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Abstract. The Saint-Venant-Exner (SVE) model is widely used for the description of sediment
transport including bedload, erosion, and deposition processes. A modified version of the SVE
model, which includes sediment concentration incorporates exchange of sediment between the fluid
and an erodible bed and a non-hydrostatic pressure for the fluid along with non-equilibrium en-
trainment and deposition velocities, is introduced. Gravitational effects on erosion are described by
an effective shear stress formulation. This modified SVE model is derived from a general approach
with density variations. It preserves the mass of both the sediment and the fluid, and satisfies a dis-
sipative energy balance. On the other hand, well-balanced finite volume schemes adapted for SVE
models are derived since standard well-balanced schemes for the Saint-Venant system with fixed
bottom are in general no more well-balanced when applied to the SVE model. The latter property is
due to the uncontrolled numerical diffusion associated with the bed evolution equation. Two novel
techniques to achieve the well-balanced property for the modified SVE model are proposed. The
first is a new polynomial-viscosity-matrix-based (PVM) scheme, denoted “PVM-2I”, that modifies
the numerical approximation of the bed evolution equation according to its related characteristic
speed. The second is a physically motivated correction of the numerical diffusion term for the
Rusanov and Harten-Lax-van Leer (HLL) schemes. The proposed schemes are positivity-preserving
for the water height. Numerical solutions are compared with exact solutions with gravitational
effects, with a novel exact solution in non-equilibrium conditions, and with experimental data. It is
illustrated how the use of standard non-well-balanced schemes leads to a large artificial (unphysical)
erosion and completely degraded solutions. This undesirable behaviour is avoided by the proposed
well-balanced schemes.

1. Introduction

1.1. Scope. The dynamics of sediment transport is determined by the interplay between bedload,
erosion, and deposition processes. While bedload involves the transport of sediment particles cap-
tured in an erodible bottom, erosion refers to the entrainment of sediment into the fluid, and
deposition occurs when sediment particles settle back onto the bed. These processes affect sedi-
ment transport rates, which in turn influence river morphology and sediment distribution. Accurate
modelling of these processes requires the formulation of appropriate deposition rates, settling ve-
locities, and sediment entrainment factors. The Saint-Venant-Exner (SVE) system is widely used
to describe bedload sediment transport. It combines the Saint-Venant (or shallow water) system

Date: September 24, 2025.
Key words and phrases. Finite volume method, depth-averaged model, well-balanced methods, sediment transport.
∗Corresponding author.
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for hydrodynamics with a continuity equation (the Exner equation) to model the bed evolution.
Furthermore, erosion and deposition are commonly described by empirical formulas.

The Exner equation [15] defines sediment transport in terms of the solid transport discharge,
which requires specifying a model closure. For this purpose, several empirical models have been
introduced, although they often lack dissipative energy properties and/or violate mass conservation.
Moreover, many of these models are only validated for nearly horizontal sediment beds, which is also
a major limitation. Several SVE-type models have been formulated in terms of the closure of the
solid transport discharge. Well-known choices include the Meyer-Peter and Müller [27] or Ashida-
Mishiue [3] solid transport discharge closures. These models are also defined under the assumption
of a small slope of the bottom and do not account for gravitational effects. Furthermore, these
models assume an equilibrium between erosion and deposition rates, as well as small interactions
between the fluid and sediment layers. As a consequence, SVE models that are based on such a
definition of solid transport discharge do not satisfy an associated energy balance.

Fernández-Nieto et al. [16] formally deduced SVE models from an asymptotic analysis of a
coupled system with the shallow water system and a Reynolds equation. The models proposed in
[16] take into account gravitational effects and include several versions with equilibrium or non-
equilibrium assumptions. Moreover, they are endowed with an associated energy balance. In [19], a
specific semi-implicit numerical method for the model introduced in [16] in equilibrium conditions
is introduced. That method is designed for subcritical flows. The difficulty relies in the nonlinear
degenerate parabolic behaviour of the gravitational terms in the solid transport discharge. To
overcome this difficulty, a particular formulation of the solid transport discharge suitable for the
application of a semi-implicit numerical discretization is introduced in [19]. This formulation will
be used here.

Shallow water systems, which usually form the hydrodynamic part of sediment transport models,
are typically based on a hydrostatic framework for the fluid, which means that vertical acceleration
and dispersive effects are neglected. Nevertheless, non-hydrostatic pressure may strongly influence
the fluid dynamics, as it is shown in several studies of depth-averaged models (see e.g. [4, 36, 32, 37]
and references cited in these works). Roughly speaking, these models form two big families, namely
Boussinesq-type and non-hydrostatic models, although many of them may be rewritten in both
formulations (see [13]). The main difference is that dispersive Boussinesq-type models introduce
high-order derivatives to account for dispersive effects, whereas the so-called non-hydrostatic mod-
els incorporate new unknowns and additional equations. This property simplifies the numerical
approximation since only first-order derivatives appear (see e.g. [14, 17, 38]).

Numerical approximations of SVE-type models formulated as hyperbolic systems of first-order
partial differential equations are usually based on finite volume (FV) methods. In the context of
geophysical flows, these systems frequently include non-conservative products, which complicate the
application of standard FV schemes. A widely studied problem of this kind is the incorporation of
an erodible or fixed bottom into the shallow water equations. A well-known class of FV schemes that
properly handle non-conservative products are the so-called path-conservative schemes [10, 28, 35].
These schemes have been successfully applied to hyperbolic systems with non-conservative prod-
ucts in many applications, including multilayer shallow water systems, compressible gas dynamics,
or magnetohydrodynamics. Furthermore, Parés and Castro [29] proposed a generalization of the
Roe method (see also [35]). However, its implementation requires explicit knowledge of the eigen-
structure of the intermediate matrices. To overcome this limitation, Castro and Fernández-Nieto
[11] introduced a specific family of path-conservative schemes, named polynomial viscosity matrix
(PVM) methods, which extend many FV schemes based on incomplete Riemann solvers such as the
Lax-Friedrichs scheme, the Rusanov scheme (also called local Lax-Friedrichs (LLF) scheme, [24])
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and the Harten-Lax-van Leer (HLL) scheme [23]. One of the difficulties of designing such schemes
is related to the well-balance property, which refers to the ability of the scheme to preserve certain
stationary solutions, in particular, the steady at rest (or water at rest) solutions, i.e., flat free sur-
face and zero velocity. For a fixed bottom, numerous schemes are well-balanced. However, if one of
these schemes (that are well-balanced for a fixed bottom) is used to solve the SVE equations then
its steady solutions will not be preserved in many cases, even in the case of no fluid velocity and
zero solid transport discharge, because the bed sediment will move continuously. This unphysical
behaviour comes from uncontrolled numerical diffusion in the discretization of the bed evolution
equation within the SVE model; this problem does not arise in the case of a fixed bottom (see [25]).

In this work, we introduce a modified SVE-type model that is deduced from a general model
with density variation and a Boussinesq-type assumption to account for all these effects. Specif-
ically, the model includes a non-hydrostatic pressure for the fluid layer, gravitational effects, and
sediment in suspension. Each of these effects can be activated or deactivated as needed. Fur-
thermore, a general formulation for the solid transport discharge in the sediment layer makes it
possible to formulate this simplified model in equilibrium (erosion rate equals deposition rate) or
non-equilibrium conditions. Moreover, an energy balance implies that under appropriate boundary
conditions, the contributions of energy are controlled by dominantly dissipative mechanisms. An-
other contribution is a novel time-dependent semi-analytical solution for the non-equilibrium model
used to validate the methods proposed. The principal novelty, however, are two new techniques
to achieve the well-balance property of schemes for the general SVE-type model: firstly, a scheme,
denoted here by PVM-2I, which coincides with the HLL scheme for the flow variables but modifies
the numerical approximation of the bed evolution equation according to its related characteristic
speed; and secondly, a physically motivated correction of the numerical diffusion term for Rusanov
and HLL schemes. To our knowledge, no technique in the literature has been presented thaty would
be well-balanced for Rusanov and HLL-type methods for SVE models. As mentioned, Rusanov and
HLL methods can be expressed as PVM methods involving constant and linear polynomials of the
system matrix. An advantage of these methods is their preservation of the positivity of the water
depth (see [5]). On the contrary, PVM methods including a second-order term, which includes
a square of the system matrix, present challenges in proving positivity. As a consequence, the
well-balanced Rusanov and HLL methods proposed in this paper are excellent candidates to be
considered as basal schemes for the development on high-order well-balanced FV method based on
reconstructed states. Gravitational terms are discretized by following the approach of [19] not only
in subcritical flows but also in supercritical regimes.

1.2. Outline of the paper. The remainder of this work is organized as follows. Section 2 is ded-
icated to the derivation and definition of the model, along with the analysis of its key properties.
The proposed model describes bedload transport and the interaction between fluid and sediment
through the processes of erosion and deposition of suspended particles. First, in Section 2.1 the
balance equations are formulated. These describe conservation of mass and linear momentum,
sediment transport, and bed evolution. The resulting balance equations are supplemented by an
incompressibility condition. In Section 2.2 the bedload flux is defined for several cases including
non-equilibrium and equilibrium models with and without gravitational effects. Bedload discharge
represents the quantity of sediment particles transported along the riverbed or channel per unit
time. Next, in Section 2.3 we verify that the model complies with mass conservation. Then, in
Section 2.4 we demonstrate that the total mechanical energy of the model satisfies a dissipative
energy balance. Section 3 focuses on the numerical approximation of the model, including the
treatment of source terms coming form the erosion and deposition rates, non-hydrostatic pressure,
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Figure 1. Schematic representation of the proposed model, illustrating key variables such as the
water depth h, sediment concentration c, and the height of the erodible bed zb composed of an
active layer hm and a fixed layer hg, see Table 1.

and gravitational effects. To this end, we introduce in Section 3.1 some preliminaries and outline
in Section 3.2 the finite volume method for the governing hyperbolic system with non-conservative
products. The main contributions of this paper are in Sections 3.3 and 3.4 where the well-balanced
corrections for Rusanov and HLL methods, and the new PVM-2I method, are presented. Fur-
thermore, in Section 3.5 we introduce a semi-implicit numerical scheme to handle gravitational
terms that influence the vertical motion of particles, particularly their settling and redistribution.
The semi-implicit treatment enhances stability while maintaining computational efficiency. Next,
in Section 3.6 we deal with the source terms related to erosion and deposition, and conclude the
formulation of the scheme with description of the projection method to handle the non-hydrostatic
pressure (Section 3.7). Section 4 is devoted to the numerical tests. We validate our numerical
schemes through a series of test cases, including semi-analytical solutions, academic test, and com-
parisons with experimental data. Here, various simplified cases are considered, such as the case to
consider or not sediment in suspension, equilibrium and non-equilibrium models and the influence
of gravitational effects. In particular, we illustrate the well-balancedness of the proposed method
and the accuracy of the PVM-2I scheme with respect to the Rusanov and HLL methods due to the
reduction of numerical diffusion for the bed evolution equation. Finally, in Section 5 we summarize
our findings.

2. Model of sediment transport with suspended with particles

The framework of the sediment transport model is sketched in Figure 1. A central feature of
the model is the inclusion of the so-called active layer, which refers to the uppermost portion of
the erodible bed that directly interacts with the overlying flow. This layer is characterized by the
continuous exchange of sediment particles via entrainment and deposition. This process plays a
crucial role in controlling the short-term dynamics of sediment transport. Typically, the active
layer has a finite thickness and consists of grains that are more mobile than those in the underlying
layer [16].
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Table 1. Definition of key variables associated to Figure 1.

Symbol Description

h water depth
u,w horizontal and vertical velocities
c sediment concentration
zb position of erodible bed
hg fixed bed level
E,D sediment erosion (E) and deposition (D) rates
η̇e, η̇d entrainment and deposition velocities
ρf density of fluid
ρs density of sediment
ψ0 porosity
rs = ρs/ρf sediment-fluid density ratio
ρ0 = ψ0ρf + (1− ψ0)ρs bulk density of the mixture
ρ = cρs + (1− c)ρf mixture density
p̂nh non-hydrostatic pressure
pnh p̂nh/ρ
τ friction law (Manning or Darcy-Weisbach)

2.1. Balance equations. In Table 1 we indicate the variables that are used. With these defini-
tions, the governing equations in the non-hydrostatic case are given by

∂t(hρ) + ∂x(hρu) = ρ0
E −D

1− ψ0
, (2.1)

∂t(hρu) + ∂x

(
hρu2 +

1

2
gh2ρ+ hp̂nh

)
= −(ρgh+ 2p̂nh)∂xzb − τ +

u

2
ρ0
E −D

1− ψ0
, (2.2)

∂t(hρw) + ∂x(hρuw) = 2p̂nh +
w

2
ρ0
E −D

1− ψ0
, (2.3)

∂t(hc) + ∂x(huc) = E −D, (2.4)

∂tzb +
1

1− ψ0
∂xqb = −E −D

1− ψ0
, (2.5)

∂thg = −(η̇e − η̇d). (2.6)

The specific definitions of E, D, η̇e, and η̇d are provided in Section 2.2. The quantity τ̂ is introduced
in Section 2.4. Equations (2.1)–(2.4) describe conservation of mass and momentum, (2.5) models
sediment transport, and (2.6) describes bed evolution. The last terms on the right-hand side of
(2.2) and (2.3) describe the transfer of linear momentum between the fluid and sediment layers.
Equations (2.1) to (2.6) are supplemented by the incompressibility condition

w − u∂xzb + ∂tzb +
h

2
∂xu = 0.

The system (2.1)–(2.3) may be rewritten in terms of the unknowns h, hu, and hw. First,
combining (2.1) and (2.4), we get

∂th+ ∂x(hu) =
E −D

1− ψ0
.
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Using this equation we obtain the momentum balance equations for hu and hw

∂t(hu) + ∂x(hu
2) + gh∂x(h+ zb) +

1

ρ

gh2

2
∂xρ+

1

ρ
∂x(hp̂nh)

= −2
p̂nh
ρ
∂xzb − τ +

(
1− ρ0

2ρ

)
u
E −D

1− ψ0
,

∂t(hw) + ∂x(huw) = 2
p̂nh
ρ

+

(
1− ρ0

2ρ

)
w
E −D

1− ψ0
.

At this point, we make two assumptions to obtain a simplified model with a dissipative energy
balance: firstly, we assume that the fluid and sediment densities are very close at the fluid/sediment
interface. In fact, if the fluid density tends to the saturation density, then ρ may be approximated
by ρ0 in the transfer terms, which yields

1− ρ0
2ρ

≈ 1

2
.

Secondly, in the case of low concentrations, the Boussinesq assumption is justified. Then ρ ≈ ρf in all
terms except for the term representing the deviation from a hydrostatic pressure ∂xρ. Consequently,
we obtain

1

ρ
g
h2

2
∂xρ ≈ 1

ρf
g
h2

2
∂xρ = (rs − 1)g

h2

2
∂xc = (rs − 1)

g

2
(h∂x(hc)− hc∂xh) .

Therefore, the final simplified model reads

∂th+ ∂x(hu) =
E −D

1− ψ0
,

∂t(hu) + ∂x

(
hu2 +

gh2

2
+ hpnh

)
+ (rs − 1)

g

2
(h∂x(hc)− hc ∂xh)

= −(2pnh + gh)∂xzb −
τ̂

ρf
+
u

2

E −D

1− ψ0
,

∂t(hw) + ∂x(huw) = 2pnh +
w

2

E −D

1− ψ0
,

∂t(hc) + ∂x(huc) = E −D,

∂tzb +
1

1− ψ0
∂xqb = −E −D

1− ψ0
,

∂thg = −(η̇e − η̇d),

(2.7a)

together with the same incompressibility condition

w − u∂xzb + ∂tzb +
h

2
∂xu = 0. (2.7b)

This model consists of seven partial differential equations from which one seeks to determine the
same number of scalar unknowns, namely h, u, w, c, zb, hg, and pnh as functions of horizontal
spatial position x and time t.

2.2. Bedload modelling. The bedload discharge is typically determined based on the shear stress
acting on the bed and the critical shear stress required to initiate sediment motion. When the shear
stress exceeds the critical threshold, sediment transport occurs. Various empirical models exist to
predict bedload discharge, but many exhibit limitations such as the absence of a dissipative energy
balance, mass conservation inconsistencies, or restricted applicability to specific flow conditions
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[16, 19]. In this subsection we present a class of bedload models that satisfies an energy balance
(see Theorem 2). Firstly, non-equilibrium models are introduced. Secondly, the simplified case of
equilibrium models, which is widely used in the literature, is presented. Finally, bedload models
that take into account gravitational effects are discussed.

2.2.1. Non-equilibrium bedload models. In this case the bed evolution equations are given by

∂tzb +
1

1− ψ0
∂xqb = −E −D

1− ψ0
, ∂thg = η̇d − η̇e,

where the bedload flux is modelled as qb := hmVb, with hm := zb − hg,

Vb := vb
√
(rs − 1)gds,

and rs = ρs/ρf the density ratio. The sediment transport velocity is given by

vb := sgn(τ)(
√
θ −

√
θc)+, (2.8)

where the so-called Shields parameter θ is defined by

θ :=
|τ |

ρf(rs − 1)gds
,

and θc is the critical Shields parameter. Here τ represents the shear stress defined by
τ

ρf
= Cfu|u| with Cf = gn2h−1/3 (Manning law) or Cf = ξ/8 (Darcy-Weisbach law). (2.9)

Finally, the vertical entrainment and deposition rates are given by

η̇e = (θ − θc)+
ke

1− ψ0

√
(rs − 1)gds, η̇d = hm

kd
ds

√
(rs − 1)gds. (2.10)

The erosion and deposition rates (E and D) are defined by empirical formulations, which will be
detailed later in the numerical test (Section 4).

2.2.2. Equilibrium bedload models. If equilibrium conditions are assumed, i.e., η̇e = η̇d, we obtain
by equating the right-hand sides in (2.10)

hm =
dske

kd(1− ψ0)
(θ − θc)+, (2.11)

which leads to the simplified bedload flux

qb = sgn(τ)
ke
kd

(θ − θc)+(
√
θ −

√
θc)

ds
1− ψ0

√
(rs − 1)gds. (2.12)

This expression for qb is substituted into the evolution equation for zb in system (2.7a). Since
the last equation, the evolution equation for hg, is no longer needed, we obtain as a result the
equilibrium version of model (2.7).

Notice that other definitions of η̇e and η̇d also imply different definitions of hm for equilibrium
models. The definition of hm (2.11) implies the definition of qb given by (2.12), that is a general-
ization of Ashida-Mishiue model [3]. Another variant of the definition of η̇e is

η̇e =
(θ − θc)

3/2
+√

θ −
√
θc

ke
1− ψ0

√
(rs − 1)gds,

which in the equilibrium case implies the solid transport discharge

qb = sgn(τ)
ke
kd

(θ − θc)
3/2
+

ds
1− ψ0

√
(rs − 1)gds,
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which is a generalization of the well-known Meyer-Peter and Müller model [27].

2.2.3. Shear stress and gravitational effects. The shear stress τ is typically chosen based on Man-
ning’s law but can be generalized to include gravitational effects in sediment transport. Following
[19], we define an effective shear stress τeff :

τeff
ρf

=
τ

ρf
− k1∂x(h+ zb)− k2∂xzb, (2.13)

where k1 := ϑgds, k2 := ϑgds(rs − 1), and ϑ := θc/ tan δ, with δ representing the angle of repose
of the sediment material (commonly δ ≈ 25◦). These additional terms account for gravitational
effects through bed and free surface slopes. If τeff is used instead of τ then we obtain the effective
Shields parameter

θeff :=
|τeff |

ρf(rs − 1)gds
. (2.14)

By writing τeff and θeff in place of τ and θ, respectively, in Eqs. (2.8) and (2.10) we obtain
the final non-equilibrium model (2.7) with gravitational effects. Analogously, the final equilibrium
model with gravitational effects is obtained by modifying Eq. (2.12) for the solid transport discharge
accordingly with τeff and θeff .

If τeff as given by (2.13) is used within (2.14) , then equation (2.5) will include second-order
spatial derivatives. Consequently, explicit numerical methods require a stability condition of CFL ∝
1/∆x2, which leads to undesirably small time steps. To mitigate this issue, a semi-implicit method
[19] should be employed to ensure numerical stability without excessively restricting the time step
size. This is detailed in next section.

2.3. Mass conservation. The principle of mass conservation is essential for constructing accurate
models of sediment transport. The sediment mass ms = ms(x, t) and the fluid mass mf = mf(x, t)
at position x and time t are given by

ms(x, t) := ρs
(
h(x, t)c(x, t) + (1− ψ0)zb(x, t)

)
,

mf(x, t) := ρf
(
h(x, t)(1− c(x, t)) + ψ0zb(x, t)

)
,

respectively. Namely, we obtain the following result, which is obtained straightforward from (2.1),
(2.4), and (2.5):

Theorem 1 (Mass conservation). The model satisfies mass conservation. Specifically, the model
implies the equations of conservation of sediment and fluid mass

∂tms + ∂x (huc+ qb) = 0,

∂tmf + ∂x

(
hu(1− c) +

ψ0

1− ψ0
qb

)
= 0.

2.4. Energy balance. The solid transport discharge qb is defined in Section 2.2 in several alter-
native forms. All these definitions can be written in the general form

qb = hmVb, Vb = u− P, P := C1∂x(h+ zb) + C2∂xzb + C3(rs − 1) sgn(Vb) tan δ (2.15)

with dimensional parameters C1, C2, C3 that are defined in terms of physical values such as the
gravity constant, the mean grain size diameter, and the critical Shields parameter (see Section 2.2).
Moreover, hm = zb − hg for non-equilibrium models while hm is defined by (2.11) for equilibrium
models. Finally, we define

τ̂ := τ + ρfhmP, (2.16)
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where τ is a generic friction term (e.g., Manning or Darcy-Weisbach), see equation (2.9). This
model satisfies the following dissipative energy balance:

Theorem 2 (Energy balance). Consider the system of equations (2.7), (2.15), and (2.16), de-
scribing shallow water flow with sediment transport and bed evolution. Then the total mechanical
energy

E :=
g(h+ zb)

2

2
+
h(u2 + w2)

2
satisfies the dissipative balance law:

∂tE + ∂x

(
u

(
hu2 + hw2

2
+
gh2(1 + c(rs − 1))

2
+ pnh

)
+ qb g(h+ zb) + ghuzb

)
≤ −

{
(rs − 1)hm|vb| tan δ + hmP

2 + u
τ

ρf

}
+ c∂x(h

2u)
g(rs − 1)

2
.

(2.17)

For brevity we omit the proof, which is similar to the one presented in [16]. Clearly, term in curled
brackets on the right-hand side of (2.17) is non-negative under standard physical assumptions, and
hence it contributes to energy dissipation. However, the last term, which involves the spatial
derivative ∂x(h

2u), is not in conservative form and, in principle, may act either as a source or a
sink of energy depending on the sign of the derivative. However, the structure of the term allows
for a meaningful interpretation. In regions where ∂x(h

2u) < 0, the contribution is manifestly
dissipative, since c ∈ [0, 1] and the entire term is non-positive. In regions where ∂x(h

2u) > 0, the
term can be rewritten as

c∂x(h
2u) = ∂x(h

2u)− (1− c)∂x(h
2u),

where the first term ∂x(h
2u) is conservative and can be absorbed into the energy flux (especially

under appropriate boundary conditions). The second term, −(1− c)∂x(h2u), is non-positive in this
case and thus it contributes to dissipation. In general, we have the identity

c ∂x(h
2u) = ∂x

(
1 + sgn(∂x(h

2u))

2
h2u

)
−
(
1 + sgn(∂x(h

2u))

2
− c

)
∂x(h

2u),

which is composed of a conservative term and a dissipative one. It follows that the full energy
inequality consists of a collection of dissipative terms, and conservative fluxes that vanish under
suitable boundary conditions. Therefore, the total mechanical energy satisfies a net dissipative
balance law, and energy is non-increasing in time under these assumptions.

3. Numerical implementation

3.1. Preliminaries. To compute the model transition from time tn to tn+1, we should use a
robust numerical scheme that can handle second derivatives, and preserve positivity of the needed
variables. The discretization of governing system (2.7a) combines the following four ingredients: the
underlying hydrostatic hyperbolic system with non-conservative products is solved; second-order
derivative terms coming from the gravitational effects are included; source terms corresponding
to the friction and erosion are deposition rates are incorporated; and non-hydrostatic pressure is
computed and the horizontal and vertical velocities are accordingly corrected.

In the following we write the compact form of system (2.7a) in the non-equilibrium case but we
do not include gravitational effects yet. These are handled in Section 3.5. To this aim, we denote
by W the vector of conservative variables. The system (2.7a) is written in compact form as

∂tW + ∂xF (W ) +B(W )∂xW = K(W ) +∇NHQ,
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where we define

W :=


h
hu
hw
hc
zb
hg

 , F (W ) :=


hu

hu2 + gh2/2
huw
huc

qb/(1− ψ0)
0

 , B(W ) :=


0 0 0 0 0 0
γh 0 0 γhc gh 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (3.1)

along with γh := −(g/2)(rs− 1)hc, γhc := (g/2)(rs− 1)h, and the source and non-hydrostatic terms

K(W ) :=


0
−τ
0
0
0

η̇d − η̇e

+
E −D

1− ψ0


1
u/2
w/2

1− ψ0

−1
0

 , ∇NHQ =


0

−∂x(hq)− 2q∂xzb
2q
0
0
0

 .

We now describe the steps of the numerical scheme for non-equilibrium model with gravitational
effects and non-hydrostatic pressure. This scheme is easily adapted to particular cases as hydrostatic
pressure, the absence of gravitational effects, or the equilibrium regime. For simplicity, at each step
we assume that the solution evolves from time t∗ to tn+1. So, W ∗ must be understood as the
output of a previous stage.

3.2. Finite volume method for hyperbolic system with non-conservative products. We
adopt the path-conservative framework [12, 28, 29] to deal with possible discontinuities in the
solutions and the presence of non-conservative products in the underlying hyperbolic part of the
system, i. e.,

∂tW + ∂xF (W ) +B(W )∂xW = 0. (3.2)

This system can be written in quasi-linear form as ∂tW +A(W )∂xW = 0 with the 6× 6 matrix
A(W ) := ∂F (W )/∂W +B(W ), whose eigenvalues are λ ∈ {0, u} plus the four eigenvalues of the
reduced matrix

Â(W ) :=


0 1 0 0

−u2 + gh+ γh 2u γhc gh
−uc c u 0
αh αhu 0 αzb

 , αξ :=
1

1− ψ0
∂ξqb for ξ ∈ {h, hu, zb}.

In practice only very small values of concentration c are assumed, and the contribution of c just
for the computation of eigenvalues is neglected. Consequently, if we assume c ≪ 1 in Â, then the
eigenvalues of A(W ) are 0, u, and u, and the eigenvalues of

Ã(W ) :=

 0 1 0
−u2 + gh+ γh 2u gh

αh αhu αzb

 . (3.3)

The FV discretization is based on the subdivision of the horizontal domain into uniform control
volumes Vi := [xi−1/2, xi+1/2] of length ∆x for i ∈ I. It is assumed that W n

i approximates the cell
average of W on Vi at time tn, i.e.,

W n
i :=

1

∆x

∫
Vi

W (x, tn) dx.
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For convenience, in the discretization we separate the convective and pressure terms in F (W ). To
this end we replace (3.2) by

∂tW + ∂xF c(W ) + S(W )∂x(h+ zb) + B̃(W )∂xW = 0,

where we define S(W ) := (0, gh, 0, 0, 0, 0)T. A usual first-order path-conservative explicit scheme
now reads

W n+1
i = W n

i − ∆x

∆t

(
Fn

i+1/2 −Fn
i−1/2 +

1

2

(
B̃n

i+1/2 + B̃n
i−1/2 + Sn

i+1/2 + Sn
i−1/2

))
,

where we define

B̃n
i+1/2 :=

1

2

(
B̃(W n

i ) + B̃(W n
i+1)

)(
W n

i+1 −W n
i

)
and

Sn
i+1/2 :=

1

2

(
S(W n

i ) + S(W n
i+1)

)(
hn,+i+1/2 − hn,−i+1/2

)
,

where hn,±i+1/2 are the reconstructed states to approximate the free surface gradient given by

hn,+i+1/2
:= max

{
hni+1 + znb,i+1 − z∗,ni+1/2, 0

}
,

hn,−i+1/2
:= max

{
hni + znb,i − z∗,ni+1/2, 0

}
, and

z∗,ni+1/2
:= max

{
znb,i, z

n
b,i+1

}
.

These states are also useful to handle wet/dry areas. In what follows we omit the upper index n
for simplicity. The numerical flux F i+1/2 is defined according to a PVM scheme (see [11]), where
the viscosity matrix is defined as a polynomial evaluation of the Roe matrix Ai+1/2. This matrix
is assumed to satisfy the relation

Ai+1/2(W i+1 −W i) = F (W i+1)− F (W i) +

∫ 1

0
BΦ(s;W i+1,W i)∂sΦ(s;W i+1,W i) ds,

where F and B are as given in (3.1). For convenience, we assume a general second-order PVM
scheme. This includes all particular cases studied herein, namely the Rusanov, HLL, and PVM-2I
schemes. Then the general numerical flux is

F i+1/2 =
1

2

(
F c(W i+1) + F c(W i)

)
− 1

2

(
α0,i+1/2

(
W+

i+1/2 −W−
i+1/2

)
+ (α1,i+1/2I + α2,i+1/2Ai+1/2)

(
F (W i+1)− F (W i) + B̃i+1/2 + Si+1/2

)) (3.4)

with I the identity matrix, and W±
i+1/2 are the reconstructed states

W−
i+1/2

:=
(
h−i+1/2, h

−
i+1/2ui, h

−
i+1/2wi, h

−
i+1/2ci, zb,i, hg,i

)T
,

W+
i+1/2

:=
(
h+i+1/2, h

+
i+1/2ui+1, h

+
i+1/2wi+1, h

+
i+1/2ci+1, zb,i+1, hg,i+1

)T
.

Notice that the reconstructed states are used just for the well-balancing of the scheme and the
wet/dry treatment.

3.3. Well-balanced property of HLL and Rusanov methods for SVE systems. The well-
balance property of the scheme is a requirement not only to preserve steady solutions but also
to reproduce solutions that consist in small perturbations (similar to the truncation error of the
method) of equilibrium states. For the design of the scheme for (2.7a) we focus on equilibrium
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states at rest, although other equilibrium states with u ̸= 0 will equally be preserved (see, e.g.,
Section 4.2). The steady states at rest (with no erosion) satisfy

h+ zb = constant, |∂xzb| < tan δ, u = w = pnh = 0, c = 0, E = D, η̇e = η̇d. (3.5)

The condition for the bottom slope is deduced from θeff < θc with u = 0 and h+ zb = const. It is
remarkable that these are steady states when gravitational effects are incorporated. Otherwise, no
condition on the bottom slope is necessary.

The Rusanov and HLL methods are defined by (3.4) where the numerical diffusion of the scheme
is defined in terms of the constant and first-order polynomials PRU

0 (x) and PHLL
1 (x), respectively,

given by αRU
2 = αHLL

2 = 0 and

PRU
0 (x) := αRU

0 with αRU
0 := max(

{
|SL|, |SR|

}
,

PHLL
1 (x) := αHLL

0 + αHLL
1 x with αHLL

0 :=
SR|SL| − SL|SR|

SR − SL
, αHLL

1 :=
|SR| − |SL|
SR − SL

,
(3.6)

where SL and SR are approximations of the largest and the smallest eigenvalues, respectively, of
the Roe matrix of the system Ai+1/2.

These definitions do not lead to a well-balanced scheme in the case of an SVE system due to the
evolution equation for the sediment layer zb. Concretely, the term α0,i+1/2(zb,i+1 − zb,i) does not
vanish in that equation for steady states. This behaviour results in a non-physical erosion of the
bed. In [22] a modification of HLL method was proposed that neglects this term (in combination
with an upwind approximation). Apart from that, to the best of our knowledge from literature, well-
balanced Rusanov or HLL-type schemes for sediment transport problems have not been developed
so far. Here we propose a simple modification of the Rusanov and HLL schemes for system (2.7a)
with the well-balance property. This modification consists of an appropriate correction to the
numerical viscosity related to the contribution α0,i+1/2(zb,i+1 − zb,i) inspired by the case of the
equilibrium model. So, a compelling approach to address this problem involves interpreting the
non-equilibrium model as a generalization of the SVE framework. To this end, we consider the
evolution equations for the bottom layer variables zb, hm and hg:

∂tzb +
1

1− ψ0
∂xqb = 0, ∂thm +

1

1− ψ0
∂xqb = 0, ∂thg = 0,

where for sake of simplicity, we neglect erosion or deposition contributions (i.e., we set E = D) as
in the steady state (3.5). In general, we use the equations for zb and hg to compute hm as zb − hg.
Let us consider the Rusanov or HLL method to evolve from tn to tn+1, i.e.,

zn+1
b,i = znb,i −

∆t

∆x

(
qnb,i + qnb,i+1

2
− 1

2

(
αn
0,i+1/2∆z

n
b,i+1/2 + αn

1,i+1/2∆q
n
b,i+1/2

))
+

∆t

∆x

(
qnb,i + qnb,i−1

2
− 1

2

(
αn
0,i−1/2∆z

n
b,i−1/2 + αn

1,i−1/2∆q
n
b,i−1/2

))
, (3.7a)

hn+1
m,i = hnm,i −

∆t

∆x

(
qnb,i + qnb,i+1

2
− 1

2

(
αn
0,i+1/2∆h

n
m,i+1/2 + αn

1,i+1/2∆q
n
b,i+1/2

))
+

∆t

∆x

(
qnb,i + qnb,i−1

2
− 1

2

(
αn
0,i−1/2∆h

n
m,i−1/2 + αn

1,i−1/2∆q
n
b,i−1/2

))
, (3.7b)

hn+1
g,i = hng,i, (3.7c)
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where α0, α1 are defined by (3.6), and ∆ξi+1/2 = ξi+1 − ξi for ξ ∈ {zb, hm, qb}. By subtracting
(3.7b) from (3.7a) we obtain for hg

hn+1
g,i − hng,i =

1

2

∆t

∆x

[
αn
0,i+1/2

(
∆znb,i+1/2 −∆hnm,i+1/2

)
− αn

0,i−1/2

(
∆znb,i−1/2 −∆hnm,i−1/2

)]
,

whose right-hand side term will not vanish in general. This property produces an inconsistency
error with respect to (3.7c) due to the numerical diffusion.

This inconsistency may lead to different numerical results depending on the pair of equations
used to compute zb, hm, and hg. In some cases, it may even produce unphysical values such
as negative hm (or zb, hg, depending on the formulation), or more generally, violate the relation
zb = hm + hg at the discrete level. Therefore, it is necessary to introduce a modified approach
that resolves the discrepancy in the numerical viscosity term while ensuring consistency with the
stationary solutions. To handle this issue we propose to replace the discrete differences ∆zb and
∆hm in Eqs. (3.7a) and (3.7b), respectively, by a consistent approximation based on the equilibrium
model:

heqm =
dske

(1− ψ0)kd
(θ − θc)+,

However, since ∆zb originally appears in the numerical viscosity term, it plays a crucial role in
determining the direction of artificial diffusion. In fact, replacing ∆zb by ∆heqm without adjusting
its sign may lead to inconsistencies in the numerical flux. To address this issue, we replace the
expression of the discrete jump ∆zb,i+1/2 and ∆hm,i+1/2 in (3.7a) and (3.7b) by

∆heqm,i+1/2 =
dske

(1− ψ0)kd

∣∣(θi+1 − θc)+ − (θi − θc)+
∣∣ sgn(∆zb,i+1/2),

where we explicitly include the sign of the slope. This formulation ensures that we use the appro-
priate sign to preserve the directionality of the numerical viscosity. Thus, artificial oscillations or
inconsistencies in the discrete sediment flux are avoided. Moreover, this modification guarantees
consistency in the computation of zb, hm, and hg independently of the chosen pair of equations in
(3.7). It also preserves the desired steady states when θeff < θc, since h

eq
m,i+1/2 naturally vanishes

in those regions. Finally, since this correction is consistent with the definition of the equilibrium
model, it results in a well-balanced scheme also in the equilibrium case.

3.4. PVM-2I method. The introduction of a new accurate scheme for sediment transport is
motivated by some shortcomings of the Rusanov and HLL methods. They are not only not well-
balanced (without corrections) as mentioned earlier, but also introduce a high level of numerical
viscosity, especially for the evolution equation of zb, which causes excessively rapid, physically
inaccurate erosion. To handle these issues we propose a combination of the Rusanov or HLL
method with a three-wave PVM method. The resulting new method will be denoted as PVM-2I
method (since it is defined by a quadratic polynomial and employs an intermediate eigenvalue),
and it is well-balanced by construction. The main idea is, in order to reduce the numerical diffusion
associated to the bottom evolution equation, to use a second-degree PVM method just for that
equation. Thus, the PVM-2I method is defined by the numerical flux (3.4) for all unknowns except
for the sediment bed, that in this case is

[F i+1/2]zb =
1

2
(qb,i + qb,i+1)

− 1

2

(
α2I
0,i+1/2∆zb,i+1/2 + α2I

1,i+1/2∆qb,i+1/2 + α2I
2,i+1/2[Ai+1/2∆F i+1/2]zb

)
,

(3.8)
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where [Ai+1/2∆F i+1/2]zb denotes the component corresponding to the evolution of zb of the product

Ai+1/2∆F i+1/2 = Ai+1/2

(
F (W i+1)− F (W i) + B̃i+1/2 + Si+1/2

)
,

and α2I
k,i+1/2, k = 0, 1, 2, are the coefficients of the polynomial P 2I

2 (x) := α2I
0 + α2I

1 x + α2I
2 x

2 that
satisfies P2(SL) = |SL|, P2(SI) = |SI|, and P2(SR) = |SR|, where SI is an estimate of an intermediate
eigenvalue, which is detailed below. The coefficients of this polynomial are given by

α2I
0 = αHLL

0 + α2I
2 SLSR, α2I

1 = αHLL
1 − α2I

2 (SR + SL),

α2I
2 =

(|SR| − |SI|)(SI − SL)− (|SI| − |SL|)(SR − SI)

(SR − SL)(SR − SI)(SI − SL)
.

(3.9)

The key point is that SI is chosen in such a way that SI = 0 in the case of no sediment transport.
So, α2I

0 = 0 in such case, and the diffusion term in (3.8) vanishes, therefore steady solutions are
preserved and non-physical erosion is avoided. With this in mind, we choose SI as the intermediate
eigenvalue of the simplified Roe matrix Ãi+1/2 given by (3.3). Notice that the new coefficients (3.9)
can be seen as a correction of the numerical viscosity associated to the usual HLL scheme.

Let us remark that the PVM-2I scheme preserves the positivity of the water depth since it
coincides with HLL for the mass and momentum equations for these equations (see [5]). It is
worth mentioning that we are not able to prove the water depth positivity when applying the
second-degree PVM with α2I

0,1,2 given by (3.9) for the whole system. Furthermore, although we do
not have a general proof of positivity of the sediment bed for the PVM-2I scheme, we have not
observed related troubles in the numerical experiments. Actually, positivity can be controlled by
diminishing the time step, and the bed evolution is related to a much smaller velocity than water
waves. Consequently, as long as the time step is adapted with a CFL condition suitable for water
waves, it is sufficiently small to handle the bed evolution. This property explains why in practice
we have not found any trouble with sediment positivity thickness.

3.5. Semi-implicit step for gravitational terms. In numerical modelling of sediment trans-
port, gravitational terms influence the vertical motion of particles, particularly their settling and
redistribution. A fully explicit approach to incorporate gravitational effects may impose restrictive
time-step constraints due to stability limitations, particularly when dealing with fine sediment or
high particle concentrations. To overcome these limitations, a semi-implicit numerical scheme is
employed, which enhances stability while maintaining computational efficiency. The semi-implicit
formulation discretizes the gravitational terms in a manner that allows for larger time steps with-
out introducing significant numerical errors. By treating some components implicitly, the method
mitigates the instability associated with rapid particle settling while preserving accuracy.

First, following [19], rewrite the solid transport discharge in a form that is convenient for its dis-
cretization. Then, using the interpretation sgn(τeff) = τeff/|τeff|, we may rewrite the solid transport
discharge term as

1

1− ψ0
qb = q̃bτeff = q̃b

(
Cfu|u| − ∂x(k1(h+ zb) + k2zb)

)
,

with k1 := ϑgds, k2 := ϑgds(rs − 1), ϑ := θc/ tan δ, and

q̃b =
hm

√
(rs − 1)gds (

√
θeff −

√
θc)+

(1− ψ0)|τeff/ρf |
.

At this point, we incorporate the gravitational effects for the sediment evolution equation (zb),
which is discretized in time as

zn+1
b = znb −∆t∂x

(
q̃nb (C

n
f u

n|un| − k1∂x(h
n+1 + zn+1

b )− k2∂xz
n+1
b )

)
.
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Using the Θ−method, we get

zn+1
b = znb −∆t∂x(q̃

n
bC

n
f u

n|un|) + (1−Θ)∆t∂x (q̃
n
b (k1∂x(h

n + znb ) + k2∂xz
n
b ))

+ Θ∆t∂x
(
q̃nb (k1∂x(h

n+1 + zn+1
b ) + k2∂xz

n+1
b )

)
,

where hn+1 was computed in the first hyperbolic step, see section 3.2. After using finite difference
approximations for the space derivatives, a tridiagonal linear system for the unknowns zn+1

b,i is
solved.

We remark that, in case of dealing with subcritical flows (Fr ≪ 1) a semi-implicit discretization
as in [19], where the pressure gradient is removed from the stability restriction, may be convenient
to improve the efficiency of large-time simulations. However, this is not the goal of this paper and
it has not been implemented here.

3.6. Source terms related to erosion and deposition. In this step, we add the source terms
related with the erosion (E/D) and deposition velocities (η̇e/η̇d). In order to ensure the positivity
of the variables zb, hg, hm, and c we define

Ê :=
En(hn+1

m + hn+1
g )

hnm + hng
and D̂ :=

(hc)n+1Dn

(hc)n
,

and apply a semi-implicit treatment similar to that of [21]. At each control volume Vi, this yields

(1− ψ0)h
n+1
m = (1− ψ0)h

∗
m + (1− ψ0)∆t

(
hn+1
g

η̇ne
hng

− hn+1
m

η̇nd
hnm

)
−∆t(Ê − D̂),

(1− ψ0)h
n+1
g = (1− ψ0)h

∗
g − (1− ψ0)∆t

(
hn+1
g

η̇ne
hng

− hn+1
m

η̇nd
hnm

)
,

(hc)n+1 = (hc)∗ +∆t(Ê − D̂),

(3.10)

where for sake of simplicity the spatial index i was omitted. The linear system (3.10) is solved for
hn+1
m , hn+1

g , and (hc)n+1. Next, we update the height and discharges as

hn+1 = h∗ +
∆t

1− ψ0
(Ê − D̂),

(hu)n+1 = (hu)∗ +
un

2

∆t

1− ψ0
(Ê − D̂)−∆tCn

f |un|un+1,

(hw)n+1 = (hw)∗ +
wn

2

∆t

1− ψ0
(Ê − D̂).

Notice that the use of Ê and D̂ instead of E and D, respectively, in the previous equations guaran-
tees that ∂t(h+ zb) + ∂x(hu+ qb/(1− ψ0)) = 0 holds also at discrete level. The following theorem
ensures the positivity of hg, zb and hc. Moreover, the positivity of hm is ensured under an additional
condition. We have verified the positivity of hm in all simulations, even if this property has not
been proven analytically.

Theorem 3 (Positivity of the variables). Assume that h∗m ≥ 0, h∗g ≥ 0, and (hc)∗ ≥ 0 are given,

and that hn+1
m , hn+1

g , and (hc)n+1, are to be determined from the linear system of equations (3.10).
Then the system has a unique solution with the following properties:

i) zn+1
b := hn+1

m + hn+1
g ≥ 0, hn+1

g ≥ 0, and (hc)n+1 ≥ 0.
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ii) A sufficient (but not necessary) condition to ensure hn+1
m ≥ 0 is

En ≤ η̇ne (1− ψ0)
znb
hng
. (3.11)

Proof. For sake of clarity, we introduce x0 := (1− ψ0)h
∗
m, y0 := (1− ψ0)h

∗
g, w0 := (hc)∗, and

a = ∆t
η̇ne
hng
, b = ∆t

η̇nd
hnm

, e =
∆t

1− ψ0

En

hnm + hng
, f = ∆t

Dn

(hc)n
;

then the system (3.10) can be written as

1 + b+ e e− a −f
−b 1 + a 0
−e −e 1 + f


(1− ψ0)h

n+1
m

(1− ψ0)h
n+1
g

(hc)n+1

 =

x0
y0
w0

 .

The solution of this system is

(1− ψ0)h
n+1
m =

(1 + a+ f)x0 + af(x0 + y0 + w0) + (a− e)y0 + fw0

(1 + a+ b)(1 + e+ f)
,

(1− ψ0)h
n+1
g =

(1 + b+ e+ f)y0 + bf(x0 + y0 + w0) + bx0
(1 + a+ b)(1 + e+ f)

,

(hc)n+1 =
w0 + e(x0 + y0 + w0)

1 + e+ f
.

Since the coefficients a, b, e, and f are non-negative, and since we assume that h∗m ≥ 0, h∗g ≥ 0 and

(hc)∗ ≥ 0, it follows that x0, y0, w0 ≥ 0, hence hn+1
g ≥ 0 and (hc)n+1 ≥ 0. Moreover,

zn+1
b = hn+1

m + hn+1
g =

(x0 + y0)(1 + f) + w0f

(1 + e+ f)(1− ψ0)
≥ 0.

If, in addition, assumption (3.11) is in effect, then a ≥ e, and as a consequence all terms defining
hn+1
m are nonnegative. □

3.7. Incorporation of non-hydrostatic pressure. The non-hydrostatic pressure is incorporated
by a projection method that only affects the momentum conservation equations. Since other vari-
ables are not affected by this correction, we have

hn+1 = h∗, (hc)n+1 = (hc)∗, zn+1
b = z∗b, hn+1

g = hng .

We write the semi-discrete momentum equations as

(hu)n+1 = (hu)∗ −∆t
(
∂x(h

n+1qn+1) + 2pn+1
nh ∂xz

n+1
b

)
, (3.12)

(hw)n+1 = (hw)∗ + 2∆tpn+1
nh ,

and inserting these expressions into the incompressibility condition (2.7b) we get the elliptic equa-
tion

(hn+1)2∂xxp
n+1
nh +hn+1∂xh

n+1∂xp
n+1
nh +

(
hn+1∂xx(h

n+1+2zn+1
b )−

(
∂x(h

n+1 + 2zn+1
b )

)2− 4
)
pn+1
nh

=
1

∆t

(
2(hw)∗ − (hu)∗∂x(h

n+1 + 2zn+1
b ) + hn+1∂x(hu)

∗). (3.13)

To numerically find the non-hydrostatic pressure values, we locate the corresponding variables at the
cell interfaces xi+1/2, and we define pn+1

nh,i+1/2 := pnh(xi+1/2, tn+1). Then, Eq. (3.13) is discretized
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at the cell interfaces as it is done in [20], where all the details are given. Once the new values of
the non-hydrostatic pressure (pn+1

nh ) are computed, the discharges are updated by using (3.12).

4. Numerical tests

4.1. Preliminaries. Unless otherwise specified, the following parameters will be used for the up-
coming tests: ds = 1.13 × 10−3m, ψ0 = 0.4, θc = 0.047, ρf = 1000 kg/m3, ρs = 2680 kg/m3 ,
ke = 0.096, kd = 0.02, and the Manning roughness coefficient n = 0.02. Furthermore, we will use
the Meyer-Peter and Müller solid transport discharge for the equilibrium model case, and erosion
and deposition rates given by [21] (also in [6, 18]), namely

D = vscb and E = vsψ0Es,

where vs is the settling velocity and cb is the fractional concentration of suspended sediment near
the bed, defined as

cb = 0.4c(ds/Dsg)
1.64 + 1.64c, (4.1)

where Dsg is the geometric mean diameter of suspended sediment particles. In the case of a single
sediment type, (4.1) reduces to cb = 2.04c. Furthermore, the settling velocity is expressed as

vs =

√(
13.95ν

ds

)2

+ 1.09(rs − 1)gds −
13.95ν

ds
,

where ν is the kinematic viscosity (ν = 10−6) of water and Es is the sediment entrainment coeffi-
cient, which is defined as

Es :=
1.3× 10−7Z5

1 + 4.3× 10−7Z5
with Z :=


√
cD|u|
vs

Re0.6 if Re > 2.36,

0.586

√
cD|u|
vs

Re1.23 if Re ≤ 2.36.

where cD is the drag coefficient empirically defined as cD = 24/Re, and Re is the Reynolds number
for the particles:

Re :=
ds
√
(rs − 1)gds
ν

.

Other definitions of these terms could be used in principle (see [1, 7, 30, 33] among others).
Unless specified, hydrostatic pressure is assumed, and the stability restriction

∆t = CFL
∆x

λ
,

with CFL= 0.5 is used, where λ = maxi |λi| is the maximum eigenvalue of Ãi+1/2 (see (3.3)) in
absolute value.

The tests include several alternatives for the models in this paper: equilibrium and non-equi-
librium case, with/without gravitational effects, hydrostatic/non-hydrostatic pressure, erosion-
deposition effects; as well as various methods (well-balanced and non-well-balanced). First, in
Test 1, we compare the results of the proposed method with exact solutions derived for the equi-
librium model with gravitational effects (see [19]) and then, in Test 2, with a novel exact solution
introduced here for the non-equilibrium case. Next, Test 3 is an academic test that shows how the
PVM-2I scheme reduces the numerical diffusion in comparison with HLL and Rusanov methods.
After that, in Tests 4 to 6, results of the equilibrium model are compared with experimental data
for classical scenarios, namely overtopping flow (Test 4) and dam-break configurations (Tests 5
and 6).
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Figure 2. Test 1: approximate solutions zb(x, t) for well-balanced and non-well-balanced methods
(a, b) at simulated time t = 100 s and (c, d) close to steady state obtained by using (a, c) Q0 =
0m2/s and (b, d) Q0 = 10m2/s, for δ = 33◦.

4.2. Test 1: sediment transport in equilibrium including gravitational effects. We test
the proposed numerical scheme for the model in equilibrium without sediment in suspension, for
which an exact solution accounting for gravitational effects in simple configurations is available
(see [19]). Concretely, it is proven that if (ζ(x), Q0, zb(x)) denote the values of the free surface,
discharge, and sediment layer satisfying that qb = 0, with Q0 = const., it is a steady solution of
the equilibrium model if and only if

− sgn(τeff)β∂xzb ≤ tan δ

(
1− sgn(τeff)Cf |Q0|Q0

gdsθc(rs − 1)h2

)
, ∂xζ = α∂xzb,

with α = −Q2
0/(gh

3 −Q2
0) and β = 1+ α/(rs − 1). As particular case, in the steady case (Q0 = 0)

the slope of the sediment matches the angle of repose of the material, and this steady slope varies
with the constant discharge Q0, so the slope remains stable without further erosion.

For this test, we consider the initial conditions

h(x, 0) = 10m, hu(x, 0) = Q0m
2/s, zb(x, 0) =


10 · (x− 5)m if 5 < x ≤ 5.1,

1m if 5.1 < x ≤ 9.9,

10 · (10− x)m if 9.9 < x ≤ 10,

0m otherwise,
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Figure 3. Test 2: initial condition for the erodible bed (zb) and the fixed layer (hg).
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Figure 4. Test 2: comparisons of (a) the erodible bed zb and (b) the fixed layer hg for well-
balanced and non-well-balanced methods at simulated time t = 10 s.

with a repose angle δ = 33◦ and where Q0 is the constant flow discharge. Two configurations will
be considered, the water-at-rest case (Q0 = 0m2/s) and a constant flow Q0 = 10m2/s. The spatial
domain is [0, 15] m with a grid spacing ∆x = 0.03m.

Figure 2 shows the numerical results. Figures 2(a) and (b) correspond to the results after 100 s of
simulated time for different schemes, when the sediment has not reached its steady state yet. The
well-balanced methods behave as expected, namely they slowly approximate the exact equilibrium
solution, and thereby match the performance of PVM-2I, while the non-well-balanced Rusanov and
HLL schemes degrade rapidly due to numerical viscosity. Figures 2(c) and (d) show the behaviour of
the PVM-2I and the well-balanced Rusanov and HLL schemes close to steady state (t = 200000 s).
In both cases, the numerical solution reproduces properly the exact one. The expected equilibrium
profile is maintained successfully. On the contrary, non-well-balanced schemes are not able to
reproduce these solutions due to numerical diffusion. In fact, notice that the lines corresponding
to non-well-balanced Rusanov and HLL methods are nearly flat (close to z = 0m) in the plots in
figures 2(c) and (d).

4.3. Test 2: non-equilibrium model with exact solution. Here, we consider the non-equili-
brium model with no gravitational effects and derive a novel exact solution in a simplified configu-
ration, where both the flow depth h(x, t) and the velocity u(x, t) remain constant in space and time.
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First, we assume that there is no suspended sediment. Under these conditions, the Shields param-
eter θ(h, u) also remains constant, and therefore the bedload transport velocity vb is spatially and
temporally uniform. Consequently, the governing equation for the evolution of the mobile sediment
layer thickness, hm, simplifies to

∂thm + avb∂xhm = η̇e − hmb with a :=

√
gds(rs − 1)

1− ψ0
and b :=

√
gds(rs − 1)kd

ds
.

Previous equation is a transport equation with a source term. Its exact solution is given by

hm(x, t) =
η̇e
b
+

(
hm,0(x− avbt)−

η̇e
b

)
e−bt.

being hm,0(x) = hm(x, 0) the initial condition. Thus, the term hm,0(x − avbt) represents a wave
propagating through the domain with velocity avb. Roughly speaking, this wave propagates much
more slowly than the rate at which its amplitude decays due to the exponential term. Furthermore,
if θ ≤ θc, and hence η̇e = 0, the wave remains stationary. The solution is exact under the assumption
that h(x, t), u(x, t), zb(x, t), and hm,0(x) remain constant. However, if hm,0(x) varies in space we
get a semi-analytical solution. Actually, a non-uniform function hm,0(x) leads to a non-constant
bed elevation zb(x, t) given by the solution of

∂tzb = −avb∂xhm.

Thus, variations in hm,0(x) induce deviations in zb(x, t), and consequently, h(x, t) and u(x, t) are
no longer strictly constant but small perturbations appear.

On the other hand, regardless of the initial condition hm,0(x), the system evolves towards an
equilibrium state as t→ ∞, given by

hm =
ke

1− ψ0

ds
kd

(θ − θc)+.

This implies that in the long time, the mobile sediment layer thickness stabilizes according to the
equilibrium entrainment and deposition dynamics.

The solutions for the immobile sediment layer thickness hg and bed elevation zb are given by

hg(x, t) = hg,0(x) +
η̇e
b
(e−bt − 1) + b

∫ t

0
hm,0(x− avbτ)e

−bτ dτ,

zb(x, t) = hg,0(x) + hm,0(x− avbt)e
−bt + b

∫ t

0
hm,0(x− avbτ)e

−bτ dτ.

with hg,0(x) = hg(x, 0). Assuming avb ≪ b, we approximate hm,0(x−avbt) ≈ hm,0(x), which yields

hg(x, t) = hg,0(x) +

(
hm,0(x)−

η̇e
b

)
(1− e−bt) +O(avb),

zb(x, t) = zb,0(x) +O(avb/b),

where zb,0(x) := hg,0(x)+ hm,0(x). This result suggests that zb remains almost constant over time.
By integrating by parts, we can further refine the solution. By using

b

∫ t

0
hm,0(x− avbτ)e

−bτ dτ = −hm,0(x− avbτ)e
−bτ

∣∣∣t
0
− avb

∫ t

0
h′m,0e

−bτ dτ,
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Figure 5. Test 3: solutions of the erodible bed (zb) for well-balanced and non-well-balanced
methods at simulated times (a) t = 100 s and (b) t = 2000 s.

where h′m,0 := dhm,0/dz with z = x− avbt, and again assuming avb ≪ b, we obtain the first-order
correction

hg(x, t) = hg,0(x) +

(
hm,0(x)−

η̇e
b
− avb

b
h′m,0(x)

)
(1− e−bt) +O((avb/b)

2),

zb(x, t) = zb,0(x)−
avb
b
h′m,0(1− e−bt) +O((avb/b)

2).

These corrections might be systematically improved by iterating the integration-by-parts process.
In the case of sediment in suspension, which is not considered in this test, the solution generalizes

as

hm(x, t) =
d

b
+

(
hm,0(x− avbt)−

d

b

)
e−bt

with

a :=

√
gds(rs − 1)

1− ψ0
, b :=

√
gds(rs − 1)kd

ds
, and d := η̇e −

E −D

1− ψ0
.

We test the numerical scheme for the case with no suspended sediment and with initial conditions

h(x, 0) = 8m, hu(x, 0) = 10m2/s, zb(x, 0) = 2m, hg(x, 0) = 1 +
1

10
e−

(x−30)2

20 m

We consider the domain [0, 60]m with ∆x = 0.1m. This is a fast test, so t = 10 s is sufficient time to
study the behaviour of the solution and the schemes. The initial condition for zb and hg is depicted
in Figure 3, and Figure 4 shows the comparison between semi-analytical and numerical solutions at
t = 10 s. We see that the solutions of PVM-2I scheme and the well-balanced versions of HLL and
Rusanov methods are in close agreement, demonstrating the accuracy of the numerical schemes.
On the contrary, non-well-balanced methods exhibit non-physical erosion and fail to reach a steady
state. The solution continues to erode on time, eventually flattening the bottom completely.

4.4. Test 3: “academic” dune transport. We highlight the accuracy of the PVM-2I scheme
and the importance of using well-balanced methods by a simple academic test such as the transport
of a simple dune. Moreover, under the assumption h≫ zb, one may assume the equilibrium regime
for the system and

h = A− zb, and hu = const.,
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Figure 6. Test 4: initial condition for the free surface (zb + h) and sediment bed (zb) in the
experiment of [34].

where A ∈ R is a constant such that A > zb. These expressions can be replaced in the equations for
zb and hg, which are subsequently solved numerically. So, we get an approximate semi-analytical
solution. It is important to remark that the modified system exhibits eigenvalues that differ from
the original ones.

Here we consider the initial conditions

h(x, 0) = 10 − zb(x, 0) m, hu(x, 0) = 10m2/s, zb(x, 0) = 2e−(x−50)2 m,

and the Manning coefficient is taken here as n = 0.05 to increase the transport rate and exhibit
the differences between the various schemes. The simulation domain spans [0, 100]m with spatial
resolution ∆x = 0.02m.

Figure 5 shows the dune evolution at simulated times t = 100 s and t = 2000 s along with
the approximate semi-analytical solution. On the one hand, the numerical solution of the PVM-
2I scheme is the closest to the semi-analytical reference solution. This property highlights its
accuracy to reproduce the sediment evolution compared to the well-balanced Rusanov and HLL
schemes, where we recall that these schemes are identical for the equations of fluid variables. We
observe that the non-well-balanced schemes do not reproduce these solutions as a consequence of
numerical diffusion. This behaviour lends further support to the proposed well-balanced correction
and serves as a strong validation of the proposed PVM-2I scheme for such problems. On the other
hand, the schemes Rusanov-WB and HLL-WB, although they are more diffusive than PVM-2I,
acceptably approximate the dune evolution. The main advantage of the Rusanov-WB and HLL-
WB schemes is that they are conceptually simpler and accurate methods, and therefore both are
potential candidates for the construction of high-order methods when combined with high-order
techniques such as reconstruction of states (see [9]).

4.5. Test 4: overtopping flow erosion. We now compare our numerical results with experi-
mental data in [34] for a overtopping flow erosion process. The experimental setup consists of a
rectangular channel of length 30m and width 0.3m wide including a trapezoidal sediment dam. A
constant incoming flow (1.23 liters per second) is imposed upstream, and the flow starts to erode the
sediment bed. Erosion/deposition effects are not considered here so that we may directly compare
the effects of numerical dissipation over erosion. It is worth mentioning that some references apply
the sediment transport but not erosion/deposition while others consider just erosion/deposition
effects; cf., e.g., [2, 26].
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Figure 7. Test 4: comparison of experimental data of bed evolution (black with symbols lines)
([34]) at (a) t = 30 s and (b) t = 60 s with results of the equilibrium model with PVM-2I method
with and without erosion/deposition (E/D) terms (dashed and continuous lines, respectively), with
and without gravitational effects (brown and blue lines, respectively).

As domain we take [0, 25]m with ∆x = 0.01m, and the initial conditions (see Figure 6) are given
by

h(x, 0) =

{
0.83m if x ≤ 17.4,

0m if x > 17.4.
, hu(x, 0) = 1.23× 10−3m2/s,

zb(x, 0) =


(x− 15)/3 m if 15 < x ≤ 17.4,

0.8m if 17.4 < x ≤ 17.7,

0.8 + (x− 17.7)/2.5 m if 17.7 < x < 19.7,

0m otherwise.

In this case, we use the porosity ψ0 = 0.35 and the Manning roughness coefficient n = 0.015.
We compare here the results of the equilibrium model.

For this test, gravitational effects do not have a significant influence on the results, as it is shown
in Figure 7. This outcome is partly due to the choice of the test slope smaller than the repose angle
of 25◦, which reduces the influence of gravitational forces on the overall behaviour of the system.

In Figure 8(b) the influence of erosion and deposition (E/D) terms is depicted. We observe
that the results are close to the experimental data when erosion/deposition terms are activated.
Figure 8(c) shows a comparison between the standard Rusanov and HLL solvers and their well-
balanced versions as well as PVM-2I scheme for the model without erosion/deposition terms. As
it is shown, the standard Rusanov and HLL methods produce a faster erosion than the well-
balanced versions. This indicates the presence of non-physical erosion in some regions. Although
this additional erosion might locally resemble the experimental data at t = 60 s, it is incorrect and
cannot be controlled.

4.6. Tests 5 and 6: dam-break problems. In these tests, we reproduce some dam-break ex-
periments reported in [8] and [31]. Dam-break test cases, such as the ones performed here, involve
rapid erosion, and conventional sediment transport formulations usually do not properly capture
its dynamics. For this reason, we omit the sediment transport (advection) term from the equations
(qb = 0) in these tests, which allows us to isolate and analyse the contribution of local bed changes
driven solely by erosion and deposition.
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Figure 8. Test 4: Comparison of bed evolution experimental data (black with symbols lines)
([34]) at (a, c) t = 30 s and (b, d) t = 60 s with results of the equilibrium model with PVM-2I,
Rusanov, and HLL methods (blue, green, and red lines, respectively). Plots (a, b): comparison
of the results with and without erosion/deposition (E/D) terms (dashed and continuous lines);
plots (c, d): comparison of the results of well-balanced and non-well-balanced numerical methods
(dashed and continuous lines, respectively).

Test 5 is based on the experiments conducted in [8] that correspond to the initial condition

h(x, 0) =

{
0.1m if x ≤ 0,

0m otherwise.
, zb(x, 0) = 0m, hu(x, 0) = 0m2/s, c(x, 0) = 0.

The test configuration is a dam break over a low density sediment bottom. The parameters are
the fluid density ρ = 1000 kg/m3, the sediment density ρs = 1048 kg/m3, and the particle diameter
d = 6.1×10−3m. Gravitational effects are not included in this test, as their influence on the results
was found to be negligible. We focus on the influence of non-hydrostatic effects on the results. The
computational domain [−1, 1]m is discretized using a uniform grid spacing ∆x = 0.001m.

Figure 9 shows the comparison between simulations with and without non-hydrostatic pressure
and experimental measurements. As it is observed, the inclusion of non-hydrostatic pressure im-
proves slightly the ability of the model to capture the physical behaviour of the flow, in particular
the water level. Notice that the effect of non-hydrostatic pressures becomes more significant over
time; initially, the impact is minimal, but it becomes more pronounced at later stages.

Test 6 is related to a similar experiment setup presented in [31]. In this experiment, the sediment
properties are ds = 3.9 × 10−3m, ρs = 1580 kg/m3, and porosity ψ0 = 0.47. The roughness
coefficient is specified as n = 0.0165. The simulation was carried out for a total time of Tf = 1.5 s.
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Figure 9. Test 5: comparison between experimental data [8] and numerical results for models
with hydrostatic and non-hydrostatic pressure at simulated times (a) t = 3t0 and (b) t = 5t0,

where t0 =
√
h0/g and h0 is the initial water level before the dam break.
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Figure 10. Test 6: comparison between experimental data ([31]) and numerical results for models
with hydrostatic and non-hydrostatic pressure at simulated times (a) t = 1 s and (b) and t = 1.5 s.

The computational domain for this experiment is defined as [−3, 3]m, which is discretized with
∆x = 0.001m. The initial conditions are given by

h(x, 0) =

{
0.35m if x ≤ 0,

0m otherwise.
hu(x, 0) = 0m2/s, c(x, 0) = 0, zb(x, 0) = 0m.

Figure 10 shows only minor differences between the model with and without non-hydrostatic
pressure at both time steps. While bottom erosion appears nearly identical in both cases, the
non-hydrostatic model captures the water level slightly more accurately on the left side.

5. Conclusions

A simplified depth-averaged model for sediment transport has been proposed. The model in-
corporates the suspended sediment concentration in the fluid, bedload transport, and erosion and
deposition rates between the moving and the static granular layers. Moreover, gravitational ef-
fects in the sediment bed and non-hydrostatic pressure for the fluid are included. Its deduction is
based on the Boussinesq hypothesis and the limit approximation of sediment concentration when
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approaching to the sediment-water interface. The final model satisfies a dissipative energy balance.
Since a general formulation has been employed, the model can be considered either in equilibrium
(erosion rate equals deposition rate) or non-equilibrium conditions.

All stages of the formulation of numerical scheme, corresponding to all physical effects, are
detailed for completeness. The main contribution of the paper concerns the design of well-balanced
schemes for SVE models. Usually, well-balanced schemes are focused on water-at-rest solutions
for Saint-Venant systems with a fixed bottom. However, these schemes are in general no more
well-balanced when they are applied to SVE models since the numerical diffusion for the sediment
bed remains uncontrolled, and therefore the sediment is not steady. In particular, this holds for
the common Rusanov and HLL schemes. Here, two strategies are proposed: (i) a novel PVM-2I
method that can be seen as the combination of the HLL method for the fluid and a second-order
PVM method for the sediment, which accounts for the intermediate wave speed corresponding to
the sediment layer, and it is well-balanced for SVE model by construction; (ii) a correction of
Rusanov and HLL methods in terms of the Shields parameter that makes them well-balanced for
the SVE model. This procedure is physically motivated from the derivation of equilibrium case, in
the sense that the definition of the mobile sediment bed in equilibrium is used for the numerical
discretization of the non-equilibrium model.

Several numerical tests are performed to validate the model and the new well-balanced numerical
schemes. In particular, a novel semi-analytical solution for the non-equilibrium model case is
introduced (see Subsection 4.3), which is useful to validate the model and the schemes. After some
academic tests, where we show that the PVM-2I method is less diffusive than the Rusanov and
HLL methods (see Test 3), comparisons with experimental data for overtopping flow erosion and
dam break configurations are performed. We have seen that gravitational effects play a key role to
preserve steady states with physical meaning (see Test 1), whereas they have a small influence in
other cases, as in overtopping flow erosion experiments (Test 4).

Concerning the overtopping flow erosion test (Test 4) we show that non-well-balanced methods
are more accurate than well-balanced methods because of the uncontrolled numerical diffusion. So,
it is important to point out that this cannot be considered as correct despite of being closer to
the experimental data. Rather, results suggest that the model should be improved in order to
reproduce these experimental data. We have also shown that considering erosion and deposition
terms between the bedload layer and the sediment concentrations in the fluid improves greatly the
results in comparison with experimental data.

We also study the influence of non-hydrostatic pressure in the fluid for two dam-break problems
(Tests 5 and 6), where the non-hydrostatic effects improve the results of the water surface. In
this test, we have only considered erosion/deposition effects and not bedload transport, since the
combination of both produces too much erosion. Note that for this test there is a strong fluid-
sediment interaction. This scenario is far from the assumptions made to derive classical solid
transport discharge formulas in SVE models.

As final conclusion, we point out that, up to our knowledge, this is the first time that well-
balanced versions of Rusanov and HLL methods have been proposed for Saint-Venant-Exner type
models. Furthermore, their extensions to high-order methods should be straightforward by using
high-order state reconstructions techniques, which is a future extension of this work.
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[21] J. C. González-Aguirre, M. J. Castro, and T. Morales de Luna. A robust model for rapidly varying flows over
movable bottom with suspended and bedload transport: Modelling and numerical approach. Advances in Water
Resources, 140:103575, 2020.

[22] E. Guerrero Fernández, M. Castro Dı́az, Y. Wei, and C. Moore. Modeling sediment movement in the shallow-
water framework: A morpho-hydrodynamic approach with numerical simulations and experimental validation.
Ocean Modelling, 192:102445, Dec. 2024.

[23] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic
conservation laws. SIAM Rev., 25(1):35–61, 1983.

[24] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics.
Cambridge University Press, Cambridge, 2002.

[25] X. Liu, A. Mohammadian, A. Kurganov, and J. A. Infante Sedano. Well-balanced central-upwind scheme for a
fully coupled shallow water system modeling flows over erodible bed. Journal of Computational Physics, 300:202–
218, 2015.

[26] S. Mart́ınez-Aranda, J. Fernández-Pato, and P. Garćıa-Navarro. Non-equilibrium bedload transport model ap-
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