(Ω) with Uad(Ω) defined in (12).

(A5) The observation function is assumed such that (Sobs, Iobs) ∈ C2+α,1+α/2(Ω)2.
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2.2. Well posedness of the direct problem (5)-(8)
Theorem 2.1. Consider that Ω, (S0, I0), σ and (β, γ) satisfy the assumptions (A1)-(A4).
Then, the initial boundary value problem (5)-(8) admits a unique positive classical solution
(S, I) ∈ C2+α,1+α/2(QT )

2 and (S, I)(x, t) is bounded on QT for any T > 0.

Proof. Let us consider that f1(S, I) = −β(x)Sσ(S, I)+γ(x)I and f2(S, I) = β(x)Sσ(S, I)−
γ(x)I. From (A3) ( see (4b)) and (A4), we deduce that

f1(0, I) = −β(x) 0 σ(0, I) + γ(x)I = γ(x)I ≥ 0,

f2(S, 0) = β(x)Sσ(S, 0)− γ(x) 0 = 0 ≥ 0,

for all (S, I) ∈ R+ × R+, i.e. f is quasi-positive or satisfies the condition (P) considered
in [27]. Then, from (A2), (A3) and application of Lemma 1.1 in [27], we deduce the
local existence and uniqueness of non-negative solutions for (5)-(8) on the interval [0, T∗).
Additionally, adding (5) and (6) and rearranging the initial and boundary conditions, we
deduce the following initial-boundary value problem

(S + I)t −∆(S + I) = 0, in QT , (14)
∇(S + I) · n = 0, on Γ, (15)
(S + I)(x, 0) = (S0 + I0)(x), in Ω, (16)

An application of the maximum principle, implieas that ∥(S+I)(·, t)∥L∞(Ω) ≤ ∥S0+I0∥L∞(Ω)

for t ∈ [0, T∗). Thus, we have the existence and uniqueness of non-negative and bounded
solution for (5)-(8) on the interval [0, T∗) and (S, I)(x, t) ∈ [0, ∥S0+I0∥L∞(Ω)]

2 on Ω×[0, T∗).
From (A3) (more precisely (4c)) and Lema 2.1 in [28] (see also Theorem 1 in [29]), we

can prove that the local result implies a global ones, i.e. the global existence and uniqueness
of non-negative classical solutions for (5)-(8). Now, the regularity C2+α,1+α/2(QT ) of the
solution is due to the regularity of σ, (β, γ) and (S0, I0) given on assumptions (A2)-(A4) and
by follow by application of the standard arguments given for instance in [30, 31, 32].

2.3. Existence of solutions of the optimization problem (10)
Lemma 1. Consider that Ω, (S0, I0), σ and (Sobs, Iobs) satisfy the assumptions (A1)-(A3)
and (A5). Then, there exists at least one solution of the optimization problem(10).

Proof. We proof the existence by the standard strategy of a minimizing sequence and use
the appropriate compactness inclusions. We observe that Uad(Ω) ̸= ∅ and also we have
that J(β, γ) is bounded for any (β, γ) ∈ Uad(Ω). Then, we can define {(βn, γn)}n∈N ⊂ U :=
Uad(Ω) ∩ M a minimizing sequence of J , with M a bounded closed set of H |[d/2]|+1(Ω)2.
By the compact embedding H |[d/2]|+1(Ω) ⊂ Cα(Ω) for α ∈]0, 1/2], we deduce that the
minimizing sequence {(βn, γn)} is bounded in the strong topology of Cα(Ω)2 for all α ∈
]0, 1/2], since there exists a positive constant C (independent of βn, γn and n) such that

∥(βn, γn)∥Cα(Ω)2 ≤ C∥(βn, γn)∥H|[d/2]|+1(Ω)2 , ∀α ∈]0, 1/2].
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Notice that the right hand is bounded by the fact that (βn, γn) ∈ M ⊂ H |[d/2]|+1(Ω)2. Let
us consider the notation (Sn, In) for the solution of the system (5)-(8) with (βn, γn) instead
of (β, γ). From the fact that (βn, γn) ∈ Cα(Ω)2 for all α ∈]0, 1/2] and Theorem 2.1, we have
that (Sn, In) ∈ C2+α,1+α

2 (QT )
2 and also {(Sn, In)}n∈N is a bounded sequence in the strong

topology of C2+α,1+α
2 (QT )

2 for all α ∈]0, 1/2]. Thus, the boundedness of the minimizing
sequence and the corresponding sequence {(Sn, In)}n∈N, implies that there exist

(β, γ) ∈ C1/2(Ω)2 ∩ Uad(Ω), (S, I) ∈ C2+ 1
2
,1+ 1

4 (QT )
2,

and the subsequences again labeled by {βn, γn} and {(Sn, In)} such that

(βn, γn) → (β, γ) uniformly on Cα(Ω)2, (17)

(Sn, In) → (S, I) uniformly on
[
Cα,α

2 (QT ) ∩ C2+α,1+α
2 (QT )

]2
. (18)

Moreover, we can deduce that (S, I) is the solution of the initial boundary value prob-
lem (5)-(8) corresponding to the coefficients (β, γ). Hence, by Lebesgue’s dominated con-
vergence theorem, the weak lower-semicontinuity of L2 norm, and the definition of the
minimizing sequence, we have that

J(β, γ) ≤ lim
n→∞

J(βn, γn) = inf
(β,γ)∈Uad(Ω)

J(β, γ). (19)

Then, (β, γ) is a solution of (10) and the prove of existence is concluded.

2.4. Definition and some properties of the adjoint system for (5)-(8)
Theorem 2.2. Consider that Ω, (S0, I0), (β, γ), σ and (Sobs, Iobs) satisfying the assumptions
(A1)-(A5). Moreover, consider (p1, p2) the solution of the adjoint system to (5)-(8) defined
by the following backward boundary value problem

(p1)t +∆p1 = −β(x)
[
σ(S, I) + S∂1σ(S, I)

]
(p1 − p2) in QT , (20)

(p2)t +∆p2 =
[
− β(x)S∂2σ(S, I) + γ(x)

]
(p1 − p2) in QT , (21)

∇p1 · n = ∇p2 · n = 0, on Γ, (22)

(p1, p2)(x, T ) = (S, I)(x, T )− (Sobs, Iobs)(x), in Ω, (23)

where (β, γ) is a solution of (10) and (S, I) is the solution of (5)-(8) with (β, γ) instead
of (β, γ). Then, the solution of (20)-(23) satisfy the following estimates

∥(p1, p2)(·, t)∥2L2(Ω)2 ≤ C, ∥(p1, p2)(·, t)∥2H1
0 (Ω)2 ≤ C, (24)

∥∆(p1, p2)(·, t)∥2L2(Ω)2 ≤ C, ∥(p1, p2)(·, t)∥2L∞(Ω)2 ≤ C, (25)

for t ∈ [0, T ], with C a generic positive constant.
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Proof. We rewrite the end boundary backward problem (5)-(8) as the following initial
boundary value problem

(q1)τ −∆q1 = β(x)
[
σ(S∗, I∗) + S∗∂1σ(S

∗, I∗)
]
(q1 − q2) in QT , (26)

(q2)τ −∆q2 = −
[
− β(x)S∗∂2σ(S

∗, I∗) + γ(x)
]
(q1 − q2) in QT , (27)

∇q1 · n = ∇q2 · n = 0, on Γ, (28)

(q1, q2)(x, 0) = (S, I)(x, T )− (Sobs, Iobs)(x), in Ω, (29)

by considering τ = T−t for t ∈ [0, T ], (q1, q2)(x, τ) = (p1, p2)(x, T−τ), and (S∗, I∗)(x, τ) =
(S, I)(x, T − τ). Multiplying (26) by q1, (27) by q2 and integrating by parts on Ω, we get

1

2

d

dτ
∥(q1, q2)(·, τ)∥2L2(Ω)2 + ∥∇(q1, q2)(·, τ)∥2L2(Ω)2

≤
∫
Ω

∣∣∣β(x)[σ(S∗, I∗) + S∗∂1σ(S
∗, I∗)

]
(q1 − q2)q1

−
[
− β(x)S∗∂2σ(S

∗, I∗) + γ(x)
]
(q1 − q2)q2

∣∣∣dx. (30)

By applying the fact that (β, γ) ∈ Uad(Ω) and the assumption (A3), we deduce that there
is a positive constant C such that

1

2

d

dτ
∥(q1, q2)(·, τ)∥2L2(Ω)2 + ∥∇(q1, q2)(·, τ)∥2L2(Ω)2 ≤ C∥(q1, q2)(·, τ)∥2L2(Ω)2 . (31)

Then, a straightforward application of Gronwall inequality and the initial condition (29),
implies the first estimate in (24). Moreover, from (31), we follow that

∥∇(q1, q2)(·, τ)∥2L2(Ω)2 ≤ C∥(q1, q2)(·, τ)∥2L2(Ω)2 .

Then from the first estimate in (24) and the definition of the norm of H1
0 (Ω) we deduce

the second estimate in (24).
On the other hand, proceeding similar, multiplying (26) by ∆q1, (27) by ∆q2 and

integrating on Ω, we deduce that there is a positive constant C such that

1

2

d

dτ
∥(q1, q2)(·, τ)∥2H1

0 (Ω)2 + ∥∆(q1, q2)(·, τ)∥2H1
0 (Ω)2

≤ C

(
ϵ∥(q1, q2)(·, τ)∥2L2(Ω)2 +

1

4ϵ
∥∆(q1, q2)(·, τ)∥2L2(Ω)2

)
,

for any ϵ > 0. Then, for ϵ > C/4, by using the first estimate in (24) we deduce the first
estimate in (25). Now, from (25), and the first estimate in (24), we have that the norm of
(p1, p2) is bounded in the norm of H2(Ω)2. Thus, by the standard embedding theorem of
H2(Ω)2 ⊂ L∞(Ω)2, we easily deduce the second estimate in (25).
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2.5. First order optimality condition(5)-(8)
Theorem 2.3. Consider that the assumptions and the notation of Theorem 2.2 are satisfied
and also consider the symbol <,> to the canonical inner product in L2(Ω)2. Then, the
inequality ∫∫

QT

[
(β̂ − β)Sσ(S, I)− (γ̂ − γ)I

]
(p1 − p2)dxdt

+ Γ
〈
∇(β, γ),∇

(
(β̂, γ̂)− (β, γ)

)〉
≥ 0, (32)

is satisfied for any (β̂, γ̂) ∈ Uad(Ω).

Proof. Let us choose (β̂, γ̂) ∈ Uad(Ω), define (βϵ, γϵ) ∈ Uad(Ω) by the relation (βϵ, γϵ) =
(1 − ϵ)(β, γ) + ϵ(β̂, γ̂), for ϵ ∈ [0, 1], and consider (Sϵ, Iϵ) and (S, I) solutions of (5)-(8)
with (βϵ, γϵ) and (β, γ) instead of (β, γ). Then, subtracting the systems for (Sϵ, Iϵ) and
(S, I), dividing by ϵ, defining (zϵ1, z

ϵ
2) := ϵ−1((Sϵ, Iϵ)− (S, I)), and using the fact that

hϵ := −1

ϵ

{
βϵ(x)Sϵσ(Sϵ, Iϵ)− β(x)Sσ(S, I)

}
+

1

ϵ

{
γϵ(x)Iϵ − β(x)I

}
= −βϵ(x)

{[
Sϵσ(Sϵ, Iϵ)− Sσ(S, Iϵ)

Sϵ − S

]
zϵ1 +

[
Sσ(S, Iϵ)− Sσ(S, I)

Iϵ − I

]
zϵ2

}
− (β̂ − β)(x)Sσ(S, I) + γϵ(x)zϵ2 + (β̂ − β)(x)I,

we deduce the system

(zϵ1)t −∆zϵ1 = hϵ, in QT , (33)
(zϵ2)t −∆zϵ2 = −hϵ, in QT , (34)

∇zϵ1 · n = ∇zϵ2 · n = 0, on Γ, (35)
(zϵ1, z

ϵ
2)(x, 0) = 0, in Ω. (36)

Now, by considering (z1, z2) the limit of (zϵ1, zϵ2) when ϵ → 0, and observing that hϵ converges
to

h := −β(x)
[(

σ(S, I) + S∂1σ(S, I)
)
z1 + S∂2σ(S, I)

)
z2

− (β̂ − β)(x)Sσ(S, I) + γ(x)z2 + (β̂ − β)(x)I.

Then, taking the limit of (33)-(36) when ϵ → 0, we have that (z1, z2) satisfies the initial
boundary value problem

(z1)t −∆z1 = h, in QT , (37)
(z2)t −∆z2 = −h, in QT , (38)

∇z1 · n = ∇z2 · n = 0, on Γ, (39)
(z1, z2)(x, 0) = (0, 0), in Ω. (40)
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From the definition of (Sϵ, Iϵ) and using the hypothesis that (S, I) is an optimal solution
of (10), we follow that

Jϵ := J(βϵ, γϵ) =
1

2
∥(Sϵ, Iϵ)(·, T )− (Sobs, Iobs)∥2L2(Ω)2 +

Γ

2
∥∇(βϵ, γϵ)∥2L2(Ω)2 ,

dJϵ
dϵ

∣∣∣
ϵ=0

=

〈
(Sϵ, Iϵ)(·, T )− (Sobs, Iobs),

∂

∂ϵ
(Sϵ, Iϵ)(·, T )

〉∣∣∣∣
ϵ=0

+ Γ
〈
∇(β, γ),∇

(
(β̂, γ̂)− (β, γ)

)〉
=

〈
(S, I)(·, T )− (Sobs, Iobs), (z1, z2)(·, T )

〉
+ Γ

〈
∇(β, γ),∇

(
(β̂, γ̂)− (β, γ)

)〉
≥ 0, (41)

with (z1, z2) solution of (37)-(40). From (20)-(23) and (37)-(40), we observe that, we can
rewrite the first term of (41) as follows〈

(S, I)(·, T )− (Sobs, Iobs), (z1, z2)(·, T )
〉
= ⟨(p1, p2)(·, T ), (z1, z2)(·, T )⟩

=

∫∫
QT

∂

∂t

(
(p1, p2) · (z1, z2)

)
dxdt

=

∫∫
QT

{
(p1, p2) ·∆(p1, p2)− (z1, z2) ·∆(p1, p2)

−
[
(β̂ − β)Sσ(S, I)− (γ̂ − γ)I

]
(p1 − p2)

}
dxdt.

Hence, by using the fact that
∫∫

QT

(
(p1, p2) ·∆(p1, p2) − (z1, z2) ·∆(p1, p2)

)
dxdt = 0 and

the inequality (41), we conclude the proof of (32).

2.6. Continuous dependence results
Theorem 2.4. Consider that the assumptions of Theorems 2.1 and 2.2 are satisfied. Let
us assume that the sets of functions {(S, I), (p1, p2)} and {(Ŝ, Î), (p̂1, p̂2)} are solutions to
the systems (5)-(8) and (5)-(8) with the data {(β, γ), (Sobs, Iobs)} and {(β̂, γ̂), (Ŝobs, Îobs)},
respectively. Then, the estimates

∥((Ŝ, Î)− (S, I))(·, t)∥2L2(Ω)2 ≤ C∥(β̂, γ̂)− (β, γ)∥2L2(Ω)2 , (42)

∥((p̂1, p̂2)− (p1, p2))(·, t)∥2L2(Ω)2

≤ C
(
∥(β̂, γ̂)− (β, γ)∥2L2(Ω)2 + ∥(Ŝobs, Îobs)− (Sobs, Iobs)∥2L2(Ω)2

)
, (43)

holds for any t ∈ [0, T ] and C a generic positive constant.

Proof. For the sake of clarity of the presentation, we consider the notation δx = x̂−x and
δg(x) = g(x̂) − g(x). For instance δ(S, I) = (Ŝ, Î) − (S, I), δ(β, γ) = (β̂, γ̂) − (β, γ), and
δσ(S, I) = σ(Ŝ, Î)− σ(S, I). From the definition of (S, I) and (Ŝ, Î) given by (5)-(8) and
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also the definition of (p1, p2) and (p̂1, p̂2) satisfying (20)-(23), we deduce that (δS, δI) and
(δp1, δp2) are solutions of the following systems

(δS)t +∆(δS) = −β̂(x)Ŝσ(Ŝ, Î) + γ̂(x)Î + β(x)Sσ(S, I)− γ(x)I, in QT , (44)

(δI)t +∆(δI) = β̂(x)Ŝσ(Ŝ, Î)− γ̂(x)Î − β(x)Sσ(S, I) + γ(x)I, in QT , (45)
∇δu1 · n = ∇δu2 · n = 0, on Γ, (46)
(δS, δI)(x, 0) = 0, in Ω. (47)

and

(δp1)t −∆(δp1) = −β̂(x)
[
σ(Ŝ, Î) + Ŝ∂1σ(Ŝ, Î)

]
(p̂1 − p̂2)

+ β(x)
[
σ(S, I)− S∂1σ(S, I)

]
(p1 − p2), in QT , (48)

(δp2)t −∆(δp2) =
[
− β̂(x)Ŝ∂2σ(Ŝ, Î) + γ̂(x)

]
(p̂1 − p̂2)

−
[
− β(x)S∂2σ(S, I) + γ(x)

]
(p1 − p2), in QT , (49)

∇δp1 · n = ∇δp2 · n = 0, on Γ, (50)
(δp1, δp2)(x, T ) = (δS, δI)(x, T )− (δSobs, δIobs)(x), in Ω. (51)

We observe that the right hand side of (44) can be rewritten as follows

RHS(44) = −β̂(x)

[
Ŝσ(Ŝ, Î)− Sσ(S, Î)

Ŝ − S

]
δS − β(x)

[
Sσ(S, Î)− Sσ(S, I)

Î − I

]
δI

− δβ(x)Sσ(S, Î) + γ̂(x)δI + δγ(x)I,

A similar expressions for the right hand side of (45), (48) and (49), in terms of δS, δI, δp1,
δp2, δβ and δγ. Then, the proofs of (42) and (43) are reduced to get a priori estimations
for the systems in (48)-(51).

We develop the proof of (42) as follows. Let us consider the system for (δS, δI) in
(44)-(47), by testing the equation in (44) by δS and (44) by δI, adding the results, we get
the estimate

1

2

d

dt
∥(δS, δI)(·, t)∥2L2(Ω)2 + ∥∇(δS, δI)(·, t)∥2L2(Ω)2

≤ C
(
2∥(δS, δI)(·, t)∥2L2(Ω)2 + ∥(δβ, δγ)∥2L2(Ω)2

)
.

Then, by application of Gronwall inequality and the initial condition for δ(S, I) given
in (47), we get

∥(δS, δI)(·, t)∥2L2(Ω)2 ≤ C
(
∥(δS, δI)(·, 0)∥2L2(Ω)2 + ∥(δβ, δγ)∥2L2(Ω)2

)
= C∥(δβ, δγ)∥2L2(Ω)2 ,

for any t ∈]0, T ], which implies (42).
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The proof of (43) is developed as follows. Let us consider the system for (δp1, δp2) in
(48)-(51), by testing the equation in (48) by δp1 and (48) by δp2, we get the estimate

− 1

2

d

dt
∥(δp1, δp2)(·, t)∥2L2(Ω)2 + ∥∇(δ(p1, p2))(·, t)∥2L2(Ω)2

≤ C
(
∥(δp1, δp2)(·, t)∥2L2(Ω)2 + ∥(δS, δI)(·, t)∥2L2(Ω)2 + DA∞∥(δβ, δγ)∥2L2(Ω)2 .

Integrating on [t, T ] we get

∥(δp1, δp2)(·, t)∥2L2(Ω)2 ≤ C
(
∥(δp1, δp2)(·, T )∥2L2(Ω)2 + ∥(δβ, δγ)∥2L2(Ω)2

)
,

which concludes the proof of (43) by using the end condition (51).

2.7. A uniqueness result of the inverse problem
Theorem 2.5. Let us consider c ∈ R4

+ (fix) and Uc(Ω) ⊂ Uad(Ω) defined as follows

Uc(Ω) =
{
(β, γ) ∈ Uad(Ω) : ∥(β, γ)∥L1(Ω)2 = c

}
. (52)

Consider that Ω, (S0, I0), σ and (Sobs, Iobs) satisfy the assumptions (A1)-(A3) and (A5).
Then, there exists at least one solution of (10) and there exist Θ ∈ R+ such that the solu-
tion of (10) is uniquely defined, up an additive constant, on Uc(Ω) for any regularization
parameter Γ > Θ.

Proof. We observe that we can prove the existence by application of Lemma 1. Meanwhile,
we prove the uniqueness by application of the stability result given on Theorem 2.4 and
the necessary optimality condition of Theorem 2.3.

Let us consider {(S, I), (p1, p2)} and {(Ŝ, Î), ˆ(p1, p2)} solutions of systems (5)-(8) and
(5)-(8) with the coefficients and observations given by {(β, γ), (S, I)obs} and {(β̂, γ̂), (Ŝ, Î)obs},
respectively. From Theorem 2.3 and the hypothesis that (β, γ) and (β̂, γ̂) are solutions of
(10), we have that the following inequalities∫∫

QT

[
(β − β)Sσ(S, I)− (γ − γ)I

]
(p1 − p2)dxdt

+ Γ
〈
∇(β, γ),∇

(
(β, γ)− (β, γ)

)〉
≥ 0, ∀(β, γ) ∈ Uad(Ω), (53)∫∫

QT

[
(β − β̂)Ŝσ(Ŝ, Î)− (γ − γ̂)Î

]
(p̂1 − p̂2)dxdt

+ Γ
〈
∇(β̂, γ̂),∇

(
(β, γ)− (β̂, γ̂)

)〉
≥ 0, ∀(β, γ) ∈ Uad(Ω), (54)

are satisfied, respectively. In particular, selecting (β, γ) = (β̂, γ̂) in (53) and (β, γ) = (β, γ)

in (54), and adding both inequalities, we get

Γ∥∇((β̂, γ̂)− (β, γ))∥2L2(Ω)2
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≤
∫∫

QT

[
(β̂ − β)Sσ(S, I)− (γ̂ − γ)I

]
(p1 − p2)

+
[
(β − β̂)Ŝσ(Ŝ, Î)− (γ − γ̂)Î

]
(p̂1 − p̂2)dxdt

≤ C
[
∥(β̂, γ̂)− (β, γ)∥L2(Ω)2 + ∥(p̂1, p̂2)− (p1, p2)∥L2(Ω)2 + ∥(Ŝ, Î)− (S, I)∥L2(Ω)2

]
.

From assumption (A3), Theorem 2.1, Theorem 2.5, and Lemma 2.4 we deduce that

Γ∥∇((β̂, γ̂)− (β, γ))∥2L2(Ω)2

≤ C
(
∥(β̂, γ̂)− (β, γ)∥L2(Ω)2 + ∥(Ŝ, Î)obs − (S, I)obs∥L2(Ω)2

)
. (55)

Now, considering that (β̂, γ̂), (β, γ) ∈ Uc(Ω), by the generalized Poincaré inequality, we
have that

∥(β̂, γ̂)− (β, γ)∥L2(Ω)2 ≤ Cpoi

(
∥∇((β̂, γ̂)− (β, γ))∥L2(Ω)2 + ∥(β̂, γ̂)− (β, γ)∥L1(Ω)2

)
(56)

≤ Cpoi∥∇((β̂, γ̂)− (β, γ))∥L2(Ω)2 .

Then, using the estimate (56) in (55), we have that(
Γ− CpoiC

)
∥∇((β̂, γ̂)− (β, γ))∥2L2(Ω)2 ≤ C∥(Ŝ, Î)obs − (S, I)obs∥L2(Ω)2 .

Thus, selecting Θ = CpoiC we deduce the uniqueness up an additive constant.

3. Numerical solution of the inverse problem

In this section, we introduce a numerical scheme to approximate the optimization prob-
lem (10). For clarity of the presentation, we restrict our presntation the one-dimensional
case (d = 1) and observe that it can be straightforward extended to higher dimensions
on cartesian grids. Moreover, we consider that the reaction coefficients β and γ can
be parametrized by the finite set of parameters denoted by e = (e1, . . . , ek) ∈ Rk, i.e.
β(x) = β(x; e) and γ(x) = γ(x; e). Our presentations of the IMEX method for discretiza-
tion of the direct problem is based mainly in [33, 34, 35, 36, 37]. Concerning to the
discretization of the inverse problem, we introduce a discrete adjoint state and calculate a
discrete gradient, by adapting the discretization of the flux-diffusion identification in scalar
strongly degenerate parabolic equations [38, 39].

Let us consider that Ω =]0, L[, ∂Ω = {0, L} and ΓT = {0, L} × [0, T ]. Concerning to
the discretization of QT , we select M,N ∈ N such that the discretization of Ω is given by
xk = k∆x for k = 0, . . . ,M + 1 with ∆x = L/(M + 1), and the discretization of [0, T ]
is given by tn = n∆t for n = 0, . . . , N with ∆t = 1/N . The approximation of a given
function G : Ω× R+ → R at (xk, tn) is denoted by Gn

k .
The approximation of the initial boundary value problem (5)-(6) we introduce the

following IMEX method

Sn+1
k − Sn

k

∆t
=

1

∆x2

[
Sn+1
k−1 − 2Sn+1

k + Sn+1
k+1

]
− β(xk)S

n
kσ(S

n
k , I

n
k ) + γ(xk)I

n
k , (57)
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In+1
k − Ink

∆t
=

1

∆x2

[
In+1
k−1 − 2In+1

k + In+1
k−1

]
+ β(xk)S

n
kσ(S

n
k , I

n
k )− γ(xk)I

n
k , (58)

Sn
1 − Sn

0

∆x
=

Sn
M+1 − Sn

M

∆x
=

In1 − In0
∆x

=
InM+1 − InM

∆x
= 0, (59)

S0
k = S0(xk), I0k = I0(xk). (60)

In the case of (57) and (58) we have that k = 1, . . . ,M . In order to give a more compact
presentation of (57)-(60) we set the notation

Sn = (Sn
1 , . . . , S

n
M)t, In = (In1 , . . . , I

n
M)t, (61a)

Un = (Sn
1 , . . . , S

n
M , In1 , . . . , I

n
M)t =

(
Sn

In

)
(61b)

L =
∆t

∆x2
H with H =


1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


M×M

(61c)

FS(U
n) =

 −β(x1)S
n
1 σ(S

n
1 , I

n
1 ) + γ(x1)I

n
1

...
−β(xM)Sn

Mσ(Sn
M , InM) + γ(xM)InM

 , (61d)

FI(U
n) =

 β(x1)S
n
1 σ(S

n
1 , I

n
1 )− γ(x1)I

n
1

...
β(xM)Sn

Mσ(Sn
M , InM)− γ(xM)InM

 , (61e)

F (Un) =

(
FS(U

n)
FI(U

n)

)
, L =

(
IM + L

IM + L

)
, (61f)

where IM is the identity matrix of size M . We observe that (57)-(60) can be rewritten as
follows

Sn+1 − Sn = −LSn+1 +∆tFS(U
n), In+1 − In = −LIn+1 +∆tFI(U

n),

which is equivalently to

LUn+1 = Un+1 +∆tF (Un). (62)

Hence, we have stated the IMEX scheme to approximate the direct problem.
For discretization of the inverse problem (10), we begin by considering the discret cost

function J∆ defined as follows

J∆(S∆, I∆) :=
∆x

2

M∑
k=1

[
(SN

k − Sobs
k )2 + (INk − Iobsk )2

]
13



+
Γ

2

∆x

2

M∑
k=1

(
|β′(xk)|2 + |γ′(xk)|2

)
. (63)

Here β′ and γ′ denotes spatial derivatives, since we have assumed that d = 1. Then, the
solution of the inverse problem (10), is replaced by the following parameter identification
problem

inf
e∈Rk

J∆(e), J∆(e) = J∆(S∆, I∆), (64)

subject to (S∆, I∆) solution of (57)-(60). (65)

Then, in order to calculate ∇eJ∆(e) we introduce a discrete adjoint state for the IMEX
scheme (57)-(60).

Testing (57) by (p1)
n+1
k , we deduce ES

∆ = 0 with ES
∆ defined as follows

ES
∆ =

N−1∑
n=0

M∑
k=1

{
Sn+1
k − Sn

k − ∆t

∆x2

(
Sn+1
k−1 − 2Sn+1

k + Sn+1
k+1

)
−∆t Fk(u

n)

}
(p1)

n+1
k ,

=
N−1∑
n=0

M∑
k=1

Sn
k

[
(p1)

n
k − (p1)

n+1
k − ∆t

∆x2

(
(p1)

n
k−1 − 2(p1)

n
k + (p1)

n
k+1

)]
−∆t Fk(u

n)(p1)
n+1
k

+
M∑
k=1

[
SN
k − ∆t

∆x2

(
SN
k−1 − 2SN

k + SN
k+1

)]
(p1)

N
k −

[
S0
k −

∆t

∆x2

(
S0
k−1 − 2S0

k + S0
k+1

)]
(p1)

0
k

− ∆t

∆x2

N−1∑
n=0

[
Sn
1 (p1)

n
2 − Sn

M(p1)
n
M+1 + Sn

M+1(p1)
n
M − Sn

1 (p1)
n
0

]
.

Similarly, by testing (58) by (p2)
n+1
k , we deduce EI

∆ = 0 with EI
∆ defined as follows

EI
∆ =

N−1∑
n=0

M∑
k=1

{
In+1
k − Ink − ∆t

∆x2

(
In+1
k−1 − 2In+1

k + In+1
k+1

)
−∆t Fk+M(un)

}
(p2)

n+1
k ,

=
N−1∑
n=0

M∑
k=1

Ink

[
(p2)

n
k − (p2)

n+1
k − ∆t

∆x2

(
(p2)

n
k−1 − 2(p2)

n
k + (p2)

n
k+1

)]
−∆t Fk+M(un)(p2)

n+1
k

+
M∑
k=1

[
INk − ∆t

∆x2

(
INk−1 − 2INk + INk+1

)]
(p2)

N
k −

[
I0k −

∆t

∆x2

(
I0k−1 − 2I0k + I0k+1

)]
(p2)

0
k

− ∆t

∆x2

N−1∑
n=0

[
In1 (p2)

n
2 − InM(p2)

n
M+1 + InM+1(p2)

n
M − In1 (p2)

n
0

]
.

Then, denoting by pn
1 = ((p1)

n
1 , . . . , (p1)

n
M)t, pn

2 = ((p2)
n
1 , . . . , (p2)

n
M)t, we define the La-

grangian L∆ for (64)-(65) by the following relation

L∆(u,p
n
1 ,p

n
2 ) = J∆(u)− ES

∆(u,p
n
1 )− EI

∆(u,p
n
2 ).
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We notice that

dL∆

de
(u,pn

1 ,p
n
2 ) =

∂L∆

∂u
(u,pn

1 ,p
n
2 )
∂u

∂e
+

∂L∆

∂e
(u,pn

1 ,p
n
2 ).

We select pn
1 and pn

2 such that ∂uL∆ = 0, i.e.

(p1)
n
k − (p1)

n+1
k

∆t
=

1

∆x2

[
(p1)

n
k−1 − 2(p1)

n
k + (p1)

n
k+1

]
− β(xk)

[
σ(Sn

k , S
n
k ) + Sn

k ∂1σ(S
n
k , S

n
k )
](

(p1)
n+1
k − (p2)

n+1
k

)
, (66)

(p2)
n
k − (p2)

n+1
k

∆t
=

1

∆x2

[
(p2)

n
k−1 − 2(p2)

n
k + (p2)

n
k+1

]
+
[
− β(xk)S

n
k ∂2σ(S

n
k , S

n
k ) + γ(xk)

](
(p1)

n+1
k − (p2)

n+1
k

)
, (67)

(p1)
n
1 − (p1)

n
0

∆x
=

(p1)
n
M+1 − (p1)

n
M

∆x
=

(p2)
n
1 − (p2)

n
0

∆x
=

(p2)
n
M+1 − (p2)

n
M

∆x
= 0, (68)

(p1)
N
k = SN

k − Sobs
k , (p2)

N
k = INk − Iobsk . (69)

The scheme (66)-(69) is called the adjoint scheme. Hence, we have that

∇eJ∆(e) = ∆t
N−1∑
n=0

M∑
k=1

[
∇eβ(x1)S

n
kσ(S

n
k , I

n
k )−∇eγ(xk)I

n
k

](
(p1)

n+1
k − (p2)

n+1
k

)
+

Γ

2

∆x

2

M∑
k=1

(
|∇eβ

′(xk)|2 + |∇eγ
′(xk)|2

)
. (70)

defines the gradient which is used for numerical solution of parameter optimization problem.

4. A numerical example

In our example we consider that the initial condition (S0, I0)(x) = (x, 2 − x)/2. The
vector of parameters to indentify are e = (e1, e2, e3, e4) and we consider that the coefficients
are parameterized as follows β(x) = e1+e2x and γ(x) = e3+e4x. The function σ considered
is σ(S, I) = I, i.e. the corresponding to mass mass action (see (3)). We construct the
observation profile at T = 0.6 by considering a numerical simulation of the direct problem
with eobs = (0.00018, 0.00001, 0.144, 0.0001), M = 200 and N = 100000 (i.e., ∆x = 5E − 3
and ∆t = 6E − 6). The state simulation on QT is shown on Figure 1(a),(b). We consider
the initial guess e = (0.0001, 0.00001, 0.1, 0.0011) and get that the identified parameters
are e∞ = (0.000017, 0.000012, 0.133, 0.00015). The numerical identification is developed by
considering M = 100 and N = 1000 or, equivalently, ∆x = 1.0E − 2 and ∆t = 5.9E − 4.
Moreover, we have considered the regularization parameter Γ = 0. The comparison of the
observed, identified and initial guess profiles are shown in Figure 1(c)–(f).
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Figure 1: Results for numerical example. In (a) and (b) we show the numerical solution. In (c) and (d) we
show the comparison of initial guess, observed and identified profiles at T = 1 for suceptibles and infective
functions. In (e) and (f) we show the comparison of initial guess, observed, and identified function β and γ.
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