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Abstract

The aim of this work is to propose a transient eddy current model that incorporates input current
intensities. We extend the classical A, V−A potential formulation from the time-harmonic setting
to the transient regime with nonlocal source conditions. We prove the existence and uniqueness
of the solution to the corresponding continuous variational problem. Furthermore, we develop a
fully discrete scheme based on the backward Euler method for time discretization and nodal finite
elements for spatial approximation. The resulting discrete problem is shown to be well-posed, and
optimal error estimates are derived. Numerical experiments are presented to validate our theoretical
findings.

Mathematics Subject Classifications (1991): 65N30; 35K65; 78M10
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1 Introduction

The eddy current model, widely used in science and engineering, is derived from Maxwell’s equations by
neglecting the displacement current term [9]. The well-known magnetic vector potential formulation,
including the A and V −A approaches, has been extensively studied in the time-harmonic regime [11].
Potential-based formulations for eddy current problems have been proven effective in practice, and are
widely used in commercial software [7]. More recently, in [3], a time-harmonic formulation based on
the magnetic vector potential has been studied under voltage and current excitations. One approach
incorporates a scalar electric potential in the conductor, while another relies solely on the vector
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potential, enforced through Coulomb-type gauge conditions. However, the transient counterpart of
this formulation, particularly with current source excitation, remains relatively unexplored.

Several transient eddy current formulations have been proposed in recent years to address voltage
and current excitation problems. These include magnetic field formulations where the input current
is imposed via Lagrange multipliers [5], mixed formulation using the primitive of the electric field and
a Lagrange multiplier, allowing current or voltage excitation without magnetic scalar potentials [6],
and approaches based on a current vector representation [12, 8].

In this paper, we consider two potentials: a magnetic vector potential A for the magnetic field, and
a scalar function v, representing the time primitive of the electric scalar potential in the conducting
domain. We introduce a variational formulation that exhibits the structure of a degenerate parabolic
problem [13, Chapter 3], and we prove that the G̊arding inequality holds, thereby ensuring the well-
posedness of the continuous formulation. A fully discrete scheme is then proposed, combining the
backward Euler method for time discretization with nodal finite elements for spatial approximation.
Following ideas proposed in [2], we show that this scheme admits a unique solution at each time step
of the resulting elliptic problem. Projection operators onto the discrete finite element subspaces are
defined, and quasi-optimal error estimates are derived. Finally, by choosing a sufficiently small time
step ∆t, we confirm the convergence of the method at each mesh step, along with the expected orders
of convergence.

The outline of the paper is as follows. In Section 2, we introduce the eddy current problem with
input current intensities. Section 3 presents the potential formulation under consideration. In Section
4, we derive the corresponding variational problem and prove its well-posedness. In Section 5, we
establish error estimates for a standard finite element method used to solve the problem numerically.
Finally, in Section 6, we present numerical results that confirm the theoretical findings.

2 Statement of the problem

Let Ωc ⊆ R3 be the space occupied by the conductor material with boundary ΓC. Let Ω ⊆ R3 be a
computational domain with boundary Γ, which is an open and bounded set such that Ωc ⊂ Ω. We
suppose that both, Ω and Ωc are Lipschitz domains and we denote by n and nc the outward unit
normal vectors to Ω and Ωc, respectively. Let Ωd := Ω \ Ωc be the domain occupied by the dielectric
material, which includes the support of the source current Jd. The transient eddy current model reads
(see, for instance, [9])

curlH = σE in Ω× [0, T ],
∂(µH)

∂t
+ curlE = 0 in Ωc × [0, T ], (1)

curlH = Jd in Ωd × [0, T ], div(µH) = 0 in Ω× [0, T ], H(x, 0) = H0(x) in Ω, (2)

H|Ωc × nc = H|Ωd
× nc in ΓC× [0, T ], H × n = 0 in Γ× [0, T ], (3)

where we have used standard notations in electromagnetism: H is the magnetic field, J the current
density, B the magnetic induction and E is the electric field. The magnetic permeability µ and
conductivity σ are bounded functions satisfying:

σ1 ≥ σ(x) ≥ σ0 > 0 a.e. in Ωc and σ(x) = 0 a.e. in Ωd,

µ1 ≥ µ(x) ≥ µ0 > 0 a.e. in Ωc and µ(x) = µ0 a.e. in Ωd.
(4)
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In a similar manner as in [6] we consider sources provided by external circuits, namely input
current intensities. For that reason it is necessary to assume two types of the conductor domain:
internal conductors and inductors. An internal conductor Ωk

c satisfies ∂Ω ∩ ∂Ωk
c = ∅. On the other

hand, an inductor domain Ωm
c goes through the boundary of Ω, its boundary Γm

C
is not empty, and it

is split as Γm
C

= Γm
E
∪Γm

J
, where Γm

E
and Γm

J
are respectively the current input surface and the current

exit surface of the inductor domain Ωm
c . We assume that there are M inductor domains {Ωm

c }
M
m=1,

which are connected and mutually disjoint, and set ΓJ := ∪Mm=1Γm
J

, ΓE := ∪Mm=1Γm
E

. The internal

conductors will be {Ωm
c }

M̃
m=M+1. Thus, Ωc =

⋃M̃
m=1 Ωm

c is the conductor region , while the insulator

region is defined by Ωd := Ω \ Ωc. (see Figure 1 M = 2; M̃ = 3). We impose the intensities of the

d

Figure 1: Sketch of the domain

input current as follows ∫
Γm
J

σE · n = Im in [0, T ], m = 1, · · · ,M (5)

where Im is the current intensity through the surface Γm
J

with m = 1, · · · ,M . Following the lines of
[10] to complete the model, it is necessary to consider the following boundary conditions

E × n = 0 on [0, T ]× ΓE, E × n = 0 on [0, T ]× ΓJ, and µH · n = 0 on [0, T ]× ∂Ω . (6)

3 A potential formulation

We are going to start this section by recalling a (strong) classical formulation of the eddy current
problem in terms of two potentials: a magnetic vector potential A and an electric scalar potential V .
We refer to [7] for a more detailed discussion. Next, we will introduce a variational formulation in the
presence of electric ports, based in the strong problem.

It is well-known that from (2), we can find a unique vector potential function A : [0, T ]×Ω→ R3

satisfying

µH = curlA, divA = 0 in [0, T ]× Ω; A · n = 0 on [0, T ]× Γ . (7)

We also use equation (1) and look for a scalar potential V : Ωc × [0, T ]→ R3 satisfying

E =
∂A

∂t
+∇∂v

∂t
in [0, T ]× Ωc . (8)
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where v =
∫ t

0 V (x, s)ds. From the first two conditions of (6) and the last condition of (7) we obtain

∇Γv = n× v × n = −n×E × n = 0 on ΓE∪ ΓJ ,

which implies that v must be constant on each connected component of ΓJ and ΓE. Without loss of
generality we suppose that v = 0 on each ΓE and constant on each ΓJ.

We impose the gauge condition (divergence-free) by adding a penalization term ν∗, which is a
suitable average of ν in Ω (see [11]). Consequently, the original eddy current equations (see (1)-(3))
in terms of potentials A and v can read as follows:(

σ
∂A

∂t
+ σ∇∂v

∂t

)
+ curl

(
1

µ
curlA

)
− ν∗grad divA = 0 in [0, T ]× Ωc, (9)

div

(
σ
∂A

∂t
+ σ∇∂v

∂t

)
= 0 in [0, T ]× Ωd, (10)

curl

(
1

µ
curlA

)
− ν∗ grad divA = Jd in [0, T ]× Ωd, (11)

and satisfying

A · n = 0 on [0, T ]× Γ, (12)(
σ
∂A

∂t
+ σ∇∂v

∂t

)
· nc = 0 on [0, T ]× Γc \ (Γn

E
∩ Γn

J
) n = 1, · · · ,M, (13)(

σ
∂A

∂t
+ σ∇∂v

∂t

)
· nc = 0 on [0, T ]× Γc, n = M + 1, · · · , M̃ , (14)(

1

µ
curlA

) ∣∣
Ωc
× nc =

(
1

µ
curlA

) ∣∣
Ωd
× nc on [0, T ]× Γc, (15)∫

Γm
J

σE · n = Im in [0, T ], m = 1, · · · ,M, (16)

A
∣∣
Ωc
× nc = A

∣∣
Ωd
× nc on Γc × [0, T ], (17)

A
∣∣
Ωc
· nc = A

∣∣
Ωd
· nc on Γc × [0, T ], (18)

A(x, 0) = A0(x) a.e.x ∈ Ω, (19)

v(x, 0) = 0 a.e.x ∈ Ωc, (20)

1

µ
curlA× n = 0 on Γ× [0, T ]. (21)

We introduce the following spaces

X := H(curl; Ω) ∩H0(div; Ω)

H1
] (Ωc) :=

{
u ∈ H1

Γ
E
(Ωc) : u|Γm

J
= constant m = 1, . . . ,M

∫
Ωm

c

u = 0, m = M + 1, . . . , M̃

}
The space X is endowed with the graph standard norm

‖Z‖X :=
(
‖Z‖20,Ω + ‖ divZ‖20,Ω + ‖ curlZ‖20,Ω

)1/2
.

4



Furthermore, it is well-known that as a consequence of the generalized Poincaré inequality the semi-
norm |·|H1(Ωc) := ‖∇(·)‖0,Ωc is a norm on H1

] (Ωc) which is equivalent to the H1(Ωc)-norm.
By using standard arguments of integration by parts, we can obtain the following variational

formulation: Given Jd ∈ L2(0, T ; L2(Ω)) and In ∈ H2(0, T ) n = 1, . . . , n, find (A, v) ∈ L2(0, T ;X ×
H1
] (Ωc)) ∩H1(0, T ; L2(Ωc)

3 ×H1
] (Ωc)) such that

d

dt
(A+∇v,Z +∇w)σ,Ωc

+A(A,Z) =

∫
Ω
Jd ·Z −

M∑
m=1

w|Γm
J
Im(t) ∀(Z, w) ∈ X ×H1

] (Ωc),

A(·, 0) = A0 in Ω, v(·, 0) = 0 in Ωc,

(22)

where the following notations have been used

A(A,Z) =

∫
Ω

1

µ
curlA · curlZ + ν∗

∫
Ω

(divA)(divZ) and (u,w)σ,Ωc :=

∫
Ωc

σu ·w.

Next result will be useful

Lemma 1 There exists C1 > 0, such that∫
Ω
|Z|2 ≤ C1

{∫
Ω
|curlZ|2 +

∫
Ω
|divZ|2

}
∀Z ∈ X. (23)

Moreover, there holds

1

1 + C1
||Z||2X ≤ || curlZ||20,Ω + ||divZ||20,Ω ≤ ||Z||2X ∀Z ∈ X .

Proof. We refer to [4, Corollary 3.16]. �

Remark 2 Taking into account properties of µ and σ, we can ensure the existence of two positive
constants κ0 , κ1, independent of the physical parameters, such that

κ0

1 + C1
‖Z‖2X ≤ κ0

(
|| curlZ||20,Ω + ||divZ||20,Ω

)
≤ A(Z,Z) ≤ κ1

(
|| curlZ||20,Ω + ||divZ||20,Ω

)
≤ κ1‖Z‖2X

for any Z ∈ X. We can check that κ0 = min{µ−1
1 , ν∗}, and κ1 = max{µ−1

0 , ν∗}.

Theorem 3 The problem (22) admits a unique solution.

Proof. First, we notice that the problem (22) is a degenerate parabolic problem. Therefore, in order
to establish its existence and uniqueness, we need to show the conditions given in [13, Proposition
III.3.2 and III.3.3]. We only verify the G̊arding-type inequality holds true for (Z, w) ∈ X × H1

] (Ωc),

since the other assumptions are verified straightforwardly. First of all, for any Z ∈ X and w ∈ H1
] (Ωc)

we have, after taking into account Remark 2

(Z +∇w,Z +∇w)σ,Ωc
+ A(Z,Z) ≥ σ0

∫
Ωc

|Z +∇w|2 +
κ0

1 + C1
‖Z‖2X . (24)
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Now, setting C := min{σ0,
κ0

1+C1
}, we obtain

(Z +∇w,Z +∇w)σ,Ωc
+ A(Z,Z)

≥ C
[∫

Ωc

|Z +∇w|2 +
1

2

∫
Ω
|Z|2 +

1

2
‖Z‖2X

]
≥ C

2

[∫
Ωc

|Z +∇w|2 +

∫
Ωc

|Z|2 + ‖Z‖2X
]
.

Having in mind that∫
Ωc

|Z +∇w|2 +

∫
Ωc

|Z|2 = 2

∫
Ωc

|Z|2 + 2

∫
Ωc

Z · ∇w +

∫
Ωc

|∇w|2 ,

and invoking Young’s inequality

−2Z · ∇w ≤ 2 |Z| |∇w| ≤ 1

δ
|Z|2 + δ |∇w|2 ∀δ > 0,

it follows that

(Z +∇w,Z +∇w)σ,Ωc
+ A(Z,Z) ≥ C

2

[(
2− 1

δ

)∫
Ωc

|Z|2 + (1− δ)
∫

Ωc

|∇w|2 + ‖Z‖2X
]
. (25)

Consequently, by taking 1/2 < δ < 1, the proof is established. �

4 A fully discrete scheme

In what follows we assume that Ω and Ωc are Lipschitz polyhedra (we recall that Ω is simply-
connected). Let {Th}h be a regular family of tetrahedral meshes of Ω such that each element K ∈ Th
is contained either in Ωc or in Ωd. As usual, h stands for the largest diameter of tetrahedra K in Th.
We consider the following finite element spaces:

Xh :=
{
Zh ∈ X : Zh

∣∣
K
∈ P1(K)3 ∀K ∈ Th withK ⊂ Ω

}
,

Mh :=
{
wh ∈ H1

] (Ωc) : wh
∣∣
K
∈ P1(K) ∀K ∈ Th withK ⊂ Ωc

}
.

We consider a uniform partition {tn := n∆t : n = 0, . . . , N} of [0, T ] with a step size ∆t := T
N .

For any finite sequence {θn : n = 0, · · · , N}, let

∂̄θn :=
θn − θn−1

∆t
, n = 1, 2, . . . , N.

The fully-discrete version of Problem (22) reads as follows:
Find (An

h, v
n
h) ∈ Xh ×Mh, n = 1, 2, . . . , N such that for any (Zh, wh) ∈ Xh ×Mh:

(
∂̄An

h +∇∂̄vnh ,Zh +∇wh
)
σ,Ωc

+A(An
h,Zh) = (Jd(tn),Zh)0,Ω−∆t

M∑
m=1

wh|Γm
J
Im(tn) (26)

A0
h = A0,h, v0

h = 0, (27)
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where A0,h ∈ Xh is a suitable approximation of A0 to obtain optimal error estimates.
In order to prove that Problem (26)–(27) has a unique solution, we first notice that at each iteration

step we need to find (An
h, v

n
h) ∈ Xh ×Mh such that for any (Zh, wh) ∈ Xh ×Mh

(An
h +∇vnh ,Zh +∇wh)σ,Ωc

+ ∆tA(An
h,Zh) = Fn(Zh, wh), (28)

where

Fn(Zh, wh) = ∆t

∫
Ω
Jd(tn) ·Zh −∆t

M∑
m=1

wh|Γm
J
Im(tn) +

(
An−1
h +∇vn−1

h ,Zh +∇wh
)
σ,Ωc

.

If ∆t is sufficiently small the bilinear form given by (An
h +∇vnh ,Z +∇wh)σ,Ωc

+ ∆tA(An
h,Z) is

coercive on Xh×Mh. Thus, invoking Lax-Milgram’s theorem, the problem (28) has a unique solution
at each time step.

5 Error estimates

In this section we will prove error estimates for our fully-discrete scheme. To this end, we consider
the projection operators Ph : X → Xh and Qh : H1

] (Ωc)→Mh defined as follows

Given Z ∈ X : PhZ ∈ Xh : (PhZ −Z,Y )X = 0 ∀Y ∈ Xh ,

and
given u ∈ H1

] (Ωc) : Qhu ∈Mh : (∇Qhu−∇u,∇w)σ,Ωc
= 0 ∀w ∈Mh .

We remark that Ph and Qh are well defined. Besides, we have the following estimates

Lemma 4 There exist positive constants C1 and C2, independent of h:

‖Z − PhZ‖X ≤ C1 inf
Yh∈Xh

‖Z − Yh‖X ∀Z ∈ X,

‖u−Qhu‖H1
] (Ωc) ≤ C2 inf

wh∈Mh

‖u− wh‖H1
] (Ωc) ∀u ∈ H1

] (Ωc).

Now, in order to derive a priori error, we introduce the following notations:

ρn1 := A(tn)− PhA(tn), δn1 := PhA(tn)−An
h, τn1 := ∂̄A(tn)− ∂tA(tn)

ρn2 := v(tn)−Qhv(tn), δn2 := Qhv(tn)− vnh , τn2 := ∂̄v(tn)− ∂tv(tn).

and
en1 := A(tn)−An

h, en2 := v(tn)− vnh . (29)

Besides, for sufficiently smooth A and v there holds

N∑
n=1

‖τn1 ‖20,Ωc
≤ ∆t

∫ T

0
‖∂ttA(t)‖20,Ωc

dt ,
N∑
n=1

‖∇τn2 ‖20,Ωc
≤ ∆t

∫ T

0
‖∂tt∇(v(t))‖20,Ωc

dt. (30)

From here on we assume that ∆t is small enough, for example ∆t ≤ 1

2
.
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Lemma 5 There exists a positive constant C, independent of h and ∆t, such that for each n =
1, . . . , N

‖δn1 ‖2X + ‖δn2 ‖2H1
] (Ωc) + ∆t

n∑
k=1

‖δk1‖2X + ∆t
n∑
k=1

‖∂̄δk1 +∇∂̄δk2‖20,Ωc

≤ C

{
‖A0 −A0,h‖2X + ‖ρ0

1‖2X + ‖ρn1‖2X + ∆t
n∑
k=1

[
‖∂̄ρk1‖2X + ‖ρk1‖2X + ‖∂̄ρk2‖2H1

] (Ωc) + ‖τ k1 ‖20,Ωc
+ ‖∇τk2 ‖20,Ωc

]}
.

(31)

Proof. The proof of the lemma follows from standard arguments applied for degenerate parabolic
problems (see, for instance, [1, Lemma 1]). For completeness purposes, we describe it. Let 1 ≤ n ≤ N
and 1 ≤ k ≤ n. It is straightforward to show that

(∂̄δk1 +∇∂̄δk2 ,Z +∇w)σ,Ωc +A(δk1 ,Z)

= −(∂̄ρk1 +∇∂̄ρk2,Z +∇w)σ,Ωc −A(ρk1,Z) + (τ k1 +∇τk2 ,Z +∇w)σ,Ωc ,
(32)

for any (Z, w) ∈ Xh ×Mh.
Step 1: Taking (Z, w) = (δk1 , δ

k
2 ) in (32) and applying Cauchy-Schwarz inequality, as well as the

following estimate

(∂̄δk1 +∇∂̄δk2 , δk1 +∇δk2 , )σ,Ωc ≥
1

2∆t

[
‖δk1 +∇δk2‖2σ,Ωc

− ‖δk−1
1 +∇δk−1

2 ‖2σ,Ωc

]
,

we can obtain

1

2∆t

[
‖δk1 +∇δk2‖2σ,Ωc

− ‖δk−1
1 +∇δk−1

2 ‖2σ,Ωc

]
+

1

2
A(δk1 , δ

k
1 )

≤ 1

2
‖δk1 +∇δk2‖2σ,Ωc

+ ‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc
+ ‖τ k1 +∇τk2 ‖2σ,Ωc

+
1

2
A(ρk1,ρ

k
1)

Next, after summing from k = 1 to k = n, we have

‖δn1 +∇δn2 ‖2σ,Ωc
+ (∆t)

n∑
k=1

A(δk1 , δ
k
1 ) ≤ ‖δ0

1 +∇δ0
2‖2σ,Ωc

+ 2(∆t)
n∑
k=1

[
1

2
‖δk1 +∇δk2‖2σ,Ωc

+ ‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc
+ ‖τ k1 +∇τk2 ‖2σ,Ωc

+
1

2
A(ρk1,ρ

k
1)

]
(33)

Since ∆t ≤ 1

2
, we deduce

1

2
‖δn1 +∇δn2 ‖2σ,Ωc

+ (∆t)
n∑
k=1

A(δk1 , δ
k
1 ) ≤ ‖δ0

1 +∇δ0
2‖2σ,Ωc

+ (∆t)
n−1∑
k=1

‖δk1 +∇δk2‖2σ,Ωc
+ (2∆t)

n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+

1

2
A(ρk1,ρ

k
1)

]
(34)
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Now, after invoking discrete Gronwall’s Lemma, we establish for each n ∈ {1, ..., N}

1

2
‖δn1 +∇δn2 ‖2σ,Ωc

≤ exp(2T )

(
‖δ0

1 +∇δ0
2‖2σ,Ωc

+ (2∆t)
n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+

1

2
A(ρk1,ρ

k
1)

])
(35)

Using (35), we infer that

(∆t)

n∑
k=1

A(δk1 , δ
k
1 )

≤ (2T exp(2T ) + 1)

(
‖δ0

1 +∇δ0
2‖2σ,Ωc

+ (2∆t)
n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+

1

2
A(ρk1,ρ

k
1)

])
(36)

Step 2: Now we take (Z, w) := (∂̄δk1 , ∂̄δ
k
2 ) in (32) and obtain, after invoking Cauchy-Schwarz’ and

Young’s inequalities,

‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc
+A(δk1 , ∂̄δ

k
1 ) ≤ ‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+

1

2
‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc

−A(ρk1, ∂̄δ
k
1 )

(37)

Taking into account the relations

A(ρk1, ∂̄δ
k
1 ) =

1

∆t

[
A(ρk1, δ

k
1 )−A(ρk−1

1 , δk−1
1 )

]
−A(∂̄ρk1, δ

k−1
1 ) ,

A(δk1 , ∂̄δ
k
1 ) ≥ 1

2∆t

[
A(δk1 , δ

k
1 )−A(δk−1

1 , δk−1
1 )

]
,

(37) yields to

1

2
‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc

+
1

2∆t

[
A(δk1 , δ

k
1 )−A(δk−1

1 , δk−1
1 )

]
≤ ‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc

− 1

∆t

[
A(ρk1, δ

k
1 )−A(ρk−1

1 , δk−1
1 )

]
+

1

2
A(∂̄ρk1, ∂̄ρ

k
1) +

1

2
A(δk−1

1 , δk−1
1 ) . (38)

Now, summing from k = 1 to k = n in (38), we obtain

(∆t)
n∑
k=1

‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc
+
[
A(δn1 , δ

n
1 )−A(δ0

1 , δ
0
1)
]
≤ −2

[
A(ρn1 , δ

n
1 )−A(ρ0

1, δ
0
1)
]

+ 2(∆t)
n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+A(∂̄ρk1, ∂̄ρ

k
1) +A(δk−1

1 , δk−1
1 )

]
(39)
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Now, thanks to Young’s inequality, we have

−A(ρn1 , δ
n
1 ) ≤ A(ρn1 ,ρ

n
1 ) +

1

4
A(δn1 , δ

n
1 ) ,

which helps us, together with the assumption ∆t ≤ 1

2
, to infer from (39)

(∆t)

n∑
k=1

‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc
+

1

2
A(δn1 , δ

n
1 ) ≤ 2A(ρ0

1, δ
0
1) +A(δ0

1 , δ
0
1)

+ 2(∆t)

n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+A(∂̄ρk1, ∂̄ρ

k
1) +A(δk1 , δ

k
1 )
]
. (40)

Invoking (36), to bound the sum involving A(δk1 , δ
k
1 ) on the right hand side in (40), we deduce for

each n ∈ {1, ..., N}

(∆t)

n∑
k=1

‖∂̄δk1 +∇∂̄δk2‖2σ,Ωc
+

1

2
A(δn1 , δ

n
1 ) ≤ 2A(ρ0

1, δ
0
1) +A(δ0

1 , δ
0
1)

+ 2(∆t)
n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+A(∂̄ρk1, ∂̄ρ

k
1)
]

+ 2(2T exp(2T ) + 1)

(
‖δ0

1 +∇δ0
2‖2σ,Ωc

+ (2∆t)
n∑
k=1

[
‖∂̄ρk1 +∇∂̄ρk2‖2σ,Ωc

+ ‖τ k1 +∇τk2 ‖2σ,Ωc
+

1

2
A(ρk1,ρ

k
1)

])
.

(41)

Finally, noticing that

‖δ0
1‖2X = ‖PhA(t0)−A0,h‖2X ≤ 2

(
‖ρ0

1‖2X + ‖A0 −A0,h‖2X
)
,

(31) is established, after combining (35), (36) and (41), and invoking Lemma 1, Remark 2, as well as
G̊arding inequality (25).

�

Theorem 6 If A ∈ H1(0, T ;X) ∩ H2(0, T ; L2(Ω)) and v ∈ H1(0, T ; H1
] (Ωc)) ∩ H2(0, T ; L2(Ωc)), then

there exists a constant C > 0, independent of h and ∆t, such that

max
1≤n≤N

[
‖en1‖2X + ‖en2‖2H1

] (Ωc)

]
+ ∆t

N∑
n=1

‖en1‖2X + ∆t
N∑
n=1

‖∂̄en1 +∇∂̄en2‖20,Ωc

≤ C
{
‖A0 −A0,h‖2X + max

1≤n≤N

[
inf

Z∈Xh

‖A(tn)−Z‖2X + inf
w∈Mh

‖v(tn)− w‖2H1
] (Ωc)

]
+ ∆t

N∑
n=1

inf
Z∈Xh

‖A(tn)−Z‖2X +

∫ T

0

[
inf

Z∈Xh

‖∂tA(t)−Z‖2X
]
dt

+

∫ T

0

[
inf

w∈Mh

‖∂tv(t)− w‖2H1
] (Ωc)

]
dt+ (∆t)2

∫ T

0

[
‖∂ttA(t)‖20,Ωc

+ ‖∂tt∇(v(t))‖20,Ωc

]
dt

}
.
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Proof. Taking into account the definition for the errors given in (29), and after applying triangle
inequality, we obtain

max
1≤n≤N

[
‖en1‖2X + ‖en2‖2H1

] (Ωc)

]
+ ∆t

N∑
n=1

‖en1‖2X + ∆t
N∑
n=1

‖∂̄en1 +∇∂̄en2‖20,Ωc

≤ C

{
‖A0 −A0,h‖2X + max

1≤n≤N

[
‖ρn1‖2X + ‖ρn2‖2H1

] (Ωc)

]
+ ∆t

N∑
n=1

[
‖∂̄ρn1‖2X

+‖ρn1‖2X + ‖∂̄ρn2‖2H1
] (Ωc) + ‖τn1 ‖20,Ωc

+ ‖∇τn2 ‖20,Ωc

]}
.

(42)

Besides, ∂t (PhA(t)) = Ph (∂tA(t)) and ∂t (Qhv(t)) = Qh (∂tv(t)). On the other hand, we have

N∑
n=1

‖∂̄ρn1‖2X ≤
C

∆t

∫ T

0

[
inf

Z∈Xh

‖∂tA(t)−Z‖2X
]
dt,

N∑
n=1

‖∂̄ρn2‖2H1
] (Ωc) ≤

C

∆t

∫ T

0

[
inf
u∈Mh

‖∂tv(t)− u‖2H1
] (Ωc)

]
dt.

(43)

Finally, the result follows from using the last inequalities, Lemma 4 and (30). �

Corollary 7 Let’s assume that A ∈ H1(0, T ;X∩H1+s(Ω)3)∩H2(0, T ; L2(Ω)) and v ∈ H1(0, T ; H1
] (Ωc)∩

H1+s(Ωc))∩H2(0, T ; L2(Ωc)), for some 0 < s < 1. If A0,h = Πh(A0), where Πh : X ∩H1+s(Ω)3 → Xh

is the Lagrange interpolant, then there exists a positive constant C, independent of h and ∆t, such
that

max
1≤n≤N

‖en1‖2X + max
1≤n≤N

‖en2‖2H1
] (Ωc) + ∆t

N∑
n=1

‖en1‖2X + ∆t
N∑
n=1

‖∂̄en1 +∇∂̄en2‖20,Ωc

≤ Ch2s

(
max

0≤n≤N
‖A(tn)‖21+s,Ω + max

1≤n≤N
‖v(tn)‖21+s,Ωc

+

∫ T

0
‖∂tA(t)‖21+s,Ωdt+

∫ T

0
‖∂tv(t)‖21+s,Ωc

dt

)
+ C(∆t)2

(∫ T

0
‖∂ttA(t)‖20,Ωc

dt+

∫ T

0
‖∂tt∇(v(t))‖20,Ωc

dt

)
.

Proof. Let Πh : H1
] (Ωc)∩H1+s(Ωc)→Mh be the standard scalar finite element Lagrange interpolant.

The result is a direct consequence of the well-known approximation properties of Πh, Πh and Theorem
6. �

Remark 8 At each time step t = tk we can approximate the eddy current E(x, tk) and the magnetic
field H(x, tk) by means of Ek

h = −σ∂̄Ak
h − σ∂̄∇vkh and µHk

h = curlAk
h. Thus, the Corollary 7 yields

the following error estimates

∆t

N∑
n=1

‖σE(tn)−
(
−σ∂̄An

h − σ∂̄∇vnh
)
‖20,Ωc

≤ O(h2s + (∆t)2)

max
1≤n≤N

‖µH(tn)− curlAn
h‖20,Ω + ∆t

N∑
n=1

‖µH(tn)− curlAn
h‖20,Ω ≤ O(h2s + (∆t)2).
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6 Numerical result

In this section, we present numerical results obtained using a MATLAB code that implements a
problem with a known analytical solution. Specifically, we approximate the solution of the following
source problem (

∂A

∂t
+∇∂v

∂t

)
+ curl (curlA)− grad divA = f1 in [0, T ]× Ω, (44)

div

(
∂A

∂t
+∇∂v

∂t

)
= f2 in [0, T ]× Ωd, (45)

A · n = 0 v = 0 on [0, T ]× Γ, (46)(
∂A

∂t
+∇∂v

∂t

)
· nc = g · nc on [0, T ]× Γc (47)

(curlA)
∣∣
Ωc
× nc = (curlA)

∣∣
Ωd
× nc on [0, T ]× Γc, (48)

A
∣∣
Ωc
× nc = A

∣∣
Ωd
× nc on Γc × [0, T ], (49)

A
∣∣
Ωc
· nc = A

∣∣
Ωd
· nc on Γc × [0, T ], (50)

curlA× n = f3 × n on Γ× [0, T ]. (51)

In this case, we consider Ω = (0, 1)3, Ωc = (0.2, 0.8)3, and Ωd = Ω \ Ωc. The data f1,f2, g and f3
have been chosen so that the analytical solution is

A(x1, x2, x3, t) = sin(πt)

 0
πex1 cos(πx3) sin(πx2)
−πex1 cos(πx2) sin(πx3)

 v(x1, x2, x3, t) = t2 sin(x1) sin(x2) sin(x3).

In this example, we used to corroborate the convergence rate in the three-dimensional domain. Thus,
we take T = 0.5s and the time-step ∆t = 10−3s. The time step is sufficiently small, so that the time
discretization error is not affected.

The convergence for a set of quasi-uniform mesh refinements is shown in Table 1. The method
achieves optimal convergence with order O(h), confirming the theoretical optimal rates provided by
Corollary 7.
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