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Abstract

In this paper we propose and analyze a new fully-mixed finite element method for the coupled
model arising from the Navier-Stokes equations, with variable viscosity, in an incompressible fluid,
and the Darcy equations in an adjacent porous medium, so that suitable transmission conditions
are considered on the corresponding interface. The approach is based on the introduction of the
further unknowns in the fluid given by the velocity gradient and the pseudostress tensor, where the
latter includes the respective diffusive and convective terms. The above allows the elimination from
the system of the fluid pressure, which can be calculated later on via a postprocessing formula. In
addition, the traces of the fluid velocity and the Darcy pressure become the Lagrange multipliers
enforcing weakly the interface conditions. In this way, the resulting variational formulation is given
by a nonlinear perturbation of a threefold saddle point operator equation, where the saddle-point
in the middle of them is, in turn, perturbed. A fixed-point strategy along with the generalized
Babuška-Brezzi theory, a related abstract result for perturbed saddle-point problems, the Banach-
Nečas-Babuška theorem, and the Banach fixed-point theorem, are employed to prove the well-
posedness of the continuous and Galerkin schemes. In particular, Raviart-Thomas and piecewise
polynomial subspaces of the lowest degree for the domain unknowns, as well as continuous piecewise
linear polynomials for the Lagrange multipliers on the interface, constitute a feasible choice of the
finite element subspaces. Optimal error estimates and associated rates of convergence are then
established. Finally, several numerical results illustrating the good performance of the method in
2D and confirming the theoretical findings, are reported.

Key words: Navier–Stokes equations, Darcy equations, Banach spaces, mixed finite element methods,
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1 Introduction

The study of coupled fluid systems, particularly those involving free and porous media flows, governed
by the Navier–Stokes and Darcy equations, respectively, and connected through a set of suitable in-
terface conditions, has received significant attention because of their wide range of applications. In
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particular, the latter includes environmental, biological, and industrial processes, such as the inter-
action of surface and subsurface flows, modeling of blood flow, and others. Over the years, several
papers have been devoted to numerical modeling and analysis of the Navier–Stokes/Darcy and related
coupled problems (see, e.g.,[3, 10, 16, 17, 24, 26, 27, 28, 30]). In the context of the Stokes–Darcy
coupled problem, the first theoretical results go back to [30] and [16]. In [16] the authors introduce an
iterative subdomain method that employs the standard velocity-pressure formulation for the Stokes
equation and the primal one in the Darcy domain, whereas in [30] they apply the primal method in
the fluid and the dual-mixed one in the porous medium, which means that only the original velocity
and pressure unknowns are considered in the Stokes domain, whereas a further unknown (velocity) is
added in the Darcy region. In turn, a conforming mixed finite element discretization of the variational
formulation from [30] was introduced and analyzed in [24]. In this work, the porous medium is assumed
to be entirely enclosed within a fluid region, and, as in [30], the corresponding interface conditions
refer to mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman (BJS) law. As
a consequence, the trace of the porous medium pressure needs to be introduced as a suitable Lagrange
multiplier. In addition, Bernardi–Raugel and Raviart–Thomas elements for the velocities, piecewise
constants for the pressures, and continuous piecewise-linear elements for the aforementioned multi-
plier, yield a stable Galerkin scheme. The results from [24] are then improved in [28] where a classical
result on projection methods for Fredholm operators of index zero is employed to show that the use,
not only of the one in [24], but of any pair of stable Stokes and Darcy elements, implies the stability
of the corresponding Stokes-Darcy Galerkin scheme. Later one, a fully-mixed finite element method
was proposed and analyzed in [26] for the Stokes–Darcy coupled problem, where the Babuška-Brezzi
theories were used to derive sufficient conditions for the unique solvability of the resulting continuous
and discrete formulations. Subsequently, in [27] the authors extend the previous results in [26] to the
case of a two-dimensional nonlinear Stokes–Darcy coupled problem. Both a priori and a posteriori
error analyses were developed in this work. As part of augmentation approaches, a fully-mixed fi-
nite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity has been
introduced and analyzed in [10]. We also refer to [17] for the analysis of a conforming mixed finite
element method for the Navier-–Stokes/Darcy coupled problem. In both works, and in order to stay
within a Hilbertian framework, the velocity is sought in the Sobolev space of order 1, which requires to
augment the variational formulation with additional Galerkin-type terms arising from the constitutive
and equilibrium equations.

Although augmented methods are effective in ensuring stability, they significantly increase com-
plexity and computational cost. This issue motivates the exploration of alternative approaches, such as
those based on Banach spaces, whose main advantage is that no augmentation is required, and hence
the spaces to which the unknowns belong are the natural ones arising from the application of the
Cauchy–Schwarz and Hölder inequalities to the tested and eventually integrated by parts equations.
A significant number of works have demonstrated the advantage of using this approach to analyze the
continuous and discrete formulation of diverse problems (see, e.g, [2, 3, 9, 12, 14]). In particular a non-
augmented mixed finite element method for the Navier–Stokes equations with variable viscosity was
studied in [3]. More recently, a mass conservative finite element method for the Navier–Stokes/Darcy
coupled system, which revisits the original primal-mixed approach from [17], was proposed in [6],
whereas a conforming finite element method for a nonisothermal fluid-membrane interaction problem,
modeled by the Navier-Stokes/heat system in the free-fluid region, and a Darcy-heat coupled system
in the membrane, was introduced and analyzed in [7].

According to the above bibliographic discussion, the goal of this work is to extend the applicability
of the Banach spaces framework by introducing a fully–mixed formulation for the coupling of fluid
flow with porous media flow, without any augmentation procedure. To this end, we consider a similar
approach to the one presented in [3] for the Navier-Stokes domain and adapt it to the coupled Navier-
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Stokes/Darcy problem. The remainder of this paper is organized as follows. In Section 2 we introduce
the governing equations and the mathematical model. Subsequently, in Section 3 we present the
fully-mixed variational formulation within a Banach space framework and prove the well-posedness of
the continuous problem. The corresponding Galerkin system is introduced and analyzed in Section
4, where a discrete version of the fixed-point strategy developed in Section 3 is used. In addition, we
derive the associated a priori error estimate in the same Section. In Section 5 we specify particular
choices of discrete subspaces, in 2D and 3D, that satisfy the hypotheses from Section 4 and establish
the rates of convergence. Finally, in Section 6 we report on 2D numerical examples that validate the
method and showcase its practical applications.

Preliminary notations

Throughout the paper, Ω is a bounded Lipschitz-continuous domain of Rn, n ∈ {2, 3}, whose outward
normal at Γ := ∂Ω is denoted by n. Standard notation will be adopted for Lebesgue spaces Lt(Ω)
and Sobolev spaces Wl,t(Ω), with l ≥ 0 and t ∈ [1,+∞), whose corresponding norms, either for the
scalar or vectorial case, are denoted by ∥ ·∥0,t;Ω and ∥ ·∥l,t;Ω, respectively. Note that W0,t(Ω) = Lt(Ω),
and if t = 2 we write Hl(Ω) instead of Wl,2(Ω), with the corresponding norm and seminorm denoted
by ∥ · ∥l,Ω and | · |l,Ω, respectively. On the other hand, given any generic scalar functional space M, we
let M and M be the corresponding vectorial and tensorial counterparts, whereas ∥ · ∥ will be employed
for the norm of any element or operator whenever there is no confusion about the spaces to which
they belong. Furthermore, as usual, I stands for the identity tensor in R : = Rn×n, and | · | denotes
the Euclidean norm in R : = Rn. Also, for any vector fields v = (vi)i=1,n and w = (wi)i=1,n, we
set the gradient, divergence, and tensor product, respectively, as

∇v : =

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=
n∑

j=1

∂vj
∂xj

, and v ⊗w : = (viwj)i,j=1,n .

Additionally, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the diver-
gence operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner
product and the deviatoric tensor, respectively, as

τ t = (τji)i,j=1,n, tr(τ ) =

n∑
i=1

τ ii, τ : ζ : =

n∑
i,j=1

τijζij , and τ d : = τ − 1

n
tr(τ )I .

On the other hand, given t ∈ (1,+∞), we also introduce the Banach spaces

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

which are endowed with the natural norms defined, respectively, by

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) ,

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) .

Then, proceeding as in [22, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [12, Section 3.1]), it

is easy to show that for each t ∈
{

(1,+∞) if n = 2
[6/5,+∞) if n = 3

, there holds

⟨τ · n, v⟩ =

∫
Ω
{τ · ∇v + v div(τ )} ∀ (τ , v) ∈ H(divt; Ω)×H1(Ω) , (1.1)
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and analogously

⟨τ n,v⟩ =

∫
Ω
{τ : ∇v + v · div(τ )} ∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (1.2)

where ⟨·, ·⟩ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ), as well as between H−1/2(Γ)
and H1/2(Γ). We find it important to stress here, as explained in the aforementioned references, that
the second term on the right-hand side of (1.1) (resp. (1.2)) is well-defined because of the continuous
embedding of H1(Ω) (resp. H1(Ω)) into Lt′(Ω) (resp. Lt′(Ω)), where t′ is the conjugate of t, that is

t′ ∈ [1,+∞) such that 1
t +

1
t′ = 1, which holds for t′ ∈

{
[1,+∞) if n = 2
[1, 6] if n = 3

.

2 The model problem

In this section we introduce the model of interest, namely the coupled Navier-Stokes and Darcy
equations with variable viscosity. To this end, we first let ΩS and ΩD be bounded and simply connected
open polyhedral domains in Rn, such that ΩS ∩ ΩD = ∅ and ∂ΩS ∩ ∂ΩD = Σ ̸= ∅. The parts of the
boundaries are ΓS := ∂ΩS⧹Σ, ΓD := ∂ΩD⧹Σ, and n denotes the unit normal vector on them, which
is chosen pointing outward from Ω := ΩS ∪ Σ ∪ ΩD and ΩS (and hence inward to ΩD when seen on
Σ). On Σ we also consider unit tangent vectors, which are given by t = t1 when n = 2 and by {t1, t2}
when n = 3 (see Fig. 2.1 below for a 2D illustration of the geometry involved). The mathematical
model is defined by two separate groups of equations and by a set of coupling terms. Here, ΩS and
ΩD represent the domains in the free and porous media, respectively.

ΩD

ΩS

ΓD

ΓS

n

t

n

n

Σ

Figure 2.1: geometry of the coupled model

The governing equations in ΩS are those of the Navier-Stokes problem with constant density ρ and
variable viscosity µ, which are written in terms of the velocity uS and the pressure pS of the fluid,
that is

−div(µ∇uS) + ρ(∇uS)uS +∇pS = fS in ΩS ,

div(uS) = 0 in ΩS , uS = g on ΓS ,
(2.1)

where the given data are a function µ : ΩS → R+ describing the viscosity, a volume force fS , and
the boundary velocity g. The right spaces to which fS and g need to belong are specified later on.
Furthermore, the function µ is supposed to be bounded, which means that there exist constants µ1,
µ2 > 0, such that

µ1 ≤ µ(x) ≤ µ2 ∀x ∈ ΩS . (2.2)

4



Next, we introduce the pseudostress tensor unknown

σS : = µ∇uS − ρ(uS ⊗ uS)− pSI in ΩS , (2.3)

so that, nothing that div(uS ⊗ uS) = (∇uS)uS , which makes use of the fact that div(uS) = 0, we
find that the first equation of (2.1) can be rewritten as

−div(σS) = fS in ΩS .

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (2.3), that the
latter along with the incompressibility condition are equivalent to the pair

σd
S = µ∇uS − ρ (uS ⊗ uS)

d in ΩS , and

pS = − 1

n
tr
(
σS + ρ (uS ⊗ uS)

)
in ΩS .

(2.4)

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by the post-
processed formula suggested in (2.4), the Navier–Stokes problem (2.1) can be rewritten as:

σd
S = µ∇uS − ρ (uS ⊗ uS)

d in ΩS ,

−div(σS) = fS in ΩS , uS = g on ΓS .
(2.5)

Next, since we are interested in a mixed variational formulation of our problem, and in order to
employ the integration by parts formula typically required by this approach, we introduce the auxiliary
unknown tS := ∇uS in ΩS . Consequently, instead of (2.5), we consider from now the set of equations
with unknowns tS , uS , and σS , given by

tS = ∇uS in ΩS , σd
S = µ tS − ρ (uS ⊗ uS)

d in ΩS ,

−div(σS) = fS in ΩS , uS = g on ΓS .
(2.6)

On the other hand, in ΩD we consider the linearized Darcy model:

uD = −K∇pD in ΩD, div(uD) = fD in ΩD ,

uD · n = 0 on ΓD ,
(2.7)

where uD and pD denote the velocity and pressure, respectively, in the porous medium, fD ∈ L2(ΩD) is
a source term andK ∈ [L∞(ΩD)]

n×n is a positive definite symmetric tensor describing the permeability
of ΩD divided by a constant approximation of the viscosity, satisfying with CK > 0

w ·K−1(x)w ≥ CK |w|2 ∀ (a.e.)x ∈ ΩD, ∀w ∈ Rn .

Finally, following [30] and [24], the transmission conditions on Σ are given by

uS · n = uD · n on Σ ,

σSn+
n−1∑
l=1

ω−1
l (uS · tl)tl = −pDn on Σ ,

(2.8)

where {ω1, ..., ωn−1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (2.8) corresponds to mass conservation on Σ, whereas the second one establishes
the balance of normal forces and Beavers–Joseph–Saffman law. In addition, g and fD must formally
satisfy the compatibility condition ∫

ΓS

g · n+

∫
ΩD

fD = 0 . (2.9)
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3 The continuous analysis

In this section we derive a Banach spaces-based fully-mixed variational formulation of the coupled
problem described by (2.6), (2.7), and (2.8), and then perform its solvability analysis by means of a
fixed-point strategy.

3.1 Preliminaries

Here we introduce further notations and definitions. We begin with the spaces

H0(div; ΩD) :=
{
vD ∈ H(div; ΩD) : vD · n = 0 on ΓD

}
,

L2
tr(ΩS) :=

{
rS ∈ L2(ΩS) : tr(rS) = 0

}
.

Furthermore, for each ∗ ∈ {S,D}, and given Γ̃ ⊂ ∂Ω∗, we denote the space of traces

H
1/2
00 (Γ̃) :=

{
v|

Γ̃
: v ∈ H1(Ω∗), v = 0 on ∂Ω∗\Γ̃

}
.

and its vector version H
1/2
00 (Γ̃) =

[
H

1/2
00 (Γ̃)

]n
. Observe that, if E

Γ̃,∗ : H1/2(Γ̃) → L2(∂Ω∗) is the

extension operator defined by

E
Γ̃,∗(ψ) :=

{
ψ on Γ̃

0 on ∂Ω∗\Γ̃
∀ψ ∈ H1/2(Γ̃) ,

we have, alternatively, that

H
1/2
00 (Γ̃) =

{
ψ ∈ H1/2(Γ̃) : E

Γ̃,∗(ψ) ∈ H1/2(∂Ω∗)
}
,

which is endowed with the norm ∥ψ∥
1/2,00;Γ̃

:= ∥E
Γ̃,∗(ψ)∥1/2,∂Ω∗ . The dual of H

1/2
00 (Γ̃) (respectively

H
1/2
00 (Γ̃)) is denoted by H

−1/2
00 (Γ̃) (respectively H

−1/2
00 (Γ̃)), and ∥ · ∥−1/2,00;Γ̃

is set as the corresponding

norms. Next, in order to deduce the variational formulation of the Navier–Stokes problem, we first

look originally for uS ∈ H1(ΩS), for which we assume from now on, for simplicity, that g ∈ H
1/2
00 (ΓS).

Equivalently, letting

gS := EΓS ,S(g) =

{
g on ΓS

0 on Σ
,

there holds gS ∈ H1/2(∂ΩS), and hence, using the trace operator γ0 : H
1(ΩS) → H1/2(∂ΩS) (see [22,

Section 1.3.1]), we can write γ0(uS) = gS + (γ0(uS)− gS ), where

γ0(uS)− gS =

{
0 on ΓS

γ0(uS) on Σ
= EΣ,S(γ0(uS)|Σ) ∈ H1/2(∂ΩS) ,

which proves that

φ := −γ0(uS)|Σ ∈ H
1/2
00 (Σ) .

As a consequence, for each χ ∈ H−1/2(∂ΩS) we get

⟨χ, γ0(uS)⟩∂ΩS
= ⟨χ,gS ⟩∂ΩS

+ ⟨χ, γ0(uS)− gS ⟩∂ΩS

= ⟨χ,EΓS ,S(g)⟩∂ΩS
− ⟨χ,EΣ,S(φ)⟩∂ΩS

= ⟨χ|ΓS
,g⟩ΓS

− ⟨χ|Σ,φ⟩Σ ,

(3.1)

where ⟨·, ·⟩ΓS
(respectively ⟨·, ·⟩Σ) stands for the duality pairing between H

−1/2
00 (ΓS) (respectively

H
−1/2
00 (Σ)) and H

1/2
00 (ΓS) (respectively H

1/2
00 (Σ)).
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3.2 The fully-mixed formulation

Having established the above, we now multiply the first equation of (2.6) by τS ∈ H(divt; ΩS),

with t ∈
{

(1,+∞) if n = 2
[6/5,+∞) if n = 3

, apply the integration by parts formula (1.2), and use (3.1) with

χ = τS n, to find that∫
ΩS

τS : tS +

∫
ΩS

uS · div(τS) = ⟨τS n,g⟩ΓS
− ⟨τS n,φ⟩Σ ∀ τS ∈ H(divt; ΩS) . (3.2)

It is clear from (3.2) that its first term is well-defined for tS ∈ L2(ΩS), which, along with the free trace
property of tS , suggests to look for tS ∈ L2

tr(ΩS). In addition, knowing that div(τS) ∈ Lt(ΩS), we
realize from the second term and Hölder’s inequality that it suffices to look for uS ∈ Lt′(ΩS), where
t′ is the conjugate of t. Next, it follows from the second equation of (2.6), that formally∫

ΩS

µ tS : rS −
∫
ΩS

σd
S : rS − ρ

∫
ΩS

(uS ⊗ uS)
d : rS = 0 ∀ rS ∈ L2

tr(ΩS) , (3.3)

from which we notice that the first term is well-defined, whereas the second one makes sense if σS is
sought in L2(ΩS). In turn, for the third one there holds∣∣∣∣∫

ΩS

(uS ⊗ uS)
d : rS

∣∣∣∣ = ∣∣∣∣∫
ΩS

(uS ⊗ uS) : rS

∣∣∣∣ ≤ ∥uS∥0,4;ΩS
∥uS∥0,4;ΩS

∥rS∥0,ΩS
,

which, necessarily yields t′ = 4, and thus t = 4/3. Finally, looking for σS in the same space of its
corresponding test function τS , that is σS ∈ H(div4/3; ΩS), it follows from the third equation of (2.6)
that

−
∫
ΩS

vS · div(σS) =

∫
ΩS

fS · vS ∀vS ∈ L4(ΩS) , (3.4)

which forces fS to belong to L4/3(ΩS). Now for the Darcy equations given in (2.7) and the transmission
conditions specified in (2.8), we proceed similarly as in [10], so that introducing the auxiliary unknown

λ := pD|Σ ∈ H1/2(Σ) ,

we obtain the variational problem: Find tS ∈ L2
tr(ΩS), uS ∈ L4(ΩS), σS ∈ H(div4/3; ΩS), uD ∈

H0(div; ΩD), pD ∈ L2(ΩD), λ ∈ H1/2(Σ) and φ ∈ H
1/2
00 (Σ), such that∫

ΩS

tS : τ dS +

∫
ΩS

uS · div(τS) + ⟨τSn,φ⟩Σ = ⟨τSn,g⟩ΓS
,∫

ΩD

K−1uD · vD −
∫
ΩD

pD div(vD)− ⟨vD · n, λ⟩Σ = 0 ,∫
ΩS

µ tS : rS −
∫
ΩS

σd
S : rS − ρ

∫
ΩS

(uS ⊗ uS)
d : rS = 0 ,

−
∫
ΩS

vS · div(σS) =

∫
ΩS

fS · vS ,∫
ΩD

qD div(uD) =

∫
ΩD

fD qD ,

−⟨φ · n, ξ⟩Σ − ⟨uD · n, ξ⟩Σ = 0 ,

⟨σSn,ψ⟩Σ − ⟨φ,ψ⟩t,Σ + ⟨ψ · n, λ⟩Σ = 0 ,

(3.5)

for all rS ∈ L2
tr(ΩS), vS ∈ L4(ΩS), τS ∈ H(div4/3; ΩS), vD ∈ H0(div; ΩD), qD ∈ L2(ΩD), ξ ∈ H1/2(Σ)

and ψ ∈ H
1/2
00 (Σ), where:

⟨φ,ψ⟩t,Σ =

n−1∑
l=1

w−1
l ⟨φ · tl,ψ · tl⟩Σ .

7



It is not difficult to see that the system (3.5) is not uniquely solvable since, given any solution
(tS ,uS ,σS ,uD, pD, λ,φ) in the indicated spaces, and given any constant c ∈ R, the vector defined by
(tS ,uS ,σS − cI,uD, pD − c, λ+ c,φ) also becomes a solution. In order to avoid this non-uniqueness,
from now on we require the Darcy pressure pD to be in L2

0(ΩD), where

L2
0(ΩD) :=

{
qD ∈ L2(ΩD) :

∫
ΩD

qD = 0

}
.

On the other hand, for convenience of the subsequent analysis, we consider the decomposition

H(div4/3; ΩS) = H0(div4/3; ΩS)⊕ R I , (3.6)

where

H0(div4/3; ΩS) :=

{
τ ∈ H(div4/3; ΩS) :

∫
ΩS

tr(τ ) = 0

}
.

It follows that σS can be uniquely decomposed as σS = σS,0 + lI, where

σS,0 ∈ H0(div4/3; ΩS) and l :=
1

n|ΩS |

∫
ΩS

tr(σS) . (3.7)

In this regard, we notice that (3.3) and (3.4) remain unchanged if σS is replaced by σS,0. In this way,
using the compatibility condition (2.9), the first and last equations of (3.5) are rewritten equivalently
as ∫

ΩS

tS : τ dS +

∫
ΩS

uS · div(τS) + ⟨τSn,φ⟩Σ = ⟨τSn,g⟩ΓS
∀ τS ∈ H0(div4/3; ΩS) ,

j⟨φ · n, 1⟩Σ = j⟨g · n, 1⟩ΓS
∀ j ∈ R ,

⟨σSn,ψ⟩Σ − ⟨φ,ψ⟩t,Σ + ⟨ψ · n, λ⟩Σ + l⟨ψ · n, 1⟩Σ = 0 ∀ψ ∈ H
1/2
00 (Σ) .

As a consequence of the above, we find that the resulting variational formulation reduces to: Find

tS ∈ L2
tr(ΩS), uD ∈ H0(div; ΩD), σS ∈ H0(div4/3; ΩS), λ ∈ H1/2(Σ), uS ∈ L4(ΩS), φ ∈ H

1/2
00 (Σ),

pD ∈ L2
0(ΩD) and l ∈ R, such that

∫
ΩS

µtS : rS −
∫
ΩS

σ
d
S : rS −ρ

∫
ΩS

(uS ⊗ uS)
d
: rS = 0∫

ΩD

K
−1

uD · vD −⟨vD · n, λ⟩Σ −
∫
ΩD

pD div(vD) = 0∫
ΩS

τ
d
S : tS +⟨τSn,φ⟩Σ +

∫
ΩS

uS · div(τS) = ⟨τSn, g⟩ΓS

⟨uD · n, ξ⟩Σ +⟨φ · n, ξ⟩Σ = 0

⟨σSn,ψ⟩Σ +⟨ψ · n, λ⟩Σ −⟨φ,ψ⟩t,Σ +l⟨ψ · n, 1⟩Σ = 0∫
ΩS

vS · div(σS) = −
∫
ΩS

fS · vS

j⟨φ · n, 1⟩Σ = j⟨g · n, 1⟩ΓS

−
∫
ΩD

qD div(uD) = −
∫
ΩD

fDqD

(3.8)

for all rS ∈ L2
tr(ΩS), vD ∈ H0(div; ΩD), τS ∈ H0(div4/3; ΩS), ξ ∈ H1/2(Σ), vS ∈ L4(ΩS), ψ ∈

H
1/2
00 (Σ), qD ∈ L2

0(ΩD) and j ∈ R. Now, we group the spaces, unknowns, and test functions as follows:

X := L2
tr(ΩS)×H0(div; ΩD) , Y := H0(div4/3; ΩS)×H1/2(Σ)

Z := L4(ΩS)×H
1/2
00 (Σ) , H := X×Y × Z ,

Q := L2
0(ΩD)× R ,
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t⃗ := (tS ,uD) ∈ X , σ⃗ := (σS , λ) ∈ Y , u⃗ := (uS ,φ) ∈ Z , p⃗ := (pD, l) ∈ Q ,

r⃗ := (rS ,vD) ∈ X , τ⃗ := (τS , ξ) ∈ Y , v⃗ := (vS ,ψ) ∈ Z , q⃗ := (qD, j) ∈ Q ,

ζ⃗ := (ζS , zD) ∈ X , η⃗ := (ηS , ϑ) ∈ Y , z⃗ := (zS ,ϕ) ∈ Z , s⃗ := (sD, k) ∈ Q ,

where X, Y, Z, H and Q are respectively endowed with the norms

∥⃗r∥X := ∥rS∥0,ΩS
+ ∥vD∥div,ΩD

, ∥τ⃗∥Y := ∥τS∥div4/3;ΩS
+ ∥ξ∥1/2,Σ ,

∥v⃗∥Z := ∥vS∥0,4;ΩS
+ ∥ψ∥1/2,00;Σ , ∥(⃗r, τ⃗ , v⃗)∥H := ∥⃗r∥X + ∥τ⃗∥Y + ∥v⃗∥Z ,

∥q⃗∥Q := ∥qD∥0,ΩD
+ |j| .

Hence, using the same colors from (3.8), this formulation can be rewritten as: Find ((⃗t, σ⃗, u⃗), p⃗) ∈
H×Q, such that

[a(⃗t), r⃗] +[b1 (⃗r), σ⃗] −
∫
ΩD

pD div(vD) + b(uS ;uS , rS) = 0

[b2 (⃗t), τ⃗ ] +[B(⃗r, τ⃗), u⃗] = ⟨τSn, g⟩ΓS

[B(⃗t, σ⃗), v⃗] −[C(u⃗), v⃗] +l⟨ψ · n, 1⟩Σ = −
∫
ΩS

fS · vS

+j⟨φ · n, 1⟩Σ = j⟨g · n, 1⟩ΓS

−
∫
ΩD

qD div(uD) = −
∫
ΩD

fD qD

(3.9)

for all ((⃗r, τ⃗ , v⃗), q⃗) ∈ H ×Q, where a : X ×X → R, b1 : X ×Y → R, b2 : X ×Y → R, B : H → R,
and C : Z× Z → R, are the bilinear forms defined by

[a(ζ⃗), r⃗] :=

∫
ΩS

µ ζS : rS +

∫
ΩD

K−1zD · vD ∀ ζ⃗, r⃗ ∈ X ,

[b1(⃗r), τ⃗ ] := −⟨vD · n, ξ⟩Σ −
∫
ΩS

τ dS : rS ∀ (⃗r, τ⃗ ) ∈ X×Y ,

[b2(⃗r), τ⃗ ] := −[b1(⃗r), τ⃗ ] ∀ (⃗r, τ⃗ ) ∈ X×Y ,

[B(⃗r, τ⃗ ), v⃗] := ⟨ψ · n, ξ⟩Σ + ⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS) ∀ (⃗r, τ⃗ , v⃗) ∈ H ,

[C(z⃗), v⃗] := ⟨ϕ,ψ⟩t,Σ, ∀ z⃗, v⃗ ∈ Z ,

(3.10)

whereas for each wS ∈ L4(ΩS), b(wS ; ·, ·) : L4(ΩS)× L2
tr(ΩS) → R is the bilinear form given by

b(wS ;vS , rS) := −ρ
∫
ΩS

(wS ⊗ vS)
d : rS . (3.11)

As announced in the abstract, we notice here that (3.9) can be seen as a nonlinear perturbation,
given by the term b(uS ;uS , rS), of a threefold saddle point operator equation, whose main operator
Ã, to be introduced below, shows a perturbed saddle-point structure (cf. [13]). Indeed, letting

A : (X×Y)× (X×Y) → R be the bilinear form that arises from the block

(
a b1
b2

)
by adding the

first two equations of (3.9), that is

[A(ζ⃗, η⃗), (⃗r, τ⃗ )] := [a(ζ⃗), r⃗] + [b1(⃗r), η⃗] + [b2(ζ⃗), τ⃗ ] ∀ (ζ⃗, η⃗), (⃗r, τ⃗ ) ∈ X×Y , (3.12)

and letting Ã : H×H → R be the bilinear form that is derived from the block

(
A B
B −C

)
by adding

the first three equations from (3.9), that is

[Ã(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗)] := [A(ζ⃗, η⃗), (⃗r, τ⃗ )] + [B(⃗r, τ⃗ ), z⃗] + [B(ζ⃗, η⃗), v⃗]− [C(z⃗), v⃗] (3.13)
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for all (ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗) ∈ H, we find that (3.9) becomes: Find ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q such that

[Ã(⃗t, σ⃗, u⃗), (⃗r, τ⃗ , v⃗)] + [B̃(⃗r, τ⃗ , v⃗), p⃗] + b(uS ;uS , rS) = [G, (⃗r, τ⃗ , v⃗)] ,

[B̃(⃗t, σ⃗, u⃗), q⃗] = [F, q⃗] ,
(3.14)

for all (⃗r, τ⃗ , v⃗) ∈ H, for all q⃗ ∈ Q, where

[B̃(⃗r, τ⃗ , v⃗), q⃗] := −
∫
ΩD

qD div(vD) + j ⟨ψ · n, 1⟩Σ ,

[G, (⃗r, τ⃗ , v⃗)] := ⟨τSn,g⟩ΓS
−
∫
ΩS

fS · vS and [F, q⃗] := −
∫
ΩD

fDqD + j⟨g · n, 1⟩ΓS
.

(3.15)

Moreover, letting now P : (H×Q)× (H×Q) → R be the bilinear that arises from the block

(
Ã B̃

B̃

)
by adding both equations of (3.14), that is

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)] := [Ã(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗)] + [B̃(⃗r, τ⃗ , v⃗), s⃗] + [B̃(ζ⃗, η⃗, z⃗), q⃗] (3.16)

for all ((ζ⃗, η⃗, z⃗), s⃗), ((⃗r, τ⃗ , v⃗), q⃗) ∈ H × Q, we deduce that (3.14) (and hence (3.9)) can be stated,
equivalently as well, as: Find ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q such that

[P(⃗t, σ⃗, u⃗, p⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(uS ;uS , rS) = [H, (⃗r, τ⃗ , v⃗, q⃗)] ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q , (3.17)

where H ∈ (H×Q)′ is defined by [H, (⃗r, τ⃗ , v⃗, q⃗)] = [G, (⃗r, τ⃗ , v⃗)]+ [F, q⃗]. Furthermore, let us introduce
the operator T : L4(ΩS) → L4(ΩS) defined as

T(wS) := uS ∀wS ∈ L4(ΩS) , (3.18)

where uS is the first component of u⃗ ∈ Z, which, in turn, is the third component of the unique
solution

(
(⃗t, σ⃗, u⃗), p⃗

)
∈ H × Q (to be proved later on) of the linearized problem arising from (3.17)

after replacing b(uS ;uS , rS) by b(wS ;uS , rS), namely:

[P(⃗t, σ⃗, u⃗, p⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS) = [H, (⃗r, τ⃗ , v⃗, q⃗)] ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q . (3.19)

Thus, we realize that solving (3.14) (or (3.17)) is equivalent to finding a fixed-point of T, that is
uS ∈ L4(ΩS) such that

T(uS) = uS . (3.20)

3.3 Solvability analysis

In this section we analyze the solvability of (3.17) (which is equivalent to (3.9) or (3.14)), by means
of the fixed-point strategy that was depicted at the end of the previous section. To this end, we first
recall next some theoretical results to be applied later on.

3.3.1 Some useful abstract results

We begin with the generalized Babuška-Brezzi theory.

Theorem 3.1. Let H1, H2, Q1 and Q2 be reflexive Banach spaces, and let bi : Hi×Qi → R, i ∈ {1, 2},
be bounded bilinear forms with boundedness constants given by ∥a∥ and ∥bi∥, i ∈ {1, 2}, respectively.
In addition, for each i ∈ {1, 2}, let Ki be the kernel of the operator induced by bi, that is

Ki :=
{
v ∈ Hi : bi(v, q) = 0 ∀ q ∈ Qi

}
,

and assume that
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i) there exists a positive constant α such that

sup
v∈K1
v ̸=0

a(w, v)

∥v∥H1

≥ α ∥w∥H2 ∀w ∈ K2 ,

ii) there holds
sup
w∈K2

a(w, v) > 0 ∀ v ∈ K1, v ̸= 0 , and

iii) for each i ∈ {1, 2} there exists a positive constant βi such that

sup
v∈Hi
v ̸=0

bi(v, q)

∥v∥Hi

≥ βi ∥q∥Qi ∀ q ∈ Qi .

Then, for each (F,G) ∈ H ′
1 ×Q′

2 there exists a unique (u, p) ∈ H2 ×Q1 such that

a(u, v)+ b1(v, p) = F(v) ∀ v ∈ H1 ,
b2(u, q) = G(q) ∀ q ∈ Q2 ,

(3.21)

and the following a priori estimates hold

∥u∥H2 ≤ 1

α
∥F∥H′

1
+

1

β

(
1 +

∥a∥
α

)
∥G∥Q′

2
(3.22)

∥p∥Q1 ≤ 1

β

(
1 +

∥a∥
α

)
∥F∥H′

1
+

∥a∥
β1β1

(
1 +

∥a∥
α

)
∥G∥Q′

2
.

Moreover, i), ii) and iii) are also necessary conditions for the well-posedness of (3.21).

Proof. See [4, Theorem 2.1, Corollary 2.1, Section 2.1] for the original version and its proof. For the
particular case given by H1 = H2, Q1 = Q2, and b1 = b2, we also refer to [22, Theorem 2.34].

We remark here that the roles of K1 and K2 in the assumptions i) and ii) of Theorem 3.1 can be
exchanged without altering the joint meaning of these hypotheses. In addition, it is important to
stress that (3.22) is equivalent to an inf-sup condition for the bilinear form arising after adding the
left-hand sides of (3.21), which means that there exists a constant C > 0, depending only on α, β1, β2
and ∥a∥, such that

sup
(v,q)∈H1×Q2

(v,q)̸=0

a(w, v) + b1(v, r) + b2(w, q)

∥(v, q)∥H1×Q2

≥ C ∥(w, r)∥H2×Q1 ∀ (w, r) ∈ H2 ×Q1 . (3.23)

Next, we recall from [25, Theorem 3.2] (see also [13, Theorem 3.4] for the original version of it) a
result providing sufficient conditions for the well-posedness of a perturbed saddle-point problem.

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : H ×H → R, b : H ×Q→ R and
c : Q × Q → R be given bounded bilinear forms. In addition, let B : H → Q′ be the bounded linear
operator induced by b, and let V := N(B) be the respective null space. Assume that:

i) a and c are positive semi-definite, that is

a(τ, τ) ≥ 0 ∀ τ ∈ H and c(v, v) ≥ 0 ∀ v ∈ Q, (3.24)

and that c is symmetric,
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ii) there exists a constant α > 0 such that

sup
τ∈V
τ ̸=0

a(ϑ, τ)

∥τ∥H
≥ α ∥ϑ∥H ∀ϑ ∈ V , and (3.25)

sup
ϑ∈V
ϑ̸=0

a(ϑ, τ)

∥ϑ∥H
≥ α ∥τ∥H ∀ τ ∈ V, (3.26)

iii) and there exists a constant β > 0 such that

sup
τ∈H
τ ̸=0

b(τ, v)

∥τ∥H
≥ β ∥v∥Q ∀ v ∈ Q .

Then, for each pair (f, g) ∈ H ′ ×Q′ there exists a unique (σ, u) ∈ H ×Q such that

a(σ, τ) + b(τ, u) = f(τ) ∀ τ ∈ H ,
b(σ, v) − c(u, v) = g(v) ∀ v ∈ Q .

(3.27)

Moreover, there exists a constant C̃ > 0, depending only on ∥a∥, ∥c∥, α, and β, such that

∥(σ, u)∥H×Q ≤ C̃
{
∥f∥H′ + ∥g∥Q′

}
. (3.28)

As announced before, we stress here that the foregoing theorem is referred to as a slight variant of the
original version given by [13, Theorem 3.4], which requires a to be symmetric as well. Indeed, the proof
reduces basically to show that there exists a positive constant Ĉ, depending on ∥a∥, ∥c∥, α, and β, such
that the bilinear form arising from adding the left hand sides of (3.27), say A : (H×Q)×(H×Q) → R,
satisfies the inf-sup condition

sup
(τ,v)∈H×Q

(τ,v)̸=0

A((ζ, w), (τ, v))

∥(τ, v)∥H×Q
≥ Ĉ ∥(ζ, w)∥H×Q ∀ (ζ, w) ∈ H ×Q . (3.29)

In this way, thanks to the symmetry of a and c, A is obviously symmetric, and thus (3.29) is sufficient
to conclude, using the Banach–Nečas–Babuška Theorem (cf.[19, Theorem 2.6], also known as the
generalized Lax–Milgram Lemma, the well-posedness of (3.27). However, if the symmetry assumption
on a (and consequently on A) is dropped, as done in the present Theorem 3.2, the same conclusion
is attained if additionally (3.29) is also satisfied by the bilinear form Ã that arises from A after
exchanging its components. Thus, noting that the above reduces to fixing the second component of
A and taking the supremum in (3.29) with respect to the first one, we realize that in order to prove
this further inf-sup condition, the assumption (3.25) needs to be added, as we did in Theorem 3.2.
Needless to say, and because of the same constant α in (3.24) and (3.25), the aforementioned further
condition holds with the same constant Ĉ from (3.29).

3.3.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem (3.19)
is well-posed. To this end, we first state the boundedness of all the variational forms involved by
employing the Cauchy–Schwarz and Hölder inequalities, the upper bounds of µ, the continuity of the
normal trace operator in H(div4/3; ΩS) (which follows from (1.2)), the boundedness of the injection
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i4 : H
1(ΩS) → L4(ΩS), the boundedness of a suitable extension operator ED : H1/2(Σ) → H1/2(∂ΩD)

to be defined later on in (3.37) - (3.38), and the existence of a positive constant cs, depending only
on ∂ΩS , such that ∥ψ∥0,Σ ≤ cs∥ψ∥1/2,Σ ∀ψ ∈ H1/2(Σ), which yields, in particular, ∥ψ∥0,Σ ≤
cs∥ψ∥1/2,00;Σ ∀ψ ∈ H

1/2
00 (Σ) (see [2, Appendix A.1]). In this way, we deduce the existence of positive

constants, denoted and given as:

∥a∥ := max{µ2, ∥K−1∥∞} , ∥b1∥ = ∥b2∥ := max
{
1, ∥ED∥

}
,

∥A∥ = ∥a∥+ 2∥b1∥ , ∥B∥ = max{1, ∥i4∥, c2s} ,

∥C∥ := c2s(n− 1)max{ω−1
1 , ..., ω−1

n−1} , ∥Ã∥ := ∥A∥+ 2∥B∥+ ∥C∥ ,

∥B̃∥ := max{1, cs|Σ|1/2} , and ∥H∥ := ∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
,

(3.30)

with g̃ := max{1, ∥i4∥, cs|Σ|1/2}g, such that

|[a(ζ⃗), r⃗]| ≤ ∥a∥ ∥ζ⃗∥X∥⃗r∥X ∀ ζ⃗, r⃗ ∈ X ,

|[bi(⃗r), τ⃗ ]| ≤ ∥bi∥ ∥⃗r∥X∥τ⃗∥Y ∀ (⃗r, τ⃗ ) ∈ X×Y ,

|[A(ζ⃗, η⃗), (⃗r, τ⃗ )]| ≤ ∥A∥ ∥(ζ⃗, η⃗)∥X×Y∥(⃗r, τ⃗ )∥X×Y ∀ (ζ⃗, η⃗), (⃗r, τ⃗ ) ∈ X×Y,

|[B(⃗r, τ⃗ ), v⃗]| ≤ ∥B∥ ∥(⃗r, τ⃗ )∥X×Y∥v⃗∥Z ∀ (⃗r, τ⃗ , v⃗) ∈ H ,

|[C(v⃗), z⃗]| ≤ ∥C∥ ∥v⃗∥X∥z⃗∥X ∀ψ,ϕ ∈ H
1/2
00 (Σ),

|[Ã(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗)]| ≤ ∥Ã∥ ∥(ζ⃗, η⃗, z⃗)∥H∥(⃗r, τ⃗ , v⃗)∥H ∀(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗) ∈ H ,

|[B̃(⃗r, τ⃗ , v⃗), q⃗]| ≤ ∥B̃∥ ∥(⃗r, τ⃗ , v⃗)∥H∥q⃗∥Q ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q ,

|[H, (⃗r, τ⃗ , v⃗, q⃗)]| ≤ ∥H∥ ∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q .

(3.31)

In turn, employing the Cauchy–Schwarz inequality twice, we find that

|b(wS ;vS , rS)| ≤ ρ ∥wS∥0,4;ΩS
∥vS∥0,4;ΩS

∥rS∥0,ΩS

∀ (wS ,vS , rS) ∈ L4(ΩS)× L4(ΩS)× L2
tr(ΩS) .

(3.32)

In what follows, and as suggested by the matrix representation

(
Ã B̃

B̃ 0

)
, we apply the symmetric

case of Theorem 3.1. In particular, in order to derive the inf-sup conditions of the bilinear form Ã,

and according to its structure given by

(
A B
B −C

)
(cf. (3.13)), we employ Theorem 3.2. In turn, and

due to the corresponding structure

(
a b1
b2 0

)
of A (cf. (3.12)), we employ Theorem 3.1 to establish

the required assumptions on A. For the above purposes, we begin by deducing from the definition
(3.15) that the kernel Ṽ of B̃ reduces to

Ṽ :=
{
(⃗r, τ⃗ , v⃗) ∈ H : [B̃(⃗r, τ⃗ , v⃗), q⃗] = 0 ∀ q⃗ ∈ Q

}
= X̃×Y × Z̃ , (3.33)

where
X̃ = L2

tr(ΩS)× H̃0(div; ΩD), Z̃ = L4(ΩS)× H̃
1/2
00 (Σ) , (3.34)
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with

H̃0(div; ΩD) :=
{
vD ∈ H0(div; ΩD) : div(vD) ∈ P0(ΩD)

}
,

H̃
1/2
00 (Σ) :=

{
ψ ∈ H

1/2
00 (Σ) : ⟨ψ · n, 1⟩Σ = 0

}
.

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form as the
kernel of the latter. Then we let V be the kernel of B|

Ṽ
, that is

V = X̃×Y ,

where

Y :=

{
τ⃗ := (τS , ξ) ∈ Y : ⟨ψ · n, ξ⟩Σ + ⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS) = 0 ∀ v⃗ := (vS ,ψ) ∈ Z̃

}
,

=
{
τ⃗ := (τS , ξ) ∈ Y : div(τS) = 0, ⟨ψ · n, ξ⟩Σ = −⟨τSn,ψ⟩Σ, ∀ψ ∈ H̃

1/2
00 (Σ)

}
.

Then for each i ∈ {1, 2} we let Ki be the kernel of bi|V, that is

Ki :=
{
r⃗ := (rS ,vD) ∈ X̃ : [bi(⃗r), τ⃗ ] = 0 ∀ τ⃗ := (τS , ξ) ∈ Y

}
,

which, recalling from (3.10) that b1 = −b2, yields

K1 = K2 = K ⊆ X̃ .

At this point we recall, for later use, that there exist positive constants c4/3(ΩS) and Cdiv, such that
(see, [3, Lemma 4.4] and [26, Lemma 3.2], respectively, for details)

c4/3(Ω) ∥τS∥0,ΩS
≤ ∥τ dS∥0,ΩS

+ ∥div(τS)∥0,4/3;ΩS
∀ τS ∈ H0(div4/3; ΩS) (3.35)

and
∥vD∥20,ΩD

≥ Cdiv∥vD∥2div,ΩD
∀vD ∈ H̃0(div; ΩD) . (3.36)

We now follow [27] to recall some preliminary results concerning boundary conditions and extension
operators. Given vD ∈ H0(div; ΩD), the boundary condition vD · n = 0 on ΓD means

⟨vD · n, EΓD,D(ζ)⟩∂ΩD
= 0 ∀ ζ ∈ H

1/2
00 (ΓD) .

As a consequence, it is not difficult to show (see [21, Section 2]) that the restriction of vD ·n to Σ can
be identified with an element of H−1/2(Σ), namely

⟨vD · n, ξ⟩Σ := ⟨vD · n, ED(ξ)⟩∂ΩD
∀ ξ ∈ H1/2(Σ) ,

where ED : H1/2(Σ) → H1/2(∂ΩD) is any bounded extension operator. In particular, given ξ ∈
H1/2(Σ), one could define ED(ξ) := z|∂ΩD

, where z ∈ H1(ΩD) is the unique solution of the boundary
value problem:

∆z = 0 in ΩD , z = ξ on Σ , ∇z · n = 0 on ΓD , (3.37)

whose continuous dependence estimate yields ED ∈ L
(
H1/2(Σ),H1/2(∂ΩD)

)
, and hence

∥ED(ξ)∥1/2,∂ΩD
≤ ∥ED∥ ∥ξ∥1/2,Σ . (3.38)
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In addition, one can show (see [21, Lemma 2.2]) that for all ζ ∈ H1/2(∂ΩD) there exist unique elements

ζΣ ∈ H1/2(Σ) and ζΓD
∈ H

1/2
00 (ΓD) such that

ζ = ED(ζΣ) + EΓD,D(ζΓD
) , (3.39)

and
C1

{
∥ζΣ∥1/2,Σ + ∥ζΓD

∥1/2,00;ΓD

}
≤ ∥ζ∥1/2,∂ΩD

≤ C2

{
∥ζΣ∥1/2,Σ + ∥ζΓD

∥1/2,00;ΓD

}
,

with positive constants C1 and C2, independent of Σ.

Then, we are in position to prove the results stated by the following lemmas.

Lemma 3.3. For each i ∈ {1, 2} there exists a positive constant βi such that

sup
r⃗∈X̃
r̸⃗=0

[bi(⃗r), τ⃗ ]

∥⃗r∥X
≥ βi ∥τ⃗∥Y ∀ τ⃗ ∈ Y . (3.40)

Proof. Since b1 = − b2, it suffices to show for one of these bilinear forms, so that we stay with b1.
Moreover, considering that Y ⊆ H̃0(div4/3; ΩS)×H1/2(Σ), with

H̃0(div4/3; ΩS) :=
{
τS ∈ H0(div4/3; ΩS) : div(τS) = 0

}
,

we need to prove that there exists a positive constant β1 such that

sup
r⃗∈X̃
r̸⃗=0

[b1(⃗r), τ⃗ ]

∥⃗r∥X
≥ β1 ∥τ⃗∥Y ∀ τ⃗ ∈ H̃0(div4/3; ΩS)×H1/2(Σ) . (3.41)

In addition, due to the diagonal character of b1 (cf. (3.10)), the proof of (3.41) reduces to establishing
the following two independent inf-sup conditions

sup
vD∈H̃0(div;ΩD)

vD ̸=0

⟨vD · n, ξ⟩Σ
∥vD∥div;ΩD

≥ β1,Σ ∥ξ∥1/2,Σ ∀ ξ ∈ H1/2(Σ) , and (3.42)

sup
rS∈L2tr(ΩS)

rS ̸=0

∫
ΩS

τ dS : rS

∥rS∥0,ΩS

≥ β1,S ∥τS∥div4/3;ΩS
∀ τS ∈ H̃0(div4/3; ΩS) , (3.43)

with β1,Σ, β1,S > 0. Indeed, for (3.42) we refer to [27, Lemma 3.3]. However, for sake of completeness,
most details are given in what follows. Given ϕ ∈ H−1/2(Σ), we define η ∈ H−1/2(∂ΩD) as

⟨η, ζ⟩∂ΩD
:= ⟨ϕ, ζΣ⟩Σ ∀ ζ ∈ H1/2(∂ΩD) , (3.44)

where ζΣ is given by the decomposition (3.39). It is not difficult to see that

⟨η,EΓD,D(ρ)⟩∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) , (3.45)

⟨η,ED(ξ)⟩∂ΩD
= ⟨ϕ, ξ⟩Σ ∀ξ ∈ H1/2(Σ) (3.46)

and
∥η∥−1/2,∂ΩD

≤ C∥ϕ∥−1/2,Σ . (3.47)
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Hence, we now define wD := ∇z ∈ ΩD, where z ∈ H1(ΩD) is the unique solution of the boundary
value problem

∆z =
1

|ΩD|
⟨η, 1⟩∂ΩD

in ΩD, ∇z · n = η on ∂ΩD,

∫
∂ΩD

z = 0 .

It follows that div(wD) =
1

|ΩD|⟨η, 1⟩∂ΩD
∈ P0(ΩD), wD ·n = η on ∂ΩD, and, using the estimate (3.47),

∥wD∥div;ΩD
≤ C∥η∥−1/2,∂ΩD

≤ C∥ϕ∥−1/2,Σ. In addition, according to (3.44), (3.45) and (3.46), we
find, respectively, that

⟨wD · n, ξ⟩Σ = ⟨wD · n, ED(ξ)⟩∂ΩD
= ⟨η,ED(ξ)⟩∂ΩD

= ⟨ϕ, ξ⟩Σ

and
⟨wD · n, EΓD,D(ρ)⟩∂ΩD

= ⟨η,EΓD,D(ρ)⟩∂ΩD
= 0 ∀ ρ ∈ H

1/2
00 (ΓD) ,

which implies that wD ∈ H̃0(div; ΩD). In this way, we conclude that

sup
vD∈H̃0(div;ΩD)

vD ̸=0

⟨vD · n, ξ⟩Σ
∥vD∥div;ΩD

≥ |⟨wD · n, ξ⟩Σ|
∥wD∥div;ΩD

≥ C

∣∣⟨ϕ, ξ⟩Σ∣∣
∥ϕ∥−1/2,Σ

∀ϕ ∈ H−1/2(Σ) ,

and hence

sup
vD∈H̃0(div;ΩD)

vD ̸=0

⟨vD · n, ξ⟩Σ
∥vD∥div;ΩD

≥ C sup
ϕ∈H−1/2(Σ)

ϕ ̸=0

∣∣⟨ϕ, ξ⟩Σ∣∣
∥ϕ∥−1/2,Σ

= C ∥ξ∥1/2,Σ ,

which confirms (3.42). On the other hand, given τS ∈ H̃0(div4/3; ΩS) such that τ dS ̸= 0, we have that
τ dS ∈ L2

tr(ΩS), so that bounding the supremum in (3.43) by below with rS = −τ dS , it follows that

sup
rS∈L2tr(ΩS)

rS ̸=0

∫
ΩS

τ dS : rS

∥rS∥0,ΩS

≥

∫
ΩS

τ dS : τ dS

∥τ dS∥0,ΩS

= ∥τ dS∥0;ΩS
,

which, using (3.35) and the fact that div(τS) = 0, implies that (3.43) is satisfied with constant
β1,S = c4/3(ΩS). On the other hand, if τ dS = 0, it is clear from (3.35) that τS = 0, and so (3.43) is
trivially satisfied.

Lemma 3.4. There exists a positive constant α such that

[a(⃗r), r⃗] ≥ αa ∥⃗r∥2X ∀ r⃗ ∈ X̃ .

Proof. Given r⃗ := (rS ,vD) ∈ X̃, we use the definition of a (cf. (3.10)), (2.2), and (3.36), to obtain

[a(⃗r), r⃗] =

∫
ΩS

µ rS : rS +

∫
ΩD

K−1vD · vD ≥ µ1 ∥rS∥20,ΩS
+ CK ∥vD∥20,ΩD

≥ αa ∥⃗r∥X ,

with αa :=
1

2
min{µ1, CdivCK}, thus confirming the required property on a. In particular, since

K ⊂ X̃, it is clear that a is K-elliptic.

As a consequence of Lemma 3.3 and Lemma 3.4, we conclude that a, b1 and b2 satisfy the hypotheses
of Theorem 3.1, and hence, a straightforward application of this abstract result yields the existence
of a positive constant αA, depending on ∥a∥, αa and β1, such that

sup
(⃗r,τ⃗)∈V

(⃗r,τ⃗ )̸=0

[A(ζ⃗, η⃗), (⃗r, τ⃗ )]

∥(⃗r, τ⃗ )∥X×Y
≥ αA ∥(ζ⃗, η⃗)∥X×Y ∀ (ζ⃗, η⃗) ∈ V . (3.48)
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Moreover, if we swap the roles of b1 and b2, changing the matrix from

(
a b1
b2 0

)
to

(
a b2
b1 0

)
, we can

reapply Theorem 3.1 and (3.23) to conclude that, with the same constant αA from (3.48), there holds

sup
(ζ⃗,η⃗)∈V

(ζ⃗,η⃗)̸=0

[A(ζ⃗, η⃗), (⃗r, τ⃗ )]

∥(ζ⃗, η⃗)∥X×Y

≥ αA ∥(⃗r, τ⃗ )∥X×Y ∀ (⃗r, τ⃗ ) ∈ V .

Furthermore, it is evident from (3.12) and the ellipticity of a in X̃, that

[A(⃗r, τ⃗ ), (⃗r, τ⃗ )] = [a(⃗r), r⃗] ≥ αa ∥⃗r∥X ∀ (⃗r, τ⃗ ) ∈ X̃×Y ,

which proves that A is positive semi-definite.

Lemma 3.5. There holds
[C(v⃗), v⃗] ≥ 0 ∀ v⃗ ∈ Z .

Proof. From the definition of the operator C (cf. (3.10)), it readily follows that

[C(v⃗), v⃗] =
n−1∑
l=1

w−1
l ∥ψ · tl∥20,Σ ≥ 0 v⃗ ∈ Z ,

which confirms that C is positive semi-definite.

In this way, we have demonstrated that A and C satisfy hypotheses i) and ii) of Theorem 3.2,
and hence it only remains to show the corresponding assumption iii), which is the continuous inf-sup
condition for B with respect to the third component Z̃ of the kernel Ṽ of B̃ (cf. (3.33), (3.34)).

Lemma 3.6. There exists a positive constant βS such that

sup
(⃗r,τ⃗)∈X̃×Y

(⃗r,τ⃗ )̸=0

[B(⃗r, τ⃗ ), v⃗]

∥(⃗r, τ⃗ )∥X×Y
≥ βS ∥v⃗∥Z ∀ v⃗ ∈ Z̃ . (3.49)

Proof. Given v⃗ := (vS ,ψ) ∈ Z̃ := L4(ΩS) × H̃
1/2
00 (Σ), we first realize, taking r⃗ := (rS ,vD) = 0⃗ and

τ⃗ := (τS , ξ) = (τS , 0), that

sup
(⃗r,τ⃗)∈H
(⃗r,τ⃗ )̸=0

[B(⃗r, τ⃗ ), v⃗]

∥(⃗r, τ⃗ )∥H
≥ sup

τS∈H0(div4/3;ΩS)

τS ̸=0

[B(0⃗, (τS , 0)), v⃗]

∥τS∥div4/3;ΩS

= sup
τS∈H0(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

.

(3.50)

Next, setting τS := τS,0 + cI ∈ H(div4/3; ΩS) with the respective components τS,0 ∈ H0(div4/3; ΩS)
and c ∈ R, we observe that∫

ΩS

vS · div(τS) =

∫
ΩS

vS · div(τS,0) , ⟨τSn,ψ⟩Σ = ⟨τS,0n,ψ⟩Σ , and

∥τS∥2div4/3;ΩS
= ∥τS,0∥2div4/3;ΩS

+ 2 c2 |ΩS | .
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Hence, noting that ∥τS∥div4/3;ΩS
≥ ∥τS,0∥div4/3;ΩS

, we find that

sup
τS,0∈H0(div4/3;ΩS)

τS,0 ̸=0

⟨τS,0 n,ψ⟩Σ +

∫
ΩS

vS · div(τS,0)

∥τS,0∥div4/3;ΩS

≥ sup
τS∈H(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

,

which, along with (3.50), implies that in order to conclude (3.49), it suffices to show that there exists
a positive constant βS , independent of the given v⃗ := (vS ,ψ) ∈ Z̃, such that

sup
τS∈H(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

≥ βS

{
∥ψ∥1/2,00;Σ + ∥vS∥0,4;ΩS

}
. (3.51)

To this end, we now set v̂S := |vS |2 vS and notice that ∥v̂S∥4/30,4/3;ΩS
= ∥vS∥40,4;ΩS

, which says that

v̂S ∈ L4/3(ΩS), and ∫
ΩS

vS · v̂S = ∥vS∥0,4;ΩS
∥v̂S∥0,4/3;ΩS

. (3.52)

Then, we let z ∈ H1(ΩS) be the unique solution of

−∆z = v̂S in ΩS , z = 0 on ΓS , and ∇z n = 0 on Σ ,

whose variational formulation reads: Find z ∈ H1
ΓS

(ΩS) such that∫
ΩS

∇z · ∇w =

∫
ΩS

v̂S ·w ∀w ∈ H1
ΓS

(ΩS) , (3.53)

where
H1

ΓS
(ΩS) :=

{
w ∈ H1(ΩS) : w = 0 on ΓS

}
.

In fact, we first notice that the left-hand side of (3.53) defines an H1
ΓS

(ΩS)-elliptic bilinear form. In

addition, Hölder’s inequality and the continuous injection i4 from H1(ΩS) into L4(ΩS) guarantee that
the right-hand side of (3.53) constitutes a functional in H1

ΓS
(ΩS)

′. Consequently, a straightforward

application of the classical Lax–Milgram Lemma implies the existence of a unique z ∈ H1
ΓS

(ΩS)
solution to (3.53). Moreover, it follows from (3.53) that

|z|1,ΩS
≤ cs ∥i4∥ ∥v̂S∥0,4/3;ΩS

, (3.54)

where cs is the positive constant, depending only on ΩS , provided by the Poincaré inequality, that is
such that ∥v∥1,ΩS

≤ cs |v|1,ΩS
for all v ∈ H1

ΓS
(ΩS). Then, defining τ̃S := −∇z ∈ L2(ΩS), we see

that div(τ̃S) = v̂S in ΩS , which says that actually τ̃S ∈ H(div4/3,ΩS), and that τ̃Sn = 0 on Σ, so
that using (3.54), we get

∥τ̃S∥div4/3;ΩS
= |z|1,ΩS

+ ∥v̂S∥0,4/3;ΩS
≤
(
1 + cs ∥i4∥

)
∥v̂S∥0,4/3;ΩS

. (3.55)

In this way, bounding by below with τ̃S , and employing (3.52) and (3.55), we deduce that

sup
τS∈H(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

≥

∫
ΩS

vS · div(τ̃S)

∥τ̃S∥div4/3;ΩS

=

∫
ΩS

vS · v̂S

∥τ̃S∥div4/3;ΩS

=
∥vS∥0,4;ΩS

∥v̂S∥0,4/3;ΩS

∥τ̃S∥div4/3;ΩS

≥ βS,1 ∥vS∥0,4;ΩS
,

(3.56)
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with βS,1 :=
(
1 + cs ∥i4∥

)−1
. On the other hand, given η ∈ H

−1/2
00 (Σ), we let ẑ ∈ H1

ΓS
(ΩS) be the

unique solution of

−∆ẑ = 0 in ΩS , ẑ = 0 on ΓS , ∇ẑ n = η on Σ ,

and define τ̂S := ∇ẑ in ΩS . It follows that div(τ̂S) = 0 in ΩS , τ̂S n = η on ΓS , and
∥τ̂S∥div4/3;ΩS

= ∥τ̂S∥0,ΩS
≤ Ĉ ∥η∥−1/2,00;Σ, which yields

sup
τS∈H(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

≥ ⟨τ̂Sn,ψ⟩Σ
∥τ̂S∥div4/3;ΩS

≥ βS,2

∣∣⟨η,ψ⟩Σ∣∣
∥η∥−1/2,00;Σ

,

with βS,2 := Ĉ−1. Since η ∈ H
−1/2
00 (Σ) is arbitrary, the foregoing inequality leads to

sup
τS∈H(div4/3;ΩS)

τS ̸=0

⟨τSn,ψ⟩Σ +

∫
ΩS

vS · div(τS)

∥τS∥div4/3;ΩS

≥ βS,2 ∥ψ∥1/2,00;Σ ,

which, along with (3.56), shows (3.51), and hence (3.49), with βS := 1
2 min

{
βS,1,βS,2

}
.

Consequently, having the bilinear forms A, B, C satisfied the three hypotheses of Theorem 3.2,
a straightforward application of this abstract result yields the existence of a positive constant α̃,
depending on ∥A∥, ∥C∥, αA, and βS such that

sup
(⃗r,τ⃗ ,v⃗)∈Ṽ

(⃗r,τ⃗ ,v⃗)̸=0

[Ã(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗)]

∥(⃗r, τ⃗ , v⃗)∥H
≥ α̃ ∥(ζ⃗, η⃗, z⃗)∥H ∀ (ζ⃗, η⃗, z⃗) ∈ Ṽ ,

and

sup
(ζ⃗,η⃗,z⃗)∈Ṽ

(ζ⃗,η⃗,z⃗)̸=0

[Ã(ζ⃗, η⃗, z⃗), (⃗r, τ⃗ , v⃗)]

∥(ζ⃗, η⃗, z⃗)∥H
≥ α̃ ∥(⃗r, τ⃗ , v⃗)∥H ∀ (⃗r, τ⃗ , v⃗) ∈ Ṽ ,

which means that Ã satisfies the assumptions i) and ii) of Theorem 3.1. Thus, it only remains to
demonstrate the corresponding assumption iii), which is the continuous inf-sup condition for B̃.

Lemma 3.7. There exists a positive constant β̃ such that

sup
(⃗r,τ⃗ ,v⃗)∈H
(⃗r,τ⃗ ,v⃗)̸=0

[B̃(⃗r, τ⃗ , v⃗), q⃗]

∥(⃗r, τ⃗ , v⃗)∥H
≥ β̃ ∥q⃗∥Q ∀ q⃗ ∈ Q . (3.57)

Proof. We first observe that the diagonal character of B̃ (cf. (3.15)) says that proving (3.57) is
equivalent to establishing the following two independent inf–sup conditions

sup
vD∈H0(div;ΩD)

vD ̸=0

∫
ΩD

qD div(vD)

∥vD∥div,ΩD

≥ β̃D ∥qD∥0,ΩD
∀ qD ∈ L2

0(ΩD) , (3.58)

sup
ψ∈H

1/2
00 (Σ)

ψ ̸=0

j ⟨ψ · n, 1⟩Σ
∥ψ∥1/2,00;Σ

≥ β̃S |j| ∀ j ∈ R . (3.59)
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To this end, we proceed similarly to the proof of [26, Lemma 3.6]. We define vD := ∇z, where
z ∈ H1

Σ(ΩD) is the unique solution of the boundary value problem:

∆z = qD in ΩD , z = 0 on Σ , ∇z · n = 0 on ΓD .

It follows that vD ∈ H0(div; ΩD) and div(vD) = qD, which yields the surjectivity of the operator
div : H0(div; ΩD) → L2

0(ΩD), which is (3.58). On the other hand, the inf-sup condition (3.59) reduces
to the surjectivity of the operator ψ → ⟨ψ · n, 1⟩Σ from H1/2(Σ) → R, which in turn is equivalent to
showing the existence of ψ0 ∈ H1/2(Σ) such that ⟨ψ0 · n, 1⟩Σ ̸= 0. In fact, we pick one corner point
of Σ and define a function v that is continuous, linear on each side of Σ, equal to one in the chosen
vertex, and zero on all other ones. If n1 and n2 are the normal vectors on the two sides of Σ that
meet at the corner point, then ψ0 := ν(n1 + n2) satisfies the required property. Finally, the required
inequality (3.57) is obtained with β̃ := min

{
β̃S , β̃D

}
.

Now, having the bilinear forms Ã and B̃ satisfied the assumptions of Theorem 3.1, a direct ap-
plication of this abstract result guarantees the global inf-sup condition for P (cf. (3.16)), that is the
existence of a positive constant αP, depending on α̃, β̃, and ∥Ã∥, such that

sup
((⃗r,τ⃗ ,v⃗),q⃗)∈H×Q

((⃗r,τ⃗ ,v⃗),q⃗) ̸=0

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)]

∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q
≥ αP ∥(ζ⃗, η⃗, z⃗, s⃗)∥H×Q ∀ ((ζ⃗, η⃗, z⃗), s⃗) ∈ H×Q . (3.60)

In turn, if we consider the transpose of P, which simply reduces to exchange the bilinear forms b1
and b2 in (3.12), we conclude that inf-sup conditions are satisfied by P with respect to the other
component, that is

sup
((ζ⃗,η⃗,z⃗),⃗s)∈H×Q

((ζ⃗,η⃗,z⃗),⃗s) ̸=0

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)]

∥(ζ⃗, η⃗, z⃗, s)∥H×Q

≥ αP ∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q . (3.61)

Moreover, employing (3.60) and the boundedness property of b (cf. (3.32)), it readily follows that,
given wS ∈ L4(ΩS), there holds

sup
((⃗r,τ⃗ ,v⃗),q⃗)∈H×Q

((⃗r,τ⃗ ,v⃗),q⃗)̸=0

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS)

∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q
≥
(
αP − ρ ∥wS∥0,4;ΩS

)
∥(ζ⃗, η⃗, z⃗, s⃗)∥H×Q

for all ((ζ⃗, η⃗, z⃗), s⃗) ∈ H×Q, and hence, for each wS ∈ L4(ΩS) such that ∥wS∥0,4;ΩS
≤ αP

2ρ
, we get

sup
((⃗r,τ⃗ ,v⃗),q⃗)∈H×Q

((⃗r,τ⃗ ,v⃗),q⃗)̸=0

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS)

∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q
≥ αP

2
∥(ζ⃗, η⃗, z⃗, s⃗)∥H×Q (3.62)

for all ((ζ⃗, η⃗, z⃗), s⃗) ∈ H×Q . Similarly, but now using (3.61), and under the same assumption on wS ,
we arrive at

sup
((ζ⃗,η⃗,z⃗),⃗s)∈H×Q

((ζ⃗,η⃗,z⃗),⃗s)̸=0

[P(ζ⃗, η⃗, z⃗, s⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS)

∥(ζ⃗, η⃗, z⃗, s⃗)∥H×Q

≥ αP

2
∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q (3.63)

for all ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q.

Consequently, the well-definedness of the operator T can be stated as follows.
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Theorem 3.8. For each wS ∈ L4(ΩS) such that ∥wS∥0,4;ΩS
≤ αP

2ρ
, there exists a unique solution(

(⃗t, σ⃗, u⃗), p⃗
)
∈ H×Q solution to (3.19), and hence we can define T(wS) := uS ∈ L4(ΩS). Moreover,

there holds
∥T(wS)∥0,4;ΩS

= ∥uS∥0,4;ΩS
≤ ∥(⃗t, σ⃗, u⃗, p⃗)∥H×Q

≤ 2

αP

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
.

(3.64)

Proof. Given wS as indicated, the existence of a unique solution to (3.19) follows from (3.62), (3.63),
and a direct application of the Banach–Nečas–Babuška Theorem (see [19, Theorem 2.6]). In turn, the
corresponding a priori estimate and the boundedness of H (cf. (3.31)) yield (3.64).

3.3.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T (cf. (3.18)) is well-defined, in this section we proceed to establish the
existence of a unique solution of the fixed-point equation (3.20). To this end, in what follows we will
first derive sufficient conditions on T to map a closed ball of L4(ΩS) into itself. This will allow us to
apply the Banach Theorem later on. Indeed, from now on we let

W :=

{
wS ∈ L4(ΩS) : ∥wS∥0,4;ΩS

≤ αP

2ρ

}
.

Lemma 3.9. Assume that

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
≤

α2
P

4ρ
. (3.65)

Then, there holds T
(
W
)
⊆ W.

Proof. Given wS ∈ W, we know from Theorem 3.8 that T(wS) is well-defined and that there holds

∥T(wS)∥0,4;ΩS
≤ 2

αP

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;Ω + ∥fD∥0,Ω
}

≤ αP

2ρ
, (3.66)

which shows that T(wS) ∈ W.

We continue with the following result providing the required continuity of T.

Lemma 3.10. There holds

∥T(wS)−T(wS)∥0,4:ΩS
≤ 4ρ

α2
P

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
∥wS −wS∥0,4;ΩS

(3.67)

for all wS ,wS ∈ W.

Proof. Given wS ,wS ∈ L4(ΩS), we let T(wS) := uS and T(wS) := uS , where ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q
and ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q are the corresponding unique solutions of (3.19), that is

[P(⃗t, σ⃗, u⃗,p), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS) = [H, (⃗r, τ⃗ , v⃗, q⃗)] ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q (3.68)

and

[P(⃗t, σ⃗, u⃗, p⃗), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS , rS) = [H, (⃗r, τ⃗ , v⃗, q⃗)] ∀ ((⃗r, τ⃗ , v⃗), q⃗) ∈ H×Q . (3.69)
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Then, applying the inf-sup condition (3.62) to (ζ⃗, η⃗, z⃗, s) = (⃗t, σ⃗, u⃗, p⃗)− (⃗t, σ⃗, u⃗, p⃗), we obtain

αP

2
∥(⃗t, σ⃗, u⃗, p⃗)− (⃗t, σ⃗, u⃗, p⃗)∥H×Q

≤ sup
((⃗r,τ⃗ ,v⃗),q⃗)∈H×Q

((⃗r,τ⃗ ,v⃗),q⃗)̸=0

[P((⃗t, σ⃗, u⃗, p⃗)− (⃗t, σ⃗, u⃗, p⃗)), (⃗r, τ⃗ , v⃗, q⃗)] + b(wS ;uS − uS , rS)

∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q
,

from which, employing (3.68) and (3.69), we arrive at

∥(⃗t, σ⃗, u⃗, p⃗)− (⃗t, σ⃗, u⃗, p⃗)∥H×Q ≤ 2

αP
sup

((⃗r,τ⃗ ,v⃗),q⃗)∈H×Q

((⃗r,τ⃗ ,v⃗),q⃗) ̸=0

b(wS −wS ;uS , rS)

∥(⃗r, τ⃗ , v⃗, q⃗)∥H×Q
. (3.70)

In turn, using the boundedness of b (cf. (3.32)) and the a priori estimate for

∥uS∥0,4;ΩS
= ∥T(wS)∥0,4;ΩS

given by (3.64) (cf. Theorem 3.8), it follows from (3.70) that

∥T(wS)−T(wS)∥0,4;ΩS
= ∥uS − uS∥0,4;ΩS

≤ 2ρ

αP
∥wS −wS∥0,4;ΩS

∥uS∥0,4;ΩS

≤ 4ρ

α2
P

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
∥wS −wS∥0,4;ΩS

,

which confirms the announced property on T (cf. (3.67)).

The main result concerning the solvability of the fixed-point equation (3.20) is stated as follows.

Theorem 3.11. Assume that

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
<

α2
P

4ρ
.

Then, the operator T has a unique fixed-point uS ∈ W. Equivalently, problem (3.17) has a unique
solution ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q with uS ∈ W. Moreover, there holds

∥(⃗t, σ⃗, u⃗, p⃗)∥H×Q ≤ 2

αP

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
. (3.71)

Proof. Thanks to Lemma 3.9, we have that T maps W into itself. Then, bearing in mind the Lipschitz-
continuity of T : W → W (cf. (3.67)) and the assumption (3.65), a straightforward application of the
classical Banach theorem yields the existence of a unique fixed-point uS ∈ W of this operator, and
hence a unique solution to (3.14). Finally, it is easy to see that the a priori estimate is provided by
(3.28) (cf. Theorem 3.1), which finishes the proof.

4 The discrete analysis

In order to approximate the solution of (3.9), we now introduce its associated Galerkin scheme, analyze
its solvability by applying a discrete version of the fixed-point approach introduced for the continuous
analysis, and derive the corresponding a priori error estimates.
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4.1 The Galerkin scheme

We first consider a set of arbitrary discrete subspaces, namely

L2
h(Ω∗) ⊂ L2(Ω∗) ∗ ∈ {S,D} , Hh(ΩD) ⊂ H(div; ΩD) , Hh(ΩS) ⊂ H(div4/3; ΩS) ,

L4
h(ΩS) ⊂ L4(ΩS) , ΛS

h(Σ) ⊂ H
1/2
00 (Σ) , and ΛD

h (Σ) ⊂ H1/2(Σ) ,
(4.1)

so that, denoting by τS,i the i-th row of a tensor τS , we set

L2
tr,h(ΩS) := [L2

h(ΩS)]
n×n ∩ L2

tr(ΩS) , Hh,0(ΩD) := Hh(ΩD) ∩H0(div; ΩD) ,

Hh(ΩS) :=
{
τS ∈ H(div4/3; ΩS) : τS,i ∈ Hh(ΩS) ∀ i

}
, ΛS

h(Σ) := [ΛS
h(Σ)]

n ,

Hh,0(ΩS) := Hh(ΩS) ∩H0(div4/3; ΩS) , and L2
h,0(ΩD) := L2

h(ΩD) ∩ L2
0(ΩD) .

(4.2)

Then, defining the global spaces, unknowns, and test functions as follows

Xh := L2
tr,h(ΩS)×Hh,0(ΩD) , Yh := Hh,0(ΩS)× ΛD

h (Σ) , Zh := L4
h(ΩS)×ΛS

h(Σ) ,

Hh := Xh ×Yh × Zh , Qh := L2
h,0(ΩD)× R ,

(4.3)

t⃗h := (tS,h,uD,h) ∈ Xh , σ⃗h := (σS,h, λh) ∈ Yh , u⃗h := (uS,h,φh) ∈ Zh , p⃗h := (pD,h, lh) ∈ Qh ,

r⃗h := (rS,h,vD,h) ∈ Xh , τ⃗ h := (τS,h, ξh) ∈ Yh , v⃗h := (vS,h,ψh) ∈ Zh , q⃗h := (qD,h, j) ∈ Qh ,

ζ⃗h := (ζS,h, zD,h) ∈ Xh , η⃗h := (ηS,h, ϑh) ∈ Yh , z⃗h := (zS,h,ϕh) ∈ Zh , s⃗h := (sD,h, k) ∈ Qh ,

the Galerkin scheme associated with (3.9) reads: Find ((⃗th, σ⃗h, u⃗h), p⃗h) ∈ Hh ×Qh such that

[a(⃗th), r⃗h] +[b1 (⃗rh), σ⃗h] −
∫
ΩD

pD,h div(vD,h) −b(uS,h;uS,h, rS,h) = 0

[b2 (⃗th), τ⃗h] +[B(⃗rh, τ⃗h), u⃗h] = ⟨τS,hn, g⟩ΓS

[B(⃗th, σ⃗h), v⃗h] −[C(v⃗h), u⃗h] +l⟨ψh · n, 1⟩Σ = −
∫
ΩS

fS · vS,h

+j⟨φh · n, 1⟩Σ = j⟨g · n, 1⟩ΓS

−
∫
ΩD

qD,h div(uD,h) = −
∫
ΩD

fD qD,h

(4.4)

for all ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh ×Qh. Similarly, the ones associated with (3.14) and (3.17), which are
certainly equivalent to (4.4), become, respectively: Find ((⃗th, σ⃗h, u⃗h),ph) ∈ Hh ×Qh such that

[Ã(⃗th, σ⃗h, u⃗h), (⃗rh, τ⃗ h, v⃗h)] + [B̃(⃗rh, τ⃗ h, v⃗h), p⃗h] + b(uS,h;uS,h, rS,h) = [G, (⃗rh, τ⃗ h, v⃗h)]

[B̃(⃗th, σ⃗h, u⃗h), q⃗h] = [F, q⃗h]

for all ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh ×Qh and: Find ((⃗th, σ⃗h, u⃗h), p⃗h) ∈ Hh ×Qh such that

[P(⃗th, σ⃗h, u⃗h, p⃗h), (⃗rh, τ⃗ h, v⃗h, q⃗h)] + b(uS,h;uS,h, rS,h) = [H, (⃗rh, τ⃗ h, v⃗h, q⃗h)] , (4.5)

for all ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh ×Qh.

In what follows, we adopt the discrete version of the fixed-point strategy employed in Section
3 (at the end of Subsection 3.2) to study the solvability of (4.5). For this purpose, we now let
Th : L4

h(ΩS) → L4
h(ΩS) be the operator defined by

Th(wS,h) := uS,h ∀wS,h ∈ L4
h(ΩS) , (4.6)

23



where uS,h is the first component of u⃗h ∈ Zh, which in turn is the third component of the unique
solution (⃗th, σ⃗h, u⃗h) (to be proved later on) of the linearized problem arising from (4.5) after replacing
b(uS,h;uS,h, rS,h) by b(wS,h;uS,h, rS,h), namely:

[P(⃗th, σ⃗h, u⃗h, p⃗h), (⃗rh, τ⃗ h, v⃗h, q⃗h)] + b(wS,h;uS,h, rS,h) = [H, (⃗rh, τ⃗ h, v⃗h, q⃗h)] , (4.7)

for all ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh × Qh. Thus, we realize that solving (4.5) is equivalent to finding a
fixed-point of Th, that is uS,h ∈ L4

h(ΩS) such that

Th(uS,h) = uS,h . (4.8)

4.2 Solvability analysis

Similarly to Section 3.3, in what follows we address the solvability of (4.5) by means of the corre-
sponding analysis of (4.8).

4.2.1 Preliminaries

In addition to the finite dimensional versions of the Babuška-Brezzi theory in Banach spaces (cf.
Theorem 3.1) and the Banach-Nečas-Babuška theorem, here we will also need the discrete version of
Theorem 3.2, which is stated next.

Theorem 4.1. Let H and Q be reflexive Banach spaces, and let a : H ×H → R, b : H ×Q→ R and
c : Q×Q→ R be given bounded bilinear forms. In addition, let {Hh}h>0 and {Qh}h>0 be families of
finite dimensional subspaces of H and Q, respectively, and let Vh be the kernel of b|Hh×Qh

that is

Vh :=
{
τh ∈ Hh : b(τh, vh) = 0 ∀ vh ∈ Qh

}
.

Assume that

i) a and c are positive semi-definite, and that c is symmetric,

ii) there exists a constant αd > 0 such that

sup
τh∈Vh
τh ̸=0

a(ϑh, τh)

∥τh∥H
≥ αd ∥ϑh∥H ∀ϑh ∈ Vh,

iii) and there exists a constant βd > 0 such that

sup
τh∈Hh
τh ̸=0

b(τh, vh)

∥τh∥H
≥ βd ∥vh∥Q ∀ vh ∈ Qh .

Then, for each pair (f, g) ∈ H ′ ×Q′ there exists a unique (σh, uh) ∈ Hh ×Qh such that

a(σh, τh) + b(τh, uh) = f(τh) ∀ τh ∈ Hh ,
b(σh, vh) − c(uh, vh) = g(vh) ∀ vh ∈ Qh .

(4.9)

Moreover, there exists a constant C̃d > 0, depending only on ∥a∥, ∥c∥, αd, and βd, such that

∥(σh, uh)∥H×Q ≤ C̃d

{
∥f∥H′ + ∥g∥Q′

}
.
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We stress here that the discrete analogue of (3.26) is not required for Theorem 4.1. Indeed,
since Hh × Qh is the space to which both the unknowns and test functions of (4.9) belong, the
corresponding finite dimensional version of the Banach–Nečas–Babuška Theorem (cf. [19, Theorem
2.22]) only requires the discrete analogue of (3.29), for which the already described hypotheses of
Theorem 4.1 suffice.

4.2.2 Well-definedness of the operator Th

We begin by providing the preliminary results that are necessary to show that (4.7) is uniquely solvable.
Once this is established, we address later on the well-posedness of (4.8), and consequently of (4.5).
Indeed, following a similar procedure to that of Section 3.3.2, we first note that the kernel Ṽh of
B̃|Hh×Qh

reduces to

Ṽh := X̃h ×Yh × Z̃h ,

where
X̃h := L2

tr,h(ΩS)× H̃h,0(ΩD) and Z̃h := L4
h(ΩS)× Λ̃

S

h(Σ) ,

with

H̃h,0(ΩD) :=

{
vD ∈ Hh,0(ΩD) :

∫
ΩD

qD div(vD,h) = 0 ∀ qD ∈ L2
h,0(ΩD)

}
, and

Λ̃
S

h(Σ) :=
{
ψh ∈ ΛS

h(Σ) : ⟨ψh · n, 1⟩Σ = 0
}
.

(4.10)

Then, the kernel Vh of B|
Ṽh

reduces to

Vh = X̃h ×Yh ,

where

Yh :=

{
τ⃗ h := (τS,h, ξh) ∈ Yh :

∫
ΩS

vS,h · div(τS,h) = 0 and

⟨ψh · n, ξh⟩Σ = −⟨τS,hn,ψh⟩Σ ∀ v⃗S,h := (vS,h,ψh) ∈ Zh

}
.

At this point, we notice that Yh ⊆ H̃h,0(ΩS)× ΛD
h (Σ), where

H̃h,0(ΩS) :=

{
τS,h ∈ Hh,0(ΩS) :

∫
ΩS

vS,h · div(τS,h) = 0 ∀vS,h ∈ L4
h(ΩS)

}
. (4.11)

We now proceed similarly to [10], and introduce suitable hypotheses on the spaces defined in (4.3)
to ensure the well-posedness of (4.7). We begin by noticing that, in order to have meaningful spaces
Hh,0(ΩS) and L2

h,0(ΩD), we need to be able to eliminate multiples of the identity matrix and constant

polynomials from Hh,0(ΩS) and L2
h,0(ΩD), respectively. This is certainly satisfied if we assume:

(H.0) P0(ΩD) ⊆ L2
h(ΩD) and I ∈ Hh(ΩS).

In addition, we consider the following further hypotheses

(H.1) div(Hh(ΩD)) ⊆ L2
h(ΩD),

(H.2) div(Hh(ΩS) ⊆ L4
h(ΩS),

(H.3) H̃d
h,0 :=

{
τ dS,h : τS,h ∈ H̃h,0

}
⊆ L2

tr,h(ΩS),
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(H.4) there holds the discrete analogue of (3.42), that is there exists a positive constant βd1,Σ, inde-
pendent of h, such that

sup
vD,h∈H̃h,0(ΩD)

vD,h ̸=0

⟨vD,h · n, ξh⟩Σ
∥vD,h∥div;ΩD

≥ βd1,Σ ∥ξh∥1/2,Σ ∀ ξ ∈ ΛD
h (Σ) , (4.12)

(H.5) there holds the discrete analogue of (3.51), that is there exists a positive constant βd
S , indepen-

dent of h, such that

sup
τS,h∈Hh(ΩS)

τS,h ̸=0

⟨τS,hn,ψh⟩Σ +

∫
ΩS

vS,h · div(τS,h)

∥τS,h∥div4/3;ΩS

≥ βd
S

{
∥vS,h∥0,4;ΩS

+ ∥ψh∥1/2,00;Σ
}
, (4.13)

for all v⃗S,h := (vS,h,ψh) ∈ L4
h(ΩS)×ΛS

h(Σ),

(H.6) there hold the discrete analogue of (3.58) and a sufficient condition for the discrete analogue of

(3.59), that is there exist a positive constant β̃dD, independent of h, and ψ0 ∈ H
1/2
00 (Σ), such that

sup
vD,h∈Hh,0(ΩD)

vD,h ̸=0

∫
ΩD

qD,h div(vD,h)

∥vD,h∥div;ΩD

≥ β̃dD ∥qD,h∥0,ΩD
∀ qD,h ∈ L2

h,0(ΩD) , and (4.14)

ψ0 ∈ ΛS
h(Σ) ∀h, ⟨ψ0 · n, 1⟩Σ ̸= 0 . (4.15)

We highlight here that as a consequence of (H.0) we can employ the discrete version of the decom-
position H(div4/3; ΩS) = H0(div4/3; ΩS) ⊕ R I , namely Hh(ΩS) = Hh,0(ΩS)⊕ R I , thanks to which
Hh,0(ΩS) can be used as the subspace where the unknown σS,h is sought. However, for the computa-
tional implementation of the Galerkin scheme (4.7), which will be addressed later on in Section 6, we
will utilize a real Lagrange multiplier to impose the mean value condition on the trace of the unknown
tensor lying in H0,h(ΩS). In turn, it follows from (H.1) and (4.10) that H̃h,0(ΩD) reduces to

H̃h,0(ΩD) :=
{
vD,h ∈ Hh,0(ΩD) : div(vD,h) ∈ P0(ΩD)

}
.

Similarly, thanks to (H.2) and (4.11), H̃h,0(ΩS) becomes

H̃h,0(ΩS) :=
{
τS,h ∈ Hh,0(ΩS) : div(τS,h) = 0

}
, (4.16)

which yields the discrete analogue of (3.43) with constant βd1,S . In fact, given τS,h ∈ H̃h,0(ΩS) such

that τ dS,h ̸= 0, we realize, thanks to (H.3), that rS,h := −τ dS,h ∈ L2
tr,h(ΩS), and hence, along with the

inf-sup condition from (H.4), we deduce the discrete version of (3.40) holds, that is, the existence of
positive constants βdi , i ∈

{
1, 2
}
, independent of h, such that

sup
r⃗h∈X̃h
r⃗h ̸=0

[bi(⃗rh), τ⃗ h]

∥⃗rh∥X
≥ βdi ∥τ⃗ h∥Y ∀ τ⃗ h ∈ Yh .

Furthermore, we remark that, similarly to the analyses in the proofs of Lemmas 3.6 and 3.7, (4.13)
(cf. (H.5)) is a sufficient condition for the discrete version of (3.49), whereas (4.14) and (4.15) (cf.
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(H.6)) are equivalent to the discrete version of (3.57). We denote the constants involved in these
discrete inf-sup conditions by βd and β̃d, respectively.

Thus, having Ã and B̃ satisfied for the present discrete scheme the hypotheses of Theorem 3.1
with constants α̃d and β̃d, we conclude, similarly to the continuous case, the existence of a positive
constant αP,d, depending on α̃d, β̃d, and ∥Ã∥, and hence independent of h, such that

sup
((⃗rh,τ⃗h,v⃗h),q⃗h)∈Hh×Qh
( (⃗rh,τ⃗h,v⃗h),q⃗h )̸=0

[P(ζ⃗h, η⃗h, z⃗h, s⃗h), (⃗rh, τ⃗ h, v⃗h, q⃗h)]

∥((⃗rh, τ⃗ h, v⃗h), q⃗h)∥H×Q
≥ αP,d ∥(ζ⃗h, η⃗h, z⃗h, s⃗h)∥H×Q , (4.17)

for all ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh×Qh, and thus, for each wS,h ∈ L4
h(ΩS) such that ∥wS,h∥0,4;ΩS

≤
αP,d

2ρ
,

there holds

sup
((⃗rh,τ⃗h,v⃗h),q⃗h)∈Hh×Qh
( (⃗rh,τ⃗h,v⃗h),q⃗h )̸=0

[P(ζ⃗h, η⃗h, z⃗h, s⃗h), (⃗rh, τ⃗ h, v⃗h, q⃗h)] + b(wS,h;uS,h, rS,h)

∥(⃗rh, τ⃗ h, v⃗h, q⃗h)∥H×Q

≥
αP,d

2
∥(ζ⃗h, η⃗h, z⃗h, s⃗h)∥H×Q ∀ ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh ×Qh .

(4.18)

According to the above, we are now in a position to present the discrete analogues of Theorem 3.8,
Lemma 3.9, and Theorem 3.11, whose proofs follow almost verbatim to those for the continuous case,
and hence only some remarks are provided. We begin with the well-posedness of (4.7), which is the
same as establishing that Th is well-defined.

Lemma 4.2. For each wS,h ∈ L4
h(ΩS) such that ∥wS,h∥ ≤

αP,d

2ρ
, there exists a unique solution

((⃗th, σ⃗h, u⃗h), q⃗h) ∈ H ×Q to (4.7), and hence we can define Th(wS,h) = uS,h ∈ L4
h(ΩS). Moreover,

there holds
∥Th(wS,h)∥0,4;ΩS

= ∥uS,h∥0,4;ΩS
≤ ∥(⃗th, σ⃗h, u⃗h, p⃗h)∥H×Q

≤ 2

αP,d

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
.

(4.19)

Proof. Given wS,h as indicated, and bearing in mind (4.18), it suffices to apply the discrete version
of the Banach–Nečas–Babuška Theorem (cf. [19, Theorem 2.22]) and its corresponding a priori error
estimate.

We continue with the discrete analogue of Lemma 3.9, that is the result ensuring that Th maps a
ball of L4

h(ΩS) into itself.

Lemma 4.3. Let Wh be the ball

Wh :=

{
wS,h ∈ L4

h(ΩS) : ∥wS,h∥0,4;ΩS
≤

αP,d

2ρ

}
,

and assume that

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
≤

α2
P,d

4ρ
. (4.20)

Then, there holds Th(Wh) ⊆ Wh.

Proof. It follows straightforwardly from (4.19) and (4.20).
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The discrete analogue of Theorem 3.11, that is the unique solvability of (4.8), and hence, equiva-
lently that of (4.5), is stated next.

Theorem 4.4. Assume that

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
≤

α2
P,d

4ρ
.

Then, the operator Th has a unique fixed-point uS,h ∈ Wh. Equivalently, problem (4.5) has a unique
solution ((⃗th, σ⃗h, u⃗h), p⃗h) ∈ Hh ×Q with uS,h ∈ Wh. Moreover, there holds

∥(⃗th, σ⃗h, u⃗h, p⃗h)∥H×Q ≤ 2

αP,d

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
. (4.21)

Proof. Similarly to the proof of Theorem 3.11, it reduces to employ (3.32), (4.7), (4.18) and (4.19) to
prove that Th : Wh → Wh is a contraction, and then apply the Banach fixed-point theorem.

We end this section by providing sufficient conditions for (4.12) and the particular case arising from
(4.13) when vS,h = 0, that is for the existence of positive constants βd1,Σ and βd

S,2, such that

sup
vD,h∈H̃h,0(ΩD)

vD,h ̸=0

⟨vD,h · n, ξh⟩Σ
∥vD,h∥div;ΩD

≥ βd1,Σ ∥ξh∥1/2,Σ ∀ ξh ∈ ΛD
h (Σ) , and (4.22)

sup
τS,h∈H̃h(ΩS)

τS,h ̸=0

⟨τS,hn,ψh⟩Σ
∥τS,h∥div4/3;ΩS

≥ βd
S,2 ∥ψh∥1/2,00;Σ ∀ψh ∈ ΛS

h(Σ) , (4.23)

where H̃h(ΩS) :=
{
τS,h ∈ Hh(ΩS) : div(τS,h) = 0

}
. In this regard, we first notice that the above

inequalities, which deal with how the normal components of elements of H̃h,0(ΩD) and H̃h(ΩS) are
tested against ΛD

h (Σ) and ΛS
h(Σ), respectively, are shown below to be related to the eventual existence

of a stable discrete lifting of the normal traces on Σ. Indeed, in order to establish (4.22) and (4.23),
it suffices to prove that for each ∗ ∈

{
D,S

}
there exists a positive constant βd∗,Σ, such that

sup
vh∈H̃h(Ω∗)

vh ̸=0

⟨vh · n, ξh⟩Σ
∥vh∥div;Ω∗

≥ βd∗,Σ ∥ξh∥1/2,Σ ∀ ξ ∈ Λ∗
h(Σ) , (4.24)

where
H̃h(ΩD) :=

{
vh ∈ Hh,0(ΩD) : div(vh) ∈ P0(ΩD)

}
, and

H̃h(ΩS) :=
{
vh ∈ Hh(ΩS) : div(vh) = 0

}
.

Next, for each ∗ ∈
{
D,S

}
we define

Φ∗
h(Σ) :=

{
vh · n|Σ : vh ∈ H̃h(Ω∗)

}
, (4.25)

and assume that the linear operator vh → vh · n from H̃h(Ω∗) to Φ∗
h(Σ) has a uniformly bounded

right inverse, which means that there exists a linear operator L∗
h : Φ∗

h(Σ) → H̃h(Ω∗) and a constant
c∗ > 0, independent of h, such that

∥L∗
h(ϕh)∥div;Ω∗ ≤ c∗ ∥ϕh∥−1/2,Σ , and

L∗
h(ϕh) · n = ϕh on Σ ∀ϕh ∈ Φ∗

h(Σ) .
(4.26)
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Such a uniformly bounded right inverse L∗
h of the normal trace will henceforth be referred to as a

stable discrete lifting to Ω∗. Note that by [18], existence of L∗
h satisfying (4.26) is equivalent to the

existence of a Scott–Zhang type linear and uniformly bounded operator π∗h : H(div; Ω∗) → H̃h(Ω∗),
such that

π∗h(vh) = vh ∀vh ∈ H̃h(Ω∗) , and v · n = 0 on Σ =⇒ (π∗h(v)) · n = 0 on Σ .

The following lemma, taken from [26, Lemma 4.2], reduces (4.24) to the inherited interaction
between the elements of Φ∗

h(Σ) and Λ∗
h(Σ).

Lemma 4.5. Assume that there exists a stable discrete lifting to Ω∗. Then (4.24) is equivalent to the
existence of a positive constant βd∗ , independent of h, such that

sup
ϕh∈Φ∗

h
(Σ)

ϕh ̸=0

⟨ϕh, ξh⟩Σ
∥ϕh∥−1/2,Σ

≥ βd∗ ∥ξh∥1/2,Σ ∀ ξh ∈ Λ∗
h(Σ) . (4.27)

We have thus proved that the existence of stable discrete liftings to ΩS and ΩD together with the
inf-sup condition (4.27) constitute sufficient conditions for (4.24) to hold. In this respect, we find it
important to emphasize that (4.27) deals exclusively with spaces of functions defined on Σ.

4.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in Section
4.2.2, and derive the Céa estimate for the Galerkin error

∥t− th∥H×Q = ∥⃗t− t⃗h∥X + ∥σ⃗ − σ⃗h∥Y + ∥u⃗− u⃗h∥Z + ∥p⃗− p⃗h∥Q ,

where t := (⃗t, σ⃗, u⃗, p⃗) ∈ H × Q and th := (⃗th, σ⃗h, u⃗h, p⃗h) ∈ Hh × Qh are the unique solutions of
(3.17) and (4.5) respectively, with uS ∈ W and uS,h ∈ Wh. In what follows, given a subspace Zh of
an arbitrary Banach space

(
Z, ∥ · ∥Z

)
, we set

dist
(
z, Zh

)
:= inf

zh∈Zh

∥z − zh∥Z ∀ z ∈ Z .

We begin by observing from (3.16) that for each rh := ((⃗rh, τ⃗ h, v⃗h), q⃗h) ∈ Hh ×Qh there holds

[P(t), rh] + b(uS ;uS , rS,h) = [H, rh] ,

which combined with (4.5), yields for each rh ∈ Hh ×Qh

[P(t− th), rh] = b(uS,h;uS,h, rS,h)− b(uS ;uS , rS,h) . (4.28)

Now, the triangle inequality gives for each ζ
h
∈ Hh ×Qh

∥t− th∥H×Q ≤ ∥t− ζ
h
∥H×Q + ∥ζ

h
− th∥H×Q , (4.29)

and then, applying (4.17) to ζ
h
− th, subtracting and adding t in the first component of P, using the

boundedness of P with constant ∥P∥, and employing the identity (4.28), we find that

αP,d ∥ζh − th∥H×Q ≤ sup
rh∈Hh×Qh

rh ̸=0

[P(ζ
h
− th), rh]

∥rh∥H×Q

≤ ∥P∥ ∥t− ζ
h
∥H×Q + sup

rh∈Hh×Qh
rh ̸=0

[P(t− th), rh]

∥rh∥H×Q

≤ ∥P∥ ∥t− ζ
h
∥H×Q + sup

rh∈Hh×Qh
rh ̸=0

b(uS,h;uS,h, rS,h)− b(uS ;uS , rS,h)

∥rh∥H ×Q
.

(4.30)
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In this way, replacing the bound for ∥ζ
h
− th∥H×Q that arises from (4.30) back into (4.29), and taking

infimum with respect to rh ∈ Hh ×Qh we deduce that

∥t− th∥H×Q ≤
(
1 +

∥P∥
αP,d

)
dist(t,Hh ×Qh)

+
1

αP,d
sup

rh∈Hh×Qh
rh ̸=0

b(uS,h;uS,h, rS,h)− b(uS ;uS , rS,h)

∥rh∥H×Q
,

(4.31)

which basically constitutes the Strang-type estimate for the joint setting formed by (3.17) and (4.5).
Next, in order to estimate the consistency term given by the supremum in (4.31), we subtract and
add uS in the second component of b(uS,h;uS,h, rS,h), and then invoke the boundedness property of
b (3.32), and the a priori estimates (3.71) and (4.21) for ∥uS∥0,4;ΩS

and ∥uS,h∥0,4;ΩS
, respectively,

thanks to all of which we obtain

b(uS,h;uS,h, rS,h)− b(uS ;uS , rS,h) = b(uS,h;uS,h − uS , rS,h) + b(uS,h − uS ;uS , rS,h)

≤ 4ρ

αP

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
∥uS − uS,h∥0,4;ΩS

∥rS,h∥0,ΩS
,

(4.32)

where αP := min
{
αP, αP,d

}
. Hence, replacing (4.31) in (4.32), we conclude that

∥t− th∥H×Q ≤
(
1 +

∥P∥
αP,d

)
dist(t,Hh ×Qh)

+
4ρ

α2
P

{
∥g̃∥1/2,00;ΓS

+ ∥fS∥0,4/3;ΩS
+ ∥fD∥0,ΩD

}
∥uS − uS,h∥0,4;ΩS

.
(4.33)

We are then in position to state the following result.

Theorem 4.6. Assume that for some δ ∈ (0, 1) there holds

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
≤

δ α2
P,d

4ρ
. (4.34)

Then, there exists a positive constant Cd, depending only on ∥P∥, αP,d, and δ, and hence independent
of h, such that

∥t− th∥H×Q ≤ Cd dist(t,Hh ×Qh) . (4.35)

Proof. It suffices to use (4.34) in (4.33), which yields (4.35) with Cd := (1− δ)−1
(
1+ ∥P∥/αP,d

)
.

In particular, taking δ = 1/2, we get Cd := 2
(
1+ ∥P∥/αP,d

)
in the proof of Lemma 4.6, and (4.34)

becomes

∥g̃∥1/2,00;ΓS
+ ∥fS∥0,4/3;ΩS

+ ∥fD∥0,ΩD
≤

α2
P,d

8ρ
. (4.36)

We end this section by remarking that (2.4) and (3.7) suggest the following postprocessed approx-
imation for the pressure pS

pS,h := − 1

n
tr
(
σS,h + (uS,h ⊗ uS,h)

)
− lh in ΩS , (4.37)

where

lh := − 1

n |ΩS |

∫
ΩS

tr(σS,h) .
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Then, applying the Cauchy–Schwarz inequality, performing some algebraic manipulations, and em-
ploying the a priori bounds for ∥uS∥0,4;ΩS

and ∥uS,h∥0,4;ΩS
, we deduce the existence of a positive

constant C, depending on data, but independent of h, such that

∥p − ph∥0,ΩS
≤ C

{
∥σS − σS,h∥0,Ω + ∥uS − uS,h∥0,4;ΩS

}
. (4.38)

Thus, combining (4.35) and (4.38), we conclude the existence of a positive constant C̃d, independent
of h, such that

∥t− th∥H×Q + ∥p − ph∥0,ΩS
≤ C̃d dist(t,Hh ×Qh) . (4.39)

5 Specific finite element subspaces

In what follows we proceed similarly to [26] (see also [8]) and specify discrete spaces satisfying the
hypotheses (H.0) up to (H.6) in 2D and 3D, thus ensuring the well-posedness of the Galerkin scheme
(4.5). Their approximation properties and associated rates of convergence are also established.

5.1 Preliminaries

We begin by letting T S
h and T D

h be respective triangulations of the domains ΩS and ΩD, which are
formed by shape-regular triangles (in R2) or tetrahedra (in R3) of diameter hT , and assume that they
match in Σ so that T S

h ∪ T D
h is a triangulation of ΩS ∪ Σ ∪ ΩD. We also let Σh be the partition of

Σ inherited from T S
h (or T D

h ). Then, given T ∈ T S
h ∪ ThD, we let P0(T ) be the space of polynomials

of degree = 0 defined on T , whose vector and tensor versions are denoted by P0(T ) := [P0(T )]
n and

P0(T ) := [P0(T )]
n×n, respectively. Next, we define the corresponding local Raviart-Thomas spaces

of order 0 as
RT0(T ) := P0(T ) ⊕ P0(T )x

and its associated tensor counterpart RT0(T ), where x is a generic vector in R := Rn. In turn, given
∗ ∈ {S,D}, we let P0(T ∗

h ), P0(T ∗
h ) and RT0(Th∗) be the global versions of P0(T ), P0(T ), P0(T ),

RT0(T ) and RT0(T ), respectively, that is

P0(Th∗) :=
{
vh ∈ L2(Ω∗) : vh|T ∈ P0(T ) ∀T ∈ T ∗

h

}
,

P0(Th∗) :=
{
τ h ∈ L2(Ω∗) : τ h|T ∈ P0(T ) ∀T ∈ T ∗

h

}
,

P0(Th∗) :=
{
τ h ∈ L2(Ω∗) : τ h|T ∈ P0(T ) ∀T ∈ T ∗

h

}
,

RT0(Th∗) := {τ h ∈ H(div; Ω∗) : τ h|T ∈ RT0(T ) ∀T ∈ T ∗
h } ,

RT0(Th∗) := {τ h ∈ H(div; Ω∗) : τ h|T ∈ RT0(T ) ∀T ∈ T ∗
h } .

Then, we introduce the corresponding discrete subspaces in (4.1) as

L2
h(Ω∗) := P0(Th∗) , Hh(Ω∗) := RT0(Th∗) , and L4

h(ΩS) := L4(ΩS) ∩P0(T S
h ) , (5.1)

so that the associated global spaces L2
tr,h(ΩS), Hh,0(ΩD), Hh(ΩS), Hh,0(ΩS), and L2

h,0(ΩD), are defined

according to (4.2). The interface spaces ΛS
h(Σ) and ΛD

h (Σ) will be specified later on by separating the
2D and 3D cases.

Next, for the verification of the hypotheses introduced in Section 4.2.2, we first realize that (H.0),
(H.1), and (H.2) follow straightforwardly from the definitions in (5.1). In turn, regarding (H.3),
we now recall that the divergence free tensors of RT0(Th) are contained in P0(Th) (cf. [22, Lemma
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3.6]), so that, invoking (4.16), we deduce that H̃h,0(ΩS) ⊆ P0(Th). In this way, noting that certainly

tr(τ dh) = 0 for all τ h ∈ H̃h,0(ΩS), we find that H̃d
h,0(ΩS) ⊆ L2

tr(Ω) ∩ P0(Th) = L2
tr,h(Ω), thus

confirming the occurrence of (H.3).

We now turn partially to (H.5) and (H.6) and establish first an inequality aiming to accomplish
(4.13), and then the discrete inf-sup condition (4.14). More precisely, we have the following results
taken from [14] and [22], respectively.

Lemma 5.1. There exists a positive constant βd
S,1, independent of h, such that

sup
τS,h∈Hh,0(ΩS)

τS,h ̸=0

∫
ΩS

vS,h · div(τS,h)

∥τS,h∥div4/3;ΩS

≥ βd
S,1 ∥vh∥0,4;ΩS

∀vS,h ∈ L4
h(ΩS) . (5.2)

Proof. See [14, Lemma 6.1]. We just stress that it is mainly based on the introduction of a suitable
auxiliary boundary value problem, and the utilization of the elliptic regularity result provided by [20,
Corollary 1].

Lemma 5.2. There exists a positive constant β̃dD, independent of h, such that

sup
vD,h∈Hh,0(ΩD)

vD,h ̸=0

∫
ΩD

qD,h div(vD,h)

∥vD,h∥div,ΩD

≥ β̃D ∥qD,h∥0,ΩD
∀ qD,h ∈ L2

h,0(ΩD) . (5.3)

Proof. We refer to [22, Chapter IV, Section 4.2] for full details. It basically reduces to the verification
of the hypotheses of Fortin’s lemma (cf. [22, Lemma 2.6]), which makes use of an elliptic regularity
result in convex domains, and the main properties of the Raviart-Thomas interpolation operator.

We complete the accomplishment of the hypothesis (H.6) by remarking that the existence of

ψ0,d ∈ H
1/2
00 (Σ) satisfying (4.15) is guaranteed at the beginning of [26, Section 5.3]. In particular,

this holds if the sequence of subspaces {ΛS
h(Σ)}h>0 is nested, which is confirmed below when defining

ΛS
h(Σ). Thus, ψ0,d can be constructed as indicated in the proof of Lemma 3.7. A similar procedure

applies to the 3D case.

5.2 The spaces ΛS
h(Σ) and ΛD

h (Σ) and the remaining hypotheses in 2D

We now introduce the particular subspaces ΛS
h(Σ) and ΛD

h (Σ) in 2D by following the simplest approach
suggested in [26]. Indeed, we first assume, without loss of generality, that the number of edges of Σh

is even, and let Σ2h be the partition of Σ arising by joining pairs of adjacent edges of Σh. Since Σh is
inherited from the interior triangulations, it is automatically of bounded variation, which means that
ratio of lengths of adjacent edges is bounded, and, therefore, so is Σ2h. Now, if the number of edges
of Σh were odd, we simply reduce it to the even case by joining any pair of two adjacent elements,
and then construct Σ2h from this reduced partition. In this way, denoting by x0 and xN the extreme
points of Σ, we set

ΛS
h(Σ) :=

{
ξh ∈ C(Σ) : ξ|e ∈ P1(e) ∀ edge e ∈ Σ2h, ξh(x0) = ξh(xN ) = 0

}
,

ΛD
h (Σ) :=

{
ξh ∈ C(Σ) : ξh|e ∈ P1(e) ∀ edge e ∈ Σ2h

}
.

(5.4)
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We now aim to establish the discrete inf-sup conditions (4.22) (or (4.12)) and (4.23) by applying
Lemma 4.5. To this end, we suppose from now on that

{
T S
h

}
h>0

and
{
T D
h

}
h>0

are quasi-uniform in
a neighborhood of Σ. More precisely, we assume that there is an open neighborhood of Σ, say ΩΣ,
with Lipschitz-continuous boundary ∂ΩΣ, such that the elements intersecting that region are roughly
of the same size. In other words, defining

Th,Σ :=
{
T ∈ T S

h ∪ T D
h : T ∩ ΩΣ ̸= ∅

}
, (5.5)

there exists a positive c, independent of h, such that

max
T∈Th,Σ

hT ≤ c min
T∈Th,Σ

hT . (5.6)

Under this quasi-uniformity condition, it was proved in [26, Lemma 5.1] that there exist stable
discrete lifting operators L∗

h to Ω∗, ∗ ∈
{
S,D

}
, satisfying (4.26). Moreover, as a consequence of this

result, it is easy to see that both ΦS
h(Σ) and ΦD

h (Σ) (cf. (4.25)) coincide with

Φh(Σ) :=
{
ϕh ∈ L2(Σ) : ϕh|e ∈ P0(e) ∀ edge e ∈ Σh

}
. (5.7)

Hence, a straightforward application of Lemma 4.5 implies that, in order to conclude (4.24), which in
turn yields (4.22) and (4.23), it suffices to show (4.27). In fact, this latter result, taken from [26], is
stated as follows.

Lemma 5.3. There exists a positive constant βdΣ > 0, independent of h, such that

sup
ϕh∈Φh(Σ)

ϕh ̸=0

⟨ϕh, ξh⟩Σ
∥ϕh∥−1/2,Σ

≥ βdΣ ∥ξh∥1/2,Σ ∀ ξh ∈ ΛS
h(Σ) ∪ ΛD

h (Σ) .

Proof. See [26, Lemma 5.2] for details.

As previously remarked, Lemma 5.3 yields, in particular, the verification of (4.22), which is the
same as (4.12), and thus (H.4) is accomplished. Similarly, having as well (4.23), a suitable combination
of this inequality with the discrete inf-sup condition provided by Lemma 5.1 leads to (H.5), that is
to (4.13), with a constant βd

S depending only on βd
S,1 (cf. Lemma 5.1) and βd

S,2 (cf. (4.23)).

5.3 The spaces ΛS
h(Σ) and ΛD

h (Σ) and the remaining hypotheses in 3D

In order to set the particular subspaces ΛS
h(Σ) and ΛD

h (Σ) in the 3D case, we need to introduce an

independent triangulation Σ
ĥ
of Σ, made up of triangles K of diameter ĥK , so that we set the meshsize

ĥ := max
{
ĥK : K ∈ Σ

ĥ

}
. Then, denoting by ∂Σ the polygonal boundary of Σ, we define

ΛS
ĥ
(Σ) :=

{
ξ
ĥ
∈ C(Σ) : ξ

ĥ
|K ∈ P1(K) ∀K ∈ Σ

ĥ
, ξ

ĥ
= 0 on ∂Σ

}
,

ΛD
ĥ
(Σ) :=

{
ξ
ĥ
∈ C(Σ) : ξ

ĥ
|K ∈ P1(K) ∀K ∈ Σ

ĥ

}
.

Next, as in Section 5.2, we assume here that the families
{
T S
h

}
h>0

and
{
T D
h

}
h>0

are quasi-uniform
as well in a neighborhood of Σ. Hence, proceeding similarly to the proof of [26, Lemma 5.1], it
was proved in [1, Lemma 4.4] that there exist stable discrete lifting operators L∗

h to Ω∗, ∗ ∈
{
S,D

}
,

33



satisfying the 3D version of (4.26). Moreover, since Σh is the partition of Σ inherited from T S
h (or T D

h ),
made up of triangles K of diameter hK , we set the respective meshsize hΣ := max

{
hK : K ∈ Σh

}
,

and observe, as for the 2D case, that both ΦS
h(Σ) and ΦD

h (Σ) (cf. (4.25)) coincide with the 3D version
of (5.7), that is

Φh(Σ) :=
{
ϕh ∈ L2(Σ) : ϕh|K ∈ P0(K) ∀ triangle K ∈ Σh

}
. (5.8)

Consequently, applying again Lemma 4.5 we conclude, by means of (4.24), that (4.22) and (4.23)
follow from the 3D version of (4.27), which is stated below.

Lemma 5.4. There exist positive constants βdΣ and C0, independent of h, such that for all hΣ ≤ C0 ĥ
there holds

sup
ϕh∈Φh(Σ)

ϕh ̸=0

⟨ϕh, ξĥ⟩Σ
∥ϕh∥−1/2,Σ

≥ βdΣ ∥ξ
ĥ
∥1/2,Σ ∀ ξ

ĥ
∈ ΛS

ĥ
(Σ) ∪ ΛD

ĥ
(Σ) .

Proof. We refer to [1, Lemma 4.5] for full details (see also part of the proof of [23, Lemma 7.5]).

The discussion regarding the consequent accomplishment of (H.4) and (H.5) in the present 3D case
is analogous to the one given at the end of Section 5.2, the only difference being now the incorporation
of the restriction hΣ ≤ C0 ĥ in the respective statements.

5.4 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (4.4) with the specific finite element
subspaces introduced in Sections 5.1, 5.2, and 5.3. For this purpose, we collect next the respective
approximation properties (cf. [19], [22]) under the notational convention that in 2D, ĥ, ΛD

ĥ
(Σ), and

ΛS
ĥ
(Σ) mean h, ΛD

h (Σ), and ΛS
h(Σ), respectively:(

APtS
h

)
there exists a positive constant C, independent of h, such that for each ϱ ∈ [0, 1], and for

each rS ∈ Hϱ(ΩS) ∩ L2
tr(ΩS), there holds

dist
(
rS ,L2

tr,h(ΩS)
)
≤ C hϱ ∥rS∥ϱ,ΩS

,(
APuD

h

)
there exists a positive constant C, independent of h, such that for each ϱ ∈ (0, 1], and for

each vD ∈ Hϱ(ΩD) ∩H0(div; ΩD) with div(vD) ∈ Hρ(ΩD), there holds

dist
(
vD,Hh,0(ΩD)

)
≤ C hϱ

{
∥vD∥ϱ,ΩD

+ ∥div(vD)∥ϱ,ΩD

}
,(

APσS
h

)
there exists a positive constant C, independent of h, such that for each ϱ ∈ (0, 1], and for

each τS ∈ Hϱ(ΩS) ∩ H0(div4/3; ΩS) with div(τS) ∈ Wϱ,4/3(ΩS), there holds

dist
(
τS ,Hh,0(ΩS)

)
≤ C hϱ

{
∥τS∥ϱ,ΩS

+ ∥div(τS)∥ϱ,4/3;ΩS

}
,(

APλ
ĥ

)
there exists a positive constant C, independent of h and ĥ, such that for each ϱ ∈ [0, 1], and

for each ξ ∈ H1/2+ϱ(Σ), there holds

dist
(
ξ,ΛD

ĥ
(Σ)
)
≤ C ĥϱ ∥ξ∥1/2+ϱ,Σ ,
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(
APuS

h

)
there exists a positive constant C, independent of h, such that for each ϱ ∈ [0, 1], and for

each vS ∈ Wϱ,4(Ω), there holds

dist
(
vS ,L

4
h(ΩS)

)
≤ C hϱ ∥vS∥ϱ,4;ΩS

,(
APφ

ĥ

)
there exists a positive constant C, independent of h and ĥ, such that for each ϱ ∈ [0, 1], and

for each ψ ∈ H1/2+ϱ(Σ) ∩H
1/2
00 (Σ), there holds

dist
(
ψ,ΛS

ĥ
(Σ)
)
≤ C ĥϱ ∥ψ∥1/2+ϱ,Σ ,(

APpD
h

)
there exists a positive constant C, independent of h, such that for each ϱ ∈ [0, 1], and for

each qD ∈ Hϱ(ΩD) ∩ L2
0(ΩD), there holds

dist
(
qD,L

2
h,0(ΩD)

)
≤ C hϱ ∥qD∥ϱ,ΩD

.

The rates of convergence of (4.4) are now established by the following theorem.

Theorem 5.5. Let ((⃗t, σ⃗, u⃗), p⃗) ∈ H×Q and ((⃗th, σ⃗h, u⃗h, )p⃗h) ∈ Hh ×Qh be the unique solutions of
(3.9) (or (3.17)) and (4.4) (or (4.5)), with uS ∈ W and uS,h ∈ Wh, whose existences are guaranteed by
Theorems 3.11 and 4.4, respectively. In turn, let p and ph given by (2.4) and (4.37), respectively. As-
sume the hypotheses of Theorem 4.6, and that there exists ϱ ∈ (0, 1] such that tS ∈ Hϱ(ΩS) ∩ L2

tr(ΩS),
uD ∈ Hϱ(ΩD) ∩ H0(div; ΩD), div(uD) ∈ Hϱ(ΩD), σS ∈ Hϱ(ΩS) ∩ H0(div4/3; ΩS), div(σS) ∈
Wϱ,4/3(ΩS), λ ∈ H1/2+ϱ(Σ), uS ∈ Wϱ,4(ΩS), φ ∈ H1/2+ϱ(Σ)∩H

1/2
00 (Σ), and pD ∈ Hϱ(ΩD) ∩ L2

0(ΩD).
Then, there exists a positive constant C, independent of h, such that

∥(⃗t, σ⃗, u⃗, p⃗)− (⃗th, σ⃗h, u⃗h, p⃗h)∥H×Q + ∥pS − pS,h∥0,ΩS

≤ C
{
hϱ
(
∥tS∥ϱ,ΩS

+ ∥uD∥ϱ,ΩD
+ ∥div(uD)∥ϱ,ΩD

+ ∥σS∥ϱ,ΩS
+ ∥div(σS)∥ϱ,4/3;ΩS

+ ∥uS∥ϱ,4;ΩS
+ ∥pD∥ϱ,ΩD

)
+ ĥϱ

(
∥λ∥1/2+ϱ,Σ + ∥φ∥1/2+ϱ,Σ

)}
.

Proof. It follows straightforwardly from the Céa estimate (4.39) and the approximation properties(
APtS

h

)
,
(
APuD

h

)
,
(
APσS

h

)
,
(
APλ

ĥ

)
,
(
APuS

h

)
,
(
APφ

ĥ

)
and

(
APpD

h

)
.

6 Computational results

In this section we present numerical results that illustrate the behavior of the Galerkin scheme (4.4).
The computational implementation is based on a FreeFem++ code (cf. [29]) and the use of the direct
linear solvers UMFPACK (cf. [15]). The iterative method comes straightforwardly from the discrete
fixed-point strategy along with a Newton-type method. Then, as a stopping criteria, we finish the
algorithm when the relative error between two consecutive iterations of the complete coefficient vector
coeff is small enough, that is

∥coeffm+1 − coeffm∥l2
∥coeffm+1∥l2

≤ tol ,

where ∥·∥l2 stands for the usual Euclidean norm in Rdof with dof denoting the total number of degrees
of freedom defining the finite element subspaces L2

tr,h(ΩS), Hh,0(ΩS), L
4
h(ΩS), Hh,0(div; ΩD), Λ

S
ĥ
(Σ),
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ΛD
ĥ
(Σ), and L2

h,0(ΩD). Subsequently, errors are defined as follows:

e(tS) := ∥tS − tS,h∥0,ΩS
, e(σS) := ∥σS − σS,h∥div4/3;ΩS

, e(uS) := ∥uS − uS,h∥0,4;ΩS
,

e(uD) := ∥uD − uD,h∥div;ΩD
, e(λ) := ∥λ− λ

ĥ
∥1/2,Σ , e(φ) := ∥φ−φ

ĥ
∥1/2,00;Σ ,

e(pD) := ∥pD − pD,h∥0,ΩD
.

Again, hereafter, ĥ, ΛD
ĥ
(Σ), and ΛS

ĥ
(Σ) mean h, ΛD

h (Σ), and ΛS
h(Σ), respectively, in 2D. Notice that,

for ease of computation, and owing to the fact that H1/2(Σ) is the interpolation space with index 1/2
between H1(Σ) and L2(Σ), the interface norm ∥λ− λ

ĥ
∥1/2,Σ is replaced by ∥λ− λ

ĥ
∥(0,1),Σ, where

∥ξ∥(0,1),Σ := ∥ξ∥1/20,Σ ∥ξ∥1/21,Σ ∀ξ ∈ H1(Σ) .

Similarly, the interface norm ∥φ − φ
ĥ
∥1/2,00;Σ is replaced by ∥φ − φh∥(0,1),Σ. In turn, convergence

rates are set as

r(⋆) :=
log(e(⋆)/e′(⋆)

log(h/h′)
, ∀ ⋆ ∈ {tS ,σS ,uS ,uD,φ, λ, pD} ,

where e and e′ denote errors computed on two consecutive meshes of sizes h and h′, respectively. In
addition, we refer to the number of degrees of freedom and the number of Newton iterations as dof
and iter, respectively.

Example 1: Tombstone-shaped domain. In our first example, a minor modification of [10,
Example 1], we consider a porous unit square, coupled with a semi-disk-shaped fluid domain, that is,

ΩD := (−0.5, 0.5)2 and ΩS :=
{
(x1, x2) : x21 + (x2 − 0.5)2 < 0.25, x2 > 0.5

}
.

We set the model parameters

K := 10−3 I , ρ := 1 , ω1 := 1.0 ,

and choose the data fS , gS , and fD such that the variable viscosity is defined as

µ(∇uS) := 2 +
1

1 + |∇uS |
,

where the exact solution in the domain Ω := ΩS ∪ Σ ∪ ΩD is given by the smooth functions

pS(x) = sin(πx1) sin(πx2) , uS(x) =

(
sin(πx1) cos(πx2)
− cos(πx1) sin(πx2)

)
∀x := (x1, x2) ∈ ΩS ,

pD(x) = cos(πx1) exp(x2 − 0.5) , and uD(x) = −K∇pD(x) ∀x := (x1, x2) ∈ ΩD .

Notice that uS , being the curl of a smooth function, satisfies the incompressibility condition, and
also uS · n = 0 on ΓD. Table 6 shows the convergence history for a sequence of quasi-uniform
mesh refinements, including the resulting number of Newton iterations. According to the polynomial
degree employed, the respective sets of finite element subspaces are denoted P0 −RT0 −P0 −P1 and
RT0−P0−P1, for the fluid and the porous medium, respectively. This example confirms the theoretical
rate of convergenceO(h) provided by Theorem 5.5 with ϱ = 1. In addition, the aforementioned number
of Newton iterations required to reach the convergence criterion based on the residuals with a tolerance
of 1e − 8, was equal to 4 in all runs. Finally, samples of approximate solutions are shown in Figure
6.1.
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P0 − RT0 −P0 −P1 and RT0 − P0 − P1

e(tS) r(tS) e(σS) r(σS) e(uS) r(uS) e(φ) r(φ) e(pS) r(pS)

3.18e− 01 ∗ 1.75e+ 00 ∗ 1.27e− 01 ∗ 3.24e− 01 ∗ 2.65e− 01 ∗
1.63e− 01 1.08 8.83e− 01 1.11 6.21e− 02 1.15 1.64e− 01 1.10 1.26e− 01 1.21
8.32e− 02 0.96 4.46e− 01 0.98 3.12e− 02 0.98 8.28e− 02 0.98 6.31e− 02 0.98
4.16e− 02 1.05 2.23e− 01 1.05 1.57e− 02 1.05 4.16e− 02 1.05 3.24e− 02 1.01
2.06e− 02 1.01 1.10e− 01 1.02 7.78e− 03 1.01 2.08e− 02 1.00 1.58e− 02 1.03
1.04e− 02 1.08 5.54e− 02 1.09 3.89e− 03 1.10 1.05e− 02 1.09 7.78e− 03 1.08

e(uD) r(uD) e(pD) r(pD) e(λ) r(λ) dof iter

2.28e− 04 ∗ 5.23e− 02 ∗ 2.50e− 01 ∗ 731 4
1.06e− 04 1.23 2.29e− 02 1.26 1.26e− 01 1.02 2659 4
4.25e− 05 1.36 1.05e− 02 1.16 4.99e− 02 1.38 10460 4
2.00e− 05 1.08 5.00e− 03 1.05 2.33e− 02 1.09 41804 4
9.94e− 06 1.58 2.53e− 03 1.54 1.19e− 02 1.52 167808 4
4.95e− 06 0.93 1.27e− 03 0.93 5.79e− 03 0.97 660726 4

Table 6.1: Example 1, convergence history and Newton iteration count for the fully-mixed approx-
imations of the Navier–Stokes/Darcy equations with variable viscosity, and convergence of the P0-
approximation of the postprocessed pressure field.
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-0.0

-0.8

-0.6

-0.4

-0.2-0.2

0.0 1.00.2 0.5 0.8

-1.0 1.0-0.5 0.0 0.5 0.04 4.441.10 2.20 3.30 0.40 9.862.00 4.00 6.00 8.00

Figure 6.1: Example 1, domain configuration, approximated velocity component, Darcy pressure field,
Navier—Stokes pressure field, spectral norm of the Navier—Stokes velocity gradient and pseudo-stress
tensor.

Example 2: air flow through a filter. This example is similar to the one presented in [31, Section
4] (see also [11]). More precisely, we apply our mixed method to simulate air flow through a filter. To
this end, we consider a two-dimensional channel with lenght 0.75m and width 0.25m which is partially
blocked by a rectangular porous medium of length 0.25m and width 0.2m as shown in Figure 6.2,
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with boundaries ΓS = Γin
S ∪ Γtop

S ∪ Γout
S ∪ Γbottom

S and Γbottom
D := ΓD. The permeability tensor in the

porous medium is given as

K = R(θ)

(
1
δκ 0
0 κ

)
R−1(θ) , with R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

where the angle θ = −45◦, the anisotropy ratio δ = 100, and κ = 10−6m2. In turn, ρ = 1.225 ×
10−5Mg/m3, ω1 = 1.0, and the top and bottom of the domain are impermeable walls. The flow
is driven with an inlet mean velocity of 0.25 m/s. The force terms fS and fD are set to zero. As
motivated again by [10], the viscosity follows the Carreau law given by

µ = 1.81 + 1.81 (1 + |tS |2)−1/2 × 10−5 Pa s , (6.1)

whereas the boundary conditions are

uS =
[
6uin,S

x2
d
(1− x2

d
), 0
]

on Γin
S , uS = 0 on Γtop

S ∪ Γbottom
S ,

σSn = 0 on Γout
S , uD · n = 0 on Γbottom

D ,

with uin,S = 0.25 m/s and d = 0.2 m. We stress here that, because of the fully nonlinear character
of µ (cf. (6.1)), which depends on the unknown fluid velocity gradient tS := ∇uS , the use of the
Newton method to solve the corresponding Galerkin scheme (4.4) implies linearizing not only the
convective term given by the form b (cf. (3.11)), but also the one arising from the form a (cf. (3.10)).
In addition, we remark that the analysis developed in the previous sections can be extended, with
minor modifications, to the case of mixed boundary conditions considered in this example. Now, using
again a sequence of quasi-uniform mesh refinements, we find that the number of Newton iterations
required to reach the convergence criterion, based on the residuals with a tolerance of 1e− 8, is 7. In
Fig. 6.2 we display various components of the computed solution. As we expected, the top-left panel
shows an increment in air flow in the surrounding region above the filter. This is caused by the flow
resistance in the porous medium. The effect of anisotropy is also evident, as the air flow that passes
through the porous block aligns with the angle θ = −45◦. In other words, the flow follows the inclined
principal direction of the permeability tensor. Furthermore, a continuous normal velocity is observed
across all three interfaces, whereas the tangential velocity is discontinuous, especially at the interfaces
with higher fluid velocity. This observation aligns with the continuity of flux and the BJS interface
conditions. We also observe that the pressure drop is visible through the domain. Again, the effect of
anisotropy is visible due to the inclined pressure drop in the porous domain. The pseudostress tensor
σS,h is larger along the Γin

S boundary and zero at the Γout
S boundary, which is consistent with the

boundary condition σS n = 0 on Γout
S .
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