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c GIMNAP-Departamento de Matemáticas, Universidad del Bı́o Bı́o, Avenida Collao 1202, 4051381,

Concepción Chile
dCI2MA-Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile.

Abstract

In this work we propose and analyze the well-posedness a new class of macroscopic vehicular
traffic model described by a scalar nonlocal conservation law that simultaneously incorpo-
rates both upstream and downstream effects in the flow dynamics. Unlike nonlocal models
previously described in the literature, which only account for downstream density averages
(look-ahead behavior), the proposed model introduces an additional term depending on an
upstream average (look-behind), allowing for a more realistic representation of anticipatory
driver behavior under high-density conditions. Inspired by the multiplicative flux proposed
in [I. Karafyllis, D. Theodosis, and M. Papageorgiou. Analysis and control of a non-local pde
traffic flow model. International Journal of Control, 95(3):660–678, 2022], our model general-
izes and adapts such ideas to an entropy weak solution framework, allowing for the presence
of discontinuities and shock waves. The considered flux takes the form ρ g(ρ)W (R̂δ)V (Rη),
where the nonlocal terms R̂δ and Rη represent backward- and forward-looking spatial aver-
ages of the density, respectively, and the functions W and V encode the drivers’ responses
to these observations. The main novelty of this work lies in establishing the existence and
uniqueness theory for entropy weak solutions, together with a rigorous proof of Lipschitz con-
tinuous dependence of solutions not only on the initial data, but also on the kernel functions,
under reasonable structural assumptions on the flux components. The proofs are achieved
through the design of a conservative numerical scheme that preserves key structural proper-
ties of the continuous model, such as maximum principle, mass conservation, BV estimates,
and L1-stability. Finally, we present numerical experiments that illustrate the behavior of
solutions and the qualitative impact of nonlocal terms on traffic dynamics.
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1. Introduction

1.1. Scope

We are interested in proving the existence and uniqueness of entropy weak solutions for
nonlocal conservation laws of the following type

∂tρ(t, x) + ∂x

(
ρ(t, x)g(ρ(t, x))W (R̂δ(t, x))V (Rη(t, x))

)
= 0, (t, x) ∈ (R+,R) (1)

ρ(0, x) = ρ0(x), (2)

with initial condition ρ0 ∈ L1∩BV(R; [0, ρmax]) and where R̂δ and Rη correspond to nonlocal
terms defined as

R̂δ(t, x) := (ρ ∗ ω̂δ)(t, x) =

∫ x

x−δ
ρ(t, y)ω̂δ(x− y)dy, (3)

Rη(t, x) := (ρ ∗ ωη)(t, x) =

∫ x+η

x
ρ(t, y)ωη(y − x)dy. (4)

When ρ represents the density of cars, Eq (1) is a generalization of the nonlocal LWR traffic
model [3, 9, 10, 14, 18, 20], where V (Rη) corresponds to the mean speed downstream and
the term W (R̂δ) corresponds to the mean speed upstream, ω̂δ(·), ωη(·) are kernel functions
detailed later. The presence of W introduces an additional behavioral mechanism whereby
drivers also take into account the density of vehicles behind them. This upstream depen-
dence, often referred to as a nudging effect [19], has been recently introduced in the literature
to enhance the realism and stability of macroscopic traffic models [13]. The vehicle nudg-
ing behavior suggests that vehicles in the traffic flow may induce a ‘pushing effect’ on their
preceding vehicles. In other words, while the traditional vehicle-following behavior results
in look-ahead interaction, the nudging behavior may result in look-behind interaction: the
combination of the two effects would thus result in bidirectional inter-vehicle interactions [17].

1.2. Related work

Most of the nonlocal traffic flow models existing in the literature [2, 3, 9, 10, 14] account
exclusively on downstream information, ignoring the possible impact of upstream traffic on
drivers’ behavior. Recent studies have shown that this type of influence is especially relevant
in dense congestion scenarios. In particular, Karafyllis et al. [13] demonstrated that the
introduction of upstream terms can stabilize traffic flow on ring roads, proposing control
mechanisms based on specific feedback design problems. In addition, in that work, the authors
provided conditions that guarantee the existence and uniqueness of classical solutions for their
model on a ring road. On the other hand, in [12] the authors identify a threshold condition
for shock formation for traffic flow models with Arrhenius look-ahead-behind dynamics with
concave-convex flux of the form f(u, ū, ũ) = u(1 − u)γe−ū+ũ, with γ ≥ 1 and e−ū, eũ called

the Arrhenius-type slow-down and nudging factors, respectively; ū(t, x) =

∫ x+γa

x
Kau(t, y)dy

and ũ =

∫ x

x−γb

Kbu(t, y)dy, where γa and γb are the horizon ahead and behind of drivers,

respectively, and Ka, Kb represent constant proportional to positive interaction strengths.
In the same work, to perform the analysis, the authors consider γa = γb = Ka = Kb =
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1 and γ = 2. Likewise, in [16] the authors propose a traffic flow model with look-ahead
relaxation and look-behind intensification by inserting look-ahead intensification dynamics to
the flux. Finite-time shock formation conditions with various types of interaction potentials
are identified in the proposed model.

Although the present work and [13] share the general structure of a nonlocal macroscopic
model with a multiplicative flux depending on both upstream and downstream density av-
erages, there are substantial differences in their objectives, theoretical framework, and scope
of results. In [13], the analysis is carried out on a periodic domain (ring road) and focuses
on sufficiently regular classical solutions (W 2,∞), with the main goal of establishing local
exponential stability conditions around equilibrium states through Lyapunov techniques and
control theory. In that setting, the upstream term is primarily interpreted as a feedback (nudg-
ing) mechanism for the design of control strategies aimed at mitigating congestion waves. In
contrast, the present work addresses entropy weak solutions in L∞∩BV, allowing for the
presence of discontinuities and shock waves, and establishes results on existence, uniqueness,
and Lipschitz continuous dependence of solutions with respect to both the initial data and
the kernel functions, without assuming proximity to an equilibrium state. Furthermore, while
in [13] the numerical experiments are mainly used to illustrate stabilization scenarios under
active control, in the present work conservative numerical schemes are developed to preserve
structural properties of the continuous model and are employed to investigate the qualitative
influence of bidirectional upstream–downstream interactions on the formation and mitigation
of traffic waves in more general settings.

1.3. Outline of the paper

This work is organized as follows: In Section 2 we present the necessary assumptions on
the parameters of the studied problem as well as the main results. In Section 3 we introduce
the numerical scheme and derive some of its important properties such as the maximum
principle, BV and L1-Lipschitz continuity in time estimates. These imply the convergence
of the proposed scheme, which in turn covers the existence part of the well-posedness of the
governing equation. Afterwards, Lipschitz continuous dependence of solutions to the problem
on initial data, and kernels ωη, ω̂δ is proved in Section 4 using Kružkov’s doubling of variables
technique. Finally, in Section 5 we present some numerical tests, analyzing the L1 error of
approximate solutions of the problem studied. In Appendix we collects the derivation of some
estimates necessary throughout the paper.

2. Main results

Throughout the paper, we will denote I(r, s) := [min{r, s},max{r, s}], for any r, s ∈ R,
∥ · ∥L1(R) = ∥ · ∥L1 and also ∥ · ∥L∞(R) := ∥ · ∥. In addition, we will require the following
assumptions to hold:

Assumptions 2.1. The nonlocal conservation law (1) is studied under the following assump-
tions:

i) V ∈ C2([0, ρmax];R+), with 0 ≤ V (ρ) ≤ Vmax, V
′(ρ) ≤ 0, ρ ∈ [0, ρmax];

ii) W ∈ C2([0, ρmax];R+), with 1 ≤ W (ρ) ≤ Wmax, W
′(ρ) ≥ 0, ρ ∈ [0, ρmax];

iii) g ∈ C1([0, ρmax];R+), with g′(ρ) ≤ 0, for ρ ∈ [0, ρmax] and g(ρmax) = 0;
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iv) ωη ∈ C2([0, η];R+) with ω′
η(x) ≤ 0,

∫ η
0 ωη(x)dx = 1, ∀η > 0.

v) ω̂δ ∈ C2([0, δ];R+) with ω̂′
δ(x) ≤ 0,

∫ δ
0 ω̂δ(x)dx = 1, ∀δ > 0.

The solutions of problem (1)-(2) are intended in the following sense.

Definition 1. Let ρ0 ∈ (L1 ∩ BV)(R; [0, ρmax]). A function ρ ∈ C([0, T ];L1(R; [0, ρmax])),
with ρ(t, ·) ∈ BV(R; [0, ρmax]) for t ∈ [0, T ] is an entropy weak solution to Eq. (1) with initial
datum ρ0 if and only if for all φ ∈ C1

c([0, T [×R;R+) and k ∈ R∫ T

0

∫
R

(
|ρ− k|∂tφ+ sgn(ρ− k)

(
ρg(ρ)− kg(k)

)
W (R̂δ)V (Rη)∂xφ

− sgn(ρ− k)kg(k)∂x(W (R̂δ)V (Rη))φ
)
dx dt

+

∫
R

∣∣ρ0(x)− k
∣∣φ(0, x) dx ≥ 0.

The following theorem, which states the well-posedness of the model (1)-(2), is the main
result of this paper.

Theorem 1. Let ρ0 ∈ BV(R; [0, ρmax]) and Assumptions 2.1 hold, then for all T > 0 there
exists a unique entropy weak solution ρ ∈ (L1 ∩L∞ ∩BV)([0, T ]×R; [0, ρmax])) of (1)-(2) in
the sense of Definition 1.

The proof of Theorem 1 is standard, existence is based on a construction of a converging
sequence of approximate solutions defined by means of a numerical scheme based on the finite
volume method, and uniqueness is proved by means of Lipschitz continuous dependence of
weak entropy solutions, not only on initial data (Theorem 2), but also on the kernel functions
ωη and ω̂δ (Theorem 3).

3. Existence of solutions for model (1)-(2)

In this section, we construct approximate solution of the model (1)-(2), derive uniform
bounds on these, and provide a discrete entropy weak inequality. These ingredients allow us,
by means of the Helly’s Compactness Theorem, to guarantee convergence and existence of
entropy weak solutions of (1)-(2).

3.1. Numerical discretization

We consider a uniform space mesh with cell sizes ∆x > 0. For any j ∈ Z, let xj+1/2 =
(j + 1/2)∆x be the cell interfaces and xj = j∆x the center of the cell Cj :=]xj−1/2, xj+1/2].
Next, we take a time step ∆t > 0 subject to a Courant-Friedrichs-Levy (CFL) condition,
which will be specified later. For a fixed time horizon T > 0, we set NT ∈ N such that
NT∆t ≤ T < (NT + 1)∆t and we define the time mesh as tn = n∆t, for n = 0, . . . , NT .
Finally, we set λ := ∆t/∆x.

We approximate the initial datum (2) as

ρ0j =
1

∆x

∫ xj+1/2

xj−1/2

ρ0(x)dx, j ∈ Z,
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and we construct a finite volume approximate solution for Eq (1) as a piecewise constant
function defined as

ρ∆(t, x) = ρnj , (t, x) ∈ [tn, tn+1[×Cj .

In order to approximate the nonlocal terms (3) and (4) in the flux function of Eq (1), if
ω̂δ and ωη satisfy Assumption 2.1-(iv, v), first we define

R̂δ(t, x) := [ρ∆ ∗ ω̂δ](t, x), Rη(t, x) := [ρ∆ ∗ ωη](t, x),

and next we choose Nη := ⌊η/∆x⌋ ∈ N, Nδ := ⌊δ/∆x⌋ ∈ N, and use a first order quadrature
formula to approach these nonlocal terms in the cell interfaces xj+ 1

2
, for all j ∈ Z,

Rn
η, j+1/2 := ∆x

Nη−1∑
k=0

ωk
ηρ

n
j+k+1, where Rη(t

n, xj+ 1
2
) = Rn

η, j+ 1
2

+O(∆x) (5)

R̂n
δ, j+1/2 := ∆x

Nδ−1∑
k=0

ω̂k
δ ρ

n
j−k−1, where R̂δ(t

n, xj+ 1
2
) = R̂n

δ, j+ 1
2

+O(∆x), (6)

where we define

ωk
η :=

1

∆x

∫ (k+1)∆x

k∆x
ωη(y)dy, k = 0, 1, . . . , Nη − 1,

ω̂k
δ :=

1

∆x

∫ (k+1)∆x

k∆x
ω̂δ(y)dy, k = 0, 1, . . . , Nδ − 1.

In this way, we can define the following Hilliges-Weidlich (HW)-type numerical scheme
[4, 5, 11]

ρn+1
j = ρnj − λ

(
Fn
j+1/2 − Fn

j−1/2

)
, j ∈ Z, (7)

where the numerical flux Fn
j+1/2 is defined as

Fn
j+1/2 = ρnj g

n
j+1W

n
j+1/2V

n
j+1/2, (8)

with gnj+1 = g(ρnj+1) and the nonlocal terms denoted by Wn
j+1/2 := W (R̂n

δ, j+1/2) and V n
j+1/2 :=

V (Rn
η, j+1/2).

Now, we are going to prove that the sequence of approximate solutions ρ∆(t, x) satisfies
the assumptions of Helly’s compactness Theorem.

3.2. Uniform bounds

Lemma 3.1 (Maximum principle). If Assumptions 2.1 and the following CFL condition hold,

∆t ≤ ∆x

∥W∥
(
∥g∥∥V ∥+ ρmax

(
∥g′∥∥V ∥+∆xω0

η∥g∥∥V ′∥
)) , (9)

then if ρ0(x) ∈ [0, ρmax], for x ∈ R, the approximate solutions satisfy

0 ≤ ρnj ≤ ρmax, for all j ∈ Z and n = 1, . . . , NT . (10)
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Proof. The proof is done by induction and follows the same idea of [4]. We assume that
0 ≤ ρnj ≤ ρmax, for all j ∈ Z and n = 1, . . . , NT , and we prove 0 ≤ ρn+1

j ≤ ρmax. Indeed,

ρn+1
j = ρnj − λ

[
ρnj g

n
j+1W

n
j+1/2V

n
j+1/2 − ρnj−1g

n
j W

n
j−1/2V

n
j−1/2

]
≤ ρnj + λρmaxg

n
j W

n
j−1/2V

n
j−1/2

≤ ρnj + λρmaxWmaxg
n
j V

n
j−1/2,

now, we denote G(ρnj , ρ
n
j+1, . . . , ρ

n
j+Nη−1) = ρmaxWmaxg

n
j V

n
j−1/2 and note that because of

Assumptions 2.1 iii) we have

G(ρmax, ρ
n
j+1, . . . , ρ

n
j+Nη−1) = ρmaxWmaxg(ρmax)V

n
j−1/2 = 0

and also by means of Assumptions 2.1 i), G is a non-increasing function with respect to each
of its variable, indeed

∂1G = ρmaxWmax

(
g′jV

n
j−1/2 + gjV

′(Rn
η,j−1/2)∂1R

n
η,j−1/2

)
= ρmaxWmax

(
g′jV

n
j−1/2 + gjV

′(Rn
η,j−1/2)∆xω0

η

)
≤ 0,

and for i = 2, . . . , Nη − 1

∂iG = ρmaxWmaxg
n
j V

′(Rn
η,j−1/2)∆xωi

η ≤ 0.

Thus, taking into account these facts we get

ρn+1
j ≤ ρnj + λ

(
G(ρnj , ρ

n
j+1, . . . , ρ

n
j+N−1)−G(ρmax, ρ

n
j+1, . . . , ρ

n
j+N−1)

)
= ρnj − λ∂1G(νnj )(ρmax − ρnj )

=
(
1 + λ∂1G(νnj )

)
ρnj − λ∂1G(νnj )ρmax

≤ ρmax,

for νnj ∈ I((ρnj , ρnj+1, . . . ρ
n
j+N−1)), (ρmax, ρ

n
j+1, . . . ρ

n
j+N−1)). Observe that due to the CFL

condition (9)
1 + λ∂1G(νnj ) ≥ 0.

On the other hand, for computing the lower bound in Eq (10), we consider again the numerical
scheme Eq (7) and Assumption 2.1 iii), so for all j ∈ Z, n = 1, . . . , NT , we obtain the following
estimate

ρn+1
j ≥ ρnj − λρnj g

n
j+1W

n
j+1/2V

n
j+1/2

= ρnj + λ
(
ρnj g(ρmax)W

n
j+1/2V

n
j+1/2 − ρnj g

n
j+1W

n
j+1/2V

n
j+1/2

)
= ρnj + λρnjW

n
j+1/2V

n
j+1/2g

′(ζ)
(
ρmax − ρnj+1

)
≥

(
1 + λWn

j+1/2V
n
j+1/2g

′(ζ)ρmax

)
ρnj

≥ 0.

In the previous estimates, we take ζ ∈ I(ρnj+1, ρmax) which is obtained by means of the Mean
Value theorem (used in the third line) and we have used the CFL condition (9) in the second
to last line.

6



Lemma 3.2 (L1-bound). Consider ρ0 ∈ L1(R; [0, ρmax]). If Assumptions 2.1 and CFL
condition (9) hold, then the approximate solutions satisfy the following property

∥ρ∆(t, ·)∥L1 = ∥ρ0∥L1 , for all t > 0. (11)

Proof. By induction, assume that (11) hold for tn = n∆t, then because of the positivity
property proved in Lemma 3.1 and the conservative form of the numerical scheme (7), we
have the following estimates for the L1 norm of the approximate solutions

∥ρ∆(tn+1, ·)∥L1 = ∥ρn+1∥L1

= ∆x
∑
j∈Z

ρn+1
j

= ∆x
∑
j∈Z

(
ρnj − λ

(
ρnj g

n
j+1W

n
j+1/2V

n
j+1/2 − ρnj−1g

n
j W

n
j−1/2V

n
j−1/2

))
= ∆x

∑
j∈Z

ρnj −∆t
∑
j∈Z

ρnj g
n
j+1W

n
j+1/2V

n
j+1/2 +∆t

∑
j∈Z

ρnj−1g
n
j W

n
j−1/2V

n
j−1/2

= ∆x
∑
j∈Z

ρnj −∆t
∑
j∈Z

ρnj g
n
j+1W

n
j+1/2V

n
j+1/2 +∆t

∑
j∈Z

ρnj g
n
j+1W

n
j+1/2V

n
j+1/2

= ∆x
∑
j∈Z

ρnj ,

now by means of an iterative argument, we get the desired result (11).

Lemma 3.3 (BV estimate in space). Let Assumptions 2.1 and CFL (9) hold, and consider
ρ0 ∈ (L1 ∩ BV)(R; [0, ρmax]), then the numerical solutions constructed by means of the nu-
merical scheme (7) satisfy the following estimate, for all n = 0, . . . , NT ,

∑
j∈Z

|ρnj+1 − ρnj | ≤ eTH1

∑
j∈Z

|ρ0j+1 − ρ0j+1|+
H2

H1
(eTH1 − 1)

 (12)

with H1, H2 positive constants depending on model parameters, which are defined as below,

H1 =
(
∥W∥∥V ′∥K1 + ∥V ∥∥W ′∥K2

)
(∥g∥+ ρmax∥g′∥) + ∥g∥ρmax∥V ′∥∥W∥max{ω0

η, ω̂
0
δ},

H2 = ∥g∥
[
2∥W∥∥V ′′∥K2

1 + 2∥V ∥∥W ′′∥K2
2 + ∥V ′∥

(
∥W ′∥K1K2 + ∥W∥K3

)
+∥W ′∥∥V ′∥K1K2 + ∥V ∥K4

]
∥ρn∥L1 ,

and K1, K2, K3, K4, computed in the Appendix section, defined as follows

K1 = ∥ω′
η∥∥ρn∥L1 + 2ρmaxω

0
η,

K2 = ∥ω̂′
δ∥∥ρn∥L1 + 2ρmaxω̂

0
δ ,

K3 = ∥ω′′
η∥∥ρ∥L1 + 2ρmax∥ω′

η∥,
K4 = ∥ω̂′′

δ ∥∥ρ∥L1 + 2ρmax∥ω̂′
δ∥.
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Proof. Let us first recall the following inequalities, which will be useful for getting the desired
result (12); those estimates are computed in the Appendix (Section 7),

|Rn
η,j+1/2 −Rn

η,j−1/2| ≤ ∆xK1,

|R̃n
j+1 − R̃n

j | ≤ 2∆xK1,

|R̂n
δ,j+1/2 − R̂n

δ,j−1/2| ≤ ∆xK2, (13)

|R̄n
j+1 − R̄n

j | ≤ 2∆xK2,

|Rn
η,j+3/2 − 2Rn

η,j+1/2 +Rn
η,j−1/2| ≤ (∆x)2K3 +∆xω0

η|ρnj+1 − ρnj |,

|R̂n
δ,j+3/2 − 2R̂n

δ,j+1/2 + R̂n
δ,j−1/2| ≤ (∆x)2K4 +∆xω̂0

δ |ρnj+1 − ρnj |.

In addition, we have the following estimates, which can be proven by following the proof of
[8, Lemma 3.1] and using the fact that the total integral of kernel functions is unitary, as
established in Assumption 2.1 iv)− v),∑

j∈Z
|Rη,j+1/2 −Rη,j−1/2| ≤

∑
j∈Z

|ρnj+1 − ρnj |, (14)

∑
j∈Z

|R̂δ,j+1/2 − R̂δ,j−1/2| ≤
∑
j∈Z

|ρnj+1 − ρnj |. (15)

The proof of Lemma 3.3 follows the ideas in [4, Lemma 4.3]. Based on the numerical
scheme (7), we can write ρn+1

j+1 as

ρn+1
j+1 = ρnj+1 − λ

[
ρnj+1g

n
j+2W

n
j+3/2V

n
j+3/2 − ρnj g

n
j+1W

n
j+1/2V

n
j+1/2

]
, (16)

and now computing the difference ρn+1
j+1 − ρn+1

j , we obtain

ρn+1
j+1 − ρn+1

j = An
j − λBn

j

where

An
j := ρnj+1 − ρnj − λ

[
ρnj+1g

n
j+2W

n
j+3/2V

n
j+3/2 − ρnj g

n
j+1W

n
j+1/2V

n
j+1/2 − ρnj g

n
j+1W

n
j+3/2V

n
j+3/2

+ρnj−1g
n
j W

n
j+1/2V

n
j+1/2

]
,

Bn
j := ρnj g

n
j+1W

n
j+3/2V

n
j+3/2 − ρnj g

n
j+1W

n
j+1/2V

n
j+1/2 + ρnj−1g

n
j W

n
j−1/2V

n
j−1/2 − ρnj−1g

n
j W

n
j+1/2V

n
j+1/2.

Consider first the term An
j , adding and subtracting the terms ρnj+1g

n
j+1V

n
j+3/2W

n
j+3/2 and

ρnj g
n
j V

n
j+1/2W

n
j+1/2, and doing straightforward computations on An

j , allows us to rewrite this
term as follows

An
j = (ρnj+1 − ρnj )− λ

(
ρnj+1g

′(ξnj+3/2)V
n
j+3/2W

n
j+3/2(ρ

n
j+2 − ρnj+1) + gnj+1V

n
j+3/2W

n
j+3/2(ρ

n
j+1 − ρnj )

−ρnj g
′(ξnj+1/2)V

n
j+1/2W

n
j+1/2(ρ

n
j+1 − ρnj )− gnj V

n
j+1/2W

n
j+1/2(ρ

n
j − ρnj−1)

)
=

(
1− λ

(
gnj+1W

n
j+3/2V

n
j+3/2 − ρnj g

′(ξnj+1/2)W
n
j+1/2V

n
j+1/2

)) (
ρnj+1 − ρnj

)
−λρnj+1g

′(ξn
j+ 3

2

)Wn
j+ 3

2

V n
j+ 3

2

(
ρnj+2 − ρnj+1

)
+ λgnj W

n
j+1/2V

n
j+1/2

(
ρnj − ρnj−1

)
, (17)
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where ξnj+1/2 ∈ I(ρnj , ρnj+1) and ξnj+3/2 ∈ I(ρnj+1, ρ
n
j+2). Note that all terms on the right hand

side in (17) are positive, in particular the first term is positive because of the CFL condition
(9), and in this way if we take absolute value and sum over all j ∈ Z in (17), we get the
following estimate ∑

j∈Z
|An

j | ≤
∑
j∈Z

|ρnj+1 − ρnj |. (18)

On the other hand, doing some computations on Bn
j , we can rewrite this term as follows

Bn
j = ρnj g

′(ξnj+1/2)
(
Wn

j+3/2V
′(R̃n

j+1)
(
Rn

η,j+3/2 −Rn
η,j+1/2

)
+V n

j+1/2W
′(R̄n

j+1)
(
R̂n

δ,j+3/2 − R̂n
δ,j+1/2

)) (
ρnj+1 − ρnj

)
+gnj

(
Wn

j+3/2V
′(R̃n

j+1)
(
Rn

η,j+3/2 −Rn
η,j+1/2

)
+V n

j+1/2W
′(R̄n

j+1)
(
R̂n

δ,j+3/2 − R̂n
δ,j+1/2

)) (
ρnj − ρnj−1

)
+ρnj−1g

n
j

[
Wn

j+3/2V
′′( ˜̃Rn

j+1/2)
(
Rn

η,j+3/2 −Rn
η,j+1/2

)(
R̃n

j+1 − R̃n
j

)
+V n

j+1/2W
′′( ¯̄Rn

j+1/2)
(
R̂n

δ,j+3/2 − R̂n
δ,j+1/2

) (
R̄n

j+1 − R̄n
j

)
+V ′(R̃n

j )
(
W ′(R̄n

j+1)
(
R̂n

δ,j+3/2 − R̂n
δ,j+1/2

)(
Rn

η,j+3/2 −Rn
η,j+1/2

)
+Wn

j+1/2

(
Rn

η,j+3/2 − 2Rn
η,j+1/2 +Rn

η,j−1/2

))
+W ′(R̄n

j )
(
V ′(R̃n

j )
(
Rn

η,j+1/2 −Rn
j−1/2

)(
R̂n

δ,j+3/2 − R̂n
δ,j+1/2

)
+V n

j−1/2

(
R̂n

δ,j+3/2 − 2R̂n
δ,j+1/2 + R̂n

δ,j−1/2

))]
,

where R̃n
j ∈ I(Rn

η,j−1/2, R
n
η,j+1/2), R̄n

j ∈ I(R̂n
δ,j−1/2, R̂

n
δ,j+1/2),

˜̃Rn
j+1/2 ∈ I(R̃n

j , R̃
n
j+1) and

¯̄Rn
j+1/2 ∈ I(R̄n

j , R̄
n
j+1). Now we take absolute value on both sides of the previous equality,

then we replacing the inequalities (13), (14), (15) and summing over all j ∈ Z we get

λ
∑
j∈Z

∣∣Bn
j

∣∣ ≤ ∆tρmax∥g′∥
(
∥W∥∥V ′∥K1 + ∥V ∥∥W ′∥K2

)∑
j∈Z

|ρnj+1 − ρnj |

+∆t∥g∥
(
∥W∥∥V ′∥K1 + ∥V ∥∥W ′∥K2

)∑
j∈Z

|ρnj − ρnj−1|

∆t∥g∥
[
2∥W∥∥V ′′∥K2

1 + 2∥V ∥∥W ′′∥K2
2

+∥V ′∥
(
∥W ′∥K1K2 + ∥W∥K3

)
+ ∥W ′∥∥V ′∥K1K2 + ∥V ∥K4

]
∆x
∑
j∈Z

|ρnj−1|

+∆tρmax∥g∥∥V ′∥∥W∥max{ω0
η, ω̂

0
δ}
∑
j∈Z

|ρnj+1 − ρnj |

≤ ∆tH1

∑
j∈Z

|ρnj+1 − ρnj |+∆tH2. (19)
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Therefore, collecting the terms in (18) and (19) we obtain the following estimates∑
j∈Z

|ρn+1
j+1 − ρn+1

j | ≤ (1 + ∆tH1)
∑
j∈Z

|ρnj+1 − ρnj |+∆tH2.

A standard iterative procedure provides the desired result (12).

Lemma 3.4 (BV estimate in space and time). Let ρ0 ∈ (L1∩BV)(R; [0, ρmax]), Assumptions
2.1 and the CFL condition (9) hold, then for all T > 0, the numerical solutions constructed
by means of the numerical scheme (7) satisfy the following estimate, for all n = 1, . . . , NT ,

NT−1∑
n=0

∑
j∈Z

∆t|ρnj+1 − ρnj |+ (T −NT∆t)
∑
j∈Z

|ρNT
j+1 − ρNT

j |+
NT−1∑
n=0

∑
j∈Z

∆x|ρnj+1 − ρnj | ≤ TQ(T ),(20)

where

Q(T ) = TV(ρ) +M(T ),

M(T ) =
(
ρmax∥g′∥+ ∥g∥

)
∥V ∥∥W∥eTH1

∑
j∈Z

|ρ0j+1 − ρ0j+1|+
H2

H1
(eT − 1)


+∆t∥g∥

(
∥V ∥∥W ′∥K2 + ∥V ′∥∥W∥K1

)
∥ρn∥L1 .

Proof. By means of (12) we obtain

NT−1∑
n=0

∑
j∈Z

∆t|ρnj+1 − ρnj |+ (T −NT∆t)
∑
j∈Z

|ρNT
j+1 − ρNT

j | ≤ TeTH1

∑
j∈Z

|ρ0j+1 − ρ0j+1|+
H2

H1
(eTH1 − 1)

 .(21)

On the other hand, by means of the scheme (7), adding and subtracting appropriate terms,
we have

|ρn+1
j − ρnj | =

∣∣∣λρnj g′(ξnj+1/2)W
n
j+1/2V

n
j+1/2(ρ

n
j+1 − ρnj ) + λρnj g

n
j V

n
j+1/2

(
Wn

j+1/2 −Wn
j−1/2

)
+λρnj g

n
j W

n
j−1/2

(
V n
j+1/2 − V n

j−1/2

)
+ λgnj W

n
j−1/2V

n
j−1/2

(
ρnj − ρnj−1

)∣∣∣
≤ λρmax∥g′∥∥W∥∥V ∥|ρnj+1 − ρnj |+ λρnj ∥g∥∥V ∥∥W ′∥

∣∣∣R̂n
δ,j+1/2 − R̂n

δ,j−1/2

∣∣∣
+λρnj ∥g∥∥W∥∥V ′∥

∣∣∣Rn
η,j+1/2 −Rn

η,j−1/2

∣∣∣+ λ∥g∥∥W∥∥V ∥
∣∣ρnj − ρnj−1

∣∣
≤ λρmax∥g′∥∥W∥∥V ∥|ρnj+1 − ρnj |+ λ∥g∥∥V ∥∥W ′∥K2∆xρnj

+λ∥g∥∥W∥∥V ′∥K1∆xρnj + λ∥g∥∥W∥∥V ∥
∣∣ρnj − ρnj−1

∣∣ ,
now multiplying by ∆x and summing over all j ∈ Z in the previous inequality, we get

∆x
∑
j∈Z

∣∣∣ρn+1
j − ρnj

∣∣∣ ≤ ∆t
(
ρmax∥g′∥+ ∥g∥

)
∥V ∥∥W∥

∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣

+∆t∥g∥
(
∥V ∥∥W ′∥K2 + ∥V ′∥∥W∥K1

)
∥ρn∥L1

≤ ∆t
(
ρmax∥g′∥+ ∥g∥

)
∥V ∥∥W∥eTH1

∑
j∈Z

|ρ0j+1 − ρ0j |+
H2

H1
(eTH1 − 1)


+∆t∥g∥

(
∥V ∥∥W ′∥K2 + ∥V ′∥∥W∥K1

)
∥ρn∥L1

= ∆tM(T ). (22)
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Next, summing over n ∈ {0, . . . , NT − 1} we get

NT−1∑
n=0

∑
j∈Z

∆x
∣∣∣ρn+1

j − ρnj

∣∣∣ ≤ NT∆tM(T ). (23)

Finally, collecting (21) and (23) obtain the desired estimate (20).

3.3. Discrete entropy inequalities

Next we derive a discrete entropy inequality for the approximate solutions obtained by
means of the scheme (7). This discrete entropy inequality is used in order to prove that the
limit of numerical solutions is indeed a weak entropy solution in the sense of Definition (1).
First, we denote

Gn,k
j+1/2(a, b) := Fn

j+1/2(a ∨ k, b ∨ k)−Fn
j+1/2(a ∧ k, b ∧ k),

where a ∨ b := max{a, b}, a ∧ b := min{a, b} and Fn
j+1/2(a, b) = ag(b)Wn

j+1/2V
n
j+1/2.

Proposition 3.1. Let Assumptions 2.1 and the CFL condition (9) hold, then the approximate
solution computed by means of (7) satisfies the discrete entropy inequality∣∣∣ρn+1

j − k
∣∣∣− ∣∣ρnj − k

∣∣+ λ
(
Gn,k

j+1/2(ρ
n
j , ρ

n
j+1)−Gn,k

j−1/2(ρ
n
j , ρ

n
j+1)

)
+λsgn(ρn+1

j − k)kg(k)
(
Wn

j+1/2V
n
j+1/2 −Wn

j−1/2V
n
j−1/2

)
≤ 0, (24)

for all j ∈ Z, n = 0, . . . , NT − 1 and k ∈ R.

Proof. The proof follows [1, 6] with the appropriate change in the numerical flux. We define

Hn
j (u, p, z) = p− λ

(
Fn
j+1/2(p, z)−Fn

j−1/2(u, p)
)
, (25)

Observe that Hn
j is monotone non-decreasing with with respect to each variable, indeed we

have

∂Hn
j

∂u
= λg(p)Wn

j−1/2V
n
j−1/2 ≥ 0,

∂Hn
j

∂p
= 1− λ

(
g(z)Wn

j+1/2V
n
j+1/2 − ug′(p)Wn

j−1/2V
n
j−1/2

)
≥ 0, by the CFL condition (9),

∂Hn
j

∂z
= −λpg′(z)Wn

j+1/2V
n
j+1/2 ≥ 0.

Observe that we can write the numerical scheme (7) as ρn+1
j = Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1) and note

also that for k ∈ R, Hn
j (k, k, k) = k − λkg(k)

(
Wn

j+1/2V
n
j+1/2 −Wn

j−1/2V
n
j−1/2

)
, and further-

more, we have the identity

Hn
j (ρ

n
j−1 ∨ k, ρnj ∨ k, ρnj+1 ∨ k)−Hn

j (ρ
n
j−1 ∧ k, ρnj ∧ k, ρnj+1 ∧ k)

=
∣∣ρnj − k

∣∣− λ
[
Gn,k

j+1/2(ρj , ρj+1)−Gn,k
j−1/2(ρj−1, ρj)

]
, (26)
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and on the other hand, by monotonicity of the Hn
j map we get

Hn
j (ρ

n
j−1 ∨ k, ρnj ∨ k, ρnj+1 ∨ k)−Hn

j (ρ
n
j−1 ∧ k, ρnj ∧ k, ρnj+1 ∧ k)

≥ Hn
j (ρ

n
j−1, ρ

n
j , ρ

n
j+1) ∨Hn

j (k, k, k)−Hn
j (ρj−1, ρj , ρj+1) ∧Hn

j (k, k, k)

=
∣∣Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)−Hn

j (k, k, k)
∣∣

= sgn(Hn
j (ρ

n
j−1, ρ

n
j , ρ

n
j+1)−Hn

j (k, k, k))×
(
Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)−Hn

j (k, k, k)
)

= sgn(Hn
j (ρ

n
j−1, ρ

n
j , ρ

n
j+1)− k + λkg(k)(Wn

j+1/2V
n
j+1/2 −Wn

j−1/2V
n
j−1/2))×

×
(
Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)− k + λkg(k)(Wn

j+1/2V
n
j+1/2 −Wn

j−1/2V
n
j−1/2)

)
≥ sgn(Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)− k)×

(
Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)− k

+λkg(k)(Wn
j+1/2V

n
j+1/2 −Wn

j−1/2V
n
j−1/2)

)
=
∣∣Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)− k

∣∣
+λ sgn(Hn

j (ρ
n
j−1, ρ

n
j , ρ

n
j+1)− k)kg(k)(Wn

j+1/2V
n
j+1/2 −Wn

j−1/2V
n
j−1/2)

=
∣∣∣ρn+1

j − k
∣∣∣+ λ sgn(ρn+1

j − k)kg(k)(Wn
j+1/2V

n
j+1/2 −Wn

j−1/2V
n
j−1/2), (27)

so, by means of the equations (26) and (27) we get the desired result (24).

4. L1-stability of the entropy weak solutions

The following theorem states the L1-Lipschitz continuous dependence of solutions to (1)
on the initial data.

Theorem 2. Let Assumptions (2.1) hold and let ρ, σ be two entropy solutions to Eq (1) with
initial data ρ0, σ0, respectively, then for any T > 0 there holds

∥ρ(T, ·)− σ(T, ·)∥L1 ≤ eCT ∥ρ0 − σ0∥L1 , (28)

where C is a positive constant depending on the model parameters.

Proof. The proof of Theorem 2 is quite standard and is adapted from [6, Theorem 2.1] with
the appropriate changes in the flux function.

We want to highlight the fact that if we increase the regularity of the parameters in
Assumptions 2.1, as in [7]:

Assumptions 4.1.

i’) V ∈ (C2 ∩W2,∞)(R;R), with 0 ≤ V (ρ) ≤ Vmax, V ′(ρ) ≤ 0, ρ ∈ R;

ii’) W ∈ (C2 ∩W2,∞)(R;R), with 1 ≤ W (ρ) ≤ Wmax, W
′(ρ) ≥ 0, ρ ∈ R;

iv’) ωη ∈ (C2 ∩W1,1 ∩W2,∞)(R;R) with ω′
η(x) ≤ 0,

∫
R
ωη(x)dx = 1, ∀η > 0.

v’) ω̂δ ∈ (C2 ∩W1,1 ∩W2,∞)(R;R) with ω̂′
δ(x) ≤ 0,

∫
R
ω̂δ(x)dx = 1, ∀δ > 0,

12



we get the following result.

Theorem 3. Let Assumptions (4.1) hold and let ρ, σ be two entropy solutions to (1) with
initial data ρ0, σ0 respectively, and kernels ω1

η, ω
2
η, ω̂

1
δ , ω̂

2
δ , then for any T > 0 there holds

∥ρ(T, ·)− σ(T, ·)∥L1 ≤
(
∥ρ0 − σ0∥L1 + C10(T )

(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

))
eC9T , (29)

with C9 and C10(T ) defined in Eq (33), Eq (34), respectively.

Proof. Let ρ(t, x) and σ(t, x) be a weak entropy solutions of the following equations{
ρ(t, x) + ∂x(f(ρ(t, x))U(t, x))) = 0

ρ(0, x) = ρ0(x),

{
∂tσ(t, x) + ∂x(f(σ(t, x))Ũ(t, x))) = 0

σ(0, x) = σ0(x),

respectively, where we have denoted

f(ρ) := ρg(ρ), U(t, x) = W (t, x)V (t, x), Ũ(t, x) = W̃ (t, x)Ṽ (t, x),

with W (t, x) := W ((ρ ∗ ω̂1
δ )(t, x)), V (t, x) := V ((ρ ∗ ω1

η)(t, x)), W̃ (t, x) := W ((σ ∗ ω̂2
δ )(t, x))

and Ṽ (t, x) := V ((σ ∗ ω2
η)(t, x)). First, we use the classical doubling techniques introduced

by Kruzkov [15] to obtain the following inequality

∥ρ(T, ·)− σ(T, ·)∥L1 ≤ ∥ρ0(x)− σ0(x)∥L1 +

∫ T

0

∫
R
S1(t, x)dxdt+

∫ T

0

∫
R
S2(t, x)dxdt, (30)

where we have denoted S1(t, x) := |U| |∂xρ(t, x)||f ′(ρ(t, x))|, S2(t, x) := |∂xU| |f(ρ(t, x))| and
U := Ũ(t, x)− U(t, x). Next, we have the following estimates derived in Appendix 7:∫ T

0

∫
R
S1(t, x)dxdt ≤ C1

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1dt+ C2(T )

(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

)
(31)

∫ T

0

∫
R
S2(t, x)dxdt ≤ C8

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1dt+ C6(T )∥ω2

η − ω1
η∥W1,1 + C7(T )∥ω̂2

δ − ω̂1
δ∥W1,1 (32)

where C1, C8 are positive constants depending on the parameters of the model (1) and C2(T ),
C6(T ), C7(T ) also depend on T . These terms are computed in the appendix section. Now, if
we replace (31) and (32) in (30) we get,

∥ρ(T, ·)− σ(T, ·)∥L1 ≤ ∥ρ0(x)− σ0(x)∥L1 + C10(T )
(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

)
+C9

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1dt,

where we are denoting

C9 := C1 + C8 (33)

C10(T ) := max{C2(T ) + C6(T ), C2(T ) + C7(T )} (34)

Finally, by applying Gronwall’s lemma we get (11) and for ρ0(x) = σ0(x), the uniqueness of
entropy solutions.
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Proof of Theorem 1

Existence of solutions to the problem (1)-(2) follow from the results in Section 3. Indeed,
Lemma 3.1 and Lemma 3.4, allow us to apply Helly’s compactness theorem, by which we can
guarantee the existence of a subsequence of approximate solutions ρ∆ that converges in L1

to a function ρ ∈ L∞([0, T ]×R;R+). Following a Lax-Wendroff-type argument, we can show
that the limit function ρ is a weak entropy solution of (1)-(2) in the sense of Definition 1.
Uniqueness is ensured by the Lipschitz continuous dependence of solutions to Eq(1) on initial
data (Theorem 2) and also on kernel functions ωη, ω̂δ (Theorem 3), see Section 4.

5. Numerical Examples

In the following tests, we solve the nonlocal problem (1) numerically for x ∈ [0, 10] within
a time horizon T > 0 and periodic boundary conditions, using the numerical scheme (7)-
(8) with a fixed discretization of M = 800 cells of length ∆x = 1/200 and a time step ∆t
satisfying the CFL condition (9). We consider the function g(ρ) = (ρmax−ρ), with maximum
speed Vmax = 1 and maximum density ρmax = 1. The other parameters are specified in each
subsection.

In order to observe the “look-behind-ahead effect”, we refer to Model 1 for (1) with a
non-constant functions V and W , and to Model 2 to the “look-ahead” model with W (ρ) = 1.

5.1. Example 1

Inspired by the numerical examples in [13], we consider the speed functions

V (ρ) = Vmax(1− ρ), Vmax = 1, W (ρ) = (k + 1)
V (−ρ)

k + V (−ρ)
, k =

1

2
, (35)

and the kernel functions and supports given by

ωη(x) =
1

η
, η = 1, ω̂δ(x) =

δ − x

δ2
δ > 0,

and initial condition

ρ0(x) = 0.8χ[1,3](x) + 0.5χ[5,8](x), x ∈ [0, 10].

In Figure 1 (a-c), we display the numerical approximation at different simulation times,
T = 3.15, T = 9.75 and T = 18. In each plot, we compare ρ∆(·, T ) for Model 1 with δ = 0.1,
δ = 0.5 and δ = 1, with respect to Model 2. We can observe that the density ρ moves faster
in the “look-behind-ahead” model than in the “look-ahead” model as δ increases. In Figure 1
(d), we show the TV (ρ∆(t, ·)) for 0 ≤ t ≤ 18, where we can observe that the total variation
is smaller and decays faster for Model 1.

5.2. Example 2: Limit δ, η → 0

In this test we consider ωη(x) and ω̂δ(x) as in Example 1 with η = 2δ, and initial condition

ρ0(x) = 0.8χ[3,6](x) + 0.1, x ∈ [0, 10].

We investigate numerically the limit δ ↘ 0. In Figure 2, we display the numerical approxi-
mations corresponding to δ = 0.5, δ = 0.1 and δ = 0.05, compared to the numerical solution
of the local problem with flux function f(ρ) = ρg(ρ)V (ρ)W (ρ).
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Figure 1: Example 1: Comparison of the “look-behind-ahead” model with ω̂(x) = δ−x
δ2

and δ = 1, δ = 0.5 and
δ = 0.1 with respect to the “look-ahead” model at different simulation times, and their total variation decay.
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Figure 2: Example 2: Limit δ, η → 0 in Model 1.
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Figure 3: Example 3: Comparison Arrhenius look-ahead-behind model with respect to LWR traffic model.

5.3. Example 3: Arrhenius look-ahead-behind model

In this numerical test we consider the Arrhenius look-ahead-behind model studied in [12]
where

g(ρ) = (1− ρ), V (ρ) = e−ρ, W (ρ) = eρ,

and nonlocal terms

(ρ ∗ ωγa)(t, x) =
1

γa

∫ x+γa

x
Kaρ(t, z)dz, (ρ ∗ ω̂γb)(t, x) =

1

γb

∫ x

x−γb

Kbρ(t, z)dz, (36)

where γa and γb are positive constant proportional to the look-ahead and behind distances,
respectively, andKa andKb represent constants proportional to positive interaction strengths.
Observe that functions g, V and W satisfies Assumptions 2.1 (i − iii) for ρ ∈ [0, 1], however
for Ka ̸= 1 and Kb ̸= 1, kernel functions does not satisfies Assumptions 2.1 (iv − v). The
main intention in this Example is to use the numerical scheme (7)-(8) to observe the effect
of blow-up in ρx at finite time. According with [12], the higher values of Kb increase the
blow-up, whereas the higher values of γa and γb suppress the blow-up.

6. Conclusions

This work has introduced and analyzed a macroscopic traffic flow model described by
a nonlocal scalar conservation law whose flux combines, in a multiplicative manner, both
downstream and upstream averaged densities. The proposed formulation is based on the
nonlocal model of bidirectional flux introduced in [13], but extends it by establishing a well-
posedness theory for entropy weak solutions and by allowing for discontinuities and shock
waves. This bidirectional structure enables the simultaneous representation of the influence
of traffic conditions ahead and behind each driver, thus offering a more complete and realistic
description of vehicular dynamics than unidirectional nonlocal models previously studied in
the literature.

From a theoretical perspective, we have proved the existence and uniqueness of entropy
weak solutions, along with Lipschitz continuous dependence of the solutions on both the
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initial data and the convolution kernel functions. These results ensure the robustness of the
model with respect to perturbations in the data and parameters, and broaden the analytical
framework beyond the smooth solution setting considered in [13].

On the numerical side, we have developed a conservative finite volume scheme that pre-
serves key structural properties of the continuous model, such as mass conservation, positiv-
ity, and L1-stability. Numerical experiments show that the inclusion of the upstream and
downstream nonlocal terms qualitatively affects traffic dynamics, providing a more realistic
framework for analyzing phenomena such as shock formation and propagation.

Overall, the results presented in this paper provide a solid mathematical and computa-
tional framework for the study of nonlocal conservation laws with bidirectional interactions,
with clear potential for applications in the design and assessment of traffic control strategies
in realistic settings.
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7. Appendix: Technical estimates

Estimates in Lemma 3.3

For the discretized downstream convolution term we have the following estimates,

∣∣∣Rn
η,j+1/2 −Rn

η,j−1/2

∣∣∣ =

∣∣∣∣∣∆x
N−1∑
k=0

ωk
ηρ

n
j+k+1 −∆x

N−1∑
k=0

ωk
ηρ

n
j+k

∣∣∣∣∣
=

∣∣∣∣∣∆x

(
N∑
k=1

ωk−1
η ρnj+k −

N−1∑
k=0

ωk
ηρ

n
j+k

)∣∣∣∣∣
=

∣∣∣∣∣∆x

(
N−1∑
k=0

(
ωk−1
η − ωk

η

)
ρnj+k + ωN−1

η ρnj+N − ω0
ηρ

n
j

)∣∣∣∣∣
≤ ∆x∥ω′

η∥∥ρ∥L1 + 2∆xρmaxω
0
η

= ∆xK1,

where we denote K1 = ∥ω′
η∥∥ρn∥L1 + 2ρmaxω

0
η. Now for 0 ≤ θ, µ ≤ 1, we have∣∣∣R̃n

j+1 − R̃n
j

∣∣∣ =

∣∣∣∣θRn
η,j+3/2 + (1− θ)Rn

η,j+1/2 − µRn
η,j+1/2 − (1− µ)Rn

η,j−1/2

∣∣∣∣
=

∣∣∣∣θ(Rn
η,j+3/2 −Rn

η,j+1/2) + (Rn
η,j+1/2 −Rn

η,j−1/2)− µ(Rn
η,j+1/2 −Rn

η,j−1/2)

∣∣∣∣
=

∣∣∣∣θ(Rn
η,j+3/2 −Rn

η,j+1/2) + (1− µ)(Rn
η,j+1/2 −Rn

η,j−1/2)

∣∣∣∣
≤ |Rn

η,j+3/2 −Rn
η,j+1/2|+ |Rn

η,j+1/2 −Rn
η,j−1/2|

≤ 2∆x∥ω′
η∥∥ρ∥L1 + 4∆xρmaxω

0
η

= 2∆xK1,
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also, we compute the following estimates∣∣∣R̂n
δ,j+1/2 − R̂n

δ,j−1/2

∣∣∣ ≤ ∆x∥ω′
δ∥∥ρ∥L1 + 2∆xρmaxω̂

0
δ

= ∆xK2,

and for 0 ≤ α, β ≤ 1 we have∣∣R̄n
j+1 − R̄n

j

∣∣ ≤ 2∆x∥ω′
δ∥∥ρ∥L1 + 4∆xρmaxω̂

0
δ

= 2∆xK2.

where K2 = ∥ω′
δ∥∥ρn∥L1 + 2ρmaxω̂

0
δ . On the other hand, we have the following estimates∣∣∣Rn

η,j+3/2 − 2Rn
η,j+1/2 +Rn

η,j−1/2

∣∣∣
=

∣∣∣∣∣∆x

(
N−1∑
k=0

ωk
ηρ

n
j+k+2 − 2

N−1∑
k=0

ωk
ηρ

n
j+k+1 +

N−1∑
k=0

ωk
ηρ

n
j+k

)∣∣∣∣∣
=

∣∣∣∣∣∆x

(
N∑
k=1

ωk−1
η ρnj+k+1 − 2

N−1∑
k=0

ωk
ηρ

n
j+k+1 +

N−2∑
k=−1

ωk+1
η ρnj+k+1

)∣∣∣∣∣
=

∣∣∣∣∆x

(N−1∑
k=0

(
ωk−1
η − 2ωk

η + ωk+1
η

)
ρnj+k+1 + ωN−1

η ρnj+N+1 − 2ω0
ηρ

n
j+1 + ω0

ηρ
n
j + ω1

ηρ
n
j+1 − ωN

η ρnj+N

)∣∣∣∣
=

∣∣∣∣∆x

(
(∆x)2

N−1∑
k=0

ωk−1
η − 2ωk

η + ωk+1
η

(∆x)2
ρnj+k+1

+ω0
η(ρ

n
j − ρnj+1) + ∆xρnj+1

ω1
η − ω0

η

∆x
+ ωN−1

η ρnj+N+1 − ωN
η︸︷︷︸

=0

ρnj+N

)∣∣∣∣
=

∣∣∣∣∆x

(
(∆x)2

N−1∑
k=0

ωk−1
η − 2ωk

η + ωk+1
η

(∆x)2
ρnj+k+1

+ω0
η(ρ

n
j − ρnj+1) + ∆xρnj+1

ω1 − ω0
η

∆x
+∆x

(
ωN−1
η −ωN

η

∆x

)
ρnj+N+1

)∣∣∣∣
≤ (∆x)2∥ω′′

η∥∥ρ∥L1 +∆xω0
η|ρnj+1 − ρnj |+ 2(∆x)2ρmax∥ω′

η∥
= (∆x)2K3 +∆xω0

η|ρnj+1 − ρnj |.

In a similar way, we get the following estimates for the discretized upstream convolution term∣∣∣R̃n
j+3/2 − 2R̃n

j+1/2 + R̃n
j−1/2

∣∣∣ ≤ (∆x)2∥ω′′
δ ∥∥ρ∥L1 +∆xω̂0

δ |ρnj+1 − ρnj |+ 2(∆x)2ρmax∥ω′
δ∥

= (∆x)2K4 +∆xω̂0
δ |ρnj+1 − ρnj |.
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Estimates in Theorem 3.

In this part of the work, we derive upper bounds for

∫ T

0

∫
R
S1(t, x)dxdt and

∫ T

0

∫
R
S2(t, x)dxdt

in Eq. (30). First, we compute |U| in S1 as follows,

|U| = |W̃ Ṽ −WV |
= |W̃ (Ṽ − V ) + (W̃ −W )V |
≤ ∥W̃∥|Ṽ − V |+ ∥V ∥|W̃ −W |
= ∥W∥|Ṽ − V |+ ∥V ∥|W̃ −W | (37)

Now we compute each term on the right-hand side of inequality (37).

|Ṽ − V | =
∣∣V (σ ∗ ω2

η)− V (ρ ∗ ω1
η)
∣∣

=
∣∣V (σ ∗ ω2

η)− V (ρ ∗ ω2
η) + V (ρ ∗ ω2

η)− V (ρ ∗ ω1
η)
∣∣

=
∣∣V ′(ξ1)

(
(σ − ρ) ∗ ω2

η

)
+ V ′(ξ2)

(
ρ ∗
(
ω2
η − ω1

η

))∣∣
≤ ∥V ′∥

(
∥ω2

η∥∥ρ− σ∥L1 + ∥ρ∥∥ω2
η − ω1

η∥L1

)
, (38)

where ξ1 ∈ I(σ ∗ ω2
η, ρ ∗ ω2

η) and ξ2 ∈ I(ρ ∗ ω2
η, ρ ∗ ω1

η). In a similar way, we get∣∣∣W̃ −W
∣∣∣ ≤ ∥W ′∥

(
∥ω̂2

δ∥∥ρ− σ∥L1 + ∥ρ∥∥ω̂2
δ − ω̂1

δ∥L1

)
. (39)

Thus, replacing (38) and (39) in (37) we obtain the following bound for |U|,

|U| ≤
(
∥W∥∥V ′∥∥ω2

η∥+ ∥V ∥∥W ′∥∥ω̂2
δ∥
)
∥ρ− σ∥L1 + ∥ρ∥

(
∥ω2

η − ω1
η∥L1 + ∥ω̂2

δ − ω̂1
δ∥L1

)
≤

(
∥W∥∥V ′∥∥ω2

η∥+ ∥V ∥∥W ′∥∥ω̂2
δ∥
)
∥ρ− σ∥L1 + ∥ρ∥

(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

)
,

then, with this estimate, we can compute a bound for (30),∫ T

0

∫
R
S1(t, x)dxdt

=

∫ T

0

∫
R

(
|U||∂xρ||f ′(ρ(t, x))|

)
dxdt

≤
(
∥W∥∥V ′∥∥ω2

η∥+ ∥V ∥∥W ′∥∥ω̂2
δ∥
) ∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1

∫
R
|∂xρ(t, x)||f ′(ρ(t, x))|dxdt

+T∥ρ∥
(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

) ∫
R
|∂xρ(t, x)||f ′(ρ(t, x))|dxdt

≤
(
∥W∥∥V ′∥∥ω2

η∥+ ∥V ∥∥W ′∥∥ω̂2
δ∥
)
∥ρ∥BV sup

t∈[0,T ]
∥f ′(ρ(t, ·))∥

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1

+T

(
∥ρ∥∥ρ∥BV sup

t∈[0,T ]
∥f ′(ρ(t, ·))∥

)(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

)
≤ C1

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1 + C2(T )

(
∥ω2

η − ω1
η∥W1,1 + ∥ω̂2

δ − ω̂1
δ∥W1,1

)
,

where

C1 = ≤
(
∥W∥∥V ′∥∥ω2

η∥+ ∥V ∥∥W ′∥∥ω̂2
δ∥
)
∥ρ∥BV sup

t∈[0,T ]
∥f ′(ρ(t, ·))∥

C2(T ) = T

(
∥ρ∥∥ρ∥BV sup

t∈[0,T ]
∥f ′(ρ(t, ·))∥

)
.
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Next, we bound ∂x|U| in S2(t, x),

∂x|U| = |∂xU(t, x)− ∂xϑ(t, x)|
= |∂x(W̃ Ṽ )− ∂x(WV )|
≤ |∂xW̃ ||Ṽ − V |+ ∥V ∥|∂xW̃ − ∂xW |+ ∥W̃∥|∂xṼ − ∂xV |+ |∂xV ||W̃ −W |, (40)

and bounded every term on the right-hand side of inequality (40). For first term,

|∂xW̃ | = |∂xW (σ ∗ ω̂2
δ )|

= |W ′(σ ∗ ω̂2
δ )(σ ∗ ∂xω̂2

δ )|
≤ ∥W ′∥∥σ∥L1∥∂xω̂2

δ∥. (41)

Now, for the second term on the right hand side of (40), we have the following estimates,

|∂xW̃ − ∂xW |

=

∣∣∣∣∂xW (σ ∗ ω̂2
δ )− ∂xW (ρ ∗ ω̂1

δ )

∣∣∣∣
=

∣∣∣∣W ′(σ ∗ ω̂2
δ )(σ ∗ ∂xω̂2

δ )−W ′(ρ ∗ ω̂1
δ )(ρ ∗ ∂xω̂1

δ )

∣∣∣∣
=

∣∣∣∣ (W ′(σ ∗ ω̂2
δ )−W ′(ρ ∗ ω̂1

δ )
)
(σ ∗ ∂xω̂2

δ ) +W ′(ρ ∗ ω̂1
δ )
(
σ ∗ ∂xω̂2

δ − ρ ∗ ∂xω̂1
δ

) ∣∣∣∣
=

∣∣∣∣W ′′(ξ3)(σ ∗ ω̂2
δ − ρ ∗ ω̂1

δ )(σ ∗ ∂xω̂2
δ ) +W ′(ρ ∗ ω̂1

δ )(σ ∗ ∂xω̂2
δ − ρ ∗ ∂xω̂1

δ )

∣∣∣∣
=

∣∣∣∣W ′′(ξ3)
(
(σ − ρ) ∗ ω̂2

δ + ρ ∗ (ω̂2
δ − ω̂1

δ )
)
(σ ∗ ∂xω̂2

δ )

+W ′(ρ ∗ ω̂1
δ )
(
(σ − ρ) ∗ ∂xω̂2

δ

)
+ ρ ∗ (∂xω̂2

δ − ∂xω̂
1
δ )

∣∣∣∣
≤ ∥W ′′∥∥σ∥L1∥∂xω̂2

δ∥
(
∥ω̂2

δ∥∥ρ− σ∥L1 + ∥ρ∥∥ω̂2
δ − ω̂1

δ∥L1

)
+∥W ′∥

(
∥∂xω̂2

δ∥∥ρ− σ∥L1 + ∥ρ∥∥∂xω̂2
δ − ∂xω̂

1
δ∥L1

)
, (42)

where ξ3 ∈ I(σ ∗ ω̂2
δ , ρ ∗ ω̂1

δ ). Following an analogous process, we can bound the third term in
(40), getting the following estimate,

|∂xṼ − ∂xV | ≤ ∥V ′′∥∥σ∥L1∥∂xω2
η∥
(
∥ω2

η∥∥ρ− σ∥L1 + ∥ρ∥∥ω2
η − ω1

η∥L1

)
+∥V ′∥

(
∥∂xω2

η∥∥ρ− σ∥L1 + ∥ρ∥∥∂xω2
η − ∂xω

1
η∥L1

)
, (43)

and for the last term in (40) we have,

|∂xV | = |∂xV (ρ ∗ ω1
η)|

= |V ′(ρ ∗ ω1
η)(ρ ∗ ω1

η)|
≤ ∥V ′∥∥ρ∥L1∥∂xω1

η∥. (44)
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Now, replacing (38), (39), (41), (42), (43) and (44) in (40) and doing some straightforward
computations, we get an upper bound for |∂xU| as follows,

|∂xU| ≤
[
max{∥ρ∥L1 , ∥σ∥L1}

(
max{∥∂xω̂2

δ∥, ∥∂xω2
η∥}max{∥ω̂2

δ∥, ∥ω2
η∥}(∥W ′∥∥V ′∥

+∥V ∥∥W ′′∥+ ∥W∥∥V ′′∥) + ∥V ′∥∥W ′∥∥∂xω1
η∥
)

+(∥V ∥∥W ′∥+ ∥W∥∥V ′∥)max{∥∂xω̂2
δ∥, ∥∂xω2

η∥}
]
∥ρ− σ∥L1

+∥ρ∥
[(

∥σ∥L1 max{∥∂xω̂2
δ∥, ∥∂xω2

η∥}(∥W ′∥∥V ′∥+ ∥W∥∥V ′′∥) + ∥W∥∥V ′∥
)
∥ω2

η − ω1
η∥W1,1

+

(
max{∥σ∥L1∥∂xω̂2

δ∥, ∥ρ∥L1∥∂xω1
η∥}(∥V ∥∥W ′′∥+ ∥V ′∥∥W ′∥)

+∥V ∥∥W ′∥
)
∥ω̂2

δ − ω̂1
δ∥W1,1

]
= C3∥ρ− σ∥L1 + C4∥ω2

η − ω1
η∥W1,1 + C5∥ω̂2

δ − ω̂1
δ∥W1,1 , (45)

where

C3 = max{∥ρ∥L1 , ∥σ∥L1}
(
max{∥∂xω̂2

δ∥, ∥∂xω2
η∥}max{∥ω̂2

δ∥, ∥ω2
η∥}(∥W ′∥∥V ′∥

+∥V ∥∥W ′′∥+ ∥W∥∥V ′′∥) + ∥V ′∥∥W ′∥∥∂xω1
η∥
)

+(∥V ∥∥W ′∥+ ∥W∥∥V ′∥)max{∥∂xω̂2
δ∥, ∥∂xω2

η∥},

C4 = ∥ρ∥
(
∥σ∥L1 max{∥∂xω̂2

δ∥, ∥∂xω2
η∥}(∥W ′∥∥V ′∥+ ∥W∥∥V ′′∥) + ∥W∥∥V ′∥

)
C5 = ∥ρ∥

(
max{∥σ∥L1∥∂xω̂2

δ∥, ∥ρ∥L1∥∂xω1
η∥}(∥V ∥∥W ′′∥+ ∥V ′∥∥W ′∥) + ∥V ∥∥W ′∥

)
.
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Finally,∫ T

0

∫
R
S2(t, x)dxdt

=

∫ T

0

∫
R
|∂xU(t, x)||f(ρ(t, x))|dx dt

≤
∫ T

0

∫
R

(
C3∥ρ(t, ·)− σ(t, ·)∥L1 + C4∥ω2

η − ω1
η∥W1,1 + C5∥ω̂2

δ − ω̂1
δ∥W1,1

)
|f(ρ(t, x))|dx dt

≤ C3
∫
R
|f(ρ(t, x))|dx

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1dt+ TC4

∫
R
|f(ρ(t, x))|∥ω2

η − ω1
η∥W1,1 dx

+TC5
∫
R
|f(ρ(t, x))|∥ω̂2

δ − ω̂1
δ∥W1,1 dx

≤ sup
t∈[0,T ]

∥f(ρ(t, ·))∥L1

(
C3
∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1 dt

+TC4∥ω2
η − ω1

η∥W1,1 + TC5∥ω̂2
δ − ω̂1

δ∥W1,1

)
= C8

∫ T

0
∥ρ(t, ·)− σ(t, ·)∥L1dt+ C6(T )∥ω2

η − ω1
η∥W1,1 + C7(T )∥ω̂2

δ − ω̂1
δ∥W1,1 ,

where we denote C6(T ) := TC4 sup
t∈[0,T ]

∥f(ρ(t, ·))∥L1 , C7(T ) := TC5 sup
t∈[0,T ]

∥f(ρ(t, ·))∥L1 and

C8 := C3 sup
t∈[0,T ]

∥f(ρ(t, ·))∥L1 .
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