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Abstract

In this work, we study a coupled Navier–Stokes/convectiondiffusion model arising in the
description of reverse osmosis membrane processes. The model accounts for the incompress-
ible viscous flow of a saline solution and the transport of solute concentration, including ap-
propriate interface conditions that capture the membrane permeability and rejection effects.
We propose and analyze a variational formulation of the stationary problem, establishing ex-
istence, uniqueness, and positivity of solutions under suitable assumptions on the data. To
approximate the problem numerically, we introduce a conforming finite element discretiza-
tion and prove discrete stability estimates, as well as the well-posedness of the resulting
nonlinear system. Furthermore, we develop a fixed-point strategy to handle the nonlinear
coupling and provide error estimates for the discrete scheme. Numerical experiments are
presented to confirm the theoretical results and to illustrate the performance of the method
in relevant test cases for desalination applications.
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numerical analysis; error estimates
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1 Introduction

Reverse osmosis (RO) is one of the most widely used technologies for seawater desalination and
freshwater production, owing to its efficiency, modularity, and ability to deliver high-quality
permeate. The operation of RO membranes involves complex coupled phenomena, including
incompressible fluid flow through narrow channels, solute transport driven by advection and
diffusion, and nonlinear permeation across semipermeable boundaries. The accurate numerical
modeling of such processes is crucial not only for understanding the fundamental mechanisms
governing membrane performance, but also for guiding the optimization of RO modules and the
design of next-generation desalination systems.
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Recent years have seen a growing interest in the numerical modeling of reverse osmosis
(RO) processes, which are currently the dominant technology in large-scale desalination plants
worldwide, accounting for nearly 70% of the installed capacity due to their lower energy con-
sumption compared with thermal methods such as multi-stage flash [18, 13]. Most mathematical
models are based on the Navier–Stokes and convection–diffusion equations although in some sit-
uations Brinkman-type equations have also been employed. From the numerical point of view,
the majority of studies have focused on single-channel simulations, mainly because of the high
computational cost of treating multiple channels. Classical approaches have relied on finite dif-
ferences or finite volumes, whereas finite element simulations have often been carried out with
commercial packages without a rigorous mathematical framework.

A significant advance was achieved in [6], where the authors proposed a coupled Navier–
Stokes/transport model with nonlinear interface conditions, formulated a mixed variational
problem with Lagrange multipliers to capture concentration traces, and proved well-posedness
using Banachs fixed-point theorem together with the Banach–Nečas–Babuška theory. On the
discrete level, they developed a stable mixed finite element scheme based on Raviart–Thomas
spaces for auxiliary flux variables and piecewise polynomial approximations for velocity, pressure,
and concentration. They also derived optimal a priori error estimates, which were confirmed by
numerical experiments, demonstrating the robustness and accuracy of the method in realistic
RO configurations.

In parallel, more recent work has focused on incorporating osmotic effects into finite element
models. In [8], the authors developed a finite element formulation to investigate concentration
polarization and osmotic phenomena in RO membranes. Their model couples the incompress-
ible Navier–Stokes equations with an advection–diffusion equation for the salt concentration and
integrates nonlinear interface conditions to represent the membrane transport. This approach
captures both hydrodynamic and osmotic contributions to the transmembrane flux, allowing for
detailed analysis of concentration polarization under realistic operating conditions. The numer-
ical experiments reported in [8] illustrate how membrane selectivity and operational parameters
affect solute buildup and flux decline, highlighting the importance of rigorous mathematical
modeling in predicting the performance of RO modules.

Mathematical modeling of RO processes typically leads to coupled systems of partial differ-
ential equations (PDEs) of Navier–Stokes type for the hydrodynamics, coupled with convection–
diffusion equations for the solute concentration. These equations are further linked by nonlinear
boundary conditions at the membrane interfaces, which reflect the selective transport of water
and salt. The resulting models pose significant analytical and computational challenges due to
their nonlinearity, the interaction of boundary conditions with the interior flow, and the need
to preserve key physical properties such as mass conservation and non-negativity of the solute
concentration.

In this work we study a three-field formulation of the RO model studied in [6, 8], where the
unknowns are the velocity, pressure, and solute concentration. At the continuous level, we derive
the weak formulation of the coupled NavierStokesconvectiondiffusion system and establish its
well-posedness by means of fixed-point arguments. A key feature of our analysis is the proof
of positivity of the concentration under suitable conditions on the data, ensuring the physical
consistency of the model. Furthermore, we introduce an equivalent reduced formulation that
allows us to simplify the study of existence and uniqueness of solutions.

Building upon the continuous theory, we then propose and analyze a conforming finite el-
ement method for the numerical approximation of the model. The scheme employs standard
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inf-sup stable velocitypressure elements combined with continuous piecewise linear approxima-
tions for the concentration. We prove that the discrete problem inherits the stability properties
of the continuous one, and we derive error estimates that guarantee optimal rates of convergence.
Finally, we present a series of numerical experiments that confirm the theoretical findings and
illustrate the performance of the proposed method in realistic test configurations.

1.1 Preliminaries

Let Ω ⊆ R2 be a bounded domain with polyhedral boundary Γ. Throughout the paper we
use standard notation for Sobolev spaces Wm,p(Ω), where p ∈ [1,∞] and m ≥ 0, and for
the Lebesgue spaces Lp(Ω) := W 0,p(Ω), equipped with the norms ‖ · ‖Wm,p(Ω) and ‖ · ‖Lp(Ω),
respectively.

When p = 2, we write Hm(Ω) instead of Wm,2(Ω), and for simplicity, for Hm(Ω), Hm(Ω) :=
[Hm(Ω)]2, and Hm(Ω) := [Hm(Ω)]2×2, the corresponding norms and seminorms will be denoted
by ‖ · ‖m,Ω and | · |m,Ω.

For any vector fields v = (v1, v2)t and w = (w1, w2)t, we define the gradient, divergence, and
tensor product operators as

∇v :=

(
∂vi
∂xj

)

i,j=1,2

, div v :=
2∑

j=1

∂vj
∂xj

, v ⊗w :=
(
viwj

)
i,j=1,2

.

Similarly, for any tensor fields S = (Sij)i,j=1,2 and R = (Rij)i,j=1,2, their tensor inner product
is given by

S : R :=
2∑

i,j=1

SijRij ,

where the superscript t denotes transposition.
Next, we let γ0 : H1(Ω)→ L2(Γ) be the well-known trace operator, satisfying

‖ϕ‖0,Γ ≤ CΓ‖ϕ‖1,Ω ∀ϕ ∈ H1(Ω), (1.1)

with CΓ > 0 and define the trace space of H1(Ω) as

H1/2(Γ) := γ0(H1(Ω)), (1.2)

endowed with the norm

‖ψ‖1/2,Γ := inf
{
‖w‖1,Ω : w ∈ H1(Ω), γ0(w) = ψ

}
. (1.3)

Alternatively, as stated in [20, Remark 4.2.3], an equivalent norm for the space H1/2(Γ) is given
by

|||u|||1/2,Γ =

(∫

Γ
|u|2 +

∫

Γ

∫

Γ

|u(x)− u(y)|2
|x− y|2

)1/2

. (1.4)

In the sequel, the dual space of H1/2(Γ) is denoted by H−1/2(Γ) and we employ 〈·, ·〉Γ to
denote the duality pairing on H−1/2(Γ)×H1/2(Γ), which coincides with the L2(Γ)-inner product
when applied to functions in L2(Γ). The vector-valued counterparts are denoted by H1/2(Γ)
and H−1/2(Γ), corresponding to H1/2(Γ) and H−1/2(Γ), respectively.
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It is well known that
H1(Ω) = H1

0(Ω)⊕
[
H1

0(Ω)
]⊥
,

where H1
0(Ω) is the kernel of γ0, and

[
H1

0(Ω)
]⊥

denotes its orthogonal complement (see, e.g.,
[17, Theorem 1.3-1]). Then, defining the linear, bounded, bijective operator γ̃0 := γ0

∣∣
[H1

0(Ω)]
⊥ , it

follows that
‖γ̃−1

0 (ψ)‖1,Ω = ‖ψ‖1/2,Γ ∀ψ ∈ H1/2(Γ). (1.5)

In what follows, we use a vector-valued version of γ̃0, denoted by γ̃0, which is defined
componentwise by γ̃0. Furthermore, by the Sobolev embedding H1/2(Γ) ↪→ L4(Γ), we have

‖ψ‖L4(Γ) ≤ ĈΓ‖ψ‖1/2,Γ ∀ψ ∈ H1/2(Γ), (1.6)

with ĈΓ > 0.
On the other hand, for 0 < γ ≤ 1 and following [15, 20], we define the Hölder boundary

space on Γ by

C0,γ(Γ) :=
{
g ∈ C0(Γ) : |g(x)− g(y)| ≤M |x− y|γ , M > 0

}
,

endowed with the norm

‖u‖C0,γ(Γ) :=
(
‖u‖2C0(Γ) + |u|2C0,γ(Γ)

)1/2
, (1.7)

where

‖u‖C0(Γ) := sup
x∈Γ
|u(x)| and |g|C0,γ(Γ) := sup

x,y∈Γ
x 6=y

|g(x)− g(y)|
|x− y|γ .

The following technical result will be employed in the forthcoming analysis.

Lemma 1.1 Let Ω be a Lipschitz domain with boundary Γ = ∂Ω and let f ∈ H1/2(Γ), g ∈
C0,γ(Γ) with 0 < γ ≤ 1. Then fg ∈ H1/2(Γ), and there exists c1 > 0, such that

‖fg‖1/2,Γ ≤ c1‖g‖C0,γ(Γ)‖f‖1/2,Γ. (1.8)

Proof. Given f ∈ H1/2(Γ), g ∈ C0,γ(Γ) with 0 < γ ≤ 1, we start by noticing that from the
definition of the norms |||·|||1/2,Γ and ‖ · ‖C0,γ(Γ) (see (1.4) and (1.7)), it is clear that

∫

Γ
|f |2|g|2 ≤ ‖g‖2C0(Γ) |||f |||21/2,Γ ≤ ‖g‖2C0,γ(Γ) |||f |||21/2,Γ . (1.9)

In turn, since f(x)g(x) − f(y)g(y) = (f(x) − f(y))g(x) + (g(x) − g(y))f(y) for all x, y ∈ Γ,
employing ab ≤ 2a2 + 2b2 for all a, b ∈ R, we easily obtain:

∫

Γ

∫

Γ

|f(x)g(x)− f(y)g(y)|2
|x− y|2 ≤ 2‖g‖2C0(Γ) |||f |||21/2,Γ + 2|g|2C0,γ(Γ)|Γ| |||f |||21/2,Γ . (1.10)

From the inequalities (1.9) and (1.10), we readily obtain:

|||fg|||21/2,Γ ≤ c‖g‖C0,γ(Γ) |||f |||21/2,Γ < +∞, (1.11)
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with c > 0, which implies that fg ∈ H1/2(Γ). In addition, since ‖ · ‖1/2,Γ and |||·|||1/2,Γ are
equivalent, (1.8) follows straightforwardly from (1.11). �

We now recall some definitions and technical results on extension operators (see, e.g., [12,
16]). To that end, we let Γ̃ ⊆ Γ be a proper subset of Γ (i.e., Γ̃ 6= Γ), denote by Γ̃c its complement
in Γ and let

E0,Γ̃ : H1/2(Γ̃)→ L2(Γ)

be the extension operator given by

E0,Γ̃(ξ) :=




ξ on Γ̃,

0 on Γ̃c,
∀ ξ ∈ H1/2(Γ̃).

We then introduce the space

H
1/2
00 (Γ̃) :=

{
ξ ∈ H1/2(Γ̃) : E0,Γ̃(ξ) ∈ H1/2(Γ)

}
,

endowed with the norm
‖ξ‖1/2,00,Γ̃ :=

∥∥E0,Γ̃(ξ)
∥∥

1/2,Γ
, (1.12)

where ‖ · ‖1/2,Γ is the norm defined in (1.3).
We also define the extension operator

EΓ̃ : H1/2(Γ̃) −→ H1/2(Γ) , ξ 7−→ EΓ̃(ξ) := z|Γ,

where z ∈ H1(Ω) is the unique solution of the boundary value problem

−∆z = 0 in Ω, z = ξ on Γ̃, ∇z · n = 0 on Γ̃c.

This operator satisfies
‖EΓ̃(ξ)‖1/2,Γ ≤ C ‖ξ‖1/2,Γ̃, (1.13)

where C > 0 is a constant independent of ξ.
In addition, we denote let

H1
Γ̃
(Ω) :=

{
v ∈ H1(Ω) : v|Γ̃ = 0

}
and H1

Γ̃
(Ω) :=

[
H1

Γ̃
(Ω)
]2
.

Throughout the paper, the norm ‖ · ‖ without subscripts denotes the natural norm of an
element or operator in the corresponding product functional space. Moreover, the notations
a . b and a ∼= b means a ≤ C b and a = C b, respectively, for a constant C > 0 independent
of the mesh size and physical parameters. The symbol 0 stands for a generic null vector, and,
when no ambiguity arises, | · | denotes the absolute value in R and the Euclidean norm in R2 or
R2×2. Finally, for any scalar function φ, we define its positive and negative parts by

φ+ := 1
2

(
φ+ |φ|

)
, φ− := 1

2

(
φ− |φ|

)
, (1.14)

so that
φ = φ+ + φ−. (1.15)
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1.2 Model problem

To introduce the model problem, we consider the rectangular domain Ω := (0, a)× (0, b) ⊆ R2,
where a, b > 0 are fixed constants, and denote by Γ its boundary. We partition Γ into the
disjoint subsets Γin, Γout, Γm+ , Γm− ⊆ Γ, such that

Γ = Γin ∪ Γm+ ∪ Γm− ∪ Γout,

with
Γi ∩ Γj = ∅ for all i 6= j in {in, out,m+,m−}.

In addition, we assume
Γm+ ∩ Γm− = ∅ and Γin ∩ Γout = ∅,

and we set Γm := Γm+ ∪Γm− . Along the boundary Γ, we denote by n := (n1, n2)t the unit outer
normal vector field and by t := (−n2, n1)t the associated counterclockwise tangential vector
field, as illustrated in Figure 1.1.

t

n =

(
−1
0

)

x−

x+

n =

(
0
−1

)

n =

(
0
1

)
t

t

t

n =

(
1
0

)

Γm

Γm

Γin ΓoutΩ

Figure 1.1: Sketch of the computational domain.

In this work we are concerned with approximating the solution of the stationary Navier–
Stokes system

−div
(
2ν∇u− pI

)
+ ρdiv(u⊗ u) = 0 in Ω, div u = 0 in Ω,

u = uin on Γin, u · n = A
(
∆P − iRTϕ

)
, u · t = 0 on Γm,

(
2ν∇u− pI

)
n =

ρ

2
(u · n)−u on Γout,

(1.16)

coupled with the convection-diffusion equation

−κ∆ϕ+ u · ∇ϕ = 0 in Ω, ϕ = ϕin on Γin,(
ϕu− κ∇ϕ

)
· n = Bϕ on Γm, ϕ ≥ 0 on Γm,

κ∇ϕ · n =
1

2
(u · n)−ϕ on Γout,

(1.17)

where I denotes the identity matrix in R2×2.
In the formulation above, the unknowns are the velocity u, the pressure p, and the salt

concentration ϕ of the fluid occupying the domain Ω. The given data are the fluid viscosity ν > 0,
the permeate diffusivity of salt in water κ > 0, the inlet velocity uin = (u1,in, u2,in)t ∈ H1/2(Γin),
and the inlet salt concentration ϕin ∈ R+. The physical parameters A, i, R, T , ∆P , and B are
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assumed to be positive constants; their specific values are reported in Table 5.2. For convenience,
we introduce the shorthand

a1 := A∆P, a2 := AiRT, a3 := B, a := (a1, a2, a3).

We also set
{x−} := Γin ∩ Γm− , {x+} := Γin ∩ Γm+ .

In what follows we assume that the inlet velocity uin ∈ H1/2(Γin) satisfies the compatibility
conditions

lim
x→x±

uin(x) · t = ±
(
a1 − a2ϕin

)
, x ∈ Γin, (1.18)

and
u1,in ∈ H

1/2
00 (Γin). (1.19)

In particular, if

u2,in(x, y) =
a1 − a2ϕin

b
(2y − b), ∀(x, y) ∈ Γin,

then uin clearly satisfies (1.18) for any u1,in ∈ H
1/2
00 (Γin). The reasoning behind the conditions

(1.18) and (1.19) will become clear in the next section, where we introduce the associated
variational formulation.

2 Continuous weak formulation and its well-posedness

Based on the model equations introduced above, we now derive the continuous weak formulation
of the problem and analyze its well-posedness.

2.1 Weak formulation

To derive the variational formulation associated with the coupled system (1.16)-(1.17), we begin
by multiplying the first equation of (1.16) by a test function v ∈ H1

Γcout
(Ω), where Γcout :=

Γin ∪ Γm, integrating by parts, and using the last boundary condition in (1.16) to obtain

2ν

∫

Ω
∇u : ∇v− ρ

2

∫

Γout

(u ·n)−u ·v+ρ

∫

Ω
(u ·∇)u ·v−

∫

Ω
pdiv v = 0 ∀v ∈ H1

Γcout
(Ω). (2.1)

In turn, the incompressibility constraint, given by the second equation of (1.16), is imposed
weakly as ∫

Ω
q div u = 0 ∀q ∈ L2(Ω). (2.2)

Finally, multiplying the first equation of (1.17) by a test function ψ ∈ H1
Γin

(Ω), integrating by
parts, and using the boundary conditions on Γm and Γout in (1.17), we arrive at
∫

Ω
κ∇ϕ·∇ψ+a3

∫

Γm

ϕψ+

∫

Ω
(u·∇ϕ)ψ−

∫

Γm

ϕψ(u·n)− 1

2

∫

Γout

(u·n)−ϕψ = 0 ∀ψ ∈ H1
Γin

(Ω).

(2.3)
According to the above derivations, the variational formulation of the coupled system (1.16)(1.17)
reads: Find (u, p, ϕ) ∈ H1(Ω)× L2(Ω)×H1(Ω) such that

u = ũin(ϕ) on Γcout, ϕ = ϕin on Γin,

7



and
aF (u,v) +OF (u; u,v) + bF (v, p) = 0 ∀v ∈ H1

Γcout
(Ω),

bF (u, q) = 0 ∀ q ∈ L2(Ω),

aC(ϕ,ψ) +OC(u, ϕ, ψ) = 0 ∀ψ ∈ H1
Γin

(Ω),

(2.4)

where aF , bF and aC are given by

aF (u,v) := 2ν

∫

Ω
∇u : ∇v, bF (v, q) := −

∫

Ω
q div v, aC(ϕ,ψ) :=

∫

Ω
κ∇ϕ · ∇ψ + a3

∫

Γm

ϕψ,

whereas the nonlinear forms are defined by

OF (w; u,v) := ρ

∫

Ω
(w · ∇)u · v − ρ

2

∫

Γout

(w · n)−u · v,

OC(w, ϕ, ψ) :=

∫

Ω
(w · ∇ϕ)ψ −

∫

Γm

ϕψ(w · n)− 1

2

∫

Γout

(w · n)−ϕψ.

Above, for any φ ∈ H1(Ω) satisfying φ|Γin = ϕin, the concentration-dependent boundary function
ũin(φ) is defined by

ũin(φ) :=





uin on Γin,
(
a1 − a2φ

+
)
n on Γm.

(2.5)

Notice that, thanks to (1.18), (1.19), and [19, Theorem 1.5.2.3], we have ũin(φ) ∈ H1/2(Γcout),
which justifies the introduction of conditions (1.18) and (1.19).

2.2 Well-posedness

We now turn to the analysis of the variational formulation (2.4). Our first step is to establish
the stability properties of the forms involved.

2.2.1 Stability Properties

We begin by observing that, after simple computations, it can be proved that the bilinear forms
aF , aC and b are bounded:

|aF (u,v)| . ν‖u‖1,Ω‖v‖1,Ω, ∀u,v ∈ H1
Γcout

(Ω),

|aC(ϕ,ψ)| . (κ+ a3)‖ϕ‖1,Ω‖ψ‖1,Ω, ∀ϕ,ψ ∈ H1
Γin

(Ω),

|bF (v, q)| . ‖q‖0,Ω‖v‖1,Ω ∀v ∈ H1
Γcout

(Ω),∀q ∈ L2(Ω),

(2.6)

Recalling the continuous Sobolev embedding H1(Ω) ↪→ L4(Ω) holds (see [25, Theorem 1.3.4]),
we obtain

‖v‖4,Ω . ‖v‖1,Ω ∀v ∈ H1(Ω), (2.7)

which together with (1.6), imply

|OF (w; u,v)| . ρ‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω, |OC(w, ϕ, ψ)| . ‖w‖1,Ω‖ϕ‖1,Ω‖ψ‖1,Ω. (2.8)
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In addition, from the well-known Poincaré inequality, we deduce that

aF (v,v) & ν‖v‖21,Ω ∀v ∈ H1
Γcout

(Ω), (2.9)

aC(ψ,ψ) & κ‖ψ‖21,Ω + a3‖ψ‖20,Γm
& κ‖ψ‖21,Ω ∀ψ ∈ H1

Γin
(Ω). (2.10)

Now, we proceed to establish the corresponding inf-sup condition for bF , which is crucial for
ensuring the well-posedness and stability of problem (2.4).

Lemma 2.1 There exists β > 0, such that

sup
v∈H1

Γcout
(Ω)

v 6=θ

|bF (v, q)|
‖v‖1,Ω

& ‖q‖0,Ω, ∀q ∈ L2(Ω). (2.11)

Proof. The result follows from the surjectivity of the operator div : H1
0(Ω) → L2

0(Ω) := {q ∈
L2(Ω) :

∫
Ω q = 0}, the orthogonal decomposition L2(Ω) = L2

0(Ω)⊕R and the fact that H1
0(Ω) ⊆

H1
Γcout

(Ω). We omit further details. �

Finally, by applying integration by parts, we obtain the following identities, which will be
used later:

OF (w; v,v) =
ρ

2

(
−
∫

Ω
|v|2div (w) +

∫

Γ
(w · n)|v|2

)
− ρ

2

∫

Γout

(w · n)−|v|2,

OC(w;ψ,ψ) = −1

2

∫

Ω
ψ2div (w) +

1

2

∫

Γ
ψ2(w · n)−

∫

Γm

(w · n)ψ2 − 1

2

∫

Γout

(w · n)−ψ2,

(2.12)
for all w,v ∈ H1(Ω) and ψ ∈ H1(Ω).

2.2.2 Positivity of the concentration

Before proving the well-posedness of (2.4) we first establish that if (u, p, ϕ) is a solution of (2.4),
then the concentration ϕ is positive in Ω under suitable assumptions on the data. This result
can be deduced from the following lemma.

Lemma 2.2 Let ϕin, a1, a3 ∈ R+, such that a3− 1
2a1 ≥ 0. Then, for any (w, φ) ∈ H1(Ω)×H1(Ω)

such that φ|Γin = ϕin, φ ≥ 0 on Γm, w = ũin(φ) on Γcout, and div w = 0, the solution ϕ ∈ H1(Ω)
to the problem: Find ϕ ∈ H1(Ω) such that ϕ = ϕin on Γin and

aC(ϕ,ψ) +OC(w, ϕ, ψ) = 0 ∀ψ ∈ H1
Γin

(Ω), (2.13)

satisfies
ϕ ≥ 0 a.e. in Ω, and ϕ ≥ 0 a.e. on Γm. (2.14)

Proof. We start by choosing any sequence Gn ∈ (0, ϕin) such that lim
n→∞

Gn = 0 (for instance,

Gn = ϕin
n ). Clearly ϕin −Gn ≥ 0, ∀n ∈ N, and since ϕ|Γin = ϕin, it follows that ϕ−Gn ≥ 0 on

Γin, ∀n ∈ N, which implies (ϕ−Gn)− = 0 on Γin, ∀n ∈ N.
Now, since (ϕ − Gn) ∈ H1(Ω), ∀n ∈ N, similarly to [1, Lemma 5.2.24], one can show that

(ϕ−Gn)− ∈ H1
Γin

(Ω), ∀n ∈ N. Then, using the fact that div w = 0, integrating by parts we can
deduce that ∫

Ω
(w · ∇ϕ)(ϕ−Gn)− =

1

2

∫

Γm∪Γout

(w · n)
∣∣(ϕ−Gn)−

∣∣2 . (2.15)
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Then, from (2.13) with ψ = (ϕ−Gn)−, employing (2.15) and using the fact that ξ−ξ = (ξ−)2,
for any function ξ, we obtain:

0 = aC(ϕ, (ϕ−Gn)−) +OC(w, ϕ, (ϕ−Gn)−)

= κ

∫

Ω
|∇(ϕ−Gn)−|2 + a3

∫

Γm

ϕ(ϕ−Gn)− +
1

2

∫

Γm

(w · n)|(ϕ−Gn)−|2

+
1

2

∫

Γout

(w · n)|(ϕ−Gn)−|2 − 1

2

∫

Γout

(w · n)−ϕ(ϕ−Gn)−

−
∫

Γm

(w · n)ϕ(ϕ−Gn)−, ∀n ∈ N.

Then, by (2.10) and the Dominated Convergence Theorem (see, e.g., [3, Lemma 3.31]), we can
pass to the limit as n→∞ and obtain that

κ‖ϕ−‖21,Ω + a3

∫

Γm

ϕϕ− +
1

2

∫

Γm

(w · n)|ϕ−|2 +
1

2

∫

Γout

(w · n)|ϕ−|2

− 1

2

∫

Γout

(w · n)−ϕϕ− −
∫

Γm

(w · n)ϕϕ− . 0,

which implies

κ‖ϕ−‖21,Ω + a3

∫

Γm

ϕϕ− − 1

2

∫

Γm

(w · n)|ϕ−|2 +
1

2

∫

Γout

(w · n)+|ϕ−|2 . 0.

In this way, recalling that w · n = a1 − a2φ
+ on Γm, from the latter we obtain:

κ‖ϕ−‖21,Ω +
(
a3 −

a1

2

)∫

Γm

|ϕ−|2 +
a2

2

∫

Γm

φ+|ϕ−|2 +
1

2

∫

Γout

(w · n)+|ϕ−|2 . 0.

which clearly implies the result. �
We end this section by observing that, as previously noted, if (u, p, ϕ) is a solution of (2.4),

then (w, φ) := (u, ϕ) clearly satisfies the hypotheses of Lemma 2.2, from which it follows that
the concentration ϕ satisfies (2.14), provided that a3 − 1

2a1 ≥ 0.

2.2.3 An equivalent reduced problem

To simplify the well-posedness analysis of problem (2.4), we now introduce an equivalent reduced
formulation. For this purpose, we first define a suitable lifting operator that extends the Dirichlet
datum ũin(ϕ) ∈ H1/2(Γcout). The construction of such an operator, together with the derivation
of its key properties, is established in the following lemma.

Lemma 2.3 Let ϕin ∈ R+, a = (a1, a2, a3) ∈ R3
+ and uin ∈ H1/2(Γin) satisfying (1.18) and

(1.19). Then, for each φ0 ∈ H1
Γin

(Ω) such that φ0 +ϕin ≥ 0 on Γin, there exists u1(φ0) ∈ H1(Ω)
satisfying the identities

u1(φ0)
∣∣
Γcout

= ũin(φ0 + ϕin), and div (u1(φ0)) = 0 in Ω, (2.16)

where ũin is defined in (2.5). In addition, there holds

‖u1(φ0)‖1,Ω . C(a,uin, ϕin) + a2‖φ0‖1,Ω, ∀φ0 ∈ H1
Γin

(Ω), (2.17)
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and

‖u1(φ0)− u1(φ̃0)‖1,Ω . a2‖φ0 − φ̃0‖1,Ω, ∀φ0, φ̃0 ∈ H1
Γin

(Ω), (2.18)

where
C(a,uin, ϕin) := (‖u1,in‖1/2,00,Γin

+ ‖ũ2(a,uin, ϕin)‖1/2,Γcout
), (2.19)

with ũ2(a,uin, ϕin) ∈ H1/2(Γcout) in (2.17) being the extension of u2,in given by:

ũ2(a,uin, ϕin) =





u2,in on Γin

a1 − a2ϕin on Γm+

−(a1 − a2ϕin) on Γm− .
(2.20)

Proof. Given φ0 ∈ H1
Γin

(Ω) such that φ0 + ϕin ≥ 0 on Γin, we start by defining z1(φ0) ∈ H1(Ω)
given by

z1(φ0) := γ̃−1
0 (EΓcout

(ũin(φ0 + ϕin))), (2.21)

and z0(φ0) ∈ H1
Γcout

(Ω) being the first component of the solution of the Stokes problem: Find

(z0(φ0), r(φ0)) ∈ H1
Γcout

(Ω)× L2(Ω), such that
∫

Ω
∇z0(φ0) : ∇v +

∫

Ω
r(φ0) div v = −

∫

Ω
∇z1(φ0) : ∇v, ∀v ∈ H1

Γcout
(Ω),

∫

Ω
q div z0(φ0) = −

∫

Ω
q div z1(φ0), ∀ q ∈ L2(Ω).

(2.22)

Then we simply define
u1(φ0) := z0(φ0) + z1(φ0), (2.23)

and observe, from (2.21), the fact that z0(φ0)
∣∣
Γcout

= 0, and the second equation of (2.22), that

u1(φ0) satisfies (2.16).
Now, to deduce (2.17) we first recall that the solution of (2.22) satisfies

‖z0(φ0)‖1,Ω + ‖r(φ0)‖0,Ω . ‖ũin(φ0 + ϕin)‖1/2,Γcout
. (2.24)

Then, from the latter, (1.5) and (1.13), it follows that

‖u1(φ0)‖1,Ω . ‖ũin(φ0 + ϕin)‖1/2,Γcout
. (2.25)

Next, we let g ∈ C0,γ(Γ) be such that g = 1 on Γm+ and g = −1 on Γm− and define

s(φ0) :=
(
E0,Γin(u1,in), EΓcout

(ũ2(a,uin, ϕin))− a2γ0(φ0)g
)t ∈ H1/2(Γ), (2.26)

after simple computations it is not difficult to see that

s(φ0)|Γin
= uin on Γin and s(φ0)|Γm =

(
a1 − a2(φ0 + ϕin)+

)
n on Γm, (2.27)

that is s(φ0) = ũin(φ0 + ϕin) on Γcout. In this way, from (1.1), (1.8), (1.12), (1.13), and (2.25),
we deduce that

‖u1(φ0)‖1,Ω . ‖ũin(φ0 + ϕin)‖1/2,Γcout

∼= ‖s(φ0)‖1/2,Γcout
. C(a,uin, ϕin) + a2‖φ0‖1,Ω, (2.28)

thus, (2.17) holds. Finally, we let φ0, φ̃0 ∈ H1
Γin

(Ω), and apply again Lemma 1.1 together with
the inequality in (1.1) to conclude that

‖s(φ0)− s(φ̃0)‖1/2,Γ ≤ a2‖γ0(φ0 − φ̃0)g‖1/2,Γ ≤ a2c2‖φ0 − φ̃0‖1,Ω,
for some constant c2 > 0, which, due to (2.22), implies (2.18). �
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Remark 2.4 Notice that if φ0 ∈ H1+δ(Ω) ∩ H1
Γin

(Ω), with δ > 0, then the solution of (2.22)

satisfies z0(φ0) ∈ H1+δ(Ω) ∩H1
Γcout

(Ω) and r(φ0) ∈ Hδ(Ω) (see [4, 26]). This regularity result
will be used in Section 4.

Now, we let V be the kernel of the bilinear form bF , that is

V = {v ∈ H1
Γcout

(Ω) : bF (v, q) = 0 ∀q ∈ L2(Ω)} = {v ∈ H1
Γcout

(Ω) : div v = 0}. (2.29)

Then the aforementioned equivalent reduced problem associated to (2.4) reads: Find (u0, ϕ0) ∈
V ×H1

Γin
(Ω), such that

aF (u0 + u1(ϕ0),v) + OF (u0 + u1(ϕ0); u0 + u1(ϕ0),v) = 0 ∀ v ∈ V,
aC(ϕ0 + ϕin, ψ) +OC(u0 + u1(ϕ0), ϕ0 + ϕin, ψ) = 0 ∀ ψ ∈ H1

Γin
(Ω),

(2.30)

where uϕ0
1 is the lifting introduced in Lemma 2.3 with φ0 = ϕ0 ∈ H1

Γin
(Ω).

The following Lemma establishes the equivalence between problems (2.4) and (2.30).

Lemma 2.5 If (u, p, ϕ) ∈ H1(Ω) × L2(Ω) × H1(Ω), with u = ũin(ϕ) on Γcout and ϕ = ϕin on
Γin, is a solution of (2.4), then (u0, ϕ0) ∈ V × H1

Γin
(Ω), with u0 = u − u1(ϕ) ∈ V and ϕ0 =

ϕ−ϕin ∈ H1
Γin

(Ω), is a solution of (2.30). Conversely, if (u0, ϕ0) ∈ V×H1
Γin

(Ω) is a solution of

(2.30), then there exists p ∈ L2(Ω) such that (u0 +u1(ϕ0), p, ϕ0 +ϕin) ∈ H1(Ω)×L2(Ω)×H1(Ω)
is a solution of (2.4).

Proof. The proof follows from the definition of the lifting u1(ϕ0) in Lemma 2.3 and the inf-sup
condition (2.1). We omit further details and refer the reader to [24, Lemma 2.1] for a similar
result. �

From this point forward, our attention will be directed towards establishing the well-posedness
of the problem (2.30) by means of a suitable fixed-point strategy. To that end, we first introduce
an associated fixed-point operator.

2.2.4 The fixed-point operator

Here, we follow a similar approach to that in [2] and describe the fixed-point strategy that will be
used to prove the well-posedness of (2.30). We start by defining the following auxiliary operator
L : V ×H1

Γin
(Ω)→ H1

Γin
(Ω) given by

L(w0, φ0) := ϕ0,

with ϕ0 ∈ H1
Γin

(Ω) being the unique solution (to be confirmed below) of the linearized problem:

Find ϕ0 ∈ H1
Γin

(Ω), such that

aC(ϕ0 + ϕin, ψ) +OC(w0 + u1(φ0), ϕ0 + ϕin, ψ) = 0 ∀ ψ ∈ H1
Γin

(Ω), (2.31)

where u1(φ0) ∈ H1(Ω) is the lifting defined in Lemma 2.3.
In addition we let S : V ×H1

Γin
(Ω)→ V be the operator given by

S(w0, φ0) := u0, (2.32)
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with u0 ∈ V being the unique solution (to be confirmed below) of problem: Find u0 ∈ V such
that

aF (u0 + u1(φ0),v) +OF (w0 + u1(φ0); u0 + u1(φ0),v) = 0 ∀v ∈ H1
Γcout

(Ω). (2.33)

Thus, we let J : V ×H1
Γin

(Ω)→ V ×H1
Γin

(Ω) be the operator defined by

J (w0, φ0) := (S(w0, φ0),L(S(w0, φ0), φ0)) ∀(w0, φ0) ∈ V ×H1
Γin

(Ω), (2.34)

and realize that analyzing the well-posedness of problem (2.30) is equivalent study the unique
solvability of the fixed point problem : Find (u0, ϕ0) ∈ V ×H1

Γin
(Ω), such that

J (u0, ϕ0) = (u0, ϕ0). (2.35)

According to the above, in what follows we focus on analyzing the fixed-point problem (2.35).
Before doing that we first establish the well-definiteness of operator J . This is addressed in the
following subsection.

2.2.5 Well-definiteness of J
Since the operator J is defined in terms of L and S (cf. (2.34)), to prove that J is well defined
it suffices to show that L and S are themselves well defined, which is equivalent to establishing
the well-posedness of problems (2.31) and (2.33), respectively. We begin with the analysis of
problem (2.31).

Lemma 2.6 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3 − 1

2a1 ≥ 0 and let (w0, φ0) ∈ V × H1
Γin

(Ω)

with φ0 + ϕin ≥ 0 on Γm. There exists a unique ϕ0 := L(w0, φ0) ∈ H1
Γin

(Ω) solution to (2.31),
satisfying

ϕ0 + ϕin ≥ 0 on Γm. (2.36)

In addition, the following estimate holds:

‖L(w0, φ0)‖1,Ω . κ−1ϕin (a3 + a2ϕin + a1 + a2‖φ0‖1,Ω + ‖w0‖1,Ω + ‖u1(φ0)‖1,Ω) . (2.37)

Proof. We begin by noting that, given (w0, φ0) ∈ V ×H1
Γin

(Ω), problem (2.31) can be reformu-

lated as: find ϕ0 ∈ H1
Γin

(Ω), such that

aC(ϕ0, ψ) +OC(w0 + u1(φ0), ϕ0, ψ) = Gw0,φ0(ψ) ∀ψ ∈ H1
Γin

(Ω), (2.38)

where the linear functional G on the right-hand side is given by

Gw0,φ0(ψ) := −aC(ϕin, ψ)−OC(w0 + u1(φ0), ϕin, ψ). (2.39)

Thus, to prove the well-posedness of (2.38), it suffices, by the Lax–Milgram lemma, to show that
the bilinear form on the left-hand side is elliptic on H1

Γin
(Ω) and Gw0,φ0 is a bounded functional.

Indeed, using (2.16), the second identity in (2.12), and the fact that u1(φ0) = a1−a2(φ0 +ϕin)+

on Γm and w0 = 0 on Γcout we obtain

OC(w0 + u1(φ0), ψ, ψ) = −1

2

∫

Γm

(u1(φ0) · n)ψ2 +
1

2

∫

Γout

((w0 + u1(φ0)) · n)+ψ2,

≥ −1

2

∫

Γm

a1ψ
2 +

a2

2

∫

Γm

(φ0 + ϕin)+ψ2,

≥ −a1

2

∫

Γm

ψ2,

(2.40)
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for all ψ ∈ H1
Γin

(Ω). Then, from the definition of aC , (2.40), (2.10) and the fact that a3− 1
2a1 ≥ 0,

we conclude that

aC(ψ,ψ) +OC(w0 + u1(φ0), ψ, ψ) ≥ κ|ψ|21,Ω +
(
a3 −

a1

2

)
‖ψ‖20,Γm

& κ‖ψ‖21,Ω ∀ψ ∈ H1
Γin

(Ω). (2.41)

Now, for the boundedness of Gw0,φ0 we use again that u1(φ0) = a1 − a2(φ0 + ϕin)+ on Γm

and w0 = 0 on Γcout, to obtain

Gw0,φ0(ψ) = −a3ϕin

∫

Γm

ψ + ϕin

∫

Γm

ψ(a1 − a2(φ0 + ϕin)+) +
ϕin

2

∫

Γout

ψ((w0 + u1(φ0)) · n)−

= −(a3ϕin + a2ϕ
2
in)

∫

Γm

ψ + ϕin

∫

Γm

ψ(a1 − a2φ0) +
ϕin

2

∫

Γout

ψ((w0 + u1(φ0)) · n)−.

(2.42)

The latter combined with (1.1) imply

|Gw0,φ0(ψ)| . ϕin (a3 + a2ϕin + a1 + a2‖φ0‖1,Ω + ‖w0‖1,Ω + ‖u1(φ0)‖1,Ω) ‖ψ‖1,Ω. (2.43)

In this way, from (2.41), (2.43) and the Lax–Milgram Lemma we readily deduce the well-
posedness of problem (2.38) and estimate (2.37). Finally, (2.36) follows from Lemma 2.2.

�
Now we turn to prove the well-definiteness of S.

Lemma 2.7 Given (w0, φ0) ∈ V×H1
Γin

(Ω), there exists a unique u0 := S(w0, φ0) ∈ V solution
to problem (2.33), satisfying

‖S(w0, φ0)‖1,Ω . ν−1 (ν + ρ‖w0‖1,Ω + ρ‖u1(φ0)‖1,Ω) ‖u1(φ0)‖1,Ω. (2.44)

Proof. Given (w0, φ0) ∈ V × H1
Γin

(Ω) similary to the proof of Lemma 2.6, we begin by noting
that problem (2.33) can be equivalently rewritten as: Find u0 ∈ V, such that

aF (u0,v) +OF (w0 + u1(φ0); u0,v) = Fw0,φ0(v) ∀v ∈ V, (2.45)

where the linear functional Fw0,φ0 : V→ R is defined as

Fw0,φ0(v) :=− aF (u1(φ0),v)−OF (w0 + u1(φ0); u1(φ0),v)

=− 2ν

∫

Ω
∇u1(φ0) : ∇v − ρ

∫

Ω
(∇u1(φ0))(w0 + u1(φ0)) · v

+
ρ

2

∫

Γout

((w0 + u1(φ0)) · n)−u1(φ0) · v,

(2.46)

for all v ∈ V.
Now, using the second identity in (2.16), the first identity in (2.12), we deduce that

OF (w0 + u1(φ0); v,v) =
ρ

2

∫

Γout

((w0 + u1(φ0)) · n)|v|2 − ρ

2

∫

Γout

((w0 + u1(φ0)) · n)−|v|2

=
ρ

2

∫

Γout

((w0 + u1(φ0)) · n)+|v|2 ≥ 0 ∀v ∈ V.

(2.47)
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Hence, combining (2.47) and (2.9), we get

aF (v,v) +OF (w0 + u1(φ0); v,v) & cF ‖v‖21,Ω ∀v ∈ V. (2.48)

On the other hand, from (1.1), (1.6), (2.7) and (2.46), we readily obtain

|Fw0,φ0(v)| . ν‖u1(φ0)‖1,Ω‖v‖1,Ω + ρ‖w0 + u1(φ0)‖1,Ω‖u1(φ0)‖1,Ω‖v‖1,Ω
+ ρ‖w0 + u1(φ0)‖0,Γout‖u1(φ0)‖L4(Γout)‖v‖L4(Γout)

. (ν + ρ‖w0‖1,Ω + ρ‖u1(φ0)‖1,Ω) ‖u1(φ0)‖1,Ω‖v‖1,Ω,
(2.49)

for all v ∈ V. In this way, from (2.48), (2.49) and the Lax-Milgram Lemma (see, e.g., [14,
Lemma 2.2]) we deduce the well-posedness of problem (2.45) and estimate (2.44). �

Having analyzed the well-definiteness of L and S, now we are in position of establishing that
J is well defined.

Lemma 2.8 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3 − 1

2a1 ≥ 0 and let (w0, φ0) ∈ V × H1
Γin

(Ω),

with φ0 + ϕin ≥ 0 on Γm. There exists a unique (u0, ϕ0) ∈ V ×H1
Γin

(Ω), such that

J (w0, φ0) = (u0, ϕ0) and ϕ0 + ϕin ≥ 0 on Γm. (2.50)

In addition, the following estimate holds

‖J (w0, φ0)‖ . B1(data) + B2(data)‖φ0‖1,Ω + B3(data)‖w0‖1,Ω

+ B4(data)‖w0‖1,Ω‖φ0‖1,Ω + B5(data)‖φ0‖21,Ω,
(2.51)

where
B1(data) := κ−1ϕin(a1 + a2ϕin + a3) + (1 + κ−1ϕin)C(a,uin, ϕin),

+ν−1ρ(1 + κ−1ϕin)C2(a,uin, ϕin)

B2(data) := (1 + κ−1ϕin)a2,

B3(data) := ν−1ρ(1 + κ−1ϕin)C(a,uin, ϕin),

B4(data) := ν−1ρ(1 + κ−1ϕin)a2,

B5(data) := ν−1ρ(1 + κ−1ϕin)a2
2.

(2.52)

Proof. Recalling the definition of J (cf. (2.34)), the proof of well-definiteness of J is a direct
consequence of Lemmas 2.6 and 2.7. In addition, after simple computations, from (2.37) and
(2.44), it follows that

‖J (w0, φ0)‖ . κ−1ϕin(a1 + a2ϕin + a3) + κ−1a2ϕin‖φ0‖1,Ω + (1 + κ−1ϕin)‖u1(φ0)‖1,Ω

+ ν−1ρ(1 + κ−1ϕin)‖w0‖1,Ω‖u1(φ0)‖1,Ω + ν−1ρ(1 + κ−1ϕin)‖u1(φ0)‖21,Ω.

This inequality and (2.17) imply (2.51), which concludes the proof. �
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2.2.6 Well-posedness of the continuous problem

Having proved the well-definiteness of operator J , now we turn our attention to proving that
J admits a fixed point. To that end, given λ > 0, we first introduce the following non-empty,
closed subset of H1

Γcout
(Ω)×H1

Γin
(Ω):

Wλ :=
{

(w0, φ0) ∈ V ×H1
Γin

(Ω) : φ0 + ϕin ≥ 0 on Γm, ‖(w0, φ0)‖ ≤ λ
}
. (2.53)

Under suitable assumptions on the data, it can be proved that J (Wλ) ⊆Wλ. This is establishes
in the following result.

Lemma 2.9 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3 − 1

2a1 ≥ 0 and let (w0, φ0) ∈ V × H1
Γin

(Ω),
with φ0 + ϕin ≥ 0 on Γm. For given λ > 0, assume further that

B1(data) + (B2(data) + B3(data))λ+ (B4(data) + B5(data))λ2 ≤ λ, (2.54)

with Bi, i = 1, ..., 5 defined in (2.52). Then there holds J (Wλ) ⊆Wλ.

Proof. The follows straightforwardly from (2.51) and assumption (2.54). We omit further details.
�

We now turn to the proof of a Lipschitz continuity property for J . As a first step, we
establish the following intermediate result, which shows that L is Lipschitz continuous.

Lemma 2.10 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3− 1

2a1 ≥ 0 and let (w0, φ0) ∈ V×H1
Γin

(Ω),
with φ0 + ϕin ≥ 0 on Γm. For given λ > 0, assume further that (2.54) holds. Then, for all
(w0, φ0), (w̃0, φ̃0) ∈Wλ, there holds

‖L(w0, φ0)− L(w̃0, φ̃0)‖ . CL‖(w0, φ0)− (w̃0, φ̃0)‖, (2.55)

where CL > 0 is given by:
CL = k−1(λ+ ϕin)(1 + a2). (2.56)

Proof. Given (w0, φ0), (w̃0, φ̃0) ∈Wλ, we let ϕ0 = L(w0, φ0) and ϕ̃0 = L(w̃0, φ̃0). According
the definition of L (cf. (2.31)), it follows that

aC(ϕ0, ψ) +OC(w0 + u1(φ0), ϕ0, ψ) = Gw0,φ0(ψ) ∀ψ ∈ H1
Γin

(Ω), (2.57)

and
aC(ϕ̃0, ψ) +OC(w̃0 + u1(φ̃0), ϕ̃0, ψ) = Gw̃0,φ̃0

(ψ) ∀ψ ∈ H1
Γin

(Ω), (2.58)

with the functionals Gw0,φ0 and Gw̃0,φ̃0
defined as in (2.39). In addition, from Lemma 2.9 we

know that
‖ϕ0‖1,Ω ≤ λ and ‖ϕ̃0‖1,Ω ≤ λ. (2.59)

Then, subtracting equations (2.57) and (2.58), we have that

aC(ϕ0 − ϕ̃0, ψ) +OC(w0 + u1(φ0), ϕ0, ψ)−OC(w̃0 + u1(φ̃0), ϕ̃0, ψ) = Gw0,φ0(ψ)−Gw̃0,φ̃0
(ψ),

and adding and subtracting suitable terms, from the latter we arrive at

aC(ϕ0 − ϕ̃0, ψ) +OC(w0 + u1(φ0), ϕ0 − ϕ̃0, ψ) =−OC(w0 − w̃0 + u1(φ0)− u1(φ̃0), ϕ̃0, ψ)

+Gw0,φ0(ψ)−Gw̃0,φ̃0
(ψ) ∀ψ ∈ H1

Γin
(Ω),

(2.60)
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where

Gw0,φ0(ψ)−Gw̃0,φ̃0
(ψ) =

ϕin

2

∫

Γout

ψ([(w0 + u1(φ0)) · n]− − [(w̃0 + u1(φ̃0)) · n]−)

− ϕina2

∫

Γm

ψ(φ0 − φ̃0) ∀ψ ∈ H1
Γin

(Ω).

(2.61)

Then in particular for ψ = ϕ0 − ϕ̃0 in (2.60), from (1.1), the second estimate in (2.8) and the
Cauchy Schwarz inequality, we deduce that

κ‖ϕ0 − ϕ̃0‖21,Ω .‖w0 − w̃0 + u1(φ0)− u1(φ̃0)‖1,Ω‖ϕ̃0‖1,Ω‖ϕ0 − ϕ̃0‖1,Ω
+ ϕin‖ϕ0 − ϕ̃0‖1,Ω‖w0 − w̃0 + u1(φ0)− u1(φ̃0)‖1,Ω
+ ϕina2‖ϕ0 − ϕ̃0‖1,Ω‖φ0 − φ̃0‖1,Ω,

which together with (2.18) and (2.59), yield

‖ϕ0 − ϕ̃0‖1,Ω . κ−1(λ+ ϕin)‖w0 − w̃0‖1,Ω + k−1a2(λ+ ϕin)‖φ0 − φ̃0‖1,Ω,

which implies the result. �

Now, we provide a Lipschitz continuity result for S.

Lemma 2.11 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3− 1

2a1 ≥ 0 and let (w0, φ0) ∈ V×H1
Γin

(Ω),
with φ0 + ϕin ≥ 0 on Γm. For given λ > 0, assume further that (2.54) holds. Then, for all
(w0, φ0), (w̃0, φ̃0) ∈Wλ, there holds

‖S(w0, φ0)− S(w̃0, φ̃0)‖ . CS‖(w0, φ0)− (w̃0, φ̃0)‖, (2.62)

where CS > 0 is given by

CS = ν−1a2(ν + ρ(C(a,uin, ϕin) + (a2 + 1)λ)). (2.63)

Proof. Given (w0, φ0), (w̃0, φ̃0) ∈ Wλ, we set u0 := S(w0, φ0) and ũ0 := S(w̃0, φ̃0), which
satisfy

aF (u0,v) +OF
(
w0 + u1(φ0); u0,v

)
= Fw0,φ0(v) ∀v ∈ V, (2.64)

and
aF (ũ0,v) +OF

(
w̃0 + u1(φ̃0); ũ0,v

)
= Fw̃0,φ̃0

(v) ∀v ∈ V, (2.65)

where the functionals on the right-hand sides are defined as in (2.46). According to Lemma 2.9
we recall that

‖u0‖1,Ω ≤
λ

2
and ‖ũ0‖1,Ω ≤

λ

2
. (2.66)

Similarly to the proof of Lemma 2.10 we subtract the equations (2.45) and (2.65), and add and
subtract suitable terms, to deduce that

aF (u0 − ũ0,v) +OF (w0 + u1(φ0); u0 − ũ0,v) = F̃w0,φ0(v), ∀v ∈ V, (2.67)

where

F̃w0,φ0(v) :=− aF (u1(φ0)− u1(φ̃0),v)−OF (w0 + u1(φ0); u1(φ0)− u1(φ̃0),v)

−OF (w0 − w̃0 + u1(φ0)− u1(φ̃0); ũ0 + u1(φ̃0),v).
(2.68)
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In particular, taking v = u0 − ũ0 above, and applying the first estimates in (2.6) and (2.8), we
deduce that

ν ‖u0 − ũ0‖21,Ω . ν‖u1(φ0)− u1(φ̃0)‖1,Ω‖u0 − ũ0‖1,Ω
+ ρ‖w0 + u1(φ0)‖1,Ω‖u1(φ0)− u1(φ̃0)‖1,Ω‖u0 − ũ0‖1,Ω
+ ρ‖w0 − w̃0 + u1(φ0)− u1(φ̃0)‖1,Ω‖ũ0 + u1(φ̃0)‖1,Ω‖u0 − ũ0‖1,Ω,

(2.69)

which together with (2.17), (2.18) and (2.66), imply

ν‖u0 − ũ0‖1,Ω . a2(ν + ρ(C(a,uin, ϕin) + (a2 + 1)λ))‖φ0 − φ̃0‖1Ω

+ ρ(C(a,uin, ϕin) + (a2 + 1)λ) ‖w0 − w̃0‖1Ω ,
(2.70)

which readily implies the result. �
Now we are in position of establishing the Lipschitz continuity of J .

Lemma 2.12 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3− 1

2a1 ≥ 0 and let (w0, φ0) ∈ V×H1
Γin

(Ω),
with φ0 + ϕin ≥ 0 on Γm. For given λ > 0, assume further that (2.54) holds. Then, for each
(w0, φ0), (w̃0, φ̃0) ∈Wλ there holds

‖J (w0, φ0)− J (w̃0, φ̃0)‖ . CJ ‖(w0, φ0)− (w̃0, φ̃0)‖, (2.71)

where CJ is given by
CJ := ((1 + CL)CS + CL), (2.72)

with CL and CS being the positive constants defined in (2.56) and (2.63), respectively.

Proof. Recalling the definition of (2.34), from (2.55) and (2.62), we deduce that for each (w0, φ0),
(w̃0, φ̃0), there holds

‖J (w0, φ0)− J (w̃0, φ̃0)‖ . (1 + CL)‖S(w0, φ0)− S(w̃0, φ̃0)‖1,Ω + CL‖φ0 − φ̃0‖1,Ω,
. (1 + CL)CS‖w0 − w̃0‖1,Ω + ((1 + CL)CS + CL)‖φ0 − φ̃0‖1,Ω,

(2.73)

which implies the result. �
Finally, we introduce the main result of this section, namely, the well-posedness of problem

(2.30).

Theorem 2.13 Let a = (a1, a2, a3) ∈ R3
+ satisfying a3− 1

2a1 ≥ 0 and let (w0, φ0) ∈ V×H1
Γin

(Ω),
with φ0+ϕin ≥ 0 on Γm. For given λ > 0, assume further that (2.54) holds. In addition, assume
that

CJ = ((1 + CL)CS + CL) < 1, (2.74)

where CL and CS are the constants defined in (2.56) and (2.63), respectively. Then, there
exists a unique (u0, ϕ0) ∈ Wλ, such that (u0, ϕ0) = J (u0, ϕ0). Equivalently, there exists a
unique (u, p, ϕ) = (u0 + u1(ϕ0), p, ϕ0 + ϕin) ∈ H1(Ω) × L2(Ω) × H1(Ω) solution to (2.4), with
(u0, ϕ0) ∈Wλ and

‖p‖0,Ω . νλ(1 + a2) + λ2(1 + a2
2) + νC(a,uin, ϕin) + C2(a,uin, ϕin). (2.75)

Proof. Now, for (2.75) we make use of the inf-sup condition (2.11), the first equation of (2.4)
and the first estimates in (2.6)and (2.8), to deduce that

‖p‖0,Ω . ν‖u0 + u1(ϕ0)‖1,Ω + ‖u0 + u1(ϕ0)‖21,Ω,
which together with (2.17) and the fact that ‖u0‖1,Ω ≤ λ, imply (2.75). �
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3 Conforming finite element approach

In this section, we introduce and analyze a conforming finite element scheme for approximating
the solution of problem (2.4). We begin by presenting the Galerkin scheme and reviewing the
discrete stability properties of the associated bilinear forms. As will be shown in the following
subsections, the analysis of the discrete scheme closely parallels that of problem (2.30), which
was used to study the continuous problem (2.4).

3.1 Preliminaries

We begin by taking arbitrary piece-wise polynomial finite element subspaces

Hh,Ψh ⊆ H1(Ω), Hh := [Hh]2, Qh ⊆ L2(Ω). (3.1)

We also define the finite element subspaces H0,h and Ψ0,h given by

H0,h := {vh ∈ Hh : vh = 0 on Γcout} , Ψ0,h := {ψh ∈ Ψh : ψh = 0 on Γin} , (3.2)

which clearly satisfy H0,h ⊆ H1
Γcout

(Ω) and Ψ0,h ⊆ H1
Γin

(Ω).

Above, h stands for the size of a regular triangulation Th of Ω̄ made up of triangles K (when
n = 2) of diameter hK , that is h := max{hK : K ∈ Th}.

For the subsequent analysis, from now on we assume that the pair (Hh,Qh) is inf-sup stable,
namely: There exists a constant β̂F > 0, independent of h, such that

sup
vh∈Hh∩H1

0(Ω)
vh 6=0

bF (vh, qh)

‖vh‖1,Ω
≥ β̂F ‖qh‖0,Ω ∀qh ∈ Qh ∩ L2

0(Ω). (3.3)

In addition, we let P1(K) be the space of polynomials on K of degree less than or equal to 1,
and assume P1

h ⊆ Hh, where

P1
h :=

{
ψh ∈ C(Ω̄) : ψh|K ∈ P1(K), ∀K ∈ Th

}
.

In turn, for any Γ̃ ⊆ Γ, and g ∈ H1/2(Γ̃) we define,

ISZ
h,Γ̃

(g) := [(ISZ
h ◦ γ̃0

−1 ◦ EΓ̃)(g)]|Γ̃, (3.4)

where ISZ
h : Hl(Ω)→ Hh denotes the Scott-Zhang interpolant (see, e.g., [27]), satisfying

‖ISZ
h (φ)− φ‖l,Ω ≤ Chl−1‖φ‖l,Ω ∀φ ∈ Hl(Ω), 1 ≤ l ≤ 2. (3.5)

In what follows, we also employ the vector versions of ISZ
h and ISZ

h,Γ̃
, denoted by ISZ

h and ISZ
h,Γ̃

,

respectively.
Using (3.5) is possible to obtain an approximation property on Γ̃. This result is established

in the following Lemma.

Lemma 3.1 For any function φ ∈ Hl(Ω) we have that

‖ISZ
h,Γ̃

(φ|Γ̃)− φ|Γ̃‖0,Γ̃ . hl−1‖φ‖l,Ω, 1 ≤ l ≤ 2. (3.6)
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Proof. Given l ∈ {1, 2}, we notice that [γ̃0
−1(EΓ̃(φ|Γ̃))]|Γ̃ = φ|Γ̃, and apply (1.1) and (3.5), to

obtain
‖ISZ

h,Γ̃
(φ|Γ̃)− φ|Γ̃‖0,Γ̃ ≤ ‖ISZ

h (γ̃0
−1(EΓ̃(φ)))− γ̃0

−1(EΓ̃(φ))‖0,Γ,
. ‖ISZ

h (γ̃0
−1(EΓ̃(φ))− γ̃0

−1(EΓ̃(φ))‖l,Ω,
. hl−1‖γ̃0

−1(EΓ̃(φ))‖l,Ω,
. hl−1‖φ‖l,Ω,

(3.7)

which concludes the proof. �
As observed in (3.3), the pair (Hh,Qh) is selected as a stable finite element pair for the

Stokes problem. Nevertheless, it is well known that this choice does not, in general, guarantee
divergence-free velocity fields. Consequently, at the discrete level, the second equation in the
first line of (1.16) may not be necessarily satisfied. In view of this, we will consider discrete
versions of the convective terms OF and OC , denoted respectively by OhF and OhC , both of which
are linear in the last two components. More precisely, in what follows we consider the well-known
skew-symmetric forms (see, e.g., [28]), given by

OhF (wh; uh,vh) = ρ

∫

Ω
[(wh · ∇) uh] · vh +

ρ

2

∫

Ω
(div wh) uh · vh

−ρ
2

∫

Γout

(wh · n)− uh · vh

OhC (wh;ϕh, ψh) =

∫

Ω
(wh · ∇ϕh)ψh +

1

2

∫

Ω
(div wh)ϕhψh

−1

2

∫

Γout

(wh · n)− ϕhψh −
∫

Γm

(wh · n)ϕhψh.

We observe that, given wh ∈ Hh, by applying integration by parts, the following properties
for OhF and OhC can be readily derived:

OhF (wh; vh,vh) ≥ 0, ∀vh ∈ H0,h, (3.8)

OhC (wh;ψh, ψh) ≥ −1

2

∫

Γm

(wh · n)ψ2
h, ∀ψh ∈ Ψ0,h. (3.9)

Furthermore, we note that the discrete forms OhF and OhC are consistent in the following sense:
Given w ∈ V (cf. (2.29)), there hold

OhF (w; u,v) = OF (w; u,v) and OhC(w;ϕ,ψ) = OC(w;ϕ,ψ), (3.10)

for all u,v ∈ H1(Ω) and ϕ,ψ ∈ H1(Ω).
Then, the Galerkin scheme associated with (2.4) reads: Find (uh, ph, ϕh) ∈ Hh × Qh × Ψh

such that uh = ũin,h(ϕh) on Γcout, ϕh = ϕin on Γin, and

aF (uh,vh) +OhF (uh; uh,vh) + bF (vh, ph) = 0 ∀vh ∈ H0,h,
bF (uh, qh) = 0 ∀qh ∈ Qh,
aC(ϕh, ψh) +OhC(uh, ϕh, ψh) = 0 ∀ψh ∈ Ψ0,h,

(3.11)

where the bilinear forms aF , bF , and aC are defined as in (2.4), and for any φ ∈ H1
Γin

(Ω) such
that φ|Γin = ϕin, and the function ũin,h(φ) is defined by

ũin,h(φ) := ISZ
h,Γcout

(ũin(φ)) =

{
ISZ
h,Γin

(uin) on Γin

(a1 − a2ISZ
h,Γm

(φ+))n on Γm
, (3.12)
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where ũin is defined in (2.5).
We notice that, since in the definition of ũin appears the positive part of φh, namely φ+, ũin

does not belong to the trace space of Hh, even if φ ∈ Ψh. This forces us to interpolate ũin(φ)
to define ũin,h.

3.2 Analysis of the discrete problem

We now address the unique solvability of (3.11) by adapting the arguments of the continuous
setting to the discrete framework. As a first step, we establish the discrete counterparts of the
stability estimates introduced in Section 2.2.1.

3.2.1 Stability properties

First we observe that under assumption (3.1), the bilinear forms aF , aC , and bF are bounded
with the same constants as in the continuous case:

|aF (uh,vh)| . ν‖uh‖1,Ω‖vh‖1,Ω, ∀uh,vh ∈ H0,h,

|aC(ϕh, ψh)| . (κ+ a3)‖ϕh‖1,Ω‖ψh‖1,Ω, ∀ϕh, ψh ∈ Ψ0,h,

|bF (vh, qh)| . ‖qh‖0,Ω‖vh‖1,Ω, ∀vh ∈ H0,h, ∀qh ∈ Qh,

(3.13)

As in the continuous setting, we also have the following ellipticity properties of the bilinear
forms aF and aC :

aF (vh,vh) & ν‖vh‖21,Ω, ∀vh ∈ H0,h. (3.14)

aC(ψh, ψh) & κ‖ψh‖21,Ω + a3‖ψh‖20,Γm
& κ‖ψh‖21,Ω, ∀ψh ∈ Ψ0,h. (3.15)

Moreover, it is straightforward to verify that, for each wh ∈ H0,h, the bilinear forms OhF (wh; ·, ·)
and OhC(wh; ·, ·) are bounded. More precisely, the following estimates hold:

|OhF (wh; uh,vh)| . ρ‖wh‖1,Ω‖uh‖1,Ω‖vh‖1,Ω, ∀wh,uh,vh ∈ H0,h, (3.16)

|OhC(wh;ϕh, ψh)| . ‖wh‖1,Ω‖ϕh‖1,Ω‖ψh‖1,Ω, ∀wh ∈ H0,h, ∀ϕh, ψh ∈ Ψ0,h. (3.17)

Finally, Now we present the discrete counterpart of (2.11).

Lemma 3.2 Let (Hh,Qh) be the pair satisfying (3.3). Then the following estimate holds

sup
vh∈H0,h

vh 6=0

∫

Ω
qhdiv vh

‖vh‖1,Ω
& ‖qh‖0,Ω ∀qh ∈ Qh. (3.18)

Proof. The result follows from the orthogonal decomposition Qh = (Qh ∩ L2
0(Ω))⊕ R, estimate

(3.3) and the fact that Hh ∩H1
0(Ω) ⊆ H0,h. We omit further details. �

3.2.2 Equivalent reduced discrete problem

Similarly to the continuous case, we prove well-posedness of problem (3.11) by means of a
reduced equivalent version of problem (3.11). To that end we first introduce a suitable lifting
for ũin,h(ϕh). This result is stated in the following lemma.
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Lemma 3.3 Let ϕin ∈ R+ and uin ∈ H1/2(Γin) satisfying (1.18) and (1.19). Then, for each
φ0 ∈ H1

Γin
(Ω), there exists u1,h(φ0) ∈ Hh satisfying

u1,h(φ0)
∣∣
Γcout

= ũin,h(φ0 + ϕin) and

∫

Ω
qh div u1,h(φ0) = 0 ∀ qh ∈ Qh, (3.19)

where ũin,h(φ0,h + ϕin) is given as in (3.12). In addition, the following estimate holds

‖u1,h(φ0)‖1,Ω . C(a,uin, ϕin) + a2‖φ0‖1,Ω ∀φ0 ∈ H1
Γin

(Ω),

‖u1,h(φ0)− u1,h(φ̃0)‖1,Ω . a2‖φ0 − φ̃0‖1,Ω ∀φ0, φ̃0 ∈ H1
Γin

(Ω),
(3.20)

with C(a,uin, ϕin) defined in (2.19).

Proof. Given φ0 ∈ H1
Γin

(Ω), we define u1,h(φ0) by

u1,h(φ0) := z0,h(φ0) + z1,h(φ0), (3.21)

where z1,h(φ0) ∈ Hh is defined as

z1,h(φ0) := ISZ
h (z1(φ0)) ∈ Hh, (3.22)

with z1(φ0) given in (2.21), and z0,h(φ0) ∈ H0,h is the first component of the unique solution of
the discrete Stokes problem: Find (z0,h(φ0), rh(φ0)) ∈ H0,h ×Qh, such that

∫

Ω
∇z0,h(φ0) : ∇vh +

∫

Ω
rh(φ0) div vh = −

∫

Ω
∇z1,h(φ0) : ∇vh, ∀vh ∈ H0,h,

∫

Ω
sh div z0,h(φ0) = −

∫

Ω
sh div z1,h(φ0), ∀ sh ∈ Qh.

(3.23)

From (2.21), (3.4), (3.12), (3.21) and (3.22), we deduce that

u1,h(φ0)
∣∣
Γcout

= ISZ
h (z1(φ0))

∣∣
Γcout

= ISZ
h,Γcout

(ũin(φ0 + ϕin)) = ũin,h(φ0 + ϕin),

which establishes the first identity in (3.19). In turn, the second identity in (3.19) can be easily
deduced from the second equation of (3.23).

Now, for (3.20) we first recall that the inf-sup stability property of the pair (H0,h,Qh∩L2
0(Ω))

and the Babuška–Brezzi theory (see [14]) ensure that the solution of (3.23) satisfies

‖z0,h(φ0)‖1,Ω + ‖rh(φ0)‖0,Ω . ‖z1,h(φ0)‖1,Ω.

From this estimate, (3.21), estimate (3.1) with l = 1 and the triangle inequality, we deduce that

‖u1,h(φ0)‖1,Ω . ‖z1,h(φ0)‖1,Ω = ‖ISZ
h (z1(φ0))‖1,Ω . ‖z1(φ0)‖1,Ω.

In this way, combining the latter with the definition of z1(φ0) in (2.21), and proceeding analo-
gously to (2.28), we obtain

‖u1,h(φ0)‖1,Ω . ‖z1(φ0)‖1,Ω . ‖ũin(φ0 + ϕin)‖1/2,Γcout
. C(a,uin, ϕin) + a2‖φ0‖1,Ω.

We end the proof by noticing that the proof of the second estimate in (3.20) follows analo-
gously as in Lemma 2.3. �
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Now we let
Vh := {vh ∈ H0,h : bF (vh, qh) = 0 for all qh ∈ Qh} , (3.24)

and observe that u1,h(ϕ0,h) ∈ Vh for all φ0 ∈ Ψ0,h. Then, according to the above definitions,
now we introduce the following reduced version of problem (3.11): Find (u0,h, ϕ0,h) ∈ Vh×Ψ0,h,
such that

aF (u0,h + u1,h(ϕ0,h),vh) + OhF (u0,h + u1,h(ϕ0,h); u0,h + u1,h(ϕ0,h),vh) = 0 ∀ vh ∈ Vh,
aC(ϕ0,h + ϕin, ψh) +OhC(u0,h + u1,h(ϕ0,h);ϕ0,h + ϕin, ψh) = 0 ∀ ψh ∈ Ψ0,h,

(3.25)
where u1,h(ϕ0,h) is the discrete lifting introduced in Lemma 3.3 with φ0 = ϕ0,h ∈ Ψ0,h, and Vh

given by:
The following Lemma establishes the equivalence between problems (3.11) and (3.25).

Lemma 3.4 If (uh, ph, ϕh) ∈ Hh × Qh × Ψh with uh = ũin(ϕh) on Γcout, ϕh = ϕin on Γin,
is a solution of (3.11), then (u0,h, ϕ0,h) ∈ Vh × Ψ0,h, with u0,h = uh − u1,h(ϕh) ∈ Vh and
ϕ0,h = ϕh−ϕin ∈ Ψ0,h is a solution of (3.25). Conversely, if (u0,h, ϕ0,h) ∈ Vh×Ψ0,h is a solution
of (3.25), then there exists ph ∈ Qh, such that (u0,h + u1,h(ϕ0,h), ph, ϕ0,h +ϕin) ∈ Hh×Qh×Ψh

is a solution of (3.11).

Proof. The proof follows from the definition of the lifting u1,h(ϕ0,h) in Lemma 3.3, the inf-sup
condition (3.18) and the definition of Vh. We omit further details and refer the reader to [24,
Lemma 2.1] for a similar result. �

From this point forward, our attention will be directed towards establishing the well-posedness
of the problem (3.25). To that end, and analogously to the continuous case, now we introduce
an equivalent fixed-point problem associated to (3.25).

3.2.3 The discrete fixed-point operator

To prove the well-posedness of problem (3.25), we proceed analogously to the continuous case by
using a fixed-point approach. We start by defining the auxiliary operator Lh : Vh×Ψ0,h → Ψ0,h

given by
Lh(w0,h, φ0,h) := ϕ0,h, (3.26)

with ϕ0,h ∈ Ψ0,h being the unique solution (to be confirmed below) of the linearized problem:
Find ϕ0,h ∈ Ψ0,h, such that

aC(ϕ0,h + ϕin, ψh) +OhC(w0,h + u1,h(φ0,h), ϕ0,h + ϕin, ψh) = 0 ∀ ψh ∈ Ψ0,h. (3.27)

In addition we let Sh : Vh ×Ψ0,h → Vh, the operator given by

Sh(w0,h, φ0,h) := u0,h, (3.28)

with u0,h ∈ Vh being the unique solution (to be confirmed below) of problem: Find u0,h ∈ Vh

such that

aF (u0,h + u1,h(φ0,h),vh) +OhF (w0,h + u1,h(φ0,h); u0,h + u1,h(φ0,h),vh) = 0 ∀vh ∈ Vh.
(3.29)
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Thus, we let Jh : Vh ×Ψ0,h → Vh ×Ψ0,h the operator given by

Jh(w0,h, φ0,h) := (Sh(w0,h, φ0,h),Lh(Sh(w0,h, φ0,h), φ0,h)) ∀(w0,h, φ0,h) ∈ Vh ×Ψ0,h, (3.30)

and realize that solving problem (3.25) is equivalent to seeking a unique solution of the fixed
point problem: Find (u0,h, ϕ0,h) ∈ Vh ×Ψ0,h, such that

Jh(u0,h, ϕ0,h) = (u0,h, ϕ0,h). (3.31)

According to the above, in what follows we focus on proving that (3.31), has a unique solution.
Before doing that, as in the continuous case we first prove that Jh is well defined.

3.2.4 Welldefiniteness of Jh
Since Jh is defined in terms of operators Lh and Sh, which in turn are associated to the uncoupled
problems (3.27) and (3.29), respectively, the well-definiteness of Jh reduces, as in the continuous
case, to proving the well-posedness of (3.27) and (3.29). We begin with the analysis of the
discrete problem (3.27).

Lemma 3.5 Let a ∈ R3
+ satisfying a3 − 1

2a1 ≥ 0 and (w0,h, φ0,h) ∈ Vh ×Ψ0,h be such that

a2‖φ0,h + ϕin‖1,Ω . κ. (3.32)

Then there exists a unique ϕ0,h := Lh(w0,h, φ0,h) ∈ Ψ0,h solution of (3.27). In addition, the
following estimate holds

‖Lh(w0,h, φ0,h)‖1,Ω . κ−1ϕin (a3 + a1 + κ+ ‖w0,h‖1,Ω + ‖u1,h(φ0,h)‖1,Ω) . (3.33)

Proof. We begin by noting that, given (w0,h, φ0,h) ∈ Vh×Ψ0,h, problem (3.27) can be reformu-
lated as: Find ϕ0,h ∈ Ψ0,h, such that

aC(ϕ0,h, ψh) +OhC(w0,h + u1,h(φ0,h), ϕ0,h, ψh) = Gw0,h,φ0,h
(ψh) ∀ψh ∈ Ψ0,h, (3.34)

where the linear functional Gw0,h,φ0,h
on the right-hand side is given by

Gw0,h,φ0,h
(ψh) := −aC(ϕin, ψh)−OhC(w0,h + u1,h(φ0,h), ϕin, ψh). (3.35)

Thus, to prove the well-posedness of (3.34), it suffices, by the Lax–Milgram Lemma, to show
that the bilinear form on the left-hand side and the functional on the left-hand side are coercive
and bounded, respectively, on Ψ0,h.

First, using (3.9), (3.12) and the first identity in (3.19) we obtain the following inequality:

OhC(w0,h + u1,h(φ0,h), ψh, ψh) ≥ −1

2

∫

Γm

(a1 − a2ISZ
h,Γm

((φ0,h + ϕin)+))ψ2
h

= −a1

2

∫

Γm

ψ2
h +

a2

2

∫

Γm

(φ0,h + ϕin)+ψ2
h +

a2

2

∫

Γm

(ISZ
h,Γm

((φ0,h + ϕin)+)− (φ0,h + ϕin)+)ψ2
h,

(3.36)
for all ψh ∈ Ψ0,h. In turn, using Lemma 3.1 with l = 1, we deduce that

a2

2
Ĉ2

Γ‖ISZ
h,Γm

((φ0,h + ϕin)+)− (φ0,h + ϕin)+‖0,Γm .
a2

2
‖φ0,h + ϕin‖1,Ω. (3.37)
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Then, from (1.1), (1.6), (3.15), (3.36), (3.37), and the Cauchy–Schwarz inequality, we con-
clude that

aC(ψh, ψh) +OhC(w0,h + u1,h(φ0,h), ψh, ψh)

& κ‖ψh‖21,Ω + (a3 −
1

2
a1)‖ψh‖20,Γm

+
a2

2

∫

Γm

(φ0,h + ϕin)+ψ2
h

− a2

2
‖ISZ

h,Γm
((φ0,h + ϕin)+)− (φ0,h + ϕin)+‖0,Γm‖ψh‖2L4(Γm)

& κ‖ψh‖21,Ω −
a2

2
C‖φ0,h + ϕin‖1,Ω‖ψh‖21,Ω.

(3.38)

This estimate and (3.32) imply

aC(ψh, ψh) +OhC(w0,h + u1,h(φ0,h), ψh, ψh) & κ‖ψh‖21,Ω, ∀ψh ∈ Ψ0,h. (3.39)

On the other hand, from (3.12) and the first identity in (3.19), we obtain

Gw0,h,φ0,h
(ψh) = −a3ϕin

∫

Γm

ψh + ϕin

∫

Γm

ψh(a1 − a2ISZ
h,Γm

((φ0,h + ϕin)+))

+
ϕin

2

∫

Γout

ψh((w0,h + u1,h(φ0,h)) · n)−.

The latter, together with (1.1), the first identity in (1.14), (3.5) and [27, Corollary 4.1], imply

|Gw0,h,φ0,h
(ψh)| ≤ Ĉ1ϕin (a3 + a1 + κ+ ‖w0,h‖1,Ω + ‖u1(φ0,h)‖1,Ω) ‖ψh‖1,Ω. (3.40)

In this way, from (3.39), (3.40) and the Lax-Milgram Lemma, we obtain the well-posedness of
problem (3.34) and estimate (3.33). �

In analogy with the continuous setting, we next examine the solvability of the discrete
problem (3.29). For the sake of simplicity, we omit further technical details, as the arguments
follow closely those already employed in the continuous case.

Lemma 3.6 Let (w0,h, φ0,h) ∈ Vh × Ψ0,h. Then, there exists a unique solution u0,h ∈ Vh to
problem (3.29), given by

u0,h := Sh(w0,h, φ0,h),

and satisfying the estimate

‖Sh(w0,h, φ0,h)‖1,Ω ≤ Ĉ2ν
−1 (ν + ρ‖w0,h‖1,Ω + ρ‖u1,h(φ0,h)‖1,Ω) ‖u1,h(φ0,h)‖1,Ω, (3.41)

where Ĉ2 > 0 is a constant independent of the data.

Proof. As in the continuous case, problem (3.29) can be reformulated as follows: Find u0,h ∈ Vh

such that

aF (u0,h,vh) +OhF (w0,h + u1,h(φ0,h); u0,h,vh) = Fw0,h,φ0,h
(vh) ∀vh ∈ Vh, (3.42)

where the linear functional Fw0,h,φ0,h
on the right-hand side is defined by

Fw0,h,φ0,h
(vh) := −aF (u1,h(φ0,h),vh)−OhF (w0,h + u1,h(φ0,h); u1,h(φ0,h),vh). (3.43)

Then, following the same arguments as in Lemma 2.7, we obtain (3.41). �
We now establish the solvability of (3.25) by analyzing the equivalent fixed-point equation

(3.31). To this end, we verify the conditions of Brouwer’s fixed-point theorem, stated as follows
(see, e.g., [10, Theorem 9.9-2]).
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Theorem 3.7 Let W be a compact and convex subset of a finite-dimensional Banach space X,
and let T : W →W be continuous. Then T admits at least one fixed point.

Accordingly, for λd > 0, we consider the closed ball in Vh ×Ψ0,h, defined by :

Wh(λd) := {(w0,h, φ0,h) ∈ Vh ×Ψ0,h : ‖(w0,h, φ0,h)‖ ≤ λd} . (3.44)

The following result provides the discrete analogue of Lemma (??), showing that, under
appropriate assumptions on the data, Jh(Wh(λd)) ⊆Wh(λd).

Lemma 3.8 Let Cin be defined as in (2.19) and a ∈ R3
+ satisfying a3− 1

2a1 ≥ 0. Given λd > 0,
and Wh(λd) defined as in (3.44). We assume that the data satisfy the following conditions:

a2Cλd + a2ϕinC|Ω|1/2 ≤ CPκ, (3.45)

C1ϕinκ
−1R̂Lmax{1, λd} ≤

λd
2
, (3.46)

C2(RS + a2ν
−1 + a2ρν

−1 + ρν−1Cin + ρν−1a2
2) max{1, λd, λ2

d} ≤
λd
2
, (3.47)

where C1, C2 > 0 are constants independent of the data. Then it follows that

Jh(Wh(λd)) ⊆Wh(λd). (3.48)

Proof. Given (w0,h, φ0,h) ∈ Wh(λd), by the definition (3.44) and the triangle inequality, we
obtain

a2C‖φ0,h + ϕin‖1,Ω ≤ a2Cλd + a2Cϕin|Ω|1/2,
which, in view of (3.45), ensures that condition (3.32) is satisfied. This implies that there exists
a unique

ϕ0,h := Lh(w0,h, φ0,h) ∈ Ψ0,h

solving (3.27). Moreover, from (3.46), inequality (3.20), the continuous dependence estimate
(3.33), together with (3.45) and the triangle inequality, we deduce that there exists a constant
C1 > 0, independent of (w0,h, φ0,h), such that

‖Lh(w0,h, φ0,h)‖1,Ω ≤ Ĉ1ϕinκ
−1
(
R̂L + a2‖φ0,h‖1,Ω + ‖w0,h‖1,Ω

)
(3.49)

≤ C1ϕinκ
−1
(
R̂L + a2λd + λd

)
(3.50)

≤ C1ϕinκ
−1
(
R̂L + a2 + 1

)
max{1, λd} (3.51)

≤ λd
2 , (3.52)

where
R̂L := a3 + a1 + κ+ Cin. (3.53)

Next, from (3.46), (3.20), and the continuous dependence estimate (3.41), there exists a
constant C2 > 0, also independent of (w0,h, φ0,h), and h such that

‖Sh(w0,h, φ0,h)‖1,Ω ≤ C2

(
RS + a2ν

−1‖φ0,h‖1,Ω + a2ρν
−1‖w0,h‖1,Ω‖φ0,h‖1,Ω

+ ρν−1Cin‖w0,h‖1,Ω + ρν−1a2
2‖φ0,h‖21,Ω

)

≤ C2

(
RS + a2ν

−1λd + a2ρν
−1λ2

d + ρν−1Cinλd + ρν−1a2
2λ

2
d

)

≤ C2

(
RS + a2ν

−1 + a2ρν
−1 + ρν−1Cin + ρν−1a2

2

)
max{1, λd, λ2

d}
≤ λd

2 ,

(3.54)
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where
RS := Cin(1 + ρν−1Cin). (3.55)

Finally, from the definition of the operator Jh (cf. (3.30)), together with (3.49), (3.51),
(3.54), and (3.47), we obtain

‖Jh(w0,h, φ0,h)‖1,Ω ≤ ‖Sh(w0,h, φ0,h)‖1,Ω + ‖Lh(Sh(w0,h, φ0,h), φ0,h)‖1,Ω
≤ λd

2 + C1ϕinκ
−1
(
R̂L + a2‖φ0,h‖1,Ω + ‖Sh(w0,h, φ0,h)‖1,Ω

)

≤ λd
2 + C1ϕinκ

−1
(
R̂L + a2λd + λd

2

)

≤ λd
2 + C1ϕinκ

−1
(
R̂L + a2 + 1

)
max{1, λd}

≤ λd
2 + λd

2 = λd,

which concludes the proof of (3.48). �
Next, we present the discrete analogues of Lemmas 2.10 and 2.11. Since their proofs are

either analogous or closely related to the continuous case, they are omitted. We only remark
that Lemma 3.9 is established almost verbatim from Lemma 2.10, while Lemma 3.10 follows by
similar arguments; hence, we refrain from giving further details.

Lemma 3.9 Let λd > 0, and Wh(λd) as in (3.44). Assume that a ∈ R3
+ satisfies a3− 1

2a1 ≥ 0.

Then Lh is a Lipschitz operator. That is, for all (w0,h, φ0,h), (w̃0,h, φ̃0,h) ∈Wh(λd) it satisfies

‖Lh(w0,h, φ0,h)− Lh(w̃0,h, φ̃0,h)‖ ≤ ĉ1CL‖(w0,h, φ0,h)− (w̃0,h, φ̃0,h)‖, (3.56)

where C2
L is given by:

CL = κ−1(λd + ϕin + a2ϕin), (3.57)

and ĉ1 being a positive constant with does not depend on data.

Lemma 3.10 Let λd > 0, and Wh(λd) as in (3.44). Then Sh is a Lipschitz operator. That is,
for all (w0,h, φ0,h), (w̃0,h, φ̃0,h) ∈Wh(λd), it satisfies

‖Sh(w0, φ0)− Sh(w̃0,h, φ̃0,h)‖ ≤ ĉ2CS‖(w0,h, φ0,h)− (w̃0,h, φ̃0,h)‖, (3.58)

where CS is given by
CS = a2 + ν−1ρ (2a2 + 1) (Cin + λd + a2λd) (3.59)

with ĉ2 being a positive constant which does not depend on the data.

As a direct consequence of the preceding lemmas, we now establish the continuity of the
operator Jh.

Lemma 3.11 Let λd > 0, and Wh(λd) as in (3.44). Assume that a ∈ R3
+ satisfies a3− 1

2a1 ≥ 0.

Then Jh is a Lipschitz operator. That is, for all (w0,h, φ0,h), (w̃0,h, φ̃0,h) ∈Wh(λd), it satisfies

‖Jh(w0,h, φ0,h)− Jh(w̃0,h, φ̃0,h)‖ ≤ ĉ3CJ ‖(w0,h, φ0,h)− (w̃0,h, φ̃0,h)‖, (3.60)

where C2
J is given by

C2
J = (1 + C2

L)CS + C2
L + (1 + C2

L)C2
S (3.61)

with ĉ3 being a positive constant which does not depend on the data CL and CS depending on
the data are defined in (3.57) and (3.59) respectively.
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We are now in a position to establish the existence of a fixed point of the operator Jh. Under
suitable assumptions on the data, this follows from Brouwer’s fixed-point theorem (cf. 3.7), and
is formalized in the following result.

Theorem 3.12 Let λd > 0, and let Wh(λd) be defined as in (3.44). Assume that a ∈ R3
+

satisfies a3 − 1
2a1 ≥ 0. Furthermore, suppose that the data satisfy

C1ϕinκ
−1(R̂L + a2 + 1) max{1, λd} ≤

λd
2
, (3.62)

C2(RS + a2ν
−1 + a2ρν

−1 + ρν−1Cin + ρν−1a2
2) max{1, λd, λ2

d} ≤
λd
2
, (3.63)

with C1, C2 > 0 being constants with does not depend on data. Then, problem (3.25) has a
unique solution (u0,h, ϕ0,h) ∈ Vh ×Ψ0,h, with (u0,h, ϕ0,h) ∈Wh(λd). Moreover, there hold

‖ϕ0,h‖21,Ω ≤ C1ϕinκ
−1(R̂L + a2 + 1) max{1, λd},

‖u0,h‖21,Ω ≤ C2(RS + a2ν
−1 + a2ρν

−1 + ρν−1Cin + ρν−1a2
2) max{1, λd, λ2

d}.

Furthermore, by imposing stronger conditions on the data to guarantee that Jh is a contrac-
tion mapping, we derive the ensuing existence and uniqueness theorem for problem (3.25).

Theorem 3.13 Let λd > 0, and let Wh(λd) be as in (3.44). In addition to the assumptions of
Theorem 3.12, suppose that the data satisfy

ĉ2
3(1 + C2

L)CS + C2
L + (1 + C2

L)C2
S < 1. (3.64)

Then, problem (3.25) admits a unique solution (u0,h, ϕ0,h) ∈ Vh × Ψ0,h, with (u0,h, ϕ0,h) ∈
Wh(λd). Moreover, the same a priori estimates as in Theorem 3.12 hold.

Proof. The result follows directly from Theorem 3.12, together with assumption (3.64) and the
Banach fixed-point theorem. �

4 A priori error analysis

In this section we derive an a priori error estimate for our Galerkin scheme with arbitrary
finite element subspaces satisfying the hypotheses stated in Section 3.1. More precisely, given
(u, p, ϕ) ∈ H1(Ω)×L2(Ω)×H1(Ω) and (uh, ph, ϕh) ∈ Hh×Qh×Ψh solutions of the continuous
and discrete problems (2.4) and (3.11), respectively, we are interested in obtaining an upper
bound for

‖(u, p, ϕ)− (uh, ph, ϕh)‖.
For this purpose, in what follows we set (u, p, ϕ) = (u0 + u1(ϕ0), p, ϕ0 + ϕin), with (u0, ϕ0, p) ∈
H1

Γcout
(Ω)× L2(Ω)×H1

Γin
(Ω) satisfying

âF (u0,v) + bF (v, p) = Fu0,ϕ0(v), ∀v ∈ H1
Γcout

(Ω),

bF (u0, q) = Hϕ0(q), ∀ q ∈ L2(Ω),

âC(ϕ0, ψ) = Gu0,ϕ0(ψ), ∀ψ ∈ H1
Γin

(Ω),

(4.1)
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with

âF (w,v) := aF (w,v) + OF (u0 + u1(ϕ0); w,v), Hϕ0(q) = −bF (u1(ϕ0), q),

âC(φ, ψ) := aC(φ, ψ) +OC(u0 + u1(ϕ0), φ, ψ),
(4.2)

where Fu0,ϕ0 and Gu0,ϕ0 are defined in (2.46) and (2.39) respectively.
Similarly, we set (uh, ph, ϕh) = (u0,h + u1,h(ϕ0,h), ph, ϕ0,h + ϕin), with (u0,h, ph, ϕ0,h) ∈

H0,h ×Qh ×Ψ0,h satisfying

âhF (u0,h,vh) + bF (vh, p) = Fu0,h,ϕ0,h
(vh), ∀vh ∈ H0,h,

bF (u0,h, qh) = Hϕ0,h
(qh), ∀ qh ∈ Qh,

âhC(ϕ0,h, ψh) = Gu0,h,ϕ0,h
(ψh), ∀ψh ∈ Ψ0,h,

(4.3)

with

âhF (wh,vh) := aC(wh,vh) +OhC(u0,h + u1,h(ϕ0,h),wh,vh), Hϕ0,h
(qh) = −bF (u1,h(ϕ0,h), qh),

âhC(φh, ψh) := aC(φh, ψh) +OC(u0 + u1(ϕ0), φh, ψh),
(4.4)

where Fu0,h,ϕ0,h
and Gu0,h,ϕ0,h

are defined as in (3.43) and (3.35), respectively.
Since the first two equations in (4.1) and (4.3) share the same structure as the Strang-type

estimate in Lemma 4.2, and the last equations in (4.1) and (4.3) correspond to the structure
in Lemma 4.1, for the error analysis of our problem we recall two abstract results from [9,
Theorem 26.1] and [9, Theorem 11.2], which will be employed in the subsequent analysis.

The first is the standard Strang Lemma for elliptic variational problems, which will be
directly applied to the last equation in (4.1) together with the last equation in (4.3). The
second is a generalized Strang-type estimate for saddle-point problems, where the continuous
and discrete schemes differ only in the functionals involved, as is the case for the first two
equations in (4.1) and (4.3).

We are now in a position to introduce the aforementioned abstract results, which will play
a central role in the subsequent error analysis.

Lemma 4.1 Let H be a Hilbert space, F ∈ H′, and a : H × H → R a bounded and H-elliptic
bilinear form. In addition, let {Hh}h>0 be a sequence of finite dimensional subspaces of H, and
for each h > 0 consider a bounded bilinear form ah : Hh × Hh → R and a functional Fh ∈ H′h.
Assume that the family {ah}h>0 is uniformly elliptic, that is, there exists a constant α̃ > 0,
independent of h, such that

ah(vh, vh) ≥ α̃‖vh‖2H ∀vh ∈ Hh, ∀h > 0.

In turn, let u ∈ H and uh ∈ Hh be such that

a(u, v) = F (v) ∀v ∈ H, and ah(uh, vh) = Fh(vh) ∀vh ∈ Hh.

Then, for each h > 0 there holds

‖u− uh‖H ≤ CST
{

sup
wh∈Hh
wh 6=0

|F (wh)− Fh(wh)|
‖wh‖H

+ inf
vh∈Hh
vh 6=0

(
‖u− vh‖H + sup

wh∈Hh
wh 6=0

|a(vh, wh)− ah(vh, wh)|
‖wh‖H

)}
,

(4.5)
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where CST := α̃−1 max{1, ‖a‖}.

Lemma 4.2 Let H and Q be Hilbert spaces, F ∈ H′, G ∈ Q′, and let a : H × H → R and
b : H ×Q→ R be bounded bilinear forms satisfying the hypotheses of the Babuka-Brezzi theory.
Furthermore, let {Hh}h>0 and {Qh}h>0 be sequences of finite dimensional subspaces of H and
Q, respectively, and for each h > 0 consider functionals Fh ∈ H′h and Gh ∈ Q′h. In addition,
assume that ah and b satisfy the hypotheses of the discrete Babuka-Brezzi theory uniformly on
Hh and Qh, that is, there exist positive constants M̄ , ᾱ and β̄, independent of h, such that,
denoting by Vh the discrete kernel of b, there holds

ah(ϕh, ψh) ≤ ‖ah‖‖ϕh‖H‖ψh‖H ∀ϕh, ψh ∈ Hh, (4.6)

and

ah(vh, vh) ≥ αh‖vh‖2H ∀vh ∈ Vh and sup
ψh∈Hh
ψh 6=0

b(ψh, ξh)

‖ψh‖H
≥ β̄ ‖ξh‖Q ∀ξh ∈ Qh. (4.7)

In turn, let (ϕ, ω) ∈ H×Q and (ϕh, ωh) ∈ Hh ×Qh, such that

a(ϕ,ψ) + b(ψ, ω) = F (ψ) ∀ψ ∈ H,

b(ϕ, ξ) = G(ξ) ∀ξ ∈ Q,

and
ah(ϕh, ψh) + b(ψh, ωh) = Fh(ψh) ∀ψh ∈ Hh,

b(ϕh, ξh) = Gh(ξh) ∀ξh ∈ Qh.

Then, for each h > 0 there holds

‖ϕ− ϕh‖H + ‖ω − ωh‖Q ≤ C̄ST
{

inf
ψh∈Hh

(
‖ϕ− ψh‖H + sup

ηh∈Hh

a(ψh, ηh)− ah(ψh, ηh)

‖ηh‖H

)

+ inf
µh∈Qh

‖ω − µh‖Q + sup
ηh∈Hh

|F (ηh)− Fh(ηh)|
‖ηh‖H

+ sup
vh∈Qh

|G(vh)−Gh(vh)|
‖vh‖Q

}
(4.8)

where C̄ST is a positive constant depending only on ‖a‖, ‖b‖, ‖ah‖, ᾱ and β̄.

Lemma 4.3 Let (u, p, ϕ) ∈ H1(Ω)×L2(Ω)×H1(Ω) and (uh, ph, ϕh) ∈ Hh×Qh×Ψh be solutions
of the continuous and discrete problems (2.4) and (3.11), respectively. Assume that

c1(Cin + (a2 + ρ)λd) ≤
1

2
. (4.9)

Then, the following estimate holds:

‖u0 − u0,h‖1,Ω + ‖p− ph‖0,Ω ≤ c1 inf
wh∈H0,h

‖u0 −wh‖1,Ω + c1 inf
qh∈Qh

‖p− qh‖0,Ω

+ c2(Cin + (a2 + ρ)λd + λ+ a2(λ+ λd) + ν)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω,
(4.10)

where c1 and c2 are positive constants independent of h.
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Proof. From the definitions of âF and âhF in (4.2) and (4.4), together with the inequalities in
(2.6) and (2.8), we conclude that the bilinear forms âF and âhF are both bounded and elliptic,
with the same ellipticity constant given in (2.48). Moreover, Fu0,ϕ0 and Fu0,h,ϕ0,h

are bounded
linear functionals. Therefore, a direct application of Lemma (4.2) to the context (4.1) and (4.3)
yields

‖u0 − u0,h‖1,Ω + ‖p− ph‖0,Ω ≤ C
{

inf
wh∈H0,h

(
‖u0 −w‖1,Ω + sup

vh∈H0,h

âF (wh,vh)− âhF (wh,vh)

‖vh‖H

)

+ inf
µh∈Qh

‖p− µh‖0,Ω + sup
vh∈H0,h

|Fu0,ϕ0(vh)− Fu0,h,ϕ0,h
(vh)|

‖vh‖1,Ω

+ sup
qh∈Qh

|Hϕ0(qh)−Hϕ0,h
(qh)|

‖qh‖0,Ω

}
. (4.11)

We now proceed to estimate each term appearing on the right-hand side of the foregoing in-
equality.

From the definitions of the functionals Hϕ0 and Hϕ0,h
in (4.2) and (4.4), respectively, we

readily deduce that

sup
qh∈Qh
qh 6=θ

|Hϕ0(qh)−Hϕ0,h
(qh)|

‖qh‖0,Ω
= sup

qh∈Qh
qh 6=θ

|bF (u1(ϕ0)− u1,h(ϕ0,h), qh)|
‖qh‖0,Ω

.‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω.

(4.12)
On the other hand, from the definitions of the functionals Fu0,ϕ0 and Fu0,h,ϕ0,h

in (2.46) and
(3.43), we readily deduce that

|Fu0,ϕ0(vh)−Fu0,h,ϕ0,h
(vh)| ≤ |aF (u1(ϕ0)− u1,h(ϕ0,h),vh)|

+ |OF (u0 + u1(ϕ0); u1(ϕ0),vh)−OhF (u0,h + u1,h(ϕ0,h); u1,h(ϕ0,h),vh)|.
(4.13)

In what follows, we will bound (4.13). We start by estimating the first term in (4.13). To this
end, we observe that, by applying the first inequality in (3.13), it follows that

|aF (u1(ϕ0)− u1,h(ϕ0,h),vh)| . ν‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω‖vh‖1,Ω. (4.14)

Now, to bound the second term on the right-hand side of (4.13), we add and subtract suitable
terms, we apply (2.17), Theorem 2.13 and (3.20) to deduce that

|OF (u0 + u1(ϕ0); u1(ϕ0),vh)−OhF (u0,h + u1,h(ϕ0,h); u1,h(ϕ0,h),vh)|
≤ |OhF (u0 + u1(ϕ0); u1(ϕ0)− u1,h(ϕ0,h),vh)|

+ |OhF (u0 − u0,h + u1(ϕ0)− u1,h(ϕ0,h); u1,h(ϕ0,h),vh)|
.(λ+ Cin + a2λ)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω‖vh‖1,Ω

+ (Cin + a2λd)‖u0 − u0,h‖1,Ω‖vh‖1,Ω
+ (Cin + a2λd)‖u1(ϕ0)− u1,h(ϕ0,h)‖vh‖1,Ω
.(λ+ Cin + a2(λ+ λd))‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω‖vh‖1,Ω

+ (Cin + a2λd)‖u0 − u0,h‖1,Ω‖vh‖1,Ω.

(4.15)
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Consequently, combining (4.13), (4.14), (4.15), and taking the supremum over H0,h, it follows
that

sup
vh∈H0,h

vh 6=θ

|Fu0,ϕ0(vh)− Fu0,h,ϕ0,h
(vh)|

‖vh‖1,Ω
.(λ+ Cin + a2(λ+ λd) + ν)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω

+ (Cin + a2λd)‖u0 − u0,h‖1,Ω.
(4.16)

Now, from the definitions of âF and âhF in (4.2) and (4.4), together with (3.16), we also obtain
that

|âF (wh,vh)− âhF (wh,vh)| =|OhF (u0 − u0,h + u1(ϕ0)− u1,h(ϕ0,h); wh,vh)|
. ρ‖u0 − u0,h‖1,Ω‖wh‖1,Ω‖vh‖1,Ω

+ ρ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω‖wh‖1,Ω‖vh‖1,Ω,
(4.17)

which implies that

sup
vh∈H0,h

vh 6=θ

|âF (wh,vh)− âhF (wh,vh)|
‖vh‖1,Ω

. ρ(‖u0 − u0,h‖1,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω)‖wh‖1,Ω.

(4.18)
Then, from the hypothesis (4.9), (4.11), the inequalities (4.12), (4.16) and (4.18), we obtain that

1

2
‖u0 − u0,h‖1,Ω+‖p− ph‖0,Ω

≤ ĉ1 inf
wh∈H0,h

‖u0 −wh‖1,Ω + ĉ1 inf
qh∈Qh

‖p− ph‖1,Ω

+ ĉ1(Cin + (a2 + ρ)λd + λ+ a2(λ+ λd) + ν)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω,
(4.19)

which in turn implies the inequality in (4.10). �

Lemma 4.4 Let (u, p, ϕ) ∈ H1(Ω) × L2(Ω) × H1(Ω) and (uh, ph, ϕh) ∈ Hh × Qh × Ψh be
solutions of the continuous and discrete problems (2.4) and (3.11), respectively. Assume that
the data satisfy (4.9). Then, the following estimate holds:

‖ϕ0−ϕ0,h‖1,Ω ≤ ĉ3 inf
φh∈Ψ0,h

‖ϕ0 − φh‖1,Ω + ĉ3(ϕin + λd) inf
wh∈H0,h

‖u0 −wh‖1,Ω

+ ĉ3(ϕin + λd) inf
qh∈Qh

‖p− ph‖0,Ω

+ ĉ3(ϕin + λd)(Cin + (a2 + ρ)λd + λ+ a2(λ+ λd) + ν + 1)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω.
(4.20)

Proof. From the definitions of âC and âhC in (4.2) and (4.4), together with the inequalities in
(2.6) and (2.8), we conclude that the bilinear forms âF and âhF are both bounded and elliptic,
with the same ellipticity constant α given in (2.41). Moreover, Gu0,ϕ0 and Gu0,h,ϕ0,h

are bounded
linear functionals. Therefore, a direct application of Lemma (4.1) to the context (4.1) and (4.3)
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yields

‖ϕ0 − ϕ0,h‖H ≤ CST
{

sup
ψh∈H0,h

ψh 6=0

|Gu0,ϕ0(ψh)−Gu0,h,ϕ0,h
(ψh)|

‖ψh‖1,Ω

+ inf
φh∈Hh
φh 6=0

(
‖ϕ0 − φh‖H + sup

ψh∈Hh
ψh 6=0

|âC(φh, ψh)− âhC(φh, ψh)|
‖ψh‖H

)}
,

(4.21)

where CST := α̃−1 max{1, ‖âC‖}. We now proceed to estimate each term appearing on the
right-hand side of the foregoing inequality.

From the definitions of the functionals Gu0,ϕ0 and Gu0,h,ϕ0,h
in (2.39) and (3.35), together

with (3.17), we readily deduce that

|Gu0,ϕ0(ψh)−Gu0,h,ϕ0,h
(ψh)| =|OhC(u0 − u0,h + u1(ϕ0)− u1,h(ϕ0,h);ϕin, ψh)|

.ϕin(‖u0 − u0,h‖1,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω)‖ψh‖1,Ω,
which implies that

sup
ψh∈Ψ0,h

ψh 6=θ

|Gu0,ϕ0(ψh)−Gu0,h,ϕ0,h
(ψh)|

‖ψh‖1,Ω . ϕin‖u0 − u0,h‖1,Ω + ϕin‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω.

(4.22)
Now, from the definitions of âC and âhC in (4.2) and (4.4), together with (3.17)

we also have that

|âC(φh, ψh)− âhC(φh, ψh)| =|OhC(u0 − u0,h + u1(ϕ0)− u1,h(ϕ0,h);φh, ψh)|
.(‖u0 − u0,h‖1,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω)‖φh‖1,Ω‖ψh‖1,Ω,

(4.23)
which implies that

sup
ψh∈Ψ0,h

ψh 6=θ

|âC(φh, ψh)− âhC(φh, ψh)|
‖ψh‖1,Ω

. (‖u0 − u0,h‖1,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω)‖φh‖1,Ω.

This later, inequality (4.21) and (4.22) implies

‖ϕ0 − ϕ0,h‖1,Ω ≤ ĉ3 inf
φh∈Ψ0,h

‖ϕ0 − φh‖1,Ω + ĉ3(ϕin + λd)‖u0 − u0,h‖1,Ω

+ ĉ3(ϕin + λd)‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω,
(4.24)

wich together with (4.10) and (4.21) implies (4.20). �
From now on we assume that the finite element subspaces introduced in (3.1) and (3.2)

satisfies the following approximation properties: There exists C > 0, independent of h, such
that for each u ∈ H1+s(Ω), ϕ ∈ H1+s(Ω) and p ∈ Hs(Ω) with s > 0.

(AP1) inf
wh∈H0,h

‖u−wh‖1,Ω ≤ Chs ‖u‖s+1,Ω, (4.25)

(AP2) inf
φh∈Ψ0,h

‖ϕ− φh‖1,Ω ≤ Chs ‖ϕ‖s+1,Ω, (4.26)

(AP3) inf
qh∈Qh

‖p− qh‖k,Ω ≤ Chs ‖p‖s,Ω. (4.27)
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Lemma 4.5 Let ϕ0 ∈ H1+δ(Ω), with δ > 0 given in Remark 2.4, and let z0(ϕ0), r(ϕ0), z1(ϕ0),
and z1,h(ϕ0) be defined in (2.21), (2.22), (3.22), and (3.23), respectively. Then the following
estimate holds:

‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω ≤ Chδ
(
‖z0(ϕ0)‖1+δ,Ω + ‖r(ϕ0)‖δ,Ω + ‖z1(ϕ0)‖1+δ,Ω

)

+ a2C‖ϕ0 − ϕ0,h‖1,Ω.
(4.28)

Proof. We start by noticing that, from the triangle inequality it readly follow that

‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω ≤ ‖u1(ϕ0)− u1,h(ϕ0)‖1,Ω + ‖u1,h(ϕ0)− u1,h(ϕ0,h)‖1,Ω. (4.29)

Then, we bound each term on the right-hand side of (4.29). For the first term, we recall that
a regularity result for the Stokes problem (2.22) implies that z0(ϕ0) ∈ H1+δ(Ω) and r(ϕ0) ∈
Hδ(Ω) (see Remark 2.4), and noticing that, according to the definition of z1(ϕ0) in (2.21)
and the fact that ϕ0 ∈ H1+δ(Ω), we have that z1(ϕ0) ∈ H1+δ(Ω). In turn, using standard
results on Sobolev space interpolation (see [7, Chapter 14]) and (3.5), we obtain the following
approximation property of ISZ

h .

‖φ− ISZ
h (φ)‖1,Ω ≤ Chδ‖φ‖1+δ,Ω,∀φ ∈ H1+δ(Ω). (4.30)

Then applying Lemma 4.2 to the context (2.22) and (3.23), the inequalities (4.25), (4.27), (4.30)
and the definition of z1,h(ϕ0) in (3.22) we deduce that

‖u1(ϕ0)− u1,h(ϕ0)‖1,Ω . inf
wh∈H0,h

‖z0(ϕ0)−wh‖1,Ω + inf
qh∈Qh

‖r(ϕ0)− qh‖0,Ω

+ ‖z1(ϕ0)− z1,h(ϕ0)‖1,Ω
= inf

wh∈H0,h

‖z0(ϕ0)−wh‖1,Ω + inf
qh∈Qh

‖r(ϕ0)− qh‖0,Ω

+ ‖z1(ϕ0)− ISZ
h (z1(ϕ0))‖1,Ω

≤ Chδ
(
‖z0(ϕ0)‖1+δ,Ω + ‖r(ϕ0)‖δ,Ω + ‖z1(ϕ0)‖1+δ,Ω

)
.

(4.31)

Now, for the second term in (4.29), we apply (??) to deduce that

‖u1,h(ϕ0)− u1,h(ϕ0,h)‖1,Ω . a2‖ϕ0 − ϕ0,h‖1,Ω. (4.32)

Then from (4.29), (4.31) and (4.32), we deduce the desired estimate (4.28). �

Theorem 4.6 Let (u, p, ϕ) ∈ H1(Ω)× L2(Ω)×H1(Ω) and (uh, ph, ϕh) ∈ Hh ×Qh ×Ψh be the
solutions of the continuous and discrete problems (2.4) and (3.11), respectively. Suppose that

ĉ4(Cin + (a2 + ρ)λd + λ+ a2(λ+ λd) + ν + 1)(ϕin + λd + 1)a2 ≤ 1
2 , (4.33)

and also that
u0 ∈ H1+δ(Ω), p ∈ Hδ(Ω), ϕ0 ∈ H1+δ(Ω), (4.34)

for some 0 < δ < 1. Then there exists a constant C > 0, independent of the mesh size h, such
that

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖ϕ− ϕh‖1,Ω ≤ Chδ
(
‖u0‖1+δ,Ω + ‖p‖δ,Ω + ‖ϕ0‖1+δ,Ω

+ ‖z0(ϕ0)‖1+δ,Ω + ‖r(ϕ0)‖δ,Ω + ‖z1(ϕ0)‖1+δ,Ω

)
.

(4.35)

34



Proof. Applying the fact that u = u0 + u1(ϕ0), ϕ = ϕ0 + ϕin, uh = u0,h + u1,h(ϕ0,h) and
ϕh = ϕ0,h + ϕin, the triangle inequality yields

‖u− uh‖1,Ω ≤ ‖u0 − u0,h‖1,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω, (4.36)

which together with (4.10) implies that

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ ‖u0 − u0,h‖1,Ω + ‖p− ph‖0,Ω + ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω
. inf

wh∈H0,h

‖u0 −wh‖1,Ω + inf
qh∈Qh

‖p− qh‖0,Ω

Ĉ1 ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω,
(4.37)

with
Ĉ1 := (Cin + (a2 + ρ)λd + λ+ a2(λ+ λd) + ν + 1). (4.38)

Then, from this latter, the fact that ϕ− ϕh = ϕ0 − ϕ0,h and (4.20) we deduce that

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖ϕ− ϕh‖1,Ω
. inf

wh∈H0,h

‖u0 −wh‖1,Ω + inf
qh∈Qh

‖p− qh‖0,Ω

+ Ĉ1(ϕin + λd + 1) ‖u1(ϕ0)− u1,h(ϕ0,h)‖1,Ω

+ (ϕin + λd)

(
inf

wh∈H0,h

‖u0 −wh‖1,Ω + inf
qh∈Qh

‖p− qh‖0,Ω
)

+ ĉ3 inf
φh∈Ψ0,h

‖ϕ0 − φh‖1,Ω.

(4.39)

Then from this latter, the hypothesis (4.33), (4.28) and (4.38) we deduce that

‖u− uh‖1,Ω+‖p− ph‖0,Ω + 1
2‖ϕ− ϕh‖1,Ω

≤ Ĉ2

(
inf

wh∈H0,h

‖u0 −wh‖1,Ω + inf
qh∈Qh

‖p− qh‖0,Ω
)

+ ĉ3 inf
φh∈Ψ0,h

‖ϕ0 − φh‖1,Ω

+ Ĉ1(ϕin + λd + 1)hδ
(
‖z0(ϕ0)‖1+δ,Ω + ‖r(ϕ0)‖δ,Ω + ‖z1(ϕ0)‖1+δ,Ω

)
.

(4.40)
with

Ĉ2 := ϕin + λd.

Finally, combining the estimate (4.40) with the standard interpolation properties of the finite
element spaces (AP1), (AP2) and (AP3), we deduce (4.35). �

5 Computational results

In this section, we present a series of experiments to assess the accuracy and robustness of the
proposed method in Section 3. The section is divided into two parts, each addressing a different
scenario. In the first scenario, we investigate the convergence and stability of the scheme. To this
end, unstructured meshes with uniform refinement are employed, and the asymptotic behavior
is analyzed for k ≥ 1. In the second scenario, we consider a typical reverse osmosis system
represented on a membrane channel with fully developed parabolic flow and permeable walls.
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Unstructured graded meshes with refinement towards the membrane are used to enhance the
resolution of the behavior near Γm.

The fixed point iterations are performed until the error of two consecutive vector of coeffi-
cients U j and U j+1 satisfy the following criteria:

‖U j+1 −U j‖2
‖U j+1‖2

≤ 10−7,

where ‖ ·‖2 is the usual euclidean 2-norm. All the experiments consider u0
h = 0, ϕ0

h = 0 as initial
guess.

5.0.1 Convergence and stability test

In order to study the convergence and stability, let us consider the unit square domain Ω :=
(0, 1)2 whose boundary conditions are distributed in the same manner as the geometry sketch
presented in Figure 1.1. We now introduce some additional notations that are useful trougouht
this section. The errors are denoted by

e(u) : ‖u− uh‖1,Ω, ‖p− ph‖0,Ω, e(ϕ) := ‖ϕ− ϕh‖1,Ω.

Given two consecutive mesh sizes h and h′, the experimental convergence order is computed as

r(·) :=
log(e(·))− log(e′(·))

log(h)− log(h′)
,

where e and e′ are two consecutive errors associated with the mesh sizes h and h′, respectively.
From the results presented in Table 5.1, we consider a manufacture solution

u =

(
cos(πx) sin(πy)

− cos(πy) sin(πx)

)
, p = cos(πx) exp(y), and ϕ = (1− 2y)(− cos(πy) sin(πx)) + 1,

and we observe that optimal convergence rates are achieved for the selected finite elements. More
precisely, when using Taylor–Hood+P2 elements, we obtain a convergence rate of O(hk+1) for the
velocity and concentration approximations, and a rate of O(hk) for the pressure, with k = 1, 2.
In the case of the MINI element+P1, the expected asymptotic rate is O(h) for all variables, with
a superconvergent rate of O(h1.5) for the pressure. This particular behavior was already studied
in [11]. For computational efficiency, the mini element is the perfect choice, with a tradeoff in
precision. For efficiency vs. accuracy tradeoff, the Taylor–Hood+P2 configuration offers optimal
convergence with moderate DoFs. If maximum accuracy is needed and computational resources
permit then the higher order Taylor-Hood combination P3−P2−P3 is the best choice. In all ex-
periments, the fixed-point iteration reached the prescribed tolerance of 10−7 within 13 iterations.

5.0.2 Study of a membrane channel

This experiment aims to test the scheme when we face a membrane channel unit whose length
is defined by a subsection of the channel that allows a full parabolic flow development. The
domain is defined as Ω := (0, a) × (0, b), where a = 20mm and b = 2mm. Within this domain,
we consider the existence of a circular spacer of radius r = 0.4mm located initially at the
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Table 5.1: Example 5.0.1. Convergence history of the three-field scheme in the square domain
using different finite element families.

h DoFs e(u) r(u) e(p) r(p) e(ϕ) r(ϕ) IT

P1,b − P1 − P1

0.0707 1241 2.3538e-01 1.00 5.4039e-02 1.50 1.6831e-01 0.99 13
0.0471 2761 1.5669e-01 1.00 2.9357e-02 1.50 1.1255e-01 1.00 13
0.0354 4881 1.1741e-01 1.00 1.9044e-02 1.50 8.4506e-02 1.00 13
0.0283 7601 9.3874e-02 1.00 1.3612e-02 1.50 6.7640e-02 1.00 13

P2 − P1 − P2

0.0707 1681 7.6142e-03 2.00 1.3670e-03 2.03 6.2578e-03 1.99 13
0.0471 3721 3.3897e-03 2.00 5.9921e-04 2.02 2.7950e-03 1.99 13
0.0354 6561 1.9080e-03 2.00 3.3535e-04 2.01 1.5757e-03 1.99 13
0.0283 10201 1.2216e-03 2.00 2.1411e-04 2.01 1.0097e-03 2.00 13

P3 − P2 − P3

0.0707 3721 1.0367e-04 3.01 3.4282e-05 3.12 1.0788e-04 3.00 13
0.0471 8281 3.0563e-05 3.01 9.6635e-06 3.09 3.2023e-05 3.00 13
0.0354 14641 1.2861e-05 3.01 3.9709e-06 3.07 1.3523e-05 3.00 13
0.0283 22801 6.5754e-06 3.00 2.0028e-06 3.04 6.9279e-06 3.00 13

channel center (xH , yH) =(10mm, 1.0mm), which generates an inner boundary denoted by Γw.
This boundary is impermeable, meaning that there is no fluid flow or salt penetration through
it. More precisely, we impose the following boundary conditions:

u = 0, (ϕu− κ∇ϕ) · n = 0, on Γw.

As stated at the beginning of this section, we consider graded meshes towards Γm in order to
maximize the recovery of information at the membrane and to improve stability (see for example
[21, 22]).

The physical parameters are in inspired in [23] and summarized in Table 5.2. In particular,
we consider the inlet velocity

uin :=




[
u0 −

2x

b
(a1 − a2ϕin)

] [
1.5(1− λ2)

] [
1− 1

420
(2− 7λ2 − 7λ4)

]

(a1 − a2ϕin)

[
0.5λ(3− λ2)− 1

280
λ(2− 3λ2 + λ6)

]


 ,

where λ = 2y/b − 1 and u0 ∈ {30, 60, 120}mm/s. This choice of velocity profile is such that
we have a fully developed fluid at the entrance of the channel that satisfies the conditions of a
permeable channel fluid, where the maximum permeability is concentrated at {x−} and {x+}.
In that sense, we observe that the compatibility conditions (1.18) and (1.19) are satisfied. This
choice is inspired by Berman-type flows (see for example [5]).

Furthermore, we move the spacer by increments of 0.2mm towards the bottom membrane,
until the spacer center is located at a height y = 0.4 mm from the bottom membrane, which
allow us to study the effects on salt accumulation, water recovery, and the formation of recircu-
lation zones along the membrane.
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We begin by plotting in Figure 5.1 the velocity behavior along the lower membrane, located
at y = 0. The permeate velocity reflects the amount of fluid passing through the membrane at
each axial location. In particular, the presence of the circular hole perturbs the velocity field
and acts as a local recirculation zone generator, thereby modifying the overall flow behavior.
All curves exhibit a steady, slight decrease in permeate velocity along the channel. For the
first configuration (yH = 1.0 mm), higher inlet velocities result in increased permeate velocities
throughout the channel, which is consistent with the expected rise in transmembrane pressure.
When the hole is located at yH = 0.8 mm, a mild drop in permeate velocity appears, especially
pronounced in the central region of the domain (between 10–15 mm), and particularly for u0 =
120 mm/s. This suggests that the hole introduces a stronger flow perturbation at this height,
likely due to interaction with the developing boundary layer or enhanced mixing. When the hole
is further lowered to yH = 0.6 mm, we observe a local nonzero minimum in permeate velocity.
This minimum likely corresponds to the axial location where the disruption of the flow is most
significant, owing to the hole’s close proximity to the membrane. The resulting disturbance
may locally reduce the pressure drop across the membrane or introduce recirculation zones.
Moreover, for the highest inlet velocity (u0 = 120 mm/s), these effects are more pronounced
compared to the other inlet profiles, indicating a stronger sensitivity of the flow to geometric
perturbations under higher convective forcing.

For the second set of figures, Figure 5.2, which illustrates the pressure distribution for each
hole configuration, we observe that higher inlet velocities u0 result in higher overall pressure
levels, as expected. However, the pattern of pressure drop along the channel varies depending
on the vertical position of the hole, indicating differences in flow resistance and the presence
of localized recirculation regions. The base case, corresponding to the configuration with the
hole furthest from the membrane, exhibits the highest pressure throughout the channel. This
configuration likely provides the greatest filtration driving force. In contrast, when the hole is
positioned closer to the membrane, the pressure gradient becomes smoother, potentially reducing
the risk of membrane fouling due to less severe pressure fluctuations. Nevertheless, this smoother
gradient may come at the cost of a lower permeate flow rate, as the driving force for filtration
is diminished in the region near the membrane.

Finally, we compare the previous results with the concentration profiles along the bottom
membrane of the channel, as shown in Figure 5.3. These profiles help us evaluate solute accumu-
lation and potential fouling risks. When comparing with the corresponding velocity and pressure
behaviors, we observe that the cases with hole positions at yH = 1.0 mm and yH = 0.8 mm are
quite similar in terms of their influence just downstream of the spacer, exhibiting a slight concen-
tration perturbation after the 10 mm mark. The configuration with the hole at the channel center
provides the most favorable conditions for permeation due to higher transmembrane pressure,
but it may also increase the risk of membrane fouling due to higher solute accumulation near
the surface. In contrast, shifting the spacer 0.2 mm closer to the membrane (i.e., yH = 0.8 mm)
yields moderate permeation with some lateral flow redistribution and a mild increase in solute
concentration. The most critical case occurs when the hole is positioned even closer to the
membrane, at yH = 0.6 mm, where we observe a tenfold increase in solute concentration near
the spacer. This sharp rise, especially between 11 mm and 15 mm, suggests the presence of a
recirculation zone that promotes solute accumulation while potentially reducing fouling by lim-
iting direct membrane contact. However, this configuration might also result in underutilized
membrane area, excessive flow bypass, or suboptimal separation performance.

We conclude this experiment by presenting in Figures 5.4–5.6 the velocity streamlines, pres-
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sure distribution, and solute concentration profiles near the spacer, under the condition of an
inlet velocity profile of u0 = 120 mm/s. Two spacer configurations are considered: one located
at the channel center (yH = 1.0 mm) and another placed 0.4 mm from the bottom membrane
(yH = 0.6 mm). In Figure 5.4, we observe that when the spacer is centered, the velocity stream-
lines remain symmetric, ensuring uniform membrane utilization across both walls. Conversely,
when the spacer is closer to the membrane, the flow is deflected upwards over the hole, resulting
in reduced interaction with the bottom membrane and uneven velocity distribution. Figure 5.5
confirms this behavior, showing a lower pressure drop for the off-center case (yH = 0.6 mm).
This reduction correlates with diminished membrane utilization and smaller permeate velocity,
as previously discussed. Finally, the concentration fields shown in Figure 5.6 reveal a clear accu-
mulation of solute downstream of the hole in the yH = 0.6 mm case. A localized concentration
peak appears between 11.5 mm and 16.5 mm from the channel inlet, with the top membrane
underutilized downstream of the spacer. This configuration leads to a 22% increase in maxi-
mum concentration compared to the centered case. The thick, high-concentration region near
the bottom membrane suggests a local fouling risk and potential mass transport limitations. In
summary, the centered spacer configuration yields more uniform flow and pressure fields, pro-
moting higher membrane utilization and maximum flux. This makes it a favorable option for
short-term, high-efficiency operation, though it may require careful fouling monitoring on both
membranes. In contrast, the off-center configuration exhibits flow bypass and localized con-
centration buildup due to recirculation, which may compromise long-term performance unless
mitigated by additional design features such as baffles. This observation opens up a direction
for future research and optimization studies.

Table 5.2: Test 5.0.2. Physical parameters considered for the membrane channel.

Parameter Meaning Approximate value Units

A Membrane water permeability 3.75× 10−6 mm s−1

∆P Hydrostatic transmembrane pressure 5572.875 kg mm−1 s−2

i Number of ions from salt solvation 2 —
R Ideal gas constant 8.314 ×106 kg m2 s−2 mol−1 K−1

T System temperature 298.0 K2

ν Fluid dynamic viscosity 8.9× 10−7 mm2 s1 kg−1

ρ Fluid density 1027.2× 10−9 mm2 s−1

κ Diffusivity of salt in water 1.611× 10−3 kg mm−1 s−1

B Membrane salt permeability 5.56× 10−6

u0 Inlet velocity profile 30 – 120 mm s−1

ϕin Inlet salt molar concentration 600× 10−9 mol mm−3
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Figure 5.1: Example 5.0.2. Comparison of permeate velocity at y = 0mm for different inlet
velocity profiles, with the spacer center located at different heights yH from the bottom mem-
brane.
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Figure 5.2: Example 5.0.2. Comparison of pressure drop at y = 0mm for different inlet velocity
profiles, with the spacer center located at different heights yH from the bottom membrane.
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Universidad de Concepción

Casilla 160-C, Concepción, Chile
Tel.: 56-41-2661324/2661554/2661316

http://www.ci2ma.udec.cl


	Introduction
	Preliminaries
	Model problem

	Continuous weak formulation and its well-posedness
	Weak formulation
	Well-posedness
	Stability Properties
	Positivity of the concentration
	An equivalent reduced problem
	The fixed-point operator
	Well-definiteness of J
	Well-posedness of the continuous problem


	Conforming finite element approach
	Preliminaries
	Analysis of the discrete problem
	Stability properties
	Equivalent reduced discrete problem
	The discrete fixed-point operator
	Wellâ•‚definiteness of Jh


	A priori error analysis
	Computational results
	Convergence and stability test
	Study of a membrane channel



