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A new Banach spaces-based mixed finite element method
for the coupled Navier—Stokes and Darcy equations™
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Abstract

In this paper we propose and analyze a new fully-mixed finite element method for the coupled
model arising from the Navier-Stokes equations, with variable viscosity, in an incompressible fluid,
and the Darcy equations in an adjacent porous medium, so that suitable transmission conditions
are considered on the corresponding interface. The approach is based on the introduction of the
further unknowns in the fluid given by the velocity gradient and the pseudostress tensor, where the
latter includes the respective diffusive and convective terms. The above allows the elimination from
the system of the fluid pressure, which can be calculated later on via a postprocessing formula. In
addition, the traces of the fluid velocity and the Darcy pressure become the Lagrange multipliers
enforcing weakly the interface conditions. In this way, the resulting variational formulation is given
by a nonlinear perturbation of a threefold saddle point operator equation, where the saddle-point
in the middle of them is, in turn, perturbed. A fixed-point strategy along with the generalized
Babuska-Brezzi theory, a related abstract result for perturbed saddle-point problems, the Banach-
Necas-Babuska theorem, and the Banach fixed-point theorem, are employed to prove the well-
posedness of the continuous and Galerkin schemes. In particular, Raviart-Thomas and piecewise
polynomial subspaces of the lowest degree for the domain unknowns, as well as continuous piecewise
linear polynomials for the Lagrange multipliers on the interface, constitute a feasible choice of the
finite element subspaces. Optimal error estimates and associated rates of convergence are then
established. Finally, several numerical results illustrating the good performance of the method in
2D and confirming the theoretical findings, are reported.
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1 Introduction

The study of coupled fluid systems, particularly those involving free and porous media flows, governed
by the Navier-Stokes and Darcy equations, respectively, and connected through a set of suitable in-
terface conditions, has received significant attention because of their wide range of applications. In
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particular, the latter includes environmental, biological, and industrial processes, such as the inter-
action of surface and subsurface flows, modeling of blood flow, and others. Over the years, several
papers have been devoted to numerical modeling and analysis of the Navier—Stokes/Darcy and related
coupled problems (see, e.g.,[3, 10, 16, 17, 24, 26, 27, 28, 30]). In the context of the Stokes—Darcy
coupled problem, the first theoretical results go back to [30] and [16]. In [16] the authors introduce an
iterative subdomain method that employs the standard velocity-pressure formulation for the Stokes
equation and the primal one in the Darcy domain, whereas in [30] they apply the primal method in
the fluid and the dual-mixed one in the porous medium, which means that only the original velocity
and pressure unknowns are considered in the Stokes domain, whereas a further unknown (velocity) is
added in the Darcy region. In turn, a conforming mixed finite element discretization of the variational
formulation from [30] was introduced and analyzed in [24]. In this work, the porous medium is assumed
to be entirely enclosed within a fluid region, and, as in [30], the corresponding interface conditions
refer to mass conservation, balance of normal forces, and the Beavers-Joseph—Saffman (BJS) law. As
a consequence, the trace of the porous medium pressure needs to be introduced as a suitable Lagrange
multiplier. In addition, Bernardi-Raugel and Raviart—Thomas elements for the velocities, piecewise
constants for the pressures, and continuous piecewise-linear elements for the aforementioned multi-
plier, yield a stable Galerkin scheme. The results from [24] are then improved in [28] where a classical
result on projection methods for Fredholm operators of index zero is employed to show that the use,
not only of the one in [24], but of any pair of stable Stokes and Darcy elements, implies the stability
of the corresponding Stokes-Darcy Galerkin scheme. Later one, a fully-mixed finite element method
was proposed and analyzed in [26] for the Stokes—Darcy coupled problem, where the Babuska-Brezzi
theories were used to derive sufficient conditions for the unique solvability of the resulting continuous
and discrete formulations. Subsequently, in [27] the authors extend the previous results in [26] to the
case of a two-dimensional nonlinear Stokes—Darcy coupled problem. Both a priori and a posteriori
error analyses were developed in this work. As part of augmentation approaches, a fully-mixed fi-
nite element method for the Navier—Stokes/Darcy coupled problem with nonlinear viscosity has been
introduced and analyzed in [10]. We also refer to [17] for the analysis of a conforming mixed finite
element method for the Navier-—Stokes/Darcy coupled problem. In both works, and in order to stay
within a Hilbertian framework, the velocity is sought in the Sobolev space of order 1, which requires to
augment the variational formulation with additional Galerkin-type terms arising from the constitutive
and equilibrium equations.

Although augmented methods are effective in ensuring stability, they significantly increase com-
plexity and computational cost. This issue motivates the exploration of alternative approaches, such as
those based on Banach spaces, whose main advantage is that no augmentation is required, and hence
the spaces to which the unknowns belong are the natural ones arising from the application of the
Cauchy—Schwarz and Holder inequalities to the tested and eventually integrated by parts equations.
A significant number of works have demonstrated the advantage of using this approach to analyze the
continuous and discrete formulation of diverse problems (see, e.g, [2, 3, 9, 12, 14]). In particular a non-
augmented mixed finite element method for the Navier—Stokes equations with variable viscosity was
studied in [3]. More recently, a mass conservative finite element method for the Navier—Stokes/Darcy
coupled system, which revisits the original primal-mixed approach from [17], was proposed in [6],
whereas a conforming finite element method for a nonisothermal fluid-membrane interaction problem,
modeled by the Navier-Stokes/heat system in the free-fluid region, and a Darcy-heat coupled system
in the membrane, was introduced and analyzed in [7].

According to the above bibliographic discussion, the goal of this work is to extend the applicability
of the Banach spaces framework by introducing a fully-mixed formulation for the coupling of fluid
flow with porous media flow, without any augmentation procedure. To this end, we consider a similar
approach to the one presented in [3] for the Navier-Stokes domain and adapt it to the coupled Navier-



Stokes/Darcy problem. The remainder of this paper is organized as follows. In Section 2 we introduce
the governing equations and the mathematical model. Subsequently, in Section 3 we present the
fully-mixed variational formulation within a Banach space framework and prove the well-posedness of
the continuous problem. The corresponding Galerkin system is introduced and analyzed in Section
4, where a discrete version of the fixed-point strategy developed in Section 3 is used. In addition, we
derive the associated a priori error estimate in the same Section. In Section 5 we specify particular
choices of discrete subspaces, in 2D and 3D, that satisfy the hypotheses from Section 4 and establish
the rates of convergence. Finally, in Section 6 we report on 2D numerical examples that validate the
method and showcase its practical applications.

Preliminary notations

Throughout the paper, €2 is a bounded Lipschitz-continuous domain of R™, n € {2, 3}, whose outward
normal at I' := 9Q is denoted by n. Standard notation will be adopted for Lebesgue spaces L()
and Sobolev spaces WH(Q), with [ > 0 and ¢ € [1,+00), whose corresponding norms, either for the
scalar or vectorial case, are denoted by || [|o,:0 and ||« [|1,0, respectively. Note that WO () = L{(€2),
and if ¢t = 2 we write H(Q2) instead of W"2(£2), with the corresponding norm and seminorm denoted
by || - |10 and | - |;q, respectively. On the other hand, given any generic scalar functional space M, we
let M and M be the corresponding vectorial and tensorial counterparts, whereas || - || will be employed
for the norm of any element or operator whenever there is no confusion about the spaces to which
they belong. Furthermore, as usual, I stands for the identity tensor in R := R™*™, and |- | denotes
the Euclidean norm in R := R". Also, for any vector fields v = (v;)i=1, and w = (w;)i=1z, we
set the gradient, divergence, and tensor product, respectively, as

ov; " Ov,
= . di = — d = (Vwi)ii=1n -
Vv <a$j>i,j:17n , iv(v) ; 9z, and vw (viwj)ij=1,

Additionally, for any tensor fields 7 = (74;)ij=1n and ¢ = ((ij)i,j=1,n, we let div(7) be the diver-
gence operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner
product and the deviatoric tensor, respectively, as

n n
1
T = (Tji)ij=1m, tx(T) = ZT“’ T:(:= Z 7ijCi, and T9:= T — ;tr(r)]l.
i=1 ij=1

On the other hand, given ¢ € (1,400), we also introduce the Banach spaces
H(div; Q) == {r e L*(Q): div(r) e L'(Q)},
H(divy; Q) = {r € L*(Q): div(r) e L'(Q)} ,
which are endowed with the natural norms defined, respectively, by
17 llaivi0 == [I7lloe + [div(7)llose V7 € H(div; Q)
[Tllaivee = [ITlloo + [[div(T)llose V7 € H(divy; Q).

Then, proceeding as in [22, eq. (1.43), Section 1.3.4] (see also [5, Section 4.1] and [12, Section 3.1]), it

(1, +00) itn = there holds

. 2
is easy to show that for each ¢ € { [6/5,+00) if n =3

(T-n,v) = /Q{'T Vv + vdiv(T)} YV (1,v) € H(divg; Q) x HY(Q), (1.1)
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and analogously
(tTn,v) = / {1:Vv + v-div(t)} V(1,v)c H(div;Q) x HY(Q), (1.2)
Q

where (-, -) stands for the duality pairing between H~/2(T") and H'/2(I"), as well as between H~1/2(T")
and H'/2 (T"). We find it important to stress here, as explained in the aforementioned references, that
the second term on the right-hand side of (1.1) (resp. (1.2)) is well-defined because of the continuous
embedding of H'(Q) (resp. H'(Q)) into LY (Q) (resp. L' (Q)), where #' is the conjugate of ¢, that is
,Foo) if n=2

/ 1 1 _ : ! [1
t' € [1,+00) such that 7 + 7 = 1, which holds for ¢’ € { 1, 6] Fon—3

2 The model problem

In this section we introduce the model of interest, namely the coupled Navier-Stokes and Darcy
equations with variable viscosity. To this end, we first let Qg and 2p be bounded and simply connected
open polyhedral domains in R", such that Qs N Qp = 0 and 9N N INp = X # (. The parts of the
boundaries are I's := 0Qs\ X, I'p := 002p\ X, and n denotes the unit normal vector on them, which
is chosen pointing outward from Q := Q¢ U X U Qp and Qg (and hence inward to p when seen on
¥). On X we also consider unit tangent vectors, which are given by t = t; when n = 2 and by {t1,t2}
when n = 3 (see Fig. 2.1 below for a 2D illustration of the geometry involved). The mathematical
model is defined by two separate groups of equations and by a set of coupling terms. Here, 25 and
Q) p represent the domains in the free and porous media, respectively.

Figure 2.1: geometry of the coupled model

The governing equations in §)g are those of the Navier-Stokes problem with constant density p and
variable viscosity p, which are written in terms of the velocity ug and the pressure pg of the fluid,
that is

—div(uVugs) + p(Vus)us + Vps = fs  in Qg, 2.1)

div(ug) =0 in Qs, usg = g on Fs, .

where the given data are a function p : Qg — R™ describing the viscosity, a volume force fg, and
the boundary velocity g. The right spaces to which fg and g need to belong are specified later on.
Furthermore, the function u is supposed to be bounded, which means that there exist constants uq,
w2 > 0, such that

< p(x) < pe VxeQg. (2.2)



Next, we introduce the pseudostress tensor unknown
os:= uVug — p(us & us) —psl in Qg, (2.3)

so that, nothing that div(ug ® ug) = (Vug)ug, which makes use of the fact that div(ug) = 0, we
find that the first equation of (2.1) can be rewritten as

—div(eg) = fs in Qg.

In turn, it is straightforward to prove, taking matrix trace and the deviatoric part of (2.3), that the
latter along with the incompressibility condition are equivalent to the pair

0% = uVus —p(ug®@ug)® in Qg, and
1 ) (2.4)
pg = — Etr(as + p(ug ®us)) in Qg.

Thus, eliminating the pressure unknown which, anyway, can be approximated later on by the post-
processed formula suggested in (2.4), the Navier—Stokes problem (2.1) can be rewritten as:

0% = pVus — p(us ®ug)? in Qg, (2.5)
—div(eg) = fs in Qg, ugs=g on Ig. '

Next, since we are interested in a mixed variational formulation of our problem, and in order to
employ the integration by parts formula typically required by this approach, we introduce the auxiliary
unknown tg := Vug in Qg. Consequently, instead of (2.5), we consider from now the set of equations
with unknowns tg, ug, and og, given by

ts = Vug in Qg, 0% =pts—pus®@ug)? in Qg,

(2.6)
—div(eg) = fs in Qg, usg=g on TIg.
On the other hand, in {2p we consider the linearized Darcy model:
up = —KVpD in QD, div(uD) == fD in QD, (2 7)

up-n=0 on Ip,

where up and pp denote the velocity and pressure, respectively, in the porous medium, fp € L3(Qp) is
a source term and K € [L*°(2p)]™*™ is a positive definite symmetric tensor describing the permeability
of Qp divided by a constant approximation of the viscosity, satisfying with Cx > 0

w-K ' (x)w > Ck |w|*> V(ae)x €Qp, VYweR".

Finally, following [30] and [24], the transmission conditions on ¥ are given by

us-n = up-n on X,

- (2.8)
osn + Zwl (ug-t))t; = —ppn on X,
=1

where {w1,...,wn—1} is a set of positive frictional constants that can be determined experimentally.
The first equation in (2.8) corresponds to mass conservation on X, whereas the second one establishes
the balance of normal forces and Beavers—Joseph—Saffman law. In addition, g and fp must formally

satisfy the compatibility condition
/ g-n+/ fp =0. (2.9)
I's Qp

5



3 The continuous analysis

In this section we derive a Banach spaces-based fully-mixed variational formulation of the coupled
problem described by (2.6), (2.7), and (2.8), and then perform its solvability analysis by means of a
fixed-point strategy.

3.1 Preliminaries

Here we introduce further notations and definitions. We begin with the spaces

Hy(div; Qp) := {VD € H(div;Qp): vp-n=0 on FD},

L2(Qg) = {rs eL2(Qg): tr(rs) = o}.
Furthermore, for each * € {S,D}, and given T C 09,, we denote the space of traces

Ho () i= {vlp s ve '), v=0 on 0Q\T}.

and its vector version HééQ(f) = [Hééz(f)r Observe that, if Fx  : HY2(T') — L2(09,) is the
extension operator defined by

~ _J) Y on T _ /21
Er,*w).—{o o ooap  TeETED),

we have, alternatively, that
/2,7 =
Hop' (D) = {w e HYVA(D) B () € HY2(00.)} |

which is endowed with the norm ||1/J||1/2 ow0f = 1E:,(¥)1/2,00.. The dual of HééQ(f) (respectively

H(l)(/)2 (T')) is denoted by HSOI/Q (T) (respectively Haolﬂ(f)), and || - ||71/2 00T 18 set as the corresponding
norms. Next, in order to deduce the variational formulation of the NavierStokes problem, we first
look originally for ug € H(Qg), for which we assume from now on, for simplicity, that g € Hééz (T's).
Equivalently, letting

on I'g

on » '’

gs = EFS,S(g) = { %

there holds g, € HY/2(90g), and hence, using the trace operator v : H'(g) — H/2(0Qs) (see [22,
Section 1.3.1]), we can write vo(us) = g5 + (Y0(us) — g5), where

Yo(us) — gy = {

which proves that

0 on I'g

Y(ug) on T Es s(v0(us)ls) € HY?(09s),

2
¢ = —o(us)ls € H (%)
As a consequence, for each y € H™1/2(9g) we get

(xG0(us))ans = (X:8s)as + (X Y0(us) — 8s)ans
= (X, BErg,s(8))oas — (X; Ex,5(p))aas (3.1)
= (XIrs:8)rs — (XIz, 0)s

where (-, )rg (respectively (-,-)s) stands for the duality pairing between Haol/ 2(FS) (respectively
HEOI/Q(E)) and Hé(/)Q(FS) (respectively H(l)(/]Q(E)).



3.2 The fully-mixed formulation

Having established the above, we now multiply the first equation of (2.6) by 7¢ € H(div¢;Qg),

with ¢ € { Eé};—j—ogo) i Z i ; , apply the integration by parts formula (1.2), and use (3.1) with
X = Tsn, to find that

/ Ts:tg +/ ug -div(Tg) = (Ton,g)ry — (Tsn, @)y V71g e H(dive; Qg) . (3.2)
Qs Qs

It is clear from (3.2) that its first term is well-defined for tg € L?(2s), which, along with the free trace
property of tg, suggests to look for tg € L2(Qg). In addition, knowing that div(rs) € L{(Qs), we
realize from the second term and Holder’s inequality that it suffices to look for ug € Lt'(QS), where
t is the conjugate of t. Next, it follows from the second equation of (2.6), that formally

/ pts 1‘5—/ O'%:rg—p/ (us®@ug)?:rg =0 Vrgeli(Qg), (3.3)
Qs Qg Qs

from which we notice that the first term is well-defined, whereas the second one makes sense if og is
sought in L?(g). In turn, for the third one there holds

/ (us @ ug)?: rg / (us ®ug) : rg
Qg Qs

which, necessarily yields ¢ = 4, and thus ¢t = 4/3. Finally, looking for og in the same space of its
corresponding test function 7g, that is og € H(divy/3;Qs), it follows from the third equation of (2.6)
that

< Jlusllo.4;0s lusllos0s Irslloos

—/ A\ diV(Us) = / fs-vg Vvge L4(Qs) R (3.4)
Qg Qs

which forces fs to belong to L*/3(9g). Now for the Darcy equations given in (2.7) and the transmission
conditions specified in (2.8), we proceed similarly as in [10], so that introducing the auxiliary unknown

A= pD|2 S Hl/Q(E) ,
we obtain the variational problem: Find tg € L (Qs), us € L(Qg), o5 € H(divy/3;Qs), up €
Hy (div; Qp), pp € L2(Qp), A € HY/2() and ¢ € HLL*(S), such that

/ t5:7§+/ us -div(Tg) + (Tsn,@)s = (Tsn,g)rg ,
Qg Qg

K_luD -Vp — / PD diV(VD) — <VD - n, )\>E =0,
QD QD

/,uts:rs—/ o’%:rg—p/ (us®us)d:r5 =0,
Qg Qg Qg
3.5
—/ vg - div(og) =/ fs-vs, (35)
Qg Qg

/QQDdiV(U—D) = foap,
—(p n,§)x —(up-n,)y =0,

<O'Sﬂ, 'l;b>2 - <(707 1nb>t,2 + <1;b - n, )\>E — Oa
for all rg € LZ(Qs), vg € L (Qg), 75 € H(divy/3;Qs), vp € Ho(div; Qp), qp € L3(Qp), £ € HY/2(D)
and ¢ € Hééz(E), where:

n—1
(P )em =Y w  {p-t, ¥ t)s.
=1
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It is not difficult to see that the system (3.5) is not uniquely solvable since, given any solution
(ts,us,o5,up,pp, A, ) in the indicated spaces, and given any constant ¢ € R, the vector defined by
(ts,us,o5 — cl,up,pp — ¢, A + ¢, ¢) also becomes a solution. In order to avoid this non-uniqueness,
from now on we require the Darcy pressure pp to be in L(Q)(Q D), where

L%(QD) = {qD S Lz(QD) : / qp = 0} .
Qp
On the other hand, for convenience of the subsequent analysis, we consider the decomposition
H(divyy3; Qs) = Ho(divy/s; Qs) ® RI, (3.6)
where
Ho(divy/s;Q2s) := {T € H(divy/s;Qs) : / tr(7) = 0} .
Qs

It follows that o g can be uniquely decomposed as g = g + U, where

1

= o o, tr(og) . (3.7)

050 € Hg(diV4/3;Qs) and [ :

In this regard, we notice that (3.3) and (3.4) remain unchanged if o is replaced by o g0. In this way,
using the compatibility condition (2.9), the first and last equations of (3.5) are rewritten equivalently
as

/Q ts TS +/Q us - div(rs) + (Tsn,p)s = (Tsn,g)ry  V7g € Ho(divys;Qs),
S S

.j<(p'n71>2 :j<g'n71>FS VjER,
<0-5’n7¢>2_ <<Pa¢>t,2+<¢'n7)\>2+l<¢‘n, 1>Z =0 V’(/) EH(I)(/)2(E)

As a consequence of the above, we find that the resulting variational formulation reduces to: Find
ts € L2(Qs), up € Ho(div;Qp), os € Ho(divys; Qs), A € HY2(), ug € LH(Qs), ¢ € Hyy (%),
pp € L3(Qp) and | € R, such that

/ pts :rg 7/ o"; ‘rg 7,0/ (ug @ug)?:rg =0
Jag Jag Qg
K 'up -vp —(vp n, A% - pp div(vp) =0
Qp Qp
/U T4 i tg Hrsn,p)e  + /(Z ug - div(ts) =(Tsn,g)rg
s /g
(up - n,&)s +{(p -n,&)s =0
(3.8)
(osn, ¥)s +(¥-n,N)s —(e: )ty Y- -n, 1)y =0
/ vg -div(og) = */ fs-vs
Jag Qg
e n, 1)s =j(g n,1)rg
*_/ qp div(up) = *_/ fpap
Qp p

for all rg € L% (Qs), vp € Ho(diviQp), g € Ho(divys;Qs), £ € HYA(D), vs € LY(Qg), ¥ €
Hééz(E), qp € L3(Qp) and j € R. Now, we group the spaces, unknowns, and test functions as follows:
X := L& (Qs) x Ho(div; Qp), Y :=Ho(divys; Qs) x H/2(X)
Z = L4(Qg) x HJ (D), H:i=XxY xZ,
Q = L%(QD) X R,



t:= (tg,up) € X, d:=(os5,\N)eY, u:=(us,p)€Z, p:=(pp,l)eqQ,
r:=(rg,vp) € X, T:=(15,) €Y, V:=(vg,¥)€Z, G:=(qp,j) €Q,
C:=(g,zp)eX, =m0 €Y, Z:=(z5,¢0)€Z, §:=(sp,k)eQqQ,
where X, Y, Z, H and Q are respectively endowed with the norms
IF]x := [lrslloes + Ivollaves s Ty = [[Tslldiv, 506 + 1Ell1/2,5
I¥lz := lIvslloges + 1¥lli2002, @7 V)= Flx + |17y + V]z,

Idllq = llapllo.cp + 14]-

—

Hence, using the same colors from (3.8), this formulation can be rewritten as: Find ((t,&, 1), p) €
H x Q, such that

[a(®), 7] +1b1(F), & - ; ppdivivp) +blusiug,rs) =0
D
[b2 (£), 7] +B(, 7), ] = (rsn@)rg
B(,5),9] —[C{),¥]  +U% n, s =~/ fts-vs (3.9)
Qg
+i(e-n, s =j(g-n,rg
_/QDquiv(uD) :_/QDfDqD

for all ((F,7,¥),d) € Hx Q, wherea: X x X > R, by : X xY =R, b : X xY = R, B: H— R,

and C:Z xZ — R,

are the bilinear forms defined by

a(6), 7] = /QSMCsirs+ [ xzpevn vireX,

b1 (£), 7] 1= —<vD-n,s>z—/QST§:rs V(EF) EX XY,

[by(F), 7] :=  —[by(F), 7] V(E,7) e X xY, (3.10)
B(E, ), = (§-n,6)s + (rsn, )5 + / vs-div(rs) ¥(F7,9) € H,

[C(Z),V] == (@, 9¥)t3, VZVeETZ,

whereas for each wg € L*(Qg), b(ws;-,-) : L*(Qg) x L2.(Qs) — R is the bilinear form given by

b(ws;vs,Ts) == —p/Q (Ws@vs):rs. (3.11)
S

As announced in the abstract, we notice here that (3.9) can be seen as a nonlinear perturbation,
given by the term b(ug;ug,rg), of a threefold saddle point operator equation, whose main operator
A, to be introduced below, shows a perturbed saddle-point structure (cf. [13]). Indeed, letting

A:(XxY)x(XxY)— R be the bilinear form that arises from the block <; bl) by adding the
2

first two equations of (3.9), that is
[A(E7 ﬁ)a (Fa 7_:)] = [G(E)v F] + [bl(F)7 ﬁ] + [b2(6)a 7_-’] v (57 ﬁ)a (Fv 7_:) € X x Y7 (312>

and letting A :H x H — R be the bilinear form that is derived from the block (g _BC> by adding

the first three equations from (3.9), that is

[A(C, 7, 2), (F,7,9)] := [A(C, ), (F.7)] + [B(F, 7). 2] + [B(C, ), ¥] - [C(2), V] (3.13)



for all (, 7, 2), (¥, 7, V) € H, we find that (3.9) becomes: Find ((t,&,w), ) € H x Q such that

[At,3.4), (F,7,V)] + BFEFV),D + busiusrs) = [G,(F7 V), (3.14)
[B(t, &, 1), q] = [F, g,
for all (¥, 7,V) € H, for all g € Q, where
[B(F, 7, V), == —/ qpdiv(vp) + j (¢ -n, 1)y
@ (3.15)
[Gv(f:a ¥a \_;)] = <TSna g>FS _/ fS Vg and [qu’} = fDqD+]<gn7 1>FS
Qg Qp

Moreover, letting now P : (H x Q) x (H x Q) — R be the bilinear that arises from the block (g B>

by adding both equations of (3.14), that is
[P(C.77.2.5), (F.7.¥,9)) := [A((.7, 2). (£, 7, 9)] + [B(F. 7.9).§] + [B(, 7. 2). 4] (3.16)

for all ((¢,7,2),8), ((F, 7, V), Q’) ]HI x Q, we deduce that (3.14) (and hence (3.9)) can be stated,
equivalently as well, as: Find ((t,&, 1), ) € H x Q such that

[P(t,&,4,5), (F,7,V,§)] + b(us; us, rs) = [H, (F, 7,¥,9)] ¥((F,7.¥),q) e HxQ, (3.17)
)

where H € (H x Q)’ is defined by [H, (¥, 7,V,q)] = |G, (¥, 7,V
the operator T : L*(Qg) — L*(Qg) defined as

|+ [F, g]. Furthermore, let us introduce

T(Ws) = ug VwgE€ L4(QS), (3.18)

where ug is the first component of U € Z, which, in turn, is the third component of the unique
solution ((t, a, ﬁ),f)) € H x Q (to be proved later on) of the linearized problem arising from (3.17)
after replacing b(ug;ug,rg) by b(wg;ug,rg), namely:

[P(E76:7 ﬁ:ﬁ)v (I_:77_:7‘_;7 (j)] + b(WSa ugs, rS) - [H7 (Fa‘F:‘_;a (_j)] V((F, ?a \_;)7 (._j) € H x Q . (319)

Thus, we realize that solving (3.14) (or (3.17)) is equivalent to finding a fixed-point of T, that is
ug € L*(Qg) such that
T(us) = us. (3.20)

3.3 Solvability analysis

In this section we analyze the solvability of (3.17) (which is equivalent to (3.9) or (3.14)), by means
of the fixed-point strategy that was depicted at the end of the previous section. To this end, we first
recall next some theoretical results to be applied later on.

3.3.1 Some useful abstract results

We begin with the generalized Babuska-Brezzi theory.

Theorem 3.1. Let Hy, Ha, Q1 and Q2 be reflexive Banach spaces, and let b; : H; x Q; — R,i € {1,2},
be bounded bilinear forms with boundedness constants given by ||a|| and ||b||, i € {1,2}, respectively.
In addition, for each i € {1,2}, let IC; be the kernel of the operator induced by b;, that is

K; = {vEHi: bi(v,q) =0 VqEQi},

and assume that
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i) there exists a positive constant o such that

a(w,v
sup (w,v) > allw|lg, YweKs,
veky ||U||H1
v#0

ii) there holds

sup a(w,v) >0 VveKy,v#0, and
we2

iii) for each i € {1,2} there exists a positive constant 3; such that

b'i (U, q)

ver, [[0]la;

v#0

> Billallg, Vae€ Q.

Then, for each (F,G) € Hy x QY there exists a unique (u,p) € Hy X Q1 such that

a(u,v)+ bi(v,p) = F(v) Vv e Hy, (3.21)
ba(u, q) = Glg) VqeQ, '
and the following a priori estimates hold
1 1 lal]
fullay < 21 + 5 (14 140) g, (322)

L, lal Jall (, llal
oo < 5 (14 10) g + 50 (14 10 i

Moreover, 1), ii) and iii) are also necessary conditions for the well-posedness of (3.21).

Proof. See [4, Theorem 2.1, Corollary 2.1, Section 2.1] for the original version and its proof. For the
particular case given by H; = Ha, Q1 = Q2, and b; = ba, we also refer to [22, Theorem 2.34]. O

We remark here that the roles of K; and Ks in the assumptions i) and ii) of Theorem 3.1 can be
exchanged without altering the joint meaning of these hypotheses. In addition, it is important to
stress that (3.22) is equivalent to an inf-sup condition for the bilinear form arising after adding the
left-hand sides of (3.21), which means that there exists a constant C' > 0, depending only on «, 31, 32
and ||al|, such that

sup CL(U},U) +b1(’U,T‘) +b2(ﬂ),(])

(v,@)EH1 XQ2 H(U’Q)||H1><Q2
(v,9)#0

> Cl(w,r)||Hoxg ¥ (w,r) € Hy x Q1. (3.23)

Next, we recall from [25, Theorem 3.2] (see also [13, Theorem 3.4] for the original version of it) a
result providing sufficient conditions for the well-posedness of a perturbed saddle-point problem.

Theorem 3.2. Let H and ) be reflexive Banach spaces, and let a: Hx H — R, b: H x Q — R and
c:Q xQ — R be given bounded bilinear forms. In addition, let B : H — Q' be the bounded linear
operator induced by b, and let V := N(B) be the respective null space. Assume that:

i) a and c are positive semi-definite, that is
a(t,7) >0 VreH and c(v,0) >0 VYveQ, (3.24)

and that c is symmetric,

11



ii) there exists a constant o > 0 such that

a(9, 1)

sup > alld|lg VOeV, and (3.25)
rev |ITla
T#0
v
sup a9, 7) > alrllg VTev, (3.26)
VeV H79||H
90

iii) and there exists a constant > 0 such that

b(r,v

sup (7, ) > Blvllg YveQ.
ren |7l

T#0

Then, for each pair (f,g) € H' x Q' there exists a unique (o,u) € H x Q such that

a(o,7) + b(r,u) = f(7) VreH,

bo,v) — clu,v) = g(v) VveQ. (3.27)
Moreover, there exists a constant C > 0, depending only on ||a|, |||, o, and B, such that
@ wllaxe < {7l + ol }- (3.29)

As announced before, we stress here that the foregoing theorem is referred to as a slight variant of the
original version given by [13, Theorem 3.4], which requires a to be symmetric as well. Indeed, the proof
reduces basically to show that there exists a positive constant C , depending on ||al|, |||, a, and 3, such
that the bilinear form arising from adding the left hand sides of (3.27), say A : (H xQ)x (H xQ) — R,
satisfies the inf-sup condition

Al (7.0)

coenxa (T 0)|[ExQ
(T,0)7#0

> Cl(¢Gw)llaxg V(G w) e HxQ. (3.29)

In this way, thanks to the symmetry of a and ¢, A is obviously symmetric, and thus (3.29) is sufficient
to conclude, using the Banach-Netas-Babuska Theorem (cf.[19, Theorem 2.6], also known as the
generalized Lax—Milgram Lemma, the well-posedness of (3.27). However, if the symmetry assumption
on a (and consequently on A) is dropped, as done in the present Theorem 3.2, the same conclusion
is attained if additionally (3.29) is also satisfied by the bilinear form A that arises from A after
exchanging its components. Thus, noting that the above reduces to fixing the second component of
A and taking the supremum in (3.29) with respect to the first one, we realize that in order to prove
this further inf-sup condition, the assumption (3.25) needs to be added, as we did in Theorem 3.2.
Needless to say, and because of the same constant « in (3.24) and (3.25), the aforementioned further
condition holds with the same constant C' from (3.29).

3.3.2 Well-definedness of the operator T

We continue by establishing the well-definedness of the operator T, equivalently, that problem (3.19)
is well-posed. To this end, we first state the boundedness of all the variational forms involved by
employing the Cauchy—Schwarz and Holder inequalities, the upper bounds of u, the continuity of the
normal trace operator in H(divy/s;(2s) (which follows from (1.2)), the boundedness of the injection

12



iy : HY(Qg) — L*(Qs), the boundedness of a suitable extension operator Ep : HY/2(X) — HY2(6Qp)
to be defined later on in (3.37) - (3.38), and the existence of a positive constant cs, depending only

on dQg, such that [[P¥los < csl|¥lipy VY € H'!/2(¥), which yields, in particular, [|¥]los <

csllvllijz00n Vb € H(l)(/)g(E) (see [2, Appendix A.1]). In this way, we deduce the existence of positive

constants, denoted and given as:

lall = max{uz, [K~ oo}, [Iball = [|b2]l := max {1, | Ep]|},

IAL = llal +2[ba]l,  IB]l = max{1, |lial|, 3},

IC] = c2(n — D maxfw; ', .w,t b, Al = [[All+ 2B + ||, 0
1B := max{1,¢,|S'/2}, and |[H|| := |[&ll1/2000s + I€sllo4/z0s + [ Fllop
with g := max{1, ||i4||, cs|2|*/?}g, such that
a0, T < all I<Ix/Fx V¢ TFeX,
b:i(®), 7]l < [[ball IFllx (|7l V(I T)eX XY,
A7), ®P] < A Dlxxy | EP)lxxy ¥V (C), (F,7) € X x Y,
B 7)., V]l < [B[E7)xxy|V]z v(r,7,v) e H,
(3.31)
), < [ClI¥lxlIZllx Vi, 6 € Hyp (%),
A7, 2), &7 9)] < |AIIC 3D alE 7V Y, H 2), (7 ¥) €H,
BE#9).4| < IBlIE7¥)uldla V((F.7,9).9) €HxQ,
M, @ 7.v,.q)l < [HIEF V,d)luxq V((F,7,¥),q) e Hx Q
In turn, employing the Cauchy—Schwarz inequality twice, we find that
lb(ws;vs,rs)| < pllwslloaes [Vslloaes [ITslloos
(3.32)

V(ws,vs,rs) € LY (Qg) x L*(Qg) x L(Qs) .

0

case of Theorem 3.1. In particular, in order to derive the inf-sup conditions of the bilinear form K,

B _BC> (cf. (3.13)), we employ Theorem 3.2. In turn, and

. . A .
In what follows, and as suggested by the matrix representation <]~3 ) , we apply the symmetric

and according to its structure given by <

due to the corresponding structure (; bol) of A (cf. (3.12)), we employ Theorem 3.1 to establish
2

the required assumptions on A. For the above purposes, we begin by deducing from the definition
(3.15) that the kernel V of B reduces to

V= {(F,F,\?)GH:

B(E,7,7),§ =0 vaeQ}:XxYxZ, (3.33)

where

X =12(Qg) x Ho(div; Qp),  Z =L4YQg) x HY* (D), (3.34)
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with

Hy(div; Qp) := {VD € Ho(div;Qp) :  div(vp) € PO(QD)},

Hy, (%)

{veH’®: @-nx=0}.

Hereafter, we refer to the null space of the bounded linear operator induced by a bilinear form as the
kernel of the latter. Then we let V be the kernel of B|g, that is

V=XxY,
where

Y = {7_" =(15,) €Y : (Y-n&s+ (rsn,¢)s +/Q vg-div(Tg) =0 VV:=(vg,¥) € 2},

S

- {? = (r5,6) €Y : div(rg) =0, (-n,8s=—(rsn,P)s, Ve ﬁé{f(z)} :

Then for each i € {1,2} we let K; be the kernel of b;|y, that is

K = {F:: (rs,vp) €X: [bi(E),7] =0 V7 :=(rg,€) e ?} ,
which, recalling from (3.10) that by = —bs, yields
Ki=Ky=KCX.

At this point we recall, for later use, that there exist positive constants ¢, /3(95) and Cjyjy, such that
(see, [3, Lemma 4.4] and [26, Lemma 3.2], respectively, for details)

cas3(Q) ITsllons < I78lloos + 1div(Ts)lloa/sas YV Ts € Ho(divys; Qs) (3.35)

and
Ivpll§a, = Cawllvoliva, Yvp € Ho(div;Qp). (3.36)

We now follow [27] to recall some preliminary results concerning boundary conditions and extension
operators. Given vp € Hy(div;Qp), the boundary condition vp - n =0 on I'p means

(vp -1, Brpp(O)on, =0 V¢ eH) ().

As a consequence, it is not difficult to show (see [21, Section 2]) that the restriction of vp-n to ¥ can
be identified with an element of H='/2(X), namely

(vp 10,85 = (vp-n,Ep(&))aq, VYEecHYA(D),

where Ep : HY/2(X) — HY2(dQp) is any bounded extension operator. In particular, given & €
H'/2(%), one could define Ep (&) := z|aq,, where z € H'(Qp) is the unique solution of the boundary
value problem:

Az=0 in Qp, 2=¢ on X, Vz:n=0 on Ip, (3.37)

whose continuous dependence estimate yields Fp € L(Hl/Q(E), H!/2 (09p)), and hence

1ED(©)ll1/200, < IEDI 1€l /2,5 - (3.38)
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In addition, one can show (see [21, Lemma 2.2]) that for all ¢ € HY/2(0Qp) there exist unique elements
(s € H/2(X) and ¢, € H(l)(/)Q(I‘D) such that

¢= ED(<E) + EFD7D(CFD) ) (339>

and
Ch {HCEHl/Q,z + ||CFDH1/2,00;FD} < [Cllij2,00, < C2 {||CZ||1/2,2 + ||CFD||1/2,00;FD} ;

with positive constants C7 and (s, independent of 3.

Then, we are in position to prove the results stated by the following lemmas.

Lemma 3.3. For each i € {1,2} there exists a positive constant 3; such that

[bi(r), 7]

sup ——— > B;|F|ly VFe€Y. (3.40)
FeX ’I‘ ‘X
F20

Proof. Since by = — bs, it suffices to show for one of these bilinear forms, so that we stay with b;.

Moreover, considering that Y C ﬁo(div4/3; Qs) x H/2(%), with
ﬁo(div4/3;95) = {TS € Ho(div4/3; Qg): div(rg) = O} ,

we need to prove that there exists a positive constant 51 such that

by (F), 7 B o~
aup PO 5 5121y VF € Holdivaye: 2s) x HY2(E). (3.41)
o Il
r#0

In addition, due to the diagonal character of by (cf. (3.10)), the proof of (3.41) reduces to establishing
the following two independent inf-sup conditions

VD - l’l,f b
Sup \¥p 1,8jn > Bz l€llie VE€HY(D), and (3.42)

VDEﬁo(div;QD) ”VDHdlv,QD

vp#0
Tgf . rg
Q ol .

Sup . > Br,slITslldivy 506 VTs € Ho(divys; Qs), (3.43)
rgel2 (2g) Irsllo.s

rs#0

with Sy, f1,5 > 0. Indeed, for (3.42) we refer to [27, Lemma 3.3]. However, for sake of completeness,
most details are given in what follows. Given ¢ € H-Y/2(X), we define n € H-1/2(00p) as

(0, CQaap = (¢, Cs)y V¢ € HY2(90p), (3.44)

where (y, is given by the decomposition (3.39). It is not difficult to see that

(0, Erp.p(p))oap, =0 Vpe H (Tp), (3.45)
(0, Ep())any, = (6,6)s  VE € HY/2(D) (3.46)

and
19l -1/2.00, < Cllél-1/25 - (3.47)
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Hence, we now define wp := Vz € Qp, where z € H'(Qp) is the unique solution of the boundary
value problem

1
Az = ——(n oo, in Op, Vz-n=n on 0Qp, / 2=0.
193] .

It follows that div(wp) = |Q—1D|<7], Doa, € Po(2p), wp-n =non 0Qp, and, using the estimate (3.47),
Wb llaiviep < Clinll—12,00, < Cll¢ll—1/2,5- In addition, according to (3.44), (3.45) and (3.46), we
find, respectively, that

(Wwp-n,&§)s = (wp-n,Ep(§))aay, = (0, Ep(§))aa, = (¢, &)s

and
(wWp 1, Erp, p(p)oc, = (1, Erp.p(p)oa, =0 Vp € Hy)'(Tp),
which implies that wp € ﬁo (div; Qp). In this way, we conclude that

<VD'n7§>Z > |<WD'n7€>E‘ > C ‘<¢’§>Z} V¢€H_1/2(Z)

sup

vpEH(divip) HVDHdiV;QD N HWDHdiV;QD B H¢H—l/2,2
VD7£0
and hence ‘< > }
vp &)y ?,8)x
L el Y
vpEHq(diviQp) HVDHdiV;QD pet—1/2(x) H¢||—1/2,E
vp#0 $7#0
which confirms (3.42). On the other hand, given 75 € ﬁo(div4/3; Qg) such that 7¢ # 0, we have that
73 € L2 (), so that bounding the supremum in (3.43) by below with rg = —7¢, it follows that
/ i irg / ol
Q Q
sup 2 > =5 = |Im$lo:s »
rgel2 (2g) HrSHO,Qs HTS”QQS
rs#0

which, using (3.35) and the fact that div(7g) = 0, implies that (3.43) is satisfied with constant
B1,s = c4/3(Qs). On the other hand, if 7¢ = 0, it is clear from (3.35) that 75 = 0, and so (3.43) is
trivially satisfied. O

Lemma 3.4. There exists a positive constant o such that

[a(F),T] > oo |[F|k Ve X.

Proof. Given F:= (rg,vp) € X, we use the definition of a (cf. (3.10)), (2.2), and (3.36), to obtain

[a(F),¥] = | wprs:rs+ [ K 'vp-vp > mllrslios + Cx Ivolia, > aallFlx,
QS QD
1
with a4 = imin{ul,CdivCK}, thus confirming the required property on a. In particular, since
K C 5(, it is clear that a is KC-elliptic. O

As a consequence of Lemma 3.3 and Lemma 3.4, we conclude that a, b; and by satisfy the hypotheses
of Theorem 3.1, and hence, a straightforward application of this abstract result yields the existence
of a positive constant aa, depending on ||a||, oy and Sy, such that

> aa |(C,)lxxy V(C 7)€V, (3.48)
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Moreover, if we swap the roles of by and bs, changing the matrix from (; lg) to <I§L lg), we can
2 1

reapply Theorem 3.1 and (3.23) to conclude that, with the same constant aa from (3.48), there holds

A C, i r, T = = - —
sup B ED] o i Fley VEF) €V
Gmev (6 7)[Ixxy
(¢,77)#0

Furthermore, it is evident from (3.12) and the ellipticity of a in 5{, that
A7), (F,7)] = [0(F),7] > aa[flx Y7 eXxY,
which proves that A is positive semi-definite.

Lemma 3.5. There holds
[C(V),V] >0 VVEZ.

Proof. From the definition of the operator C (cf. (3.10)), it readily follows that

n—1
[C¥), V] =D w'lY-tlfs >0 vVeZ,
=1
which confirms that C is positive semi-definite. ]

In this way, we have demonstrated that A and C satisfy hypotheses i) and ii) of Theorem 3.2,
and hence it only remains to show the corresponding assumption iii), which is the continuous inf-sup
condition for B with respect to the third component Z of the kernel V of B (cf. (3.33), (3.34)).

Lemma 3.6. There exists a positive constant Bg such that
B(r,7),Vv
wp BEDT

(F,7)eXxXY H (F "_") ||
(F,7)#0

> Bg|¥llz VVeEZ. (3.49)

Proof. Given V := (vg,v) € Z = L*(Qg) x 1?1[1362(2), we first realize, taking T := (rg,vp) = 0 and
7= (75,§) = (75,0), that

sup [ (f ?){V] > sup DB(07(7570»76]

(F.7)el [, 7) e — T5€Hy(divy/3:2s) HTSHdiVAL/S;QS

(ra7)750 TS7£0

. 3.50
(Tsn,9)x +/ vs - div(Tg) (3:50)
= sup s
Tg€Hy(divy /3:0g) ||TS||diV4/3§QS
T5#0

Next, setting 75 := 750 + cl € H(div,/3;{2s) with the respective components 75 € Ho(divy/s;{s)
and c € R, we observe that

/ v - div(rs) = / vs-div(rso),  (rsma)s = (rsom s, and
Qg Qs

s + 2]

HTSHaivMS;QS = |
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Hence, noting that [|7sl|div, 505 = [[7s0lldiv, 504, we find that

(Tsomn,P)s + / vg - div(Tgp) (Tsn,¢)x +/ vs - div(Tg)
Qg Qg
sup > sup )
75,0€Hp (divy /3:029) 75,0 ||diV4/3;Qs T €H(divy /3:Q5) I7s ||di"4/3?95
735,07%0 7570

which, along with (3.50), implies that in order to conclude (3.49), it suffices to show that there exists

a positive constant 3g, independent of the given Vv := (vg, 1) € Z, such that

(Tsn,¥)s +/ vs - div(Ts)

Q
sup : > B {IWlhz00s + vslosas}. (351
TSEH(div4/3;QS) HTS||diV4/3;QS
T5#0
To this end, we now set Vg := |vs|? v and notice that ”95”3/5/3-93 = ||V5”é’4;QS, which says that
vs € L¥3(Qg), and
[ vs-9s = Ivsllosns 9sloasa- (3.52)
S

Then, we let z € H!(Qg) be the unique solution of
Az =vVg in Qg, 2z=0 on I's, and Vzn=0 on X,

whose variational formulation reads: Find z € H%S (Qg) such that
VZ'VW:/ Vs W VWEH%S(QS), (3.53)
Qs Qs

where

H%‘S(QS) = {WEHl(QS): w=0 on FS}-

In fact, we first notice that the left-hand side of (3.53) defines an H%S(QS)—elliptic bilinear form. In
addition, Hélder’s inequality and the continuous injection iy from H!(Qg) into L*(Q2g) guarantee that
the right-hand side of (3.53) constitutes a functional in H%S(Qs)’ . Consequently, a straightforward
application of the classical Lax—Milgram Lemma implies the existence of a unique z € H%S(QS)
solution to (3.53). Moreover, it follows from (3.53) that

1z[1,06 < cslliall IVslloassias (3.54)

where ¢, is the positive constant, depending only on 2g, provided by the Poincaré inequality, that is
such that ||v|1,0s < cs|v]1,0g for all v e H%S(QS). Then, defining 75 := —Vz € L%(Qg), we see
that div(Ts) = Vs in g, which says that actually 75 € H(div,/3,{s), and that Tsn = 0 on ¥, so
that using (3.54), we get

17 slldivy 0 = [2l10s + [1Vslloa/zos < (1 + cslliall) 1Vslloa/3:0s - (3.55)

In this way, bounding by below with 7g, and employing (3.52) and (3.55), we deduce that

(Tsmn,¥P)y + / vg - div(Tg) /Qs vg - div(Tg)

sup s = T
T g€H(divy /3:Qg) HTSHdi"Al/S?QS HTSHdiVM?’;QS
vy (3.56)
VS VS vsloans I9s]
Q S110,4;9 5110,4/3;2
_ Jos _ 405 /395 > By [vslloans
17 diva s 17 slldiva 505
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with Bg; == (1 + ¢ Hi4|])71. On the other hand, given n € HEOI/Q(E), we let Z € H%S(QS) be the
unique solution of

—AzZ =0 in Q¢, 2z=0 on I's, Vzn=n on X,
and define Tg := Vz in Qg. It follows that div(Tg) = 0 in Qg, Tsn =n on Ig, and
||?S”div4/3;9s = ||?S||0,Qs < C||"7||—1/2,00;27 which yields

<Tsn, ’l/!>z; + / Vg - diV(Ts)

sup s > /(\Tsnn/))g > B M7
g €H(divy /5:03) ”TS”div4/3;95 ”TS|’diV4/3;Qs ”anl/Z,OO;E
T5#0

with Bgy = C—1. Since n e Haol/ 2(2) is arbitrary, the foregoing inequality leads to

<T5n,'l,b>2 + / Vg - diV(TS)

Qg

sup > Bs2 [¥l1/2,005
5 €H(divy /3:05) HTSHdivz;/s;Qs
T5#0
which, along with (3.56), shows (3.51), and hence (3.49), with B¢ := 3 min{Bg, 852} O

Consequently, having the bilinear forms A, B, C satisfied the three hypotheses of Theorem 3.2,
a straightforward application of this abstract result yields the existence of a positive constant c,
depending on ||A[], ||C||, @a, and Bg such that

AL, 7, 2), (F 7,V U L
swp MEAEETI] S GyE G5l VETD T,
(F,7,9)eV H(I‘,T,V)HH
(F,?,G)#O
and .
A 0, 2 r, T,V ~ - = — - = = i
sup [ (CaTi)u£r7T7V)] > 04”(1'77'7V)HH V(I',T,V) GV,
& a2)ev 1(¢, 7, Z) lm
(¢,1,2)#0

which means that A satisfies the assumptions i) and ii) of Theorem 3.1. Thus, it only remains to
demonstrate the corresponding assumption iii), which is the continuous inf-sup condition for B.

Lemma 3.7. There exists a positive constant B such that

ﬁ - o o\ =
wp BEF9.4

(F,7,v)€H || (Fa 7_"’ ‘7) ||H
(F,?,V)#O

> Blldla  VYdeQ. (3.57)

Proof. We first observe that the diagonal character of B (cf. (3.15)) says that proving (3.57) is
equivalent to establishing the following two independent inf-sup conditions

/ qD diV(VD)
Qp

sup > Bpllanlloe, Yap € L3(Qp), (3.58)
vpEHQ(divip) Ivplldiv.op
vp#0
] ‘n, 1 ~ . )
sup S@ LS S Gos vieR, (3.59)
¢€H(1)é2(2) ”"/”‘1/2,00;2
P#0
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To this end, we proceed similarly to the proof of [26, Lemma 3.6]. We define vp := Vz, where
z € HIE(Q p) is the unique solution of the boundary value problem:

Az =¢qp in Qp, z=0 on X, Vz:n=0 on Ip.

It follows that vp € Hy(div;p) and div(vp) = ¢p, which yields the surjectivity of the operator
div : Ho(div; Qp) — L3(Q2p), which is (3.58). On the other hand, the inf-sup condition (3.59) reduces
to the surjectivity of the operator ¥ — (1 - n, 1)y from HY/?(X) — R, which in turn is equivalent to
showing the existence of v, € Hl/Z(E) such that (¢ - n,1)s # 0. In fact, we pick one corner point
of ¥ and define a function v that is continuous, linear on each side of ¥, equal to one in the chosen
vertex, and zero on all other ones. If n; and ny are the normal vectors on the two sides of ¥ that
meet at the corner point, then 1 := v(n; + ny) satisfies the required property. Finally, the required
inequality (3.57) is obtained with 8 := min {8s, 8p}. O

Now, having the bilinear forms A and B satisfied the assumptions of Theorem 3.1, a direct ap-
plication of this abstract result guarantees the global inf-sup condition for P (cf. (3.16)), that is the
existence of a positive constant ap, depending on @, 3, and ||A||, such that

P67ﬁ7 7§7FT7{;7& 2 5 o - 2 5 o

swp PG 25 Ls ap @2 9)0ma Y725 clxQ.  (3.60
(@roaexq (T

((F,7,9),§)#0

In turn, if we consider the transpose of P, which simply reduces to exchange the bilinear forms b,
and by in (3.12), we conclude that inf-sup conditions are satisfied by P with respect to the other
component, that is

[P(¢,%,2,5), (F, 7, V, )] Lo

> ap ||(F,7,V,§)|luxq YV (¥, 7,V),q) e Hx Q. (3.61)

sup -
((&,71,%),8)erxQ ||(C77772aS)HH><Q

((¢,1,2),5)#0

Moreover, employing (3.60) and the boundedness property of b (cf. (3.32)), it readily follows that,
given wg € L4(Qg), there holds

S 7 v.d > (ap — pllwslosas) 1.7, 2.8l
T, 7.9),9)€HxQ H(I',T,V,q) HxQ ( S) s 1)y < xQ

(77,9
((¥,7,¥),§)#0

for all ((C,7,%),8) € H x Q, and hence, for each wg € L*(Q0g) such that wslloa0s < z—P, we get
p
PE?ﬁ)‘gvg? 17,7_'),\7(_1' +bWS,uS,I'S ap 2 5 o oo
sp  LGTES OV, 4+ V> P E A (362
(F7.9),8) € xQ (T, 7, V. §)|luxq 2
((¥,7,v),d)#0

for all ((E, 1,Z),8) € Hx Q . Similarly, but now using (3.61), and under the same assumption on wg,
we arrive at

P67ﬁ727§7 F,?,\?(i +bw57u57r5 ap - o o
ap  PEBED T DN ) O e Fvd)lg  (363)
((€.7,%) 9)eHxQ 1(¢; 7, 2, 8) [luxq
((€:7.2).9)#0

for all ((¥,7,V),q) € Hx Q.

Consequently, the well-definedness of the operator T can be stated as follows.
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o'
Theorem 3.8. For each wg € L4(Qg) such that |wslloa0s < Q—P, there exists a unique solution
p

((‘E, &,4d),p) € Hx Q solution to (3.19), and hence we can define T(wg) := ug € L*(Qs). Moreover,
there holds

IT(ws)lloas0s = l[uslloses < (£, 4, 8)|luxq

2 ~
< . {Hg||1/2,00;rs + Ifsllo,a/304 + ||fD||079D}'

(3.64)

Proof. Given wg as indicated, the existence of a unique solution to (3.19) follows from (3.62), (3.63),
and a direct application of the Banach-Necas-Babuska Theorem (see [19, Theorem 2.6]). In turn, the
corresponding a priori estimate and the boundedness of H (cf. (3.31)) yield (3.64). O

3.3.3 Solvability analysis of the fixed-point scheme

Knowing that the operator T (cf. (3.18)) is well-defined, in this section we proceed to establish the
existence of a unique solution of the fixed-point equation (3.20). To this end, in what follows we will
first derive sufficient conditions on T to map a closed ball of L*(2g) into itself. This will allow us to
apply the Banach Theorem later on. Indeed, from now on we let

(0%
W = {WS S L4(Q5) : ||WS||074;QS < 2;)} .

Lemma 3.9. Assume that

2
loop < e (3.65)
I — 4p

Igll1/2,0005 + fslloa/z0s + 1D
Then, there holds T(W) C W.

Proof. Given wg € W, we know from Theorem 3.8 that T(wg) is well-defined and that there holds

2 ~ ap
{1811 2005 + Ifslloasse + Ifploa} < 5F. (3.66)

T _
|T(ws) - %

lo,4:04 <

which shows that T(wg) € W. O

We continue with the following result providing the required continuity of T.

Lemma 3.10. There holds

4p [~
IT(ws) - T(ws)lo.aas < —5 {IEly200ms + WEsloasas + Iflloan } Iws = wslosas (3.67)
P

for allwg,wg € W.

Proof. Given wg, wg € L*(Qg), we let T(wg) := ug and T(wg) := ug, where ((t,&,d),p) € Hx Q
and ((t, &, u),p) € H x Q are the corresponding unique solutions of (3.19), that is

[P(t,é,1,p), (T, 7,¥,§)] + b(wg;ug,rg) = [H, (I, 7,¥,§)] V(F,7,V),§) € HxQ (3.68)
and

[P (Ea

=1
]!

)7 (I_:a 7_:7‘7’ ‘j)] + b(ﬂS;HSHrS) = [Hv (I_:a ’7_",\_/", (j)] V((F,?,G), ‘j) € H x Q . (369)

1Qu

Y )
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Then, applying the inf-sup condition (3.62) to (¢, 7, Z,s) = (t,&,4,p) — (t, &, 4, p), we obtain

[P(( ,&,ﬁ,ﬁ) - (Evévﬁvﬁ))’ (f‘:’?,\?, ‘i)] =+ b(WS;uS - HSarS)

’ JEr— )

< SUP

. o 2 b(wg —Wg;ug,rs)
[(t,0,4,p) — (t,6,4,P)laxq < —  sup =L (3.70)
£/HxQ OP ((77,9),d)€HxQ (¥, 7, ¥, q)HHXQ
((F,7,9),§)#0
In turn, using the boundedness of b (cf. (3.32)) and the a priori estimate for
= IT(ws)llo.:0s
given by (3.64) (cf. Theorem 3.8), it follows from (3.70) that
2p
IT(ws) — T(ws)lloans = lus —ugllosas < ap [ws — Wgllo.a0s [[usllo.a:0s
4p (1~
< o2 U&hyzoors + Mslloasns s = wloas
which confirms the announced property on T (cf. (3.67)). O

The main result concerning the solvability of the fixed-point equation (3.20) is stated as follows.

Theorem 3.11. Assume that

2

(6%
< £

4p

I18ll1/2,00rs + Ifslloa/z:0s + IIfD

Then, the operator T has a unique fized-point ug € W. Equivalently, problem (3.17) has a unique
solution ((t,&,4d),p) € H x Q with ug € W. Moreover, there holds

—

oL 2 ~
|(t,0,4,D)|luxq < op {Hg||1/2,oo;rs + | + ||fD||O;QD}' (3.71)

Proof. Thanks to Lemma 3.9, we have that T maps W into itself. Then, bearing in mind the Lipschitz-
continuity of T : W — W (cf. (3.67)) and the assumption (3.65), a straightforward application of the
classical Banach theorem yields the existence of a unique fixed-point ug € W of this operator, and
hence a unique solution to (3.14). Finally, it is easy to see that the a priori estimate is provided by
(3.28) (cf. Theorem 3.1), which finishes the proof. O

4 The discrete analysis

In order to approximate the solution of (3.9), we now introduce its associated Galerkin scheme, analyze
its solvability by applying a discrete version of the fixed-point approach introduced for the continuous
analysis, and derive the corresponding a priori error estimates.
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4.1 The Galerkin scheme

We first consider a set of arbitrary discrete subspaces, namely
L%(Q*) - LQ(Q*) * € {S, D}, H,(Qp) C H(diV; QD) , Hh(QS) C H(diV4/3; Qs) , (4.1)
1
Li(Qs) CLYQs),  AJ(E) CHy'(®), and AP(E) C HYA(®),

so that, denoting by 7 ; the i-th row of a tensor 75, we set
L n(Qs) = [LR(Qs)] " NLE(Qs),  Hpo(Qp) == Hy(Qp) N Ho(div: Qp)

HA(Qs) = {75 € H(divas; ) . 755 € Hi(Qs) Vif, A :=Ri®), (42
Hp0(s) := Ha(Qs) NHo(divyys; Qs), and Li(Qp) == Li(2p) NL5(2p) -

—

Then, defining the global spaces, unknowns, and test functions as follows

Xp = 1LE ,(Qs) x Huo(0), Yy i=Hpo(2s) x AP(S),  Zy:=Li(Qs) x AR (E),

: (4.3)
Hy =X, x Yy X Zp, Qh = Lh,O(QD) xR,

th = (tsp,upn) € Xy, Gn:=(Fsn ) € Yy, ip:= (usn, @) €Zn, By:= 0o ln) € Qn,
th = (rsn,vpn) € Xny Th = (Tsh &) € Yn, Vi = (Vsn V) €Zn, G, :=(apn,j) € Qn,

Chi=(Conrzpp) € Xny i = Mgps9n) € Yn,  Zn:=(2sp,#4) € Zn, Sn:= (spp k) € Qn,

the Galerkin scheme associated with (3.9) reads: Find ((,, &, 1), B),) € Hy x Qy, such that

la(€r), Fp] +[b1(Fr), &4 - /Q pp,rndiv(vp p) —blugpiugh,rsn) =0
= Lo Jep
[b2(tr), 71l +[B(Fh, Th), dn] =(Ts5,rn, 9)rg
(B(E4.51). 9] —~[C(¥h). Gy iy, -0 1) p = [ fs-vsa (4.4)
Qg
+i(ep -n, 1)s =j(g-n,rg
- / ap,n div(up p) = - / fpap,n
/Qp Jap

for all ((¥, Th,Vr),q)) € Hp x Qp. Similarly, the ones associated with (3.14) and (3.17), which are
certainly equivalent to (4.4), become, respectively: Find ((Eh, Gn,up),pp,) € Hy x Qp, such that

[A(Eh, Gn,idn), (Fn P, Vi) +  [BEn P4, V0),Bn) + blugpsusprsy) =[G, (Fn, Fa, V)]
[B(th, n, tin), G = [F,qp)
for all ((Fn, 7, V4),Gy) € Hy x Qp and: Find ((ty, &4, 1), By,) € Hj, x Qp, such that
[P(th, &h, T, Br), (Fhs Tho Vi, )] + b(ug s Wsp, tsp) = [H, (Fa, Ty Vi, G)] (4.5)
for all ((¥n, Th,Vn),ds) € Hp X Qp.

In what follows, we adopt the discrete version of the fixed-point strategy employed in Section
3 (at the end of Subsection 3.2) to study the solvability of (4.5). For this purpose, we now let
Ty, : L%(QS) — L%(QS) be the operator defined by

Th(WS,h) = ugp Vwgy € L%(QS), (4.6)
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where ug, is the first component of ), € Zj, which in turn is the third component of the unique
solution (tp, &, Up) (to be proved later on) of the linearized problem arising from (4.5) after replacing

b(ugp;ush, rsy) by b(Wsp;usy, rsp), namely:
[P (th, &1 tns Br)s (Fs Frs Vo @) + 0(Wo i s s Ts ) = [H (Fns Fro Vi @) (4.7)

for all ((¥p, Th,Vh),q,) € Hp x Qp. Thus, we realize that solving (4.5) is equivalent to finding a
fixed-point of T}, that is ugy € Li(Qs) such that

Th(uS’h) = uS’h. (48)

4.2 Solvability analysis

Similarly to Section 3.3, in what follows we address the solvability of (4.5) by means of the corre-
sponding analysis of (4.8).

4.2.1 Preliminaries

In addition to the finite dimensional versions of the Babuska-Brezzi theory in Banach spaces (cf.
Theorem 3.1) and the Banach-Necas-Babuska theorem, here we will also need the discrete version of
Theorem 3.2, which is stated next.

Theorem 4.1. Let H and Q be reflexive Banach spaces, and leta: H x H - R, b: Hx Q — R and
c:Q x Q — R be given bounded bilinear forms. In addition, let {Hp}p~o and {Qp}r>o be families of
finite dimensional subspaces of H and Q, respectively, and let V, be the kernel of b|m, xq, that is

Vy, = {Th € Hy:  b(mh,vp) =0 Vo, € Qh}
Assume that

i) a and c are positive semi-definite, and that c is symmetric,

ii) there exists a constant ag > 0 such that

a ﬁh Th
sup (0, 7h) > g |[9llg VO, € Vi,
mev | ThllH
Th7$0

iii) and there exists a constant 34 > 0 such that

b Th, Uh
sup M > Ballonllg Yun € Q-
ety ||TnllE
Th750

Then, for each pair (f,g) € H' x Q' there exists a unique (op,up) € Hp X Qp such that

a,(O'h,Th) + b(Th,uh) = f(’i‘h) Y1, € Hy,,

blop,vp) — clup,vp) = g(vp) Yo, € Q. (4.9)

Moreover, there exists a constant Cq > 0, depending only on ||a|, |||, oa, and Ba, such that

(on un)llzx@ < Ca{llflla +llglle} -
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We stress here that the discrete analogue of (3.26) is not required for Theorem 4.1. Indeed,
since Hp, x Qp is the space to which both the unknowns and test functions of (4.9) belong, the
corresponding finite dimensional version of the Banach-Necas-Babuska Theorem (cf. [19, Theorem
2.22]) only requires the discrete analogue of (3.29), for which the already described hypotheses of
Theorem 4.1 suffice.

4.2.2 Well-definedness of the operator T},

We begin by providing the preliminary results that are necessary to show that (4.7) is uniquely solvable.
Once this is established, we address later on the well-posedness of (4.8), and consequently of (4.5).
Indeed, following a similar procedure to that of Section 3.3.2, we first note that the kernel \N/h of
ﬁ‘HhXQh reduces to

\~/'h ::ithhxzh,

where _ B ~ g
X, = Lfr,h(Qg) x Hpo(Qp) and Zj = L}(Qs) x A, (D),

with

ﬁh70(QD) = {VD & Hh,g(QD) : / 4D diV(VDJL) =0 VqD S L%,O(QD)} , and
Qp

(4.10)
An(®) = {wn € A () n 1) =0}
Then, the kernel Vj, of B|\~,h reduces to
Vi, = Xp, x Yy,
where
?h = {Fh = (TS,hagh) S Yh : /Q VSh - diV(Tsyh) =0 and
S
(Up - n,8)s = —(Tspun,Yp)s VVsh = (Vsn, ¥y) € Zh} '

At this point, we notice that Y, C Iﬁlh’g(QS) x AP(X), where

]ﬁlh,g(QS) = {TS,h c Hh,O(QS) : /Q VSh - diV(TS’h) =0 VVSJL S L%(Qs)} . (4.11)

S

We now proceed similarly to [10], and introduce suitable hypotheses on the spaces defined in (4.3)
to ensure the well-posedness of (4.7). We begin by noticing that, in order to have meaningful spaces
Hp, 0(Qs) and L%,O(Q D), we need to be able to eliminate multiples of the identity matrix and constant
polynomials from Hj, o(2g) and Li,o(Q D), respectively. This is certainly satisfied if we assume:

(H.O) Po(QD) - L%(QD) and I € Hh(ﬂs).
In addition, we consider the following further hypotheses
(H.1) div(H,(Qp)) C Lj(2p),

(H.2) div(H(Q2s) € L} (Qs),

(H.3) o = {8, 7sncHaof C L2,(Qs),
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(H.4) there holds the discrete analogue of (3.42), that is there exists a positive constant ﬁ(li,E’ inde-
pendent of h, such that

(VDh -1, &n)s

sup
VD1 lldiviop

vp,h€Hp 0(2p)
vDp,n#0

> Bislénllijps VEEAR (D), (4.12)

(H.5) there holds the discrete analogue of (3.51), that is there exists a positive constant B%, indepen-
dent of h, such that

(Tspn, ¥p)s + / Vs - div(Tsy)

Q
sup E > 6% {HVS,hHOA;Qs + H’d’h”l/Q,OO;E}v (4.13)
TS,hEHh(QS> ||Ts,h||diV4/3;QS
75,70

for all Vs := (Von, ¥y) € Lj(Qs) x AF(S),

(H.6) there hold the discrete analogue of (3.58) and a sufficient condition for the discrete analogue of
(3.59), that is there exist a positive constant 3%,, independent of h, and ), € Héé2(2), such that

/ qp,n div(vpp)
Q ~
Sup ; > % lapnlloos Vapn € LiO(QD), and (4.14)
vp,h€Hp 0(2p) HVD,thiv;QD
vDp,h#0
Yo € AE(Z) Vh, (Yo m,1)s #0. (4.15)

We highlight here that as a consequence of (H.0) we can employ the discrete version of the decom-
position H(divys;s) = Ho(divy,s; Qs) © RI, namely Hj(Qs) = Hy(2s) @ R, thanks to which
Hp, 0(2s) can be used as the subspace where the unknown og, is sought. However, for the computa-
tional implementation of the Galerkin scheme (4.7), which will be addressed later on in Section 6, we
will utilize a real Lagrange multiplier to impose the mean value condition on the trace of the unknown
tensor lying in Hy ,(Qs). In turn, it follows from (H.1) and (4.10) that Hy, o(Q2p) reduces to

I’:I}LQ(QD) = {VD,h c Hh,O(QD) : diV(prh) S P()(QD)} .
Similarly, thanks to (H.2) and (4.11), }ﬁlh,o(QS) becomes
Hy,0(Qs) = {TS,h € Hpo(Qs):  div(Tsy) = 0}7 (4.16)

which yields the discrete analogue of (3.43) with constant ff g. In fact, given 75, € }ﬁlh,o(QS) such
that 7%, # 0, we realize, thanks to (H.3), that rg;, := —7%, € L2 , (Qs), and hence, along with the
inf-sup condition from (H.4), we deduce the discrete version of (3.40) holds, that is, the existence of
positive constants 3%, i € {1, 2}, independent of h, such that
bi(th), Th - J—

sup bi(Fn). 7] Z(q) ] > B Tully VTR E Y.

sex, ITallx

£, £0

Furthermore, we remark that, similarly to the analyses in the proofs of Lemmas 3.6 and 3.7, (4.13)
(cf. (H.5)) is a sufficient condition for the discrete version of (3.49), whereas (4.14) and (4.15) (cf.
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(H.6)) are equivalent to the discrete version of (3.57). We denote the constants involved in these
discrete inf-sup conditions by B4 and 4, respectively.

Thus, having A and B satisfied for the present discrete scheme the hypotheses of Theorem 3.1
with constants agq and ﬁd, we conclude, similarly to the continuous case, the existence of a positive
constant ap g, depending on agq, 5d, and HAH and hence independent of h, such that

sup [P(Chaﬁhazhagh)a(Fhthvvhaah)]

((Fp TR Vp).d@p) EHY X Qp, H ((Fha 7_"ha Vh)a Ejh) ||H><Q
((Fr,7h,Vn),d1)#0

> ap.a [(Cps Tins Zhs 8n) |l HxQ » (4.17)

for all ((Fr, ¥4, V4), @s) € Hy, x Qp, and thus, for each wg,, € L (Q) < a21°7d,
p

there holds

sup [P(Chs7ins Zh,Sh)s (fh,fh,fh,?h)] + b(Ws i ush, Ts,n)

((Fp TR Vp),dp) €EHE XQyp, ||(I‘h,Th,Vh, qh)HHXQ
((Fn,Th,Vh),Gn)#0 (4.18)
OéP’d 2 L4 L o - - - —
Z 5 |(ChsTins ZhsSh)lHxqQ YV ((Fh, Thy Vi), G),) € Hip x Qp.

According to the above, we are now in a position to present the discrete analogues of Theorem 3.8,
Lemma 3.9, and Theorem 3.11, whose proofs follow almost verbatim to those for the continuous case,
and hence only some remarks are provided. We begin with the well-posedness of (4.7), which is the
same as establishing that T}, is well-defined.

ap 4
2p
((th, G, 1), d,) € Hx Q to (4.7), and hence we can define Ty(wgy) = usy, € Li(Qs). Moreover,

there holds

Lemma 4.2. For each wgy, € L}(Qg) such that ||wgp| , there exists a unique solution

ITh(wsn)lloans = lushllosas < (€, Gn,dn, B)llHxQ
2 {15 (4.19)
< o {||g|\1/2,oo;rs + IIfsllo.4/3:05 + HfDHO,QD},

)

Proof. Given wg, as indicated, and bearing in mind (4.18), it suffices to apply the discrete version
of the Banach—-Nec¢as—Babuska Theorem (cf. [19, Theorem 2.22]) and its corresponding a priori error
estimate. [

We continue with the discrete analogue of Lemma 3.9, that is the result ensuring that Tj maps a
ball of L} (Qs) into itself.

Lemma 4.3. Let Wy, be the ball

@
Wy = {WS,h eLi(Qs):  |wsnlosns < ;p’d} :
and assume that
2
~ ap 4
181l1/2,00,16 +Ifpllogy, < o (4.20)
Then, there holds Tp(Wp) C Wy,
Proof. Tt follows straightforwardly from (4.19) and (4.20). O
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The discrete analogue of Theorem 3.11, that is the unique solvability of (4.8), and hence, equiva-
lently that of (4.5), is stated next.

Theorem 4.4. Assume that

2
ap 4
4p

Igll1/2,0005 + fslloa/sos + I fplloop <
Then, the operator T}, has a unique fized-point ug ) € Wy,. Equivalently, problem (4.5) has a unique
solution ((tn, &'y, up),Pp,) € Hy x Q with ugy € Wy,. Moreover, there holds
2

(€ GnstnBi)llsxe < —— {[Bl2ors + Ifsloamas + Ifollomy }- (421

Proof. Similarly to the proof of Theorem 3.11, it reduces to employ (3.32), (4.7), (4.18) and (4.19) to
prove that T}, : Wy, — Wy, is a contraction, and then apply the Banach fixed-point theorem. ]
We end this section by providing sufficient conditions for (4.12) and the particular case arising from

(4.13) when vgj, = 0, that is for the existence of positive constants 3§, and ,Bg,g, such that

(VD 1, &)y

Sup > Bislénllijes  Vé €AL(S), and (4.22)
vp,r€H} 0(Qp) ”vD,thiv;QD
vp,n#0
(Tsnn, Pp)s
sup T > B [y llis00s Y, € AR(S), (4.23)
TS,hE]ﬁh(QS) HTS,thiV4/3;95
75,n 70

where ]ﬁlh(QS) = {Ts’h € Hp(Qg) :  div(Tgy) = 0}. In this regard, we first notice that the above

inequalities, which deal with how the normal components of elements of ﬁh,o(Q p) and Hy(Qg) are
tested against AP (X) and A7 (%), respectively, are shown below to be related to the eventual existence
of a stable discrete lifting of the normal traces on X. Indeed, in order to establish (4.22) and (4.23),
it suffices to prove that for each x € {D, S } there exists a positive constant ﬂf’z, such that

(Vi -1, &)y
sup —— =

vy €Hp (24) HVthwﬁh
v #0

> Bisllénlhze  VEEALR), (4.24)

where

H,(Qp) = {vh €Hyo(Qp):  div(vy) € PO(QD)}, and

ﬁh(Qs) = {Vh S Hh(Qs) : diV(Vh) = 0} .

Next, for each * € {D, S } we define
T1(D) = {Vh-n]g: Vi efIh(Q*)}, (4.25)

and assume that the linear operator v, — vy, - n from Hy(£,) to @7 (X)) has a uniformly bounded
right inverse, which means that there exists a linear operator L} : ®;(3) — Hj(£2,) and a constant
cs« > 0, independent of h, such that

1L (0 ldivie. < cxlldnll—1/2,n, and

Li(¢n) n = ¢, on ¥ V¢,e€ Pp(N).

(4.26)
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Such a uniformly bounded right inverse £; of the normal trace will henceforth be referred to as a
stable discrete lifting to €2,. Note that by [18], existence of L} satisfying (4.26) is equivalent to the

existence of a Scott—Zhang type linear and uniformly bounded operator = : H(div; ) — ﬁh(Q*),
such that

i (va) =vh VvpeHp(), and v.-m=0 on Y= (7}(v))-n=0 on X.

The following lemma, taken from [26, Lemma 4.2], reduces (4.24) to the inherited interaction
between the elements of @7 (X) and Aj(X).

Lemma 4.5. Assume that there exists a stable discrete lifting to Q.. Then (4.24) is equivalent to the
existence of a positive constant 32, independent of h, such that

sup (Ohh)z > B énllijee Vén € ALE). (4.27)
PpERT (D) ||¢hH71/2,E
¢n#0

We have thus proved that the existence of stable discrete liftings to Qg and Q2p together with the
inf-sup condition (4.27) constitute sufficient conditions for (4.24) to hold. In this respect, we find it
important to emphasize that (4.27) deals exclusively with spaces of functions defined on 3.

4.3 A priori error analysis

In this section we consider finite element subspaces satisfying the assumptions specified in Section
4.2.2, and derive the Céa estimate for the Galerkin error

It —tplluxq = [t —tullx + (|6 — Gnlly + [[U—Urllz + |IP — Brllq .,

where t := (t,6,4,p) € H x Q and t;, := (t,, &, 6y, P),) € Hy x Qp are the unique solutions of
(3.17) and (4.5) respectively, with ug € W and ug, € Wy. In what follows, given a subspace Zj, of
an arbitrary Banach space (Z, || -[|z), we set

dist(z, Z5,) = 211612 Iz = znllz Vze Z.
h h

We begin by observing from (3.16) that for each r;, := ((¥n, Th,Vn), ds) € Hp X Qp, there holds
[P(t),r)] + b(us;us, rsp) = [Hrp),
which combined with (4.5), yields for each r;, € Hj x Qp,
[P(t —t;),r;] = b(usp;usn, rsp) — blus;us, rsp) . (4.28)
Now, the triangle inequality gives for each ¢, € Hj, x Qp,
[t = tplluxq < (It = ¢, lluxq + [, — tulluxa, (4.29)

and then, applying (4.17) to gh —t;,, subtracting and adding t in the first component of P, using the
boundedness of P with constant ||P||, and employing the identity (4.28), we find that

[P(C _Eh)uih]
apqllC, —thllmxq < sup =h
r, €Hp X Qp lrsllrxqQ
Ly
[P(E_Eh)v£h]
< |IP|lt—=¢, lluxq + sup ————T—=
= memxq,  ThllExQ (4.30)
Lp
b(uSh;USh,rSh) - b(uS;US,I’Sh)
< Pt -¢, laxq + sup ’ ’ ’ h)
R ey el < Q
r,#0
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In this way, replacing the bound for ||, —t;|lmxq that arises from (4.30) back into (4.29), and taking
infimum with respect to r;, € Hj x Qj we deduce that

P
[t —thlluxq < <1 + ’”) dist(t, Hj, x Qp)
apd

1 b(ugn;ugp,rsn) — blus;ug,rgp) (4.31)
+—— sup ,
QP d r,eH,xQp, ||£hHH><Q
Iy

which basically constitutes the Strang-type estimate for the joint setting formed by (3.17) and (4.5).
Next, in order to estimate the consistency term given by the supremum in (4.31), we subtract and
add ug in the second component of b(ugp;ugp,rs ), and then invoke the boundedness property of
b (3.32), and the a priori estimates (3.71) and (4.21) for ||ug|lo40s and ||ugsllo40g, respectively,
thanks to all of which we obtain

b(ugn;ugn,rsp) — b(ug;ug,rsp) = blugp;ugy —ug,rsy) + blugy, — ug;ug, rgp)

dp ([~ (4.32)
< ap {Hng/2,oo;FS + fsllo,4/305 + [IfD O,QD} [us — usnllos0s [rsnllos
where @p := min {ap, apq}. Hence, replacing (4.31) in (4.32), we conclude that
B Py
It —tpllmxq < (1+ . dist(t, Hy, x Qp)
4 : (4.33)
+ a2 {H§||1/2,00;F5 + fslloa/z0s + ||fD||0,QD} |lus — ugplloa0s -
We are then in position to state the following result.
Theorem 4.6. Assume that for some 6 € (0,1) there holds
_ §ad g
I8l /2,000 + Ifslloa/z.0s + fpllooy < ——- (4.34)

4p

Then, there exists a positive constant Ca, depending only on ||P||, ap 4, and 6, and hence independent
of h, such that
It —thllmxq < Cadist(t, Hyp x Qp) . (4.35)

Proof. Tt suffices to use (4.34) in (4.33), which yields (4.35) with Cq := (1—-0)"" (1+|P|/ap4). O

In particular, taking 6 = 1/2, we get C4 := 2(1+ ||P||/ap,a) in the proof of Lemma 4.6, and (4.34)
becomes

2
~ ap 4
Igll1/2,0005 + fslloa/zos + I fplloop < 8 (4.36)

We end this section by remarking that (2.4) and (3.7) suggest the following postprocessed approx-
imation for the pressure pg

1 .
DPSh = —Etr(as,h + (us,h®ugyh)) — 1 in Qg, (4.37)
where )
lp = ———— tr(osn) -
n Qs Qs ( )
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Then, applying the Cauchy—Schwarz inequality, performing some algebraic manipulations, and em-
ploying the a priori bounds for ||ug|lo40s and ||usp|lo4.04, Wwe deduce the existence of a positive
constant C', depending on data, but independent of h, such that

0 = prlloos < C'{HUS — osnlloo + lus — uS,hHO,4;Qg}~ (4.38)
Thus, combining (4.35) and (4.38), we conclude the existence of a positive constant Cy, independent
of h, such that

It — tyllmxq + [P — prllons < Cadist(t, Hy, x Qp). (4.39)

5 Specific finite element subspaces

In what follows we proceed similarly to [26] (see also [8]) and specify discrete spaces satisfying the
hypotheses (H.0) up to (H.6) in 2D and 3D, thus ensuring the well-posedness of the Galerkin scheme
(4.5). Their approximation properties and associated rates of convergence are also established.

5.1 Preliminaries

We begin by letting ’7;LS and ’7;LD be respective triangulations of the domains 2g and 2p, which are
formed by shape-regular triangles (in R?) or tetrahedra (in R3) of diameter hr, and assume that they
match in ¥ so that 725 U 77LD is a triangulation of Q¢ U X U Qp. We also let ¥, be the partition of
5 inherited from 7;% (or 7;P). Then, given T € T, U T,”, we let Po(T)) be the space of polynomials
of degree = 0 defined on T', whose vector and tensor versions are denoted by Py(T") := [Po(T")]"™ and
Po(T) := [Po(T)]™*™, respectively. Next, we define the corresponding local Raviart-Thomas spaces
of order 0 as
RT()(T) = P()(T) D Po(T)X

and its associated tensor counterpart RTy(7"), where x is a generic vector in R := R". In turn, given
* € {S,D}, we let Po(T,), Po(T;) and RTo(7,") be the global versions of Po(T), Po(T"), Po(T),
RT((T) and RTy(T'), respectively, that is

Po(Th*) == {vp € L3 (Q) : wilr € Po(T) VT €T/},

Po(Th*) = {mh e L* (%) : Thlr € Po(T) VT €T},

Po(Th*) = {Th €L*(Q): Tplr €Po(T) VT €T/},
RT(7,%) := {mnh € H(div; Q) : Th|lr € RTo(T) VYT €T},
RTo(Th*) := {mp € H(div; Q) : 74|y € RTo(T) VT €T} .

Then, we introduce the corresponding discrete subspaces in (4.1) as
L2(Q) == Po(Th"), Hu(Q) = RTy(Tx*), and L}(Qs) := L*(Qs) NPu(T), (5.1)

so that the associated global spaces L%r,h(QS)’ H;, 0(Qp), Hp(Qs), Hp, 0(Qs), and L%’O(QD), are defined

according to (4.2). The interface spaces A7 (X) and AP () will be specified later on by separating the
2D and 3D cases.

Next, for the verification of the hypotheses introduced in Section 4.2.2, we first realize that (H.0),

(H.1), and (H.2) follow straightforwardly from the definitions in (5.1). In turn, regarding (H.3),
we now recall that the divergence free tensors of RTy(7;,) are contained in Py(7p) (cf. [22, Lemma
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3.6]), so that, invoking (4.16), we deduce that HTH;L,O(QS) C Po(7T). In this way, noting that certainly

tr(r8) = 0 for all 7 € Hyo(Qs), we find that Hf (Qs) € LZ(Q) NPy(Th) = L2 ,(Q), thus
confirming the occurrence of (H.3).

We now turn partially to (H.5) and (H.6) and establish first an inequality aiming to accomplish
(4.13), and then the discrete inf-sup condition (4.14). More precisely, we have the following results
taken from [14] and [22], respectively.

Lemma 5.1. There exists a positive constant B%vl, independent of h, such that

/ v - div(Tgp)
Qg
sup

TS,hEHh,O(QS) ||TS,h||diV4/3;QS
T5,h#0

> B%1 [villoans  Vvsa € Ly(Qs). (5.2)

Proof. See [14, Lemma 6.1]. We just stress that it is mainly based on the introduction of a suitable
auxiliary boundary value problem, and the utilization of the elliptic regularity result provided by [20,
Corollary 1]. O

Lemma 5.2. There exists a positive constant B%, independent of h, such that

/Q QDJL diV(VD’h) N
sup D > BD HQD,hHO,QD VqD,h S L%O(QD) . (5.3)
vD,n€Hp,0(2D) HVD,thiv,QD
vp,h7#0

Proof. We refer to [22, Chapter IV, Section 4.2] for full details. It basically reduces to the verification
of the hypotheses of Fortin’s lemma (cf. [22, Lemma 2.6]), which makes use of an elliptic regularity
result in convex domains, and the main properties of the Raviart-Thomas interpolation operator. [

We complete the accomplishment of the hypothesis (H.6) by remarking that the existence of
Poq € H(l]é2(2) satisfying (4.15) is guaranteed at the beginning of [26, Section 5.3]. In particular,
this holds if the sequence of subspaces { A% (X)}r>0 is nested, which is confirmed below when defining
A;gL (2). Thus, 9,4 can be constructed as indicated in the proof of Lemma 3.7. A similar procedure
applies to the 3D case.

5.2 The spaces A7 (X) and AP(Y) and the remaining hypotheses in 2D

We now introduce the particular subspaces Af (X) and AhD (X) in 2D by following the simplest approach
suggested in [26]. Indeed, we first assume, without loss of generality, that the number of edges of ¥
is even, and let Yop be the partition of X arising by joining pairs of adjacent edges of X¥p. Since Xy, is
inherited from the interior triangulations, it is automatically of bounded variation, which means that
ratio of lengths of adjacent edges is bounded, and, therefore, so is ¥o,. Now, if the number of edges
of Xj, were odd, we simply reduce it to the even case by joining any pair of two adjacent elements,
and then construct g from this reduced partition. In this way, denoting by x¢ and z the extreme
points of X, we set

A(®) = {& e CD): gleePi(e) VedgeeeTa, &lzo) = &ilan) = 0}, o
5.4
AP(x) = {gh cOX): &nle€Pile) Vedgeee zzh}.
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We now aim to establish the discrete inf-sup conditions (4.22) (or (4.12)) and (4.23) by applying
Lemma 4.5. To this end, we suppose from now on that {725 }h>0 and {ED }h>0 are quasi-uniform in
a neighborhood of Y. More precisely, we assume that there is an open neighborhood of ¥, say Qy,
with Lipschitz-continuous boundary 02, such that the elements intersecting that region are roughly
of the same size. In other words, defining

Ths = {TenSuThD; meé(a}, (5.5)
there exists a positive ¢, independent of A, such that

max hr < ¢ min hp. 5.6
TG’ThTE T = TE'T}L,E T ( )

Under this quasi-uniformity condition, it was proved in [26, Lemma 5.1] that there exist stable
discrete lifting operators L to 2, * € {S, D}, satisfying (4.26). Moreover, as a consequence of this
result, it is easy to see that both ®3(¥) and ®P(X) (cf. (4.25)) coincide with

() = {¢h LX) :  ¢nle € Pole) V edgee € zh} . (5.7)

Hence, a straightforward application of Lemma 4.5 implies that, in order to conclude (4.24), which in
turn yields (4.22) and (4.23), it suffices to show (4.27). In fact, this latter result, taken from [26], is
stated as follows.

Lemma 5.3. There exists a positive constant ﬁ% > 0, independent of h, such that

Ph, €
sup  (APERE s g Ve e ARSI UAR(S).
opEP () ||¢h||—1/2,2
én#0
Proof. See [26, Lemma 5.2] for details. O

As previously remarked, Lemma 5.3 yields, in particular, the verification of (4.22), which is the
same as (4.12), and thus (H.4) is accomplished. Similarly, having as well (4.23), a suitable combination
of this inequality with the discrete inf-sup condition provided by Lemma 5.1 leads to (H.5), that is
to (4.13), with a constant 8% depending only on ,3%71 (cf. Lemma 5.1) and ﬂ%z (cf. (4.23)).

5.3 The spaces A7 (X) and AP(¥) and the remaining hypotheses in 3D

In order to set the particular subspaces A5 () and AP () in the 3D case, we need to introduce an
independent triangulation 3 of 3, made up of triangles K of diameter i, so that we set the meshsize
h = max {ﬁK : Ke Zﬁ}. Then, denoting by 0% the polygonal boundary of ¥, we define

AS(D) = {g,; €C(®): &lxePi(K) YKeS;, &=0 on az},
AP () = {gﬁ €C(X): &lxePi(K) VK¢ zﬁ}.
Next, as in Section 5.2, we assume here that the families {’7;;9 }h>0 and {ED }h>0 are quasi-uniform

as well in a neighborhood of 3. Hence, proceeding similarly to the proof of [26, Lemma 5.1], it
was proved in [1, Lemma 4.4] that there exist stable discrete lifting operators £; to €, * € {S, D},
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satisfying the 3D version of (4.26). Moreover, since ¥, is the partition of ¥ inherited from 7, (or T,7),
made up of triangles K of diameter hg, we set the respective meshsize hy := max {h Kk: Ke Eh},
and observe, as for the 2D case, that both ®¥ (%) and ®P (%) (cf. (4.25)) coincide with the 3D version
of (5.7), that is

0, (3) = {qf)h €LX(D): ¢nlx € Po(K) Vtriangle K € zh} . (5.8)

Consequently, applying again Lemma 4.5 we conclude, by means of (4.24), that (4.22) and (4.23)
follow from the 3D version of (4.27), which is stated below.

Lemma 5.4. There exist positive constants % and Cy, independent of h, such that for all hy, < Coﬁ
there holds
<¢ha €E>E

sup — = > pdes VéE e A2(D)UAR (D).
¢h(§4;£h(()2) ||¢h||—1/2,2 Y ‘|£h”1/2,2 gh h( ) h ( )
h

Proof. We refer to [1, Lemma 4.5] for full details (see also part of the proof of [23, Lemma 7.5]). O

The discussion regarding the consequent accomplishment of (H.4) and (H.5) in the present 3D case
is analogous to the one given at the end of Section 5.2, the only difference being now the incorporation
of the restriction Ay, < Cyh in the respective statements.

5.4 The rates of convergence

Here we provide the rates of convergence of the Galerkin scheme (4.4) with the specific finite element
subspaces introduced in Sections 5.1, 5.2, and 5.3. For this purpose, we collect next _the respective
approximation properties (cf. [19], [22]) under the notational convention that in 2D, h, Ag (3), and

AS(E) mean h, AP(X), and A} (X), respectively:

(APZS ) there exists a positive constant C, independent of h, such that for each g € [0, 1], and for
each rg € H2(Qg) N L2(Qg), there holds

dist(rs,]Lfr,h(Qs)) < Ch?rsllo0s -

(AP;:D) there exists a positive constant C', independent of h, such that for each ¢ € (0, 1], and for
each vp € He(2p) N Hy(div; Qp) with div(vp) € HP(Qp), there holds

dist (vp, Ho(2)) < Che {Ivpllpan + Iiv(vp) oo b

(APZS ) there exists a positive constant C, independent of h, such that for each ¢ € (0,1], and for
each 75 € H?(Q2g) N Ho(divys;Q2s) with div(rs) € We4/3(Qg), there holds

dist (1, Hj0(Qs)) < ChQ{HTSH'&Qs + ||diV(TS)HQ’4/3;QS},

<AP%> there exists a positive constant C', independent of h and /f;, such that for each ¢ € [0,1], and
for each ¢ € HY/2%2(X), there holds

dist(f,Ag(E)) < Che €11 /240, »
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(AP}:S ) there exists a positive constant C, independent of h, such that for each ¢ € [0,1], and for
each vg € W24(Q), there holds

dist(vs, Ly (Qs)) < Ch?|lvs|lpans
(AP% ) there exists a positive constant C, independent of h and ﬁ, such that for each ¢ € [0, 1], and
for each ¢ € HY/?te(x) N Héé2(2), there holds

dist (1, AZ(2)) < Ch [l /2105

(AP%D) there exists a positive constant C, independent of h, such that for each ¢ € [0, 1], and for
each gp € H2(Qp) N LE(2p), there holds

dist(qD,LiO(QD)) < Ch|lgpllesp -

The rates of convergence of (4.4) are now established by the following theorem.

Theorem 5.5. Let ((t,&,1d),P) € H x Q and ((ty,, &y, n, )B),) € Hy, x Qp be the unique solutions of
(3.9) (or (3.17)) and (4.4) (or (4.5)), withug € W and ugp, € Wy, whose existences are guaranteed by
Theorems 3.11 and 4.4, respectively. In turn, let p and pp, given by (2.4) and (4.37), respectively. As-
sume the hypotheses of Theorem 4.6, and that there exists o € (0,1] such that ts € He(Qg) N L2 (),
up € He(Qp) N Hy(div;Qp), div(up) € He(Qp), os € H(Qg) N Ho(div4/3; Qg), div(og) €
Wed3(0g), A € HY2e(S), ug € Weh(Qg), o € HY/2Te(S)nHY(S), and pp € HA(Qp) NLEA(Qp).
Then, there exists a positive constant C', independent of h, such that

”(E76:7ﬁ7ﬁ) - (Ehaa:haﬁh7ﬁh)”H><Q + ||pS _pS,hHO,QS
< c{ne (Ibsllons + lupllaay + Idiv(un)loos + lloslaos + 14iv(@8)]a/m00

+ Hug

ea0s + IP0llogn ) + 5 (IAlj2105 + Iellzr0s) |-

Proof. Tt follows straightforwardly from the Céa estimate (4.39) and the approximation properties
(AP}), (AP}?), (APF), (AP2), (AP}), (AP?) and (AP}?). O

6 Computational results

In this section we present numerical results that illustrate the behavior of the Galerkin scheme (4.4).
The computational implementation is based on a FreeFem++ code (cf. [29]) and the use of the direct
linear solvers UMFPACK (cf. [15]). The iterative method comes straightforwardly from the discrete
fixed-point strategy along with a Newton-type method. Then, as a stopping criteria, we finish the
algorithm when the relative error between two consecutive iterations of the complete coefficient vector
coeff is small enough, that is

|coeff ™! — coeff™||;2

HcoefmeHp

< tol,

where |- ||;2 stands for the usual Euclidean norm in R with dof denoting the total number of degrees
of freedom defining the finite element subspaces ]Lgr’h(Qs), Hp0(Qs), L} (Qs), Hpo(div; Qp), A‘g(E),
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Ag (3), and L%,O(Q D). Subsequently, errors are defined as follows:

e(ts) = [ts —tsn

0,05, e(os) = [log—ognldiv, 0, elus) = [lus —ugnloaos,
e(up) = |lup —upplaivia,, e = [[A=Nllips, el@) = lle—e;li2o0s
e(pp) == llpp — po.rllogp -
Again, hereafter, iAL, AED(E), and Ag(E) mean h, AE(E), and A,SL(E), respectively, in 2D. Notice that,

for ease of computation, and owing to the fact that H'/2(X) is the interpolation space with index 1/2
between H'(X) and L*(X), the interface norm [[A — X; |1 /2.5, is replaced by [|A = X;[l(0,1),5, where

1/2 1/2
lEllo,y.2 = €l IEls  ve € HY(S).

Similarly, the interface norm |l¢ — @71/2,00;5 is replaced by [[¢ — ¢4 ll(0,1)x. In turn, convergence

rates are set as L ( ( )/ /( )
og(e(x)/e' (%
=7 t A
T(*) log(h/h’) ) Vx € { S,05,45,Up, P, 7PD}7

where e and ¢’ denote errors computed on two consecutive meshes of sizes h and A/, respectively. In
addition, we refer to the number of degrees of freedom and the number of Newton iterations as dof
and iter, respectively.

Example 1: Tombstone-shaped domain. In our first example, a minor modification of [10,
Example 1], we consider a porous unit square, coupled with a semi-disk-shaped fluid domain, that is,

Qp := (-0.5,0.5)> and Qg := {(:cl,:vQ): 23+ (22— 0.5)% < 025, zo > 0.5}.
We set the model parameters
K :=107°%I, p=1, w;:=10,

and choose the data fg, gg, and fp such that the variable viscosity is defined as

1
Vug) =2 4+ ———,
where the exact solution in the domain  := Qg U X U Qp is given by the smooth functions

ps(x) = sin(mxy) sin(mxe), ug(x) = (—810123(8727?;)1;2?517{:;1» Vx = (r1,22) € Qg,

pp(x) = cos(mx1) exp(xze — 0.5), and wup(x) = —KVpp(x) Vx:=(x1,22) € Qp.

Notice that ug, being the curl of a smooth function, satisfies the incompressibility condition, and
also ug-n = 0 on I'p. Table 6 shows the convergence history for a sequence of quasi-uniform
mesh refinements, including the resulting number of Newton iterations. According to the polynomial
degree employed, the respective sets of finite element subspaces are denoted Py — RTy — Py — P71 and
RTy—Py—Pjy, for the fluid and the porous medium, respectively. This example confirms the theoretical
rate of convergence O(h) provided by Theorem 5.5 with ¢ = 1. In addition, the aforementioned number
of Newton iterations required to reach the convergence criterion based on the residuals with a tolerance
of 1le — 8, was equal to 4 in all runs. Finally, samples of approximate solutions are shown in Figure
6.1.
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PO — RTO — P() — P1 and RTO — P() — P1
ets) |r(ts) | elos) |r(es)| e(us) |r(us)| elp) |[r(p)| elps) |rps)
3.18¢ — 01 * 1.75e¢ + 00 * 1.27e — 01 * 3.24e — 01 * 2.65e — 01 *
1.63e — 01 | 1.08 | 8.83e — 01 1.11 | 6.21le—02 | 1.15 | 1.64e—01 | 1.10 | 1.26e — 01 | 1.21
8.32¢—02 | 0.96 | 4.46e—01 | 0.98 | 3.12¢—02 | 0.98 | 8.28¢—02 | 0.98 | 6.31le—02 | 0.98
4.16e — 02 | 1.05 | 2.23e — 01 1.05 | 1.57e—02 | 1.05 | 4.16e—02 | 1.05 | 3.24e — 02 | 1.01
2.06e —02 | 1.01 | 1.10e—01 | 1.02 | 7.78e —03 | 1.01 | 2.08e —02 | 1.00 | 1.58e —02 | 1.03
1.04e — 02 | 1.08 | 5.54e—02 | 1.09 | 3.89¢—03 | 1.10 | 1.05e—02 | 1.09 | 7.78¢ — 03 | 1.08
e(up) r(up) e(pp) r(pp) e(N) r(A) dof iter
2.28e — 04 * 5.23e — 02 * 2.50e — 01 * 731
1.06e —04 | 1.23 | 2.29¢e—02 | 1.26 | 1.26e —01 | 1.02 2659
4.25¢ — 05| 1.36 | 1.05e—02 | 1.16 | 4.99¢ —02 | 1.38 | 10460
2.00e — 05| 1.08 | 5.00e—03 | 1.05 | 2.33e—02 | 1.09 | 41804
9.94e — 06 | 1.58 | 2.53e—03 | 1.54 | 1.19e —02 | 1.52 | 167808
4.95¢ —06 | 0.93 | 1.27e—03 | 0.93 | 5.79¢ —03 | 0.97 | 660726

S O

Table 6.1: Example 1, convergence history and Newton iteration count for the fully-mixed approx-
imations of the Navier—Stokes/Darcy equations with variable viscosity, and convergence of the P-
approximation of the postprocessed pressure field.

-1.0

[up,pl2
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Figure 6.1: Example 1, domain configuration, approximated velocity component, Darcy pressure field,
Navier—Stokes pressure field, spectral norm of the Navier—Stokes velocity gradient and pseudo-stress
tensor.

Example 2: air flow through a filter. This example is similar to the one presented in [31, Section
4] (see also [11]). More precisely, we apply our mixed method to simulate air flow through a filter. To
this end, we consider a two-dimensional channel with lenght 0.75 m and width 0.25 m which is partially
blocked by a rectangular porous medium of length 0.25m and width 0.2m as shown in Figure 6.2,
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with boundaries I'g = Fg? U F?p Urety Fgf’ttom and F%Ottom :=I'p. The permeability tensor in the
porous medium is given as
ik 0

k=ro) (3 V)R, wnre) - () )

where the angle # = —45°, the anisotropy ratio 6 = 100, and x = 107%m?2. In turn, p = 1.225 x
107° Mg/m?’, w; = 1.0, and the top and bottom of the domain are impermeable walls. The flow
is driven with an inlet mean velocity of 0.25 m/s. The force terms fg and fp are set to zero. As
motivated again by [10], the viscosity follows the Carreau law given by

po= 1.81+1.81(1 + |ts|>)"/2 x 107° Pas, (6.1)

whereas the boundary conditions are

x x .
ug = 6uin,S§<1—EZ),O] on 'Y wug =0 on F?pufg"ttom,

osn =0 on Fout’ up-n =0 on Ft[))ottom’

with ujp,g = 0.25 m/s and d = 0.2 m. We stress here that, because of the fully nonlinear character
of u (cf. (6.1)), which depends on the unknown fluid velocity gradient tg := Vug, the use of the
Newton method to solve the corresponding Galerkin scheme (4.4) implies linearizing not only the
convective term given by the form b (cf. (3.11)), but also the one arising from the form a (cf. (3.10)).
In addition, we remark that the analysis developed in the previous sections can be extended, with
minor modifications, to the case of mixed boundary conditions considered in this example. Now, using
again a sequence of quasi-uniform mesh refinements, we find that the number of Newton iterations
required to reach the convergence criterion, based on the residuals with a tolerance of 1e — 8, is 7. In
Fig. 6.2 we display various components of the computed solution. As we expected, the top-left panel
shows an increment in air flow in the surrounding region above the filter. This is caused by the flow
resistance in the porous medium. The effect of anisotropy is also evident, as the air flow that passes
through the porous block aligns with the angle 6 = —45°. In other words, the flow follows the inclined
principal direction of the permeability tensor. Furthermore, a continuous normal velocity is observed
across all three interfaces, whereas the tangential velocity is discontinuous, especially at the interfaces
with higher fluid velocity. This observation aligns with the continuity of flux and the BJS interface
conditions. We also observe that the pressure drop is visible through the domain. Again, the effect of
anisotropy is visible due to the inclined pressure drop in the porous domain. The pseudostress tensor
ogp, is larger along the Fgl boundary and zero at the I'¢" boundary, which is consistent with the
boundary condition csn =0 on T
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