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Abstract

In this paper, we introduce and analyze a family of mixed finite element methods for the numerical
solution of heat-driven flows with temperature-dependent parameters, modeled by a generalization
of the stationary Boussinesq equations. Our approach relies on a reformulation of the governing
equations in terms of the velocity, strain-rate tensor, vorticity, stress, pseudoheat, temperature, and
its gradient. The pressure is eliminated from the system using the incompressibility constraint and
can be subsequently recovered through a postprocessing formula involving the stress and velocity
fields. Then, the resulting continuous formulation consists of a Banach spaces-based nonlinearly
perturbed coupled system of twofold saddle point operator equations. By introducing suitable
linearizations of the corresponding variational equations, we establish the unique solvability of
the continuous problem through a fixed-point strategy. This analysis combines the Banach—Necas—
Babuska and Babuska—Brezzi theories in Banach spaces with the Banach fixed-point theorem, under
an extraregularity assumption on the aforementioned linear systems and a smallness assumption
on the data. Adopting an analogous approach for the associated Galerkin scheme, and under
suitable hypotheses on the finite element subspaces employed, we establish existence of a discrete
solution by applying the Brouwer fixed-point theorem and the discrete versions of the Banach-
Necas—Babuska and Babuska—Brezzi theories. Furthermore, the error analysis is carried out under
appropriate assumptions on the data, and by employing similar arguments to those yielding Strang-
type estimates. Finally, several numerical experiments are presented to illustrate the performance
of the proposed scheme and to confirm the convergence rates predicted by the theoretical analysis.

Key words: generalized Boussinesq problem, temperature-dependent parameters, Banach spaces,
fully mixed finite element method, a priori error analysis.
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1 Introduction

Various types of free convection arise in both natural and industrial contexts, including mantle con-
vection, stratified oceanic flows, and onboard cooling systems for electronic devices. These processes
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are typically modeled by coupling the continuity and momentum equations (Navier—Stokes) with the
energy equation under the Boussinesq approximation, where the fluid density is assumed constant
except in the buoyancy term, where its linear dependence on temperature is retained. However, in
many physically relevant scenarios, other fluid properties, particularly viscosity and thermal conduc-
tivity, also exhibit strong temperature dependence (see, e.g. [5]). This is a key feature, for instance,
in geophysical processes such as mantle convection and magma dynamics, in the flow of heavy oils
and nanofluids, and in advanced thermal systems including electronic cooling, solar thermal collectors,
and microfluidic applications. Accurately modeling such phenomena requires considering generalized
Boussinesq equations with temperature-dependent coefficients, which leads to additional mathemat-
ical and numerical challenges. In this context, several numerical strategies have been proposed for
generalized Boussinesq equations with temperature-dependent parameters. These include standard
finite element methods (FEM) [8, 22, 24, 26], as well as mixed and augmented-mixed FEM formula-
tions [1, 2, 3, 4, 23]. More recently, a virtual element method was developed in [6] for the Boussinesq
system with temperature-dependent viscosity. Additionally, finite element methods based on primal
formulations for generalized Boussinesq equations were studied in [24, 23]. Subsequently, the mixed-
primal formulation initially introduced in [14] for the Boussinesq system with constant parameters
was extended in [4] to the two-dimensional case with temperature-dependent viscosity, and further
generalized to the n-dimensional setting in [1]. Similarly, the augmented fully mixed numerical scheme
originally proposed in [16] for the Boussinesq model with constant parameters was extended to the
n-dimensional problem with temperature-dependent parameters in [3].

One of the main advantages of the mixed formulations studied in [4, 1, 3] is that they allow for the
direct recovery of additional variables of physical interest beyond the original unknowns. However, to
ensure the well-posedness of the continuous and discrete problems, and to derive optimal convergence
estimates, redundant Galerkin-type terms are incorporated into these formulations. Such an approach
inevitably leads to denser matrices and increased computational costs, thus motivating the develop-
ment of alternative formulations that retain the mathematical and numerical advantages but minimize
computational complexity. In this context, a new Banach spaces-based fully mixed formulation was
introduced in [12] for the Boussinesq model with constant parameters. This formulation, based on
previous works [10, 14], enables the use of standard inf-sup stable finite element spaces suitable for
mixed problems without resorting to the augmentation procedure involving the aforementioned redun-
dant Galerkin-type terms introduced in [16]. In addition, the method introduced in [12] retains the
advantages of the formulations studied in [1, 3, 4], namely, the direct recovery of additional variables
of physical interest beyond the original unknowns. Furthermore, this formulation allows for the exact
conservation of important physical quantities such as momentum and thermal energy.

Motivated by the preceding discussion, in this work we extend the results presented in [1, 3, 4] by
utilizing the Banach spaces-based framework employed in [12]. Specifically, we propose and analyze a
new fully mixed finite element method for the numerical approximation of the Boussinesq model with
temperature-dependent parameters. Our approach relies on rewriting the governing equations as a
first-order system, in which, analogously to [3], the pseudostress tensor, strain-rate tensor, vorticity,
and velocity, together with the pseudoheat vector, temperature, and temperature gradient, consti-
tute the primary unknowns. By multiplying the resulting equations with suitable test functions and
employing standard integration by parts formulas, we derive a fully mixed variational formulation
posed in appropriate Banach spaces. Concerning the discrete scheme, the variational formulation is
discretized using generic finite-dimensional subspaces. We then establish suitable hypotheses ensuring
existence of solution of the discrete problem and the validity of the associated Céa’s estimate. Finally,
we introduce specific finite element spaces satisfying these hypotheses, which allow us to derive optimal
convergence rates. These discrete spaces are then employed to validate the theoretical results through
a series of numerical experiments, which confirm the predicted convergence behavior and demonstrate



the effectiveness of the proposed method.

The remainder of this work is organized as follows. In Section 2, we introduce the model problem,
define the auxiliary variables required for the formulation, and derive the continuous fully mixed
variational problem. Section 3 is devoted to the solvability analysis of the continuous problem, where
we employ a fixed-point strategy combined with additional regularity assumptions on certain auxiliary
linearized problems and a smallness assumption on the data. The corresponding Galerkin scheme
is presented in Section 4, where, under suitable assumptions on generic discrete spaces and using
analogous arguments to those in Section 3, we prove the existence of a discrete solution. Next, in
Section 5, we derive a priori error estimates for the proposed Galerkin method, and Section 6 is
dedicated to the introduction of specific finite element subspaces that satisfy the assumptions from
Section 4. Finally, in Section 7, we report numerical results that demonstrate the performance of the
method and confirm the theoretical rates of convergence established in Section 6.

1.1 Preliminaries

Let us denote by Q < R™, n € {2,3} a given bounded domain with polyhedral boundary I', and denote
by n the outward unit normal vector on I'. Standard notations will be adopted for Lebesgue spaces
LP(Q), with p € [1, 0] and Sobolev spaces W "P(Q2) with r > 0, endowed with the norms | - [|o,.0 and
|+ |rp.0, respectively. Note that W 2P(Q) = LP(Q2) and if p = 2, we write H" () in place of W "2(),
with the corresponding Lebesgue and Sobolev norms denoted by | - [o.n and | - |, respectively. We
also write | - |,.q for the H-seminorm. In addition, H'/2(T") is the spaces of traces of functions of
H'(Q) and H~/2(T") denotes its dual. With {-,-) we denote the corresponding product of duality
between HY/2(I') and H-1/2(I"). By S and S we will denote the corresponding vectorial and tensorial
counterparts of the generic scalar functional space S. In turn, for any vector fields v = (v;);=1,, and
W = (wj)i=1,n, We set the gradient, divergence and tensor product operators, as

o0v; 2 ov
Vv = ( Z> ,  div(v) = I
0% ) ;i1 ;1 L

- and v W = (viw))ij=1n-
J

D

In addition, for any tensor fields 7 = (74;)i j=1,n and ¢ = ({ij)i j=1,n, We let div(7T) be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

n n 1
= (Tji)ij=1n, tr(T):= Z Ti, T:C:= Z 7ijGij,  and =7 - —tr(7)L, (1.1)
i=1

n
ij=1

where I denotes the identity tensor in R™*™. On the other hand, given ¢t > nZ—fQ, we introduce the
non-standard Banach spaces

H(divy; Q) = {Te L2(Q):  div(r) eLt(Q)}

and
H(divy; Q) := {TeM(Q); div(r) e Lt(Q)},

equipped with the norms

ITlaivee = I7loo+ [div(T)lose, V7 eH(div, Q)

and

0.0 + [ div(T)

o, V7 eH(div, Q),

ITdivi0 = |7



respectively. Then, proceeding as in [19, eq. (1.43), Section 1.3.4], it is easy to show that for each
t > 2% there holds

T
(T -n,v) = JQ {7‘ -Vou + UdiV(T)} VY (7,v) € H(div; Q) x HY(Q), (1.2a)
(rn,v) = JQ {T Vv + vdiv(T)} ¥ (r,v) € H(dive; Q) x H(Q) . (1.2b)

Note that the above constraint on ¢ guarantees that H'() is embedded in L*(Q), where t' is the
Holder conjugate of t. As a consequence of it, one deduces from (1.2a) the existence of a positive
constant Cy, depending on ¢ (or, equivalently, on ¢) and €, such that

I7-nf-1pr < Cilrlavee V7 e H(divi; Q). (1.3)
Analogously, it follows from (1.2b) that
Irafor < Cif7laivie V7 e H(divg; Q). (1.4)

In the sequel, for the case t = 2 we simply employ the notation H(div; Q) and H(div; ), respectively.

2 The continuous formulation

2.1 The model problem

Let © < R™ be a bounded domain, n € {2,3}, with Lipschitz-boundary I".  The boundary of this
domain is divided into two portions I'p and T'y, such that Tp U Ty =T and |T'p| > 0. The model
consists in a system of equations where the incompressible Navier—Stokes equation is coupled with the
heat equation through convective and buoyancy terms, the latter typically acting in opposite direction
to gravity. More precisely, we are interested in the following system of equations

—div(u(p)e(u)) + (Vu)u+Vp—pg=0 in Q, (2.1a)
diviu) =0 in €, (2.1b)

—div(k(¢) Vo) +u-Vo = f in Q, (2.1c)

u=0 on T, (2.1d)

o= ep on Ip, (2.1e)

k(p)Ve-n=0 on I'y, (2.1f)

Lp =0, (2.1g)

where u, p and ¢ represent the velocity, pressure and temperature of the fluid, respectively, g is an
external force per unit mass, f is a source term, ¢p is a prescribed temperature on I'p and

e(u) — %(Vqu (Vu)?).

The right spaces to which g, f and ¢p belong, will be specified throughout the forthcoming analysis.
In turn, pu, s : R — RT are the temperature-dependent viscosity and thermal conductivity functions,
respectively, which are assumed to be bounded from above and below by positive constants, that is

1 < p(w) < pg and kK < K(w) < kKo VweR, (2.2)



with py, po, K1, ko > 0. In what follows, we assume that these functions are Lipschitz continuous,
that is, there exist positive constants £,, and L, such that

lp(w) = p(v)| < Ly|w—v| and |s(w) — &) < Lx|w— o) Vw,veR. (2.3)

Notice that equation (2.1g), is incorporated in the system to ensure uniqueness of the pressure.

Now, since we are interested in employing a fully mixed variational formulation for the coupled
system (2.1a)-(2.1g), we first adopt the approach from [3] for the fluid equations and introduce the
vorticity, strain and pseudostress tensors as further unknowns, given respectively by

1
7= 5(Vu—(Vu)*) in @, t:=e(w)=Vu-v, and

o :=pulp)t—u®u—pl in Q.

In particular, applying the tensor trace (cf. (1.1)) to t and o, and utilizing the incompressibility
condition (2.1b), one arrives at

1
tr(t) = 0 inQ and pz—ﬁtr(a—l—u@)u) in Q.

In this way, one can eliminate the pressure from the system (2.1a)—(2.1g) and rewrite it in terms of
o, t, v, uand ¢, as follows

t+4 =Vu in Q, wp)t—(u@u)? = ¢ in Q,
—div(e) —pg =0 in Q, oc=0c' in Q,

y=-" in Q, t=t" in Q, tr(t) =0 in Q,
u=0 on I' and ftr(a+u®u)=0.
Q

Notice that the fourth and fifth equations of (2.4) are included in the system to ensure the skew-
symmetry and symmetry of v and t, respectively, whereas the incompressibility of the fluid is now
imposed through the sixth equation of (2.4). In addition, let us observe that last equation of (2.4) is
equivalent to (2.1g).

Next, for the remaining equations (2.1c), (2.1e) and (2.1f), we follow the approach from [16, 3] and
introduce, as additional unknowns, the gradient of the temperature and the pseudoheat vector field,
given respectively by

¢ :=Vy and p:=k(p){—¢u inQ,

so that we obtain the equivalent system

C=Ve in Q, k)l-pu=p in Q, —divlp) = f in Q,

(2.5)
¢ =¢p on I'p and p-nm=0 on Iy,

where (2.1f) has been converted to p-n = 0 on I'y thanks to the no-slip condition u =0 on I.

2.2 The fully mixed variational formulation

In this section we introduce the variational formulation for the system given by (2.4) and (2.5). We
begin with the set of equations (2.4) by introducing, as suggested by the properties satisfied by the
unknown t, the space

L2 (Q) = {SELQ(Q): s—s*' =0 and tr(s) = ()},



to which t clearly belongs. Then, testing the second equation in the first row of (2.4) with s € L2,(9),
and using that r%: s = r: s, for any tensor r, we formally obtain

J,u(go)t:s*j(u@u):s*fo-:s =0 Vsel2 (Q). (2.6)
Q Q Q

The boundedness of p (cf. (2.2)) guarantees that the first term of (2.6) is well-defined, whereas the
third one is as well if & belongs to L.2(€2). In turn, simple applications of the Cauchy-Schwarz inequality
show that the second term makes sense if u € L*(Q2). Thus, it is reasonable to assume, at least at
first instance, that actually u e H'(£2), which is certainly embedded in L4(£2). In this way, proceeding
similarly to [9, 12], we now test the first equation in the first row of (2.4) with 7 € H(divys;),
so that applying the integration by parts formula (1.2b), with ¢ = 4/3, and employing the boundary
condition u = 0 on I', we arrive at

Jt:T—i—J ’Y:T-i—f u-div(r) = 0 V 7 e H(divys; Q). (2.7)
Q Q Q

The first term of (2.7) is certainly well-defined since t and 7 belong to L2(€2), and the second is as
well if 7y, which must satisfy v = —~', is sought in the space

L2 (Q) := {wenﬁ(m; w = —wt}.

In addition, the third term of (2.7) makes sense for u again in L*(2) thanks to the Holder inequality,
thus explaining the previous choice of H(divy/3;€2) for 7. Furthermore, we impose the symmetry of
o through

().

skew

Ja:sz Vwel?
Q

Finally, adding the constraint div(e) € L*3(€), the first equation in the second row of (2.4) is weakly
imposed as follows:

J v -div(o) —I—f pvg-v=0 VveLY(Q), (2.8)
Q Q

and hence, an appropriate space for o is the same as for 7, that is H(div4/3;Q). Regarding the
respective spaces for ¢ and g, which appear in the second term of the left-hand side of (2.8), they will
become clear next when deriving the variational formulation for the system (2.5). Indeed, testing the
second equation in the first row of (2.5) with £ € L2(2), we formally obtain

| merce=| vue—| pe-0 veeria,

from which, assuming that ¢ and p are originally sought in L?(Q2), we observe that its first and
third terms are well-defined, in particular the first one thanks also to the boundedness of x (cf.
(2.2)). Regarding the second term, and knowing already that u € L4(2), it follows again by Hélder’s
inequality that it makes sense if we look for ¢ in L*(2). Moreover, proceeding similarly as for (2.7), we
actually assume now that ¢ € H'(Q) and that the Dirichlet datum ¢p € HY/2(Q), so that employing
the integration by parts formula (1.2a) with ¢ = 4/3, and making use of the boundary condition
¢|r = ¢p, the testing of the first equation in the first row of (2.5) against n € Hy(divy3;(2), yields

L ¢-n+ L pdiv(n) = (m-n,¢p)r,  VneHy(divys;Q), (2.9)



where

Hy (divy3; Q) = {neH(div4/3;Q): n-n=0 on FN}.

Note that the second term of (2.9) makes sense for ¢ again in L*(Q2). Then, going back to the
second term on the left-hand side of (2.8), we realize that it is well-defined if the datum g is assumed
to belong to L2(Q2). We conclude the derivation of the variational formulation by adding to p the
condition div(p) € L*3(Q), which, together with the boundary condition p-n = 0 on I'y, turns this
unknown to be looked for in Hy (divy/s; §2). Hence, assuming from now on that f € L*3(Q), the third
equation in the first row of (2.5) is imposed weakly through

J Y div(p) = —J fv  VyeliQ). (2.10)
Q Q

In light of the above, the variational problem associated with the system (2.4)—(2.5) reads as follows:
Find t € L, (Q), o € H(divy3;Q), u e LYQ), v € L2,(Q), ¢ € L*(Q), p € Hy(divy3;Q), and
¢ € L4(Q), such that (2.6)—(2.10) hold, with

J tr(a’ + u®u) =0. (2.11)
Q

However, following the approach in [11], we observe that due to the constraint (2.11) and the decom-
position (see, e.g., [9], [19])
H(divy3; Q) = Ho(divys; Q) ® RI,

where

Ho(divy/3;€2) := {T € H(divy3; Q) : f tr(7) = O} ,
Q

any solution o € H(div4/3; Q) to the system can be written as o = o + cl, where o € Ho(div4/3; )

and
c = —L f tr(u®u)
' n|Qf Jo '

Then, noting that oy = o and div(e) = div(oy), equations (2.6) and (2.8) can be equivalently
expressed in terms of oy without altering their meaning. Accordingly, in what follows, we omit the
constraint (2.11) and study the system (2.6)-(2.10) with o € Ho(div,/3;€2), where the subscript 0 in
o has been dropped for the sake of simplicity of notation.

3 The continuous solvability analysis

In this section, we analyze the solvability of the system (2.6)—(2.10) by combining the Babuska-Brezzi
theory and the classical Banach—Necas—Babuska theorem, both in Banach spaces, with a fixed-point
strategy.

3.1 Preliminaries

We begin by rewriting the equations (2.6) up to (2.10) in terms of suitable bilinear forms. Indeed, we
first introduce the spaces:

H o= L2(Q) x Ho(divys; Q), Q= LYQ) x L2, (Q),

= L2(Q) x Hy(divy3;Q), and O := LY(Q),



which are endowed with the respective norms

I8l = .  [wle =

—

1€l =

Ndivyz0, and  [¢]g =

for all §:= (s,7) e H, w := (W,w) € Q, é’:: (&,m) € H, and (NS Q. Then, it is easily seen that
the system given by the equations (2.6) up to (2.10) can be reformulated as the following nonlinearly
perturbed coupled system of twofold saddle point formulations: Find t=(t,o)eH, i=(u,~)eQ,
C (¢, p) € 7-[ and @ € Q such that

Ay(t,8) + B(8,d) + Cu(u,s) =0 VSeH,
B(E, W) — G, (W) VYweQ, 3
and o N . o
fng, ) + B(&¢) + Culp,€) =1j( ) V£€H~, 52
B(¢. ) =G) Vyeg,
where, for each ¢ € LY(2), Ag: H x H — R and Ay : H x H — R are defined by
Ap(€,8) := ag(t,s) +b(s,0) +b(t,7) and  Ay({,€) = Ty(C.) + (& p) +B(C,m),  (3.3)

with ag : LZ.(Q) x LZ.(Q) — R, b : LZ.(Q) x Ho(divyss;Q) — R, dg : L*(Q) x L*(Q) — R, and
b: L2(Q) x Hy(divys; Q) — R, given by

ap(t,s) ;== jﬂu(gb)t:s, b(s, T) :ZJQS:’T,

08 = [ orce Hemi-- | en

Note here that the saddle point structure of both Ay and fL) explains the twofold concept employed
to refer to (3.1) and (3.2). In turn, B: H x @ — R and B : H x Q — R are defined as

B((s, 1), (v,w)) := —fﬂv -div(r) — f w:T and B((&,n),¢):= —fﬂwdiv(n), (3.4)

Q

whereas Cy, : L4(Q) x L2_(Q) — R and Cy, : L*(Q) x L2(Q) — R reduce, for cach w € L*(), to
Cw(v,s) = —j (w®v):s and Cy(¥,€) = —f P(w-E€).
Q Q

We now remark that, although Cy is actually a bilinear form, the fact that Cy(u,s) is nonlinear in
u explains the nonlinearly perturbed concept utilized before. Finally, the functionals G, for each
pel*Q), F:H — R, and G : Q — R, are defined by

Jcﬁgw

_<TI n, SOD>FD )

F(§) =
RRE



3.2 The fixed-point strategy

We now introduce the fixed-point strategy to analyze the solvability of the coupled system (3.1)-(3.2).
We begin by introducing the auxiliary operator S : L*(Q) x L*(Q) — L2_(Q) x L*(Q2) defined by

S(z,¢) = (S1(z,¢),82(2,¢)) := (t,u)  V(z,¢) e L'(Q) x LY(Q), (3.5)

where t € L2 () and u € L*(Q) are the first and third components, respectively, of the unique solution
(to be confirmed below) of the linearized problem arising from (3.1) when replacing A, Cy, and G,
by Ay, Cz, and G4, respectively, that is: Find (t,d) = ((t,0), (u,7)) € # x Q, such that

Ay(t,8) + B(§, 1) + Cy(u,s) =0 V8= (s,T)€eH, (36)
B(t, V) = Gy(¥V) VV=(v,w)eQ. '
In turn, we let T : L4(Q) x L*(Q) — L2(Q) x L*(Q2) be the operator given by
T(Z7 ¢) = (Tl(za QS)? T2(Za d))) = (Cv 90) v (Za ¢) € L4(Q) X L4<Q) ) (37)

where ¢ € L2(Q) and ¢ € L*(Q2) are the first and third components, respectively, of the unique solution
(to be confirmed below) of the linearized problem arising from (3.2) when replacing A, and Cy by Ay
and Cy, respectively, that is: Find (¢, ) = (¢, p), ¢) € H x O, such that

z§¢<f“, )+ B(E ) + Culp,€) = f:ﬂ vE = €me A, .
B(¢,v) =G(Y) VyeQ.
Thus, we let J : L*(Q) x L*(Q) — L*(Q) x L*(Q2) be the operator defined by
J(z,0) = (S2(2,T2(z,9)), T2(z,9))  V(z,¢) € LY(Q) x LY(Q), (3.9)

and realize that solving (3.1)-(3.2) is equivalent to seeking a fixed-point of J, that is: Find (u,¢) €
L4(Q) x L*(Q), such that
J(u,¢) = (u,9). (3.10)

In this way, in what follows we focus on proving that J possesses a unique fixed-point, for which
we begin by establishing in the following section that S and T, and hence J, are well defined.

3.3 Well-definiteness of S, T and J

In order to prove that S and T are well defined, equivalently that the linear problems (3.6) and (3.8)
are well-posed, we resort to the Banach—Nec¢as—Babuska Theorem and the classical Babuska—Brezzi
theory, which are recalled next in the setting of Banach spaces (cf. [18, Theorems 2.6 and 2.34]).

Theorem 3.1. Let H and Q be Banach spaces such that Q is reflexive, and let A: H x Q — R be a
bounded bilinear form. Assume that

i) there exists a > 0 such that

A

sup 2V S iy Vwed, (3.11)
veQ HUHQ

v#0



ii) there holds

sup A(w,v) > 0 Voe@, v+0.
weH

Then, for each F € Q' there exists a unique uw € H such that
A(u,v) = F(v) VoveQ,
and the following a priori estimate holds
s < > |Flo-
@

Moreover, 1) and ii) are also necessary conditions for the well-posedness of (3.13).

(3.12)

(3.13)

(3.14)

Theorem 3.2. Let H and Q be reflexive Banach spaces, and let a : Hx H— R andb: Hx Q — R
be bounded bilinear forms with boundedness constants denoted by |al| and |b||, respectively. In addition,

let 'V be the null space of the operator induced by b, which reduces to
Vo= {TEHZ b(t,v) =0 VUEQ},
and assume that

i) there exists a > 0 such that

A7)

rev |7TlH
T7#0

> afdla V(eV,

ii) there holds

supa(r,¢) >0 V(eV, (+#0,
TeV

iii) there exists B such that
b(r,v)

ren |7
T#0

> Blvle  Yveq.

Then, for each pair (F,G) € H x Q' there exists a unique (o,u) € H x Q such that
a(o,7) + b(r,u) = F(71) VreH,
b(o,v) = G(v) VoeQ,

and the following a priori estimates hold

! Loy, lal
<—|F /+f(1 —)G ./
loll < & 1Flw + 5 (1+ 77 )Gl
1, lal lal ¢, , lal
< (1 )F ' <1 )G z
[ul 5( g Nl + 2 (1+ 77 )1Gle

Moreover, 1), ii), and iii) are also necessary conditions for the well-posedness of (3.17).
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(3.15)

(3.16)

(3.17)

(3.18)



We stress here that (3.18) is equivalent to the following global inf-sup condition for (3.17):

sup a(C,7) + b(r,w) + b({,v)

(T,0)eHXQ H(T7U>HHXQ
(T,0)%0

> &) w)luxg  V(Cw)eHxQ, (3.19)

where & > 0 is a constant depending only on «, /3, and |a| (as it follows from (3.18)).

In what follows we prove first that the formulations arising from (3.6) and (3.8) after dropping
the perturbations C, and 5’2, satisfy the hypotheses of Theorem 3.2. Secondly, we show that the full
problems (3.6) and (3.8) satisfy the hypotheses of Theorem 3.1. We begin with the stability properties
of the bilinear forms and functionals involved. Indeed, given ¢ € O and w € L4(Q), we employ (2.2)
and Holder’s inequality to deduce that

lag(t,s)| < p2ltfoqsfoe, b(s, o) < [sloql oldiv,s.0;
1B, V)| < [(s,T)n (v, w)]o, [Cw(v,s)] < [wloga [v]oaalslog, (3.20)
1Gs(V)| < [loaelgloqlvie,
for all t = (t,o),S= (s, 7)€ H, forall V= (v,w)e Q, and
6(C.€)| < r2lCloel€lon.  [BE P) < I€log lpldivys.-
IBE ) < [l lvlose,  1Cw,)] < [Wloae [¥los0 €loe, (3.21)

~ =

IF@)I < Cpleplyar, 1€y, 1G] < |f

for all ¢ = <, p), £ = (&,m) € H, for all ¢ € Q. Note here that the constant Cp in the boundedness
of F' is given by the norm of a suitable continuous extension Ep : HY/2(I'p) — HY2(I') times Cyy3 (cf.
(1.3)). In turn, we know from [21, Lemma 3.4] and [12, Lemma 3.1] that there exist positive constant
£ and B, such that the bilinear forms B and B satisfy continuous inf-sup conditions in ‘H x Q and
H x @, respectively, that is

0,4/3.0 [¥]o.a:0,

B(,¥) ) B}
sup ————— = B|v VveQ, 3.22
R TEE TR (3:22)
and - .
B(E, N .
sup (§ ¥) > B Yo YYeQ. (3.23)
geno 1€ly

Now, let V be the kernel of B, that is
Vie {(sm)eH: B((s7) (v,w) =0 V(v,w)eQf,
which, according to the definition of B (cf. (3.4)), can be characterized as
V = L%(9Q) x W,

with
Vo = {T € Ho(divy3;Q): div(r) =0 and 7= 7' in Q}

Since the formulation arising from (3.6) after dropping C, has a saddle-point structure, we proceed
next to verify that, given ¢ € Q, the bilinear form A, satisfies the assumptions (3.15) and (3.16)
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required by Theorem 3.2. However, bearing in mind that Ay itself exhibits the same structure in
terms of the bilinear forms a, and b (see (3.3)), it suffices to prove, according to the equivalence
between (3.18) and (3.19), that as and b satisfy the assumptions of Theorem 3.2 on V := L2_(Q) x V.
We first observe, thanks to (2.2), that there holds

as(s.s) > arlslBg  VseLZ(Q), (3.24)

with a1 = g1, which, noting that the null space of by is certainly a subspace of L.2_(£2), easily implies
that a4 satisfies assumptions i) and ii) of Theorem 3.2. In turn, we know from [20, Lemma 3.3] that
there exists a positive constant 81 such that

b(s, 7)
0,0

sup

> Bi|Tldivys0 YT EW, (3.25)
sel2, (2)\{0} Is|

which proves that b satisfies assumption iii) of Theorem 3.2. In this way, having shown that ay and b
satisfy the hypotheses of Theorem 3.2 on the product space V := L2_(Q2) x Vg, we conclude, because
of the equivalence between (3.18) and (3.19), that the bilinear form Ay satisfies the inf-sup condition
(3.15) (cf. hypothesis i) of Theorem 3.2), that is

Ayt 8
sup 4(t,8)

_ > altly  Vtel2 (Q) x )y, (3.26)
serz, (@) xvo\foy  IS]#

with a positive constant o depending only on oy, f1, and pa (since |ag| < p2, as seen from (3.20)).
Moreover, the symmetry of a4 directly implies that A, is symmetric as well, which allows us to deduce

from (3.26) that A, also satisfies (3.16). Furthermore, for A we proceed analogously as for A, so that
we first observe that the kernel V of B (cf. (3.4)) can be characterized as

V= L2(Q) x W,

with N
Vo = {77 e Hy(div; Q) :  div(n) =0 in Q}

Then, similarly as for (3.24), we use again (2.2) to deduce now that

a(€,6) = a1 €l VESLA(Q), (3.27)

with &1 = k1, which implies that a, satisfies assumptions i) and ii) of Theorem 3.2. In addition, given
1 € Vo\{0}, we readily find that

~

g(E? 77) > b(_rla 77)

=

0.0 |—mnloa

sup = [nloo = B1 [nldiv,s.0; (3.28)

ce2)\{o} 1€

with Bl = 1, thus showing that b satisfies assumption iii) of Theorem 3.2. Hence, as for the deduction
of (3.26), we now arrive at

sup o > G|y VEe LA(Q) x Vo, (3.29)
gerz@)xio\fo; 1€l

with a positive constant & depending only on ajq, B1, and ks (since |ag| < k2, as seen from (3.21)),
which along with the symmetry of Ay, proves that Ay satisfies both (3.15) and (3.16).
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We now aim to establish the well-definiteness of operator S, equivalently that (3.6) is well-posed.
To this end, we begin by noticing that, given (z,¢) € L*(Q) x L*(Q), this problem can be rewritten
as: Find (t, 1) = ((t,0), (u,v)) € H x Q, such that

As((8,19), (5, ¥)) + Calu,s) = Go(¥)  V(E¥) = ((5,7), (v,w)) e H x Q, (3.30)
where Ay : (H x Q) x (H x Q) — R is the bilinear form defined by
A¢((E, ), (5,V)) := Ay(t,5) + B(5,4) + B(t,V) Y (t, 1), (5,V)eH x Q. (3.31)

According to the above, we now proceed analogously to the proof of [9, Theorem 3.7] and aim to show
that (3.30) satisfies the hypotheses of Theorem 3.1. Indeed, the boundedness of the bilinear form on
the left hand-side of (3.30) follows straightforwardly from the stability properties provided by (3.20),
which yield |Ag| < max {1, u2}, [Ap| < max{1,ps}, and |Cy| < ||z]o,4;0. In addition, since A,
and B satisfy the inf-sup conditions required by Theorem 3.2, we deduce that there exists a positive
constant ¢, depending on « (cf. (3.26)), 5 (cf. (3.22)), and ps (because of the above established bound
for |Ag|), such that (cf. (3.19))

sip  2EWED) S i W e V(EF) e H x O, (3.32)

Eoemxonor I8 V)luxo

thanks to which, using the boundedness of C,, and performing some algebraic manipulations, we get

As((F, W), (8, V) + Cyp(w,s)

sup = (0 = |z]ou0) |(F,W)[nxe, 3.33
(8.9)=((s,7),(v,w))e(Hx Q)\{0} I8, V)l x o g (3:33)
for all (F, W) = ((r, @), (W, X)) € H x Q. Thus, assuming now that z is chosen such that |z[os0 < 2,
the foregoing inequality yields
As((F, W), (8,V)) + C, (AN,
sup AL V) * CS) S Ve @, (330
(5,9)=((s,7),(v.w))e(Hx Q)\{0} 185 V) 2x 0 2

for all (¥, w) = ((r,0),(w,x)) € H x Q. In addition, as in the proof of [9, Theorem 3.7], estimate
(3.34) and the symmetry of Ay readily imply that there holds

sup Ag((¥, W), (8,V)) + Cy(w,s) > 0, (3.35)
(F,w)=((r,@),(w,x))e(Hx Q)
for all (S,¥V) = ((s,7), (v,w)) € (H x Q)\{0}.
Summarizing, we have basically demonstrated the following result.
Lemma 3.3. Given (z,¢) € L4(Q) x L*(Q) such that |z]o 40 < g, problem (3.30) (equivalently (3.6))

has a unique solution (t,d) = ((t,0),(n,v)) € H x Q, and hence one can define S(z,¢) = (t,u).
Moreover, there exists a positive constant Cg, depending only on 9, such that

IS(2, 9) Lz, (@) xpae) < [(E Dlrxo <

Proof. Thanks to the previous discussion, the unique solvability of (3.30) (equivalently (3.6)) follows
from a straightforward application of Theorem 3.1. In turn, (3.14) and the boundedness of Gy (cf.
(3.20)) imply the a priori estimate

(3.36)

2
I(t, @)l + 1w, Ml < 5

which yields (3.36) with Cg := 2 and concludes the proof. O
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Now we turn to prove the well-definiteness of operator T, equivalently that (3.8) is well-posed.
Analogously to the previous analysis, given (z,$) € L4(Q) x L4(2), we rewrite this problem as: Find
(&, 0) = ((¢,p), ) € H x O, such that

Ap((C ), (E9) + Colp. &) = FE) + G) V(€)= ((&,m),9) e H x O, (3.37)

~ ~

where .%qu : (7—7 X @) x (H x Q) — R is the bilinear form defined by

A((C,0), (€0)) == Ag(C€) + BEw) + B W) V(C o) (Ev)eHxQ, (3.38)
and proceed next to prove that (3.37) satisfies the hypotheses of Theorem 3.1. Indeed, the boundedness
of the left hand-side of (3.37) follows from (3.21) with |Ag| < max {1,k2} and |Cy| < |

turn, having ,Z¢ and B satisfied the inf-sup conditions required by Theorem 3.2 (cf. (3.29), (3.23)),
and noting from (3.21) agam that \|A¢H < max {1, ko }, we deduce the existence of a positive constant

19 depending only on &, B, and ko, such that

sup GO EV) 5 Fico)l.s VGO x . (3.39)

Ev—(emwedixono 1€ iya

Then, similarly as for the derivation of (3.34) and (3.35), it follows from (3.39) and the boundedness
of C,, that, under the assumption ||z]o4.0 < Y. there hold

sup = =
() =((&:m) )< (Fix D)\ {0} 1€ )50

and

sup  Ag((S,0), (£,0)) + Cu(6,€) > 0 V(€ ) = ((&m),¥) € (H x O)\{0},
(€0)e(HxQ)

where the latter makes use certainly of the symmetry of .Z¢.

We are thus in position to establish the following result.

Lemma 3.4. Given (z,¢) € L*(Q) x LYQ) such that |z]os0 < g, problem (3.37) (equivalently

(3.8)) has a unique solution (C, ) = ((¢,p),¢) € H x O, and hence one can define T(z,¢) = (¢, ¥).
Moreover, there ezists a positive constant Cr, depending only on ¢ and Cp (cf. (3.21)), such that

7 } . (3.41)

IT(z, ¢) 2@ xLs) < & 0)laes < CT{H@DHW,FD

Proof. Similarly as for the proof of Lemma 3.3, the unique solvability of (3.37) (equivalently (3.8))
follows from a direct application of Theorem 3.1. Then, (3.14) along with the estimates for /'] and
|G| (cf. (3.21)) give

2
1€ Pl + Ieloan < ={Colepliar, + 1Floasa}
which yields (3.41) with Cr := % max {Cp, 1} and ends the proof. O

Having verified that S and T are well-defined, it follows that J is as well. More precisely, we have
the following result.
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272
J(z,0) = (J1(z,¢),I2(z, ¢)) € L*(Q) x L(Q). Moreover, there exist positive constants Cy 1 and Cyz,
depending only on Cs and Cr, such that

Lemma 3.5. For each (z,¢) € L*(Q) x L*(Q) such that ||z]os0 < min{s '9}, one can define

[J1(2, )

040 < Cy1

glog {leplizry + 1floasal (3.42)

and
922, 0) o < Caz{lenlior, + Ifloassal- (3.43)

Proof. Given (z,¢) as indicated, the well-definiteness of J(z, ¢) follows straightforwardly from (3.9),
the assumption on ||z[|o,4;0, and Lemmas 3.3 and 3.4. Moreover, employing (3.36) and (3.41), we find

that
1J1(2, ®) o102 = [S2(z, T2(z, ¢))|o,a.2 < Cs |gllo.e [T2(z; ¢)]oa0
< Cslglog Cr {lepliry, + I floasal
and
92z @)loae = ITe(z, @)oae < Or{lenlyar, + Iflousel -
which yields (3.42) and (3.43) with C3; := Cs Ct and Cj := Cr, respectively. O

3.4 Existence and uniqueness of solution

We now address the unique solvability of our coupled problem (3.1)—(3.2) by proving, via the classical
Banach theorem, that the equivalent fixed-point equation (3.10) admits a unique solution. To this
end, from now on we choose any A > 0 such that

9 9
A< min<{ —, =, 44
min { 57 } (3.44)
and introduce the closed cylinder
W()\) = {(z,¢) eLYQ) x LYQ) . zlosn < )\}. (3.45)

The following lemma establishes a condition under which J maps W () into itself.

Lemma 3.6. Assume that the data are sufficiently small so that

C1.1gloq {H‘PDHl/Q,FD + | f| 0,4/3,9} < A (3.46)

Then, there holds J(W (X)) < W(A).

Proof. The result is a direct consequence of (3.45) and estimate (3.42). O

Next, we aim to show that the operators S and T, and hence J, are Lipschitz continuous. For
this purpose, we require additional regularity hypotheses on the solutions to the problems defining
these operators. Specifically, from now on we assume that the data are a bit more regular than usual,
namely

ep e H/2H(T) and fe WS3(Q), for some € € [n/4,1),
and that there hold the following:
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(RH.1) for each (z,¢) € W()), the solution ((t,o),(u,v)) € H x Q of problem (3.6) satisfies t €
LZ.(Q) n HY(Q), o € Ho(divyz; Q) nH(Q), ue W(Q), v € L2, (Q) »n H(Q), and there exists a
positive constant C¢, such that

It

0.9 ¢

e tllofea + [ulean + [v]eo < Celg l0,4:2 5 (3.47)

(RH.2) for each (z,¢) € W()), the solution ((¢, p),¢) € H x Q of problem (3.8) satisfies ¢ € HY(9),
p € Hy(divy3; Q) n HY(Q), o € W(Q), and there exists a positive constant Ce, such that

[€leg + [ples + Ielese < Ce(lepliarers + 1fleasa) - (3.48)

We stress here that for the specified range of €, the following continuous embeddings hold:
HE(Q) < L(Q) and HE(Q) < LT(Q), (3.49)
with continuous injection operators i, : HE () — L (Q) and i, : H(Q) — L (Q), where €* = - 2_n26

(see e.g. [25, Theorem 1.3.4]). In turn, noting that n/e < 4, we let is, : L*(Q) — L™¢(Q) be the
respective continuous injection operator.

The following result establishes the Lipschitz continuity of S.

Lemma 3.7. There exists a positive constant Ls, depending only on 9, L, |isc|, i, Cs, and C¢,

such that
1S(z, ¢) — S(z, 8) |12 () xL4(0)

(3.50)
00 {18loan 1z~ zloan + (Ilosa +1) ¢ o

< Ls|g
for all (z,¢), (z,¢) € W(N).

0,4;Q} )

Proof. Given (z, ), (z,¢) € W(\), we let (t,u) = S(z,¢) and (t,u) = S(z,¢), where (t, 1) =

((t,0),(1,7)) € H x Q and (t,d) = ((t,0), (u, v)) € H x Q are the unique solutions, according to
Lemma 3.3, of the respective problem (3.6), or equivalently (3.30), that is

Ag((t, 1), (5,V)) + Cyz(u,s) = Gy(V) V(S,V)=((s,7),(v,w)) e H x Q, and

. (3.51)
AQ((LQ% (8, V) + C&(Ea s) = GQ(‘7> V(8,¥)=((s,7),(v,w)) eH x Q.
Next, in order to bound [S(z,¢) — S(z, ¢)| = [(t,u) — (t,u)|, we apply the inf-sup condition (3.34)
with (z,¢) to (¥,w) = (t,d) — (t,d), thus yielding
A A¢((E—£,ﬁ—ﬁ),(§,\_f’)) + C&(u_g7s)
5 It —t,d—d)uxe < sup = —— : (3.52)
2 (5:9)e(#x Q)\{0} 18, 9)7xe

Now, subtracting the equations from (3.51) and adding/subtracting suitable terms, we find that
Ag((E = 8,8 — d), (5,¥)) + Cu(u—u,s) = Gy (V) = Cog(u,8) — (ag(t,s) —ag(t,s)),  (3.53)

for all (S,v) = ((s,7),(v,w)) € H x Q. For the last term in the right-hand side of (3.53) we notice
that the Lipschitz-continuity of p (cf. (2.3)) and the Holder inequality imply that

|ag(t,s) — ag(t,s)| := 0,22 [tllo,2i7: [sllo,c2 » (3.54)

L(uw) — (@)t < Lulé—o
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where [, " € (1,4o0) are conjugate to each other. In particular, choosing I’ such that 2I" = €*,

we get 21 = n/e, and thus L*() is continuously embedded into L2(Q) = L™¢(Q). In this way, using
additionally the continuity of i : H(Q2) — Le* (Q) along with the regularity estimate (3.47), inequality
(3.54) implies

lag(t,s) — ap(t,s)| < Lu]¢ = dllo,2;0 [tlo.ex0[slon
< Ly |igel |6 — @lo.4;0 [It]o,ex;0 [s]o,0 (3.55)
< Ly el ¢ = @loae liel [t]eo Isfoe
< Ly lige] [iel Ce | plloa2 [glo.e ¢ — loaa Isfoq -

On the other hand, for the first and second terms on the right-hand side of (3.53), we first apply the
boundedness of G and Cy (cf. (3.20)), and then the bound for |ul| = |[S2(z, ¢)| provided by (3.36),
to deduce that

Go—o (V) < [gloglld — ¢l ¥ie, (3.56)
and
‘Cz—z(u, s)| < ||u||0,4;Q |z — ZHOA;Q Is 0,2
(3.57)
< Cs |04 [glo. 1z — zllo,a;0 [s]o, -

In this way, employing (3.55), (3.56), and (3.57) to bound (3.53), and then replacing the resulting
estimate back into (3.52), we easily arrive at (3.50) with a positive constant Lg as indicated. O

Now we turn to analyze the Lipschitz continuity of T. This is addressed in the following lemma.

|’ HieH; CT’ and 66}

Lemma 3.8. There exists a positive constant Lt, depending only on 5, L, |
such that

14 ¢

IT(z,¢) — T(z, §) L2 (@)x1a(0) < L {(HsODHl/z,rD + [/ loasz0) |2 — 2o

(3.58)
+ (Ieplhjeers + 1fleasa) 16— dloso,

for all (z,¢),(z,¢) € W(N).

Proof. We proceed similarly to the proof of Lemma 3.7. Indeed, given (z, ¢), (z,$) € W()), we first

let (C’QO) = T(Za¢) and (QE) = T(Za?)a where (57 90) = ((Cap)v@) € 7_7 X é and (é:f) = ((Q’B)’f) €

H x O are the unique solutions, as guaranteed by Lemma 3.4, of the respective problem (3.7), or
equivalently (3.37), that is

A5((C.0), (€0)) + Culp, €) = F(€) + G(v)

~ — é’(

L N N (3.59)
s((€,9), (&) + Calp, &) = F(§) +

v(éw):((&n)ﬂb)e#X@, and
v -

) (&) = ((€mn).v)eH x Q.

We then apply the inf-sup condition (3.40) with (z, ¢) to (<, 60) = (5, ) — (§, ), thus obtaining

—

- Ag(E=C o= ). (E9) + Cal — 0. €)
1€ Co=@)ls < s . (360
| 2¥-Z HH Q (g”,zp)e(s;f@)\{o} |\(§¢)Hﬁxé ( )

| B

In turn, the numerator within the supremum arises after subtracting the equations from (3.59), namely

~

Ap(C=Co— ), (E,1) + Colep — 0, &) = — Cay (0, €) — (@(C, &) — Ty (C, €)), (3.61)
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for all (€,¢) = ((£,m),¢) € H x Q, so that, using the boundedness of Cy(-,-) (cf. (3.21)), the
Lipschitz-continuity of « (cf. (2.3)), and Hélder’s inequality, it follows from (3.60) and (3.61) that

0,4;92 HZ —Z

N |

IC =S o —Dlaxs < Iy 0,40 + Li | — dlozsa (€
= |T2(z, ¢)| b — Plo2i:0 |€]o,20:0 5

where [, I € (1, 00) are conjugate to each other. Then, similarly to the proof of Lemma 3.7, we choose I’
such that 2I" = €*, which yields 2¢ = n/e. Thus, employing now the bound for |T2(z, ¢)||o,4;0 provided
by (3.41), the continuous injections iy and i., and the regularity estimate (3.48), we conclude from
(3.62) the desired result. We omit further details. O

0,2l;92 » (362)

0,4;Q HZ - Z”OA;Q + Ly

Having derived the Lipschitz continuity of S and T we now establish the same property for the
fixed point operator J in the closed cylinder W () (cf. (3.45)).

Lemma 3.9. There exists a positive constant L3, depending only on Ct (cf. (3.41)), Ls (cf. (3.50)),
and Lt (cf. (3.58)), such that, denoting

D(g, ¢p, f) = lglo (lepljor, + [ floama+1) +1,

there holds

13(z, ¢) — I(2, §)llLs)x14@) < L3D(8,¢D, [f) {(H@D\h/g,r[, + [ flloasse) |z — zosn 5.63)
+ (Ieplyzeers + 1fleassa) 16— dlosol |
for all (z,¢),(z,9) € W(X). Moreover, letting C. be the positive constant such that
lenlizr, + 1floase < Ce(leplijprery + 1fleasa) (3.64)
the inequality (3.63) simplifies to
13(z, ¢) — I(2, §)llL1()x14@)
~ (3.65)
< L3D(g, ¢, f) (leplijorery + 1fleasn) (2, ¢0) — (2, Q)HL“(Q)XL‘l(Q)} 7
for all (z,0) , (z,6) € W()), where Ly = L3 max {C,1}.
Proof. Given (z,¢), (z,¢) € W(X), we first observe from the definition of J (cf. (3.9)) that
[9(2, ¢) = J(2, d)[La(o)x1a0) = [S2(2, T2(2,9)) — Sa2(z, T2(z, ¢)) 040 (3.66)

+ |Ta(z, ¢) — T2(z, ¢)]oa:02 -

Next, applying the Lipschitz continuity of S (cf. (3.50)) to the first term on the right hand-side of
(3.66), and adding the resulting expression to the second one, we obtain

13(z, ¢) — I(2, d)llLs)x14@) < Lslgloq|Ta(z, ¢)
+ {ﬁs lgloe (IT2(z, ¢)|oa0 +1) + 1} IT2(z, #) — Ta(z, ¢)|Ls)xLA() -

Then, bounding || T2(z, #)[o,4,0 and [Ta(z, ¢) — T2(z, )| L1 (0)x1s() according, respectively, to (3.41)
and the Lipschitz continuity of T (cf. (3.58)), and performing suitable algebraic arrangements, we
arrive at the required inequality (3.63) with £y and D(g, ¢p, f) as indicated. Finally, it is easy to see
that (3.65) follows from (3.63) and (3.64). O

’0,4;9 |z -z 0,4;Q
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We are now in position to state the main result of this section.

Theorem 3.10. Assume that the data satisfy (3.46) and

EJ D(ga ¥D, f) (HSDDHI/Q“FE,FD + Hf”e,4/3;Q) < L (367)

Then, J has a unique fized point (u,¢) € W(A). Equivalently, the coupled problem (3.1)~(3.2) has a
unique solution ((t,0), (u,7v)) € H x Q and ((¢,p),p) € H x Q. Moreover, there hold the following a
priori estimates

[(t,0)|% + [(0,7)]o < CsCr g O,Q{“@DHl/z,rD +f 0,4/3,9} , and

(3.68)
16, 2)l; + 9l < Cr{lenliar, + I loasa}

Proof. We begin by recalling from Lemma 3.6 that assumption (3.46) ensures that J maps W () into
itself. Then, using the Lipschitz continuity of J established in (3.65), along with assumption (3.67)
and a straightforward application of the classical Banach theorem, we deduce that the fixed-point
equation (3.10) admits a unique solution (u,¢) € W(A). Consequently, by the equivalence between
the coupled system (3.1)—(3.2) and (3.10), we conclude the well-posedness of the former. Finally, the
second estimate in (3.68) follows directly from (3.41), whereas the first one is consequence of (3.36)
and the second one. O

4 The Galerkin scheme

In this section, we introduce the Galerkin discretization of the fully mixed formulation (3.1)—(3.2),
and analyze its solvability by employing the discrete analogue of the fixed-point strategy introduced in
Section 3.2, along with the discrete versions of Theorems 3.2 and 3.1 In what follows, we first describe
the discrete scheme on generic finite-dimensional spaces and state the assumptions that guarantee its
well-posedness. Later on, in Sections 5 and 6 we provide the associated a priori error analysis and
exhibit concrete choices of finite element subspaces that satisfy those assumptions.

4.1 Preliminaries

We let {Tx}r=0 be a sequence of partitions of Q into triangles T' (when n = 2) or tetrahedra T (when
n = 3) with diameter denoted by hr, and set, as usual, h := max {hT T e 7}L} Then, we consider
generic finite-dimensional subspaces

Lis © LE(Q), HY € H(divys;Q), LY € LYQ), LY., S Lie(®),

N (4.1)
LS < L2(Q), HP < H(divy3:Q), 9 < LYQ),

and assume first that

(H.0) HY contains the tensors with constant coeflicients.

In particular, it follows from (H.0) that I € HY for all h, which implies the decomposition
g = Z,O ® RI,
where

ho = {’T e HY : fﬂ tr(r) = O} S Ho(divys; ).
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Then, defining the global spaces

Hh = ]L’;z,tr X Hg}o, Qh = LE X L7

h,skew ’

and Hy = Li X HQN,

HZ,N = H}, n Hy(divy3;Q),

the Galerkin scheme associated with (3.1)-(3.2) reads: Find (th, tp) = ((th,on), (Wp,yn)) € Hp x Qp
and (Cn, on) = ((Cn, Pn), on) € Hp x Qp, such that

Ay, (tn,8n) + B(8, 1p) + Cu, (up,s) =0 V Sy = (sp, Th) € Hp,, (42)
B(ty,, V1) =Gy, (V) YV = (vi,wp) € Qp,
and - L. - . N - . N
‘iw;:(Chafh) + B(&n, n) + Cu, (on,&n) = Jj(ﬁh) V&, = (~€h,"7h) € Hn, (43)
B(Chs ¥n) =G@Wn)  ViYpe Q.

4.2 The discrete fixed-point strategy

Analogously to the analysis in_Section 3.2, we now introduce an equivalent fixed-point equation.
Indeed, we first let Sy, : Lj! x Q) — L'ﬂ,tr x L}! be the discrete analogue of S (cf. (3.5)), which is
defined as

Sh(zn, 1) = (S14(2h, 1), Son(Zn, @1)) = (tn,un) Y (2, ép) € LY x Oy, (4.4)

where t;, € Lgtr and uy, € L} are the first and third components, respectively, of the unique solution

(to be confirmed below) of the linearized problem arisig from (4.2) after replacing A, , Cy,, and G,

by Ag,, Cy,, and G, , respectively, that is: Find (tp,up) = ((tn, o), (up,vn)) € Hp x Qp, such that
A¢>h (€h7 §h) + B(gh, ﬁh) + CZh (uh, Sh) =0 Vgh = (Sh, Th) [S Hh , (4 5)
B(th, V) = Gy, (¥n) YV = (Vi,wpn) € Qp.

Similarly, we let T}, : Ly} x 9y — L} x O, be the discrete analogue of T (cf. (3.7)), which is given by

Th(zn, ¢n) = (Tin(zn, 0n)s Ton(zn, dn)) = (Chvon) Y (zn,0n) € LY x Oy, (4.6)

where ¢, € L}CL and ¢y € @h are the first and third components, respectively, of the unique solution
(to be confirmed below) of the linearized problem arising from (4.3) when replacing fT% and é'uh by
Ay, and Cy, , respectively, that is: Find (5h,g0h) = ((Ch, Pn), pn) € Hp x Qp, such that

Ay, (Ch &) + B(€nyon) + Cop (0n &) = F(&) V&, = (€n,mm) € Ha,
B(Ch, on) = G(n)  Yine Q.

Then we let Jj, : L} x QO — L} x O, be the discrete analogue of J (cf. (3.9)), which is defined by

(4.7)

In(zh, &) = (S2.n(2n, Ton(2h, 81)), Ton(2h, d1)) Y (zn, é1n) € L x O,

and observe that solving (4.2)—(4.3) is equivalent to seeking a fixed-point of Jp,, that is: Find (u, ¢p) €
L} x Q}, such that

Jn(un, on) = (un, on) - (4.8)
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4.3 Well-definiteness of S;, T; and J,

In this section we employ the discrete counterparts of the Babuska-Brezzi theory (cf. [18, Proposition
2.42]) and the classical Banach-Nec¢as-Babuska theorem (cf. [18, Theorem 2.22]) to show that S;, and
T}, and hence T}, are well-defined. To this end, we introduce suitable assumptions on the discrete
subspaces that ensure the well-posedness of the linear problems (4.5) and (4.7), which are equivalent
to the well-posedness of Sy, and T}, respectively. Our approach consists of adapting to the discrete
setting the arguments used in the analysis of the continuous problem, particularly those in the proofs
of Lemmas 3.3 and 3.4.

We begin by stating some assumptions needed to prove later on that (4.5) is well-posed:
(H.1) div(H7) = L},
(H.2) there exists a positive constant (4, independent of h, such that
B(8h, Vi . -
sup ¥ = Balvele  VVheEQn. (4.9)
snern0 ISl

Then, denoting by Vp, the discrete kernel of B, that is
V), = {(Sh,Th) € Hno: B((sh,Th), (Vh,wn)) =0 VY (vp,wp) € Qh},
and using (H.1), we readily find that
Vi = Lpgr X Vho,

with
Vho = {T eHy,: div(m) =0 in Q and f Th:wp =0 VYwye H"Zskew}‘ (4.10)
Q b
It follows, thanks to (2.2), that for any ¢, € Oj there holds
ag, (sh,sn) = aralsnlia  Vsh€ L, (4.11)
with a1 q = o1 = p1, which proves that ag, satisfies the discrete inf-sup condition required by

[18, Proposition 2.42, eq. (2.35)]. Next, in order to show that b satisfies the accompanying inf-sup
condition given by [18, Proposition 2.42, eq. (2.36)], which corresponds to the discrete counterpart of
(3.25), we assume that

(H3) Vio)® = {rd: mieVio} < L,

In this way, employing (H.3) and [14, Lemma 3.1], and proceeding analogously to [20, Lemma 3.3],
we deduce that the bilinear form b satisfies the aforementioned condition, namely

b(Sh, Th)

sup ’0 Q

sh€Lp - \{0} [sn

> Bralmhldivys.0 V1 € Vho, (4.12)

with a positive constant 3 4, independent of h. Thus, having a4, and b satisfied the hypotheses of

[18, Proposition 2.42], we deduce, thanks to the discrete version of the equivalence between (3.18)

and (3.19), that there exists a positive constant a4, depending only on oj4, f1,4, and pp (since

|ag, | < p2), and hence independent of h, such that the discrete analogue of (3.26) holds, that is
A¢>h (Eh’ gh)

sup —S 5 = Qq HEhHH VEh € sztr X Vho- (4.13)
(8h:Th)ELR tr X Vh,0\{0} 82
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As previously announced, we now address the well-posedness of (4.5) by adopting the discrete
version of the analysis yielding Lemma 3.3. To this end, we first observe that, given (z,, ¢5,) € L}! x Qp,
the aforementioned problem can be reformulated as: Find (tp,dy) = ((ty, on), (Up,vn)) € Hp X O,
such that

A¢h((gh’ﬁh)v(§hvvh)) + Czh(uhvsh) = Gd’h(‘_;h)? (4'14)

for all (8p,Vp) = ((Sh,Th), (Vh,wh)) € Hp x Qp, where Ay, is the bilinear form defined in (3.31),
so that we now aim to show that (4.14) satisfies the hypotheses of [18, Theorem 2.22]. Indeed, the
boundedness of the bilinear form and functional involved was already established in the continuous
analysis (cf. Section 3.3). Next, since Ay, and B satisfy the hypotheses of [18, Proposition 2.42], we
deduce the existence of a positive constant 94, depending only on aq4 (cf. (4.13)), Sq (cf. (4.9)), and
W2, such that

sup A¢h ((Fh7 V_‘;h)7 (gh, Vh))
@non)enx ooy (8 Va)laxe

> Yq H(I_"h, Vvh)”?—[x@ v (Fh, V_S}h) € Hyp x Qp, . (4.15)

Then, proceeding analogously as for the derivation of (3.32) and (3.33), which means employing (4.15)
and the boundedness of Cy, (cf. (3.20), we find that for each zj; € L}! such that |z,[o4;0 < %d, there
holds

Ag, ((Fn, W), (8h, Vi) + Cyy, (Wh, s V4 o
sup o, (( )E 2 ) 2 ) > (@, W) nxa (4.16)
GhoT i) =51 7h) (Vi) I (8, Vi)l #x o 2
€(Hp xQpn)\{0}

for all (¥, Wy) = ((rh, 0n), (Wh, Xn)) € Hp X Qp, which constitutes the discrete analogue of (3.34).
We are now in position to establish the well-definedness of Sy,.

Lemma 4.1. Given (zn,¢n) € L} x O, such that |lznloa0 < %d,

(4.5)), has a unique solution (ty,1s) = ((tn,on), (Wn,vn)) € Hp x Qu, and hence one can define
Sk(zh, ¢n) = (tn,up). Moreover, there exists a positive constant Csq, depending only on V4, and
hence independent of h, such that

problem (4.14), (equivalently

b

ISk (2hs o) Iz (@) xra) < |(Ens Tn)laxe < Cs.alénlosa lgloo- (4.17)

Proof. The unique solvability of (4.14) readily follows from (4.16) and a straightforward application
of [18, Theorem 2.22]. In turn, the corresponding a priori estimate provided in this later result, along
with the boundedness of G, (cf. (3.20)), imply

- 2
[Gn: Tn)lrexe < 5= onlosolgloo,

which yields (4.17) with Cg q := 19% and ends the proof. O

We continue with some hypotheses that are required to show that (4.7) is well-posed:
(H1) div(H?) < Oy,

(fIVZ) there exists a positive constant Bd, independent of h, such that

B(& ~ N
sup Bl&n,vn) > Ba |vnlloae Vo € Qp. (4.18)

Eciino  €nly
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It is easily seen from (I/{\i) that the discrete kernel of B , denoted by l7h, reduces to

Vi = Li X 17h,o,

with
Vo = {nheHgN: div(m) =0 in Q} (4.19)
Thus, according to (3.27), we know that for any ¢, € O, there holds
Ao, (&ns&n) = Qralllnlia  Véne LS,
with &1 4 = &1 = k1, which shows that @, satisfies the discrete inf-sup condition required by [18,

Proposition 2.42, eq. (2.35)]. Next, we introduce the hypothesis
(H.3) Vo < LS,
thanks to which, given ny, € V3, 0\{0}, we can bound by below with &, = —nj, to obtain

~

b(&n, 1) _ b(=mm, mm)
0,2 | = mm 0,2

0,0 = Bid

sup
encriygoy €

= lnn \nh||diV4/3,Q )

with 51,d = 1, thus proving that b satisfies [18, Proposition 2.42, eq. (2.36)]. Consequently, having
a4, and b satisfied the hypotheses of [18, Proposition 2.42] on )7h,0, we conclude, similarly as for the

derivation of (4.13), the existence of a positive constant &4, depending only on & q, 51,4, and k2, and
hence independent of h, such that there holds the discrete counterpart of (3.29), that is

I E
sup on (Chs&n)

= > dq|Chly  VCheL§ x Vg (4.20)
EcLsxno\0y  €nly

We are ready now to establish the well-posedness of (4.7), for which, analogously as for that
of (4.5), we adopt the discrete version of the analysis yielding Lemma 3.4. In fact, we begin by
noticing that, given (zy,¢p) € Ljl x Qp, problem (4.7) can be reformulated, equivalently, as: Find

(Chs#n) = ((Chr Pn),on) € Hp, x Qp such that
Ag, (G o), (Ensvn)) + Coy (0n: €n) = F(€h) + G(¢hn) , (4.21)
for all (€,,%n) = ((&n, M), ¥n) € Hp x Op, where -de is the bilinear form defined in (3.38). In this

~

way, having A4, and B satisfied the discrete inf-sup conditions required by [18, Proposition 2.42],

namely (4.20) and (4.18), we deduce the existence of a positive constant 1%, depending only on &g,
B4, and ke, and hence independent of &, such that

sup A, (S, 08), (€n,¥n))
Eone@xonoy 1 vn)lies

> 0a (G 00)lies V(GO0 eHnx On.  (4.22)

Then, similarly as for the derivation of (4.16), we now employ (4.22) and the boundedness of Cy (cf.

(3.21)), to conclude that, for each zj, € L}! such that |z 040 < %d, there holds
JE 6h79h ) €h7¢h +5z ehagh 5 .
ap Lol G o D ¥ COnsbt) o Vay g gy o 29
(€)= (Epmi) ) 1(&ns ¥r)lz .6
€(HnxQr)\{0}

for all (¢p,,0p) € Hy, x @h, which constitutes the discrete counterpart of (3.40).

Consequently, the well-definiteness of T}, is established as follows.
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Lemma 4.2. Given (zp, ¢p) € L} x 9y, such that znlo4a0 < %d, problem (4.21) (equivalently (4.7))
has a unique solution (5h,<ph) = ((ChyPn), ¢n) € Hy, x éh, and hence one can define Ty(zn, o) =
(Ch, ¢n). Moreover, there exists a positive constant Cr 4, depending only on 1% and Cp (cf. (3.21)),
and hence independent of h, such that

oasal.  (424)

Proof. Thanks to (4.23), the unique solvability of (4.21) follows from a direct application of [18,
Theorem 2~.22]. Moreover, the a priori estimate provided by this result, along with the boundedness
of F and G (cf. (3.21)), imply

T (zn, o) lea@xiiy < 1 em)lgng < Cra{lenlyzr, +1f

2
I ol + lenlose < = {Cplenhzr, + Ifloysal

d

which yields (4.24) with Ct q := 5& max {CD, 1} and completes the proof. O
d
The following lemma establishes the well-definiteness of the operator Jj. Being its proof analogous
to that of Lemma 3.5, we omit further details.
94 Ya

Lemma 4.3. For each (zp,¢p) € L} x Oy, such that lznllo.4.0 < min{T,T}, one can define

{h(zh, on) = (J1,h(Zh,<Z>h),J2,h(Zh,¢h)) e L} x @h. Moreover, there exist positive constants 6',171 and
(3,2, depending only on Cs g4 and Ctq, and hence independent of h, such that

1304 oo < o lgloe {lenlinrs + 1 loassal (4.25)

and

|J2,n(Zn, on)

040 < Cra {“<PDH1/2,FD +|f 0,4/379} : (4.26)

4.4 Existence of solution of the Galerkin scheme

In this section, we address the solvability of our discrete coupled system (4.2)—(4.3) by studying the
equivalent fixed-point equation (4.8). In this regard, we stress in advance that, not being the regularity
hypotheses (RH.1) and (RH.2) valid at the discrete level, we are only able to establish existence
of solution by applying the well-known Brouwer fixed-point theorem. Similarly to the analysis of the
fixed-point equation for the continuous problem (cf. Section 3.4), we begin by choosing A\q > 0 such

that N
. JYa Y4

M < Yd Vd 42

d mln{ 5 2} (4.27)

and define the closed cylinder

Wp(Ag) = {(Zh,¢h) eLPx O znlosa < )\d}- (4.28)

The following result establishes the discrete analogue of Lemma 3.6.

Lemma 4.4. Assume that the data are sufficiently small so that

Cy1

gloa {lenlars, + Ifloasa} < Aa. (4.29)

Then, there holds Jy, (Wh()\d)) < Wy(A\g)-
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Proof. The result is a direct consequence of estimate (4.25). t

We now aim to prove that Jj is continuous, for which it suffices to establish the same property for
S and T. In fact, we begin with the former by providing next the discrete analogue of Lemma 3.7.

Lemma 4.5. There exists a positive constant Lg q, depending only on V4, L, and Cs q, and hence
independent of h, such that

ISk (Zn: &) — Sn(Zn: @)) 12, () xL4) < Lsd {Hgllo,a |Pnllo,a0 |20 — 240,450

(4.30)
l0,4:0) [én — QhHoA;Q} ,

+  (Iglo.e + IS1,1(2n: ¢1)

for all (zp, ¢n), (2, ¢,) € Whr(Aa)-

Proof. Given (zp, ¢n), (24, ¢,) € Whr(Aa), we let (tn,up) = Sp(zp, dn) and (t,,1;) = Si(zy, 9, ),
where (ts, Up) = ((tr, on), (un,¥n)) € Hp x Qp and (ty,,4;) = ((th, 04), (4s,7,)) € Hi x Qp, are the
unique solutions, according to Lemma 4.1, of the respective problem (4.14), equivalently (4.5). Next,
applying the inf-sup condition (4.16) with (z, ¢, ) to (Fn, Ws) = (tp, ds) — (tn, Tp), we get

Yyr 2 o~ =
5 (tr — tp, Gn — 0y) [Hx0
_ Ay (6 =y Un — Ty,), (8, V) + Co, (un — uy,81) (4.31)
< sup —— ,
1) =5 (Vo) (8, Vi) l1x 0
€(HnxQn)\{0}

and proceeding analogously to the proof of Lemma 3.7 we find that

Ag, (€ — B, T — Gp), (5, V) + Co, (un —wy,81) = Gy,—p, (Vi) (432)
— Cop—z, (Un,81) — (ag, (th,sn) — ag (tn,sn)), '

for all (Sp, V) = ((Sh, Th), (Vh,wn)) € Hp x Qp. For the last term on the right-hand side of (4.32) we
simply use the Lipschitz-continuity of p (cf. (2.3)), Cauchy-Schwarz’s inequality twice, and the fact
that t;, = Sy n(2zn, ¢n), to obtain

|ag,, (tr,81n) — ag, (tn,sn)| < Lullon — ¢, loase ltnlosa [sn

= L, [S1n(2n, ¢n)

0,25
(4.33)

0,4:2 [¢n — @, lo.a;2 [snllo,q -

In turn, for the first and second terms on the right-hand side of (4.32) we apply again the boundedness
of Gy and Cy (cf. (3.20)), along with the upper bound for |[up|o.4.0 = |S2,4(2h, ¢1n)]0.4.0 provided by
(4.17), to deduce that

Go—0, (Vi) < [glog|dn =&, loaaVrle, (4.34)
and
|Capy—z, (W, 8)] < [unlosa lzn — z4foae [sklo0 (4.35)
< Csa|énlos0 [glos |2 — z4lo40 [shlog -
Therefore, employing (4.33), (4.34), and (4.35) to bound (4.32), and then replacing the resulting
estimate back into (4.31), we arrive at (4.30) with a positive constant Lg 4 as indicated. O

We continue with the discrete analogue of Lemma 3.8, thus yielding the continuity of T},.
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Lemma 4.6. There exists a positive constant Lt q, depending only on 1%, Ly, and Ct q, such that

@) lzn = z4lo.40

ITh(zn, &) = Tn(za, &) lL20)aisie) < Lra{(lenlyar,
+ Tz, 6n) a0},

for all (zp, dn), (24, ;) € Wi(Aa).
Proof. 1t follows similarly to the proof of Lemma 4.5. Indeed, given (zs, ¢p), (zp,@,) € Wh(Aa), we

let T(Zh7¢h) = (Ch7(ph) and T(Zhvgh) = (ghafh)a where (5ha(ph) = ((Ch7ph)7§0h) € ﬁh X éh and

(gh’fh) = ((¢,,p,),¢,) € Hj, x Qp are the unique solutions, as guaranteed by Lemma 4.2, of the
respective problem (4.21), equivalently (4.7). Then, applying the inf-sup condition (4.23) with (z;, Qh)

(4.36)

to (G, 0n) = (Cn, on) — (gh’fh)’ we arrive at the discrete analogue of (3.60), whose numerator within
the respective supremum becomes

ngh((fh — &, on—2,): (Entn) + Co, (0n — @, €n)
= —éz;,,—zh(%,ﬁh) — (g, (Cn, €n) —%}L(Ch,ﬁh))?

for all (€4, ¢n) = ((€n, ), ¥n) € Hp x Op. In turn, employing the boundedness of Cy, (cf. (3.21)) and
the upper bound for |¢p 040 = [ T2 (2h, ¢n) (4.24), we find that

2)l

whereas applying the Lipschitz-continuity of x (cf. (2.3)), Cauchy-Schwarz’s inequality twice, and the
fact that ¢, = T1n(2zn, on), we arrive at

|Gy, (Cns €n) — g, (Cno€n)| < Lo | T1n(2n, én) o

In this way, using (4.38) and (4.39) to bound the expression from (4.37), and then replacing the
resulting estimate in the aforementioned discrete counterpart of (3.60), we are lead to (4.36) with a
positive constant L 4 as announced. O

(4.37)

(4.38)

|Cap—z, (1, €n)| < Cra (lenlhy2r,

(4.39)

)%

Having established Lemmas 4.5 and 4.6, we are now in position to conclude the continuity of Jy,.

Lemma 4.7. There exist positive a positive constant L3 q, depending only on Lsq, L1.4, and Ct g,
and hence independent of h, such that, denoting

1(2h, Top(zh, d8))]oa0 + 1,

Dh(g7zha¢h) = |
there holds

| In(Zn, d1) — In(2h, @, ) La@)xLa@) < L£3,aDn(8, zn, ¢n) {HTl,h(Zh,%)HoA;Q |pn —
+ (H80D||1/2,FD + Hf||0,4/3,9) |z

for all (zn, dn), (24, ¢),) € Wa(Aa).
Proof. Given (zp,¢n), (2, ¢,) € Wp(Aa), the discrete version of (3.66) (cf. proof of Lemma 3.9)

becomes B
1T (2hs 61) — In(2h: 6,) ILs)xra) = IS2,4(2n, T2 n(2h, d1)) — S2.4(2h, T2n(24: 8,))
+ | T2n(2n, ¢n) — T2n(zp, ¢,)

= (4.40)

’04(27
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from which, using (4.30) to estimate its first term on the right-hand side, we get
1In(Zn: @n) — In(zp, @, )Le@)xLa) < Ls.allTen(zn, ¢n)
+ {/Js,d < 1(2zn, To p(zh, ¢h))”o,4;9> + 1} |T2,n(2n, é1) — T2n(2h, ¢,)

Then, bounding | T2 (zn, #n)llo,4;0 and | To,p(2n, ¢n) —Tan (24, @, )]o,4,0 according to (4.24) and (4.36),
respectively, incorporating the resulting estimates in (4.41), and performing minor manipulations, we
obtain (4.40) and conclude the proof. O

(4.41)

The existence of solution of the fixed-point equation (4.8), equivalently of the coupled system
(4.2)—(4.3), is established below as a consequence of Brouwer’s theorem (cf. [13, Theorem 9.9-2]),
whose statement is previously recalled next.

Theorem 4.8 (Brouwer Fixed-Point Theorem). Let V' be a finite-dimensional normed vector space,
and let B <V be a nonempty, convex, compact subset. If F : B — B is a continuous mapping, then
F has at least one fized point in B; that is, there exists x € B such that F(z) = x

The main result of this section is then stated as follows

Theorem 4.9. Assume that the data satisfy assumption (4.29). Then, Jp, has at least one fized
point (up,pn) € Wp(Aa). Equivalently, the Galerkin scheme (4.2)~(4.3) has at least one solution
((th,on), (un,vn)) € Hp x Qp and ((Chy Pr), ¢n) € Hy, x Oy,. Moreover, there hold the following a
priori estimates

[((tn, on), (an, v0))lnxo < CSdCTdIIglloa{l\¢D\ll/grD + Hf“04/39} and

o}

Proof. We recall from Lemma 4.4 that, under assumption (4.29), J; maps Wp(A\q) into itself. Then,
bearing in mind Lemma 4.7, which establishes the continuity of J;, a straightforward application of
Theorem 4.8 implies that the fixed-point equation (4.8) has a solution (up, pp) € Wp(Aq). Thus, the
equivalence between the coupled system (4.2)-(4.3) and (4.8) allows us to conclude the existence of a
solution of (4.2)-(4.3). Finally, analogously as in the proof of Theorem 3.10, the second estimate in
(4.42) follows from (4.24), whereas the first one is consequence of (4.17) and the second one. O

(4.42)

1((€hs ) 1)l < Cra{llenljars

We conclude this section by noting that the absence of a suitable bound for [Ty ;(zp, @)
and [S1 1, (zn, Ton(2n, 1)) uniform-in-h, prevents us from using (4.40) to derive a contraction
estimate. As a result, the Banach fixed-point theorem cannot be applied to guarantee, based on that
inequality, uniqueness of the discrete solution for sufficiently small data.

5 A priori error analysis

Let (t,d) = ((t,0),(u,7)) € H x Q and (, ) = (¢, p),¢) € H x Q be the unique solution of the
coupled system (3.1)-(3.2), with (u,¢) € W(A) solution of (3.10), and, for a given h, let (th, dp) =

((thson), (un,vn)) € Hp x Qp and (Ch,%) ((Chs 1) 1) € Hp x @y be a solution of the Galerkin
scheme (4.2)-(4.3), with (up, ¢n) € Wp(Aq) solution of (4.8). In this section we assume again (RH.1)
and (RH.2) (cf. Section 3.4), and, using similar arguments to those yielding Strang-type estimates
(see, e.g. [18, Lemma 2.27]), we derive the Céa error estimate for the global error

[(€, @) — (En, G@n) | 2x0 + [(C,0) — (Chy ) l7x6 -
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To this end, in what follows, given a subspace X} of an arbitrary Banach space (X, | - ||x), we set
dist(z, Xp,) = inf |z —2p|x .
LBhEXh
We begin the analysis by noticing that the pair of continuous and discrete schemes formed by (3.1)
and (4.2), respectively, can be rewritten as

Ap((£,1), (8,¥)) + Cu(u,s)

= Gy(V) V(§,V)e H xQ, and (5.1)
A@h((th, uh), (§h,\7h)> + Cuh (uh, Sh) = G%(Vh) V( \7 ) S Hh X Qh, (5 2)
where A, and A, are defined according to (3.31). Next, since uj, < A\q < ﬁ—d , there holds the discrete
inf-sup condition (4.16) with z; = uy and ¢y, = ¢p, which, applied to (E ) (T, wWp,), yields
19 5 Fh \i} Sh, ‘_"h
0 G i) — En il < sup (I I) 6.3
Gh¥n) |(8h, Vi) 2x e
€(HnxQn)\{0}
where

R ((Fn, W), (8h, Va)) := Ay, (. dn) — (Fa, W), (8h, Va)) + Cu, (W, — Wi, ) (5.4)
for all (', Wy), (Sh, Vi) € Hp, x Qp. Then, using (5.2), we realize from (5.4) that
R ((Fns Wn), (8h,Vh)) = Gy, (V) = Ag,, ((Fn, Wa), (8h, V1)) — Cuy, (Whssh)
from which, subtracting and adding the continuous solution in the first components of A,, and Cy,,

and then incorporating the evaluation of (5.1) with (Sp, Vp,) into the resulting expression, we get
R ((Fn, Wh), 5h, V1)) = Gy, (Vi) — Ag, (Fn, Wp) — (£, 8), (8, V1)) — Cuy (Wi

(As@ _A@h)((g7 ) (8h, Vi) + Cu—y,(0,81) — Gy (Vi)
Now, the boundedness properties from (3

+

- u,Sh)

(5.5)
) and the fact that |uy| < Aq, allow us to deduce that
h((f:fuﬁ;h) - (€7 ﬁ)? (ghu‘_;h)) + Cuh(wh —u, Sh)| (5 6)
(2, M) [|(6,6) = (Fns W) [2x 0 [ (B Vi) [ x 0

where ¢(u2, \q) is a positive constant depending only on ps and Ay, whereas, using additionally the
bound for ||ulp 4.0 provided by the first row of (3.68), we obtain

Ay

<

’Cu_uh (uv sh)‘ <

+ [ fllosz.0} lw—anfosa Isnloq- (5.7)
In turn, proceeding similarly as for the derivation of (3.55) and (3.56), respectively, and utilizing the
bound for 4; i (3.68) in the first estimate below, we find that
[(Ap = Ap, ) (8, 0), (8, V)| = lag(t,50) — ag, (t,51)]
< La {“SDDH1/2,FD
and

(5.8)
|Gop—p(Va)| <

(5.9)
where, bearing in mind (2.3), the embeddings indicated right after (3.49), the regularity estimate
(3.47), and the second row of (3.68), there holds L4 := L, |[isc| |ic| Cc Ct. Then, employing (5.6)
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(5.7), (5.8), and (5.9) to bound |Ry, ((F4, W4), (S, V1))| from (5.5), replacing the resulting estimate in
(5.3), thus yielding an upper bound of |(ty, ds) — (s, Wa)|l%x 0, and hence of |(t, @) — (ty, @r)|xxo
via the triangle inequality, and taking infimum with respect to (T, Wp) € Hj, x Qp, we arrive at

1€, 8) — ()0 < Cr {dist((f, i), Hy x Q)

+ g

04/3:0) [u = unlos0 (5.10)

’0,4;9} )

where C; is a positive constant depending only on 94, ps2, Aq, Cs, Ct, and L 4.

0,0 (H(PDHl/Q,FD + | f]

+ lgloe (H<PDH1/2,FD + [ flloa/z0 + 1) o — wn

On the other hand, regarding the pair of continuous and discrete schemes formed by (3.2) and
(4.3), we proceed similarly as above and observe first that they can be rewritten, respectively, as

A(C.0), (E) + Culp. &) = F(E) +C(y)  V(Ep)eHx O, and (5.11)
Ay, ((Chypn), (€nyon)) + Cuy, (01, €n) = F(€R) + G(r) Y (€nyton) € Hp x On, (5.12)

where A, and A,, are defined according to (3.38). Now, recalling that |up/loso < Mg < %", there
holds the discrete inf-sup condition (4.23) with z, = uy, and ¢, = @3, so that, similarly as for the
deduction of (5.3), it follows that

~

o ﬁ _,’9 7 _,’
o)~ Gl < s (G0 En)

_Epotn) |‘(€hv¢h)”ﬁ><@
€(HnxQr)\{0}

, (5.13)

where

R (G 01), (Ens 1)) = Agy, (s 01) — (G5 61), (€ 1)) + Cuy, (01 — O, €1)

for all (Sp,, 0p), (é’h, Up) € H;, x Op. Then, using analogue arguments to those employed to derive (5.5),
which means resorting here to (5.11) and (5.12), we are able to show that

R ((Shs 01), (€ntn)) = — A, (61, 08) — (E,0), (€nthn)) — Cua,, (O — ©.€1)
+ (Ap = Ap,) (€. 0), (€nrvn)) + Curuy (90,€)
so that, using the boundedness properties from (3.21) and the fact that HuhH < Ag, we first obtain
A, (G 08) — (€. 0), (Enyn)) + Cuy (01 — 0, €1)]
< k2, M) 1(C,0) = (G 0 e 3 1Es ) L7 5

where ¢(k2,Aq) is a positive constant depending only on kg and Aq. In turn, proceeding as for
the second term on the right-hand side of (3.62), or just analogously to the derivation of (3.55),
which means in this case employing the Lipschitz-continuity of x (cf. (2.3)), Holder’s inequality, the
embeddings indicated right after (3.49), and the regularity estimate (3.48), we can prove that

(A — A,) ((C0), (Ens o) = |(@p — ) (€, €0)]
< Li{lenlijorers + 1]

(5.14)

(5.15)

(5.16)

ezt e —enlosa l€nloq

where £ 3 1= Ly, [[ige] [i] C.. Finally, the stability property of Cy (cf. (3.21)), and the bound for
|#]l0,4:2 provided by the second row of (3.68), imply

0,0 - (5.17)

|Cu—u, (¢,€r)| < Cr {H<PDH1/2,FD + [ ] 0,4/3,9} la —uaplo,s0ll&n
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In this way, employing (5.15), (5.16), and (5.17), to bound |7€h((§_}l,9h),(€h,¢h))| from (5.14), and
then using the resulting estimate along with (5.13) and the triangle inequality, we are lead to

H(C_: SD) - (é;u @h)”ﬁxé < G {dlSt((é—: (p)vﬁh X éh)
+ (lenlyzry +1f 0,4;0 (5.18)

0,4;9} )

where Cy is a positive constant depending only on Jq, K2, Ad, Cr, and L ;.

l0,4/3:0) lu —uy

+ (leplijorery + 1fleasza) o — en

Having established the estimates (5.10) and (5.18), we now add them up and arrive at
|8, 6) = (8, ) l2xa + 1(9) = (Chron) 7
< Cy {dist((i @), Hp, x Qp) + dist((C, ), Hp x Q) (5.19)

0,4;Q) } )

where C3 is a positive constant depending only on Cy, Ca, and C. (cf. (3.64)), and the data-depending
expressions E(g, ¢p, f) and E(¢p, f) are given by

+ (E(g, D, f) + E(¢p, f)) (lu—wploae + | — on

E(g, ¢p.f) = lgloe (lephyzr, + 1floasae +1), and (5.20)
E(ep, f) = leplijzrers + 1 fleassa-
We are now in position to establish the announced Céa error estimate.
Theorem 5.1. In addition to the hypotheses of Theorems 3.10 and 4.9, assume that
¢ {Blg. o0 f) + Ben, )} < 5. (521)
Then, there holds
[(€,6) — (€, dn) 2o + [ 9) — (G, on)lxo
< 203 {dist((q, u), Hp x Qh) + dist((f, gp),’l-Nlh X @h)} (5.22)
Proof. 1t follows straightforwardly from (5.19) and (5.21). O

6 Specific finite element subspaces

Here we give concrete examples of finite element subspaces (cf. (4.1)) satisfying the hypotheses (H.0)—
(H.3) and (If{Vl)—(fI\é), and derive the associated theoretical rates of convergence for the Galerkin
scheme (4.2)-(4.3). To that end, given an integer £ > 0 and a subset S < R", we first recall that
Pr(S) and f’k(S) denote the space of polynomial functions on S of degree < k and = k, respectively.
In addition, with the same notations and definitions from Section 4.1, we define for each K € 7}, the
corresponding local Raviart-Thomas space of order k as

RT(T) := Pu(T) ® Pp(T)x,
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where Py (K) := [Pr(K)]", and x is the generic vector in R™. Then, denoting by Py (K) the tensor
version of Py (K), and recalling that H(div; Q) < H(divys; Q) and L*(Q) = L*(Q), we introduce the
following finite element subspaces:

Liw = {sneLli(Q): sk ePu(K), VEKeThf,
m, € H(div; Q) :  clmy|x € RTR(T) VYeeR, VKeTh},
vie LAQ):  vilx € Pr(K), VKeﬁL},

wpe L2 (Q):  whlk € Pr(K) VKeTh}, (6.1)

=
=
I

E,eL2(Q): EnlxePu(K), VKe n} :

&
=2
12}
'
[0]
=
i
—~ = A A A

npe H(div:Q) :  mulx € RTL(T), VK e n} :

Qn = {¢h€L4(Q)¢ Vil € Pr(K), VKEE}'

It is immediate from the definition of HIff that Py(£2) < HY, and thus assumption (H.0) is satisfied.
Furthermore, from [19, Lemma 3.6] we have the inclusions div(H{) < L} and div(HY) Qp, which
imply that hypotheses (H.1) and (I:I\i) hold. Next, we recall from [14, Lemma 4.3] that the inf-sup
condition (4.9) holds on Hf ; x L}, which confirms (H.2). Similarly, assuming that there exists a
convex domain B such that Q € B and I'y < 0B, it follows from [12, Lemma 4.1] that there holds
the inf-sup condition (4.18), and hence (I/{\/2) is satisfied. Finally, given 75, € V}, 9, we know from the
definition of Vo (cf. (4.10)) that div(7,) = 0 in €2, which implies (cf. proof of [19, Theorem 3.3])
that 7|k € Px(K) for every K € Tj, and hence 77|k € Py(K) for every K € T, as well. It is clear then
that 72 € L} |, thus proving that (H.3) holds. An analogous argument applied to fjh,o (cf. (4.19))

h,tr>

shows that (IT?S) is also attained.

Now we turn to collecting the approximation properties of the finite element subspaces defined in
(6.1), which basically follow from approximation properties of the Raviart—Thomas interpolator and
of the orthogonal projector onto piecewise scalar, vector and tensor polynomials, in the corresponding
LP-norms, along with the estimates arising from the interpolation between Sobolev spaces (see, for
instance, [14, Section 4.2] and [21, Section 4.4.3]). More precisely, for each space defined in (6.1), we
have:

(APZ) there exists a constant C' > 0, independent of h, such that for each s € [0,k + 1], and for each
sel? . (Q) nH*(Q), there holds

h,tr

diSt(SvL‘icz,tr) < OR ”SHS,Q7

(APY7) there exists a constant C' > 0, independent of h, such that for each s € (0, k + 1], and for each
7 € H(divys; Q) 0 H¥(Q) with div(r) e W*3(Q), there holds

dist(r,H7) < Ch*{[7]s0 + div(r) |, a0

(AP}) there exists a constant C' > 0, independent of h, such that for each s € [0, k + 1], and for each
v e W*4(Q), there holds
dist(v,Lj) < Ch¥|v

|s,4;Q ’
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(AP]) there exists a constant C' > 0, independent of h, such that for each s € [0,k + 1], and for each
we L2, () nH5(Q), there holds

skew

dist(w, szskew) < ChP||lw|sq,
(AP%) there exists a constant C' > 0, independent of h, such that for each s € [0,k + 1], and for each
&€ € H*(QY), there holds

dist(¢, L) < Ch* ¢

8,82 5

(APZ) there exists a constant C' > 0, independent of h, such that for each s € [0,k + 1], and for each
n € H(divy3; Q) n H*(Q) with div(n) € W*4/3(Q), there holds

dist(n, HY) < Ch* {00 + |div(n)

s,4/3;Q} y

(APY) there exists a constant C' > 0, independent of h, such that for each s € [0, k + 1], and for each
Y e L4(Q) n W4(Q), there holds

dist(v, Q) < Ch* ||

5,4;82 -

We are now in position to establish the theoretical rates of convergence of the discrete scheme
(4.2)—(4.3) for the specific subspaces defined in (6.1).

Theorem 6.1. Assume the hypotheses of Theorem 5.1 hold, and that there exists a convexr domain
B such that @ € B and T'y < 0B. In addition, let (£,4) = ((t,0),(u,7)) € H x Q and (C,¢) =
((C,p), ) € H x Q be the unique solution of the coupled system (3.1)-(3.2), and for a given h > 0,
let ((tn,on), (up,vn)) € Hp x Qn and ((Cpy Pr), Pr) € H), x Op be a solution of (4.2)—(4.3) for the
specific finite element spaces defined in (6.1). Assume further that that there exists s € (0,k + 1],
such that t € LI (Q) n H*(Q), o € Hy(divys;Q) n H(Q), div(o) € W43(Q), u € W4(Q),
v € L2ou(Q) n H(Q), ¢ € H5(Q), p € Hy(divy3; Q) n H¥(Q), div(p) € W43(Q), and p € W4(Q).
Then, there exists a positive constant C, independent of h, such that

[(€ = th, @ —n)lrxo + 1(C—Cho—on)lieg < Ch*{ltlsa + lolse + [div(o)]ss0
Q

5,4;Q} .

Proof. 1t follows directly from (5.22) and the above approximation properties. O

+ |u

sao + [Vlsa + IClse + lpolso + ldiv(p)|sase + e

7 Numerical Results

We now present some numerical examples to illustrate the performance of the fully mixed finite element
method for the problem (4.2)—(4.3), with the discrete subspaces specified in (6.1). The implementation
of the method has been carried out using the open source finite element library FEniCS. The nonlinear
problem is solved using a Newton-Raphson algorithm with a prescribed tolerance tol =1E-6 and the
zero vector as the initial guess. Furthermore, the null mean value condition for tr(e},) is enforced by
means of a real-valued Lagrange multiplier. Finally, the individual errors associated with the principal
unknowns are denoted and defined, as usual, by

e(t) := [t —tp

0,0, e(o) = [o—0ondiv, 50, e) = [lu—upfosa,

e(€) == I¢ = Crlloa, e(p) := o= prlaivysa, and e(@) = |y —enfosa-
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log(e()/¢(x))
log(h/h')
convergence, where h and h" denote two consecutive mesh sizes with errors e(x) and e’ (x), respectively.

Finally, for each » € {t,o,u,(, p, ¢}, we let r(*) be the experimental rates of

7.1 Example 1: accuracy verification

The convergence of the method is assessed in 2D and 3D. We consider the square (—1,1)? and unit
cube (0,1)3 domains, discretized into meshes that are successively refined. We fix g = (0,1)* (in 2D)
and g = (0,0,1)* (in 3D) together with the viscosity and thermal conductivity u(¢) = exp(—0.25¢),
k(p) = exp(0.25¢) (in 2D) and p(p) = exp(—0.25¢), k(p) = 1 (in 3D). Then, we choose a boundary
temperature ¢p and a forcing term f such that the exact solutions are

(21, 22) 1= ( 229 sin(mzy) sin(mze) (2?2 — 1) + 7sin(mw1) cos(mwz) (22 — 1)(z3 — 1) >
, —2xy sin(ma ) sin(7we) (22 — 1) — 7 sin(ras) cos(ray ) (22 — 1) (22 — 1))

p(ml,JIQ) = JE%—.%%, go(a:l,xz) = ($%—1)(IE%—1),

and
sin(mx1) cos(mxy) cos(mas)
u(xy, e, x3) 1= | —2cos(mzy)sin(rxza) cos(mxs) |,
cos(mxy) cos(mxe) sin(mxs)
p(x1,x9) = sin(mxy)sin(mxs) sin(mxs), o(r1,22) = 1 —sin(mwy) cos(mre) sin(mrs) ,

for the 2D and 3D cases, respectively. In Tables 7.1 and 7.2 we summarize the convergence history
of the fully mixed finite element method (4.2)—(4.3) in 2D and 3D, respectively, using polynomial
degrees k € {O, 1, 2}, from which we realize that, as predicted by Theorem 6.1, the rate of convergence
of order O(h**+1) is attained by all the unknowns. Furthermore, in order to illustrate the accuracy of
the discrete scheme, in Figures 7.1 and 7.2 we display some components of the approximate solution
obtained with the polynomial degree k = 0 in 2D and 3D, respectively.

7.2 Example 2: natural convection in a square cavity

In a second example, we consider natural convection of a fluid in a square cavity with differently
heated walls. This configuration has been extensively investigated under various boundary conditions
(see, e.g., [7, 17, 27]). In particular, following [17], we recall the modified dimensionless formulation
of the problem: find (u,p, ¢) such that

—Pr div(2u(¢)e(u)) + (Vu)lu+Vp—RaPrpog =0 inQ,
div(u) = 0 in Q, (7.1)

—div(k(p)Ve) +u-Vo =0  in Q,
where Pr and Ra denote the Prandtl and Rayleigh numbers, respectively, defined as the ratio of
momentum diffusivity to thermal diffusivity, and the ratio of buoyancy forces to viscous forces mul-

tiplied by the Prandtl number. Accordingly, the cavity is modeled as = (0,1)?, with Pr = 0.5 and
Ra = 4000. Moreover, the viscosity, thermal conductivity, and body force are specified as follows:

n(p) = exp(—¢),  kK(p) = exp(p) and g = (0,1)".

—~

The boundary conditions are prescribed as in [17] (see also [2]), namely,

up(zi,z2) = 0 and ¢p(x) = =(1 —cos(2mz1))(1 —2x2) on T.

N
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ERRORS AND RATES OF CONVERGENCE FOR THE FLUID VARIABLES

ko h e(t) r(t) e(d) x(o) e(u) r(u) e(v) zr(v)
0.500  5.365 _ 7.280 - 1.321 - 6.025 -
0.250 2382 1.171 3.382 1.106 0.626 1.076 1.346  2.162
0 0125 1.150 1.050 1.642 1.041 0315 0.988 0.366 1.876
0.062 0.568 1.016 0.813 1.013 0.158  0.996 0.101  1.850
0.031 0.283 1.005 0.405 1.004 0.079  0.999 0.029 1.791
0.500 1.212 - 1.738 - 0.332 ; 0.815 -
0.250 0.334 1.855 0.453 1.938 0.084 1.976 0.253 1.687
1 0125 0.094 1.824 0.124 1.866 0.021  1.991 0.080 1.651
0.062 0.025 1.915 0.032 1.927 0.0053 1.998 0.0232 1.792
0.031 0.0063 1.970 0.0083 1.973 0.0013 1.999 0.0061 1.924
0.500  0.683 : 0.958 - 0.0641 : 0.6640 -
0.250 0.08697 2.974 0.1284 2.898 0.00774 3.049 0.0837 2.988
2 0.125 0.01085 3.002 0.01642 2.967 0.00095 3.026 0.01041 3.006
0.062 0.00135 3.000 0.00206 2.989 0.000118 3.007 0.00129 3.002

ERRORS AND RATES OF CONVERGENCE FOR THE HEAT VARIABLES

k- h e(¢) r(¢) e(p) r(p) e(p) ()

0.500  0.839 ; 1.244 - 0.201 -

0.250 0.395 1.085 0576  1.111 0.099 1.020

0 0125 0.197 1.000 0289  0.994 0.049 0.997

0.062 0.098 0.999  0.144  0.998 0.024  0.999

0.031  0.049 0.999  0.072  0.999 0.012 0.999

0.500  0.141 ; 0.280 _ 0.020 -

0.250  0.038  1.857  0.075  1.900 0.005 2.000

1 0125 0010 1902 0019  1.947  0.0012  2.012

0.062 0.0026 1.967 0.0049 1.985  0.0003  2.004

0.031  0.0006 1.988  0.0012  1.995  0.00007  2.001

0.500  0.0327 ; 0.06442 _ 0.00149 -

0.250 0.00426 2.940 0.00846 2.928  0.00013  3.432

2 0.125 0.00052 3.014 0.00105 3.004 0.0000152 3.180

0.062 0.000065 3.004 0.0001316 3.001 0.00000184 3.051

Table 7.1: EXAMPLE 1, degrees of freedom, errors and rates of convergence for the Galerkin scheme

(4.2)~(4.3) in 2D employing the subspaces defined in (6.1) with k € {0, 1,2}

The numerical experiments are carried out with £k = 0. In Fig. 7.3, we present the approximate
solutions obtained using the lowest-order mixed scheme. The results are consistent with those reported

in [2] and with the physical behavior expected from the problem, in agreement with [17].

7.3 Example 3: natural convection in non-convex geometry

In this study, we investigate steady-state natural convection within a two-dimensional cross-section of
a shell-and-tube configuration. Specifically, the simulations are performed for k = 0, corresponding
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ERRORS AND RATES OF CONVERGENCE FOR THE FLUID VARIABLES
h e(t) r(t) elo) r(o) e(m) r(w) e(v) r(v)
0.866  1.790 - 1.668 - 0.444 - 1.341 -

0.433 0948 0916 0.953 0.806 0.235 0915 0477 1491
0 0216 0482 0976 0495 0.945 0.119 0.976 0.137  1.798
0.144 0323 0985 0.331 0.991 0.080 0.993 0.073 1.540

0.866  0.581 - 0.605 - 0.155 - 0.417 -
1 0433 0.167 1793 0.170 1.826 0.042 1.873 0.109 1.932
0.216 0.046 1.856 0.046 1.880 0.010 1.967 0.038  1.942

0.866  0.186 - 0.197 - 0.0436 - 0.1641 -
2 0.433 0.02826 2.719 0.03073 2.687 0.00600 2.864 0.01968 3.059
0.216 0.00371 2.927 0.00399 2944 0.000767 2.967 0.00216 3.187

o

ERRORS AND RATES OF CONVERGENCE FOR THE HEAT VARIABLES

k h e(¢) r(¢) e(p) r(p) e(p)  r(p)
0.866  1.048 - 1.001 - 0.181 -

0.433 0.585 0.839 0.549 0.865 0.096 0.913
0 0.216 0.304 0.942 0.284 0.949 0.048 0.979
0.144 0.205 0.977 0.191 0.979 0.032 0.994

0.866 0.376 - 0.325 - 0.064 -
1 0433 0.107 1.806 0.091 1.828 0.017 1.884
0.216 0.028 1.935 0.024 1.931 0.0044 1.971

0.866 0.10681 - 0.08782 - 0.01795 -
2 0433 0.015641 2.793 0.013276 2.725 0.002452 2.871
0.216 0.002009 2.939 0.001755 2.919 0.000313 2.968

Table 7.2: EXAMPLE 1, degrees of freedom, errors and rates of convergence for the Galerkin scheme
(4.2)~(4.3) in 3D employing the subspaces defined in (6.1) with k € {0,1, 2}.

to a disk-shaped domain €2, where problem (7.1) is solved under mixed boundary conditions for the
energy equation, as described below. The geometry consists of two circular cavities, each with radius
%. The right-hand inner cylinder is maintained at a hot temperature with ¢p = 1, while the left-hand
inner cylinder is cooled to wp = —1. The outer shell is assumed to be adiabatic, which corresponds
to the condition p-n = 0 imposed on its surface. For the momentum equations, a no-slip boundary
condition is prescribed along all boundaries. The Prandtl number is fixed at Pr = 1, and the analysis
is conducted for three Rayleigh number regimes:

low (Ra = 1e2), medium (Ra =1e3), and high (Ra = 1le4). (7.2)

Figure 7.4 displays, from left to right, the computed velocity magnitude, vorticity magnitude, and
temperature distribution, obtained from numerical simulations for each of the above Rayleigh numbers
(arranged from the first to the third columns).
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Figure 7.1: EXAMPLE 1, sample of 2D approximate solutions for the convergence test obtained using
the polynomial degree £ = 0 on the mesh with h = 0.031.
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