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This paper presents a four-dimensional extension of the Goodwin model of endogenous cycles that integrates
wage inequality and underemployment. The model distinguishes two classes of workers differentiated by
productivity, wage levels, and bargaining strength, and endogenizes the underemployment rate through a
simplified power-balance mechanism between capital and labor. We establish well-posedness of the system
by proving existence—uniqueness of solutions, positivity, and forward invariance on a compact admissible
set. The interior equilibrium is characterized in closed form and shown to generically undergo a double
Hopf (Hopf—-Hopf) bifurcation. Using center—manifold reduction and a third-order normal form, we derive

the amplitude equations governing the interaction between two oscillatory modes (the Goodwin cycle and
the underemployment cycle). The reduced dynamics predict the emergence of an invariant two-torus with
quasi-periodic cycles and phase locking at low-order resonances (1:1, 1:2, 1:3). Numerical continuation and
direct simulations corroborate the analytical predictions, documenting transitions between quasi-periodicity
and resonant periodic orbits, and mapping the associated bifurcation structure in key parameters, such as the
adjustment speed of the underemployment rate in response to deviations from steady-state equilibrium.

1. Introduction

Industrialized economies have experienced a marked rise in wage
inequality since 1980, largely driven by the stagnation or decline
of real wages among less-educated workers. In the United States,
for example, the real earnings of male workers without a high-
school diploma have fallen by approximately 15% between 1980 and
2017 [1, 2]. Empirical evidence also suggests that wage inequality
is influenced by institutional and structural factors associated with
labor markets, including union membership rates, unemployment
benefits, and employment protection legislation [3, 4]. From a theo-
retical perspective, wage inequality has been examined within various
economic frameworks. Neoclassical approaches commonly explain it
as a consequence of skill-biased technical change, which enhances
the productivity of high-skilled workers in the context of an unequal
distribution of human capital across the population [5]. Other contri-
butions within this tradition highlight the role of automation technolo-
gies that generate task displacement, meaning the substitution of less-
skilled workers by machines capable of performing their tasks [2]. As
noted in [6], these neoclassical perspectives tend to attribute wage in-
equality primarily to technological factors, considering labor market
institutions only as amplifiers of their distributive consequences.

In contrast, heterodox approaches offer alternative explanations of
the relationship among wage inequality, income distribution, and eco-
nomic growth. Following [6] and [7], three broad strands can be iden-
tified, primarily inspired by classical-Marxian and post-Keynesian
frameworks. The first comprises two-class models, such as [8], in
which the economy is divided between production workers and
capitalist-managers. The latter receive both wage and profit income
and display a higher propensity to save than production workers. The
second encompasses three-class models, exemplified by [9], where
production workers earn low wages devoted entirely to consumption,
managers earn higher wages that allow partial saving, and capitalists
receive profit income and exhibit the highest propensity to save. The
third strand is characterized by the division of the working class into
two heterogeneous groups, either as a result of institutional factors
such as labor market flexibility [ 10], or due to an unequal distribution
of human capital, such as education, which differentiates workers
into low- and high-skilled categories, with the latter exhibiting higher
productivity and wage levels [11].

One of the most recent contributions within this third heterodox
strand is presented in [6], which develops a model that describes
the interaction between induced technical change driven by labor
costs' and the dynamics of low- and high-skilled labor within a
classical-Marxian framework enriched with Kaleckian elements. This
model assumes a fixed-coefficient technology in which low-skilled
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!For an analytical discussion of the induced innovation hypothesis, see [ 12, 13].

labor, high-skilled labor, and capital are complementary inputs in
production. Low-skilled workers receive lower wages than high-
skilled workers, who are able to save a fraction of their income, while
capitalists earn profits and save all of their income. Firms set prices by
applying a mark-up over unit labor costs, with the mark-up decreasing
as the employment rate of high-skilled workers rises. The nominal
wage of low-skilled workers grows at a constant exogenous rate,
reflecting the assumption of infinitely elastic labor supply, whereas
the nominal wage growth of high-skilled workers depends positively
on their employment rate. Combining these elements yields a three-
dimensional dynamical system in which the output-capital ratio, the
wage differential, and the employment rate of high-skilled workers
are state variables. The model exhibits a stable equilibrium point,
and it shows that when the equilibrium wage differential exceeds a
critical threshold, an exogenous increase in either the mark-up or the
bargaining power of high-skilled workers enables both capitalists and
high-skilled workers to expand their income shares at the expense of
low-skilled workers.

Another strand of heterodox contributions to the study of wage
inequality, although less explored, arises from works directly in-
spired by the Goodwin model of endogenous cycles and persistent
unemployment [14].> For example, in [32] the original Goodwin
framework is modified to incorporate the coexistence of a normal-
income labor market (type 1 labor) and a low-income labor market
(type 2 labor). The model uses a production function that allows
for substitution between the two types of labor, with the marginal
productivity of labor in each market determining the corresponding
real wage, similar to the neoclassical model of exogenous growth
[33]. The model also assumes that the growth rate of the real wage
for type 1 labor depends positively on its employment rate and on the
real wage of type 2 labor, capturing a reservation wage effect whereby
type 1 workers who lose their jobs transition into type 2 positions. The
real wage of type 2 workers, in turn, is defined as a fixed proportion of
the real wage of type 1 labor, augmented by a component positively
related to the employment rate of type 1 labor. From these elements,
a two-dimensional dynamical system emerges in which the real wage
of type 1 labor and the ratio of type 1 employment to capital serve as
the state variables. The system is locally stable when the reservation
wage effect is sufficiently weak but undergoes a Hopf bifurcation as

2The Goodwin model [14] formalizes the Marxian intuition that distributive
conflict between workers and capitalists can generate endogenous cycles, man-
ifested as persistent oscillations in the wage share—employment rate space. The
model has inspired numerous extensions, including discussions about endogenous
technical change [15, 16, 17], the active role of effective demand in long-run
dynamics [18, 19, 20], inflation [21], two-sector interactions [22, 23], financial
instability [24, 25], endogenous labor supply [26], inclusion of unemployment
benefit systems and a minimum wage [27], open-economy dynamics under balance-
of-payments constraints [28], chaotic behavior [29, 30], among other developments.
A comprehensive survey of the theoretical and empirical literature on endogenous
cycles derived from the Goodwin model can be found in [31].
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this effect approaches a critical threshold, marking a transition from
damped oscillations to persistent or even explosive cycles.’

In a more recent, albeit preliminary, contribution [35], it is pro-
posed a model with exogenous productivity growth, in which high-
skilled workers always exhibit higher productivity than low-skilled
workers. In this setting, the growth rate of the real wage for high-
skilled workers depends positively on their employment rate, whereas
the real wage of low-skilled workers is defined as a fixed proportion of
high skilled wages. The model further assumes that all social classes
save, with low-skilled workers displaying the lowest propensity to
save and capitalists the highest. Combining these elements yields a
two-dimensional dynamical system in which the employment rate and
the wage share of high-skilled workers serve as the state variables.
The model preserves the analytical structure of the original Goodwin
framework, implying the existence of closed orbits. Moreover, when a
minimum wage is introduced or the wage gap is exogenously reduced,
the amplitude of fluctuations diminishes for both state variables.*

Building on this line of research, the present paper extends the
Goodwin model by coupling the dynamics of wage inequality and
underemployment, interpreted here as a regime of low productiv-
ity, low wages, and weak bargaining power. The proposed model
distinguishes two groups of workers who differ in terms of pro-
ductivity, wage levels, and bargaining strength, and endogenizes the
underemployment rate through a simplified power-balance mecha-
nism between capitalist firms and workers. This formulation yields
a four-dimensional dynamical system in which the wage share, the
employment rate, the relative wage of type 2 workers, and the un-
deremployment rate are the state variables. A novelty of the model
is the emergence of a double Hopf bifurcation that generates two
interacting endogenous oscillatory modes: the classical Goodwin cy-
cle and an underemployment cycle. The analysis of the cubic normal
form reveals both resonant and non-resonant regimes, corresponding
to synchronized periodic or quasi-periodic oscillations, respectively.
Numerical simulations corroborate these theoretical results, display-
ing multi-frequency patterns, resonance windows, and transitions
between regular and irregular regimes. The paper thus contributes to
the literature on endogenous macroeconomic fluctuations by offering
a framework that connects distributive cycles and wage inequality
within a heterodox analytical approach.

The remainder of the paper is organized as follows. Section 2
presents the formulation of the four-dimensional dynamical system.
Section 3 establishes the existence and uniqueness of its solutions.
Section 4 characterizes the steady-state equilibrium and demonstrates
the existence of a double Hopf bifurcation. Section 5 examines the
cubic normal form on the center manifold to assess local stability
properties. Section 6 reports the results of numerical simulations for
both resonant and non-resonant double Hopf bifurcations. Section 7
concludes by summarizing the main findings and outlining directions
for future research.

2. Model Formulation

Similar to [32], consider a closed economy without government,
composed of capitalists, type 1 workers (i = 1), and type 2 work-
ers (i = 2). The two groups of workers differ due to structural
asymmetries in productivity, wages, and bargaining power. Firms
produce a single good used for both consumption and investment,
employing labor and fixed capital. During the production process,
labor is allocated between type 1 and type 2 workers according to
the following equations:

a, (O] (1) + ay(N],(D), (€]

q(n =
a, () = aye”, a,(t) =g, ape”, 2)

3In [34] the model is further extended to incorporate an unemployment benefit
system and minimum wages in the type 2 labor market, and a maximum wage
constraint in the type 1 labor market.

“It is also possible to identify contributions that address wage inequality from
the perspective of endogenous cycles, though incorporating several Kaleckian
elements. These include an endogenous rate of capacity utilization that adjusts to
disequilibrium in the goods market, an investment function independent of sav-
ings, and mark-up pricing. Some examples focused on two-dimensional dynamics
include [36] and [37]

where g, > 0 and 0 < g, < 1. Here, g represents real output,
produced by type 1 and type 2 workers, who are treated as perfect sub-
stitutes for analytical simplicity.” The terms /, and a, denote, respec-
tively, the total hours worked and the labor productivity of workers of
type i. The term a, is the initial productivity of type 1 workers, while a
captures an exogenous and uniform rate of productivity growth across
both worker groups. The ratio £, = a,/a, measures the productivity
of type 2 labor relative to type 1 labor—hereafter referred to as type 2
relative productivity—under the assumption that type 1 workers are
always more productive (¢, < 1). For simplicity, both & and ¢, are
treated as constant and exogenously determined parameters.”

Given the aggregate labor supply #, the overall employment rate
of the economy, v, is defined as:

L+ L)
)

where 1 — v is the unemployment rate. To describe the composition
of employed workers between type 1 and type 2 labor, the underem-
ployment rate, z,’ is introduced as:

(1)

0= T L0 )

o(t) , 3

By combining equations (1) through (4), real output can be expressed
as:

q(t) = age® v n(t) [1 - z(D(1 - €,)] . 5)
Assuming that labor supply grows at a constant rate,”
a@) :=p>0,

log-differentiating equation (5) and rearranging terms yields:

50) = 40 — (a4 ) + 20— — o)

o =ai) = la T -6y
Equation (6) shows how the underemployment rate (z) influences the
dynamics of the overall employment rate (v), depending on type 2
relative productivity (g,). It follows that z has no effect on v when the
two types of labor exhibit identical productivity (g, = 1).

©6)

Regarding income distribution, consider the following formula-
tion:
w (O (1) + w1, (1)
q(t)
£, w (),

u(t)

w,(1)

, @]
0<eg, <. ®)

Here, u represents the aggregate wage share, w; denotes the real wage
received by workers of type i, and €, is the relative wage of type
2 workers compared with type 1 workers—hereafter referred to as
the type 2 relative wage—, which is assumed to be endogenous.’
Combining equations (3), (4), (5), (7), and (8), u can be expressed
as:

_ w1 -z —¢,M)]

U = e T =2 —e)] ©

Since ¢, is endogenous and evolves over time, log-differentiating
equation (9) yields:

t (
a(t) =ty (1) — @ + £,(1) [%]

z(1)(e,,(1) — &,) ]
[1 = z(n)(1 = I = 2()(1 = g, (NI |

5The assumption of productive substitution between heterogeneous workers is
also adopted in other models of wage inequality, such as [11] and [32].

6The assumption of a constant value for ¢, is also employed in [11] and
[35]. Likewise, the assumption of a constant productivity growth rate a, implying
exogenous technical change, is adopted in [35].

"The term underemployment rate is used since type 2 workers are assumed to
occupy lower-productivity, lower-wage positions characterized by weaker bargain-
ing power, indicating employment conditions below the standard or normal level
of labor utilization.

8For any function x, its time derivative is x'(f) = dx/dt and its growth rate is
@) = x'(1)/x(@).

9 A similar assumption is adopted in [6].

10)

+ 2(1) [
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Equation (10) shows how the underemployment rate (z) influences
the dynamics of the wage share (1), depending on both type 2 relative
productivity (g,) and the type 2 relative wage (g,,).

To characterize the dynamics of ¢,,, we assume that the growth
rate of real wages for each type of labor (i) depends positively
on its participation in total labor supply (/;,/n). This relationship is
represented by the following real wage Phillips curves: '

)
0,0 = =7+ (%) =~y + p(1 - 20 0) an
I}
) = —1 + pe, (%) =~y + pe, 2(0) (), (12)

with y,p > 0 and 0 < ¢, < 1. In these expressions, y denotes
an autonomous tendency for real wages to stabilize, p captures the
responsiveness of wage growth of type 1 workers to the employment
share of type 1 labor (/,/n), and pe, reflects the influence of the
employment share of type 2 labor (/,/n) on the real wage growth
of type 2 workers. As suggested in [17], a lower y or a higher p
signals an exogenous strengthening of the bargaining power of the
working class. Meanwhile, the parameter ¢, is interpreted as an
indicator of the specific bargaining power of type 2 workers, shaped
by the structural disadvantages they face in wage negotiations. These
disadvantages may arise from lower unionization rates, social or
historical discrimination, or weaker collective bargaining institutions
that erode the bargaining position of type 2 workers relative to type 1
workers (¢, < 1).

By log-differentiating equation (8) and substituting equations (11)
and (12), we derive a dynamic equation for €,,:
£,0 = p [z +¢,) = 1] v(0). (k)

Furthermore, substituting equation (11) into (10) provides an expres-
sion describing the dynamics of the aggregate wage share (i1):

) ==y +a) + p(1 — (D) (D)

) z(t)e ()
+£,0) [m] o
A [ z(1)(e, (D) — &,) ]
+ 2(1) .
[T =201 — e [ = )1 — £, ()]

Concerning capitalist accumulation, we follow the interpretation of
the Goodwin model [ 14] as presented in [38]. Capitalists are assumed
to save a fixed proportion s (0 < s < 1) of their profits, g(1 —u), which
is entirely devoted to investment. In contrast, both type 1 and type
2 workers consume their entire wage income. If the capital-output
ratio is defined as ¢ = k/gq, where ¢ is an exogenous constant, and
6 denotes the depreciation rate (0 < § < 1), the capital stock growth
rate (k) can be expressed as:

s(1 —u(1)) _

o

k= 8. (15)
Since the capital-output ratio ¢ is constant, it follows that k = 4.
Substituting this result into equation (6) and combining with equation
(15) yields the following expression for the dynamics of the employ-
ment rate (D):

N s(1 —u(®)) s z(n( —&,)
(t) =———(a+f+6)+2() | —————|. 16
) - (@+p+0)+20) | T—a—s | 16)
Finally, we assume that the underemployment rate (z) adjusts when-
ever the observed type 2 relative wage (g,,) deviates from an equi-
librium value (e‘li,). This behavior is represented by the following

reduced-form dynamic equation:

=y () —£,0), x>0, 0<e <L (17)
where y measures the adjustment speed of the underemployment
rate. Equation (17) reflects the assumption that, on average, when the
observed type 2 relative wage falls below its equilibrium value (E(’L >
€,,), capitalist firms are motivated to increase the underemployment
rate (£ > 0) to take advantage of the lower cost of type 2 labor.
Conversely, when the observed type 2 relative wage exceeds its

10From equations (3) and (4), we note that /; /n = (1 — z)v and I, /n = zv.

equilibrium value (2 < €,), type 2 workers obtain relatively higher
wages, strengthening the bargaining position of the working class as a
whole and exerting downward pressure on underemployment (2 < 0).

The mechanism represented in equation (17) captures the balance
of power between capital and labor in determining the degree of
underemployment. The parameters y and 52} summarize structural
and institutional conditions—such as labor market regulation, em-
ployment protection, and union strength—that shape both the abil-
ity of capitalists to substitute type 1 workers with type 2 workers
and the capacity of the working class to defend its employment
conditions. This formulation is consistent with Kalecki’s view that
capitalist economies are characterized by an inherent tension between
profitability and full employment. As emphasized by Kalecki [39],
prolonged periods of high employment and rising real wages un-
dermine capitalist authority while strengthening the economic and
political power of the working class. In this sense, equation (17)
formalizes Kalecki’s insight that maintaining a certain degree of labor
market slack, embodied in the persistence of underemployed labor,
constitutes a strategic element of capitalist stability.

Equations (13), (14), (16), and (17) form a four-dimensional
dynamical system with the wage share (u), the employment rate (v),
the underemployment rate (z), and the type 2 relative wage (g,,) as
state variables.

3. Existence and Uniqueness of Dynamic Trajectories

This section establishes the existence and uniqueness of the
solutions to the model introduced in the previous section, using
fixed-point theory. This result guarantees that, for any admissible
initial conditions in terms of income distribution (1), employment
(v), underemployment (z), and relative wages (g,,), the model yields
a unique and continuous trajectory describing the evolution of the
economy. Thus, for the subsequent results we shall work within the
following domain. Let

r= {(XI,XZ,X3,X4)eRj: max | X, | SM}, M>0.

Fix any # € (0, 1) and define the admissible box
r,={wvze)el: D,D,>n},
withD, :=1-2z(1—¢,)and D, :=1—-2z(1 —¢,).

Theorem 1. Define the state vector as: X(t) = (u(t), v(t), z(t), € ,()) .
Assume moreover that ¢ > 0. Then, for every X° € [, the model of
(13), (14), (16), and (17) under the initial value X° exhibits a unique
solution X.

PROOF. Since we work with growth rates, defined by X(r) = x'(t)/x(¢),
we can set f = (f|, f5, f3, f4) where:

zg,

fiwv.z,e,) == +a)+p(l —2v+p [zl +¢,) - 1] v
z(g, — €,)
DaDw
—(a+p+9)
o _ z(1—-¢,)

+ x(€, Sw)—Da ,
fiw v, z,6,) 1= y(€ —¢,),
faw,v,z,6,) i=plz(l +€,)—1]v.

+ )((e?c —-£,)
(1-u
o

B

N
L, z,€,) =

Then, the system of ODEs can be written as:
W =uf|,
and, consequently we have the ODE field F = (ufl, vfs 2f3 ewf4).
Then, for arbitrary X, Xerl , we obtain
IFX) = FX)|| = |uf,X) — af, X)| + |0f,X) = 5£,X)]
+|2£3X) = Z2f,X)| + |€,,/2(X) — &, £,(X)] .

In general, for arbitrary scalars a, b, @, b, the following inequality
holds:

V=vufy,, Z=zfs, e,=¢e,fp

|ab — ab| = |ab— ab + @b — ab| < |a—al |b] +|a| [b—b], (P1)
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and in our setting, we obtain:

I1FX) = FEOI < |u—al |/,X)] + @l |£,X) = /1K)
+ v =0l |AL0] + 181 £,X) = £,
+lz = 2| 0] + 2] | £/, = £,X)]
F|ew = & | £ + 8] | 130 = £,)] -
To estimate these terms, we consider on I', we have u,v,z,€,, < M

and D,, D, > n. These conditions allow us to derive the following
bounds:

Iz] £,
IAGOL< Iyl + lal + 1ol 11 =zl o] + 1ol (1211 +€,) + 1) vl —
Iz] le, — €l
+ 0 —g,| ——=
lxlle, —&,l DD,
M2
Slrl+lal +pl(1+ MM + |p| (|1 +€,| M + l)MT
MM + |e,|)
+xl(e)| + M)———=
n
=:b,.
Is| 0 [z] 11—,
LX< = T —ul+la+ B+l +xlle, — &, ——
o] D,
Is| 0 M|l —¢,|
sﬁ(1+M)+|a+ﬁ+5|+lxl(|ew|+M)T
(o}
=:b,.

1501 < Lrl (e, + e D < Ll (ep| + M) =: by.
£l < lpl (2l +e)+ Dol < lpl (1 +¢€,| M+ 1)M =: b,.

‘We now consider the difference, which yields:
[/, = £,K)] < 1ol (1 = 20— (1 - 2)d|
+1pl )(z(l+sp)—l)vH, - "15(2(1+e/,)—1)(
+ 121 (€, - e H, = (), — £,)

. Z&y . Z(gw - ga)
where H, := ) and H, := DD We now proceed to

analyze the express‘Afon term by term:
e For the product, applying (1), we obtain:
[A-2p-(1-2)0 <[l -z[ [v-0]+|0] |z - Z|

<A+M)v-0|+M|z-7Z|.

o For the subsequent term, we use the fact that
[iX) :=p [z(l +e,)— 1] v,
so that, by applying (1), we obtain

|£,.0H, - £,X) H,| < | £, - £, |H,]
+ A |H, - Hy|.

Here for |H - H, | we again make use of (1), and additionally
consider the fact that |b], |b] > 7 > 0. In this case we obtain

a%—éé Sla—&|%+|~||b ~b'
b “ &ll ||a| bb ®2)
< B |b_l;|
n
In our setting, this leads to
ze, —ZE, ZE, -

B N ) Ll L B 1 NP

D, D, n n?

Since inequality (1) will be used repeatedly in what follows,
we mention it only once here and apply it to each case without
restating it, in particular:

|ze, —2&,| <|z—Z2IM +M|e,—&,].
Moreover, since |Z£2 | < M? and combining this with

|D, = D| = |z(1-e,) - 2(1-¢,)

5(1+M)|z—2|+M|ew—§w|,
we obtain, after substitution,
~ M*(1+M
|H, - H| < <M+—( > )> |z - 2|
n n

M M3 -
+ <— + —2> |€w — &
n n

<Ky (12— 2+ e, — £,]) -
where one may take

{M M*1+M) M M3}
+—— =+ = ;.

K, :=max{ — s
H " nooP

1

Now, for the final expression:

|£:X) = £,R0] = Il [ 121 +¢,) = 1o = [20 +¢,) - 11|
<lpl (MI1+¢,|+1) [v—1|
+1pl M |1 +e,| |z— 2|
< @00l +:¥ |z -2,

where

@ i=1p] (M|1+¢,|+1), @ i=p| M|l +eg,|.

Now we can finally replace in our original expression:

- - 2
1,00, - £,%) i, < MT “@o— ]

+ (P + b, Ky ) 12— 2
+by Ky, € — €.l -

For the last term, we have:

(52} -€,)H, — (°

w

- Ew)ﬁz) < |£w - gw' |FIZ|
+ (|5?c| +M) |H, - Fl2|~
we actually know the bound of |H2| from before,

N M (M + |g
) < ( lea)
7>
and using (2) with a = z(¢,, — ¢,) and b = D,D, where
5], |B] = #* > 0s0:

a—a a
la=al , la
n

|Hz—ﬁz|S |b—B|.

where:
la—al = |z(e,, — &,) — Z(E,, — &,)|
S(M + g ) z— 2+ Mg, — €,
and |d] < M(M + |&,]). For |b — b| we directly have:
Ib_i)l = |DaDw_DaDw|
<ID,| |D, = D,|+|D,| |D,— D,

where the bound for |D,, — f)w| is already known from above
and from a direct calculation we get:

|D,—D,|=]|0-e)z-2)|=|1-¢,] |z,
[D,| <1+ M|1-g,,
D, <1+ M+ M).

Then,
[b=B| < (1+M|1-g,) (I+M)|z—Z+ M e, —£,])
+1+MIA+M) (|1-¢,] lz—2)
(z) 5 (w) =
<GP z-Z+C" |e, — €]+
with the explicit constants,
CP =1+ M1—¢g )L+ M)+ (1+M1+ M)l —¢,.
C =1+ M|l —¢,)M.
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Therefore
- M+le,| MM +lel) 5
|H, - H,| < > - C2l 1z -2
n n
M MM +|g,|) (w) ~
+ I:?+ch |£w—£w|

< ’<H2 (lZ— z| + Iew_gwl) 5

where we may set K; 1= max{ ng) K;Z) }, with

K(Z) P M + |ga| M(M + |£a|) C(z)
H, * 2 4 b
: n n
KW o= M MM + |e,|) .,
2 ,12 714

Now we can finally replace on:

MM + |g,))
n?

+lz—z (1] + M) Ky,

+|ew — £l (|62,| + M) Ky,

(€% — e ) H, — (€% — gw)ﬁzj <le, -

ol

We now return to the bound for | f,(X) — f,(X)|, and by combining
the preceding estimates we obtain:

[/, = £iK)] < 1ol (A + M) |o— 5]+ M |z - 2])
2
+ Mo — 4 (29 + b, K,y ) |2 - 2
n

_ M (M + [g,])
+by Ky €y = Eu| + 12| |60 = E| ———

)

+1xl 1z =21 (165 + M) Ky,
+lxl e — &, (101 + M) Ky,

and after grouping terms appropriately:

v € ,,_vl B

1A= fiX)] <P o—ol+7 |z -2 +7 e, ~ &
where:
@ . M? )
T, = |pl(1 +M)+TTU s
= pIM + 7+ b, Ky + x| (12 + M) K,y

MM +|g,])
= by ) (D

(1] + M) KH2> .
Now for the bound of | f,(X) — f,(X)| we proceed like this:

16X = £,(0)] < | =2l + 7]

L3 (62, —€,)H; — (e?t - Ew)]:l3) s

c

z(l —¢,)
D,

a

where H; = . From, (1) we can obtain,

|(€0u, —&,)H; - (53; - gw)f{fﬂ) < |$w - §w| |FI3|

+ (1% + M) |Hy — Hy].

We already have an estimate for |ﬁ 3

~ M |1 —¢,|
i < ML=
n
Applying (2) with a = z(1 — ¢,) and b = D,, we obtain

lz—Z| |1 - ¢, +M|1—6a|
n 7

|H; - Hy| < |D,—D,].

From the previous bounds on |D, — D,| it follows that

~ 1 M|l-¢)] .
|Hy - Ay < |1-¢,| St |z —2|.

Thus, we may take

1 M|l-¢g,
Ky ==l o+ =),

”2

Substituting this bound, we obtain

M|l —¢,|
n
51 (120
+1z = 2| (le,| +M)Ky,.

(& — e ) H, — (e, — gw)IL) < |ew— &

Finally, returning to | £,(X) — £,(X)|, we obtain:

|15 = £,%)] < |§ Ju~al
M-,
el e =] ==

+lxl 1z -2l ()| + M) Ky,
and after grouping terms appropriately:
|- = £, <@ ju—il| + 7P |z — 2] + 2 ey — €4l
where:

@ =

N
u B E

@ =yl ()| + M) Ky,
M|l —-¢

@ ._ al
T = x| .

Finally, for the remaining difference we directly obtain:

15X = 50| = Il e 0| = 0= 1l

Gathering all the previous bounds, we now return to the main expres-
sion and obtain
I1FX) = FQOI < |u—al (b + M )
+lo=0] (by+ Mz + M<Y)
+1z— 20 (by+ M7+ M@ + M 9)

Hlew=Eu| (bt M0+ M2+ M D).
If we now define L :=max{6,,0,,0,,0,}, where

- (2)
0, :=b+ Mz,

e Q)] )
0, :=b+ M7’ + Mz,

— () 2) )
0y :=by+ Mz’ + Mz~ + M1z,
0, :=by+ M7V +M®+ MO,

Ew Ew Ew

we may write
IFX) - FX)Il < L ||X-X].

Hence, F(X) satisfies the Lipschitz condition on X. By invoking the
fixed point theorem, we conclude that Theorem (1) is established. []

To complement this result on existence and uniqueness, we examine
the following two propositions, which ensure that the system remains
positive if it starts positive and that I', is a forward-invariant set for
the model.

Proposition 1. Ler X(1) = (u(?), v(0), z(t),ew(t))T be a solution to
the system defined by equations (13), (14), (16), and (17). Write F =
(ufl, vfs, 2f3, ewf4) as stated in Theorem (1). Then T, is forward
invariant if and only if F (X) eT (FN;X) foreveryX € ar',, where

the contingent cone T (F,,, X) is

T(0,%) i= heR“‘EIXneF”,/ln>O,
o X,»X,4,(X,-X)—>h |

PROOF. We proceed to prove the double implication.

=) Assume I', is forward invariant. Fix any Xe dr',. Because the
fieldis C' on a neighborhood of Fn by Theorem (1), there is a
unique solution X(¢) with X° := X and X(¢) € I, forallz > 0.
For a sequence (7,),5; C (0, c0) such that¢,,, <7, andt, — 0,
set
y = 1 > 0.
t

n

X, =X@,)erl, A
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Then
%0
i (X, - X) = M

n

Now pass to the limit. Using the integral form of the ODE,

X(t)—XO:/ F(X(s)) ds, t>0.
0

Hence, for each n,

o X@)-X° n
A (X, - X) = % = Il/o F (X(5)) ds.
Therefore,
A, (X, -X) - F (X) H = ti/0 " F(X(s)) ds — FX)||.

Because X(s) — X% as s — 0 and F is continuous at X°, we
have F (X(s)) > F (X°). Therefore, for any > 0, there exists
6 > 0 such that

-] <5 > Jroxr- )] <

By continuity of X at 0, choose N with ¢, < é foralln > N.
Then forn > N,

tl/nF(X(s)) ds—F(X)”

0

<1 / | s - F (X)) as
I, Jo
<eE.

Since ¢ is arbitrary, we conclude that 4, (Xn - )_() - F ()_()
hence F (X) € T(FW;X)‘

<«

~

Assume that F(X) € T(FW;X) for every X € ar’,. We prove
that any solution starting in T, never leaves. Let X(7) be the
solution with X° € [, and define the function

$() 1= dist(X@),T,) = inf IX@) - -

Since I, is closed, ¢ equals 0 exactly at those times for which
X(#) € T',. To reach a contradiction, suppose that X leaves I,
Define

T:=inf{r>0: X0 &T, } €(0,c0],

so that X(r) € I, forall 7 < T, and let X* := X(T) €
01",,. Because F(X*) € T(F ”;X*), by the definition of the

contingent cone there exist
X,el,, 4,>0, X, ->X, A,(X,-X") - FX).
Fix € > 0. By the above convergence, there exists N such that

forallm > N,

,(X, - X*) - FXY)| <e.

1

Then we can choose h, := A" sufficiently small so that

X+ h,FX*) =X, || < €h,.
By the standard first-order expansion of the flow,
X(T + h,) =X*+ h,FX*) + O(h,), as h, - 0.
Combining these two expressions in ¢ gives
@(T + h,) = inf |X(T + h,) - y||
yer,
< ”X(T + hn) - Xn”
< eh,+ O(h,).

Then, the upper right Dini derivative satisfies

#.(T) 1= limsup 2L W=D
hoO* h
Since € > 0 is arbitrary and ¢(T") = 0, we obtain qﬁﬂr(T) <0.
However, if X were to exit at T, we would have ¢(T + h) > 0
for all sufficiently small 4 > 0, which would imply ¢’ (T') > 0
a contradiction. Therefore, X(¢) € Fn forall t > 0, i.e., Fn is
forward invariant. O

Proposition 2. Let X(t) = (u(t), v(?), z(t),ew(t))T be a solution to
the system defined by equations (13), (14), (16), and (17). If the initial
condition X° € I',, then the solution X(t) remains in I, for all t > 0.

PROOF. On I, the vector field is of class C! and locally Lipschitz
by Theorem (1). Therefore, for any initial condition X(0) € I,
there exists a unique solution defined on a maximal interval [0, T")
satisfying

u(t) = uoe/ﬂr/"X)d“, u(t) = erf<; HXds

z(t) = zoeff; SXyds £,(1) = ewoe/ﬂl JuXyds

Consequently, u,v,z,¢,, > 0 on [0,T). Moreover, by the bounds
|fil < b; on T, no blow-up occurs before reaching oI’,. Hence, if
T < oo, then X(T') € ()F”. By Proposition (1), the set 1“,1 is forward-
invariant under the flow of the system. This invariance guarantees that
a solution starting in I', cannot reach the boundary oI, in finite time.
Therefore, the solution X(#) remains in I, for all 7 > 0. O

4. Steady State Equilibrium and Double Hopf Bifurcation

At the steady state (1 = 0 = 2 = £, = 0), the four-dimensional
dynamical system defined by equations (13), (14), (16), and (17)
admits the following non-trivial equilibrium point:

-1 o(a+f+9) l_}_(a+7)(1+5,,)
| s e, (18)
z=—", e'w=s(;,,
I+eg,

The steady-state wage share, u, coincides with the equilibrium value
obtained in the Goodwin model with savings and depreciation, as
formulated in [38]. It increases with the saving rate (s) and decreases
with the capital-output ratio (o), the rate of productivity growth (a),
labor supply growth (f), and the depreciation rate (6). The equilib-
rium employment rate, v, rises with faster productivity growth (@)
and stronger real wage stabilization (y), but declines as the sensitivity
of wage growth to type 1 employment (p) increases. Both v and
the equilibrium underemployment rate z depend on the bargaining
power of type 2 workers (g,): a lower €, raises ¢ while reducing z,
implying higher overall employment but deteriorated average labor
conditions. Finally, the type 2 relative wage is fixed at its equilibrium
value (¢, = €2).

Solving equations (13), (14), (16), and (17) for the time deriva-
tivesu’, ', z', and efu yields an autonomous dynamical system, which
can be expressed in the following reduced form (as stated in Theo-
rem (1))

u' =uf), v'=0f 2 =zf, 5;) =&,/ (19
where f; represents the function governing the dynamics of the state
variable. Linearizing this dynamical system around the equilibrium

point X = (i1, 0, z, €,,), as defined in expression (18), gives:

u' 0 A, A; Ay)\( u—u
Ul 14y 0 0 Ayl v-v
Z{710 0 0 Ayl z-z | 20
£ 0 0 A; 0 Ne,—¢,
where:
A g,pls —o(a+ f+06)]
2= s(1+¢,) ’
(@+ 1A =€) +¢,)[s —ola+f+6)]
B s(e% +¢,) ’
M (e, — €)1 +¢,)s — o(a + f + 6)]
14 = >
s(e, +€,)(E +¢€,)
s(a+y)1+e,)
21 = _—6pp6 ,
A= 2@+ —-g)l+e),)
2 (e, +€,)p ?
X
Asa Tl+e
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St + e)’

43 =
&

The Jacobian matrix in equation (20) possesses four purely imaginary
eigenvalues, expressed as 4, , = +iw, and 4;, = +iw,, where:

), [s—o(a+f+06))a+y)
o] = R

(o3
,_xey(lt+e)a+y) @1

2
&

Based on the structure of our system, the following hypotheses can
be established:

(H1) Transversality condition: Let x = (k,,k,) with k¥, := s and
kK, := y, keeping all other parameters fixed. The squared
frequencies depend affinely on (x,, k,):

(k) —c(a+p+8))(@+7)
o ,
K (L+e,)a+7y)

(k) =

(k) =
&
P

Hence, the crossing rates are:

0w’ ow? 1+e¢
Zh_2tray IR 0ggy— 2 2o,
ok, c oK, w €,
so that:
0((0%, wg)

et [ ——— #0.

< 0(!('1, K'z)

(kp.K0)=(s5.4)

(H2) Non-resonance condition:

\/[s —ol@+p+8)la+7) 291 +€)a+y) um
(o2 EP n

where m and n are relatively prime, such that m +n < 5.

(H3) Resonance condition:

\/[s —ol@+f+dla+y) [/ [xe(d+e)aty) p
(o} Ep - n

where m and n are relatively prime, such that m + n < 5.

(H4) Eigenvalue assignment: If we assume that:

o >0, a+y >0, s> o(a+ f+96),

then the linearization of (19) at X has two simple purely
imaginary pairs

Ay = tiwy, Ay 4 = tiw,, with w,, @, > 0.

Furthermore, let A denote the Jacobian matrix introduced in
(20). From its characteristic polynomial we obtain

det(Al — A) = A* + a2 + a,4* + a; 4 + ay,

where the coefficients can be expressed, by means of the New-
ton identities in terms of the traces of powers of J, as follows:

a = —tr(A) =0,
1
a4y = 5 (tr(A)" = r(A)) = (A Ay + As ),

(tr(A)’ = 3tr(A) tr(A%) + 2tr(A%)) = 0,

a=—1
76
a, =det(A) = A, Ay Az Ays.
Next, we construct the Hurwitz principal minors:
A =a,

=a,a, — a,

i
|

2
Ay =(aja, —a3)a; — aay.

Therefore, we finally obtain A; = A; = 0.

Therefore, we have established the necessary and sufficient conditions
for system (19) to undergo a double Hopf bifurcation at the equilib-
rium X, within the framework of Yu [40]; the same conclusion also
follows from the generalization of Orlando’s formula [41]. We now
state this result formally in the following theorem.

Theorem 2. The non-resonant Hopf-Hopf bifurcation or resonant
Hopf—Hopf bifurcation of system (19) occurs at X if and only if the
following conditions (H1), (H2) and (H4) or (H1), (H3) and (H4)
hold.

Remark 1. The equilibrium is non-hyperbolic. In the absence of
additional dissipative conditions, the generic Hopf—Hopf normal
form yields oscillatory dynamics on the center manifold; hence the
equilibrium is not locally asymptotically stable and, consequently,
cannot be globally asymptotically stable. Moreover, Lyapunov sta-
bility cannot be certified via the direct method here, so to proceed
one must instead use the normal-form (center-manifold) analysis.

Based on the results summarized in Theorem (2), we infer the
coexistence and interaction of two endogenous cyclical mechanisms
within the model proposed in this paper. The first cyclical mechanism
is strongly associated with the interaction between the wage share (u)
and the employment rate (v), as originally suggested by Goodwin
[14]. This interpretation follows from the fact that the frequency
w, exactly matches the frequency obtained in the Goodwin model
with capitalist savings and depreciation, as formulated in [38]. In
particular, this frequency depends on the capitalist saving rate (s),
which captures the intensity of capital accumulation and serves as the
first bifurcation parameter in the transversality condition (H1). For
this reason, we refer to this first cyclical mechanism as the Goodwin
cycle,

The second cyclical mechanism can be interpreted as generated
by an oscillatory relationship between the underemployment rate
(z) and the type 2 relative wage (¢,,). This interpretation follows
from the structure of frequency w,, which includes parameters that
characterize the labor conditions of type 2 workers, such as their
influence on the bargaining power of the working class (¢,), the
equilibrium value of the type 2 relative wage (62,), and the adjustment
speed of underemployment (), which serves as the second bifurca-
tion parameter in (H1). Accordingly, we refer to this second cyclical
mechanism as the underemployment cycle.

When the transversality condition (H1) and the non-resonance
condition (H2) hold, the Goodwin cycle and the underemployment
cycle operate at distinct frequencies. The coexistence of these two
mechanisms gives rise to complex multi-periodic or quasi-periodic
patterns, since both cycles persist but are not synchronized in time.
In contrast, when the transversality condition (H1) and the resonance
conditions (H3) are satisfied, both cyclical mechanisms become syn-
chronized, implying that their oscillations occur in a fixed proportion
over time. As a result, the Goodwin and underemployment cycles
move in phase, producing stronger and more coherent fluctuations
compared with the non-resonant case. Instead of complex multi-
frequency patterns, single-frequency oscillations with amplified am-
plitude emerge.

Concerning Remark (1), it is important to note that due to the
structure of the dynamical system, local stability conditions for the
steady-state equilibrium cannot be established without the inclu-
sion of nonlinear terms. Economically, this non-hyperbolic nature of
the equilibrium implies that the system lacks intrinsic mechanisms
of self-stabilization, leading the economy to fluctuate persistently
around the steady state rather than converge to it.'’

5. Cubic Normal Form on the Center Manifold

Normal form analysis is a fundamental analytical methodology
in bifurcation theory, serving a dual purpose: it furnishes a robust
stability diagnosis while simultaneously informing the interpretation
of numerical simulations. By reducing the system to its essential

UThis result suggests avenues for future research aimed at introducing addi-
tional stabilizing mechanisms, such as stronger labor-market institutions, govern-
ment intervention, or external sector dynamics, that could render the steady-state
equilibrium asymptotically stable.
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dynamical structure, the signs of its coefficients (such as the terms
P,; derived below) analytically dictate whether local oscillations will
amplify (instability) or attenuate (stability). Concurrently, this tech-
nique predicts the resultant dynamical morphology, accounting for
the emergence of complex phenomena observed in simulations, such
as quasi-periodic dynamics (dense tori) or phase-locking (resonance).

To compute the normal-form indices, we adopt the framework
for non-resonant Hopf—-Hopf bifurcation presented in [42, 43] and
formalized in Theorem (2). The system (19) can be expressed as

X' = F(X, ), X eR*, k e R?, (22)
which admits an equilibrium at X for & = (s, y). The Jacobian matrix
A has two pairs of simple purely imaginary eigenvalues,

A, = iy, Azq = tiw,, w,,w, > 0.

Since these eigenvalues are simple, the corresponding eigenvectors
q,, € C* satisfy Aq, = iw,q, and Ag, = iw,q,. Explicitly,

ApAy +ioy Ay + ApAy,

iﬂ C"g +ApAy,
Ay —iA;3A5 Ay + @A 144y + iw§A24
= 1 =
o 0 » % W, (w§ + A12A21)

34
iw,
1

The adjoint eigenvectors p;, € C* satisfy ATp; = —iw p, and
ATp, = —iw,p,. Normalizing with respect to the standard scalar
product, we impose

(P1-a1) =P d2) = 1, (P2 a1) =(p1>42) = 0.

Accordingly, we obtain

iw,
—21A,2 0
) 0
b= o (wl A+ iA14A43) —ApAyAy p=|1%
2, (@ +ad) 245
o, (i AAsy + 0,41, +iA),4,) 2
24, (03 + a2) |

LetT¢ C R* denote the corresponding generalized critical eigenspace
of A. The center manifold is parameterized by the complex ampli-
tudes W = (w;, w,) € C? via

X-X=HMW) :=y, H:C*—> R (23)
The dynamics restricted to the center manifold are given by
W’:ddL)’V:G(W), G:C*—C~. 24)

Substituting (23) and (24) into (22) (evaluated at k = k) yields the
homological equation

DHW)GW)=F (X+HW).k)=F (X+yk), (25
Hence, the homological equation (25) can be expressed as
p— —_ Y, .
H, w\+ Hg w,+ H, w,+ Hg w, = F(X+y, k), (26)
where F admits the Taylor expansion

. ) 1 1
F (X +y.k) =AY+ 5B+ ZCOy+ o,

with
4
0°F,
(B(a,b)), = —— a;by,
j;] 0X;0X¢| gy
4
OF,
(C(a,b,0), = —_— abc,.
]kz= | 0X;0X,0X,| o

The dynamics of any vector y € T lying in the critical eigenspace
can be expressed as

y=wq + W, ) + w4, + W, G,
with w;, = (p;,y) and w, = {(p,,y). Moreover, setting P :=
T L N . - = .
[pl,pT,pz,p;] with pf :=p, and Q := [ql,ql, qz,qz], we write

iyl [(pi ¥ w,
51 Yi_ <51 .Y — E|
iyl vy w,
ny] [ w] |w,

P H (W)=

Also, PQ = . Differentiating at W = 0 gives

PDH (0)= DW|y,,, = PDH(@0)=L.

Because P sends each vector in the center subspace to its unique
coordinates in the basis {q,, q;, ¢, 4, }, the coordinate map is bijective
and hence invertible. Consequently,

H, (0) =g,
H, wz(o) =4,

le (0) = 51,

DH (0) =
0=0 = Hi (0) = 7.

The general multivariable Taylor series for H and G yields

cwy= Y Lo w,

v>1 7"

1
HW) =Y W

v[21 "°
from which

H (W) =w,q, +w, q, + wyq, + 0, q,
1

— h.
. jknm
Jtk+n+m=>2 j! ktnlm!

j—k —m
J n
+ wlwl w2w2 N

with h,,,, € C* and h,, = h
w{ E’f wh E'Z"—terms with j + k+n+m=2in (26) gives

kjnm nm- Collecting the coefficients of the

hyyo = A'B (41,51) ,
hogo = Qiw I — A" B (q,4,) ,
Rygp = [i(e, + @) — A]"'B (q,,4,) »
Rygo) = [i(@, — @)T — A" B (q,,7,) .
oy = Qiwy I = AY'B (2, 9,) »
oy = (=20, I — A B (4,,7,) ,
hooyy = A7'B (0,.0,) »
oo = i@, — @)1 — AI"' B (4. 45) -
Collecting the coefficients of the resonant cubic terms in (26), one
obtains the resonant cubic coefficients in the normal form
Gaioo = (P1-C (415415 @1) + B (hooeo- @) +2 B (hypoesa1) ) »
G = <P1’C (‘11»‘12’52) +B (hlom’az) + B (hlool»‘h)
+ B (hoon"h)) s
G = <172,C (‘]1’51#2) + B (hlloo»‘h) +B (hIOIO’EI)
+ B (hloop‘h)) s
Gooxi = (P2 C (420> T2) + B (Boao: @2) +2 B (hooi1- @) ) »

and the corresponding cubic coefficients
onality conditions:

iknm Satisfying the orthog-

hyy0 = (i 1, — Ay [C (41’ ‘11"_11) +B (h20007§1)
+2 B (hy100:41) = Goroo 1] »
Ry = (1, = A7 [C (a1,42 @) + B (g1, @) + B (Rig01: 42)
+B (hoon,‘h) =Gy 41] >
hyyyo = (0,1, — A)™! [C (41’517‘12) +B (hlmm ‘12)
+ B (hy010.91) + B (Mygo1- @) = Gripo ‘Iz] ,
hoop = (i@, 1, — Ay [C (‘12v ‘12’52) +B (hoozosaz)
+ 2B (hoo11542) = Goony 4] -

Then, the system (22) restricted to the center manifold takes the
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a p é N c y £,

r fw P Up Vo 2o

0
€w,0 @

0.016 0.016 0.052 0.61

2725 0.227 0.7 07 07 0625 06 095 0.6 0.65 0.184348

Table 1

Parameter values, initial conditions, and frequency of the Goodwin cycle for system (19).

normal form

1
2
+O (|l (w, w,) II°) 5

. 2 2
W) = iw,w; + =Gy00w; [, |* + Gy w0, |w |

| @
wh = iy, + Gy oy w, |* + §G0021W2|w2|2
+O(|l (wi,wy) II°) -
Moreover, if
(Re szo) (Re Gl()ll) (Re Gmo) (Re GOOZI) #0,

the system (22) is locally smoothly orbitally equivalent near the
bifurcation to

1
vy =10 (EPII |U||2 + Py |U2|2> +0(ll (v, 0,) IP) s

1
v =v, (le |U||2 + EPZZ |vz|2) +O(|| (v],vz) ||5) .

with
Py, =Re Gy,
Py =Re Gy,

P, =Re Gy,
Py, =Re Gy

Let v, = re'® and v, = r,e'®, in polar coordinates (r|,r,, @,, ¢,),
the system before can be written as:

=

1
'1=r1(5P11rf+P12r§)++0(|| (rls"z) ||5),

1
s =ra(Puri+ 3 Por2) +O(Il (rior) IF).

<

2

1
¢ =w + 3 Im G, rf +Im G,y ri + W, (ry, s @15 @2),

1
@, =, +ImGy o1} + 3 Im Gy, 13 + Wo(ry, 1y @1 03)-

with ¥, is a smooth remainder in the phase equations that is 27 peri-
odic in each angle and vanishes with the amplitudes.

Now, in examining the resonance cases associated with the double
Hopf bifurcation [44, 43], and following the detailed analyses of
the specific resonance conditions 1:1, 1:2, and 1:3 presented in
[45, 46, 47, 48], we employ the coefficients of the resonant cubic
terms G, to construct the corresponding normal forms for each
resonance case described in Theorem (2). Accordingly, the following

specific formulations from (27) are obtained:

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Adjustment Speed of Underemployment ()

105Ff Ha
=
=
5 i
@ 1
£ e
§ [t
|
e 0.95 i :
e} 1 e srrerel
- 1 1 1
0.9 | L | L ' ' P |
0 01 02 03 04 05 06 07 08

Adjustment Speed of Underemployment ()

Figure 1: (a) Theoretical frequency ratio w;/w, as a function of the
adjustment speed of underemployment, y. (b) Numerical bifurcation
diagram for the local maxima of the employment rate.

e 1:1 resonance (v; = w, = w). The normal form takes the
structure
r_ 1 2 2
wy, =iow; + EGZIOO wilw, |+ G gy, wyw,]
+G, E1"‘)22 +0 (”(wh w2)||4) s
1
. 2 2
wy = io w; + Gy wylw | + EGoozl w;|w,|
2— 4
+ G, wiw, + 0 (”(wlv w)H)ll ) s
where the remainder is O(Il(wl, w2)||4) due to the presence

of the quadratic resonant monomials (i, w?, w?w,). Conse-
quently,

G = <P1’C (51#12"12) +2B (hmmy ‘12) +B (h0020’51)> ,
G, = <P2’C (‘11#11»52) +B (hzooojz) +2B (hl()()l’ql)> .

e 1:2resonance (w, = 2w,). In this case the normal form is

1
2
+ G, wyw, + O(ll(wy, wI?)

. 2 2
W) = i@, + =G50 Wy | W, | + Gygpy w,|wy|

1
. 2 2
wy = i@y, + Gy Wyl w; |* + EGoozl w; |w,|

+Gyw! +O(llw, wyll)

with O(ll(wl,w2)||3) arising from the quadratic resonant
monomials (El w,, wf) Therefore,

_ 1
G =(p B(d1-0:)).  G=35(r B(aa))-

e 1:3 resonance (w, = 3w,). The corresponding normal form is

1
2
+ G, W, w, + O(||(w,, wlI*)

. 2 2
W) = iw,w; + =G0 Wi | W, | + Gygpy w,|wy|

1
; 2 2
wy, = iy W, + Gy Wyl w; I* + EGoozl w;|w,|
3 4
+Gyw; +O(llw,, wyll*)

where the order O(||(w,, w,)||*) reflects the quadratic resonant
monomials (w,w?, w?). Hence,

Gl = <p1,C (51,51,42) +B (hozoo’qz) +2B (h0110’al)> ’
G, = (P C (q1-41-a1) + 3B (oo 1) ) -

6. Numerical Simulations

To illustrate the dynamics of the system and compute the coeffi-
cients of the cubic normal form, we conducted numerical simulations.
All simulations were performed in Matlab (R2024b) using ode45
with relative tolerance 10~ and absolute tolerance 107, The vector
field is evaluated from the symbolic specification in Section 2 to
ensure consistent Jacobians for variational computations (normal-
form indices). The bifurcation package MatCont [49, 50] was used
only as an exploratory tool to locate parameter regions of interest and
to cross-check resonance locations.

Concerning parameter values, we adopt the estimates of @, f3, 8, s, ¢
and y for the U.S. economy reported in [38]. For type 2 relative pro-
ductivity €, type 2 relative bargaining power €, and the equilibrium
value of the type 2 relative wage 5?0, we set all three equal to 0.7,
representing an empirically plausible asymmetry between type 1 and
type 2 workers.'?. Given these parameter values, we use equation (18)

12Under this configuration, type 2 workers are assumed to be 70% as productive
as type 1 workers; their influence on the growth rate of real wages is 70% of that
of type 1 workers; and their equilibrium relative wage corresponds to 70% of the
wage level of type 1 workers.
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Figure 3: Comprehensive 2D phase portraits for the 1:1 resonance case (y = 0.08227).

to calibrate p so that the equilibrium employment rate © matches the

selected: 1.3333

~

4/3 (x =

0.14625), which approximates a

value reported in [38]. This parameterization yields a frequency for
the Goodwin cycle of @, = 0.184348394. The term y is treated as a
free calibration parameter that allows us to vary the frequency of the
underemployment cycle, @,, and thereby explore alternative dynamic
regimes of the model.

The initial conditions for the state variables (uy, Uy, 2y, €,,9) are
chosen as a representative point in the state space, located in close
proximity to the non-trivial equilibrium. This selection ensures that
the initial state lies within the basin of attraction of the stable limit
cycle generated by the double Hopf bifurcation. Such an initialization
enables the simulation to illustrate the tendency of the system to
converge toward its characteristic quasi-periodic attractor. The cor-
responding parameter values, initial conditions, and frequency of the
Goodwin cycle are summarized in Table (1).

Figure (1) summarizes the response of the dynamical system to
variations in the adjustment speed of underemployment, y. Panel
(a) depicts the theoretical frequency ratio w,/w, as a function of
. allowing the identification of the resonant cases at 1.000021
(y = 0.08227), 1.999981 (y = 0.32906), and 2.999981 (y =
0.74039). For illustrative purposes, two non-resonant cases are also

rational frequency ratio, and 1.4142 ~ \/5 (y = 0.16453), which
approximates an irrational ratio. These values are consistent with the
affine dependence of the squared frequencies derived in Eq. (21) and
confirm the transversality condition (H1) stated in Theorem (2).

Panel (b) presents the numerical bifurcation diagram for the
local maxima of the employment rate, illustrating how variations
in y affect the long-run dynamics of the system. The diagram re-
veals alternating regions of ordered and complex behavior. Narrow
periodic windows appear near the resonant frequency ratios, indi-
cating regular, synchronized cycles in which the employment rate
follows a predictable sequence of maxima. Between these resonant
windows, the plot becomes densely populated, reflecting complex
quasi-periodic motion in which the maxima of v no longer repeat
exactly. As the adjustment speed of underemployment () increases,
the diagram becomes progressively more intricate, suggesting that the
system transitions toward increasingly irregular oscillations through
successive resonances. Given w; = 0.184348394, the corresponding
periods for the resonant cases are 7, ~ 34.09 (1:1), T, ~ 17.04
(1:2),and T; ~ 11.36 (1:3), which match the observed spacing of the
maxima. This structure constitutes the numerical counterpart of the

John Cajas et al.: Working Paper, nov. 2025

Page 10 of 17



Resonant and non-resonant Double Hopf bifurcation in a 4D Goodwin model with Wage inequality

Projection: v-u-z

094 T 062
096

Projection: vz-¢

Projection: v-u-c,,

0.66
0.9 064

Projection: uz-c

085 T os1
06 papt 06
061 gop T 059
T S 058
085 ogs 057
i z

Figure 4: Comprehensive 3D projections of the system attractor for the 1:1 resonance case (y =~ 0.08227).

68 Wage Share (u)
064
063
Zoe2
061
06
0.59

10 20 30 40 5 6 70 80 90 100
Time

Rate (v)
098 T T T T
097
0.96
095
$094
093
092 /
091 ~
09
0 10 20 30 40 5 60 70 80 9 100
Time
Type 2 Relative Wage (c,,)
076
074
072
= o7
0.68
0.66

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 5: Time series evolution of the state variables for the 1:2 resonance case (y ~ 0.32906).

center-manifold normal form analyzed in Section 5 and reproduces
the resonance patterns discussed after Eq. (27).

6.1. Dynamics under the 1:1 resonant Hopf-Hopf bifurcation

This subsection discusses the behavior of the system under a
1:1 resonance condition, which occurs when the frequencies of the
Goodwin and underemployment cycles are equal (@, = ®,). For
this simulation, the speed of adjustment of underemployment is set
to y ~ 0.08227. The cubic coefficients and the resonant quadratics
are reported below:

G0 = 0.107163 1,

Gio1, = 0.026209 + 0.019883 1,
Gy = —0.0782941,

Gyt = —0.115613 + 0.0617711,

with the resonant terms:

G, =0.214336+0.244343 i, G, = —0.051601 -0.195733 1.

The time series in Fig. (2) exhibit near-sinusoidal, phase-locked
oscillations with o, = w, = 0.184348394. The amplitudes evolve
under P, = 0, P, = 0.026209, P,;, ~ 0 and P,, = —0.115613:
the Goodwin pair grows solely through cross-coupling from the un-
deremployment pair, while the latter self-saturates. This mechanism

accounts for the single-tone envelopes observed in u, v, z, €, at the
period T' ~ 34.08. All four state variables move in perfect synchrony,
completing their cycles over the same period. The oscillations are
stable, with ¥ moving from 0.60 up to 0.65, while v cycles between
0.91 and 0.98. z shows a tight oscillation, fluctuating from 0.575 up
to 0.605, and ¢, shows a wide amplitude, moving from a low of 0.64
up to 0.76.

In Fig. (3), the (u,v) cycle traces a simple, stable ellipse, and
the (z, €,,) cycle also forms a clean ellipse, with its shape defined by
the ¢, oscillation reaching 0.76. Furthermore, Fig. (4) also confirms,
through the ellipses in (#,v) and (z,€,), the presence of a single
closed orbit, corresponding to a torus collapsed by the 1:1 locking.
With P, > 0 and P,, < 0, the amplitude flow governed by Eq. (27)
again selects a mixed-mode cycle in which the underemployment
block stabilizes the nonlinear dynamics while simultaneously feeding
the Goodwin block. This configuration remains consistent with the
1:1 reduced system.

6.2. Dynamics under the 1:2 resonant Hopf-Hopf bifurcation

Here, we analyze the dynamics under a 1:2 resonance, where the
frequency of the underemployment cycle is twice that of the Goodwin
cycle (w, = 2w,). This case is simulated by setting the adjustment
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speed of underemployment to y ~ 0.32906. The coefficients com-
puted below exhibit a single nonzero quadratic resonance:

G100 = 0.1071631,
G o1y = 0.028133 +0.0213421,
G110 = —0.2505291,

Gt = —0.322539 + 0.0082301,

with the resonant terms:

G, = 0.030824, G,=0.

From the time series exhibit in Fig. (5), the variables z and ¢,
oscillate at twice the frequency, completing two full sinusoidal waves
in the same time it takes u and v to complete one cycle. This 1:2:
w, = 0368693214 ~ 2w, and T, ~ 17.04 coupling alters the
slow dynamics, inducing a “tall/short” peak pattern in v and u, where
major peaks reach 0.65 while minor peaks are limited to 0.63. The
amplitude coefficients P;, = 0.028133 and P,, = —0.322539 once
again yield cross-feeding from the fast block to the slow one, with
self-limitation in the fast block. So the visible morphology is dictated
by the amplitude block—P,, > 0 and P,, < O—already reflected in
the alternating tall/short peaks of u.

In Fig. (6), the dynamics is strictly 1:2 phase—locked: the closed
traces show no beat or envelope drift over multiple laps, and the
spectrum contains only (w;, 2m,) without sidebands above numerical
noise. The two lobes in mixed projections have near-equal area and
uniform arc-length density, indicating negligible slow—amplitude
variation along the orbit. Now, we observe that the (z—¢,,) projection
remains a clean ellipse (see Figs. (9), (11), and (13)), as it represents
the self-limited w, fast-oscillating mode (consistent with P,, < 0),
which serves as the source of the second frequency.

In contrast, the (u—v) cycle is warped, as the slow @, mode is
forced by the 2x frequency. Critically, mixed projections plotting
a Ix variable (like v) against a 2X variable (like z) must trace
two excursions of the fast variable for every one of the slow. This
creates the geometric manifestation of the 1:2 resonance: a two-
lobed, “figure-eight” motif, as seen in (v—z), where z cycles from 0.55
t0 0.62. The 3D views in Fig. (7) display a single smooth closed orbit;
the apparent constriction is a rendering/projection artifact rather than
a genuine pinch. The orbit closes after two excursions of the fast
variables for each slow cycle, consistent with 1:2 phase locking.

6.3. Dynamics under the 1:3 resonant Hopf-Hopf bifurcation
This subsection explores the 1:3 resonance condition, where the
frequency of the underemployment cycle is three times that of the
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Figure 9: Comprehensive 2D phase portraits for the 1:3 resonance case (y = 0.74039).

Goodwin cycle (w, = 3w,). The simulation is conducted with an
adjustment speed of underemployment of y = 0.74039. As detailed
below, the quadratic term exerts a significant influence:

G100 = 0.1071631,

G = 0.034452 4+ 0.0261361,
G, = —0.5435611,

Gy = —0.546163 — 0.1904801,

with resonant terms:

G, = —0.051896 — 0.0855101, G,=0.

In Fig. (8) we note that the series show tripling of the fast block:
w, = 0.553041688 ~ 3w, with T, ~ 11.36. The fast variables z and
€, complete three oscillations, with e, moving from 0.65 to 0.75, for
every single slow cycle of u, which goes from 0.60 to 0.65. As noted,
v now shows highly considerable changes; the injection of a strong
third harmonic from the fast cycle induces a much more complex
and pronounced modulation on the v waveform than in the 1:2 case.
Amplitude flow is weaker but of the same sign pattern as above (P, =
0.034452, P,, = —0.546163), so the Goodwin pair remains slaved
to the underemployment pair for amplitude selection while the fast
block self-limits. At the reported amplitudes, the visible morphology

is set by the amplitude coefficients—P,;, > 0 and P,, < 0—so the
fast block self-limits while cross—feeding the slow one.

For Fig. (9), the mixed planes show the canonical three—lobed
motifs and an S—shaped loop in (u, v), consistent with 1:3 phase
locking (three excursions of (z, €,,) per slow cycle). Hence the lobes
are most prominent in projections involving €,,. In Fig. (10), the
closed traces complete three wraps in the fast coordinates per one
slow rotation, matching the 1:3 winding. The observed twisting and
sharper features follow from the tri—lobed geometry and modal partic-
ipation under the 1:3 coupling, not from additional slow modulation.
No thickening is visible, indicating absence of slow drift; this is
consistent with exact locking at w,/w, ~ 3 and the presence of the
1:3 resonant monomials listed after Eq. (27).

6.4. Dynamics under non-resonant conditions
To contrast with the resonant cases, we also explore the dynamics
of the system when the frequency ratio is not a simple integer ratio.

6.4.1. Rational frequency ratio

First, we consider a non-resonant case in which the frequency
ratio is a more complex rational number, specifically w, /@, = 3/4.
This scenario is simulated using y = 0.14625. The coefficients
below describe the generic double—Hopf coupling without quadratic
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Figure 10: Comprehensive 3D projections of the system attractor for the 1:3 resonance case (y ~ 0.74039).
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Figure 11: Comprehensive 2D phase portraits for the non resonance case but with rational ratio (y ~ 0.14625).

resonant terms:

G100 = 0.1071631,
G o1y = 0.025205 +0.019122,
G110 = —0.1214691,

Goopr = —0.175761 + 0.062620 i.

In Fig. (11), the (u,v) and v—¢,, panels show rosette—like closures
with three and four petals, respectively, consistent with the 3:4
winding dictated by the measured frequencies. The “underemploy-
ment circle” remains nearly round, reflecting modest deformation in
(z,€,,). Because the ratio is rational but nonresonant (no quadratic
resonance terms), the center—manifold dynamics yields a periodic
orbit (a closed trajectory) on the invariant two—torus rather than
quasi—periodic filling. The frequencies share a common multiple.
The system is therefore periodic, and the attractor is a complex,
one—dimensional closed curve. This is observed in the “rosette-like”
closures of Fig. (11): the (v—¢,,) projection forms a four-petaled figure
(with ¢, oscillating from 0.64 to 0.76), while (1—z) shows three petals
(with z moving from 0.57 to 0.61).

In Fig. (12), the 3D projections show a single closed space curve
that wraps several times around the fast directions before returning
to its starting point after the common period (about 102 in our run).

The petal count and their placement reflect the 3:4 winding (three
slow rotations per four fast excursions), i.e., periodic closure on the
invariant two—torus rather than quasiperiodic filling. Consistent with
the amplitude block, P, > 0 and P,, < 0, the oscillations remain
bounded and the tube thickness is nearly uniform along the orbit.
Any visible twisting is mild and attributable to the 3:4 geometry and
projection, not to additional resonant forcing.

6.4.2. Irrational frequency ratio
Finally, we examine a case in which the frequency ratio is irra-
tional, leading to quasi-periodic motion on the surface of a torus.

For this simulation, we set the ratio @, /0w, = 1 /\/5 by choosing
x =~ 0.16453. The coefficients listed below specify the nonresonant
normal form:

G, 00 = 0.107163 1,

G = 0.025366 4+ 0.019243 1,

G0 = —0.1342121,

Gy = —0.192226 + 0.059917i.

In Fig. (13), each 2D panel shows a densely filled band— the planar
trace of quasi—periodic motion on an invariant two—torus—rather
than a single closed loop. With @, /w, = \/E, the mixed projections
(e.g., v versus €,,) tile the plane in a nearly rectangular pattern, as
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Figure 12: Comprehensive 3D projections of the system attractor for the non resonance case but with rational ratio (y ~ 0.14625).
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Figure 13: Comprehensive 2D phase portraits for the non resonance case but with irrational ratio (y ~ 0.16453).

expected for an irrational rotation. The amplitude dynamics keeps the
tube thickness essentially uniform across traversals and the frequen-
cies never share a common multiple. The system is quasi-periodic.
The trajectory never closes and, over time, passes arbitrarily close to
every point on a two—dimensional surface.

Thus, the attractor is the “filled two-torus” seen in Fig. (14). The
widths of the tube along different projections reflect the measured
amplitude interplay P, > 0, P,, < 0, with the fast block contributing
most of the curvature. Because the angles advance at an irrational
ratio, the trajectory never closes. The 2D projections are not lines but
“densely filled bands”, such as the (u—v) region defined by u between
0.59-0.65 and v between 0.91-0.98. The visual contrast with the
rational case underscores the role of the rotation number in shaping
the flow.

Remark 2. A central finding of this work is the failure of Lya-
punov stability at the steady-state equilibrium. This failure is a direct
consequence of a significant degeneracy in the cubic normal-form
coefficients. The standard non-degeneracy condition for a generic
double Hopf bifurcation requires that all amplitude coefficients are
non-zero, formally stated as

(Re GZIOO) (Re Gll)ll) (Re Glllo) (Re GOOZ]) #0.

Our analysis reveals that the dynamical system violates this standard
condition. Specifically, our numerical evaluation robustly demon-
strates that the first Lyapunov coefficients (the self-coupling terms)
are numerically zero:
P, =Re(G,,) = 0, P,, =Re(G,,() = 0.

This degeneracy (P,; =~ 0, P,; ~ 0) is fundamental. It implies that
the oscillatory modes, corresponding to the amplitudes r; (Goodwin
cycle) and r, (underemployment cycle), lack intrinsic self-damping
or self-saturation mechanisms at the cubic order. Consequently, the
local dynamics are entirely dictated by the nonlinear cross-coupling
structure in the amplitude equations:

~
|

) _ 1 2 2\ o, 2
ry (EPII"l + Plzrz) R (Plzrz),

/o 2 1 2 1 2
Iy rz(P21r1 + 5P22r2> ~ r2(5P22r2> .

Our computations yield a consistent sign pattern for the non-zero
coupling coefficients: P, > 0 and P,, < 0. This structure defines
the flow:

e The r, mode is self-limiting (P,, < 0), saturating its own
amplitude.
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Projection: v-u-z

Figure 14: Comprehensive 3D projections of the system for

e The r, mode, lacking self-damping, is driven by a positive
(destabilizing) cross-feeding term from the r, mode (P, > 0).

This interaction generates an expansive flow (outward drift) in the
amplitude phase space, rendering the equilibrium a repulsor (or a
saddle-type instability on the center manifold). The local instability,
guaranteed by this cubic degeneracy, is precisely the mechanism that
necessitates the evolution of trajectories away from the origin and
onto the non-trivial, bounded attractors (the synchronized limit cycles
and quasi-periodic tori) documented in Section 6. This diagnostic is
robust at the third order.

7. Conclusion

This paper has developed and analyzed an extension of the Good-
win model of endogenous distributive cycles that incorporates the
joint dynamics of wage inequality and underemployment, conceived
as a regime of low productivity, low wages, and weak bargaining
power. The economy comprises two classes of workers, treated as
perfect substitutes in production but differentiated by productivity,
wage levels, and bargaining strength. Type 1 workers occupy high-
productivity positions, whereas type 2 workers are employed in low-
productivity ones. The growth rate of real wages for each labor type
depends positively on its share in total employment. However, the
lower bargaining power of type 2 labor entails systematically smaller
wage adjustments relative to type 1 labor, generating persistent wage
inequality.

The distribution of the labor force between these two groups
is summarized by an endogenous underemployment rate, whose
evolution is represented by a simplified power-balance mechanism
between capitalist firms—seeking to exploit the lower cost of type 2
labor—and workers collectively striving to improve labor conditions.
Integrating these components yields a four-dimensional dynamical
system that extends Goodwin’s original two-dimensional formula-
tion. Alongside the wage share and the employment rate, the relative
wage of type 2 workers and the underemployment rate emerge as
additional state variables. The existence and uniqueness of solutions
for this system have been proved through fixed-point theory, and the
steady-state equilibrium is shown to be non-hyperbolic, implying the
absence of intrinsic self-stabilizing forces that make the economy
converge to an equilibrium point.

A theoretical contribution of this paper is the identification of a
double Hopf bifurcation in the model, providing a formal explanation
for the coexistence and interaction of two endogenous oscillatory
modes. The first corresponds to the Goodwin cycle, driven by the
feedback between the wage share and the employment rate. The
second, denoted as the underemployment cycle, arises from the
interaction between the underemployment rate and the relative wage

Projection: v-u-c,,

R R 778NN
S WAl

Q
R

the non resonance case but with irrational ratio (y ~ 0.16453).

of type 2 workers. The analytical classification of resonant and non-
resonant regimes illustrates how these cycles interact. In the non-
resonant case, the Goodwin and underemployment cycles operate
at distinct frequencies, producing quasi-periodic fluctuations. This
regime may represent an economy in which capital accumulation
and labor-market segmentation evolve asynchronously, generating
bounded but complex oscillations. Under resonance, by contrast, the
two cycles become synchronized, producing amplified and coherent
fluctuations in income distribution, employment, wage inequality,
and underemployment. Mathematically, these correspond to the 1:1,
1:2, and 1:3 resonant Hopf-Hopf bifurcations derived analytically
and confirmed through numerical simulation.

The numerical simulations performed with Matlab corroborate
the theoretical findings. The frequency-ratio curve w,/w, exhibits
the predicted resonant points, while the bifurcation diagram of the
local maxima of the employment rate reveals alternating regions
of regular and complex dynamics. Narrow periodic windows occur
near resonant ratios, indicating synchronized cycles, whereas non-
resonant intervals produce dense quasi-periodic trajectories. As the
adjustment speed of underemployment (y) increases, the simulated
patterns reproduce the resonance structures predicted by the cubic
normal form. The normal-form analysis on the center manifold
further clarifies the local properties of the system. The signs of
the cubic coefficients (P;) determine whether oscillations remain
bounded or evolve toward irregular regimes, while the non-vanishing
resonant coefficients (G, G,) account for the emergence of low-
order resonances and phase closure in planar projections. Altogether,
these results capture several dynamic regimes, ranging from regular
Goodwin-type cycles to complex multi-frequency oscillations.

The paper also contributes to the literature on endogenous macroe-
conomic fluctuations by proposing an alternative framework that
links distributive cycles and wage inequality within a heterodox
analytical perspective. The interaction between accumulation and
labor-market segmentation, embodied by the dual cyclical structure
of the model, provides a formal mechanism through which wage
inequality and underemployment arise endogenously as components
of the capitalist growth process. The identification of resonant double
Hopf bifurcations offers a basis for understanding how structural
parameters, such as saving behavior, labor-market configuration,
and bargaining asymmetries, can shift the economy from regular
to irregular cyclical regimes. Taken together, the analytical and
numerical results indicate that capitalist economies, as represented
by this model, may sustain multiple layers of endogenous cyclical
motion.

John Cajas et al.: Working Paper, nov. 2025

Page 16 of 17



Resonant and non-resonant Double Hopf bifurcation in

Finally, this framework opens several avenues for future research.

A potential extension would be to examine the sensitivity of endoge-
nous cycles to additional stabilizing mechanisms, such as collective
bargaining institutions, fiscal and monetary policy, or external de-
mand constraints. Empirical calibration using data on wage inequality
and employment conditions could further evaluate the explanatory
and predictive capacity of the model. Moreover, extending the analy-
sis to include financial variables or endogenous technical change may
provide additional intuitions about the functioning of income distri-
bution, cyclical employment fluctuations, and the long-run evolution
of capitalist macrodynamics.
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