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A B S T R A C T

This paper presents a four-dimensional extension of the Goodwin model of endogenous cycles that integrates

wage inequality and underemployment. The model distinguishes two classes of workers differentiated by

productivity, wage levels, and bargaining strength, and endogenizes the underemployment rate through a

simplified power-balance mechanism between capital and labor. We establish well-posedness of the system

by proving existence–uniqueness of solutions, positivity, and forward invariance on a compact admissible

set. The interior equilibrium is characterized in closed form and shown to generically undergo a double

Hopf (Hopf–Hopf) bifurcation. Using center–manifold reduction and a third-order normal form, we derive

the amplitude equations governing the interaction between two oscillatory modes (the Goodwin cycle and

the underemployment cycle). The reduced dynamics predict the emergence of an invariant two-torus with

quasi-periodic cycles and phase locking at low-order resonances (1∶1, 1∶2, 1∶3). Numerical continuation and

direct simulations corroborate the analytical predictions, documenting transitions between quasi-periodicity

and resonant periodic orbits, and mapping the associated bifurcation structure in key parameters, such as the

adjustment speed of the underemployment rate in response to deviations from steady-state equilibrium.

1. Introduction

Industrialized economies have experienced a marked rise in wage

inequality since 1980, largely driven by the stagnation or decline

of real wages among less-educated workers. In the United States,

for example, the real earnings of male workers without a high-

school diploma have fallen by approximately 15% between 1980 and

2017 [1, 2]. Empirical evidence also suggests that wage inequality

is influenced by institutional and structural factors associated with

labor markets, including union membership rates, unemployment

benefits, and employment protection legislation [3, 4]. From a theo-

retical perspective, wage inequality has been examined within various

economic frameworks. Neoclassical approaches commonly explain it

as a consequence of skill-biased technical change, which enhances

the productivity of high-skilled workers in the context of an unequal

distribution of human capital across the population [5]. Other contri-

butions within this tradition highlight the role of automation technolo-

gies that generate task displacement, meaning the substitution of less-

skilled workers by machines capable of performing their tasks [2]. As

noted in [6], these neoclassical perspectives tend to attribute wage in-

equality primarily to technological factors, considering labor market

institutions only as amplifiers of their distributive consequences.

In contrast, heterodox approaches offer alternative explanations of

the relationship among wage inequality, income distribution, and eco-

nomic growth. Following [6] and [7], three broad strands can be iden-

tified, primarily inspired by classical-Marxian and post-Keynesian

frameworks. The first comprises two-class models, such as [8], in

which the economy is divided between production workers and

capitalist-managers. The latter receive both wage and profit income

and display a higher propensity to save than production workers. The

second encompasses three-class models, exemplified by [9], where

production workers earn low wages devoted entirely to consumption,

managers earn higher wages that allow partial saving, and capitalists

receive profit income and exhibit the highest propensity to save. The

third strand is characterized by the division of the working class into

two heterogeneous groups, either as a result of institutional factors

such as labor market flexibility [10], or due to an unequal distribution

of human capital, such as education, which differentiates workers

into low- and high-skilled categories, with the latter exhibiting higher

productivity and wage levels [11].

One of the most recent contributions within this third heterodox

strand is presented in [6], which develops a model that describes

the interaction between induced technical change driven by labor

costs1 and the dynamics of low- and high-skilled labor within a

classical-Marxian framework enriched with Kaleckian elements. This

model assumes a fixed-coefficient technology in which low-skilled
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1For an analytical discussion of the induced innovation hypothesis, see [12, 13].

labor, high-skilled labor, and capital are complementary inputs in

production. Low-skilled workers receive lower wages than high-

skilled workers, who are able to save a fraction of their income, while

capitalists earn profits and save all of their income. Firms set prices by

applying a mark-up over unit labor costs, with the mark-up decreasing

as the employment rate of high-skilled workers rises. The nominal

wage of low-skilled workers grows at a constant exogenous rate,

reflecting the assumption of infinitely elastic labor supply, whereas

the nominal wage growth of high-skilled workers depends positively

on their employment rate. Combining these elements yields a three-

dimensional dynamical system in which the output-capital ratio, the

wage differential, and the employment rate of high-skilled workers

are state variables. The model exhibits a stable equilibrium point,

and it shows that when the equilibrium wage differential exceeds a

critical threshold, an exogenous increase in either the mark-up or the

bargaining power of high-skilled workers enables both capitalists and

high-skilled workers to expand their income shares at the expense of

low-skilled workers.

Another strand of heterodox contributions to the study of wage

inequality, although less explored, arises from works directly in-

spired by the Goodwin model of endogenous cycles and persistent

unemployment [14].2 For example, in [32] the original Goodwin

framework is modified to incorporate the coexistence of a normal-

income labor market (type 1 labor) and a low-income labor market

(type 2 labor). The model uses a production function that allows

for substitution between the two types of labor, with the marginal

productivity of labor in each market determining the corresponding

real wage, similar to the neoclassical model of exogenous growth

[33]. The model also assumes that the growth rate of the real wage

for type 1 labor depends positively on its employment rate and on the

real wage of type 2 labor, capturing a reservation wage effect whereby

type 1 workers who lose their jobs transition into type 2 positions. The

real wage of type 2 workers, in turn, is defined as a fixed proportion of

the real wage of type 1 labor, augmented by a component positively

related to the employment rate of type 1 labor. From these elements,

a two-dimensional dynamical system emerges in which the real wage

of type 1 labor and the ratio of type 1 employment to capital serve as

the state variables. The system is locally stable when the reservation

wage effect is sufficiently weak but undergoes a Hopf bifurcation as

2The Goodwin model [14] formalizes the Marxian intuition that distributive

conflict between workers and capitalists can generate endogenous cycles, man-

ifested as persistent oscillations in the wage share–employment rate space. The

model has inspired numerous extensions, including discussions about endogenous

technical change [15, 16, 17], the active role of effective demand in long-run

dynamics [18, 19, 20], inflation [21], two-sector interactions [22, 23], financial

instability [24, 25], endogenous labor supply [26], inclusion of unemployment

benefit systems and a minimum wage [27], open-economy dynamics under balance-

of-payments constraints [28], chaotic behavior [29, 30], among other developments.

A comprehensive survey of the theoretical and empirical literature on endogenous

cycles derived from the Goodwin model can be found in [31].
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this effect approaches a critical threshold, marking a transition from

damped oscillations to persistent or even explosive cycles.3

In a more recent, albeit preliminary, contribution [35], it is pro-

posed a model with exogenous productivity growth, in which high-

skilled workers always exhibit higher productivity than low-skilled

workers. In this setting, the growth rate of the real wage for high-

skilled workers depends positively on their employment rate, whereas

the real wage of low-skilled workers is defined as a fixed proportion of

high skilled wages. The model further assumes that all social classes

save, with low-skilled workers displaying the lowest propensity to

save and capitalists the highest. Combining these elements yields a

two-dimensional dynamical system in which the employment rate and

the wage share of high-skilled workers serve as the state variables.

The model preserves the analytical structure of the original Goodwin

framework, implying the existence of closed orbits. Moreover, when a

minimum wage is introduced or the wage gap is exogenously reduced,

the amplitude of fluctuations diminishes for both state variables.4

Building on this line of research, the present paper extends the

Goodwin model by coupling the dynamics of wage inequality and

underemployment, interpreted here as a regime of low productiv-

ity, low wages, and weak bargaining power. The proposed model

distinguishes two groups of workers who differ in terms of pro-

ductivity, wage levels, and bargaining strength, and endogenizes the

underemployment rate through a simplified power-balance mecha-

nism between capitalist firms and workers. This formulation yields

a four-dimensional dynamical system in which the wage share, the

employment rate, the relative wage of type 2 workers, and the un-

deremployment rate are the state variables. A novelty of the model

is the emergence of a double Hopf bifurcation that generates two

interacting endogenous oscillatory modes: the classical Goodwin cy-

cle and an underemployment cycle. The analysis of the cubic normal

form reveals both resonant and non-resonant regimes, corresponding

to synchronized periodic or quasi-periodic oscillations, respectively.

Numerical simulations corroborate these theoretical results, display-

ing multi-frequency patterns, resonance windows, and transitions

between regular and irregular regimes. The paper thus contributes to

the literature on endogenous macroeconomic fluctuations by offering

a framework that connects distributive cycles and wage inequality

within a heterodox analytical approach.

The remainder of the paper is organized as follows. Section 2

presents the formulation of the four-dimensional dynamical system.

Section 3 establishes the existence and uniqueness of its solutions.

Section 4 characterizes the steady-state equilibrium and demonstrates

the existence of a double Hopf bifurcation. Section 5 examines the

cubic normal form on the center manifold to assess local stability

properties. Section 6 reports the results of numerical simulations for

both resonant and non-resonant double Hopf bifurcations. Section 7

concludes by summarizing the main findings and outlining directions

for future research.

2. Model Formulation

Similar to [32], consider a closed economy without government,

composed of capitalists, type 1 workers (𝑖 = 1), and type 2 work-

ers (𝑖 = 2). The two groups of workers differ due to structural

asymmetries in productivity, wages, and bargaining power. Firms

produce a single good used for both consumption and investment,

employing labor and fixed capital. During the production process,

labor is allocated between type 1 and type 2 workers according to

the following equations:

𝑞(𝑡) = 𝑎1(𝑡)𝑙1(𝑡) + 𝑎2(𝑡)𝑙2(𝑡), (1)

𝑎1(𝑡) = 𝑎0𝑒
𝛼𝑡, 𝑎2(𝑡) = 𝜀𝑎𝑎0𝑒

𝛼𝑡, (2)

3In [34] the model is further extended to incorporate an unemployment benefit

system and minimum wages in the type 2 labor market, and a maximum wage

constraint in the type 1 labor market.
4It is also possible to identify contributions that address wage inequality from

the perspective of endogenous cycles, though incorporating several Kaleckian

elements. These include an endogenous rate of capacity utilization that adjusts to

disequilibrium in the goods market, an investment function independent of sav-

ings, and mark-up pricing. Some examples focused on two-dimensional dynamics

include [36] and [37]

where 𝑎0 > 0 and 0 < 𝜀𝑎 < 1. Here, 𝑞 represents real output,

produced by type 1 and type 2 workers, who are treated as perfect sub-

stitutes for analytical simplicity.5 The terms 𝑙𝑖 and 𝑎𝑖 denote, respec-

tively, the total hours worked and the labor productivity of workers of

type 𝑖. The term 𝑎0 is the initial productivity of type 1 workers, while 𝛼

captures an exogenous and uniform rate of productivity growth across

both worker groups. The ratio 𝜀𝑎 = 𝑎2∕𝑎1 measures the productivity

of type 2 labor relative to type 1 labor—hereafter referred to as type 2

relative productivity—under the assumption that type 1 workers are

always more productive (𝜀𝑎 < 1). For simplicity, both 𝛼 and 𝜀𝑎 are

treated as constant and exogenously determined parameters.6

Given the aggregate labor supply 𝑛, the overall employment rate

of the economy, 𝑣, is defined as:

𝑣(𝑡) =
𝑙1(𝑡) + 𝑙2(𝑡)

𝑛(𝑡)
, (3)

where 1 − 𝑣 is the unemployment rate. To describe the composition

of employed workers between type 1 and type 2 labor, the underem-

ployment rate, 𝑧,7 is introduced as:

𝑧(𝑡) =
𝑙2(𝑡)

𝑙1(𝑡) + 𝑙2(𝑡)
. (4)

By combining equations (1) through (4), real output can be expressed

as:

𝑞(𝑡) = 𝑎0𝑒
𝛼𝑡 𝑣(𝑡) 𝑛(𝑡)

[
1 − 𝑧(𝑡)(1 − 𝜀𝑎)

]
. (5)

Assuming that labor supply grows at a constant rate,8

𝑛̂(𝑡) ∶= 𝛽 > 0,

log-differentiating equation (5) and rearranging terms yields:

𝑣̂(𝑡) = 𝑞(𝑡) − (𝛼 + 𝛽) + 𝑧̂(𝑡)
𝑧(𝑡)(1 − 𝜀𝑎)

1 − 𝑧(𝑡)(1 − 𝜀𝑎)
. (6)

Equation (6) shows how the underemployment rate (𝑧) influences the

dynamics of the overall employment rate (𝑣), depending on type 2

relative productivity (𝜀𝑎). It follows that 𝑧 has no effect on 𝑣 when the

two types of labor exhibit identical productivity (𝜀𝑎 = 1).

Regarding income distribution, consider the following formula-

tion:

𝑢(𝑡) =
𝑤1(𝑡)𝑙1(𝑡) +𝑤2(𝑡)𝑙2(𝑡)

𝑞(𝑡)
, (7)

𝑤2(𝑡) = 𝜀𝑤(𝑡)𝑤1(𝑡), 0 < 𝜀𝑤 < 1. (8)

Here, 𝑢 represents the aggregate wage share, 𝑤𝑖 denotes the real wage

received by workers of type 𝑖, and 𝜀𝑤 is the relative wage of type

2 workers compared with type 1 workers—hereafter referred to as

the type 2 relative wage—, which is assumed to be endogenous.9

Combining equations (3), (4), (5), (7), and (8), 𝑢 can be expressed

as:

𝑢(𝑡) =
𝑤1(𝑡) [1 − 𝑧(𝑡)(1 − 𝜀𝑤(𝑡))]

𝑎0𝑒
𝛼𝑡 [1 − 𝑧(𝑡)(1 − 𝜀𝑎)]

. (9)

Since 𝜀𝑤 is endogenous and evolves over time, log-differentiating

equation (9) yields:

𝑢̂(𝑡) = 𝑤̂1(𝑡) − 𝛼 + 𝜀𝑤(𝑡)

[
𝑧(𝑡) 𝜀𝑤(𝑡)

1 − 𝑧(𝑡)(1 − 𝜀𝑤(𝑡))

]

+ 𝑧̂(𝑡)

[
𝑧(𝑡)(𝜀𝑤(𝑡) − 𝜀𝑎)

[1 − 𝑧(𝑡)(1 − 𝜀𝑎)][1 − 𝑧(𝑡)(1 − 𝜀𝑤(𝑡))]

]
.

(10)

5The assumption of productive substitution between heterogeneous workers is

also adopted in other models of wage inequality, such as [11] and [32].
6The assumption of a constant value for 𝜀𝑎 is also employed in [11] and

[35]. Likewise, the assumption of a constant productivity growth rate 𝛼, implying

exogenous technical change, is adopted in [35].
7The term underemployment rate is used since type 2 workers are assumed to

occupy lower-productivity, lower-wage positions characterized by weaker bargain-

ing power, indicating employment conditions below the standard or normal level

of labor utilization.
8For any function 𝑥, its time derivative is 𝑥′(𝑡) = 𝑑𝑥∕𝑑𝑡 and its growth rate is

𝑥̂(𝑡) = 𝑥′(𝑡)∕𝑥(𝑡).
9A similar assumption is adopted in [6].
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Equation (10) shows how the underemployment rate (𝑧) influences

the dynamics of the wage share (𝑢), depending on both type 2 relative

productivity (𝜀𝑎) and the type 2 relative wage (𝜀𝑤).

To characterize the dynamics of 𝜀𝑤, we assume that the growth

rate of real wages for each type of labor (𝑤̂𝑖) depends positively

on its participation in total labor supply (𝑙𝑖∕𝑛). This relationship is

represented by the following real wage Phillips curves: 10

𝑤̂1(𝑡) = −𝛾 + 𝜌

(
𝑙1(𝑡)

𝑛(𝑡)

)
= −𝛾 + 𝜌(1 − 𝑧(𝑡))𝑣(𝑡), (11)

𝑤̂2(𝑡) = −𝛾 + 𝜌𝜀𝜌

(
𝑙2(𝑡)

𝑛(𝑡)

)
= −𝛾 + 𝜌𝜀𝜌 𝑧(𝑡) 𝑣(𝑡), (12)

with 𝛾, 𝜌 > 0 and 0 < 𝜀𝜌 < 1. In these expressions, 𝛾 denotes

an autonomous tendency for real wages to stabilize, 𝜌 captures the

responsiveness of wage growth of type 1 workers to the employment

share of type 1 labor (𝑙1∕𝑛), and 𝜌𝜀𝜌 reflects the influence of the

employment share of type 2 labor (𝑙2∕𝑛) on the real wage growth

of type 2 workers. As suggested in [17], a lower 𝛾 or a higher 𝜌

signals an exogenous strengthening of the bargaining power of the

working class. Meanwhile, the parameter 𝜀𝜌 is interpreted as an

indicator of the specific bargaining power of type 2 workers, shaped

by the structural disadvantages they face in wage negotiations. These

disadvantages may arise from lower unionization rates, social or

historical discrimination, or weaker collective bargaining institutions

that erode the bargaining position of type 2 workers relative to type 1

workers (𝜀𝜌 < 1).

By log-differentiating equation (8) and substituting equations (11)

and (12), we derive a dynamic equation for 𝜀𝑤:

𝜀̂𝑤(𝑡) = 𝜌
[
𝑧(𝑡)(1 + 𝜀𝜌) − 1

]
𝑣(𝑡). (13)

Furthermore, substituting equation (11) into (10) provides an expres-

sion describing the dynamics of the aggregate wage share (𝑢̂):

𝑢̂(𝑡) = − (𝛾 + 𝛼) + 𝜌(1 − 𝑧(𝑡))𝑣(𝑡)

+ 𝜀̂𝑤(𝑡)

[
𝑧(𝑡)𝜀𝑤(𝑡)

1 − 𝑧(𝑡)(1 − 𝜀𝑤(𝑡))

]

+ 𝑧̂(𝑡)

[
𝑧(𝑡)(𝜀𝑤(𝑡) − 𝜀𝑎)

[1 − 𝑧(𝑡)(1 − 𝜀𝑎)][1 − 𝑧(𝑡)(1 − 𝜀𝑤(𝑡))]

]
.

(14)

Concerning capitalist accumulation, we follow the interpretation of

the Goodwin model [14] as presented in [38]. Capitalists are assumed

to save a fixed proportion 𝑠 (0 < 𝑠 ≤ 1) of their profits, 𝑞(1−𝑢), which

is entirely devoted to investment. In contrast, both type 1 and type

2 workers consume their entire wage income. If the capital-output

ratio is defined as 𝜎 = 𝑘∕𝑞, where 𝜎 is an exogenous constant, and

𝛿 denotes the depreciation rate (0 < 𝛿 < 1), the capital stock growth

rate (𝑘̂) can be expressed as:

𝑘̂(𝑡) =
𝑠(1 − 𝑢(𝑡))

𝜎
− 𝛿. (15)

Since the capital-output ratio 𝜎 is constant, it follows that 𝑘̂ = 𝑞.

Substituting this result into equation (6) and combining with equation

(15) yields the following expression for the dynamics of the employ-

ment rate (𝑣̂):

𝑣̂(𝑡) =
𝑠(1 − 𝑢(𝑡))

𝜎
− (𝛼 + 𝛽 + 𝛿) + 𝑧̂(𝑡)

[
𝑧(𝑡)(1 − 𝜀𝑎)

1 − 𝑧(𝑡)(1 − 𝜀𝑎)

]
. (16)

Finally, we assume that the underemployment rate (𝑧) adjusts when-

ever the observed type 2 relative wage (𝜀𝑤) deviates from an equi-

librium value (𝜀0
𝑤

). This behavior is represented by the following

reduced-form dynamic equation:

𝑧̂(𝑡) = 𝜒
(
𝜀0
𝑤
− 𝜀𝑤(𝑡)

)
, 𝜒 > 0, 0 < 𝜀0

𝑤
< 1. (17)

where 𝜒 measures the adjustment speed of the underemployment

rate. Equation (17) reflects the assumption that, on average, when the

observed type 2 relative wage falls below its equilibrium value (𝜀0
𝑤
>

𝜀𝑤), capitalist firms are motivated to increase the underemployment

rate (𝑧̂ > 0) to take advantage of the lower cost of type 2 labor.

Conversely, when the observed type 2 relative wage exceeds its

10From equations (3) and (4), we note that 𝑙1∕𝑛 = (1 − 𝑧)𝑣 and 𝑙2∕𝑛 = 𝑧𝑣.

equilibrium value (𝜀0
𝑤
< 𝜀𝑤), type 2 workers obtain relatively higher

wages, strengthening the bargaining position of the working class as a

whole and exerting downward pressure on underemployment (𝑧̂ < 0).

The mechanism represented in equation (17) captures the balance

of power between capital and labor in determining the degree of

underemployment. The parameters 𝜒 and 𝜀0
𝑤

summarize structural

and institutional conditions—such as labor market regulation, em-

ployment protection, and union strength—that shape both the abil-

ity of capitalists to substitute type 1 workers with type 2 workers

and the capacity of the working class to defend its employment

conditions. This formulation is consistent with Kalecki’s view that

capitalist economies are characterized by an inherent tension between

profitability and full employment. As emphasized by Kalecki [39],

prolonged periods of high employment and rising real wages un-

dermine capitalist authority while strengthening the economic and

political power of the working class. In this sense, equation (17)

formalizes Kalecki’s insight that maintaining a certain degree of labor

market slack, embodied in the persistence of underemployed labor,

constitutes a strategic element of capitalist stability.

Equations (13), (14), (16), and (17) form a four-dimensional

dynamical system with the wage share (𝑢), the employment rate (𝑣),

the underemployment rate (𝑧), and the type 2 relative wage (𝜀𝑤) as

state variables.

3. Existence and Uniqueness of Dynamic Trajectories

This section establishes the existence and uniqueness of the

solutions to the model introduced in the previous section, using

fixed-point theory. This result guarantees that, for any admissible

initial conditions in terms of income distribution (𝑢), employment

(𝑣), underemployment (𝑧), and relative wages (𝜀𝑤), the model yields

a unique and continuous trajectory describing the evolution of the

economy. Thus, for the subsequent results we shall work within the

following domain. Let

Γ =
{
(𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈ ℝ

4
+
∶ max

𝑖
|𝑋𝑖| ≤ 𝑀

}
, 𝑀 > 0.

Fix any 𝜂 ∈ (0, 1) and define the admissible box

Γ𝜂 =
{
(𝑢, 𝑣, 𝑧, 𝜀𝑤) ∈ Γ ∶ 𝐷𝑎, 𝐷𝑤 ≥ 𝜂

}
,

with 𝐷𝑎 ∶= 1 − 𝑧(1 − 𝜀𝑎) and 𝐷𝑤 ∶= 1 − 𝑧(1 − 𝜀𝑤).

Theorem 1. Define the state vector as:𝐗(𝑡) = (𝑢(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝜀𝑤(𝑡))
⊤.

Assume moreover that 𝜎 > 0. Then, for every 𝐗0 ∈ Γ𝜂, the model of
(13), (14), (16), and (17) under the initial value 𝐗0 exhibits a unique
solution 𝐗.

PROOF. Since we work with growth rates, defined by 𝑥̂(𝑡) = 𝑥′(𝑡)∕𝑥(𝑡),

we can set 𝑓 = (𝑓1, 𝑓2, 𝑓3, 𝑓4) where:

𝑓1(𝑢, 𝑣, 𝑧, 𝜀𝑤) ∶= − (𝛾 + 𝛼) + 𝜌(1 − 𝑧) 𝑣 + 𝜌
[
𝑧(1 + 𝜀𝜌) − 1

]
𝑣
𝑧 𝜀𝑤

𝐷𝑤

+ 𝜒(𝜀0
𝑤
− 𝜀𝑤)

𝑧(𝜀𝑤 − 𝜀𝑎)

𝐷𝑎𝐷𝑤

,

𝑓2(𝑢, 𝑣, 𝑧, 𝜀𝑤) ∶=
𝑠(1 − 𝑢)

𝜎
− (𝛼 + 𝛽 + 𝛿)

+ 𝜒(𝜀0
𝑤
− 𝜀𝑤)

𝑧(1 − 𝜀𝑎)

𝐷𝑎

,

𝑓3(𝑢, 𝑣, 𝑧, 𝜀𝑤) ∶= 𝜒(𝜀0
𝑤
− 𝜀𝑤),

𝑓4(𝑢, 𝑣, 𝑧, 𝜀𝑤) ∶= 𝜌 [ 𝑧(1 + 𝜀𝜌) − 1 ] 𝑣.

Then, the system of ODEs can be written as:

𝑢′ = 𝑢𝑓1, 𝑣′ = 𝑣𝑓2, 𝑧′ = 𝑧𝑓3, 𝜀′
𝑤
= 𝜀𝑤𝑓4,

and, consequently we have the ODE field𝐹 =
(
𝑢𝑓1, 𝑣𝑓2, 𝑧𝑓3, 𝜀𝑤𝑓4

)
.

Then, for arbitrary 𝐗, 𝐗̃ ∈ Γ, we obtain

‖𝐹 (𝐗) − 𝐹 (𝐗̃)‖ = ||𝑢𝑓1(𝐗) − 𝑢̃𝑓1(𝐗̃)
|| + ||𝑣𝑓2(𝐗) − 𝑣̃𝑓2(𝐗̃)

||
+ ||𝑧𝑓3(𝐗) − 𝑧̃𝑓3(𝐗̃)

|| + ||𝜀𝑤𝑓4(𝐗) − 𝜀̃𝑤𝑓4(𝐗̃)
|| .

In general, for arbitrary scalars 𝑎, 𝑏, 𝑎̃, 𝑏̃, the following inequality

holds:

||𝑎𝑏 − 𝑎̃𝑏̃|| = ||𝑎𝑏 − 𝑎̃𝑏 + 𝑎̃𝑏 − 𝑎̃𝑏̃|| ≤ |𝑎 − 𝑎̃| |𝑏| + |𝑎̃| |𝑏 − 𝑏̃|, (P1)

John Cajas et al.: Working Paper, nov. 2025 Page 3 of 17



Resonant and non-resonant Double Hopf bifurcation in a 4D Goodwin model with Wage inequality

and in our setting, we obtain:

‖𝐹 (𝐗) − 𝐹 (𝐗̃)‖ ≤ |𝑢 − 𝑢̃| ||𝑓1(𝐗)
|| + |𝑢̃| ||𝑓1(𝐗) − 𝑓1(𝐗̃)

||
+ |𝑣 − 𝑣̃| ||𝑓2(𝐗)

|| + |𝑣̃| ||𝑓2(𝐗) − 𝑓2(𝐗̃)
||

+ |𝑧 − 𝑧̃| ||𝑓3(𝐗)
|| + |𝑧̃| ||𝑓3(𝐗) − 𝑓3(𝐗̃)

||
+ ||𝜀𝑤 − 𝜀̃𝑤

|| ||𝑓4(𝐗)
|| + ||𝜀̃𝑤|| ||𝑓4(𝐗) − 𝑓4(𝐗̃)

|| .
To estimate these terms, we consider on Γ𝜂 we have 𝑢, 𝑣, 𝑧, 𝜀𝑤 ≤ 𝑀

and 𝐷𝑎, 𝐷𝑤 ≥ 𝜂. These conditions allow us to derive the following

bounds:

|𝑓1(𝐗)| ≤ |𝛾| + |𝛼| + |𝜌| |1 − 𝑧| |𝑣| + |𝜌| (|𝑧|(1 + 𝜀𝜌) + 1) |𝑣| |𝑧| 𝜀𝑤
𝐷𝑤

+ |𝜒| |𝜀0
𝑤
− 𝜀𝑤|

|𝑧| |𝜀𝑤 − 𝜀𝑎|
𝐷𝑎𝐷𝑤

≤ |𝛾| + |𝛼| + |𝜌|(1 +𝑀)𝑀 + |𝜌| (|1 + 𝜀𝜌|𝑀 + 1)𝑀
𝑀2

𝜂

+ |𝜒|(|𝜀0
𝑤
| +𝑀)

𝑀(𝑀 + |𝜀𝑎|)
𝜂2

=∶ 𝑏1.

|𝑓2(𝐗)| ≤ |𝑠|
|𝜎| |1 − 𝑢| + |𝛼 + 𝛽 + 𝛿| + |𝜒| |𝜀0

𝑤
− 𝜀𝑤|

|𝑧| |1 − 𝜀𝑎|
𝐷𝑎

≤ |𝑠|
|𝜎| (1 +𝑀) + |𝛼 + 𝛽 + 𝛿| + |𝜒| (|𝜀0

𝑤
| +𝑀)

𝑀 |1 − 𝜀𝑎|
𝜂

=∶ 𝑏2.

|𝑓3(𝐗)| ≤ |𝜒| (|𝜀0
𝑤
| + |𝜀𝑤|) ≤ |𝜒| (|𝜀0

𝑤
| +𝑀) =∶ 𝑏3.

|𝑓4(𝐗)| ≤ |𝜌| (|𝑧|(1 + 𝜀𝜌) + 1) |𝑣| ≤ |𝜌| (|1 + 𝜀𝜌|𝑀 + 1)𝑀 =∶ 𝑏4.

We now consider the difference, which yields:

||𝑓1(𝐗) − 𝑓1(𝐗̃)
|| ≤ |𝜌| |(1 − 𝑧)𝑣 − (1 − 𝑧̃)𝑣̃|
+ |𝜌| |||

(
𝑧(1 + 𝜀𝜌) − 1

)
𝑣𝐻1 − 𝐻̃1𝑣̃

(
𝑧̃(1 + 𝜀𝜌) − 1

)|||
+ |𝜒| |||(𝜀

0
𝑤
− 𝜀𝑤)𝐻2 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃2

||| ,

where 𝐻1 ∶=
𝑧 𝜀𝑤

𝐷𝑤

and 𝐻2 ∶=
𝑧(𝜀𝑤 − 𝜀𝑎)

𝐷𝑎𝐷𝑤

. We now proceed to

analyze the expression term by term:

• For the product, applying (1), we obtain:

|(1 − 𝑧)𝑣 − (1 − 𝑧̃)𝑣̃| ≤ |1 − 𝑧| |𝑣 − 𝑣̃| + |𝑣̃| |𝑧 − 𝑧̃|
≤ (1 +𝑀) |𝑣 − 𝑣̃| +𝑀 |𝑧 − 𝑧̃| .

• For the subsequent term, we use the fact that

𝑓4(𝐗) ∶= 𝜌
[
𝑧(1 + 𝜀𝜌) − 1

]
𝑣,

so that, by applying (1), we obtain

||𝑓4(𝐗)𝐻1 − 𝑓4(𝐗̃) 𝐻̃1
|| ≤ ||𝑓4(𝐗) − 𝑓4(𝐗̃)

|| ||𝐻1
||

+ ||𝑓4(𝐗̃)
|| ||𝐻1 − 𝐻̃1

|| .
Here for ||𝐻1 − 𝐻̃1

||, we again make use of (1), and additionally

consider the fact that |𝑏| , ||𝑏̃|| ≥ 𝜂 > 0. In this case we obtain

||||𝑎
1

𝑏
− 𝑎̃

1

𝑏̃

|||| ≤ |𝑎 − 𝑎̃| 1

|𝑏| + |𝑎̃| ||||
𝑏 − 𝑏̃

𝑏𝑏̃

||||
≤ |𝑎 − 𝑎̃|

𝜂
+

|𝑎̃|
𝜂2

||𝑏 − 𝑏̃|| .
(P2)

In our setting, this leads to

|||||
𝑧 𝜀𝑤

1

𝐷𝑤

− 𝑧̃ 𝜀̃𝑤
1

𝐷̃𝑤

|||||
≤ ||𝑧 𝜀𝑤 − 𝑧̃ 𝜀̃𝑤

||
𝜂

+
||𝑧̃ 𝜀̃𝑤||
𝜂2

||𝐷𝑤 − 𝐷̃𝑤
|| ,

Since inequality (1) will be used repeatedly in what follows,

we mention it only once here and apply it to each case without

restating it, in particular:

||𝑧𝜀𝑤 − 𝑧̃ 𝜀̃𝑤
|| ≤ |𝑧 − 𝑧̃|𝑀 +𝑀 ||𝜀𝑤 − 𝜀̃𝑤

|| .
Moreover, since |𝑧̃ 𝜀̃2

𝑤
| ≤ 𝑀2 and combining this with

||𝐷𝑤 − 𝐷̃𝑤
|| = ||| 𝑧

(
1 − 𝜀𝑤

)
− 𝑧̃

(
1 − 𝜀̃𝑤

)|||

≤ (1 +𝑀) |𝑧 − 𝑧̃| +𝑀 ||𝜀𝑤 − 𝜀̃𝑤
|| ,

we obtain, after substitution,

||𝐻1 − 𝐻̃1
|| ≤

(
𝑀

𝜂
+

𝑀2(1 +𝑀)

𝜂2

)
|𝑧 − 𝑧̃|

+

(
𝑀

𝜂
+

𝑀3

𝜂2

)
||𝜀𝑤 − 𝜀̃𝑤

||
≤ 𝐾𝐻1

(|𝑧 − 𝑧̃| + ||𝜀𝑤 − 𝜀̃𝑤
||
)
,

where one may take

𝐾𝐻1
∶= max

{
𝑀

𝜂
+

𝑀2(1 +𝑀)

𝜂2
,
𝑀

𝜂
+

𝑀3

𝜂2

}
.

Now, for the final expression:

||𝑓4(𝐗) − 𝑓4(𝐗̃)
|| = |𝜌| |||[𝑧(1 + 𝜀𝜌) − 1]𝑣 − [𝑧̃(1 + 𝜀𝜌) − 1]𝑣̃

|||
≤ |𝜌| (𝑀|1 + 𝜀𝜌| + 1

) |𝑣 − 𝑣̃|
+ |𝜌|𝑀 |1 + 𝜀𝜌| |𝑧 − 𝑧̃|

≤ 𝜏 (4)
𝑣

|𝑣 − 𝑣̃| + 𝜏 (4)
𝑧

|𝑧 − 𝑧̃| ,
where

𝜏 (4)
𝑣

∶= |𝜌| (𝑀|1 + 𝜀𝜌| + 1
)
, 𝜏 (4)

𝑧
∶= |𝜌|𝑀 |1 + 𝜀𝜌|.

Now we can finally replace in our original expression:

||𝑓4(𝐗)𝐻1 − 𝑓4(𝐗̃) 𝐻̃1
|| ≤ 𝑀2

𝜂
𝜏 (4)
𝑣

|𝑣 − 𝑣̃|
+
(
𝜏 (4)
𝑧

+ 𝑏4𝐾𝐻1

) |𝑧 − 𝑧̃|
+ 𝑏4𝐾𝐻1

||𝜀𝑤 − 𝜀̃𝑤
|| .

• For the last term, we have:

|||(𝜀
0
𝑤
− 𝜀𝑤)𝐻2 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃2

||| ≤ ||𝜀𝑤 − 𝜀̃𝑤
|| ||𝐻̃2

||
+
(|𝜀0

𝑤
| +𝑀

) ||𝐻2 − 𝐻̃2
|| .

we actually know the bound of ||𝐻̃2
|| from before,

||𝐻̃2
|| ≤ 𝑀 (𝑀 + |𝜀𝑎|)

𝜂2

and using (2) with 𝑎 = 𝑧(𝜀𝑤 − 𝜀𝑎) and 𝑏 = 𝐷𝑎𝐷𝑤 where

|𝑏| , ||𝑏̃|| ≥ 𝜂2 > 0 so:

||𝐻2 − 𝐻̃2
|| ≤ |𝑎 − 𝑎̃|

𝜂2
+

|𝑎̃|
𝜂4

||𝑏 − 𝑏̃|| .

where:

|𝑎 − 𝑎̃| = ||𝑧(𝜀𝑤 − 𝜀𝑎) − 𝑧̃(𝜀̃𝑤 − 𝜀𝑎)
||≤ (𝑀 + |𝜀𝑎|) |𝑧 − 𝑧̃| +𝑀 |𝜀𝑤 − 𝜀̃𝑤|,

and |𝑎̃| ≤ 𝑀(𝑀 + |𝜀𝑎|). For ||𝑏 − 𝑏̃|| we directly have:

||𝑏 − 𝑏̃|| = ||𝐷𝑎𝐷𝑤 − 𝐷̃𝑎𝐷̃𝑤
||≤ |𝐷𝑎| ||𝐷𝑤 − 𝐷̃𝑤
|| + ||𝐷̃𝑤

|| ||𝐷𝑎 − 𝐷̃𝑎
|| ,

where the bound for ||𝐷𝑤 − 𝐷̃𝑤
|| is already known from above

and from a direct calculation we get:

||𝐷𝑎 − 𝐷̃𝑎
|| = ||(1 − 𝜀𝑎)(𝑧̃ − 𝑧)|| = ||1 − 𝜀𝑎

|| |𝑧 − 𝑧̃| ,
|𝐷𝑎| ≤ 1 +𝑀|1 − 𝜀𝑎|,
|𝐷𝑤| ≤ 1 +𝑀(1 +𝑀).

Then,

||𝑏 − 𝑏̃|| ≤ (
1 +𝑀|1 − 𝜀𝑎|

) (
(1 +𝑀) |𝑧 − 𝑧̃| +𝑀 ||𝜀𝑤 − 𝜀̃𝑤

||
)

+ (1 +𝑀(1 +𝑀))
(||1 − 𝜀𝑎

|| |𝑧 − 𝑧̃|)

≤ 𝐶
(𝑧)

𝑏
|𝑧 − 𝑧̃| + 𝐶

(𝑤)

𝑏
||𝜀𝑤 − 𝜀̃𝑤

|| ,
with the explicit constants,

𝐶
(𝑧)

𝑏
∶= (1 +𝑀|1 − 𝜀𝑎|)(1 +𝑀) + (1 +𝑀(1 +𝑀))|1 − 𝜀𝑎|,

𝐶
(𝑤)

𝑏
∶= (1 +𝑀|1 − 𝜀𝑎|)𝑀.
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Therefore

||𝐻2 − 𝐻̃2
|| ≤

[
𝑀 + |𝜀𝑎|

𝜂2
+

𝑀(𝑀 + |𝜀𝑎|)
𝜂4

𝐶
(𝑧)

𝑏

]
|𝑧 − 𝑧̃|

+

[
𝑀

𝜂2
+

𝑀(𝑀 + |𝜀𝑎|)
𝜂4

𝐶
(𝑤)

𝑏

]
||𝜀𝑤 − 𝜀̃𝑤

||
≤ 𝐾𝐻2

(|𝑧 − 𝑧̃| + |𝜀𝑤 − 𝜀̃𝑤|
)
,

where we may set 𝐾𝐻2
∶= max{𝐾

(𝑧)

𝐻2
, 𝐾

(𝑤)

𝐻2
}, with

𝐾
(𝑧)

𝐻2
∶=

𝑀 + |𝜀𝑎|
𝜂2

+
𝑀(𝑀 + |𝜀𝑎|)

𝜂4
𝐶

(𝑧)

𝑏
,

𝐾
(𝑤)

𝐻2
∶=

𝑀

𝜂2
+

𝑀(𝑀 + |𝜀𝑎|)
𝜂4

𝐶
(𝑤)

𝑏
.

Now we can finally replace on:

|||(𝜀
0
𝑤
− 𝜀𝑤)𝐻2 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃2

||| ≤ ||𝜀𝑤 − 𝜀̃𝑤
||
𝑀 (𝑀 + |𝜀𝑎|)

𝜂2

+ |𝑧 − 𝑧̃| (|𝜀0
𝑤
| +𝑀

)
𝐾𝐻2

+ ||𝜀𝑤 − 𝜀̃𝑤
||
(|𝜀0

𝑤
| +𝑀

)
𝐾𝐻2

.

We now return to the bound for ||𝑓1(𝐗) − 𝑓1(𝐗̃)
||, and by combining

the preceding estimates we obtain:

||𝑓1(𝐗) − 𝑓1(𝐗̃)
|| ≤ |𝜌| ((1 +𝑀) |𝑣 − 𝑣̃| +𝑀 |𝑧 − 𝑧̃|)
+

𝑀2

𝜂
𝜏 (4)
𝑣

|𝑣 − 𝑣̃| + (
𝜏 (4)
𝑧

+ 𝑏4 𝐾𝐻1

) |𝑧 − 𝑧̃|

+ 𝑏4𝐾𝐻1

||𝜀𝑤 − 𝜀̃𝑤
|| + |𝜒| ||𝜀𝑤 − 𝜀̃𝑤

||
𝑀 (𝑀 + |𝜀𝑎|)

𝜂2

+ |𝜒| |𝑧 − 𝑧̃| (|𝜀0
𝑤
| +𝑀

)
𝐾𝐻2

+ |𝜒| ||𝜀𝑤 − 𝜀̃𝑤
||
(|𝜀0

𝑤
| +𝑀

)
𝐾𝐻2

,

and after grouping terms appropriately:

||𝑓1(𝐗) − 𝑓1(𝐗̃)
|| ≤ 𝜏 (1)

𝑣
|𝑣 − 𝑣̃| + 𝜏 (1)

𝑧
|𝑧 − 𝑧̃| + 𝜏 (1)

𝜀𝑤

||𝜀𝑤 − 𝜀̃𝑤
|| ,

where:

𝜏 (1)
𝑣

∶= |𝜌|(1 +𝑀) +
𝑀2

𝜂
𝜏 (4)
𝑣
,

𝜏 (1)
𝑧

∶= |𝜌|𝑀 + 𝜏 (4)
𝑧

+ 𝑏4 𝐾𝐻1
+ |𝜒| (|𝜀0

𝑤
| +𝑀

)
𝐾𝐻2

,

𝜏 (1)
𝜀𝑤

∶= 𝑏4𝐾𝐻1
+ |𝜒|

(
𝑀 (𝑀 + |𝜀𝑎|)

𝜂2
+
(|𝜀0

𝑤
| +𝑀

)
𝐾𝐻2

)
.

Now for the bound of ||𝑓2(𝐗) − 𝑓2(𝐗̃)
|| we proceed like this:

||𝑓2(𝐗) − 𝑓2(𝐗̃)
|| ≤ ||||

𝑠

𝜎

|||| |𝑢 − 𝑢̃| + |𝜒| |||(𝜀
0
𝑤
− 𝜀𝑤)𝐻3 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃3

||| ,

where 𝐻3 =
𝑧(1 − 𝜀𝑎)

𝐷𝑎

. From, (1) we can obtain,

|||(𝜀
0
𝑤
− 𝜀𝑤)𝐻3 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃3

||| ≤ ||𝜀𝑤 − 𝜀̃𝑤
|| ||𝐻̃3

||
+
(|𝜀0

𝑤
| +𝑀

) ||𝐻3 − 𝐻̃3
|| .

We already have an estimate for ||𝐻̃3
||,

||𝐻̃3
|| ≤ 𝑀 |1 − 𝜀𝑎|

𝜂
.

Applying (2) with 𝑎 = 𝑧(1 − 𝜀𝑎) and 𝑏 = 𝐷𝑎, we obtain

||𝐻3 − 𝐻̃3
|| ≤ |𝑧 − 𝑧̃| |1 − 𝜀𝑎|

𝜂
+

𝑀 |1 − 𝜀𝑎|
𝜂2

||𝐷𝑎 − 𝐷̃𝑎
|| .

From the previous bounds on ||𝐷𝑎 − 𝐷̃𝑎
|| it follows that

||𝐻3 − 𝐻̃3
|| ≤ |1 − 𝜀𝑎|

(
1

𝜂
+

𝑀 |1 − 𝜀𝑎|
𝜂2

)
|𝑧 − 𝑧̃|.

Thus, we may take

𝐾𝐻3
∶= |1 − 𝜀𝑎|

(
1

𝜂
+

𝑀 |1 − 𝜀𝑎|
𝜂2

)
.

Substituting this bound, we obtain

|||(𝜀
0
𝑤
− 𝜀𝑤)𝐻3 − (𝜀0

𝑤
− 𝜀̃𝑤)𝐻̃3

||| ≤ ||𝜀𝑤 − 𝜀̃𝑤
||
𝑀 |1 − 𝜀𝑎|

𝜂

+ |𝑧 − 𝑧̃| (|𝜀0
𝑤
| +𝑀)𝐾𝐻3

.

Finally, returning to ||𝑓2(𝐗) − 𝑓2(𝐗̃)
||, we obtain:

||𝑓2(𝐗) − 𝑓2(𝐗̃)
|| ≤ ||||

𝑠

𝜎

|||| |𝑢 − 𝑢̃|

+ |𝜒| ||𝜀𝑤 − 𝜀̃𝑤
||
𝑀 |1 − 𝜀𝑎|

𝜂

+ |𝜒| |𝑧 − 𝑧̃| (|𝜀0
𝑤
| +𝑀)𝐾𝐻3

,

and after grouping terms appropriately:

||𝑓2(𝐗) − 𝑓2(𝐗̃)
|| ≤ 𝜏 (2)

𝑢
|𝑢 − 𝑢̃| + 𝜏 (2)

𝑧
|𝑧 − 𝑧̃| + 𝜏 (2)

𝜀𝑤

||𝜀𝑤 − 𝜀̃𝑤
|| ,

where:

𝜏 (2)
𝑢

∶=
||||
𝑠

𝜎

|||| , 𝜏 (2)
𝑧

∶= |𝜒| (|𝜀0
𝑤
| +𝑀)𝐾𝐻3

,

𝜏 (2)
𝜀𝑤

∶= |𝜒| 𝑀 |1 − 𝜀𝑎|
𝜂

.

Finally, for the remaining difference we directly obtain:

||𝑓3(𝐗) − 𝑓3(𝐗̃)
|| = |𝜒| ||𝜀𝑤 − 𝜀̃𝑤

|| ⟹ 𝜏 (3)
𝜀𝑤

∶= |𝜒|,
Gathering all the previous bounds, we now return to the main expres-

sion and obtain

‖𝐹 (𝐗) − 𝐹 (𝐗̃)‖ ≤ |𝑢 − 𝑢̃| (𝑏1 +𝑀 𝜏 (2)
𝑢

)
+ |𝑣 − 𝑣̃| (𝑏2 +𝑀 𝜏 (1)

𝑣
+𝑀 𝜏 (4)

𝑣

)
+ |𝑧 − 𝑧̃| (𝑏3 +𝑀 𝜏 (1)

𝑧
+𝑀 𝜏 (2)

𝑧
+𝑀 𝜏 (4)

𝑧

)

+ ||𝜀𝑤 − 𝜀̃𝑤
||
(
𝑏4 +𝑀 𝜏 (1)

𝜀𝑤
+𝑀 𝜏 (2)

𝜀𝑤
+𝑀 𝜏 (3)

𝜀𝑤

)
.

If we now define 𝐿 ∶= max{𝜃1, 𝜃2, 𝜃3, 𝜃4}, where

𝜃1 ∶= 𝑏1 +𝑀 𝜏 (2)
𝑢
,

𝜃2 ∶= 𝑏2 +𝑀 𝜏 (1)
𝑣

+𝑀 𝜏 (4)
𝑣
,

𝜃3 ∶= 𝑏3 +𝑀 𝜏 (1)
𝑧

+𝑀 𝜏 (2)
𝑧

+𝑀 𝜏 (4)
𝑧
,

𝜃4 ∶= 𝑏4 +𝑀 𝜏 (1)
𝜀𝑤

+𝑀 𝜏 (2)
𝜀𝑤

+𝑀 𝜏 (3)
𝜀𝑤
,

we may write

‖𝐹 (𝐗) − 𝐹 (𝐗̃)‖ ≤ 𝐿 ‖‖𝐗 − 𝐗̃‖‖ .
Hence, 𝐹 (𝐗) satisfies the Lipschitz condition on 𝐗. By invoking the

fixed point theorem, we conclude that Theorem (1) is established. □

To complement this result on existence and uniqueness, we examine

the following two propositions, which ensure that the system remains

positive if it starts positive and that Γ𝜂 is a forward-invariant set for

the model.

Proposition 1. Let 𝐗(𝑡) =
(
𝑢(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝜀𝑤(𝑡)

)⊤
be a solution to

the system defined by equations (13), (14), (16), and (17). Write 𝐹 =(
𝑢𝑓1, 𝑣𝑓2, 𝑧𝑓3, 𝜀𝑤𝑓4

)
as stated in Theorem (1). Then Γ𝜂 is forward

invariant if and only if 𝐹
(
𝐗̄
)
∈ 𝑇

(
Γ𝜂; 𝐗̄

)
for every 𝐗̄ ∈ 𝜕Γ𝜂, where

the contingent cone 𝑇
(
Γ𝜂, 𝐗̄

)
is

𝑇
(
Γ𝜂, 𝐗̄

)
∶=

{
ℎ ∈ ℝ

4 |||∃𝐗𝑛 ∈ Γ𝜂 , 𝜆𝑛 > 0,

𝐗𝑛 → 𝐗̄ , 𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
→ ℎ

}
.

PROOF. We proceed to prove the double implication.

⇒) Assume Γ𝜂 is forward invariant. Fix any 𝐗̄ ∈ 𝜕Γ𝜂. Because the

field is 𝐶1 on a neighborhood of Γ𝜂 by Theorem (1), there is a

unique solution 𝐗(𝑡) with 𝐗0 ∶= 𝐗̄ and 𝐗(𝑡) ∈ Γ𝜂 for all 𝑡 ≥ 0.

For a sequence (𝑡𝑛)𝑛≥1 ⊂ (0,∞) such that 𝑡𝑛+1 < 𝑡𝑛 and 𝑡𝑛 → 0,

set

𝐗𝑛 ∶= 𝐗(𝑡𝑛) ∈ Γ𝜂, 𝜆𝑛 ∶=
1

𝑡𝑛
> 0.
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Then

𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
=

𝐗(𝑡𝑛) − 𝐗0

𝑡𝑛
.

Now pass to the limit. Using the integral form of the ODE,

𝐗(𝑡) − 𝐗
0 = ∫

𝑡

0

𝐹 (𝐗(𝑠)) 𝑑𝑠, 𝑡 ≥ 0.

Hence, for each 𝑛,

𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
=

𝐗(𝑡𝑛) − 𝐗0

𝑡𝑛
=

1

𝑡𝑛 ∫
𝑡𝑛

0

𝐹 (𝐗(𝑠)) 𝑑𝑠.

Therefore,

‖‖‖𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
− 𝐹

(
𝐗̄
)‖‖‖ =

‖‖‖‖‖
1

𝑡𝑛 ∫
𝑡𝑛

0

𝐹 (𝐗(𝑠)) 𝑑𝑠 − 𝐹 (𝐗̄)
‖‖‖‖‖
.

Because 𝐗(𝑠) → 𝐗0 as 𝑠 → 0 and 𝐹 is continuous at 𝐗0, we

have 𝐹 (𝐗(𝑠)) → 𝐹
(
𝐗0

)
. Therefore, for any 𝜀 > 0, there exists

𝛿 > 0 such that

‖‖‖𝐗(𝑠) − 𝐗
0‖‖‖ < 𝛿 ⇒

‖‖‖𝐹 (𝐗(𝑠)) − 𝐹
(
𝐗

0
)‖‖‖ < 𝜀.

By continuity of 𝐗 at 0, choose 𝑁 with 𝑡𝑛 < 𝛿 for all 𝑛 ≥ 𝑁 .

Then for 𝑛 ≥ 𝑁 ,

‖‖‖𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
− 𝐹

(
𝐗̄
)‖‖‖ ≤ ‖‖‖‖‖

1

𝑡𝑛 ∫
𝑡𝑛

0

𝐹 (𝐗(𝑠)) 𝑑𝑠 − 𝐹 (𝐗̄)
‖‖‖‖‖

≤ 1

𝑡𝑛 ∫
𝑡𝑛

0

‖‖‖𝐹 (𝐗(𝑠)) − 𝐹
(
𝐗

0
)‖‖‖ 𝑑𝑠

< 𝜀.

Since 𝜀 is arbitrary, we conclude that 𝜆𝑛
(
𝐗𝑛 − 𝐗̄

)
→ 𝐹

(
𝐗̄
)
,

hence 𝐹
(
𝐗̄
)
∈ 𝑇

(
Γ𝜂; 𝐗̄

)
.

⇐) Assume that 𝐹
(
𝐗̄
)
∈ 𝑇

(
Γ𝜂; 𝐗̄

)
for every 𝐗̄ ∈ 𝜕Γ𝜂. We prove

that any solution starting in Γ𝜂 never leaves. Let 𝐗(𝑡) be the

solution with 𝐗0 ∈ Γ𝜂 and define the function

𝜙(𝑡) ∶= dist
(
𝐗(𝑡),Γ𝜂

)
= inf

𝑦∈Γ𝜂
‖𝐗(𝑡) − 𝑦‖ .

Since Γ𝜂 is closed, 𝜙 equals 0 exactly at those times for which

𝐗(𝑡) ∈ Γ𝜂. To reach a contradiction, suppose that 𝐗 leaves Γ𝜂.

Define

𝑇 ∶= inf
{
𝑡 > 0 ∶ 𝐗(𝑡) ∉ Γ𝜂

}
∈ (0,∞],

so that 𝐗(𝑡) ∈ Γ𝜂 for all 𝑡 < 𝑇 , and let 𝐗∗ ∶= 𝐗(𝑇 ) ∈

𝜕Γ𝜂. Because 𝐹 (𝐗∗) ∈ 𝑇
(
Γ𝜂;𝐗

∗
)
, by the definition of the

contingent cone there exist

𝐗𝑛 ∈ Γ𝜂, 𝜆𝑛 > 0, 𝐗𝑛 → 𝐗
∗, 𝜆𝑛

(
𝐗𝑛 − 𝐗

∗
)
→ 𝐹 (𝐗∗) .

Fix 𝜀 > 0. By the above convergence, there exists 𝑁 such that

for all 𝑛 ≥ 𝑁 ,

‖‖‖𝜆𝑛
(
𝐗𝑛 − 𝐗

∗
)
− 𝐹 (𝐗∗)

‖‖‖ < 𝜀.

Then we can choose ℎ𝑛 ∶= 𝜆−1
𝑛

sufficiently small so that

‖‖𝐗∗ + ℎ𝑛𝐹 (𝐗∗) − 𝐗𝑛
‖‖ < 𝜀ℎ𝑛.

By the standard first-order expansion of the flow,

𝐗(𝑇 + ℎ𝑛) = 𝐗
∗ + ℎ𝑛𝐹 (𝐗∗) + 𝑂(ℎ𝑛), as ℎ𝑛 → 0.

Combining these two expressions in 𝜙 gives

𝜙(𝑇 + ℎ𝑛) = inf
𝑦∈Γ𝜂

‖‖𝐗(𝑇 + ℎ𝑛) − 𝑦‖‖
≤ ‖‖𝐗(𝑇 + ℎ𝑛) − 𝐗𝑛

‖‖
< 𝜀ℎ𝑛 + 𝑂(ℎ𝑛).

Then, the upper right Dini derivative satisfies

𝜙′
+
(𝑇 ) ∶= lim sup

ℎ→0+

𝜙(𝑇 + ℎ) − 𝜙(𝑇 )

ℎ
< 𝜀.

Since 𝜀 > 0 is arbitrary and 𝜙(𝑇 ) = 0, we obtain 𝜙′
+
(𝑇 ) ≤ 0.

However, if 𝐗 were to exit at 𝑇 , we would have 𝜙(𝑇 + ℎ) > 0

for all sufficiently small ℎ > 0, which would imply 𝜙′
+
(𝑇 ) > 0

a contradiction. Therefore, 𝐗(𝑡) ∈ Γ𝜂 for all 𝑡 ≥ 0, i.e., Γ𝜂 is

forward invariant. □

Proposition 2. Let 𝐗(𝑡) =
(
𝑢(𝑡), 𝑣(𝑡), 𝑧(𝑡), 𝜀𝑤(𝑡)

)⊤
be a solution to

the system defined by equations (13), (14), (16), and (17). If the initial
condition 𝐗0 ∈ Γ𝜂, then the solution 𝐗(𝑡) remains in Γ𝜂 for all 𝑡 > 0.

PROOF. On Γ𝜂, the vector field is of class 𝐶1 and locally Lipschitz

by Theorem (1). Therefore, for any initial condition 𝐗(0) ∈ Γ𝜂,

there exists a unique solution defined on a maximal interval [0, 𝑇 )

satisfying

𝑢(𝑡) = 𝑢0𝑒
∫ 𝑡

0
𝑓1(𝐗) 𝑑𝑠, 𝑣(𝑡) = 𝑣0𝑒

∫ 𝑡

0
𝑓2(𝐗) 𝑑𝑠,

𝑧(𝑡) = 𝑧0𝑒
∫ 𝑡

0
𝑓3(𝐗) 𝑑𝑠, 𝜀𝑤(𝑡) = 𝜀𝑤0𝑒

∫ 𝑡

0
𝑓4(𝐗) 𝑑𝑠.

Consequently, 𝑢, 𝑣, 𝑧, 𝜀𝑤 > 0 on [0, 𝑇 ). Moreover, by the bounds

|𝑓𝑖| ≤ 𝑏𝑖 on Γ𝜂, no blow-up occurs before reaching 𝜕Γ𝜂. Hence, if

𝑇 < ∞, then 𝐗(𝑇 ) ∈ 𝜕Γ𝜂. By Proposition (1), the set Γ𝜂 is forward-

invariant under the flow of the system. This invariance guarantees that

a solution starting in Γ𝜂 cannot reach the boundary 𝜕Γ𝜂 in finite time.

Therefore, the solution 𝐗(𝑡) remains in Γ𝜂 for all 𝑡 > 0. □

4. Steady State Equilibrium and Double Hopf Bifurcation

At the steady state (𝑢̂ = 𝑣̂ = 𝑧̂ = 𝜀̂𝑤 = 0), the four-dimensional

dynamical system defined by equations (13), (14), (16), and (17)

admits the following non-trivial equilibrium point:

𝑢̇ = 1 −
𝜎(𝛼 + 𝛽 + 𝛿)

𝑠
, 𝑣̇ =

(𝛼 + 𝛾)(1 + 𝜀𝜌)

𝜌𝜀𝜌
,

𝑧̇ =
1

1 + 𝜀𝜌
, ̇𝜀𝑤 = 𝜀0

𝑤
.

(18)

The steady-state wage share, 𝑢̇, coincides with the equilibrium value

obtained in the Goodwin model with savings and depreciation, as

formulated in [38]. It increases with the saving rate (𝑠) and decreases

with the capital-output ratio (𝜎), the rate of productivity growth (𝛼),

labor supply growth (𝛽), and the depreciation rate (𝛿). The equilib-

rium employment rate, 𝑣̇, rises with faster productivity growth (𝛼)

and stronger real wage stabilization (𝛾), but declines as the sensitivity

of wage growth to type 1 employment (𝜌) increases. Both 𝑣̇ and

the equilibrium underemployment rate 𝑧̇ depend on the bargaining

power of type 2 workers (𝜀𝜌): a lower 𝜀𝜌 raises 𝑣̇ while reducing 𝑧̇,

implying higher overall employment but deteriorated average labor

conditions. Finally, the type 2 relative wage is fixed at its equilibrium

value (𝜀̇𝑤 = 𝜀0
𝑤

).

Solving equations (13), (14), (16), and (17) for the time deriva-

tives 𝑢′, 𝑣′, 𝑧′, and 𝜀′
𝑤

yields an autonomous dynamical system, which

can be expressed in the following reduced form (as stated in Theo-

rem (1))

𝑢′ = 𝑢𝑓1, 𝑣′ = 𝑣𝑓2, 𝑧′ = 𝑧𝑓3, 𝜀′
𝑤
= 𝜀𝑤𝑓4, (19)

where 𝑓𝑖 represents the function governing the dynamics of the state

variable. Linearizing this dynamical system around the equilibrium

point 𝐗̇ = (𝑢̇, 𝑣̇, 𝑧̇, ̇𝜀𝑤), as defined in expression (18), gives:

⎛⎜⎜⎜⎝

𝑢′

𝑣′

𝑧′

𝜀′
𝑤

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

0 𝐴12 𝐴13 𝐴14

𝐴21 0 0 𝐴24

0 0 0 𝐴34

0 0 𝐴43 0

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

𝑢 − 𝑢̇

𝑣 − 𝑣̇

𝑧 − 𝑧̇

𝜀𝑤 − ̇𝜀𝑤

⎞⎟⎟⎟⎠
, (20)

where:

𝐴12 =
𝜀𝜌𝜌[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)]

𝑠(1 + 𝜀𝜌)
,

𝐴13 = −
(𝛼 + 𝛾)(1 − 𝜀0

𝑤
)(1 + 𝜀𝜌)[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)]

𝑠(𝜀0
𝑤
+ 𝜀𝜌)

,

𝐴14 =
𝜒(𝜀𝑎 − 𝜀0

𝑤
)(1 + 𝜀𝜌)[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)]

𝑠(𝜀𝑎 + 𝜀𝜌)(𝜀
0
𝑤
+ 𝜀𝜌)

,

𝐴21 = −
𝑠(𝛼 + 𝛾)(1 + 𝜀𝜌)

𝜀𝜌𝜌𝜎
,

𝐴24 = −
𝜒(𝛼 + 𝛾)(1 − 𝜀𝑎)(1 + 𝜀𝜌)

𝜀𝜌(𝜀𝑎 + 𝜀𝜌)𝜌
,

𝐴34 = −
𝜒

1 + 𝜀𝜌
,
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𝐴43 =
𝜀0
𝑤
(𝛼 + 𝛾)(1 + 𝜀𝜌)

𝜀𝜌

2

.

The Jacobian matrix in equation (20) possesses four purely imaginary

eigenvalues, expressed as 𝜆1,2 = ±𝑖𝜔1 and 𝜆3,4 = ±𝑖𝜔2, where:

𝜔2
1
=

[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)](𝛼 + 𝛾)

𝜎
,

𝜔2
2
=

𝜒𝜀0
𝑤
(1 + 𝜀𝜌)(𝛼 + 𝛾)

𝜀𝜌
.

(21)

Based on the structure of our system, the following hypotheses can

be established:

(H1) Transversality condition: Let 𝜅 = (𝜅1, 𝜅2) with 𝜅1 ∶= 𝑠 and

𝜅2 ∶= 𝜒 , keeping all other parameters fixed. The squared

frequencies depend affinely on (𝜅1, 𝜅2):

𝜔2
1
(𝜅) =

(
𝜅1 − 𝜎(𝛼 + 𝛽 + 𝛿)

)
(𝛼 + 𝛾)

𝜎
,

𝜔2
2
(𝜅) =

𝜅2 𝜀
0
𝑤
(1 + 𝜀𝜌)(𝛼 + 𝛾)

𝜀𝜌
.

Hence, the crossing rates are:

𝜕𝜔2
1

𝜕𝜅1
=

𝛼 + 𝛾

𝜎
≠ 0,

𝜕𝜔2
2

𝜕𝜅2
= 𝜀0

𝑤
(𝛼 + 𝛾)

1 + 𝜀𝜌

𝜀𝜌
≠ 0,

so that:

det

(
𝜕(𝜔2

1
, 𝜔2

2
)

𝜕(𝜅1, 𝜅2)

)||||||(𝜅1,𝜅2)=(𝑠,𝜒)
≠ 0.

(H2) Non-resonance condition:

√
[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)](𝛼 + 𝛾)

𝜎

/√
𝜒𝜀0

𝑤
(1 + 𝜀𝜌)(𝛼 + 𝛾)

𝜀𝜌
≠ 𝑚

𝑛

where 𝑚 and 𝑛 are relatively prime, such that 𝑚 + 𝑛 ≤ 5.

(H3) Resonance condition:

√
[𝑠 − 𝜎(𝛼 + 𝛽 + 𝛿)](𝛼 + 𝛾)

𝜎

/√
𝜒𝜀0

𝑤
(1 + 𝜀𝜌)(𝛼 + 𝛾)

𝜀𝜌
=

𝑚

𝑛

where 𝑚 and 𝑛 are relatively prime, such that 𝑚 + 𝑛 ≤ 5.

(H4) Eigenvalue assignment: If we assume that:

𝜎 > 0, 𝛼 + 𝛾 > 0, 𝑠 > 𝜎(𝛼 + 𝛽 + 𝛿),

then the linearization of (19) at 𝐗̇ has two simple purely

imaginary pairs

𝜆1,2 = ±𝑖𝜔1, 𝜆3,4 = ±𝑖𝜔2, with 𝜔1, 𝜔2 > 0.

Furthermore, let 𝐴 denote the Jacobian matrix introduced in

(20). From its characteristic polynomial we obtain

det(𝜆𝐼 − 𝐴) = 𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4,

where the coefficients can be expressed, by means of the New-

ton identities in terms of the traces of powers of 𝐽 , as follows:

𝑎1 = − tr(𝐴) = 0,

𝑎2 =
1

2

(
tr(𝐴)2 − tr(𝐴2)

)
= (𝐴12𝐴21 + 𝐴34𝐴43),

𝑎3 = −
1

6

(
tr(𝐴)3 − 3 tr(𝐴) tr(𝐴2) + 2 tr(𝐴3)

)
= 0,

𝑎4 = det(𝐴) = 𝐴12𝐴21𝐴34𝐴43.

Next, we construct the Hurwitz principal minors:

Δ1 = 𝑎1,

Δ2 = 𝑎1𝑎2 − 𝑎3,

Δ3 = (𝑎1𝑎2 − 𝑎3) 𝑎3 − 𝑎2
1
𝑎4.

Therefore, we finally obtain Δ3 = Δ1 = 0.

Therefore, we have established the necessary and sufficient conditions

for system (19) to undergo a double Hopf bifurcation at the equilib-

rium 𝐗̇, within the framework of Yu [40]; the same conclusion also

follows from the generalization of Orlando’s formula [41]. We now

state this result formally in the following theorem.

Theorem 2. The non-resonant Hopf–Hopf bifurcation or resonant
Hopf–Hopf bifurcation of system (19) occurs at 𝐗̇ if and only if the
following conditions (H1), (H2) and (H4) or (H1), (H3) and (H4)

hold.

Remark 1. The equilibrium is non-hyperbolic. In the absence of

additional dissipative conditions, the generic Hopf–Hopf normal

form yields oscillatory dynamics on the center manifold; hence the

equilibrium is not locally asymptotically stable and, consequently,

cannot be globally asymptotically stable. Moreover, Lyapunov sta-

bility cannot be certified via the direct method here, so to proceed

one must instead use the normal-form (center-manifold) analysis.

Based on the results summarized in Theorem (2), we infer the

coexistence and interaction of two endogenous cyclical mechanisms

within the model proposed in this paper. The first cyclical mechanism

is strongly associated with the interaction between the wage share (𝑢)

and the employment rate (𝑣), as originally suggested by Goodwin

[14]. This interpretation follows from the fact that the frequency

𝜔1 exactly matches the frequency obtained in the Goodwin model

with capitalist savings and depreciation, as formulated in [38]. In

particular, this frequency depends on the capitalist saving rate (𝑠),

which captures the intensity of capital accumulation and serves as the

first bifurcation parameter in the transversality condition (H1). For

this reason, we refer to this first cyclical mechanism as the Goodwin
cycle,

The second cyclical mechanism can be interpreted as generated

by an oscillatory relationship between the underemployment rate

(𝑧) and the type 2 relative wage (𝜀𝑤). This interpretation follows

from the structure of frequency 𝜔2, which includes parameters that

characterize the labor conditions of type 2 workers, such as their

influence on the bargaining power of the working class (𝜀𝜌), the

equilibrium value of the type 2 relative wage (𝜀0
𝑤

), and the adjustment

speed of underemployment (𝜒), which serves as the second bifurca-

tion parameter in (H1). Accordingly, we refer to this second cyclical

mechanism as the underemployment cycle.

When the transversality condition (H1) and the non-resonance

condition (H2) hold, the Goodwin cycle and the underemployment

cycle operate at distinct frequencies. The coexistence of these two

mechanisms gives rise to complex multi-periodic or quasi-periodic

patterns, since both cycles persist but are not synchronized in time.

In contrast, when the transversality condition (H1) and the resonance

conditions (H3) are satisfied, both cyclical mechanisms become syn-

chronized, implying that their oscillations occur in a fixed proportion

over time. As a result, the Goodwin and underemployment cycles

move in phase, producing stronger and more coherent fluctuations

compared with the non-resonant case. Instead of complex multi-

frequency patterns, single-frequency oscillations with amplified am-

plitude emerge.

Concerning Remark (1), it is important to note that due to the

structure of the dynamical system, local stability conditions for the

steady-state equilibrium cannot be established without the inclu-

sion of nonlinear terms. Economically, this non-hyperbolic nature of

the equilibrium implies that the system lacks intrinsic mechanisms

of self-stabilization, leading the economy to fluctuate persistently

around the steady state rather than converge to it.11

5. Cubic Normal Form on the Center Manifold

Normal form analysis is a fundamental analytical methodology

in bifurcation theory, serving a dual purpose: it furnishes a robust
stability diagnosis while simultaneously informing the interpretation
of numerical simulations. By reducing the system to its essential

11This result suggests avenues for future research aimed at introducing addi-

tional stabilizing mechanisms, such as stronger labor-market institutions, govern-

ment intervention, or external sector dynamics, that could render the steady-state

equilibrium asymptotically stable.
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dynamical structure, the signs of its coefficients (such as the terms

𝑃𝑖𝑗 derived below) analytically dictate whether local oscillations will

amplify (instability) or attenuate (stability). Concurrently, this tech-

nique predicts the resultant dynamical morphology, accounting for

the emergence of complex phenomena observed in simulations, such

as quasi-periodic dynamics (dense tori) or phase-locking (resonance).

To compute the normal-form indices, we adopt the framework

for non-resonant Hopf–Hopf bifurcation presented in [42, 43] and

formalized in Theorem (2). The system (19) can be expressed as

𝐗
′ = 𝐹 (𝐗, 𝜅), 𝐗 ∈ ℝ

4, 𝜅 ∈ ℝ
2, (22)

which admits an equilibrium at 𝐗̇ for 𝜅̇ = (𝑠, 𝜒). The Jacobian matrix

𝐴 has two pairs of simple purely imaginary eigenvalues,

𝜆1,2 = ±𝑖𝜔1, 𝜆3,4 = ±𝑖𝜔2, 𝜔1, 𝜔2 > 0.

Since these eigenvalues are simple, the corresponding eigenvectors

𝑞1,2 ∈ ℂ
4 satisfy 𝐴𝑞1 = 𝑖𝜔1𝑞1 and 𝐴𝑞2 = 𝑖𝜔2𝑞2. Explicitly,

𝑞1 =

⎡⎢⎢⎢⎢⎢⎣

𝑖 𝜔1

𝐴21

1

0

0

⎤⎥⎥⎥⎥⎥⎦

, 𝑞2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴13𝐴34 + 𝑖𝜔2𝐴14 + 𝐴12𝐴24

𝜔2
2
+ 𝐴12𝐴21

−𝑖𝐴13𝐴21𝐴34 + 𝜔2𝐴14𝐴21 + 𝑖𝜔2
2
𝐴24

𝜔2

(
𝜔2

2
+ 𝐴12𝐴21

)
𝐴34

𝑖 𝜔2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The adjoint eigenvectors 𝑝1,2 ∈ ℂ
4 satisfy 𝐴⊤𝑝1 = −𝑖𝜔1𝑝1 and

𝐴⊤𝑝2 = −𝑖𝜔2𝑝2. Normalizing with respect to the standard scalar

product, we impose

⟨𝑝1, 𝑞1⟩ = ⟨𝑝2, 𝑞2⟩ = 1, ⟨𝑝2, 𝑞1⟩ = ⟨𝑝1, 𝑞2⟩ = 0.

Accordingly, we obtain

𝑝1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖 𝜔1

−2𝐴12
1

2

𝜔1

(
𝜔1 𝐴13 + 𝑖𝐴14𝐴43

)
− 𝐴12𝐴24𝐴43

2𝐴12

(
𝜔2

1
+ 𝜔2

2

)
𝜔1

(
𝑖 𝐴13𝐴34 + 𝜔1𝐴14 + 𝑖𝐴12𝐴24

)

2𝐴12

(
𝜔2

1
+ 𝜔2

2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

𝑖 𝜔2

2𝐴34
1

2

⎤⎥⎥⎥⎥⎥⎥⎦

.

Let 𝑇 𝑐 ⊂ ℝ
4 denote the corresponding generalized critical eigenspace

of 𝐴. The center manifold is parameterized by the complex ampli-

tudes 𝐖 = (𝑤1, 𝑤2) ∈ ℂ
2 via

𝐗 − 𝐗̇ = 𝐻 (𝐖) ∶= 𝑦, 𝐻 ∶ ℂ
2
→ ℝ

4. (23)

The dynamics restricted to the center manifold are given by

𝐖
′ =

𝑑𝐖

𝑑𝑡
= 𝐺 (𝐖) , 𝐺 ∶ ℂ

2
→ ℂ

2. (24)

Substituting (23) and (24) into (22) (evaluated at 𝜅 = 𝜅̇) yields the

homological equation

𝐷𝐻 (𝐖) 𝐺 (𝐖) = 𝐹
(
𝐗̇ +𝐻 (𝐖) , 𝜅̇

)
= 𝐹

(
𝐗̇ + 𝑦, 𝜅̇

)
, (25)

Hence, the homological equation (25) can be expressed as

𝐻𝑤1
𝑤′

1
+𝐻𝑤1

𝑤
′

1
+𝐻𝑤2

𝑤′
2
+𝐻𝑤2

𝑤
′

2
= 𝐹

(
𝐗̇ + 𝑦, 𝜅̇

)
, (26)

where 𝐹 admits the Taylor expansion

𝐹
(
𝐗̇ + 𝑦, 𝜅̇

)
= 𝐴𝑦 +

1

2
𝐵 (𝑦, 𝑦) +

1

6
𝐶 (𝑦, 𝑦, 𝑦) +⋯ ,

with

(𝐵 (𝐚,𝐛))𝑖 =

4∑
𝑗,𝑘=1

𝜕2𝐹𝑖

𝜕𝑋𝑗 𝜕𝑋𝑘

|||||(𝐗̇,𝜅̇)
𝑎𝑗𝑏𝑘,

(𝐶 (𝐚,𝐛, 𝐜))𝑖 =

4∑
𝑗,𝑘,𝑛=1

𝜕3𝐹𝑖

𝜕𝑋𝑗 𝜕𝑋𝑘 𝜕𝑋𝑛

|||||(𝐗̇,𝜅̇)
𝑎𝑗𝑏𝑘𝑐𝑛.

The dynamics of any vector 𝑦 ∈ 𝑇 𝑐 lying in the critical eigenspace

can be expressed as

𝑦 = 𝑤1𝑞1 +𝑤1 𝑞1 +𝑤2𝑞2 +𝑤2 𝑞2,

with 𝑤1 = ⟨𝑝1, 𝑦⟩ and 𝑤2 = ⟨𝑝2, 𝑦⟩. Moreover, setting 𝑃 ∶=[
𝑝∗
1
, 𝑝

∗

1
, 𝑝∗

2
, 𝑝

∗

2

]⊤
with 𝑝∗

𝑖
∶= 𝑝

⊤

𝑖
and 𝑄 ∶=

[
𝑞1, 𝑞1, 𝑞2, 𝑞2

]
, we write

𝑃 𝐻 (𝐖) =

⎡⎢⎢⎢⎣

𝑝∗
1
𝑦

𝑝1 𝑦

𝑝∗
2
𝑦

𝑝2 𝑦

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

⟨𝑝1, 𝑦⟩⟨𝑝1, 𝑦⟩⟨𝑝2, 𝑦⟩⟨𝑝2, 𝑦⟩

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

𝑤1

𝑤1

𝑤2

𝑤2

⎤⎥⎥⎥⎦
= 𝐖.

Also, 𝑃𝑄 = 𝕀. Differentiating at 𝐖 = 𝟎 gives

𝑃 𝐷𝐻 (𝟎) = 𝐷𝐖|
𝐖=𝟎 ⟹ 𝑃 𝐷𝐻 (𝟎) = 𝕀.

Because 𝑃 sends each vector in the center subspace to its unique

coordinates in the basis {𝑞1, 𝑞1, 𝑞2, 𝑞2}, the coordinate map is bijective

and hence invertible. Consequently,

𝐷𝐻 (𝟎) = 𝑄 ⟹

𝐻𝑤1
(0) = 𝑞1, 𝐻𝑤1

(0) = 𝑞1,

𝐻𝑤2
(0) = 𝑞2, 𝐻𝑤2

(0) = 𝑞2.

The general multivariable Taylor series for 𝐻 and 𝐺 yields

𝐻 (𝐖) =
∑
|𝜈|≥1

1

𝜈!
ℎ𝜈 𝐖

𝜈, 𝐺 (𝐖) =
∑
|𝜈|≥1

1

𝜈!
𝑔𝜈 𝐖

𝜈,

from which

𝐻 (𝐖) = 𝑤1𝑞1 +𝑤1 𝑞1 +𝑤2𝑞2 +𝑤2 𝑞2

+
∑

𝑗+𝑘+𝑛+𝑚≥2
1

𝑗! 𝑘! 𝑛!𝑚!
ℎ𝑗𝑘𝑛𝑚 𝑤

𝑗

1
𝑤

𝑘

1
𝑤 𝑛

2
𝑤

𝑚

2
,

with ℎ𝑗𝑘𝑛𝑚 ∈ ℂ
4 and ℎ𝑘𝑗𝑛𝑚 = ℎ𝑗𝑘𝑛𝑚. Collecting the coefficients of the

𝑤
𝑗

1
𝑤

𝑘

1
𝑤𝑛

2
𝑤

𝑚

2
-terms with 𝑗 + 𝑘 + 𝑛 + 𝑚 = 2 in (26) gives

ℎ1100 = 𝐴−1𝐵
(
𝑞1, 𝑞1

)
,

ℎ2000 = (2i𝜔1𝐼 − 𝐴)−1𝐵
(
𝑞1, 𝑞1

)
,

ℎ1010 = [i(𝜔1 + 𝜔2)𝐼 − 𝐴]−1𝐵
(
𝑞1, 𝑞2

)
,

ℎ1001 = [i(𝜔1 − 𝜔2)𝐼 − 𝐴]−1𝐵
(
𝑞1, 𝑞2

)
,

ℎ0020 = (2i𝜔2𝐼 − 𝐴)−1𝐵
(
𝑞2, 𝑞2

)
,

ℎ0200 = (−2i𝜔1𝐼 − 𝐴)−1𝐵
(
𝑞1, 𝑞1

)
,

ℎ0011 = 𝐴−1𝐵
(
𝑞2, 𝑞2

)
,

ℎ0110 = [i(𝜔2 − 𝜔1)𝐼 − 𝐴]−1𝐵
(
𝑞1, 𝑞2

)
.

Collecting the coefficients of the resonant cubic terms in (26), one

obtains the resonant cubic coefficients in the normal form

𝐺2100 =
⟨
𝑝1, 𝐶

(
𝑞1, 𝑞1, 𝑞1

)
+ 𝐵

(
ℎ2000, 𝑞1

)
+ 2𝐵

(
ℎ1100, 𝑞1

)⟩
,

𝐺1011 =
⟨
𝑝1, 𝐶

(
𝑞1, 𝑞2, 𝑞2

)
+ 𝐵

(
ℎ1010, 𝑞2

)
+ 𝐵

(
ℎ1001, 𝑞2

)
+ 𝐵

(
ℎ0011, 𝑞1

)⟩
,

𝐺1110 =
⟨
𝑝2, 𝐶

(
𝑞1, 𝑞1, 𝑞2

)
+ 𝐵

(
ℎ1100, 𝑞2

)
+ 𝐵

(
ℎ1010, 𝑞1

)
+ 𝐵

(
ℎ1001, 𝑞1

)⟩
,

𝐺0021 =
⟨
𝑝2, 𝐶

(
𝑞2, 𝑞2, 𝑞2

)
+ 𝐵

(
ℎ0020, 𝑞2

)
+ 2𝐵

(
ℎ0011, 𝑞2

)⟩
,

and the corresponding cubic coefficients ℎ𝑗𝑘𝑛𝑚 satisfying the orthog-

onality conditions:

ℎ2100 = (𝑖𝜔1𝐼𝑛 − 𝐴)−1
[
𝐶
(
𝑞1, 𝑞1, 𝑞1

)
+ 𝐵

(
ℎ2000, 𝑞1

)
+ 2 𝐵

(
ℎ1100, 𝑞1

)
− 𝐺2100 𝑞1

]
,

ℎ1011 = (𝑖𝜔1𝐼𝑛 − 𝐴)−1
[
𝐶
(
𝑞1, 𝑞2, 𝑞2

)
+ 𝐵

(
ℎ1010, 𝑞2

)
+ 𝐵

(
ℎ1001, 𝑞2

)
+ 𝐵

(
ℎ0011, 𝑞1

)
− 𝐺1011 𝑞1

]
,

ℎ1110 = (𝑖𝜔2𝐼𝑛 − 𝐴)−1
[
𝐶
(
𝑞1, 𝑞1, 𝑞2

)
+ 𝐵

(
ℎ1100, 𝑞2

)
+ 𝐵

(
ℎ1010, 𝑞1

)
+ 𝐵

(
ℎ̄1001, 𝑞1

)
− 𝐺1110 𝑞2

]
,

ℎ0021 = (𝑖𝜔2𝐼𝑛 − 𝐴)−1
[
𝐶
(
𝑞2, 𝑞2, 𝑞2

)
+ 𝐵

(
ℎ0020, 𝑞2

)
+ 2𝐵

(
ℎ0011, 𝑞2

)
− 𝐺0021 𝑞2

]
.

Then, the system (22) restricted to the center manifold takes the

John Cajas et al.: Working Paper, nov. 2025 Page 8 of 17



Resonant and non-resonant Double Hopf bifurcation in a 4D Goodwin model with Wage inequality

𝛼 𝛽 𝛿 𝑠 𝜎 𝛾 𝜀𝑎 𝜀𝑝 𝜀0
𝑤

𝜌 𝑢0 𝑣0 𝑧0 𝜀𝑤,0 𝜔1

0.016 0.016 0.052 0.61 2.725 0.227 0.7 0.7 0.7 0.625 0.6 0.95 0.6 0.65 0.184348

Table 1
Parameter values, initial conditions, and frequency of the Goodwin cycle for system (19).

normal form

𝑤′
1
= 𝑖𝜔1𝑤1 +

1

2
𝐺2100𝑤1|𝑤1|2 + 𝐺1011𝑤1|𝑤2|2

+ 𝑂
(‖ (𝑤1, 𝑤2

) ‖5) ,
𝑤′

2
= 𝑖𝜔2𝑤2 + 𝐺1110𝑤2|𝑤1|2 + 1

2
𝐺0021𝑤2|𝑤2|2

+ 𝑂
(‖ (𝑤1, 𝑤2

) ‖5) .

(27)

Moreover, if
(
Re𝐺2100

) (
Re𝐺1011

) (
Re𝐺1110

) (
Re𝐺0021

) ≠ 0,

the system (22) is locally smoothly orbitally equivalent near the

bifurcation to

𝑣′
1
= 𝑣1

(
1

2
𝑃11

||𝑣1||2 + 𝑃12
||𝑣2||2

)
+ 𝑂

(‖ (𝑣1, 𝑣2
) ‖5) ,

𝑣′
2
= 𝑣2

(
𝑃21

||𝑣1||2 + 1

2
𝑃22

||𝑣2||2
)
+ 𝑂

(‖ (𝑣1, 𝑣2
) ‖5) .

with

𝑃11 = Re 𝐺2100, 𝑃12 = Re 𝐺1011,

𝑃21 = Re 𝐺1110, 𝑃22 = Re 𝐺0021.

Let 𝑣1 = 𝑟1𝑒
𝑖𝜑1 and 𝑣2 = 𝑟2𝑒

𝑖𝜑2 , in polar coordinates (𝑟1, 𝑟2, 𝜑1, 𝜑2),

the system before can be written as:

𝑟′
1
= 𝑟1

(
1

2
𝑃11 𝑟

2
1
+ 𝑃12 𝑟

2
2

)
+ +𝑂

(‖ (𝑟1, 𝑟2
) ‖5) ,

𝑟′
2
= 𝑟2

(
𝑃21 𝑟

2
1
+

1

2
𝑃22 𝑟

2
2

)
+ 𝑂

(‖ (𝑟1, 𝑟2
) ‖5) ,

𝜑′
1
= 𝜔1 +

1

2
Im𝐺2100 𝑟

2
1
+ Im𝐺1011 𝑟

2
2
+ Ψ1(𝑟1, 𝑟2, 𝜑1, 𝜑2),

𝜑′
2
= 𝜔2 + Im𝐺1110 𝑟

2
1
+

1

2
Im𝐺0021 𝑟

2
2
+ Ψ2(𝑟1, 𝑟2, 𝜑1, 𝜑2).

with Ψ𝑘 is a smooth remainder in the phase equations that is 2𝜋 peri-

odic in each angle and vanishes with the amplitudes.

Now, in examining the resonance cases associated with the double

Hopf bifurcation [44, 43], and following the detailed analyses of

the specific resonance conditions 1∶1, 1∶2, and 1∶3 presented in

[45, 46, 47, 48], we employ the coefficients of the resonant cubic

terms 𝐺𝑗𝑘𝑛𝑚 to construct the corresponding normal forms for each

resonance case described in Theorem (2). Accordingly, the following

specific formulations from (27) are obtained:

Figure 1: (a) Theoretical frequency ratio 𝜔1∕𝜔2 as a function of the
adjustment speed of underemployment, 𝜒 . (b) Numerical bifurcation
diagram for the local maxima of the employment rate.

• 1∶1 resonance (𝜔1 = 𝜔2 = 𝜔). The normal form takes the

structure

𝑤′
1
= 𝑖𝜔𝑤1 +

1

2
𝐺2100𝑤1|𝑤1|2 + 𝐺1011𝑤1|𝑤2|2

+ 𝐺1 𝑤1𝑤
2
2
+ 𝑂

(‖(𝑤1, 𝑤2)‖4
)
,

𝑤′
2
= 𝑖𝜔𝑤2 + 𝐺1110𝑤2|𝑤1|2 + 1

2
𝐺0021𝑤2|𝑤2|2

+ 𝐺2𝑤
2
1
𝑤2 + 𝑂

(‖(𝑤1, 𝑤2)‖4
)
,

where the remainder is 𝑂
(‖(𝑤1, 𝑤2)‖4

)
due to the presence

of the quadratic resonant monomials
(
𝑤1𝑤

2
2
, 𝑤2

1
𝑤2

)
. Conse-

quently,

𝐺1 =
⟨
𝑝1, 𝐶

(
𝑞1, 𝑞2, 𝑞2

)
+ 2𝐵

(
ℎ0110, 𝑞2

)
+ 𝐵

(
ℎ0020, 𝑞1

)⟩
,

𝐺2 =
⟨
𝑝2, 𝐶

(
𝑞1, 𝑞1, 𝑞2

)
+ 𝐵

(
ℎ2000, 𝑞2

)
+ 2𝐵

(
ℎ1001, 𝑞1

)⟩
.

• 1∶2 resonance (𝜔2 = 2𝜔1). In this case the normal form is

𝑤′
1
= 𝑖𝜔1𝑤1 +

1

2
𝐺2100𝑤1|𝑤1|2 + 𝐺1011𝑤1|𝑤2|2

+ 𝐺1 𝑤1𝑤2 + 𝑂
(‖(𝑤1, 𝑤2)‖3

)
,

𝑤′
2
= 𝑖𝜔2𝑤2 + 𝐺1110 𝑤2|𝑤1|2 + 1

2
𝐺0021𝑤2|𝑤2|2

+ 𝐺2𝑤
2
1
+ 𝑂

(‖(𝑤1, 𝑤2)‖3
)
,

with 𝑂
(‖(𝑤1, 𝑤2)‖3

)
arising from the quadratic resonant

monomials
(
𝑤1𝑤2, 𝑤

2
1

)
. Therefore,

𝐺1 =
⟨
𝑝1, 𝐵

(
𝑞1, 𝑞2

)⟩
, 𝐺2 =

1

2

⟨
𝑝2, 𝐵

(
𝑞1, 𝑞1

)⟩
.

• 1∶3 resonance (𝜔2 = 3𝜔1). The corresponding normal form is

𝑤′
1
= 𝑖𝜔1𝑤1 +

1

2
𝐺2100𝑤1|𝑤1|2 + 𝐺1011𝑤1|𝑤2|2

+ 𝐺1 𝑤
2

1
𝑤2 + 𝑂

(‖(𝑤1, 𝑤2)‖4
)
,

𝑤′
2
= 𝑖𝜔2𝑤2 + 𝐺1110𝑤2|𝑤1|2 + 1

2
𝐺0021𝑤2|𝑤2|2

+ 𝐺2𝑤
3
1
+ 𝑂

(‖(𝑤1, 𝑤2)‖4
)
,

where the order 𝑂
(‖(𝑤1, 𝑤2)‖4

)
reflects the quadratic resonant

monomials
(
𝑤2𝑤

2
1
, 𝑤3

1

)
. Hence,

𝐺1 =
⟨
𝑝1, 𝐶

(
𝑞1, 𝑞1, 𝑞2

)
+ 𝐵

(
ℎ0200, 𝑞2

)
+ 2𝐵

(
ℎ0110, 𝑞1

)⟩
,

𝐺2 =
⟨
𝑝2, 𝐶

(
𝑞1, 𝑞1, 𝑞1

)
+ 3𝐵

(
ℎ2000, 𝑞1

)⟩
.

6. Numerical Simulations

To illustrate the dynamics of the system and compute the coeffi-

cients of the cubic normal form, we conducted numerical simulations.

All simulations were performed in Matlab (R2024b) using ode45

with relative tolerance 10−6 and absolute tolerance 10−8. The vector

field is evaluated from the symbolic specification in Section 2 to

ensure consistent Jacobians for variational computations (normal-

form indices). The bifurcation package MatCont [49, 50] was used

only as an exploratory tool to locate parameter regions of interest and

to cross-check resonance locations.

Concerning parameter values, we adopt the estimates of 𝛼, 𝛽, 𝛿, 𝑠, 𝜎

and 𝛾 for the U.S. economy reported in [38]. For type 2 relative pro-

ductivity 𝜀𝑎, type 2 relative bargaining power 𝜀𝑝, and the equilibrium

value of the type 2 relative wage 𝜀0
𝑤

, we set all three equal to 0.7,

representing an empirically plausible asymmetry between type 1 and

type 2 workers.12. Given these parameter values, we use equation (18)

12Under this configuration, type 2 workers are assumed to be 70% as productive

as type 1 workers; their influence on the growth rate of real wages is 70% of that

of type 1 workers; and their equilibrium relative wage corresponds to 70% of the

wage level of type 1 workers.
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Figure 2: Time series evolution of the state variables for the 1∶1 resonance case (𝜒 ≈ 0.08227).

Figure 3: Comprehensive 2D phase portraits for the 1∶1 resonance case (𝜒 ≈ 0.08227).

to calibrate 𝜌 so that the equilibrium employment rate 𝑣̇ matches the

value reported in [38]. This parameterization yields a frequency for

the Goodwin cycle of 𝜔1 = 0.184348394. The term 𝜒 is treated as a

free calibration parameter that allows us to vary the frequency of the

underemployment cycle, 𝜔2, and thereby explore alternative dynamic

regimes of the model.

The initial conditions for the state variables (𝑢0, 𝑣0, 𝑧0, 𝜀𝑤,0) are

chosen as a representative point in the state space, located in close

proximity to the non-trivial equilibrium. This selection ensures that

the initial state lies within the basin of attraction of the stable limit

cycle generated by the double Hopf bifurcation. Such an initialization

enables the simulation to illustrate the tendency of the system to

converge toward its characteristic quasi-periodic attractor. The cor-

responding parameter values, initial conditions, and frequency of the

Goodwin cycle are summarized in Table (1).

Figure (1) summarizes the response of the dynamical system to

variations in the adjustment speed of underemployment, 𝜒 . Panel

(a) depicts the theoretical frequency ratio 𝜔1∕𝜔2 as a function of

𝜒 , allowing the identification of the resonant cases at 1.000021

(𝜒 = 0.08227), 1.999981 (𝜒 = 0.32906), and 2.999981 (𝜒 =

0.74039). For illustrative purposes, two non-resonant cases are also

selected: 1.3333 ≈ 4∕3 (𝜒 = 0.14625), which approximates a

rational frequency ratio, and 1.4142 ≈
√
2 (𝜒 = 0.16453), which

approximates an irrational ratio. These values are consistent with the

affine dependence of the squared frequencies derived in Eq. (21) and

confirm the transversality condition (H1) stated in Theorem (2).

Panel (b) presents the numerical bifurcation diagram for the

local maxima of the employment rate, illustrating how variations

in 𝜒 affect the long-run dynamics of the system. The diagram re-

veals alternating regions of ordered and complex behavior. Narrow

periodic windows appear near the resonant frequency ratios, indi-

cating regular, synchronized cycles in which the employment rate

follows a predictable sequence of maxima. Between these resonant

windows, the plot becomes densely populated, reflecting complex

quasi-periodic motion in which the maxima of 𝑣 no longer repeat

exactly. As the adjustment speed of underemployment (𝜒) increases,

the diagram becomes progressively more intricate, suggesting that the

system transitions toward increasingly irregular oscillations through

successive resonances. Given 𝜔1 = 0.184348394, the corresponding

periods for the resonant cases are 𝑇1 ≈ 34.09 (1∶1), 𝑇2 ≈ 17.04

(1∶2), and 𝑇3 ≈ 11.36 (1∶3), which match the observed spacing of the

maxima. This structure constitutes the numerical counterpart of the
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Figure 4: Comprehensive 3D projections of the system attractor for the 1∶1 resonance case (𝜒 ≈ 0.08227).

Figure 5: Time series evolution of the state variables for the 1∶2 resonance case (𝜒 ≈ 0.32906).

center-manifold normal form analyzed in Section 5 and reproduces

the resonance patterns discussed after Eq. (27).

6.1. Dynamics under the 1∶1 resonant Hopf-Hopf bifurcation

This subsection discusses the behavior of the system under a

1∶1 resonance condition, which occurs when the frequencies of the

Goodwin and underemployment cycles are equal (𝜔1 = 𝜔2). For

this simulation, the speed of adjustment of underemployment is set

to 𝜒 ≈ 0.08227. The cubic coefficients and the resonant quadratics

are reported below:

𝐺2100 = 0.107163 i,

𝐺1011 = 0.026209 + 0.019883 i,

𝐺1110 = −0.078294 i,

𝐺0021 = −0.115613 + 0.061771 i,

with the resonant terms:

𝐺1 = 0.214336+0.244343 i, 𝐺2 = −0.051601−0.195733 i.

The time series in Fig. (2) exhibit near-sinusoidal, phase-locked

oscillations with 𝜔1 = 𝜔2 = 0.184348394. The amplitudes evolve

under 𝑃11 ≈ 0, 𝑃12 = 0.026209, 𝑃21 ≈ 0 and 𝑃22 = −0.115613:

the Goodwin pair grows solely through cross-coupling from the un-

deremployment pair, while the latter self-saturates. This mechanism

accounts for the single-tone envelopes observed in 𝑢, 𝑣, 𝑧, 𝜀𝑤 at the

period 𝑇 ≈ 34.08. All four state variables move in perfect synchrony,

completing their cycles over the same period. The oscillations are

stable, with 𝑢 moving from 0.60 up to 0.65, while 𝑣 cycles between

0.91 and 0.98. 𝑧 shows a tight oscillation, fluctuating from 0.575 up

to 0.605, and 𝜖𝑤 shows a wide amplitude, moving from a low of 0.64

up to 0.76.

In Fig. (3), the (𝑢, 𝑣) cycle traces a simple, stable ellipse, and

the (𝑧, 𝜖𝑤) cycle also forms a clean ellipse, with its shape defined by

the 𝜖𝑤 oscillation reaching 0.76. Furthermore, Fig. (4) also confirms,

through the ellipses in (𝑢, 𝑣) and (𝑧, 𝜀𝑤), the presence of a single

closed orbit, corresponding to a torus collapsed by the 1∶1 locking.

With 𝑃12 > 0 and 𝑃22 < 0, the amplitude flow governed by Eq. (27)

again selects a mixed-mode cycle in which the underemployment

block stabilizes the nonlinear dynamics while simultaneously feeding

the Goodwin block. This configuration remains consistent with the

1∶1 reduced system.

6.2. Dynamics under the 1∶2 resonant Hopf-Hopf bifurcation

Here, we analyze the dynamics under a 1∶2 resonance, where the

frequency of the underemployment cycle is twice that of the Goodwin

cycle (𝜔2 = 2𝜔1). This case is simulated by setting the adjustment
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Figure 6: Comprehensive 2D phase portraits for the 1∶2 resonance case (𝜒 ≈ 0.32906).

Figure 7: Comprehensive 3D projections of the system attractor for the 1∶2 resonance case (𝜒 ≈ 0.32906).

speed of underemployment to 𝜒 ≈ 0.32906. The coefficients com-

puted below exhibit a single nonzero quadratic resonance:

𝐺2100 = 0.107163 i,

𝐺1011 = 0.028133 + 0.021342 i,

𝐺1110 = −0.250529 i,

𝐺0021 = −0.322539 + 0.008230 i,

with the resonant terms:

𝐺1 = 0.030824, 𝐺2 = 0.

From the time series exhibit in Fig. (5), the variables 𝑧 and 𝜖𝑤
oscillate at twice the frequency, completing two full sinusoidal waves

in the same time it takes 𝑢 and 𝑣 to complete one cycle. This 1∶2:

𝜔2 = 0.368693214 ≈ 2𝜔1 and 𝑇2 ≈ 17.04 coupling alters the

slow dynamics, inducing a “tall/short” peak pattern in 𝑣 and 𝑢, where

major peaks reach 0.65 while minor peaks are limited to 0.63. The

amplitude coefficients 𝑃12 = 0.028133 and 𝑃22 = −0.322539 once

again yield cross-feeding from the fast block to the slow one, with

self-limitation in the fast block. So the visible morphology is dictated

by the amplitude block—𝑃12 > 0 and 𝑃22 < 0—already reflected in

the alternating tall/short peaks of 𝑢.

In Fig. (6), the dynamics is strictly 1∶2 phase–locked: the closed

traces show no beat or envelope drift over multiple laps, and the

spectrum contains only (𝜔1, 2𝜔1) without sidebands above numerical

noise. The two lobes in mixed projections have near-equal area and

uniform arc–length density, indicating negligible slow–amplitude

variation along the orbit. Now, we observe that the (𝑧−𝜖𝑤) projection

remains a clean ellipse (see Figs. (9), (11), and (13)), as it represents

the self-limited 𝜔2 fast–oscillating mode (consistent with 𝑃22 < 0),

which serves as the source of the second frequency.

In contrast, the (𝑢−𝑣) cycle is warped, as the slow 𝜔1 mode is

forced by the 2× frequency. Critically, mixed projections plotting

a 1× variable (like 𝑣) against a 2× variable (like 𝑧) must trace

two excursions of the fast variable for every one of the slow. This

creates the geometric manifestation of the 1∶2 resonance: a two-

lobed, “figure-eight” motif, as seen in (𝑣−𝑧), where 𝑧 cycles from 0.55

to 0.62. The 3D views in Fig. (7) display a single smooth closed orbit;

the apparent constriction is a rendering/projection artifact rather than

a genuine pinch. The orbit closes after two excursions of the fast

variables for each slow cycle, consistent with 1∶2 phase locking.

6.3. Dynamics under the 1∶3 resonant Hopf-Hopf bifurcation

This subsection explores the 1∶3 resonance condition, where the

frequency of the underemployment cycle is three times that of the
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Figure 8: Time series evolution of the state variables for the 1∶3 resonance case (𝜒 ≈ 0.74039).

Figure 9: Comprehensive 2D phase portraits for the 1∶3 resonance case (𝜒 ≈ 0.74039).

Goodwin cycle (𝜔2 = 3𝜔1). The simulation is conducted with an

adjustment speed of underemployment of 𝜒 ≈ 0.74039. As detailed

below, the quadratic term exerts a significant influence:

𝐺2100 = 0.107163 i,

𝐺1011 = 0.034452 + 0.026136 i,

𝐺1110 = −0.543561 i,

𝐺0021 = −0.546163 − 0.190480 i,

with resonant terms:

𝐺1 = −0.051896 − 0.085510 i, 𝐺2 = 0.

In Fig. (8) we note that the series show tripling of the fast block:

𝜔2 = 0.553041688 ≈ 3𝜔1 with 𝑇2 ≈ 11.36. The fast variables 𝑧 and

𝜖𝑤 complete three oscillations, with 𝜖𝑤 moving from 0.65 to 0.75, for

every single slow cycle of 𝑢, which goes from 0.60 to 0.65. As noted,

𝑣 now shows highly considerable changes; the injection of a strong

third harmonic from the fast cycle induces a much more complex

and pronounced modulation on the 𝑣 waveform than in the 1∶2 case.

Amplitude flow is weaker but of the same sign pattern as above (𝑃12 =

0.034452, 𝑃22 = −0.546163), so the Goodwin pair remains slaved

to the underemployment pair for amplitude selection while the fast

block self-limits. At the reported amplitudes, the visible morphology

is set by the amplitude coefficients—𝑃12 > 0 and 𝑃22 < 0—so the

fast block self–limits while cross–feeding the slow one.

For Fig. (9), the mixed planes show the canonical three–lobed

motifs and an S–shaped loop in (𝑢, 𝑣), consistent with 1∶3 phase

locking (three excursions of (𝑧, 𝜀𝑤) per slow cycle). Hence the lobes

are most prominent in projections involving 𝜀𝑤. In Fig. (10), the

closed traces complete three wraps in the fast coordinates per one

slow rotation, matching the 1∶3 winding. The observed twisting and

sharper features follow from the tri–lobed geometry and modal partic-

ipation under the 1∶3 coupling, not from additional slow modulation.

No thickening is visible, indicating absence of slow drift; this is

consistent with exact locking at 𝜔2∕𝜔1 ≈ 3 and the presence of the

1∶3 resonant monomials listed after Eq. (27).

6.4. Dynamics under non-resonant conditions

To contrast with the resonant cases, we also explore the dynamics

of the system when the frequency ratio is not a simple integer ratio.

6.4.1. Rational frequency ratio

First, we consider a non-resonant case in which the frequency

ratio is a more complex rational number, specifically 𝜔1∕𝜔2 = 3∕4.

This scenario is simulated using 𝜒 ≈ 0.14625. The coefficients

below describe the generic double–Hopf coupling without quadratic
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Figure 10: Comprehensive 3D projections of the system attractor for the 1∶3 resonance case (𝜒 ≈ 0.74039).

Figure 11: Comprehensive 2D phase portraits for the non resonance case but with rational ratio (𝜒 ≈ 0.14625).

resonant terms:

𝐺2100 = 0.107163 i,

𝐺1011 = 0.025205 + 0.019122 i,

𝐺1110 = −0.121469 i,

𝐺0021 = −0.175761 + 0.062620 i.

In Fig. (11), the (𝑢, 𝑣) and 𝑣–𝜀𝑤 panels show rosette–like closures

with three and four petals, respectively, consistent with the 3∶4

winding dictated by the measured frequencies. The “underemploy-

ment circle” remains nearly round, reflecting modest deformation in

(𝑧, 𝜀𝑤). Because the ratio is rational but nonresonant (no quadratic

resonance terms), the center–manifold dynamics yields a periodic

orbit (a closed trajectory) on the invariant two–torus rather than

quasi–periodic filling. The frequencies share a common multiple.

The system is therefore periodic, and the attractor is a complex,

one–dimensional closed curve. This is observed in the “rosette-like”

closures of Fig. (11): the (𝑣−𝜖𝑤) projection forms a four-petaled figure

(with 𝜖𝑤 oscillating from 0.64 to 0.76), while (𝑣−𝑧) shows three petals

(with 𝑧 moving from 0.57 to 0.61).

In Fig. (12), the 3D projections show a single closed space curve

that wraps several times around the fast directions before returning

to its starting point after the common period (about 102 in our run).

The petal count and their placement reflect the 3∶4 winding (three

slow rotations per four fast excursions), i.e., periodic closure on the

invariant two–torus rather than quasiperiodic filling. Consistent with

the amplitude block, 𝑃12 > 0 and 𝑃22 < 0, the oscillations remain

bounded and the tube thickness is nearly uniform along the orbit.

Any visible twisting is mild and attributable to the 3∶4 geometry and

projection, not to additional resonant forcing.

6.4.2. Irrational frequency ratio

Finally, we examine a case in which the frequency ratio is irra-

tional, leading to quasi-periodic motion on the surface of a torus.

For this simulation, we set the ratio 𝜔1∕𝜔2 = 1∕
√
2 by choosing

𝜒 ≈ 0.16453. The coefficients listed below specify the nonresonant

normal form:

𝐺2100 = 0.107163 i,

𝐺1011 = 0.025366 + 0.019243 i,

𝐺1110 = −0.134212 i,

𝐺0021 = −0.192226 + 0.059917 i.

In Fig. (13), each 2D panel shows a densely filled band— the planar

trace of quasi–periodic motion on an invariant two–torus—rather

than a single closed loop. With 𝜔2∕𝜔1 ≈
√
2, the mixed projections

(e.g., 𝑣 versus 𝜀𝑤) tile the plane in a nearly rectangular pattern, as
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Figure 12: Comprehensive 3D projections of the system attractor for the non resonance case but with rational ratio (𝜒 ≈ 0.14625).

Figure 13: Comprehensive 2D phase portraits for the non resonance case but with irrational ratio (𝜒 ≈ 0.16453).

expected for an irrational rotation. The amplitude dynamics keeps the

tube thickness essentially uniform across traversals and the frequen-

cies never share a common multiple. The system is quasi-periodic.

The trajectory never closes and, over time, passes arbitrarily close to

every point on a two–dimensional surface.

Thus, the attractor is the “filled two-torus” seen in Fig. (14). The

widths of the tube along different projections reflect the measured

amplitude interplay 𝑃12 > 0, 𝑃22 < 0, with the fast block contributing

most of the curvature. Because the angles advance at an irrational

ratio, the trajectory never closes. The 2D projections are not lines but

“densely filled bands”, such as the (𝑢−𝑣) region defined by 𝑢 between

0.59–0.65 and 𝑣 between 0.91–0.98. The visual contrast with the

rational case underscores the role of the rotation number in shaping

the flow.

Remark 2. A central finding of this work is the failure of Lya-

punov stability at the steady-state equilibrium. This failure is a direct

consequence of a significant degeneracy in the cubic normal-form

coefficients. The standard non-degeneracy condition for a generic

double Hopf bifurcation requires that all amplitude coefficients are

non-zero, formally stated as

(
Re𝐺2100

) (
Re𝐺1011

) (
Re𝐺1110

) (
Re𝐺0021

) ≠ 0 .

Our analysis reveals that the dynamical system violates this standard

condition. Specifically, our numerical evaluation robustly demon-

strates that the first Lyapunov coefficients (the self-coupling terms)

are numerically zero:

𝑃11 = Re(𝐺2100) ≈ 0, 𝑃21 = Re(𝐺1110) ≈ 0.

This degeneracy (𝑃11 ≈ 0, 𝑃21 ≈ 0) is fundamental. It implies that

the oscillatory modes, corresponding to the amplitudes 𝑟1 (Goodwin

cycle) and 𝑟2 (underemployment cycle), lack intrinsic self-damping

or self-saturation mechanisms at the cubic order. Consequently, the

local dynamics are entirely dictated by the nonlinear cross-coupling

structure in the amplitude equations:

𝑟′
1
= 𝑟1

(
1

2
𝑃11𝑟

2
1
+ 𝑃12𝑟

2
2

)
≈ 𝑟1 (𝑃12𝑟

2
2
),

𝑟′
2
= 𝑟2

(
𝑃21𝑟

2
1
+

1

2
𝑃22𝑟

2
2

)
≈ 𝑟2

(
1

2
𝑃22𝑟

2
2

)
.

Our computations yield a consistent sign pattern for the non-zero

coupling coefficients: 𝑃12 > 0 and 𝑃22 < 0. This structure defines

the flow:

• The 𝑟2 mode is self-limiting (𝑃22 < 0), saturating its own

amplitude.
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Figure 14: Comprehensive 3D projections of the system for the non resonance case but with irrational ratio (𝜒 ≈ 0.16453).

• The 𝑟1 mode, lacking self-damping, is driven by a positive

(destabilizing) cross-feeding term from the 𝑟2 mode (𝑃12 > 0).

This interaction generates an expansive flow (outward drift) in the

amplitude phase space, rendering the equilibrium a repulsor (or a

saddle-type instability on the center manifold). The local instability,

guaranteed by this cubic degeneracy, is precisely the mechanism that

necessitates the evolution of trajectories away from the origin and

onto the non-trivial, bounded attractors (the synchronized limit cycles

and quasi-periodic tori) documented in Section 6. This diagnostic is

robust at the third order.

7. Conclusion

This paper has developed and analyzed an extension of the Good-

win model of endogenous distributive cycles that incorporates the

joint dynamics of wage inequality and underemployment, conceived

as a regime of low productivity, low wages, and weak bargaining

power. The economy comprises two classes of workers, treated as

perfect substitutes in production but differentiated by productivity,

wage levels, and bargaining strength. Type 1 workers occupy high-

productivity positions, whereas type 2 workers are employed in low-

productivity ones. The growth rate of real wages for each labor type

depends positively on its share in total employment. However, the

lower bargaining power of type 2 labor entails systematically smaller

wage adjustments relative to type 1 labor, generating persistent wage

inequality.

The distribution of the labor force between these two groups

is summarized by an endogenous underemployment rate, whose

evolution is represented by a simplified power-balance mechanism

between capitalist firms—seeking to exploit the lower cost of type 2

labor—and workers collectively striving to improve labor conditions.

Integrating these components yields a four-dimensional dynamical

system that extends Goodwin’s original two-dimensional formula-

tion. Alongside the wage share and the employment rate, the relative

wage of type 2 workers and the underemployment rate emerge as

additional state variables. The existence and uniqueness of solutions

for this system have been proved through fixed-point theory, and the

steady-state equilibrium is shown to be non-hyperbolic, implying the

absence of intrinsic self-stabilizing forces that make the economy

converge to an equilibrium point.

A theoretical contribution of this paper is the identification of a

double Hopf bifurcation in the model, providing a formal explanation

for the coexistence and interaction of two endogenous oscillatory

modes. The first corresponds to the Goodwin cycle, driven by the

feedback between the wage share and the employment rate. The

second, denoted as the underemployment cycle, arises from the

interaction between the underemployment rate and the relative wage

of type 2 workers. The analytical classification of resonant and non-

resonant regimes illustrates how these cycles interact. In the non-

resonant case, the Goodwin and underemployment cycles operate

at distinct frequencies, producing quasi-periodic fluctuations. This

regime may represent an economy in which capital accumulation

and labor-market segmentation evolve asynchronously, generating

bounded but complex oscillations. Under resonance, by contrast, the

two cycles become synchronized, producing amplified and coherent

fluctuations in income distribution, employment, wage inequality,

and underemployment. Mathematically, these correspond to the 1∶1,

1∶2, and 1∶3 resonant Hopf-Hopf bifurcations derived analytically

and confirmed through numerical simulation.

The numerical simulations performed with Matlab corroborate

the theoretical findings. The frequency-ratio curve 𝜔1∕𝜔2 exhibits

the predicted resonant points, while the bifurcation diagram of the

local maxima of the employment rate reveals alternating regions

of regular and complex dynamics. Narrow periodic windows occur

near resonant ratios, indicating synchronized cycles, whereas non-

resonant intervals produce dense quasi-periodic trajectories. As the

adjustment speed of underemployment (𝜒) increases, the simulated

patterns reproduce the resonance structures predicted by the cubic

normal form. The normal-form analysis on the center manifold

further clarifies the local properties of the system. The signs of

the cubic coefficients (𝑃𝑖𝑗) determine whether oscillations remain

bounded or evolve toward irregular regimes, while the non-vanishing

resonant coefficients (𝐺1, 𝐺2) account for the emergence of low-

order resonances and phase closure in planar projections. Altogether,

these results capture several dynamic regimes, ranging from regular

Goodwin-type cycles to complex multi-frequency oscillations.

The paper also contributes to the literature on endogenous macroe-

conomic fluctuations by proposing an alternative framework that

links distributive cycles and wage inequality within a heterodox

analytical perspective. The interaction between accumulation and

labor-market segmentation, embodied by the dual cyclical structure

of the model, provides a formal mechanism through which wage

inequality and underemployment arise endogenously as components

of the capitalist growth process. The identification of resonant double

Hopf bifurcations offers a basis for understanding how structural

parameters, such as saving behavior, labor-market configuration,

and bargaining asymmetries, can shift the economy from regular

to irregular cyclical regimes. Taken together, the analytical and

numerical results indicate that capitalist economies, as represented

by this model, may sustain multiple layers of endogenous cyclical

motion.
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Finally, this framework opens several avenues for future research.

A potential extension would be to examine the sensitivity of endoge-

nous cycles to additional stabilizing mechanisms, such as collective

bargaining institutions, fiscal and monetary policy, or external de-

mand constraints. Empirical calibration using data on wage inequality

and employment conditions could further evaluate the explanatory

and predictive capacity of the model. Moreover, extending the analy-

sis to include financial variables or endogenous technical change may

provide additional intuitions about the functioning of income distri-

bution, cyclical employment fluctuations, and the long-run evolution

of capitalist macrodynamics.
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