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Abstract

In this paper, we introduce and analyze a family of mixed finite element methods for the numerical
solution of heat-driven flows with temperature-dependent parameters, modeled by a generalization
of the stationary Boussinesq equations. Our approach relies on a reformulation of the governing
equations in terms of the velocity, strain-rate tensor, vorticity, stress, pseudoheat, temperature, and
its gradient. The pressure is eliminated from the system using the incompressibility constraint and
can be subsequently recovered through a postprocessing formula involving the stress and velocity
fields. Then, the resulting continuous formulation consists of a Banach spaces-based nonlinearly
perturbed coupled system of twofold saddle point operator equations. By introducing suitable
linearizations of the corresponding variational equations, we establish the unique solvability of
the continuous problem through a fixed-point strategy. This analysis combines the Banach–Nečas–
Babuška and Babuška–Brezzi theories in Banach spaces with the Banach fixed-point theorem, under
an extraregularity assumption on the aforementioned linear systems and a smallness assumption
on the data. Adopting an analogous approach for the associated Galerkin scheme, and under
suitable hypotheses on the finite element subspaces employed, we establish existence of a discrete
solution by applying the Brouwer fixed-point theorem and the discrete versions of the Banach–
Nečas–Babuška and Babuška–Brezzi theories. Furthermore, the error analysis is carried out under
appropriate assumptions on the data, and by employing similar arguments to those yielding Strang-
type estimates. Finally, several numerical experiments are presented to illustrate the performance
of the proposed scheme and to confirm the convergence rates predicted by the theoretical analysis.

Key words: generalized Boussinesq problem, temperature-dependent parameters, Banach spaces,
fully mixed finite element method, a priori error analysis.
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1 Introduction

Various types of free convection arise in both natural and industrial contexts, including mantle con-
vection, stratified oceanic flows, and onboard cooling systems for electronic devices. These processes
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are typically modeled by coupling the continuity and momentum equations (Navier–Stokes) with the
energy equation under the Boussinesq approximation, where the fluid density is assumed constant
except in the buoyancy term, where its linear dependence on temperature is retained. However, in
many physically relevant scenarios, other fluid properties, particularly viscosity and thermal conduc-
tivity, also exhibit strong temperature dependence (see, e.g. [5]). This is a key feature, for instance,
in geophysical processes such as mantle convection and magma dynamics, in the flow of heavy oils
and nanofluids, and in advanced thermal systems including electronic cooling, solar thermal collectors,
and microfluidic applications. Accurately modeling such phenomena requires considering generalized
Boussinesq equations with temperature-dependent coefficients, which leads to additional mathemat-
ical and numerical challenges. In this context, several numerical strategies have been proposed for
generalized Boussinesq equations with temperature-dependent parameters. These include standard
finite element methods (FEM) [8, 22, 24, 26], as well as mixed and augmented-mixed FEM formula-
tions [1, 2, 3, 4, 23]. More recently, a virtual element method was developed in [6] for the Boussinesq
system with temperature-dependent viscosity. Additionally, finite element methods based on primal
formulations for generalized Boussinesq equations were studied in [24, 23]. Subsequently, the mixed-
primal formulation initially introduced in [14] for the Boussinesq system with constant parameters
was extended in [4] to the two-dimensional case with temperature-dependent viscosity, and further
generalized to the n-dimensional setting in [1]. Similarly, the augmented fully mixed numerical scheme
originally proposed in [16] for the Boussinesq model with constant parameters was extended to the
n-dimensional problem with temperature-dependent parameters in [3].

One of the main advantages of the mixed formulations studied in [4, 1, 3] is that they allow for the
direct recovery of additional variables of physical interest beyond the original unknowns. However, to
ensure the well-posedness of the continuous and discrete problems, and to derive optimal convergence
estimates, redundant Galerkin-type terms are incorporated into these formulations. Such an approach
inevitably leads to denser matrices and increased computational costs, thus motivating the develop-
ment of alternative formulations that retain the mathematical and numerical advantages but minimize
computational complexity. In this context, a new Banach spaces-based fully mixed formulation was
introduced in [12] for the Boussinesq model with constant parameters. This formulation, based on
previous works [10, 14], enables the use of standard inf-sup stable finite element spaces suitable for
mixed problems without resorting to the augmentation procedure involving the aforementioned redun-
dant Galerkin-type terms introduced in [16]. In addition, the method introduced in [12] retains the
advantages of the formulations studied in [1, 3, 4], namely, the direct recovery of additional variables
of physical interest beyond the original unknowns. Furthermore, this formulation allows for the exact
conservation of important physical quantities such as momentum and thermal energy.

Motivated by the preceding discussion, in this work we extend the results presented in [1, 3, 4] by
utilizing the Banach spaces-based framework employed in [12]. Specifically, we propose and analyze a
new fully mixed finite element method for the numerical approximation of the Boussinesq model with
temperature-dependent parameters. Our approach relies on rewriting the governing equations as a
first-order system, in which, analogously to [3], the pseudostress tensor, strain-rate tensor, vorticity,
and velocity, together with the pseudoheat vector, temperature, and temperature gradient, consti-
tute the primary unknowns. By multiplying the resulting equations with suitable test functions and
employing standard integration by parts formulas, we derive a fully mixed variational formulation
posed in appropriate Banach spaces. Concerning the discrete scheme, the variational formulation is
discretized using generic finite-dimensional subspaces. We then establish suitable hypotheses ensuring
existence of solution of the discrete problem and the validity of the associated Céa’s estimate. Finally,
we introduce specific finite element spaces satisfying these hypotheses, which allow us to derive optimal
convergence rates. These discrete spaces are then employed to validate the theoretical results through
a series of numerical experiments, which confirm the predicted convergence behavior and demonstrate
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the effectiveness of the proposed method.
The remainder of this work is organized as follows. In Section 2, we introduce the model problem,

define the auxiliary variables required for the formulation, and derive the continuous fully mixed
variational problem. Section 3 is devoted to the solvability analysis of the continuous problem, where
we employ a fixed-point strategy combined with additional regularity assumptions on certain auxiliary
linearized problems and a smallness assumption on the data. The corresponding Galerkin scheme
is presented in Section 4, where, under suitable assumptions on generic discrete spaces and using
analogous arguments to those in Section 3, we prove the existence of a discrete solution. Next, in
Section 5, we derive a priori error estimates for the proposed Galerkin method, and Section 6 is
dedicated to the introduction of specific finite element subspaces that satisfy the assumptions from
Section 4. Finally, in Section 7, we report numerical results that demonstrate the performance of the
method and confirm the theoretical rates of convergence established in Section 6.

1.1 Preliminaries

Let us denote by Ω Ď Rn, n P t2, 3u a given bounded domain with polyhedral boundary Γ, and denote
by n the outward unit normal vector on Γ. Standard notations will be adopted for Lebesgue spaces
LppΩq, with p P r1,8s and Sobolev spaces W r,ppΩq with r ě 0, endowed with the norms } ¨ }0,p,Ω and
} ¨ }r,p,Ω, respectively. Note that W 0,ppΩq “ LppΩq and if p “ 2, we write HrpΩq in place of W r,2pΩq,
with the corresponding Lebesgue and Sobolev norms denoted by } ¨ }0,Ω and } ¨ }r,Ω, respectively. We
also write | ¨ |r,Ω for the Hr-seminorm. In addition, H1{2pΓq is the spaces of traces of functions of
H1pΩq and H´1{2pΓq denotes its dual. With x¨, ¨y we denote the corresponding product of duality
between H1{2pΓq and H´1{2pΓq. By S and S we will denote the corresponding vectorial and tensorial
counterparts of the generic scalar functional space S. In turn, for any vector fields v “ pviqi“1,n and
w “ pwiqi“1,n we set the gradient, divergence and tensor product operators, as

∇v :“

ˆ

Bvi
Bxj

˙

i,j“1,n

, divpvq :“
n
ÿ

j“1

Bvj
Bxj

, and v b w :“ pviwjqi,j“1,n.

In addition, for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t :“ pτjiqi,j“1,n, trpτ q :“
n
ÿ

i“1

τii, τ : ζ :“
n
ÿ

i,j“1

τijζij , and τ d :“ τ ´
1

n
trpτ qI, (1.1)

where I denotes the identity tensor in Rnˆn. On the other hand, given t ě 2n
n`2 , we introduce the

non-standard Banach spaces

Hpdivt; Ωq :“
!

τ P L2pΩq : divpτ q P LtpΩq

)

and
Hpdivt; Ωq :“

!

τ P L2pΩq : divpτ q P LtpΩq

)

,

equipped with the norms

}τ }divt;Ω :“ }τ }0,Ω ` } divpτ q}0,t;Ω, @ τ P Hpdivt,Ωq

and
}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω, @ τ P Hpdivt,Ωq,
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respectively. Then, proceeding as in [19, eq. (1.43), Section 1.3.4], it is easy to show that for each
t ě 2n

n`2 , there holds

xτ ¨ n, vy “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1pΩq , (1.2a)

xτn,vy “

ż

Ω

!

τ ¨ ∇v ` vdivpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1pΩq . (1.2b)

Note that the above constraint on t guarantees that H1pΩq is embedded in Lt
1

pΩq, where t1 is the
Hölder conjugate of t. As a consequence of it, one deduces from (1.2a) the existence of a positive
constant Ct, depending on t (or, equivalently, on t1) and Ω, such that

}τ ¨ n}´1{2,Γ ď Ct }τ }divt;Ω @ τ P Hpdivt; Ωq . (1.3)

Analogously, it follows from (1.2b) that

}τ n}´1{2,Γ ď Ct }τ }divt;Ω @ τ P Hpdivt; Ωq . (1.4)

In the sequel, for the case t “ 2 we simply employ the notation Hpdiv; Ωq and Hpdiv; Ωq, respectively.

2 The continuous formulation

2.1 The model problem

Let Ω Ď Rn be a bounded domain, n P t2, 3u, with Lipschitz-boundary Γ. The boundary of this
domain is divided into two portions ΓD and ΓN , such that ΓD Y ΓN “ Γ and |ΓD| ą 0. The model
consists in a system of equations where the incompressible Navier–Stokes equation is coupled with the
heat equation through convective and buoyancy terms, the latter typically acting in opposite direction
to gravity. More precisely, we are interested in the following system of equations

´divpµpφq epuqq ` p∇uqu ` ∇p´ φg “ 0 in Ω, (2.1a)

divpuq “ 0 in Ω, (2.1b)

´div
`

κpφq∇φ
˘

` u ¨ ∇φ “ f in Ω, (2.1c)

u “ 0 on Γ, (2.1d)

φ “ φD on ΓD, (2.1e)

κpφq∇φ ¨ n “ 0 on ΓN , (2.1f)
ż

Ω
p “ 0 , (2.1g)

where u, p and φ represent the velocity, pressure and temperature of the fluid, respectively, g is an
external force per unit mass, f is a source term, φD is a prescribed temperature on ΓD and

epuq “
1

2

`

∇u ` p∇uqt
˘

.

The right spaces to which g, f and φD belong, will be specified throughout the forthcoming analysis.
In turn, µ, κ : R Ñ R` are the temperature-dependent viscosity and thermal conductivity functions,
respectively, which are assumed to be bounded from above and below by positive constants, that is

µ1 ď µpwq ď µ2 and κ1 ď κpwq ď κ2 @w P R , (2.2)
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with µ1 , µ2, κ1, κ2 ą 0. In what follows, we assume that these functions are Lipschitz continuous,
that is, there exist positive constants Lµ and Lκ, such that

ˇ

ˇµpwq ´ µpvq
ˇ

ˇ ď Lµ
ˇ

ˇw ´ v
ˇ

ˇ and
ˇ

ˇκpwq ´ κpvq
ˇ

ˇ ď Lκ
ˇ

ˇw ´ v
ˇ

ˇ @w , v P R . (2.3)

Notice that equation (2.1g), is incorporated in the system to ensure uniqueness of the pressure.
Now, since we are interested in employing a fully mixed variational formulation for the coupled

system (2.1a)-(2.1g), we first adopt the approach from [3] for the fluid equations and introduce the
vorticity, strain and pseudostress tensors as further unknowns, given respectively by

γ :“
1

2

`

∇u ´ p∇uqt
˘

in Ω , t :“ epuq “ ∇u ´ γ , and

σ :“ µpφq t ´ u b u ´ p I in Ω .

In particular, applying the tensor trace (cf. (1.1)) to t and σ, and utilizing the incompressibility
condition (2.1b), one arrives at

trptq “ 0 in Ω and p “ ´
1

n
tr
`

σ ` u b u
˘

in Ω .

In this way, one can eliminate the pressure from the system (2.1a)–(2.1g) and rewrite it in terms of
σ, t, γ, u and φ, as follows

t ` γ “ ∇u in Ω , µpφq t ´ pu b uqd “ σd in Ω ,

´divpσq ´ φg “ 0 in Ω , σ “ σt in Ω ,

γ “ ´γt in Ω , t “ tt in Ω , trptq “ 0 in Ω ,

u “ 0 on Γ and

ż

Ω
tr
`

σ ` u b u
˘

“ 0 .

(2.4)

Notice that the fourth and fifth equations of (2.4) are included in the system to ensure the skew-
symmetry and symmetry of γ and t, respectively, whereas the incompressibility of the fluid is now
imposed through the sixth equation of (2.4). In addition, let us observe that last equation of (2.4) is
equivalent to (2.1g).

Next, for the remaining equations (2.1c), (2.1e) and (2.1f), we follow the approach from [16, 3] and
introduce, as additional unknowns, the gradient of the temperature and the pseudoheat vector field,
given respectively by

ζ :“ ∇φ and ρ :“ κpφq ζ ´ φu in Ω ,

so that we obtain the equivalent system

ζ “ ∇φ in Ω , κpφq ζ ´ φu “ ρ in Ω , ´divpρq “ f in Ω ,

φ “ φD on ΓD and ρ ¨ n “ 0 on ΓN ,
(2.5)

where (2.1f) has been converted to ρ ¨ n “ 0 on ΓN thanks to the no-slip condition u “ 0 on Γ.

2.2 The fully mixed variational formulation

In this section we introduce the variational formulation for the system given by (2.4) and (2.5). We
begin with the set of equations (2.4) by introducing, as suggested by the properties satisfied by the
unknown t, the space

L2
trpΩq :“

!

s P L2pΩq : s ´ st “ 0 and trpsq “ 0
)

,
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to which t clearly belongs. Then, testing the second equation in the first row of (2.4) with s P L2
trpΩq,

and using that rd : s “ r : s, for any tensor r, we formally obtain

ż

Ω
µpφq t : s ´

ż

Ω
pu b uq : s ´

ż

Ω
σ : s “ 0 @ s P L2

trpΩq . (2.6)

The boundedness of µ (cf. (2.2)) guarantees that the first term of (2.6) is well-defined, whereas the
third one is as well if σ belongs to L2pΩq. In turn, simple applications of the Cauchy-Schwarz inequality
show that the second term makes sense if u P L4pΩq. Thus, it is reasonable to assume, at least at
first instance, that actually u P H1pΩq, which is certainly embedded in L4pΩq. In this way, proceeding
similarly to [9, 12], we now test the first equation in the first row of (2.4) with τ P Hpdiv4{3; Ωq,
so that applying the integration by parts formula (1.2b), with t “ 4{3, and employing the boundary
condition u “ 0 on Γ, we arrive at

ż

Ω
t : τ `

ż

Ω
γ : τ `

ż

Ω
u ¨ divpτ q “ 0 @ τ P Hpdiv4{3; Ωq . (2.7)

The first term of (2.7) is certainly well-defined since t and τ belong to L2pΩq, and the second is as
well if γ, which must satisfy γ “ ´γt , is sought in the space

L2
skewpΩq :“

!

ω P L2pΩq : ω “ ´ωt
)

.

In addition, the third term of (2.7) makes sense for u again in L4pΩq thanks to the Hölder inequality,
thus explaining the previous choice of Hpdiv4{3; Ωq for τ . Furthermore, we impose the symmetry of
σ through

ż

Ω
σ : ω “ 0 @ω P L2

skewpΩq .

Finally, adding the constraint divpσq P L4{3pΩq, the first equation in the second row of (2.4) is weakly
imposed as follows:

ż

Ω
v ¨ divpσq `

ż

Ω
φg ¨ v “ 0 @v P L4pΩq , (2.8)

and hence, an appropriate space for σ is the same as for τ , that is Hpdiv4{3; Ωq. Regarding the
respective spaces for φ and g, which appear in the second term of the left-hand side of (2.8), they will
become clear next when deriving the variational formulation for the system (2.5). Indeed, testing the
second equation in the first row of (2.5) with ξ P L2pΩq, we formally obtain

ż

Ω
κpφq ζ ¨ ξ ´

ż

Ω
φu ¨ ξ ´

ż

Ω
ρ ¨ ξ “ 0 @ ξ P L2pΩq ,

from which, assuming that ζ and ρ are originally sought in L2pΩq, we observe that its first and
third terms are well-defined, in particular the first one thanks also to the boundedness of κ (cf.
(2.2)). Regarding the second term, and knowing already that u P L4pΩq, it follows again by Hölder’s
inequality that it makes sense if we look for φ in L4pΩq. Moreover, proceeding similarly as for (2.7), we
actually assume now that φ P H1pΩq and that the Dirichlet datum φD P H1{2pΩq, so that employing
the integration by parts formula (1.2a) with t “ 4{3, and making use of the boundary condition
φ|Γ “ φD, the testing of the first equation in the first row of (2.5) against η P HN pdiv4{3; Ωq, yields

ż

Ω
ζ ¨ η `

ż

Ω
φdivpηq “ xη ¨ n, φDyΓD @η P HN pdiv4{3; Ωq , (2.9)
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where
HN pdiv4{3; Ωq “

!

η P Hpdiv4{3; Ωq : η ¨ n “ 0 on ΓN

)

.

Note that the second term of (2.9) makes sense for φ again in L4pΩq. Then, going back to the
second term on the left-hand side of (2.8), we realize that it is well-defined if the datum g is assumed
to belong to L2pΩq. We conclude the derivation of the variational formulation by adding to ρ the
condition divpρq P L4{3pΩq, which, together with the boundary condition ρ ¨ n “ 0 on ΓN , turns this
unknown to be looked for in HN pdiv4{3; Ωq. Hence, assuming from now on that f P L4{3pΩq, the third
equation in the first row of (2.5) is imposed weakly through

ż

Ω
ψ divpρq “ ´

ż

Ω
f ψ @ψ P L4pΩq . (2.10)

In light of the above, the variational problem associated with the system (2.4)–(2.5) reads as follows:
Find t P L2

trpΩq, σ P Hpdiv4{3; Ωq, u P L4pΩq, γ P L2
skewpΩq, ζ P L2pΩq, ρ P HN pdiv4{3; Ωq, and

φ P L4pΩq, such that (2.6)–(2.10) hold, with

ż

Ω
tr
`

σ ` u b u
˘

“ 0. (2.11)

However, following the approach in [11], we observe that due to the constraint (2.11) and the decom-
position (see, e.g., [9], [19])

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ RI,

where

H0pdiv4{3; Ωq :“

"

τ P Hpdiv4{3; Ωq :

ż

Ω
trpτ q “ 0

*

,

any solution σ P Hpdiv4{3; Ωq to the system can be written as σ “ σ0 ` cI, where σ0 P H0pdiv4{3; Ωq

and

c :“ ´
1

n|Ω|

ż

Ω
tr
`

u b u
˘

.

Then, noting that σ0 “ σd
0 and divpσq “ divpσ0q, equations (2.6) and (2.8) can be equivalently

expressed in terms of σ0 without altering their meaning. Accordingly, in what follows, we omit the
constraint (2.11) and study the system (2.6)–(2.10) with σ P H0pdiv4{3; Ωq, where the subscript 0 in
σ has been dropped for the sake of simplicity of notation.

3 The continuous solvability analysis

In this section, we analyze the solvability of the system (2.6)–(2.10) by combining the Babuška-Brezzi
theory and the classical Banach–Nečas–Babuška theorem, both in Banach spaces, with a fixed-point
strategy.

3.1 Preliminaries

We begin by rewriting the equations (2.6) up to (2.10) in terms of suitable bilinear forms. Indeed, we
first introduce the spaces:

H :“ L2
trpΩq ˆ H0pdiv4{3; Ωq , Q :“ L4pΩq ˆ L2

skewpΩq ,

rH :“ L2pΩq ˆ HN pdiv4{3; Ωq , and rQ :“ L4pΩq ,
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which are endowed with the respective norms

}⃗s}H :“ }s}0,Ω ` }τ }div4{3;Ω , }w⃗}Q :“ }w}0,4;Ω ` }ω}0,Ω ,

}ξ⃗}
rH :“ }ξ}0,Ω ` }η}div4{3;Ω , and }ψ}

rQ :“ }ψ}0,4;Ω ,

for all s⃗ :“ ps, τ q P H, w⃗ :“ pw,ωq P Q, ξ⃗ :“ pξ,ηq P rH, and ψ P rQ. Then, it is easily seen that
the system given by the equations (2.6) up to (2.10) can be reformulated as the following nonlinearly
perturbed coupled system of twofold saddle point formulations: Find t⃗ “ pt,σq P H, u⃗ “ pu,γq P Q,
ζ⃗ “ pζ,ρq P rH, and φ P rQ, such that

Aφp⃗t, s⃗q `Bp⃗s, u⃗q ` Cupu, sq “ 0 @ s⃗ P H ,

Bp⃗t, w⃗q “ Gφpw⃗q @ w⃗ P Q ,
(3.1)

and
rAφpζ⃗, ξ⃗q ` rBpξ⃗, φq ` rCupφ, ξq “ rF pξ⃗q @ ξ⃗ P rH ,

rBpζ⃗, ψq “ rGpψq @ψ P rQ ,
(3.2)

where, for each ϕ P L4pΩq, Aϕ : H ˆ H Ñ R and rAϕ : rH ˆ rH Ñ R are defined by

Aϕp⃗t, s⃗q :“ aϕpt, sq ` bps,σq ` bpt, τ q and rAϕpζ⃗, ξ⃗q :“ raϕpζ, ξq `rbpξ,ρq `rbpζ,ηq , (3.3)

with aϕ : L2
trpΩq ˆ L2

trpΩq Ñ R, b : L2
trpΩq ˆ H0pdiv4{3; Ωq Ñ R, raϕ : L2pΩq ˆ L2pΩq Ñ R, and

rb : L2pΩq ˆ HN pdiv4{3; Ωq Ñ R, given by

aϕpt, sq :“

ż

Ω
µpϕq t : s , bps, τ q :“ ´

ż

Ω
s : τ ,

raϕpζ, ξq :“

ż

Ω
κpϕq ζ ¨ ξ , rbpξ,ηq :“ ´

ż

Ω
ξ ¨ η .

Note here that the saddle point structure of both Aϕ and rAϕ explains the twofold concept employed

to refer to (3.1) and (3.2). In turn, B : H ˆ Q Ñ R and rB : rH ˆ rQ Ñ R are defined as

Bpps, τ q, pv,ωqq :“ ´

ż

Ω
v ¨ divpτ q ´

ż

Ω
ω : τ and rBppξ,ηq, ψq :“ ´

ż

Ω
ψ divpηq , (3.4)

whereas Cw : L4pΩq ˆ L2
trpΩq Ñ R and rCw : L4pΩq ˆ L2pΩq Ñ R reduce, for each w P L4pΩq, to

Cwpv, sq :“ ´

ż

Ω
pw b vq : s and rCwpψ, ξq :“ ´

ż

Ω
ψpw ¨ ξq .

We now remark that, although rCu is actually a bilinear form, the fact that Cupu, sq is nonlinear in
u explains the nonlinearly perturbed concept utilized before. Finally, the functionals Gϕ, for each

ϕ P L4pΩq, rF : rH Ñ R, and rG : rQ Ñ R, are defined by

Gϕpw⃗q :“ ´

ż

Ω
ϕg ¨ w , rF pξ⃗q :“ ´xη ¨ n, φDyΓD ,

and rGpψq :“

ż

Ω
fψ .
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3.2 The fixed-point strategy

We now introduce the fixed-point strategy to analyze the solvability of the coupled system (3.1)-(3.2).
We begin by introducing the auxiliary operator S : L4pΩq ˆ L4pΩq Ñ L2

trpΩq ˆ L4pΩq defined by

Spz, ϕq “ pS1pz, ϕq,S2pz, ϕqq :“ pt,uq @ pz, ϕq P L4pΩq ˆ L4pΩq , (3.5)

where t P L2
trpΩq and u P L4pΩq are the first and third components, respectively, of the unique solution

(to be confirmed below) of the linearized problem arising from (3.1) when replacing Aφ, Cu, and Gφ
by Aϕ, Cz, and Gϕ, respectively, that is: Find p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q, such that

Aϕp⃗t, s⃗q `Bp⃗s, u⃗q ` Czpu, sq “ 0 @ s⃗ “ ps, τ q P H,

Bp⃗t, v⃗q “ Gϕpv⃗q @ v⃗ “ pv,ωq P Q .
(3.6)

In turn, we let T : L4pΩq ˆ L4pΩq Ñ L2pΩq ˆ L4pΩq be the operator given by

Tpz, ϕq “ pT1pz, ϕq,T2pz, ϕqq :“ pζ, φq @ pz, ϕq P L4pΩq ˆ L4pΩq , (3.7)

where ζ P L2pΩq and φ P L4pΩq are the first and third components, respectively, of the unique solution
(to be confirmed below) of the linearized problem arising from (3.2) when replacing rAφ and rCu by rAϕ
and rCz, respectively, that is: Find pζ⃗, φq “ ppζ,ρq, φq P rH ˆ rQ, such that

rAϕpζ⃗, ξ⃗q ` rBpξ⃗, φq ` rCzpφ, ξq “ rF pξ⃗q @ ξ⃗ “ pξ,ηq P rH,

rBpζ⃗, ψq “ rGpψq @ψ P rQ .
(3.8)

Thus, we let J : L4pΩq ˆ L4pΩq Ñ L4pΩq ˆ L4pΩq be the operator defined by

Jpz, ϕq “
`

S2pz,T2pz, ϕqq,T2pz, ϕq
˘

@ pz, ϕq P L4pΩq ˆ L4pΩq , (3.9)

and realize that solving (3.1)-(3.2) is equivalent to seeking a fixed-point of J, that is: Find pu, φq P

L4pΩq ˆ L4pΩq, such that
Jpu, φq “ pu, φq . (3.10)

In this way, in what follows we focus on proving that J possesses a unique fixed-point, for which
we begin by establishing in the following section that S and T, and hence J, are well defined.

3.3 Well-definiteness of S, T and J

In order to prove that S and T are well defined, equivalently that the linear problems (3.6) and (3.8)
are well-posed, we resort to the Banach–Nečas–Babuška Theorem and the classical Babuška–Brezzi
theory, which are recalled next in the setting of Banach spaces (cf. [18, Theorems 2.6 and 2.34]).

Theorem 3.1. Let H and Q be Banach spaces such that Q is reflexive, and let A : H ˆQ ÝÑ R be a
bounded bilinear form. Assume that

i) there exists α ą 0 such that

sup
vPQ
v‰0

Apw, vq

}v}Q
ě α }w}H @w P H , (3.11)
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ii) there holds
sup
wPH

Apw, vq ą 0 @ v P Q, v ­“ 0 . (3.12)

Then, for each F P Q1 there exists a unique u P H such that

Apu, vq “ F pvq @ v P Q , (3.13)

and the following a priori estimate holds

}u}H ď
1

α
}F }Q1 . (3.14)

Moreover, i) and ii) are also necessary conditions for the well-posedness of (3.13).

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : HˆH ÝÑ R and b : HˆQ ÝÑ R
be bounded bilinear forms with boundedness constants denoted by }a} and }b}, respectively. In addition,
let V be the null space of the operator induced by b, which reduces to

V :“
!

τ P H : bpτ, vq “ 0 @ v P Q
)

,

and assume that

i) there exists α ą 0 such that

sup
τPV
τ‰0

apζ, τq

}τ}H
ě α }ζ}H @ ζ P V , (3.15)

ii) there holds
sup
τPV

apτ, ζq ą 0 @ ζ P V, ζ ‰ 0 , (3.16)

iii) there exists β such that

sup
τPH
τ‰0

bpτ, vq

}τ}H
ě β }v}Q @ v P Q .

Then, for each pair pF,Gq P H1 ˆ Q1 there exists a unique pσ, uq P H ˆ Q such that

apσ, τq ` bpτ, uq “ F pτq @ τ P H ,

bpσ, vq “ Gpvq @ v P Q ,
(3.17)

and the following a priori estimates hold

}σ} ď
1

α
}F }H1 `

1

β

´

1 `
}a}

α

¯

}G}Q1 ,

}u} ď
1

β

´

1 `
}a}

α

¯

}F }H1 `
}a}

β2

´

1 `
}a}

α

¯

}G}Q1 .

(3.18)

Moreover, i), ii), and iii) are also necessary conditions for the well-posedness of (3.17).
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We stress here that (3.18) is equivalent to the following global inf-sup condition for (3.17):

sup
pτ,vqPHˆQ

pτ,vq­“0

apζ, τq ` bpτ, wq ` bpζ, vq

}pτ, vq}HˆQ
ě rα }pζ, wq}HˆQ @ pζ, wq P H ˆ Q , (3.19)

where rα ą 0 is a constant depending only on α, β, and }a} (as it follows from (3.18)).

In what follows we prove first that the formulations arising from (3.6) and (3.8) after dropping
the perturbations Cz and rCz, satisfy the hypotheses of Theorem 3.2. Secondly, we show that the full
problems (3.6) and (3.8) satisfy the hypotheses of Theorem 3.1. We begin with the stability properties
of the bilinear forms and functionals involved. Indeed, given ϕ P rQ and w P L4pΩq, we employ (2.2)
and Hölder’s inequality to deduce that

|aϕpt, sq| ď µ2 }t}0,Ω }s}0,Ω , |bps,σq| ď }s}0,Ω}σ}div4{3,Ω ,

|Bp⃗s, v⃗q| ď }ps, τ q}H }pv,ωq}Q , |Cwpv, sq| ď }w}0,4;Ω }v}0,4;Ω }s}0,Ω ,

|Gϕpv⃗q| ď }ϕ}0,4;Ω }g}0,Ω }v⃗}Q ,

(3.20)

for all t⃗ “ pt,σq, s⃗ “ ps, τ q P H, for all v⃗ “ pv,ωq P Q, and

|raϕpζ, ξq| ď κ2 }ζ}0,Ω }ξ}0,Ω , |rbpξ,ρq| ď }ξ}0,Ω }ρ}div4{3,Ω ,

| rBpξ⃗, ψq| ď }ξ⃗}
rH }ψ}0,4;Ω , | rCwpψ, ξq| ď }w}0,4;Ω }ψ}0,4;Ω }ξ}0,Ω ,

| rF pξ⃗q| ď CD }φD}1{2,ΓD }ξ⃗}
rH , | rGpψq| ď }f}0,4{3,Ω }ψ}0,4;Ω ,

(3.21)

for all ζ⃗ “ pζ,ρq, ξ⃗ “ pξ,ηq P rH, for all ψ P rQ. Note here that the constant CD in the boundedness
of rF is given by the norm of a suitable continuous extension ED : H1{2pΓDq Ñ H1{2pΓq times C4{3 (cf.
(1.3)). In turn, we know from [21, Lemma 3.4] and [12, Lemma 3.1] that there exist positive constant
β and rβ, such that the bilinear forms B and rB satisfy continuous inf-sup conditions in H ˆ Q and
rH ˆ rQ, respectively, that is

sup
s⃗PHz0

Bp⃗s, v⃗q

}ps, τ q}H
ě β }v⃗}Q @ v⃗ P Q , (3.22)

and

sup
ξ⃗P rHz0

rBpξ⃗, ψq

}ξ⃗}
rH

ě rβ }ψ}0,4;Ω @ψ P rQ . (3.23)

Now, let V be the kernel of B, that is

V :“
!

ps, τ q P H : Bpps, τ q, pv,ωqq “ 0 @ pv,ωq P Q
)

,

which, according to the definition of B (cf. (3.4)), can be characterized as

V “ L2
trpΩq ˆ V0 ,

with
V0 :“

!

τ P H0pdiv4{3; Ωq : divpτ q “ 0 and τ “ τ t in Ω
)

.

Since the formulation arising from (3.6) after dropping Cz has a saddle-point structure, we proceed
next to verify that, given ϕ P Q, the bilinear form Aϕ satisfies the assumptions (3.15) and (3.16)
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required by Theorem 3.2. However, bearing in mind that Aϕ itself exhibits the same structure in
terms of the bilinear forms aϕ and b (see (3.3)), it suffices to prove, according to the equivalence
between (3.18) and (3.19), that aϕ and b satisfy the assumptions of Theorem 3.2 on V :“ L2

trpΩqˆV0.
We first observe, thanks to (2.2), that there holds

aϕps, sq ě α1 }s}20,Ω @ s P L2
trpΩq , (3.24)

with α1 “ µ1, which, noting that the null space of b|V is certainly a subspace of L2
trpΩq, easily implies

that aϕ satisfies assumptions i) and ii) of Theorem 3.2. In turn, we know from [20, Lemma 3.3] that
there exists a positive constant β1 such that

sup
sPL2

trpΩqzt0u

bps, τ q

}s}0,Ω
ě β1 }τ }div4{3,Ω @ τ P V0 , (3.25)

which proves that b satisfies assumption iii) of Theorem 3.2. In this way, having shown that aϕ and b
satisfy the hypotheses of Theorem 3.2 on the product space V :“ L2

trpΩq ˆ V0, we conclude, because
of the equivalence between (3.18) and (3.19), that the bilinear form Aϕ satisfies the inf-sup condition
(3.15) (cf. hypothesis i) of Theorem 3.2), that is

sup
s⃗PL2

trpΩqˆV0zt0u

Aϕp⃗t, s⃗q

}⃗s}H
ě α }⃗t}H @ t⃗ P L2

trpΩq ˆ V0 , (3.26)

with a positive constant α depending only on α1, β1, and µ2 (since }aϕ} ď µ2, as seen from (3.20)).
Moreover, the symmetry of aϕ directly implies that Aϕ is symmetric as well, which allows us to deduce

from (3.26) that Aϕ also satisfies (3.16). Furthermore, for rA we proceed analogously as for A, so that

we first observe that the kernel rV of rB (cf. (3.4)) can be characterized as

rV :“ L2pΩq ˆ rV0 ,

with
rV0 :“

!

η P HN pdiv; Ωq : divpηq “ 0 in Ω
)

.

Then, similarly as for (3.24), we use again (2.2) to deduce now that

raϕpξ, ξq ě rα1 }ξ}20,Ω @ ξ P L2pΩq , (3.27)

with rα1 “ κ1, which implies that raϕ satisfies assumptions i) and ii) of Theorem 3.2. In addition, given

η P rV0zt0u, we readily find that

sup
ξPL2pΩqzt0u

rbpξ,ηq

}ξ}0,Ω
ě

rbp´η,ηq

} ´ η}0,Ω
“ }η}0,Ω “ rβ1 }η}div4{3,Ω , (3.28)

with rβ1 “ 1, thus showing that rb satisfies assumption iii) of Theorem 3.2. Hence, as for the deduction
of (3.26), we now arrive at

sup
ξ⃗PL2pΩqˆrV0zt0u

rAϕpζ⃗, ξ⃗q

}ξ⃗}
rH

ě rα }ζ⃗}
rH @ ζ⃗ P L2pΩq ˆ rV0 , (3.29)

with a positive constant rα depending only on rα1, rβ1, and κ2 (since }raϕ} ď κ2, as seen from (3.21)),

which along with the symmetry of rAϕ, proves that rAϕ satisfies both (3.15) and (3.16).
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We now aim to establish the well-definiteness of operator S, equivalently that (3.6) is well-posed.
To this end, we begin by noticing that, given pz, ϕq P L4pΩq ˆ L4pΩq, this problem can be rewritten
as: Find p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q, such that

Aϕpp⃗t, u⃗q, p⃗s, v⃗qq ` Czpu, sq “ Gϕpv⃗q @ p⃗s, v⃗q “ pps, τ q, pv,ωqq P H ˆ Q , (3.30)

where Aϕ : pH ˆ Qq ˆ pH ˆ Qq Ñ R is the bilinear form defined by

Aϕpp⃗t, u⃗q, p⃗s, v⃗qq :“ Aϕp⃗t, s⃗q ` Bp⃗s, u⃗q ` Bp⃗t, v⃗q @ p⃗t, u⃗q, p⃗s, v⃗q P H ˆ Q . (3.31)

According to the above, we now proceed analogously to the proof of [9, Theorem 3.7] and aim to show
that (3.30) satisfies the hypotheses of Theorem 3.1. Indeed, the boundedness of the bilinear form on
the left hand-side of (3.30) follows straightforwardly from the stability properties provided by (3.20),
which yield }Aϕ} ď max

␣

1, µ2
(

, }Aϕ} ď max
␣

1, µ2
(

, and }Cz} ď }z}0,4;Ω. In addition, since Aϕ
and B satisfy the inf-sup conditions required by Theorem 3.2, we deduce that there exists a positive
constant ϑ, depending on α (cf. (3.26)), β (cf. (3.22)), and µ2 (because of the above established bound
for }Aϕ}), such that (cf. (3.19))

sup
p⃗s,v⃗qPpHˆQqzt0u

Aϕpp⃗r, w⃗q, p⃗s, v⃗qq

}p⃗s, v⃗q}HˆQ
ě ϑ }p⃗r, w⃗q}HˆQ @ p⃗r, w⃗q P H ˆ Q , (3.32)

thanks to which, using the boundedness of Cz, and performing some algebraic manipulations, we get

sup
p⃗s,v⃗q“pps,τ q,pv,ωqqPpHˆQqzt0u

Aϕpp⃗r, w⃗q, p⃗s, v⃗qq ` Czpw, sq

}p⃗s, v⃗q}HˆQ
ě pϑ´ }z}0,4;Ωq }p⃗r, w⃗q}HˆQ , (3.33)

for all p⃗r, w⃗q “ ppr,ϱq, pw,χqq P H ˆQ. Thus, assuming now that z is chosen such that }z}0,4;Ω ď ϑ
2 ,

the foregoing inequality yields

sup
p⃗s,v⃗q“pps,τ q,pv,ωqqPpHˆQqzt0u

Aϕpp⃗r, w⃗q, p⃗s, v⃗qq ` Czpw, sq

}p⃗s, v⃗q}HˆQ
ě

ϑ

2
}p⃗r, w⃗q}HˆQ , (3.34)

for all p⃗r, w⃗q “ ppr,ϱq, pw,χqq P H ˆ Q. In addition, as in the proof of [9, Theorem 3.7], estimate
(3.34) and the symmetry of Aϕ readily imply that there holds

sup
p⃗r,w⃗q“ppr,ϱq,pw,χqqPpHˆQq

Aϕpp⃗r, w⃗q, p⃗s, v⃗qq ` Czpw, sq ą 0, (3.35)

for all p⃗s, v⃗q “ pps, τ q, pv,ωqq P pH ˆ Qqzt0u.

Summarizing, we have basically demonstrated the following result.

Lemma 3.3. Given pz, ϕq P L4pΩqˆL4pΩq such that }z}0,4;Ω ď ϑ
2 , problem (3.30) (equivalently (3.6))

has a unique solution p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q, and hence one can define Spz, ϕq “ pt,uq.
Moreover, there exists a positive constant CS, depending only on ϑ, such that

}Spz, ϕq}L2
trpΩqˆL4pΩq ď }p⃗t, u⃗q}HˆQ ď CS }ϕ}0,4;Ω }g}0,Ω . (3.36)

Proof. Thanks to the previous discussion, the unique solvability of (3.30) (equivalently (3.6)) follows
from a straightforward application of Theorem 3.1. In turn, (3.14) and the boundedness of Gϕ (cf.
(3.20)) imply the a priori estimate

}pt,σq}H ` }pu,γq}Q ď
2

ϑ
}ϕ}0,4;Ω }g}0,Ω ,

which yields (3.36) with CS :“ 2
ϑ and concludes the proof.
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Now we turn to prove the well-definiteness of operator T, equivalently that (3.8) is well-posed.
Analogously to the previous analysis, given pz, ϕq P L4pΩq ˆ L4pΩq, we rewrite this problem as: Find
pζ⃗, φq “ ppζ,ρq, φq P rH ˆ rQ, such that

rAϕppζ⃗, φq, pξ⃗, ψqq ` rCzpφ, ξq “ rF pξ⃗q ` rGpψq @ pξ⃗, ψq “ ppξ,ηq, ψq P rH ˆ rQ, (3.37)

where rAϕ : p rH ˆ rQq ˆ p rH ˆ rQq Ñ R is the bilinear form defined by

rAϕppζ⃗, φq, pξ⃗, ψqq :“ rAϕpζ⃗, ξ⃗q ` rBpξ⃗, φq ` rBpζ⃗, ψq @ pζ⃗, φq, pξ⃗, ψq P rH ˆ rQ , (3.38)

and proceed next to prove that (3.37) satisfies the hypotheses of Theorem 3.1. Indeed, the boundedness
of the left hand-side of (3.37) follows from (3.21) with } rAϕ} ď max

␣

1, κ2
(

and } rCz} ď }z}0,4;Ω. In

turn, having rAϕ and rB satisfied the inf-sup conditions required by Theorem 3.2 (cf. (3.29), (3.23)),

and noting from (3.21) again that } rAϕ} ď max
␣

1, κ2
(

, we deduce the existence of a positive constant
rϑ, depending only on rα, rβ, and κ2, such that

sup
pξ⃗,ψq“ppξ,ηq,ψqPp rHˆ rQqzt0u

rAϕppς⃗, θq, pξ⃗, ψqq

}pξ⃗, ψq}
rHˆ rQ

ě rϑ }pς⃗, θq}
rHˆ rQ @ pς⃗, θq P rH ˆ rQ . (3.39)

Then, similarly as for the derivation of (3.34) and (3.35), it follows from (3.39) and the boundedness

of rCz that, under the assumption }z}0,4;Ω ď
rϑ
2 , there hold

sup
pξ⃗,ψq“ppξ,ηq,ψqPp rHˆ rQqzt0u

rAϕppς⃗, θq, pξ⃗, ψqq ` rCzpθ, ξq

}pξ⃗, ψq}
rHˆ rQ

ě
rϑ

2
}pς⃗, θq}

rHˆ rQ @ pς⃗, θq P rH ˆ rQ , (3.40)

and
sup

pς⃗,θqPp rHˆ rQq

rAϕppς⃗, θq, pξ⃗, ψqq ` rCzpθ, ξq ą 0 @ pξ⃗, ψq “ ppξ,ηq, ψq P p rH ˆ rQqzt0u ,

where the latter makes use certainly of the symmetry of rAϕ.

We are thus in position to establish the following result.

Lemma 3.4. Given pz, ϕq P L4pΩq ˆ L4pΩq such that }z}0,4;Ω ď
rϑ
2 , problem (3.37) (equivalently

(3.8)) has a unique solution pζ⃗, φq “ ppζ,ρq, φq P rH ˆ rQ, and hence one can define Tpz, ϕq “ pζ, φq.
Moreover, there exists a positive constant CT, depending only on rϑ and CD (cf. (3.21)), such that

}Tpz, ϕq}L2pΩqˆL4pΩq ď }pζ⃗, φq}
rHˆ rQ ď CT

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

. (3.41)

Proof. Similarly as for the proof of Lemma 3.3, the unique solvability of (3.37) (equivalently (3.8))
follows from a direct application of Theorem 3.1. Then, (3.14) along with the estimates for } rF } and
} rG} (cf. (3.21)) give

}pζ,ρq}
rH ` }φ}0,4;Ω ď

2

rϑ

!

CD }φD}1{2,ΓD ` }f}0,4{3,Ω

)

,

which yields (3.41) with CT :“ 2
rϑ
max

␣

CD, 1
(

and ends the proof.

Having verified that S and T are well-defined, it follows that J is as well. More precisely, we have
the following result.
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Lemma 3.5. For each pz, ϕq P L4pΩq ˆ L4pΩq such that }z}0,4;Ω ď min
!

rϑ
2 ,

ϑ
2

)

, one can define

Jpz, ϕq “
`

J1pz, ϕq,J2pz, ϕq
˘

P L4pΩq ˆL4pΩq. Moreover, there exist positive constants CJ,1 and CJ,2,
depending only on CS and CT, such that

}J1pz, ϕq}0,4;Ω ď CJ,1 }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

, (3.42)

and
}J2pz, ϕq}0,4;Ω ď CJ,2

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

. (3.43)

Proof. Given pz, ϕq as indicated, the well-definiteness of Jpz, ϕq follows straightforwardly from (3.9),
the assumption on }z}0,4;Ω, and Lemmas 3.3 and 3.4. Moreover, employing (3.36) and (3.41), we find
that

}J1pz, ϕq}0,4;Ω “ }S2pz,T2pz, ϕqq}0,4;Ω ď CS }g}0,Ω }T2pz, ϕq}0,4;Ω

ď CS }g}0,ΩCT

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

,

and
}J2pz, ϕq}0,4;Ω “ }T2pz, ϕq}0,4;Ω ď CT

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

,

which yields (3.42) and (3.43) with CJ,1 :“ CSCT and CJ,2 :“ CT, respectively.

3.4 Existence and uniqueness of solution

We now address the unique solvability of our coupled problem (3.1)–(3.2) by proving, via the classical
Banach theorem, that the equivalent fixed-point equation (3.10) admits a unique solution. To this
end, from now on we choose any λ ą 0 such that

λ ď min

#

ϑ

2
,
rϑ

2

+

, (3.44)

and introduce the closed cylinder

Wpλq :“
!

pz, ϕq P L4pΩq ˆ L4pΩq : }z}0,4;Ω ď λ
)

. (3.45)

The following lemma establishes a condition under which J maps Wpλq into itself.

Lemma 3.6. Assume that the data are sufficiently small so that

CJ,1 }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

ď λ . (3.46)

Then, there holds J
`

Wpλq
˘

Ď Wpλq.

Proof. The result is a direct consequence of (3.45) and estimate (3.42).

Next, we aim to show that the operators S and T, and hence J, are Lipschitz continuous. For
this purpose, we require additional regularity hypotheses on the solutions to the problems defining
these operators. Specifically, from now on we assume that the data are a bit more regular than usual,
namely

φD P H1{2`ϵpΓq and f P W ϵ,4{3pΩq , for some ϵ P rn{4, 1q ,

and that there hold the following:
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(RH.1) for each pz, ϕq P Wpλq, the solution ppt,σq, pu,γqq P H ˆ Q of problem (3.6) satisfies t P

L2
trpΩq X HϵpΩq, σ P H0pdiv4{3; Ωq X HϵpΩq, u P Wϵ,4pΩq, γ P L2

skewpΩq X HϵpΩq, and there exists a
positive constant Cϵ, such that

}t}ϵ,Ω ` }σ}ϵ,Ω ` }u}ϵ,4;Ω ` }γ}ϵ,Ω ď Cϵ }g}0,Ω }ϕ}0,4;Ω , (3.47)

(RH.2) for each pz, ϕq P Wpλq, the solution ppζ,ρq, φq P rH ˆ rQ of problem (3.8) satisfies ζ P HϵpΩq,
ρ P HN pdiv4{3; Ωq X HϵpΩq, φ P W ϵ,4pΩq, and there exists a positive constant rCϵ, such that

}ζ}ϵ,Ω ` }ρ}ϵ,Ω ` }φ}ϵ,4;Ω ď rCϵ
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3,Ω

˘

. (3.48)

We stress here that for the specified range of ϵ, the following continuous embeddings hold:

HϵpΩq Ď Lϵ
˚

pΩq and HϵpΩq Ď Lϵ
˚

pΩq , (3.49)

with continuous injection operators iϵ : HϵpΩq Ñ Lϵ˚

pΩq and iϵ : H
ϵpΩq Ñ Lϵ

˚

pΩq, where ϵ˚ “
2n

n´ 2ϵ
(see e.g. [25, Theorem 1.3.4]). In turn, noting that n{ϵ ď 4, we let i4,ϵ : L

4pΩq Ñ Ln{ϵpΩq be the
respective continuous injection operator.

The following result establishes the Lipschitz continuity of S.

Lemma 3.7. There exists a positive constant LS, depending only on ϑ, Lµ, }i4,ϵ}, }iϵ}, CS, and Cϵ,
such that

}Spz, ϕq ´ Spz, ϕq}L2
trpΩqˆL4pΩq

ď LS }g}0,Ω

!

}ϕ}0,4;Ω }z ´ z}0,4;Ω `
`

}ϕ}0,4;Ω ` 1
˘

}ϕ´ ϕ}0,4;Ω

)

,
(3.50)

for all pz, ϕq, pz, ϕq P Wpλq.

Proof. Given pz, ϕq, pz, ϕq P Wpλq, we let pt,uq “ Spz, ϕq and pt,uq “ Spz, ϕq, where p⃗t, u⃗q “

ppt,σq, pu,γqq P H ˆ Q and p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q are the unique solutions, according to
Lemma 3.3, of the respective problem (3.6), or equivalently (3.30), that is

Aϕpp⃗t, u⃗q, p⃗s, v⃗qq ` Czpu, sq “ Gϕpv⃗q @ p⃗s, v⃗q “ pps, τ q, pv,ωqq P H ˆ Q , and

Aϕpp⃗t, u⃗q, p⃗s, v⃗qq ` Czpu, sq “ Gϕpv⃗q @ p⃗s, v⃗q “ pps, τ q, pv,ωqq P H ˆ Q .
(3.51)

Next, in order to bound }Spz, ϕq ´ Spz, ϕq} “ }pt,uq ´ pt,uq}, we apply the inf-sup condition (3.34)

with pz, ϕq to p⃗r, w⃗q “ p⃗t, u⃗q ´ p⃗t, u⃗q, thus yielding

ϑ

2
}p⃗t ´ t⃗, u⃗ ´ u⃗q}HˆQ ď sup

p⃗s,v⃗qPpHˆQqzt0u

Aϕpp⃗t ´ t⃗, u⃗ ´ u⃗q, p⃗s, v⃗qq ` Czpu ´ u, sq

}p⃗s, v⃗q}HˆQ
. (3.52)

Now, subtracting the equations from (3.51) and adding/subtracting suitable terms, we find that

Aϕpp⃗t ´ t⃗, u⃗ ´ u⃗q, p⃗s, v⃗qq ` Czpu ´ u, sq “ Gϕ´ϕpv⃗q ´ Cz´zpu, sq ´ paϕpt, sq ´ aϕpt, sqq , (3.53)

for all p⃗s, v⃗q “ pps, τ q, pv,ωqq P H ˆ Q. For the last term in the right-hand side of (3.53) we notice
that the Lipschitz-continuity of µ (cf. (2.3)) and the Hölder inequality imply that

|aϕpt, sq ´ aϕpt, sq| :“

ˇ

ˇ

ˇ

ˇ

ż

Ω
pµpϕq ´ µpϕqq t : s

ˇ

ˇ

ˇ

ˇ

ď Lµ }ϕ´ ϕ}0,2l;Ω }t}0,2l1;Ω }s}0,Ω , (3.54)
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where l, l1 P p1,`8q are conjugate to each other. In particular, choosing l1 such that 2l1 “ ϵ˚,
we get 2l “ n{ϵ, and thus L4pΩq is continuously embedded into L2lpΩq “ Ln{ϵpΩq. In this way, using
additionally the continuity of iϵ : HϵpΩq Ñ Lϵ˚

pΩq along with the regularity estimate (3.47), inequality
(3.54) implies

|aϕpt, sq ´ aϕpt, sq| ď Lµ }ϕ´ ϕ}0,n
ϵ
;Ω }t}0,ϵ˚;Ω }s}0,Ω

ď Lµ }i4,ϵ} }ϕ´ ϕ}0,4;Ω }t}0,ϵ˚;Ω }s}0,Ω

ď Lµ }i4,ϵ} }ϕ´ ϕ}0,4;Ω }iϵ} }t}ϵ,Ω }s}0,Ω

ď Lµ }i4,ϵ} }iϵ}Cϵ }ϕ}0,4;Ω }g}0,Ω }ϕ´ ϕ}0,4;Ω }s}0,Ω .

(3.55)

On the other hand, for the first and second terms on the right-hand side of (3.53), we first apply the
boundedness of Gϕ and Cw (cf. (3.20)), and then the bound for }u} “ }S2pz, ϕq} provided by (3.36),
to deduce that

|Gϕ´ϕpv⃗q| ď }g}0,Ω }ϕ´ ϕ}0,4;Ω }v⃗}Q , (3.56)

and
|Cz´zpu, sq| ď }u}0,4;Ω }z ´ z}0,4;Ω }s}0,Ω

ď CS }ϕ}0,4;Ω }g}0,Ω }z ´ z}0,4;Ω }s}0,Ω .
(3.57)

In this way, employing (3.55), (3.56), and (3.57) to bound (3.53), and then replacing the resulting
estimate back into (3.52), we easily arrive at (3.50) with a positive constant LS as indicated.

Now we turn to analyze the Lipschitz continuity of T. This is addressed in the following lemma.

Lemma 3.8. There exists a positive constant LT, depending only on rϑ, Lκ, }i4,ϵ}, }iϵ}, CT, and rCϵ,
such that

}Tpz, ϕq ´ Tpz, ϕq}L2pΩqˆL4pΩq ď LT

!

`

}φD}1{2,ΓD ` }f}0,4{3;Ω

˘

}z ´ z}0,4;Ω

`
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

}ϕ´ ϕ}0,4;Ω

)

,
(3.58)

for all pz, ϕq , pz, ϕq P Wpλq.

Proof. We proceed similarly to the proof of Lemma 3.7. Indeed, given pz, ϕq , pz, ϕq P Wpλq, we first

let pζ, φq “ Tpz, ϕq and pζ, φq “ Tpz, ϕq, where pζ⃗, φq “ ppζ,ρq, φq P rH ˆ rQ and pζ⃗, φq “ ppζ,ρq, φq P

rH ˆ rQ are the unique solutions, as guaranteed by Lemma 3.4, of the respective problem (3.7), or
equivalently (3.37), that is

rAϕppζ⃗, φq, pξ⃗, ψqq ` rCzpφ, ξq “ rF pξ⃗q ` rGpψq @ pξ⃗, ψq “ ppξ,ηq, ψq P rH ˆ rQ , and

rAϕppζ⃗, φq, pξ⃗, ψqq ` rCzpφ, ξq “ rF pξ⃗q ` rGpψq @ pξ⃗, ψq “ ppξ,ηq, ψq P rH ˆ rQ .
(3.59)

We then apply the inf-sup condition (3.40) with pz, ϕq to pς⃗, θq “ pζ⃗, φq ´ pζ⃗, φq, thus obtaining

rϑ

2
}pζ⃗ ´ ζ⃗, φ´ φq}

rHˆ rQ ď sup
pξ⃗,ψqPp rHˆ rQqzt0u

rAϕppζ⃗ ´ ζ⃗, φ´ φq, pξ⃗, ψqq ` rCzpφ´ φ, ξq

}pξ⃗, ψq}
rHˆ rQ

. (3.60)

In turn, the numerator within the supremum arises after subtracting the equations from (3.59), namely

rAϕppζ⃗ ´ ζ⃗, φ´ φq, pξ⃗, ψqq ` rCzpφ´ φ, ξq “ ´ rCz´zpφ, ξq ´ praϕpζ, ξq ´ raϕpζ, ξqq, (3.61)
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for all pξ⃗, ψq “ ppξ,ηq, ψq P rH ˆ rQ, so that, using the boundedness of rCwp¨, ¨q (cf. (3.21)), the
Lipschitz-continuity of κ (cf. (2.3)), and Hölder’s inequality, it follows from (3.60) and (3.61) that

rϑ

2
}pζ⃗ ´ ζ⃗, φ´ φq}

rHˆ rQ ď }φ}0,4;Ω }z ´ z}0,4;Ω ` Lκ }ϕ´ ϕ}0,2l;Ω }ζ}0,2l1;Ω ,

“ }T2pz, ϕq}0,4;Ω }z ´ z}0,4;Ω ` Lκ }ϕ´ ϕ}0,2l;Ω }ζ}0,2l1;Ω ,

(3.62)

where l, l1 P p1,8q are conjugate to each other. Then, similarly to the proof of Lemma 3.7, we choose l1

such that 2l1 “ ϵ˚, which yields 2ℓ “ n{ϵ. Thus, employing now the bound for }T2pz, ϕq}0,4;Ω provided
by (3.41), the continuous injections i4,ϵ and iϵ, and the regularity estimate (3.48), we conclude from
(3.62) the desired result. We omit further details.

Having derived the Lipschitz continuity of S and T we now establish the same property for the
fixed point operator J in the closed cylinder Wpλq (cf. (3.45)).

Lemma 3.9. There exists a positive constant LJ, depending only on CT (cf. (3.41)), LS (cf. (3.50)),
and LT (cf. (3.58)), such that, denoting

Dpg, φD, fq :“ }g}0,Ω
`

}φD}1{2,ΓD ` }f}0,4{3,Ω ` 1
˘

` 1 ,

there holds

}Jpz, ϕq ´ Jpz, ϕq}L4pΩqˆL4pΩq ď LJ Dpg, φD, fq

!

`

}φD}1{2,ΓD ` }f}0,4{3,Ω

˘

}z ´ z}0,4;Ω

`
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

}ϕ´ ϕ}0,4;Ω

)

,
(3.63)

for all pz, ϕq , pz, ϕq P Wpλq. Moreover, letting sCϵ be the positive constant such that

}φD}1{2,ΓD ` }f}0,4{3,Ω ď sCϵ
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

, (3.64)

the inequality (3.63) simplifies to

}Jpz, ϕq ´ Jpz, ϕq}L4pΩqˆL4pΩq

ď sLJ Dpg, φD, fq
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

}pz, ϕq ´ pz, ϕq}L4pΩqˆL4pΩq

)

,
(3.65)

for all pz, ϕq , pz, ϕq P Wpλq, where sLJ “ LJ max
␣

sCϵ, 1
(

.

Proof. Given pz, ϕq, pz, ϕq P Wpλq, we first observe from the definition of J (cf. (3.9)) that

}Jpz, ϕq ´ Jpz, ϕq}L4pΩqˆL4pΩq “ }S2pz,T2pz, ϕqq ´ S2pz,T2pz, ϕqq}0,4;Ω

` }T2pz, ϕq ´ T2pz, ϕq}0,4;Ω .
(3.66)

Next, applying the Lipschitz continuity of S (cf. (3.50)) to the first term on the right hand-side of
(3.66), and adding the resulting expression to the second one, we obtain

}Jpz, ϕq ´ Jpz, ϕq}L4pΩqˆL4pΩq ď LS }g}0,Ω }T2pz, ϕq}0,4;Ω }z ´ z}0,4;Ω

`

!

LS }g}0,Ω
`

}T2pz, ϕq}0,4;Ω ` 1
˘

` 1
)

}T2pz, ϕq ´ T2pz, ϕq}L4pΩqˆL4pΩq .

Then, bounding }T2pz, ϕq}0,4;Ω and }T2pz, ϕq ´ T2pz, ϕq}L4pΩqˆL4pΩq according, respectively, to (3.41)
and the Lipschitz continuity of T (cf. (3.58)), and performing suitable algebraic arrangements, we
arrive at the required inequality (3.63) with LJ and Dpg, φD, fq as indicated. Finally, it is easy to see
that (3.65) follows from (3.63) and (3.64).
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We are now in position to state the main result of this section.

Theorem 3.10. Assume that the data satisfy (3.46) and

sLJ Dpg, φD, fq
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

ă 1. (3.67)

Then, J has a unique fixed point pu, φq P Wpλq. Equivalently, the coupled problem (3.1)–(3.2) has a
unique solution ppt,σq, pu,γqq P H ˆ Q and ppζ,ρq, φq P rH ˆ rQ. Moreover, there hold the following a
priori estimates

}pt,σq}H ` }pu,γq}Q ď CSCT }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

, and

}pζ,ρq}
rH ` }φ}0,4;Ω ď CT

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

.
(3.68)

Proof. We begin by recalling from Lemma 3.6 that assumption (3.46) ensures that J maps Wpλq into
itself. Then, using the Lipschitz continuity of J established in (3.65), along with assumption (3.67)
and a straightforward application of the classical Banach theorem, we deduce that the fixed-point
equation (3.10) admits a unique solution pu, φq P Wpλq. Consequently, by the equivalence between
the coupled system (3.1)–(3.2) and (3.10), we conclude the well-posedness of the former. Finally, the
second estimate in (3.68) follows directly from (3.41), whereas the first one is consequence of (3.36)
and the second one.

4 The Galerkin scheme

In this section, we introduce the Galerkin discretization of the fully mixed formulation (3.1)–(3.2),
and analyze its solvability by employing the discrete analogue of the fixed-point strategy introduced in
Section 3.2, along with the discrete versions of Theorems 3.2 and 3.1 In what follows, we first describe
the discrete scheme on generic finite-dimensional spaces and state the assumptions that guarantee its
well-posedness. Later on, in Sections 5 and 6 we provide the associated a priori error analysis and
exhibit concrete choices of finite element subspaces that satisfy those assumptions.

4.1 Preliminaries

We let tThuhą0 be a sequence of partitions of Ω into triangles T (when n “ 2) or tetrahedra T (when
n “ 3) with diameter denoted by hT , and set, as usual, h :“ max

␣

hT : T P Th
(

. Then, we consider
generic finite-dimensional subspaces

Lt
h,tr Ď L2

trpΩq , Hσ
h Ď Hpdiv4{3; Ωq , Lu

h Ď L4pΩq , Lγ
h,skew Ď L2

skewpΩq ,

Lζ
h Ď L2pΩq , Hρ

h Ď Hpdiv4{3; Ωq , rQh Ď L4pΩq ,
(4.1)

and assume first that

pH.0q Hσ
h contains the tensors with constant coefficients.

In particular, it follows from pH.0q that I P Hσ
h for all h, which implies the decomposition

Hσ
h “ Hσ

h,0 ‘ RI ,

where

Hσ
h,0 :“

!

τ P Hσ
h :

ż

Ω
trpτ q “ 0

)

Ď H0pdiv4{3; Ωq .
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Then, defining the global spaces

Hh :“ Lt
h,tr ˆ Hσ

h,0 , Qh :“ Lu
h ˆ Lγ

h,skew , Hρ
h,N :“ Hρ

h X HN pdiv4{3; Ωq ,

and rHh :“ Lζ
h ˆ Hρ

h,N ,

the Galerkin scheme associated with (3.1)–(3.2) reads: Find p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh

and pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh, such that

Aφh p⃗th, s⃗hq `Bp⃗sh, u⃗hq ` Cuhpuh, shq “ 0 @ s⃗h “ psh, τhq P Hh ,

Bp⃗th, v⃗hq “ Gφhpv⃗hq @ v⃗h “ pvh,ωhq P Qh ,
(4.2)

and
rAφhpζ⃗h, ξ⃗hq ` rBpξ⃗h, φhq ` rCuhpφh, ξhq “ rF pξ⃗hq @ ξ⃗h “ pξh,ηhq P rHh ,

rBpζ⃗h, ψhq “ rGpψhq @ψh P rQh .
(4.3)

4.2 The discrete fixed-point strategy

Analogously to the analysis in Section 3.2, we now introduce an equivalent fixed-point equation.
Indeed, we first let Sh : Lu

h ˆ rQh Ñ Lt
h,tr ˆ Lu

h be the discrete analogue of S (cf. (3.5)), which is
defined as

Shpzh, ϕhq “ pS1,hpzh, ϕhq,S2,hpzh, ϕhqq :“ pth,uhq @ pzh, ϕhq P Lu
h ˆ rQh , (4.4)

where th P Lt
h,tr and uh P Lu

h are the first and third components, respectively, of the unique solution
(to be confirmed below) of the linearized problem arisig from (4.2) after replacing Aφh , Cuh , and Gφh
by Aϕh , Czh , and Gϕh , respectively, that is: Find p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh, such that

Aϕh p⃗th, s⃗hq `Bp⃗sh, u⃗hq ` Czhpuh, shq “ 0 @ s⃗h “ psh, τhq P Hh ,

Bp⃗th, v⃗hq “ Gϕhpv⃗hq @ v⃗h “ pvh,ωhq P Qh .
(4.5)

Similarly, we let Th : Lu
h ˆ rQh Ñ Lu

h ˆ rQh be the discrete analogue of T (cf. (3.7)), which is given by

Thpzh, ϕhq “ pT1,hpzh, ϕhq,T2,hpzh, ϕhqq :“ pζh, φhq @ pzh, ϕhq P Lu
h ˆ rQh , (4.6)

where ζh P Lζ
h and φh P rQh are the first and third components, respectively, of the unique solution

(to be confirmed below) of the linearized problem arising from (4.3) when replacing rAφh and rCuh by
rAϕh and rCzh , respectively, that is: Find pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh, such that

rAϕhpζ⃗h, ξ⃗hq ` rBpξ⃗h, φhq ` rCzhpφh, ξhq “ rF pξ⃗hq @ ξ⃗h “ pξh,ηhq P rHh ,

rBpζ⃗h, ψhq “ rGpψhq @ψh P rQh .
(4.7)

Then we let Jh : Lu
h ˆ rQh Ñ Lu

h ˆ rQh be the discrete analogue of J (cf. (3.9)), which is defined by

Jhpzh, ϕhq :“
`

S2,hpzh,T2,hpzh, ϕhqq,T2,hpzh, ϕhq
˘

@ pzh, ϕhq P Lu
h ˆ rQh ,

and observe that solving (4.2)–(4.3) is equivalent to seeking a fixed-point of Jh, that is: Find puh, φhq P

Lu
h ˆ rQh such that

Jhpuh, φhq “ puh, φhq . (4.8)
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4.3 Well-definiteness of Sh, Th and Jh

In this section we employ the discrete counterparts of the Babuška-Brezzi theory (cf. [18, Proposition
2.42]) and the classical Banach–Nečas–Babuška theorem (cf. [18, Theorem 2.22]) to show that Sh and
Th, and hence Th, are well-defined. To this end, we introduce suitable assumptions on the discrete
subspaces that ensure the well-posedness of the linear problems (4.5) and (4.7), which are equivalent
to the well-posedness of Sh and Th, respectively. Our approach consists of adapting to the discrete
setting the arguments used in the analysis of the continuous problem, particularly those in the proofs
of Lemmas 3.3 and 3.4.

We begin by stating some assumptions needed to prove later on that (4.5) is well-posed:

pH.1q div
`

Hσ
h

˘

Ď Lu
h ,

pH.2q there exists a positive constant βd, independent of h, such that

sup
s⃗hPHhz0

Bp⃗sh, v⃗hq

}⃗sh}H
ě βd }v⃗h}Q @ v⃗h P Qh . (4.9)

Then, denoting by Vh the discrete kernel of B, that is

Vh :“
!

psh, τhq P Hh,0 : Bppsh, τhq, pvh,ωhqq “ 0 @ pvh,ωhq P Qh

)

,

and using pH.1q, we readily find that

Vh “ Lh,tr ˆ Vh,0 ,

with

Vh,0 :“
!

τ P Hσ
h,0 : divpτhq “ 0 in Ω and

ż

Ω
τh : ωh “ 0 @ωh P Lγ

h,skew

)

. (4.10)

It follows, thanks to (2.2), that for any ϕh P rQh there holds

aϕhpsh, shq ě α1,d }sh}20,Ω @ sh P Lh,tr , (4.11)

with α1,d “ α1 “ µ1, which proves that aϕh satisfies the discrete inf-sup condition required by
[18, Proposition 2.42, eq. (2.35)]. Next, in order to show that b satisfies the accompanying inf-sup
condition given by [18, Proposition 2.42, eq. (2.36)], which corresponds to the discrete counterpart of
(3.25), we assume that

pH.3q pVh,0qd :“
!

τ d
h : τh P Vh,0

)

Ď Lt
h,tr.

In this way, employing pH.3q and [14, Lemma 3.1], and proceeding analogously to [20, Lemma 3.3],
we deduce that the bilinear form b satisfies the aforementioned condition, namely

sup
shPLh,trzt0u

bpsh, τhq

}sh}0,Ω
ě β1,d }τh}div4{3,Ω @ τh P Vh,0 , (4.12)

with a positive constant β1,d, independent of h. Thus, having aϕh and b satisfied the hypotheses of
[18, Proposition 2.42], we deduce, thanks to the discrete version of the equivalence between (3.18)
and (3.19), that there exists a positive constant αd, depending only on α1,d, β1,d, and µ2 (since
}aϕh} ď µ2), and hence independent of h, such that the discrete analogue of (3.26) holds, that is

sup
psh,τhqPLh,trˆVh,0zt0u

Aϕh p⃗th, s⃗hq

}⃗sh}H
ě αd }⃗th}H @ t⃗h P Lt

h,tr ˆ Vh,0 . (4.13)
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As previously announced, we now address the well-posedness of (4.5) by adopting the discrete
version of the analysis yielding Lemma 3.3. To this end, we first observe that, given pzh, ϕhq P Lu

hˆ rQh,
the aforementioned problem can be reformulated as: Find p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh,
such that

Aϕhpp⃗th, u⃗hq, p⃗sh, v⃗hqq ` Czhpuh, shq “ Gϕhpv⃗hq , (4.14)

for all p⃗sh, v⃗hq “ ppsh, τhq, pvh,ωhqq P Hh ˆ Qh, where Aϕh is the bilinear form defined in (3.31),
so that we now aim to show that (4.14) satisfies the hypotheses of [18, Theorem 2.22]. Indeed, the
boundedness of the bilinear form and functional involved was already established in the continuous
analysis (cf. Section 3.3). Next, since Aϕh and B satisfy the hypotheses of [18, Proposition 2.42], we
deduce the existence of a positive constant ϑd, depending only on αd (cf. (4.13)), βd (cf. (4.9)), and
µ2, such that

sup
p⃗sh,v⃗hqPpHhˆQhqzt0u

Aϕhpp⃗rh, w⃗hq, p⃗sh, v⃗hqq

}p⃗sh, v⃗hq}HˆQ
ě ϑd }p⃗rh, w⃗hq}HˆQ @ p⃗rh, w⃗hq P Hh ˆ Qh . (4.15)

Then, proceeding analogously as for the derivation of (3.32) and (3.33), which means employing (4.15)
and the boundedness of Czh (cf. (3.20), we find that for each zh P Lu

h such that }zh}0,4;Ω ď
ϑd
2 , there

holds

sup
p⃗sh,v⃗hq“ppsh,τhq,pvh,ωhqq

PpHhˆQhqzt0u

Aϕhpp⃗rh, w⃗hq, p⃗sh, v⃗hqq ` Czhpwh, shq

}p⃗sh, v⃗hq}HˆQ
ě

ϑd
2

}p⃗rh, w⃗hq}HˆQ , (4.16)

for all p⃗rh, w⃗hq “ pprh,ϱhq, pwh,χhqq P Hh ˆ Qh, which constitutes the discrete analogue of (3.34).

We are now in position to establish the well-definedness of Sh.

Lemma 4.1. Given pzh, ϕhq P Lu
h ˆ rQh such that }zh}0,4;Ω ď

ϑd
2 , problem (4.14), (equivalently

(4.5)), has a unique solution p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh, and hence one can define
Shpzh, ϕhq “ pth,uhq. Moreover, there exists a positive constant CS,d, depending only on ϑd, and
hence independent of h, such that

}Shpzh, ϕhq}L2
trpΩqˆL4pΩq ď }p⃗th, u⃗hq}HˆQ ď CS,d }ϕh}0,4;Ω }g}0,Ω . (4.17)

Proof. The unique solvability of (4.14) readily follows from (4.16) and a straightforward application
of [18, Theorem 2.22]. In turn, the corresponding a priori estimate provided in this later result, along
with the boundedness of Gϕh (cf. (3.20)), imply

}p⃗th, u⃗hq}HˆQ ď
2

ϑd
}ϕh}0,4;Ω }g}0,Ω ,

which yields (4.17) with CS,d :“ 2
ϑd

and ends the proof.

We continue with some hypotheses that are required to show that (4.7) is well-posed:

pĄH.1q div
`

Hρ
h

˘

Ď rQh ,

pĄH.2q there exists a positive constant rβd, independent of h, such that

sup
ξ⃗hP rHhz0

rBpξ⃗h, ψhq

}ξ⃗h}
rH

ě rβd }ψh}0,4;Ω @ψh P rQh . (4.18)
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It is easily seen from pĄH.1q that the discrete kernel of rB, denoted by rVh, reduces to

rVh :“ Lζ
h ˆ rVh,0 ,

with
rVh,0 :“

!

ηh P Hρ
h,N : divpηhq “ 0 in Ω

)

. (4.19)

Thus, according to (3.27), we know that for any ϕh P rQh there holds

raϕhpξh, ξhq ě rα1,d }ξh}20,Ω @ ξh P Lζ
h ,

with rα1,d “ rα1 “ κ1, which shows that raϕh satisfies the discrete inf-sup condition required by [18,
Proposition 2.42, eq. (2.35)]. Next, we introduce the hypothesis

pĄH.3q rVh,0 Ď Lζ
h,

thanks to which, given ηh P rVh,0zt0u, we can bound by below with ξh “ ´ηh to obtain

sup
ξhPLζ

hzt0u

rbpξh,ηhq

}ξ}0,Ω
ě

rbp´ηh,ηhq

} ´ ηh}0,Ω
“ }ηh}0,Ω “ rβ1,d }ηh}div4{3,Ω ,

with rβ1,d “ 1, thus proving that rb satisfies [18, Proposition 2.42, eq. (2.36)]. Consequently, having

raϕh and rb satisfied the hypotheses of [18, Proposition 2.42] on rVh,0, we conclude, similarly as for the

derivation of (4.13), the existence of a positive constant rαd, depending only on rα1,d, rβ1,d, and κ2, and
hence independent of h, such that there holds the discrete counterpart of (3.29), that is

sup
ξ⃗hPLζ

hˆrVh,0zt0u

rAϕhpζ⃗h, ξ⃗hq

}ξ⃗h}
rH

ě rαd }ζ⃗h}
rH @ ζ⃗h P Lζ

h ˆ rVh,0 . (4.20)

We are ready now to establish the well-posedness of (4.7), for which, analogously as for that
of (4.5), we adopt the discrete version of the analysis yielding Lemma 3.4. In fact, we begin by
noticing that, given pzh, ϕhq P Lu

h ˆ rQh, problem (4.7) can be reformulated, equivalently, as: Find

pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh such that

rAϕhppζ⃗h, φhq, pξ⃗h, ψhqq ` rCzhpφh, ξhq “ rF pξ⃗hq ` rGpψhq , (4.21)

for all pξ⃗h, ψhq “ ppξh,ηhq, ψhq P rHh ˆ rQh, where rAϕh is the bilinear form defined in (3.38). In this

way, having rAϕh and rB satisfied the discrete inf-sup conditions required by [18, Proposition 2.42],

namely (4.20) and (4.18), we deduce the existence of a positive constant rϑd, depending only on rαd,
rβd, and κ2, and hence independent of h, such that

sup
pξ⃗h,ψhqPp rHˆ rQqzt0u

rAϕhppς⃗h, θhq, pξ⃗h, ψhqq

}pξ⃗h, ψhq}
rHˆ rQ

ě rϑd }pς⃗h, θhq}
rHˆ rQ @ pς⃗h, θhq P rHh ˆ rQh . (4.22)

Then, similarly as for the derivation of (4.16), we now employ (4.22) and the boundedness of rCz (cf.

(3.21)), to conclude that, for each zh P Lu
h such that }zh}0,4;Ω ď

rϑd
2 , there holds

sup
pξ⃗h,ψhq“ppξh,ηhq,ψhq

Pp rHhˆ rQhqzt0u

rAϕhppς⃗h, θhq, pξ⃗h, ψhqq ` rCzhpθh, ξhq

}pξ⃗h, ψhq}
rHˆ rQ

ě
rϑd
2

}pς⃗h, θhq}
rHˆ rQ , (4.23)

for all pς⃗h, θhq P rHh ˆ rQh, which constitutes the discrete counterpart of (3.40).

Consequently, the well-definiteness of Th is established as follows.
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Lemma 4.2. Given pzh, ϕhq P Lu
h ˆ rQh such that }zh}0,4;Ω ď

rϑd
2 , problem (4.21) (equivalently (4.7))

has a unique solution pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh, and hence one can define Thpzh, ϕhq “

pζh, φhq. Moreover, there exists a positive constant CT,d, depending only on rϑd and CD (cf. (3.21)),
and hence independent of h, such that

}Thpzh, ϕhq}L2pΩqˆL4pΩq ď }pζ⃗h, φhq}
rHˆ rQ ď CT,d

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

. (4.24)

Proof. Thanks to (4.23), the unique solvability of (4.21) follows from a direct application of [18,
Theorem 2.22]. Moreover, the a priori estimate provided by this result, along with the boundedness
of rF and rG (cf. (3.21)), imply

}pζh,ρhq}
rH ` }φh}0,4;Ω ď

2

rϑd

!

CD }φD}1{2,ΓD ` }f}0,4{3,Ω

)

,

which yields (4.24) with CT,d :“ 2
rϑd

max
␣

CD, 1
(

and completes the proof .

The following lemma establishes the well-definiteness of the operator Jh. Being its proof analogous
to that of Lemma 3.5, we omit further details.

Lemma 4.3. For each pzh, ϕhq P Lu
h ˆ rQh such that }zh}0,4;Ω ď min

!

rϑd
2 ,

ϑd
2

)

, one can define

Jhpzh, ϕhq “
`

J1,hpzh, ϕhq,J2,hpzh, ϕhq
˘

P Lu
h ˆ rQh. Moreover, there exist positive constants sCJ,1 and

sCJ,2, depending only on CS,d and CT,d, and hence independent of h, such that

}J1,hpzh, ϕhq}0,4;Ω ď sCJ,1 }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

, (4.25)

and
}J2,hpzh, ϕhq}0,4;Ω ď sCJ,2

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

. (4.26)

4.4 Existence of solution of the Galerkin scheme

In this section, we address the solvability of our discrete coupled system (4.2)–(4.3) by studying the
equivalent fixed-point equation (4.8). In this regard, we stress in advance that, not being the regularity
hypotheses (RH.1) and (RH.2) valid at the discrete level, we are only able to establish existence
of solution by applying the well-known Brouwer fixed-point theorem. Similarly to the analysis of the
fixed-point equation for the continuous problem (cf. Section 3.4), we begin by choosing λd ą 0 such
that

λd ď min

#

ϑd
2
,
rϑd
2

+

, (4.27)

and define the closed cylinder

Whpλdq :“
!

pzh, ϕhq P Lu
h ˆ rQh : }zh}0,4;Ω ď λd

)

. (4.28)

The following result establishes the discrete analogue of Lemma 3.6.

Lemma 4.4. Assume that the data are sufficiently small so that

sCJ,1 }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

ď λd . (4.29)

Then, there holds Jh
`

Whpλdq
˘

Ď Whpλdq.
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Proof. The result is a direct consequence of estimate (4.25).

We now aim to prove that Jh is continuous, for which it suffices to establish the same property for
Sh and Th. In fact, we begin with the former by providing next the discrete analogue of Lemma 3.7.

Lemma 4.5. There exists a positive constant LS,d, depending only on ϑd, Lµ, and CS,d, and hence
independent of h, such that

}Shpzh, ϕhq ´ Shpzh, ϕhq}L2
trpΩqˆL4pΩq ď LS,d

!

}g}0,Ω }ϕh}0,4;Ω }zh ´ zh}0,4;Ω

`
`

}g}0,Ω ` }S1,hpzh, ϕhq}0,4;Ω
˘

}ϕh ´ ϕ
h
}0,4;Ω

)

,
(4.30)

for all pzh, ϕhq, pzh, ϕhq P Whpλdq.

Proof. Given pzh, ϕhq, pzh, ϕhq P Whpλdq, we let pth,uhq “ Shpzh, ϕhq and pth,uhq “ Shpzh, ϕhq,

where p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh and p⃗th, u⃗hq “ ppth,σhq, puh,γhqq P Hh ˆ Qh are the
unique solutions, according to Lemma 4.1, of the respective problem (4.14), equivalently (4.5). Next,
applying the inf-sup condition (4.16) with pzh, ϕhq to p⃗rh, w⃗hq “ p⃗th, u⃗hq ´ p⃗th, u⃗hq, we get

ϑd
2

}p⃗th ´ t⃗h, u⃗h ´ u⃗hq}HˆQ

ď sup
p⃗sh,v⃗hq“ppsh,τhq,pvh,ωhqq

PpHhˆQhqzt0u

Aϕ
h
pp⃗th ´ t⃗h, u⃗h ´ u⃗hq, p⃗sh, v⃗hqq ` Czhpuh ´ uh, shq

}p⃗sh, v⃗hq}HˆQ
,

(4.31)

and proceeding analogously to the proof of Lemma 3.7 we find that

Aϕ
h
pp⃗th ´ t⃗h, u⃗h ´ u⃗hq, p⃗sh, v⃗hqq ` Czhpuh ´ uh, shq “ Gϕh´ϕ

h
pv⃗hq

´Czh´zhpuh, shq ´
`

aϕhpth, shq ´ aϕ
h
pth, shq

˘

,
(4.32)

for all p⃗sh, v⃗hq “ ppsh, τhq, pvh,ωhqq P Hh ˆ Qh. For the last term on the right-hand side of (4.32) we
simply use the Lipschitz-continuity of µ (cf. (2.3)), Cauchy-Schwarz’s inequality twice, and the fact
that th “ S1,hpzh, ϕhq, to obtain

ˇ

ˇaϕhpth, shq ´ aϕ
h
pth, shq

ˇ

ˇ ď Lµ }ϕh ´ ϕ
h
}0,4;Ω }th}0,4;Ω }sh}0,Ω ,

“ Lµ }S1,hpzh, ϕhq}0,4;Ω }ϕh ´ ϕ
h
}0,4;Ω }sh}0,Ω .

(4.33)

In turn, for the first and second terms on the right-hand side of (4.32) we apply again the boundedness
of Gϕ and Cw (cf. (3.20)), along with the upper bound for }uh}0,4;Ω “ }S2,hpzh, ϕhq}0,4;Ω provided by
(4.17), to deduce that

|Gϕh´ϕ
h
pv⃗hq| ď }g}0,Ω }ϕh ´ ϕ

h
}0,4;Ω }v⃗h}Q , (4.34)

and
|Czh´zhpu, sq| ď }uh}0,4;Ω }zh ´ zh}0,4;Ω }sh}0,Ω

ď CS,d }ϕh}0,4;Ω }g}0,Ω }zh ´ zh}0,4;Ω }sh}0,Ω .
(4.35)

Therefore, employing (4.33), (4.34), and (4.35) to bound (4.32), and then replacing the resulting
estimate back into (4.31), we arrive at (4.30) with a positive constant LS,d as indicated.

We continue with the discrete analogue of Lemma 3.8, thus yielding the continuity of Th.
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Lemma 4.6. There exists a positive constant LT,d, depending only on rϑd, Lκ, and CT,d, such that

}Thpzh, ϕhq ´ Thpzh, ϕhq}L2pΩqˆL4pΩq ď LT,d

!

`

}φD}1{2,ΓD ` }f}0,4{3,Ω

˘

}zh ´ zh}0,4;Ω

` }T1,hpzh, ϕhq}0,4;Ω }ϕh ´ ϕ
h
}0,4;Ω

)

,
(4.36)

for all pzh, ϕhq, pzh, ϕhq P Whpλdq.

Proof. It follows similarly to the proof of Lemma 4.5. Indeed, given pzh, ϕhq, pzh, ϕhq P Whpλdq, we

let Tpzh, ϕhq “ pζh, φhq and Tpzh, ϕhq “ pζ
h
, φ

h
q, where pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh and

pζ⃗
h
, φ

h
q “ ppζ

h
,ρ

h
q, φ

h
q P rHh ˆ rQh are the unique solutions, as guaranteed by Lemma 4.2, of the

respective problem (4.21), equivalently (4.7). Then, applying the inf-sup condition (4.23) with pzh, ϕhq

to pς⃗h, θhq “ pζ⃗h, φhq ´ pζ⃗
h
, φ

h
q, we arrive at the discrete analogue of (3.60), whose numerator within

the respective supremum becomes

rAϕ
h
ppζ⃗h ´ ζ⃗

h
, φh ´ φ

h
q, pξ⃗h, ψhqq ` rCzhpφh ´ φ

h
, ξhq

“ ´ rCzh´zhpφh, ξhq ´
`

raϕhpζh, ξhq ´ raϕ
h
pζh, ξhq

˘

,
(4.37)

for all pξ⃗h, ψhq “ ppξh,ηhq, ψhq P rHhˆ rQh. In turn, employing the boundedness of rCw (cf. (3.21)) and
the upper bound for }φh}0,4;Ω “ }T2,hpzh, ϕhq}0,4;Ω provided by (4.24), we find that

| rCzh´zhpφh, ξhq| ď CT,d

`

}φD}1{2,ΓD ` }f}0,4{3,Ω

˘

}z ´ zh}0,4;Ω }ξh}0,Ω , (4.38)

whereas applying the Lipschitz-continuity of κ (cf. (2.3)), Cauchy-Schwarz’s inequality twice, and the
fact that ζh “ T1,hpzh, ϕhq, we arrive at

ˇ

ˇ

raϕhpζh, ξhq ´ raϕ
h
pζh, ξhq

ˇ

ˇ ď Lκ }T1,hpzh, ϕhq}0,4;Ω }ϕh ´ ϕ
h
}0,4;Ω }ξh}0,Ω . (4.39)

In this way, using (4.38) and (4.39) to bound the expression from (4.37), and then replacing the
resulting estimate in the aforementioned discrete counterpart of (3.60), we are lead to (4.36) with a
positive constant LT,d as announced.

Having established Lemmas 4.5 and 4.6, we are now in position to conclude the continuity of Jh.

Lemma 4.7. There exist positive a positive constant LJ,d, depending only on LS,d, LT,d, and CT,d,
and hence independent of h, such that, denoting

Dhpg, zh, ϕhq :“ }g}0,Ω ` }S1,hpzh,T2,hpzh, ϕhqq}0,4;Ω ` 1 ,

there holds

}Jhpzh, ϕhq ´ Jhpzh, ϕhq}L4pΩqˆL4pΩq ď LJ,d Dhpg, zh, ϕhq

!

}T1,hpzh, ϕhq}0,4;Ω }ϕh ´ ϕ
h
}0,4;Ω

`
`

}φD}1{2,ΓD ` }f}0,4{3,Ω

˘

}zh ´ zh}0,4;Ω

)

,
(4.40)

for all pzh, ϕhq, pzh, ϕhq P Whpλdq.

Proof. Given pzh, ϕhq, pzh, ϕhq P Whpλdq, the discrete version of (3.66) (cf. proof of Lemma 3.9)
becomes

}Jhpzh, ϕhq ´ Jhpzh, ϕhq}L4pΩqˆL4pΩq “ }S2,hpzh,T2,hpzh, ϕhqq ´ S2,hpzh,T2,hpzh, ϕhqq}0,4;Ω

` }T2,hpzh, ϕhq ´ T2,hpzh, ϕhq}0,4;Ω ,
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from which, using (4.30) to estimate its first term on the right-hand side, we get

}Jhpzh, ϕhq ´ Jhpzh, ϕhq}L4pΩqˆL4pΩq ď LS,d }T2,hpzh, ϕhq}0,4;Ω }g}0,Ω }zh ´ zh}0,4;Ω

`

!

LS,d

´

}g}0,Ω ` }S1,h

`

zh,T2,hpzh, ϕhq
˘

}0,4;Ω

¯

` 1
)

}T2,hpzh, ϕhq ´ T2,hpzh, ϕhq}0,4;Ω .
(4.41)

Then, bounding }T2,hpzh, ϕhq}0,4;Ω and }T2,hpzh, ϕhq´T2,hpzh, ϕhq}0,4;Ω according to (4.24) and (4.36),
respectively, incorporating the resulting estimates in (4.41), and performing minor manipulations, we
obtain (4.40) and conclude the proof.

The existence of solution of the fixed-point equation (4.8), equivalently of the coupled system
(4.2)–(4.3), is established below as a consequence of Brouwer’s theorem (cf. [13, Theorem 9.9-2]),
whose statement is previously recalled next.

Theorem 4.8 (Brouwer Fixed-Point Theorem). Let V be a finite-dimensional normed vector space,
and let B Ă V be a nonempty, convex, compact subset. If F : B Ñ B is a continuous mapping, then
F has at least one fixed point in B; that is, there exists x P B such that Fpxq “ x.

The main result of this section is then stated as follows

Theorem 4.9. Assume that the data satisfy assumption (4.29). Then, Jh has at least one fixed
point puh, φhq P Whpλdq. Equivalently, the Galerkin scheme (4.2)–(4.3) has at least one solution
ppth,σhq, puh,γhqq P Hh ˆ Qh and ppζh,ρhq, φhq P rHh ˆ rQh. Moreover, there hold the following a
priori estimates

}ppth,σhq, puh,γhqq}HˆQ ď CS,dCT,d }g}0,Ω

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

, and

}ppζh,ρhq, φhq}
rHˆ rQ

ď CT,d

!

}φD}1{2,ΓD ` }f}0,4{3,Ω

)

.
(4.42)

Proof. We recall from Lemma 4.4 that, under assumption (4.29), Jh maps Whpλdq into itself. Then,
bearing in mind Lemma 4.7, which establishes the continuity of Jh, a straightforward application of
Theorem 4.8 implies that the fixed-point equation (4.8) has a solution puh, φhq P Whpλdq. Thus, the
equivalence between the coupled system (4.2)-(4.3) and (4.8) allows us to conclude the existence of a
solution of (4.2)-(4.3). Finally, analogously as in the proof of Theorem 3.10, the second estimate in
(4.42) follows from (4.24), whereas the first one is consequence of (4.17) and the second one.

We conclude this section by noting that the absence of a suitable bound for }T1,hpzh, ϕhq}0,4;Ω

and }S1,hpzh,T2,hpzh, ϕhqq}0,4;Ω, uniform-in-h, prevents us from using (4.40) to derive a contraction
estimate. As a result, the Banach fixed-point theorem cannot be applied to guarantee, based on that
inequality, uniqueness of the discrete solution for sufficiently small data.

5 A priori error analysis

Let p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q and pζ⃗, φq “ ppζ,ρq, φq P rH ˆ rQ be the unique solution of the
coupled system (3.1)-(3.2), with pu, φq P Wpλq solution of (3.10), and, for a given h, let p⃗th, u⃗hq “

ppth,σhq, puh,γhqq P Hh ˆ Qh and pζ⃗h, φhq “ ppζh,ρhq, φhq P rHh ˆ rQh be a solution of the Galerkin
scheme (4.2)-(4.3), with puh, φhq P Whpλdq solution of (4.8). In this section we assume again (RH.1)
and (RH.2) (cf. Section 3.4), and, using similar arguments to those yielding Strang-type estimates
(see, e.g. [18, Lemma 2.27]), we derive the Céa error estimate for the global error

}p⃗t, u⃗q ´ p⃗th, u⃗hq}HˆQ ` }pζ⃗, φq ´ pζ⃗h, φhq}
rHˆ rQ

.
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To this end, in what follows, given a subspace Xh of an arbitrary Banach space pX, } ¨ }Xq, we set

distpx,Xhq :“ inf
xhPXh

}x´ xh}X .

We begin the analysis by noticing that the pair of continuous and discrete schemes formed by (3.1)
and (4.2), respectively, can be rewritten as

Aφpp⃗t, u⃗q, p⃗s, v⃗qq ` Cupu, sq “ Gφpv⃗q @ p⃗s, v⃗q P H ˆ Q , and (5.1)

Aφhpp⃗th, u⃗hq, p⃗sh, v⃗hqq ` Cuhpuh, shq “ Gφhpv⃗hq @ p⃗sh, v⃗hq P Hh ˆ Qh , (5.2)

where Aφ and Aφh are defined according to (3.31). Next, since uh ď λd ď
ϑd
2 , there holds the discrete

inf-sup condition (4.16) with zh “ uh and ϕh “ φh, which, applied to p⃗th, u⃗hq ´ p⃗rh, w⃗hq, yields

ϑd
2

}p⃗th, u⃗hq ´ p⃗rh, w⃗hq}HˆQ ď sup
p⃗sh,v⃗hq

PpHhˆQhqzt0u

Rh

`

p⃗rh, w⃗hq, p⃗sh, v⃗hq
˘

}p⃗sh, v⃗hq}HˆQ
, (5.3)

where
Rh

`

p⃗rh, w⃗hq, p⃗sh, v⃗hq
˘

:“ Aφhpp⃗th, u⃗hq ´ p⃗rh, w⃗hq, p⃗sh, v⃗hqq ` Cuhpuh ´ wh, shq (5.4)

for all p⃗rh, w⃗hq, p⃗sh, v⃗hq P Hh ˆ Qh. Then, using (5.2), we realize from (5.4) that

Rh

`

p⃗rh, w⃗hq, p⃗sh, v⃗hq
˘

“ Gφhpv⃗hq ´ Aφhpp⃗rh, w⃗hq, p⃗sh, v⃗hqq ´ Cuhpwh, shq ,

from which, subtracting and adding the continuous solution in the first components of Aφh and Cuh ,
and then incorporating the evaluation of (5.1) with p⃗sh, v⃗hq into the resulting expression, we get

Rh

`

p⃗rh, w⃗hq, p⃗sh, v⃗hq
˘

“ Gφhpv⃗hq ´ Aφhpp⃗rh, w⃗hq ´ p⃗t, u⃗q, p⃗sh, v⃗hqq ´ Cuhpwh ´ u, shq

`
`

Aφ ´ Aφh

˘

pp⃗t, u⃗q, p⃗sh, v⃗hq ` Cu´uhpu, shq ´ Gφpv⃗hq .
(5.5)

Now, the boundedness properties from (3.20) and the fact that }uh} ď λd, allow us to deduce that

|Aφhpp⃗rh, w⃗hq ´ p⃗t, u⃗q, p⃗sh, v⃗hqq ` Cuhpwh ´ u, shq|

ď cpµ2, λdq }p⃗t, u⃗q ´ p⃗rh, w⃗hq}HˆQ }p⃗sh, v⃗hqq}HˆQ ,
(5.6)

where cpµ2, λdq is a positive constant depending only on µ2 and λd, whereas, using additionally the
bound for }u}0,4;Ω provided by the first row of (3.68), we obtain

|Cu´uhpu, shq| ď CSCT }g}0,Ω
␣

}φD}1{2,ΓD ` }f}0,4{3,Ω

(

}u ´ uh}0,4;Ω }sh}0,Ω . (5.7)

In turn, proceeding similarly as for the derivation of (3.55) and (3.56), respectively, and utilizing the
bound for }φ}0,4;Ω provided by the second row of (3.68) in the first estimate below, we find that

ˇ

ˇ

`

Aφ ´ Aφh

˘

pp⃗t, u⃗q, p⃗sh, v⃗hq
ˇ

ˇ “ |aφpt, shq ´ aφhpt, shq|

ď LA
␣

}φD}1{2,ΓD ` }f}0,4{3;Ω

(

}g}0,Ω }φ´ φh}0,4;Ω }sh}0,Ω ,
(5.8)

and
|Gφh´φpv⃗hq| ď }g}0,Ω }φ´ φh}0,4;Ω }v⃗h}Q , (5.9)

where, bearing in mind (2.3), the embeddings indicated right after (3.49), the regularity estimate
(3.47), and the second row of (3.68), there holds LA :“ Lµ }i4,ϵ} }iϵ}CϵCT. Then, employing (5.6),

28



(5.7), (5.8), and (5.9) to bound |Rh

`

p⃗rh, w⃗hq, p⃗sh, v⃗hq
˘

| from (5.5), replacing the resulting estimate in

(5.3), thus yielding an upper bound of }p⃗th, u⃗hq ´ p⃗rh, w⃗hq}HˆQ, and hence of }p⃗t, u⃗q ´ p⃗th, u⃗hq}HˆQ
via the triangle inequality, and taking infimum with respect to p⃗rh, w⃗hq P Hh ˆ Qh, we arrive at

}p⃗t, u⃗q ´ p⃗th, u⃗hq}HˆQ ď C1
!

dist
`

p⃗t, u⃗q,Hh ˆ Qh

˘

` }g}0,Ω
`

}φD}1{2,ΓD ` }f}0,4{3;Ω

˘

}u ´ uh}0,4;Ω

` }g}0,Ω
`

}φD}1{2,ΓD ` }f}0,4{3;Ω ` 1
˘

}φ´ φh}0,4;Ω

)

,

(5.10)

where C1 is a positive constant depending only on ϑd, µ2, λd, CS, CT, and LA.

On the other hand, regarding the pair of continuous and discrete schemes formed by (3.2) and
(4.3), we proceed similarly as above and observe first that they can be rewritten, respectively, as

rAφppζ⃗, φq, pξ⃗, ψqq ` rCupφ, ξq “ rF pξ⃗q ` rGpψq @ pξ⃗, ψq P rH ˆ rQ , and (5.11)

rAφhppζ⃗h, φhq, pξ⃗h, ψhqq ` rCuhpφh, ξhq “ rF pξ⃗hq ` rGpψhq @ pξ⃗h, ψhq P rHh ˆ rQh , (5.12)

where rAφ and rAφh are defined according to (3.38). Now, recalling that }uh}0,4;Ω ď λd ď
rϑd
2 , there

holds the discrete inf-sup condition (4.23) with zh “ uh and ϕh “ φh, so that, similarly as for the
deduction of (5.3), it follows that

rϑd
2

}pζ⃗h, φhq ´ pς⃗h, θhq}
rHˆ rQ ď sup

pξ⃗h,ψhq

Pp rHhˆ rQhqzt0u

rRh

`

pς⃗h, θhq, pξ⃗h, ψhq
˘

}pξ⃗h, ψhq}
rHˆ rQ

, (5.13)

where
rRh

`

pς⃗h, θhq, pξ⃗h, ψhq
˘

“ rAφhppζ⃗h, φhq ´ pς⃗h, θhq, pξ⃗h, ψhqq ` rCuhpφh ´ θh, ξhq

for all pς⃗h, θhq, pξ⃗h, ψhq P rHhˆ rQh. Then, using analogue arguments to those employed to derive (5.5),
which means resorting here to (5.11) and (5.12), we are able to show that

rRh

`

pς⃗h, θhq, pξ⃗h, ψhq
˘

“ ´ rAφhppς⃗h, θhq ´ pζ⃗, φq, pξ⃗h, ψhqq ´ rCuhpθh ´ φ, ξhq

`
`

rAφ ´ rAφh

˘

ppζ⃗, φq, pξ⃗h, ψhqq ` rCu´uhpφ, ξhq ,
(5.14)

so that, using the boundedness properties from (3.21) and the fact that }uh} ď λd, we first obtain

| rAφhppς⃗h, θhq ´ pζ⃗, φq, pξ⃗h, ψhqq ` rCuhpθh ´ φ, ξhq|

ď rcpκ2, λdq }pζ⃗, φq ´ pς⃗h, θhq}
rHˆ rQ }pξ⃗h, ψhq}

rHˆ rQ ,
(5.15)

where rcpκ2, λdq is a positive constant depending only on κ2 and λd. In turn, proceeding as for
the second term on the right-hand side of (3.62), or just analogously to the derivation of (3.55),
which means in this case employing the Lipschitz-continuity of κ (cf. (2.3)), Hölder’s inequality, the
embeddings indicated right after (3.49), and the regularity estimate (3.48), we can prove that

ˇ

ˇ

`

rAφ ´ rAφh

˘

ppζ⃗, φq, pξ⃗h, ψhqq
ˇ

ˇ “
ˇ

ˇ

`

raφ ´ raφh
˘

pζ, ξhq
ˇ

ˇ

ď L
rA
␣

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

(

}φ´ φh}0,4;Ω }ξh}0,Ω ,
(5.16)

where L
rA :“ Lµ }i4,ϵ} }iϵ} rCϵ. Finally, the stability property of rCw (cf. (3.21)), and the bound for

}φ}0,4;Ω provided by the second row of (3.68), imply

| rCu´uhpφ, ξhq| ď CT

␣

}φD}1{2,ΓD ` }f}0,4{3,Ω

(

}u ´ uh}0,4;Ω }ξh}0,Ω . (5.17)
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In this way, employing (5.15), (5.16), and (5.17), to bound | rRh

`

pς⃗h, θhq, pξ⃗h, ψhq
˘

| from (5.14), and
then using the resulting estimate along with (5.13) and the triangle inequality, we are lead to

}pζ⃗, φq ´ pζ⃗h, φhq}
rHˆ rQ

ď C2
!

dist
`

pζ⃗, φq, rHh ˆ rQh

˘

`
`

}φD}1{2,ΓD ` }f}0,4{3;Ω

˘

}u ´ uh}0,4;Ω

`
`

}φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω

˘

}φ´ φh}0,4;Ω

)

,

(5.18)

where C2 is a positive constant depending only on ϑd, κ2, λd, CT, and L
rA.

Having established the estimates (5.10) and (5.18), we now add them up and arrive at

}p⃗t, u⃗q ´ p⃗th, u⃗hq}HˆQ ` }pζ⃗, φq ´ pζ⃗h, φhq}
rHˆ rQ

ď C3
!

dist
`

p⃗t, u⃗q,Hh ˆ Qh

˘

` dist
`

pζ⃗, φq, rHh ˆ rQh

˘

`
`

Epg, φD, fq ` rEpφD, fq
˘ `

}u ´ uh}0,4;Ω ` }φ´ φh}0,4;Ω
˘

)

,

(5.19)

where C3 is a positive constant depending only on C1, C2, and sCϵ (cf. (3.64)), and the data-depending
expressions Epg, φD, fq and rEpφD, fq are given by

Epg, φD, fq :“ }g}0,Ω
`

}φD}1{2,ΓD ` }f}0,4{3;Ω ` 1
˘

, and

rEpφD, fq :“ }φD}1{2`ϵ,ΓD ` }f}ϵ,4{3;Ω .
(5.20)

We are now in position to establish the announced Céa error estimate.

Theorem 5.1. In addition to the hypotheses of Theorems 3.10 and 4.9, assume that

C3
!

Epg, φD, fq ` rEpφD, fq

)

ď
1

2
. (5.21)

Then, there holds

}p⃗t, u⃗q ´ p⃗th, u⃗hq}HˆQ ` }pζ⃗, φq ´ pζ⃗h, φhq}
rHˆ rQ

ď 2 C3
!

dist
`

p⃗t, u⃗q,Hh ˆ Qh

˘

` dist
`

pζ⃗, φq, rHh ˆ rQh

˘

)

.
(5.22)

Proof. It follows straightforwardly from (5.19) and (5.21).

6 Specific finite element subspaces

Here we give concrete examples of finite element subspaces (cf. (4.1)) satisfying the hypotheses pH.0q–

pH.3q and pĄH.1q-pĄH.3q, and derive the associated theoretical rates of convergence for the Galerkin
scheme (4.2)-(4.3). To that end, given an integer k ě 0 and a subset S Ď Rn, we first recall that
PkpSq and rPkpSq denote the space of polynomial functions on S of degree ď k and “ k, respectively.
In addition, with the same notations and definitions from Section 4.1, we define for each K P Th the
corresponding local Raviart–Thomas space of order k as

RTkpT q :“ PkpT q ‘ rPkpT qx ,
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where PkpKq :“ rPkpKqsn, and x is the generic vector in Rn. Then, denoting by PkpKq the tensor
version of PkpKq, and recalling that Hpdiv; Ωq Ď Hpdiv4{3; Ωq and L2pΩq Ď L4pΩq, we introduce the
following finite element subspaces:

Lt
h,tr :“

!

sh P L2
trpΩq : sh|K P PkpKq , @K P Th

)

,

Hσ
h :“

!

τh P Hpdiv; Ωq : ctτh|K P RTkpT q @ c P Rn , @K P Th
)

,

Lu
h :“

!

vh P L4pΩq : vh|K P PkpKq , @K P Th
)

,

Lγ
h,skew :“

!

ωh P L2
skewpΩq : ωh|K P PkpKq @K P Th

)

,

Lζ
h :“

!

ξh P L2pΩq : ξh|K P PkpKq , @K P Th
)

,

Hρ
h :“

!

ηh P Hpdiv; Ωq : ηh|K P RTkpT q , @K P Th
)

,

rQh :“
!

ψh P L4pΩq : ψh|K P PkpKq , @K P Th
)

.

(6.1)

It is immediate from the definition of Hσ
h that P0pΩq Ď Hσ

h , and thus assumption pH.0q is satisfied.

Furthermore, from [19, Lemma 3.6] we have the inclusions divpHσ
h q Ď Lu

h and divpHρ
hq Ď rQh, which

imply that hypotheses pH.1q and pĄH.1q hold. Next, we recall from [14, Lemma 4.3] that the inf-sup
condition (4.9) holds on Hσ

h,0 ˆ Lu
h , which confirms pH.2q. Similarly, assuming that there exists a

convex domain B such that Ω Ď B and ΓN Ď BB, it follows from [12, Lemma 4.1] that there holds

the inf-sup condition (4.18), and hence pĄH.2q is satisfied. Finally, given τh P Vh,0, we know from the
definition of Vh,0 (cf. (4.10)) that divpτhq “ 0 in Ω, which implies (cf. proof of [19, Theorem 3.3])
that τh|K P PkpKq for every K P Th, and hence τ d

h |K P PkpKq for every K P Th as well. It is clear then

that τ d
h P Lt

h,tr, thus proving that pH.3q holds. An analogous argument applied to rVh,0 (cf. (4.19))

shows that pĄH.3q is also attained.

Now we turn to collecting the approximation properties of the finite element subspaces defined in
(6.1), which basically follow from approximation properties of the Raviart–Thomas interpolator and
of the orthogonal projector onto piecewise scalar, vector and tensor polynomials, in the corresponding
Lp-norms, along with the estimates arising from the interpolation between Sobolev spaces (see, for
instance, [14, Section 4.2] and [21, Section 4.4.3]). More precisely, for each space defined in (6.1), we
have:

pAPt
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

s P L2
h,trpΩq X HspΩq, there holds

distps,Lt
h,trq ď C hs }s}s,Ω ,

pAPσ
h q there exists a constant C ą 0, independent of h, such that for each s P p0, k` 1s, and for each

τ P Hpdiv4{3; Ωq X HspΩq with divpτ q P Ws,4{3pΩq, there holds

distpτ ,Hσ
h q ď C hs

!

}τ }s,Ω ` }divpτ q}s,4{3;Ω

)

,

pAPu
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

v P Ws,4pΩq, there holds
distpv,Lu

hq ď C hs }v}s,4;Ω ,
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pAPγ
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

ω P L2
skewpΩq X HspΩq, there holds

distpω,Lγ
h,skewq ď C hs }ω}s,Ω ,

pAPζ
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

ξ P HspΩq, there holds

distpξ,Lζ
hq ď C hs }ξ}s,Ω ,

pAPρ
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

η P Hpdiv4{3; Ωq X HspΩq with divpηq P Ws,4{3pΩq, there holds

distpη,Hρ
hq ď C hs

!

}η}s,Ω ` }divpηq}s,4{3;Ω

)

,

pAPφ
hq there exists a constant C ą 0, independent of h, such that for each s P r0, k ` 1s, and for each

ψ P L4pΩq X Ws,4pΩq, there holds

distpψ, rQhq ď C hs }ψ}s,4;Ω .

We are now in position to establish the theoretical rates of convergence of the discrete scheme
(4.2)–(4.3) for the specific subspaces defined in (6.1).

Theorem 6.1. Assume the hypotheses of Theorem 5.1 hold, and that there exists a convex domain
B such that Ω Ď B and ΓN Ď BB. In addition, let p⃗t, u⃗q “ ppt,σq, pu,γqq P H ˆ Q and pζ⃗, φq “

ppζ,ρq, φq P rH ˆ rQ be the unique solution of the coupled system (3.1)-(3.2), and for a given h ą 0,
let ppth,σhq, puh,γhqq P Hh ˆ Qh and ppζh,ρhq, φhq P rHh ˆ rQh be a solution of (4.2)–(4.3) for the
specific finite element spaces defined in (6.1). Assume further that that there exists s P p0, k ` 1s,
such that t P L2

trpΩq X HspΩq, σ P H0pdiv4{3; Ωq X HspΩq, divpσq P Ws,4{3pΩq, u P Ws,4pΩq,

γ P L2
skewpΩq X HspΩq, ζ P HspΩq, ρ P HN pdiv4{3; Ωq X HspΩq, divpρq P Ws,4{3pΩq, and φ P Ws,4pΩq.

Then, there exists a positive constant C, independent of h, such that

}p⃗t ´ t⃗h, u⃗ ´ u⃗hq}HˆQ ` }pζ⃗ ´ ζ⃗h, φ´ φhq}
rHˆ rQ

ď C hs
!

}t}s,Ω ` }σ}s,Ω ` }divpσq}s,4{3;Ω

` }u}s,4;Ω ` }γ}s,Ω ` }ζ}s,Ω ` }ρ}s,Ω ` }divpρq}s,4{3;Ω ` }φ}s,4;Ω

)

.

Proof. It follows directly from (5.22) and the above approximation properties.

7 Numerical Results

We now present some numerical examples to illustrate the performance of the fully mixed finite element
method for the problem (4.2)–(4.3), with the discrete subspaces specified in (6.1). The implementation
of the method has been carried out using the open source finite element library FEniCS. The nonlinear
problem is solved using a Newton-Raphson algorithm with a prescribed tolerance tol “1E-6 and the
zero vector as the initial guess. Furthermore, the null mean value condition for trpσhq is enforced by
means of a real-valued Lagrange multiplier. Finally, the individual errors associated with the principal
unknowns are denoted and defined, as usual, by

eptq :“ }t ´ th}0,Ω , epσq :“ }σ ´ σh}div4{3;Ω , epuq :“ }u ´ uh}0,4;Ω ,

epζq :“ }ζ ´ ζh}0,Ω , epρq :“ }ρ ´ ρh}div4{3;Ω , and epφq :“ }φ´ φh}0,4;Ω .
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Finally, for each ‹ P tt,σ,u, ζ,ρ, φu, we let rp‹q :“
logpep‹q{e1p‹qq

logph{h1q
be the experimental rates of

convergence, where h and h
1

denote two consecutive mesh sizes with errors ep‹q and e
1

p‹q, respectively.

7.1 Example 1: accuracy verification

The convergence of the method is assessed in 2D and 3D. We consider the square p´1, 1q2 and unit
cube p0, 1q3 domains, discretized into meshes that are successively refined. We fix g “ p0, 1qt (in 2D)
and g “ p0, 0, 1qt (in 3D) together with the viscosity and thermal conductivity µpφq “ expp´0.25φq,
κpφq “ expp0.25φq (in 2D) and µpφq “ expp´0.25φq, κpφq “ 1 (in 3D). Then, we choose a boundary
temperature φD and a forcing term f such that the exact solutions are

upx1, x2q :“

˜

2x2 sinpπx1q sinpπx2qpx21 ´ 1q ` π sinpπx1q cospπx2qpx21 ´ 1qpx22 ´ 1q

´2x1 sinpπx1q sinpπx2qpx22 ´ 1q ´ π sinpπx2q cospπx1qpx21 ´ 1qpx22 ´ 1q

¸

,

ppx1, x2q :“ x21 ´ x22 , φpx1, x2q “ px21 ´ 1qpx22 ´ 1q ,

and

upx1, x2, x3q :“

¨

˚

˚

˝

sinpπx1q cospπx2q cospπx3q

´2 cospπx1q sinpπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‹

‹

‚

,

ppx1, x2q :“ sinpπx1q sinpπx2q sinpπx3q , φpx1, x2q “ 1 ´ sinpπx1q cospπx2q sinpπx3q ,

for the 2D and 3D cases, respectively. In Tables 7.1 and 7.2 we summarize the convergence history
of the fully mixed finite element method (4.2)–(4.3) in 2D and 3D, respectively, using polynomial
degrees k P

␣

0, 1, 2
(

, from which we realize that, as predicted by Theorem 6.1, the rate of convergence
of order Ophk`1q is attained by all the unknowns. Furthermore, in order to illustrate the accuracy of
the discrete scheme, in Figures 7.1 and 7.2 we display some components of the approximate solution
obtained with the polynomial degree k “ 0 in 2D and 3D, respectively.

7.2 Example 2: natural convection in a square cavity

In a second example, we consider natural convection of a fluid in a square cavity with differently
heated walls. This configuration has been extensively investigated under various boundary conditions
(see, e.g., [7, 17, 27]). In particular, following [17], we recall the modified dimensionless formulation
of the problem: find pu, p, φq such that

´Pr divp2µpφq epuqq ` p∇uqu ` ∇p´ Ra Pr φg “ 0 in Ω ,

divpuq “ 0 in Ω ,

´divpκpφq∇φq ` u ¨ ∇φ “ 0 in Ω ,

(7.1)

where Pr and Ra denote the Prandtl and Rayleigh numbers, respectively, defined as the ratio of
momentum diffusivity to thermal diffusivity, and the ratio of buoyancy forces to viscous forces mul-
tiplied by the Prandtl number. Accordingly, the cavity is modeled as Ω “ p0, 1q2, with Pr “ 0.5 and
Ra “ 4000. Moreover, the viscosity, thermal conductivity, and body force are specified as follows:

µpφq “ expp´φq, κpφq “ exppφq and g “ p0, 1qt .

The boundary conditions are prescribed as in [17] (see also [2]), namely,

uDpx1, x2q “ 0 and φDpxq “
1

2
p1 ´ cosp2πx1qqp1 ´ x2q on Γ .

33



Errors and rates of convergence for the fluid variables

k h eptq rptq epσq rpσq epuq rpuq epγq rpγq

0.500 5.365 - 7.280 - 1.321 - 6.025 -

0.250 2.382 1.171 3.382 1.106 0.626 1.076 1.346 2.162
0 0.125 1.150 1.050 1.642 1.041 0.315 0.988 0.366 1.876

0.062 0.568 1.016 0.813 1.013 0.158 0.996 0.101 1.850
0.031 0.283 1.005 0.405 1.004 0.079 0.999 0.029 1.791

0.500 1.212 - 1.738 - 0.332 - 0.815 -
0.250 0.334 1.855 0.453 1.938 0.084 1.976 0.253 1.687

1 0.125 0.094 1.824 0.124 1.866 0.021 1.991 0.080 1.651
0.062 0.025 1.915 0.032 1.927 0.0053 1.998 0.0232 1.792
0.031 0.0063 1.970 0.0083 1.973 0.0013 1.999 0.0061 1.924

0.500 0.683 - 0.958 - 0.0641 - 0.6640 -
0.250 0.08697 2.974 0.1284 2.898 0.00774 3.049 0.0837 2.988

2 0.125 0.01085 3.002 0.01642 2.967 0.00095 3.026 0.01041 3.006
0.062 0.00135 3.000 0.00206 2.989 0.000118 3.007 0.00129 3.002

Errors and rates of convergence for the heat variables

k h epζq rpζq epρq rpρq epφq rpφq

0.500 0.839 - 1.244 - 0.201 -
0.250 0.395 1.085 0.576 1.111 0.099 1.020

0 0.125 0.197 1.000 0.289 0.994 0.049 0.997
0.062 0.098 0.999 0.144 0.998 0.024 0.999
0.031 0.049 0.999 0.072 0.999 0.012 0.999

0.500 0.141 - 0.280 - 0.020 -
0.250 0.038 1.857 0.075 1.900 0.005 2.000

1 0.125 0.010 1.902 0.019 1.947 0.0012 2.012
0.062 0.0026 1.967 0.0049 1.985 0.0003 2.004
0.031 0.0006 1.988 0.0012 1.995 0.00007 2.001

0.500 0.0327 - 0.06442 - 0.00149 -
0.250 0.00426 2.940 0.00846 2.928 0.00013 3.432

2 0.125 0.00052 3.014 0.00105 3.004 0.0000152 3.180
0.062 0.000065 3.004 0.0001316 3.001 0.00000184 3.051

Table 7.1: Example 1, degrees of freedom, errors and rates of convergence for the Galerkin scheme
(4.2)–(4.3) in 2D employing the subspaces defined in (6.1) with k P

␣

0, 1, 2
(

The numerical experiments are carried out with k “ 0. In Fig. 7.3, we present the approximate
solutions obtained using the lowest-order mixed scheme. The results are consistent with those reported
in [2] and with the physical behavior expected from the problem, in agreement with [17].

7.3 Example 3: natural convection in non-convex geometry

In this study, we investigate steady-state natural convection within a two-dimensional cross-section of
a shell-and-tube configuration. Specifically, the simulations are performed for k “ 0, corresponding
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Errors and rates of convergence for the fluid variables

k h eptq rptq epσq rpσq epuq rpuq epγq rpγq

0.866 1.790 - 1.668 - 0.444 - 1.341 -

0.433 0.948 0.916 0.953 0.806 0.235 0.915 0.477 1.491
0 0.216 0.482 0.976 0.495 0.945 0.119 0.976 0.137 1.798

0.144 0.323 0.985 0.331 0.991 0.080 0.993 0.073 1.540

0.866 0.581 - 0.605 - 0.155 - 0.417 -

1 0.433 0.167 1.793 0.170 1.826 0.042 1.873 0.109 1.932

0.216 0.046 1.856 0.046 1.880 0.010 1.967 0.038 1.942

0.866 0.186 - 0.197 - 0.0436 - 0.1641 -

2 0.433 0.02826 2.719 0.03073 2.687 0.00600 2.864 0.01968 3.059

0.216 0.00371 2.927 0.00399 2.944 0.000767 2.967 0.00216 3.187

Errors and rates of convergence for the heat variables

k h epζq rpζq epρq rpρq epφq rpφq

0.866 1.048 - 1.001 - 0.181 -

0.433 0.585 0.839 0.549 0.865 0.096 0.913
0 0.216 0.304 0.942 0.284 0.949 0.048 0.979

0.144 0.205 0.977 0.191 0.979 0.032 0.994

0.866 0.376 - 0.325 - 0.064 -

1 0.433 0.107 1.806 0.091 1.828 0.017 1.884

0.216 0.028 1.935 0.024 1.931 0.0044 1.971

0.866 0.10681 - 0.08782 - 0.01795 -

2 0.433 0.01541 2.793 0.013276 2.725 0.002452 2.871

0.216 0.002009 2.939 0.001755 2.919 0.000313 2.968

Table 7.2: Example 1, degrees of freedom, errors and rates of convergence for the Galerkin scheme
(4.2)–(4.3) in 3D employing the subspaces defined in (6.1) with k P

␣

0, 1, 2
(

.

to a disk-shaped domain Ω, where problem (7.1) is solved under mixed boundary conditions for the
energy equation, as described below. The geometry consists of two circular cavities, each with radius
1
8 . The right-hand inner cylinder is maintained at a hot temperature with φD “ 1, while the left-hand
inner cylinder is cooled to φD “ ´1. The outer shell is assumed to be adiabatic, which corresponds
to the condition ρ ¨ n “ 0 imposed on its surface. For the momentum equations, a no-slip boundary
condition is prescribed along all boundaries. The Prandtl number is fixed at Pr “ 1, and the analysis
is conducted for three Rayleigh number regimes:

low (Ra “ 1e2) , medium (Ra “ 1e3) , and high (Ra “ 1e4) . (7.2)

Figure 7.4 displays, from left to right, the computed velocity magnitude, vorticity magnitude, and
temperature distribution, obtained from numerical simulations for each of the above Rayleigh numbers
(arranged from the first to the third columns).
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(a) t11,h (b) σ11,h (c) |uh|

(d) ζ1,h (e) |ρh| (f) φh

Figure 7.1: Example 1, sample of 2D approximate solutions for the convergence test obtained using
the polynomial degree k “ 0 on the mesh with h “ 0.031.
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