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Abstract

We propose and analyze a new mixed formulation for the Brinkman equations with spatially vary-
ing porosity, modeling the time-dependent flow of an incompressible fluid through heterogeneous
porous media. The formulation is developed within a Banach space framework and introduces
the stress and vorticity tensors as additional unknowns. This approach eliminates the pressure,
which can be recovered via post-processing, yielding a stress-velocity-vorticity system. The well-
posedness of the continuous problem is proved under an appropriate small-porosity assumption,
by employing monotone operator techniques together with recent advances on the solvability of
perturbed saddle-point problems in Banach spaces. At the discrete level, we first introduce a
semidiscrete continuous-in-time scheme employing finite element spaces stable for elasticity, such
as the PEERS and Arnold—Falk—Winther elements. We prove the well-posedness of this scheme
and derive the corresponding a priori error estimates. Subsequently, a fully discrete method is
obtained by applying the backward Euler scheme for the time discretization, for which we also es-
tablish well-posedness and derive optimal convergence rates with respect to the spatial and temporal
discretization parameters. Under this setting, momentum is conserved provided that the porosity,
the permeability tensor, and the external forces are piecewise constant. Finally, several two- and
three-dimensional numerical experiments, involving both manufactured and non-manufactured so-
lutions, are presented, which confirm the theoretical convergence rates and highlight the capability
of the proposed method to handle challenging geometries featuring strong contrasts in physical
parameters such as permeability and porosity.

Key words: unsteady Brinkman equations, mixed finite element methods, stress-velocity-vorticity
formulation, Banach spaces

Mathematics subject classifications (2000): 65N30, 656N12, 65N15, 35Q79, 80A20, 76R05, 76D07
1 Introduction
Flows in porous media play a central role in many branches of applied sciences, ranging from geo-

physical and biological systems to diverse engineering processes. Examples include subsurface flow
problems, heat and mass transfer in pipes, liquid composite molding, the behavior and influence of
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osteonal structures, and computational fuel cell dynamics. The mathematical modeling of such flows
requires a careful balance between macroscopic effective laws and microscopic fluid dynamics, depend-
ing on the characteristics of the medium and the regime of the flow. While simplified descriptions
are often sufficient in the limiting cases of very low velocities, characteristic of Darcy-type flows, or
in highly permeable media, where the behavior approaches that of Stokes flows, more refined mod-
els become necessary when viscous effects within the pore structure or interactions with adjacent
free-flow regions cannot be neglected. In this regard, the Brinkman equations [10] offer a consistent
framework for modeling fluid motion in porous media, overcoming the main limitations of Darcy’s
law. Brinkman’s model arises as an extension that incorporates a viscous term analogous to that
of the Stokes equations, while retaining the resistance exerted by the solid skeleton of the porous
medium. This combination endows the model with a hybrid character: in the limit of very low per-
meability it recovers Darcy’s behavior, whereas in highly permeable regimes it approaches the Stokes
system. For this reason, the Brinkman model is particularly useful in coupling problems involving
fluid-porous interfaces and, more generally, in flows through heterogeneous porous structures where
the fully homogenized Darcy description is insufficient but a detailed pore-scale Stokes model remains
impractical.

The mathematical analysis and numerical discretization of the Brinkman problem inherit the well-
known difficulties associated with both the Darcy and the Stokes equations. A key distinction between
these two models lies in the functional setting of the velocity. Namely, in the Stokes problem, velocities
belong to H!, whereas in the Darcy case they are only in H(div). In the classical velocity-pressure
formulation, this difference in regularity requires either the use of Stokes elements enriched with sta-
bilization or penalty terms to enforce normal continuity, or the use of H(div)-conforming elements
with additional degrees of freedom to impose tangential continuity. These strategies allow, on the one
hand, Stokes elements to capture the Darcy regime [11], and on the other hand, H(div)-conforming
finite elements to be extended consistently to the Stokes regime [31]. Another approach, also explored
in the literature, is to employ divergence-preserving velocity reconstruction operators that map Stokes
elements into an H(div)-conforming space, leading naturally to weak Galerkin finite element formu-
lations [34]. Beyond velocity-pressure formulations, alternative mixed strategies introduce additional
unknowns, giving rise to pseudostress-based methods [28,32] and vorticity-velocity-pressure schemes
in both augmented and non-augmented forms [2,5]. Some of the aforementioned approaches have also
been investigated in the time-dependent setting. In particular, the companion model given by the
unsteady Brinkman—Forchheimer equations has received considerable attention. This model extends
the Brinkman formulation by including a nonlinear term in the velocity, which accounts for inertial
effects that become relevant when the flow through the porous medium attains intermediate veloc-
ities. In [23], the authors analyze a pseudostress-velocity formulation of this problem and establish
existence and uniqueness of solutions for the continuous, semidiscrete continuous-in-time, and fully
discrete settings. Similar results are obtained in a velocity-vorticity-pressure formulation [4], as well
as in a three-field method involving the velocity, its gradient, and the pseudostress tensor [22].

The aim of this work is to analyze the time-dependent Brinkman model under the assumption that
the porosity may vary in space. Spatially varying porosity allows the Brinkman equations to capture
local differences in fluid storage and resistance, variations in permeability, and a modified mass conser-
vation law reflecting the pore volume, thereby representing the heterogeneous structure of real porous
media. From a mathematical perspective, this variability introduces challenges similar to those en-
countered in the Stokes problem with variable density [21] or in the convective Brinkman—Forchheimer
problem with variable porosity [19]. In turn, the analysis to be developed employs techniques similar to
those used for the unsteady Brinkman—Forchheimer equations and related models [22,23,39]. To derive
a mixed formulation, the stress and vorticity tensors are introduced, allowing the elimination of the



pressure, which can be recovered by post-processing, and leading to a stress-velocity-vorticity formu-
lation. This formulation is based on a Banach-space framework, providing natural flexibility to adapt
the scheme to multiphysics problems. Such adaptability is particularly important and has motivated
several studies on coupled problems where the Banach-space setting is essential [12,13,15,18,22,23].
Under this framework, the techniques employed in [4,22,23] to establish well-posedness are no longer
applicable. Indeed, while those approaches crucially rely on the monotonicity properties of the un-
derlying operators, such monotonicity is lost in our formulation due to the introduction of the stress
and vorticity variables with spatially varying porosity. To overcome this difficulty, we introduce an
auxiliary problem, equivalent to the original one, but endowed with a monotone operator. This refor-
mulation allows us, under a smallness assumption on the porosity, to prove existence and uniqueness of
the continuous solution by combining classical results on monotone operators, recent advances on per-
turbed saddle-point problems [25], and a fixed-point strategy. To the best of the authors’ knowledge,
the strategy of recovering monotonicity through an auxiliary problem and establishing well-posedness
via a fixed-point argument in Bochner spaces is novel, and appears to be applicable to other problems
as well. Once the solvability of the continuous problem has been established, similar arguments can be
employed to derive the semidiscrete continuous-in-time and fully discrete schemes. For the spatial dis-
cretization, classical PEERS and Arnold—Falk—Winther elements are considered, while the backward
Euler method is used for time stepping. Possible generalizations to other schemes are also feasible.
In this setting, well-posedness of the discrete problem is established in a manner analogous to the
continuous case, and an error analysis is carried out. Combined with the approximation properties
of the finite element subspaces, this provides the theoretical rates of convergence in both space and
time. With these choices of spatial and temporal discretizations, the fully discrete scheme inherits
momentum conservation, a key feature for developing reliable numerical methods since it reflects the
physical balance encoded in the continuous model.

The rest of the paper is organized as follows. In the remainder of this section, we introduce the
standard notation and functional spaces. In Section 2, we describe the model problem of interest and
we focus on the derivation of the stress-velocity-vorticity mixed formulation. In Section 3, we establish
the well-posedness of the weak mixed formulation through an auxiliary problem that is equivalent to
the original one. In Section 4, we present a semidiscrete continuous-in-time scheme, provide particular
families of stable finite element spaces, and derive error estimates for the proposed methods. Section 5
is devoted to the analysis of the fully discrete approximation. In Section 6, we present numerical
examples in 2D and 3D that illustrate the theoretical results and highlight potential applications in
challenging physical settings. Finally, in Section 7 we conclude the paper by summarizing the strategies
employed in the analysis and outlining possible directions for future work.

Preliminary notations. Let Q C R?, d € {2, 3}, denote a bounded domain with Lipschitz boundary
I' and let n be the outward unit normal vector on I'. For s > 0 and p € [1, +o0], we denote by LP(2)
and W™P(€2) the usual Lebesgue and Sobolev spaces endowed with the norms |- [|e(q) and [ - [[wsrp(q),
respectively. Note that WOP(Q) = LP(Q). If p = 2, we write H3(Q2) in place of W5?(£2), and denote
the corresponding norm by || - [|gs()- By H and H we will denote the corresponding vectorial and
tensorial counterparts of a generic scalar functional space H. The L?(f2) inner product for scalar,
vector, or tensor valued functions is denoted by (-,-)q. The L2(T') inner product or duality pairing is
denoted by (-,-)p. Moreover, given a separable Banach space V endowed with the norm || - ||y, we let
LP(0,7;V) be the space of classes of functions f : (0,7) — V that are Bochner measurable and such
that ”f”Lp(O,T;V) < 00, with

T
1P 0 7y = / IF@IR dt, | fllewory) = esssup [ f(B)]lv
0 te[0,T]



In turn, for any vector field v := (Ui)fl:p we define the gradient, the symmetric part of the gradient,
and the divergence operators as follows:

d
ov; 1 0v;
Vv := ( Z) , e(v):==(Vv+(VVv)), and div(v):= g —L.
ﬁxj ij=1,d 2( ) = 8:ch

In addition, for any tensor fields T = (Tij)zjzl and ¢ = (Qj)gj:l, we let div(7) be the divergence

operator div acting along the rows of 7 and define the transponse, the trace, the tensor inner product
and the deviatoric operator, respectively, as

d d
1
= (Tji)g{jzl, tr(7) == Zm, 7:(:= Z Tij Gj and A gtl"(T)H,
i=1 ij=1

where I stands for the identity tensor. Furthermore, in the sequel, we will make use of the well-known
Holder inequality, given by

. 1 1
/Q\fgf <N fllee) l9lliay YV f €LP(Q), Vg e LYQ), with »ta™ L,

and the Young inequality, which for all a,b >0, 1/p+ 1/q =1, and ¢ > 0, establishes that

p/2
<Py L (1.1)

ab < 5 (o2

Next, for each r € [1,4+00], we introduce the Banach space
H(div,; Q) := {r cL2(Q) : div(r) € L"(Q)} ,
endowed with the natural norm
17 laiv,s0) = [ITlLz@) + [div(T)llLr) V7 € H(div,; Q).
Additionally, we recall that, proceeding as in [27, eq. (1.43), Section 1.3.4], one can prove that for all
e { (1,+00] in R?,

6 . 3 there holds
[5,—1—00] in R?,

(rn,v) :/Q{T:Vv—kv-div(r)} ¥ (r,v) € H(div,; Q) x HY(Q). (1.2)

In addition, for all p > q, let i, 4 : LP(2) — L%(£2) denote the continuous inclusion, which satisfies
lip,qll = |2~/ ®a), (1.3)

and we also denote by i, 4 its vector-valued counterpart, which also satisfies (1.3) if we replace ip, by
ipq- Finally, we recall that H!(€2) is continuously embedded into LP(Q) for p > 1if d = 2, or p € [1, 6]
if d = 3. More precisely, we have the following inequality

lwllr@) < lipll wlli @) Yw e HY(Q), (1.4)

with ||ip|| > 0 depending only on |2 and p (see [36, Theorem 1.3.4]).



2 The model problem and its mixed formulation

In this section, we present the model of interest and develop its mixed formulation based on the stress
tensor, the velocity, and the vorticity tensor.

2.1 The model problem

Our model of interest is given by the unsteady Brinkman equations with spatially varying porosity
(see, for instance, [10,11,19,28]), which describes the transient flow of an incompressible fluid through a
porous medium, combining viscous diffusion with a Darcy-type resistance term. The spatial variability
of the porosity modifies the mass conservation law by weighting the storage of the fluid with the
local pore volume, and leads to heterogeneous permeability effects. More precisely, given a porosity
distribution p : © — R, a body force f : Q x [0,T] — R, and a suitable initial datum ug : Q — RY,
the system takes the form

paa—?—div(Qupe(u))+uK_1u+Vp:f, div(pu) =0 in Qx (0,77, (2.1)
u=0 on I'x(0,7], u0) =uy in Q, (p,l)o=0 in (0,77,

where the unknowns are the velocity field u and the scalar pressure p. The constant p > 0 represents
the viscosity, and K denotes a symmetric permeability tensor whose inverse belongs to L°°(€2). The
equations are supplemented with a homogeneous Dirichlet condition, and further insights into the non-
homogeneous case are provided later in Remark 3.2. The last equation in (2.1) serves to eliminate the
indeterminacy in the pressure, which is commonly imposed to ensure the uniqueness of the pressure
field.

Regarding the permeability tensor, we assume that K—! is uniformly coercive. Namely, there exists
a constant Ck > 0 such that, for all v € RY,

v-Klv>Ckglv? in Q. (2.2)

In turn, we suppose that the porosity is positive and bounded, meaning that there exist constants pg
and p; such that
0<po<px) <p a.e. in . (2.3)

Let us now introduce a new stress-velocity-vorticity formulation for (2.1). To this end, we first
rewrite the mass conservation equation in (2.1) as pdiv(u) + Vp - u = 0, which immediately gives

div(u)z—(vpp-u> in Q. (2.4)

Moreover, by integrating (2.4) over £ and using the homogeneous Dirichlet condition from (2.1), we
obtain the compatibility relation
v
(p-u,1> =0. (2.5)
P Q

We now define the Cauchy stress tensor o and the vorticity 4 by

(Vu— (Vu)'). (2.6)

| =

o :=2upe(u)—pl and =~ :=

Taking the divergence of o and substituting it into the first equation of (2.1), yields

ou

pa+uK*1u—div(&):f in Q. (2.7)



In turn, taking matrix trace to the stress tensor in (2.6) and using (2.4), we get

1

p=—7 (21 (Vp-u) +tr(a)), (2.8)

so replacing this into the constitutive equation of o (cf. (2.6)), dividing by 2up, and writing e(u) =
Vu — v according to the definition of the vorticity, we obtain

~ 1
ad:Vu—’y—l—d(vP‘u)]I in Q. (2.9)
Thus, from (2.7), (2.9), and using (2.8), we deduce that (2.1) can be equivalently rewritten as follows:

Find o, u, and ~, with & symmetric and 4 skew-symmetric, in suitable spaces to be indicated below
such that

Pot
u=0 on I'x(0,7], u(0) =wuy in O, (2.10)

1 ~
<Vp‘u> I, au—l—,qulu—div(a):f in Qx(0,7],
p

(2p(Vp-u)+tr(@), 1), =0 in (0,7].

We note that the pressure has been completely eliminated from our system, and it can be recovered
from p, u, and o according to (2.8). In this context, the last equation of (2.10) is equivalent to
the pressure uniqueness condition (p,1)g = 0 (cf. (2.1)). Moreover, it is worth noting that the first
equation in (2.10) allows the gradient Vu to be recovered via post-processing from p, o, v, and u.
Finally, enforcing the symmetry of & and the skew-symmetry of « in (2.10) enables the vorticity to
be obtained as the skew-symmetric part of Vu, as defined in (2.6), which shows that, in fact, (2.10)
is equivalent to (2.1).

2.2 The stress-velocity-vorticity weak formulation

In order to derive a weak formulation of (2.10) we initially consider u in H!(f2), test the constitutive
equation against a tensor field 7 € H(divy; ), where £ € (1,+00) if d =2, or £ € [6/5, +00) if d = 3,
so that we are able to apply integration by parts according to (1.2) with the homogeneous Dirichlet
condition, arriving at

1 (1, d) , 1 (Vp
— | -9 T + (u,div(7T))o + (7, 7)o — 5 < ~u,tr(T) )] =0. (2.11)
2 <p 0 d\ p 0

Since the gradient of the velocity was eliminated, the above equation remains meaningful even when u
is sought in a space larger than H!(Q). Specifically, the second term suggests that u must be in L*(Q),
where s is the Holder conjugate of ¢, i.e. 1/s+1/¢ = 1. Moreover, the fourth term in (2.11) is estimated
by using triple Holder inequality and the fact that |[tr(7)|12(q) < Vd |72 < Vd |17 [ E1(div,;0), thus
obtaining

[ullLs @) 17 lm(diveso) (2.12)
(@)

(% ), a2

where 7 := 2s/(s — 2) € (2,+00], assuming s > 2, with the convention that r = +oo if s = 2.
Although considering Vp/p € L"(Q) with r < +o0 is feasible in view of (2.12), we emphasize that in
the subsequent analysis we shall repeatedly require the specific assumption 7 = 400. Nevertheless, we
aim to preserve the generality of the Banach setting, that is, we keep u € L*(Q2) with s not necessarily
equal to 2, while assuming Vp/p € L*°(£2). At the end of this section, we provide additional comments



on this assumption. Under this setting, we slightly simplify (2.12) by applying Cauchy—Schwarz and
the continuous inclusion i o (cf. (1.3)), thus obtaining

(2 ) v [

||uHL5(Q) ||THH(divz;Q) .
Leo(Q)

As a consequence of the previous discussion, the admissible ranges of s and ¢ are given by

{[z+m)ﬁd:2, s {(Lﬂ ifd=2,
s €

d (= 2.13
o [6/5,2] ifd=3. (2.13)

S
2, 6] ifd=3, s—1
Now, returning to (2.11), we observe from the third term that it is enough to look for ~ in L2(Q)
as 7 € H(divy; ). Moreover, in order to enforce the required skew-symmetry, we further restrict
~ € L2 (Q), where

skew

L () = {n €L2(Q) : n'=-n}
In turn, the symmetry of the stress tensor o € L?(Q) is weakly enforced by

(G,mMa=0 Vnecli.(Q). (2.14)

skew

Next, we test the momentum equation in (2.10) against v € L*(€2), thereby obtaining
(pdru,v)a + p (K tu,v)g — (div(e),v)a = (f,v)a Vv eL’(Q). (2.15)
Regarding the first term, using (2.3) and applying Cauchy—Schwarz inequality we find that

(pOru,v)a < p1 |0 ullLe) VIt @) »

which is finite due to the fact that L*(Q) < L2(Q) for all s > 2. Similarly, recalling that K= € L°(Q),
the second term in (2.15) is also well-defined since u, v € L*(Q2) with s > 2. The third term in (2.15)
forces the stress tensor o to belong to H(divy; ). Despite the fact that the right-hand side of (2.15) is
well defined under the sole assumption f € L*(9), we restrict ourselves to the smaller space L2(2), since
this will be required in our analysis of the well-posedness of the weak formulation (cf. Theorems 3.8

and 3.9).
We now recall the decomposition H(divy; Q) = Ho(divy; Q) @ RI, where

Ho(dive: Q) := {r e H(dive; Q) :  (te(r),1)q = o} , (2.16)

which means that, for all 7 € H(div,; ), there exist unique components 7y € Hp(divy; ) and A € R
such that 7 = 19 4+ A+ [. Moreover, it is easy to verify that

Ar (tr(7), Do (2.17)

~djel
Thus, applying this decomposition to the stress tensor, and using the last equation in (2.10) to simplify
the scalar expression in (2.17), we deduce the existence of unique components o € Hy(divy; Q) and
Ao € R such that
2u

9|
In this regard, we notice that (2.11), (2.14) and (2.15) remain unaltered if o is replaced by o, and,
hence, from now on we seek o € Hy(divy; Q) instead of o. The original stress tensor can be recovered

oc=0+XA1 with A\, = (Vp,u)q . (2.18)



through post-processing via (2.18). Furthermore, using (2.5) along with the fact that v € L4__(Q),
we notice that (2.11) trivially holds when 7 is any multiple of the identity tensor. Therefore, we may

restrict ourselves to test in Hy(divy; ) instead of the whole space.

In order to rewrite our system in a more suitable way for the analysis to be developed in the
following sections, we define the spaces

X :=Ho(divy; Q) and Y :=L5(Q) x L2, (Q),

skew

and set the notation
u=(uwvy),vi=(wv,neyY.

Under these definitions, it is natural to endow Y with the product space norm:
I¥[lv = [[vllLs ) + [InllL2@ Vvey.

Hence, according to (2.11), (2.14) and (2.15), the weak formulation associated with (2.10) reads: Given
f:[0,7] = L%Q) and ug € L*(), find (o,u) : [0,7] — X x Y such that u(0) = ug and, for a.e.
t€(0,T),

[A(a(t), 7]+ [B'(u(t), 7] + [D)(u(t)), 7] = 0 V1 eX,
B (2.19)
5 E(®)) v] = [B(o(t),¥] +[C(u(t)),¥] = [F(),y] VyeY,
where the operators A : X - X', B,D,: X = Y', C,E: Y — Y’ are defined, respectively, as
R i }o,d Td a
Alo)7) o= 5o (Sotrt) (2.200
[B(7),v] := (v,div(T))o + (1. 7)o, (2.20b)
= —1 @ sV, (7T C
[Dy(7), v] = — < P , tr( ))Q , (2.20c)
[Cu),v] == p(K " u,v)a, (2.20d)
[E(u),v] = (pu,v)q, (2.20¢)

and the right-hand side term F : [0,7] — Y’ is given by

[F(t),v] := (£(t), v)a.

In all the terms above, [-,:] denotes the duality pairing induced by the corresponding operators.
Additionally, we let B’ : Y — X’ be the operator defined by the relation [B'(v), 7] = [B(7),v] for all
(1,v) € X x Y. The operator D), : Y — X' is defined analogously.

We conclude this section with additional comments on the assumptions considered herein. First, we
note that the hypothesis Vp/p € L*(2) is compatible both with the classical Hilbertian case s = ¢ = 2
and with the Banach case s,¢ # 2 in (2.13). Although the more general assumption Vp/p € L"(2)
would be desirable, it cannot be accommodated within the techniques employed in this work. We refer
to [21], where the authors study the stationary Stokes equations with variable density and impose a
similar assumption, and to [19], which addresses the convective Brinkman—Forchheimer equations with
variable porosity under a less restrictive setting, where Vp/p is considered in L"(§2) with r» < 4+00. The
techniques developed in the latter work, however, are not fully applicable here due to the unsteady



nature of the model under consideration. In particular, the assumption Vp/p € L*°(Q) is crucial in
the proofs of Lemma 3.3 and Theorem 3.4.

On the other hand, it is also important to highlight that the use of Banach spaces rather than Hilbert
spaces is motivated by the potential applicability of this work to the analysis of coupled models. For
instance, the Brinkman model can be coupled with transport or heat equations. In fact, a similar
stationary model is analyzed in [13], where the convective Brinkman—Forchheimer system is coupled
with a nonlinear transport equation. In that setting, both the fluid velocity and the concentration
of a chemical species transported by the flow are required to belong to a Lebesgue space LP, with p
necessarily greater than 2. In general, such couplings demand higher regularity of the shared unknowns,
particularly when nonlinear interactions are involved. Further examples of couplings formulated in
Banach space frameworks can be found in [16,17,29].

3 Well-posedness of the model

In this section, we establish the solvability of (2.19). To this aim, we first collect some preliminary
results that will be used in the forthcoming analysis.

3.1 Preliminary results

In what follows, a linear operator A from a real vector space E to its algebraic dual E* is symmetric
and monotone if, respectively,

[A(x),y] = [A(y),z] Vzx,y€ E, and [A(z),z]>0 Vzx€E.

In addition, let us denote by R(.A) the range of A. We also recall that the dual of a seminormed space
is the space of all linear functionals that are continuous with respect to the seminorm.

The following result is a slight simplification of [38, Theorem IV.6.1(b)], which will be used to
establish the existence of a solution to (2.19).

Theorem 3.1. Let the linear, symmetric and monotone operator N' be given from the real vector
space E to its algebraic dual E*, and let E; be the Hilbert space which is the topological dual of the
seminormed space (E,|-|p), where

zl, = N(z),2]"/? VzekE. (3.1)

Let M : E — Ej be an operator with domain D = {x € FE: M) € El’)} Assume that M is

monotone and RN + M) = E]. Then, for each f € WH(0,T; E}) and for each ug € D, there is a
solution u : [0,T] — E of

0

a(/\/(u(t))) + M(u(t)) = f(t) forae 0<t<T, (3.2)

with
N(u) e WH(0,T;E)), u(t)eD forall 0<t<T, and N(u(0)) =N (up).

One would like to write (2.19) in the form given by (3.2) and use this result to prove its well-
posedness. However, it turns out that this is not possible, since the operator arising from the terms



without time derivatives in (2.19) is not monotone. For this reason, we introduce an auxiliary formu-
lation equivalent to (2.19) by defining the linear operator B : X — Y’ as

[B(7),v] := [B(7),v] + [Dy(7),¥v] VveY,
and, for each ¢ € X, we let FC [0,7] — Y’ be defined, for all ¢t € [0,T], by
[Fe(t).v] = [F(),v] = [Dy(¢).v]  YveY.

The following result states the auxiliary problem and establishes its equivalence with (2.19). The
proof is straightforward and is therefore omitted.

Lemma 3.2. Let f : [0,7] — L2(Q) and ug € L*(Q). Then, (o,u) : [0,7] = X x Y is solution
to (2.19) if and only if u(0) = vy and, for a.e. t € (0,T),

[A(o(t)), 7] + [B'(u(t),7] = 0 VreX,

gt[E(u(t)),V]—[E(U(t))7V]+[C(u(t))7V] = [Fo(t),v] VveY.

(3.3)

Next, we establish stability properties of the operators involved in (2.19). In fact, employing
Cauchy—Schwarz and Hélder inequalities, and the continuous inclusion ig o (cf. (1.3)), we find that

@) < ol Il B, < Il Il (3.40)
oyl < B2 V2] gy (3.40)

L (Q)
B@). v1| < o1 ool ey Ve < o1 linzl? [l vy (3.40)
1C(), v < i sl 1K ey Il vl (3.40)
and  [[F(2),v]] < szl 1E0)lcagey ey (3.4)

On the other hand, from (2.2) and (2.3), it follows that A, C, and E are monotone. Indeed,
1
[A(T),7]| > o HTdHLZ(Q [C(),¥]| = nCx [IVI[F2(0 » (3.5a)

and  |[B(v),v]| > oo [vIZ20) - (3.5b)

We continue by establishing some inf-sup conditions needed for the subsequent analysis. We begin
with the following condition for B: there exists a positive constant 8 such that

o BT

>Blvly Vvey. (3.6)
0#7TeX H H

The proof follows from a straightforward generalization of [30, Lemma 3.5] (see also [29, Lemma 3.4]),
where the case s = 4 and ¢ = 4/3 was analyzed, and is therefore omitted here. We remark that, to
apply the same arguments as in these references, the continuous embedding H! (Q) < L3(£2) (cf. (1.4))
is required. Since s € [2,400) for d = 2 and s € [2,6] for d = 3 (cf. (2.13)), this embedding holds in
our setting.
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Now, we let V denote the kernel of B (cf. (2.20b)), which is characterized by
V= {7’ €X : div(t)=0 and 7'= 7'} : (3.7)

In turn, from a slight modification of [27, Lemma 2.3] (see also [15, Lemma 3.1]), there exists a positive
constant ¢y such that

1720y + 1div(T) ey = collTlliz YT eX. (3.8)
Then, for each 7 € V, we have that |]Td||]L2(Q) > co||T|l2) = co ||7x. Consequently, the monotonic-
ity property of A (cf. (3.5a)) translates into a coercivity property in V, meaning that
2

[AM, Tz gl Vrev. (3.9)

Thus, noting that A and C are symmetric, having established (3.6) and (3.9), and bearing in mind
that C is monotone (cf. (3.5a)), we can invoke [25, Theorem 3.4] to deduce that the following problem
is well-posed: Given (F,G) € X' x Y/, find (o,u) € X x Y such that

[A(o), 7]+ [B'(u), 7] = F(r) VreX,
[B(o),v]—[C(u),v] = G(v) VveY.

This means that there exists a positive constant A, depending only on 3, ¢4, 1, po, p1, ||K_1||]LOO(Q)
and [Q], such that, for all (¢,w) € X x Y, there holds

AWy < sup QT [Bw), 7]+ B(Q),v] — [Clw), v]
T T osrmency 179y :

(3.10)

3.2 Construction of compatible initial data and stability

In this section, we begin by constructing initial data «y and oy compatible with ug, a necessary step to
apply Theorem 3.1 in the context of (3.3). We subsequently derive a stability result for problem (2.19).

Lemma 3.3. Assume that the initial condition ug belongs to L*(2) N H, where
H = {v cH}(Q) : div(pe(v)) € L2(Q) and div(pv)=0 in Q} (3.11)

Then there exist vy € L4 (Q) and oo € X such that, if we set u, := (g, v0) € Y, there holds

skew

(j% ]Z/><Zg>€{0}x(L2(Q)x{0}).

Proof. Given ug € L*(2) N H, we define
oo :=2upe(ug) +kI and ~p:=Vuyg—e(uy) in Q, (3.12)

with k£ € R chosen so that (tr(oy),1)q = 0. Since ug € H, we have div(pug) = 0 in 2, which, as
in (2.4), implies

div(uo):—<vpp-u0> n Q. (3.13)

11



Then, noting that tr(eg) = 2u pdiv(ug) + d x and using (3.13), we find that x is certainly given by

2u
K= 7 ]Q‘ (Vp, uo)

Moreover, we observe that
div(op) = 2udiv(pe(ug)) € L*(Q),

so, consequently, o € Hy(div; Q) C X, where Hy(div; ) := Hp(dive;2). In turn, using once more
the fact that ug € H, we deduce vo € L2, (), with the skew-symmetry following directly from the
definition of e(up). In addition, from (3.12) we have ﬁ o8 = e(ug)?. Using this, the identity (3.13)

and integrating by parts, which is valid since ug € H}(£2), we then perform straightforward algebraic
manipulations to readily obtain

[A(oo), 7] + [B'(u,), 7] =0 VreX. (3.14)
In turn, one checks that
—[B(00),v] + [Cluy),v] = [Go,¥] Vv € LX(Q) x L, (), (3.15)

where Go = (g0, 0), with

(g0, V] = 72,u(div(pe(u0)),v)ﬂ + %u (Vp- V,div(uo))Q + K (Vpp,v>Q + u(K g, v)q .

Thus, according to (3.14) and (3.15), we have arrived at

(43 (2)-(2).

It remains to verify that Go belongs to L?(2) x {0}. To this end, we apply the Cauchy-Schwarz
inequality, use that Vp/p € L*°(Q), exploit the identity (3.13), and then perform algebraic manipula-
tions to obtain

![‘go,v]|séo{|rdlv<pe<uo Ve (H

+ ||K_1||]L°°(Q)) ||u0HL2(Q)} Vi@, (3.17)

with Cp = 14 max {2, dprdt + 1}. This shows that g is a linear and bounded functional on L2(),
and, therefore, Go € L2(Q) x {0}, as desired. O

Remark 3.1. By a slight modification of the proof of Lemma 3.3, we also obtain compatible initial data
for the original problem (2.19), constructed in the same way. More precisely, given ug € L*(2) N H,
and taking oo and vy constructed as in (3.12), we have

A B/ + D/p g o 0
( A B ) ( “)-(a ) (3.18)
with Go := (go,0), where

(g0, v] := —2pu (div(pe(uy)), V)Q +p (K_1 up, v)Q .

We next derive a stability result for the formulation (2.19), employing arguments that are similar
in spirit to those in [23, Theorem 3.8] (see also [4, Theorem 3.9]).

12



Theorem 3.4. Let (o,u) : [0,7] - X x Y be a solution to (2.19), with u(0) = up € L*(2) N H (¢f.
Lemma 3.3) and £ € L2(0,T;L%(Q)). Suppose that the porosity satisfies

H VaA {1,\/?0}. (3.19)

= ———— min
2 [is 2] 4p1

Then, o € L2(0,T;X), u € Hl(o,T; L2(Q)) NL2(0, T; L*(2)) and v € L2(0,T;L2 . (). In addition,

ad(0) = o and v(0) = ~o, where oy and ~o are given in (3.12). Moreover, there exists a positive

constant Cg, depending only on u, po, p1, Ck, ||K_1||Loo(9), A and ||, such that

HUH%P(O,T;X) + HuHiQ(O,T;LS(Q)) + Hu”IZﬁO(O,T;LQ(Q)) + ”7‘|I%2(0,T;L2(Q)) (3.20)
< Co {1122 0.1owo(e) + I0llE ) + le(uo) ey } - |

Proof. Let (o,u):[0,7] - X XY be a solution to (2.19). Then, we have the identity
[A(e), 7]+ [B'(w), 7] + [B(0),v] - [C(u), v] = —[Dj(u), 7] + [0 E(u), v] - [F,v],

for all (7,v) € X x Y. Using this into (3.10), and then applying the estimates (3.4b), (3.4c), (3.4e),
and (3.19), we arrive at

OE(u),v] — [D) (u), 7] - [F,v
All(eu)llxxy < sup 0. E(w), v] — D)), 7] - [F, ]
0#(T,v)EXXY (7, v)|lxxy¥

@) + [[is2]l [l

< p1 |fis2l| 0rullre2 (o) + - i,

Now, using the fact that ¢, < VdA/(

), squaring and integrating over [0, 7], we obtain

1 <||U"iQ(O,T;X) + Hu||12_,2(0,T;LS(Q)) + ||’Y\|i2(o,T;L2(Q)))

T (3.21)
< [ Nolaiay dt+ o7 161 e
where C7 := A?/(8 ||is2|? p?).

In order to bound the integral on the right-hand side of (3.21), we differentiate in time the first
equation in (2.19), test the system against (o, d;u), and, then, after summing both equations, ap-
plying the monotonicity properties (cf. (3.5a) and (3.5b)), and using Cauchy—Schwarz and Young’s
inequalities (cf. (1.1)), we get

1 1 _ 1 /V
) <4M ( od o-d)Q + g (K 'u, u)Q> + po Hj?tuHig(Q) = (f,0m)q + p <pp . &m,tr(a))ﬂ

1 5 9 ) 9 Cp 9
<% I1£11F2 ) + 5 0z ) + < [0rallge (o) + %5 ollLz(q)
whence, by choosing § = pg and & = v/d py/(2 ¢y), it follows that
L (1 4 4 -1 Po 2 2¢;
o (5 (Gotet) +n T mwa) + G loml < - I+ 52 Il (322
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Now, integrating from 0 to ¢ € (0,77, and using (2.2), (2.3), together with the fact that K—! € L>°(Q),
we perform some algebraic manipulations so that the previous estimate becomes

@)ooy + [ 100y
2
/ Ol % / Ho(s)Hia(g)dHTpgHad<0)H]%z(Q) (3.23)

||K Ml (@) [[a(0 )HLQ(Q)a

1 A2 ZMCK
o (t +—
P 1o (D)2 ()

for all t € (0,7]. We now use that 40[2)/(dp8) < C1/2 (cf. (3.19)), and, by a straightforward application
of the definition of the Bochner norms, (3.23) implies that

T C 1
/ [Opul(t )||L2 dt < — Hf||L2 0,1:L2(Q) T = HCTHL2 oL@yt 2 HUd(O)”fﬁ(Q)
0 Po HPo (3.24)

20 2 1 Cxk
+ o 1K™ Lo HU(O)Hi2(Q) -

HuHLw(o,T;m(Q)) )

which proves that d;u € L2(0, T; L2(2)). We have neglected the first term in (3.23) in order to simplify
the estimate.

Next, to bound the term Had(O)HEQ(Q) in (3.24), we first notice that the first equation in (2.19)
implies that the left-hand side, as a function from [0,7] to R, belongs to the same L>°(0,T)-class as
the null function. Consequently, the left-hand side can be viewed as a continuous function in time and
we can let ¢ — 0T in the first equation of (2.19), use the fact that u(0) = ug, and subtract it from the
first row of (3.18) with o and =y constructed as in (3.12), thus obtaining

[A(gg —a(0)), 7] + (v —v(0),T)a=0 V7eX. (3.25)

In turn, by testing the second equation in (2.19) with v = (0,n(¢)) and letting ¢ — 0T, which is
valid by the same reasoning mentioned above, we obtain that o (0) is weakly symmetric. Since o is
also symmetric (cf. (3.12)), it follows that o9 — o (0) is weakly symmetric. Then, testing (3.25) with
7 =09 — o(0), and observing that the second term vanishes by weak symmetry, we get

[A(oo — a(0)),00 — 0 (0)] =0.

In view of the monotonicity of A (cf. (3.5a)), this implies %(0) = o§. As a consequence, using the
inf-sup condition (3.6) together with (3.25), we obtain directly that v(0) = ~p. Moreover, from (3.12)
and (2.3), we also deduce that

lo(0)ll2 () = llogllz(@) < 201 le(wo)llzo)

Finally, replacing this into (3.24), and combining it with (3.21), gives (3.20), with constant

2 max {p§ + 207, 4 p§ p}, 200 P IK Lo (o }

CB = N
min {Cy p§ pi , 41 Ck po p1}
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3.3 A fixed-point strategy

In order to establish the well-posedness of (2.19), we shall prove that, under certain conditions on the
porosity, the problem (3.3) has a unique solution. To that end, we propose a fixed-point strategy. Let
J : L%(0,T;X) — L2(0,T;X) be the operator defined as

J() =0  ¥CeLX0,T:X),
where (o, u) is the unique solution (to be confirmed below) to

[A(o(t), 7]+ [B'(u®)), 7] = 0 VreX,

0 - _ (3.26)
E[E(u(t)%!]—[B(U(t)),XH[C(u(t)),X] = [F¢(t),v] VveY,

for a.e. ¢t € (0,7) and u(0) = ug. We stress here that the operator J is naturally defined on
L2(0,T;X), as motivated by the stability result (cf. Theorem 3.4). Notice also that solving (3.3) is
equivalent to finding a solution to the fixed-point equation

J(o)=0. (3.27)

Now, to show that J is well-defined, we shall prove that (3.26) admits a unique solution by employing
Theorem 3.1. For this purpose, we observe that (3.26) can be written in the form of (3.2) with

E=XxY, u=(o,u), ./\f:(g ]?)) and MZ(% ]?j/) (3.28)

Let Ej denote the Hilbert space defined as the dual of (XxY,|-|,), where | - |, is the seminorm induced
by E (cf. (3.1)), and is given by

(V) = (pv,v)?  Y(r,v)eXxY.

Since p is positive and bounded (cf. (2.3)), it is straightforward to show that Ej is isomorphic to
{0} x (L?*(2) x {0}). Accordingly, we are able to define the spaces

Ej:={0} x (L*(Q) x {0}) and D:= {(T,y) EXXxY: M(r,v) € El’,}

Notice that the range condition in Theorem 3.1 is equivalent to prove the existence of a solution to
the following resolvent system: Find (o, u) € X x Y such that

[A(U),T]+[]§’(g),r] = 0 VT eX,
(3.29)

B(o),v] - [(E+C)(u),v] = —(fv)e VveY,

where f € L2(9) so that (O, (/f, 0)) represents an arbitrary element of Ej. In a similar way to how
we proved the global inf-sup condition (3.10), we shall invoke [25, Theorem 3.4] to establish the well-
posedness of (3.29). In this way, we now focus on verifying the hypotheses of this theorem, starting
with the inf-sup condition of the operator B. Notice that, in order to relax the assumption on the
datum p, in the following two intermediate lemmas we can suppose Vp/p € L"(Q) with r = 2s/(s —2)
as in (2.12).
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Lemma 3.5. Assume that the porosity satisﬁes

with B as given in (3.6). Then, the following inf-sup condition holds:

B S, ey

Vdp

: (3.30)
LT(Q 2

sup
ozrex  ||ITlx

Proof. Since L*°(§2) — L"(Q2), we can use (2.12) to bound D, and then employ the assumption (3.30)
along with the inf-sup condition of B (cf. (3.6)), to obtain

BOY , oy B LT

g
sup Ivlly 2 2 vlly

> p —
otrex  ITlx otrex  |ITlx Vd

L™(Q)
O

Let V be the kernel of the operator ]§, which, by standard duality and orthogonality arguments,
can be characterized as

V= {T eX : div(r)= % Ttr( 7) and T'= T} . (3.31)

Employing this subspace, we now establish an inf-sup condition for A.

Lemma 3.6. Let ¢y be as in (3.8), and assume that the porosity satisfies

o=

2
Then, there exists a positive constant o, dependmg only on u, p1 and cp, such that
A
oy [A(@).7]
oo il

(3.32)

>allo|x Ve eV.

Proof. Given o € V, we have div(o) = 1 (Vp/p)tr(e) (cf. (3.31)). From this identity, we apply
Holder’s inequality, use (3.32) and the fact that ||[tr(o)|2(q) < Vd o2, to get

. Cy
v < g |5 1@ le < § ol (3.33)

Combining this estimate with (3.8) gives % ||O-H]L2(Q) < ||0'd||L2(Q). Then, adding to both sides
: |div(o)|lpeq) and using again (3.33), we obtain
oz + 5 Idiv(@)liue) < ol + & ol
Consequently,
& min{er 2} ol < oz
Hence, by using the boundedness of p (cf. (2.3)) together with the above estimate, we arrive at

d||2 .
[A(o), T] S lo H]LQ(Q) S min{c?,4}

ot = = ol
oirey ITlx T 2upillelx T 32up
which completes the proof with o = min{c?,4}/(32up1). -
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Lemma 3.7. Suppose that the porosity satisfies (3.30) and (3.32). Then, for all fe L2(9), there
exists a unique solution to (3.29).

Proof. 1t is clear from the definition of A and E+C (cf. (2.20a), (2.20d) and (2.20e)) that they induce
symmetric bilinear forms. Furthermore, from the monotonicity of A, E and C (cf. (3.5a) and (3.5b)),
we have

1
[A(T), 7] = 2ipr HTdHEZ(Q) >0 and [(E+C)(v),v] > (po+ pCk) [Vl[F2i) >0,
for all 7 € X and v € Y, which means that A and E + C induce positive semi-definite bilinear forms.
On the other hand, by Lemmas 3.5 and 3.6, we also have the inf-sup conditions required by [25,
Theorem 3.4]. Thus, applying this result in our context, we conclude that, for each f € L2(Q2), (3.29)
is well-posed. O

With this result at hand, we are in a position to prove the well-posedness of (3.26), and hence that
J is well-defined.

Theorem 3.8. Suppose that the porosity p satisfies (3.19), (3.30) and (3.32). Furthermore, let f €
WEL0, T; L2(Q)) N L2(0, T;L2(2)) and up € L*(Q) NH (cf. (3.11)) be given. Then, the operator J
is well-defined. In particular, for each ¢ € L*(0,T;X), there exists a unique solution (o, 1) to (3.26)
such that o € L2(0,T;X), u € WH(0, T; L2(Q))NL2(0, T; L(Q2)), v € L?(0, T; LA .. (), u(0) = uy,
o(0) = od, 7(0) = v0 (¢f. (3.12)), and J(¢) = o. Moreover, there exist positive constants Cg and
C7, with Cy depending only on i, Po, P1, ||K_l||]Loo(Q), A, d and ||, and C7 depending only on po,
p1, A, d and |Q|, such that

17 (20730 < Co {IEllz0ra2(0) + Iuollia) + lle(o) Lz }

Y (3.34)
rer 37

€Iz (0,7:x%) -
Lo (Q)

Proof. Recalling the notation introduced in (3.28), we note that A is linear, symmetric, and monotone,
which follow directly from the properties of E. Similarly, M is monotone since both A and C are

monotone. Moreover, by Lemma 3.7, for all (0, (f,0)) € Ej, there exists a unique (o,u) € X xY
such that (N + M)(o,u) = (0, (f,0)). This implies that E; = R(N + M). Furthermore, owing to
the fact that ug € L*(Q2) N H, Lemma 3.3 ensures the existence of compatible initial data such that
(o0,uy) € D. Thus, by Theorem 3.1, we deduce the existence of a solution (o, u) to (3.26), where
u € Wheo(0,T;L3(Q)), M(o(t),u(t)) € E}, and u(0) = ug. Moreover, by an argument similar to
that in the proof of Theorem 3.4, we obtain 0¢(0) = ad, v(0) = ~o, and the desired regularity of the
solution. In particular, proceeding as in (3.20), we get the following estimate for o

lolEz0mx) < Ci {HfH%P(O,T;LQ(Q)) + [[uolf2 (o) + He(UO)Hﬂ%Z(Q)}

Vol (3.35)
+Cy || — ”CH%2(07T;X)7
L= (Q)
where
16 max { p2 + 20?2, 4u p2 p? , 2 21K | 16 (p3 +4p3)d~!
C, e {od + 258 4ol 2up0 ptIK i} 1608 +49)

A2 p(2) | is,2 —2

2743 [zl
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Then, by taking the square root in (3.35), some algebraic manipulations yield (3.34). To prove
uniqueness of the solution, by linearity of the problem, it suffices to show that (3.26) admits only the
trivial solution with the data f = 0, ug = 0, and ¢ = 0. Certainly, one can establish estimates for u
and ~ similar to (3.35), once again relying on the arguments employed in the proof of Theorem 3.4.
In this way, from (3.35), it turns out that if the data vanish, then the solution must be trivial.
Therefore, (3.26) admits a unique solution, which implies that J is well-defined. This completes the
proof. O

We finally are able to prove that the fixed-point equation (3.27) has a unique solution under certain
assumptions on the porosity.

Theorem 3.9. Suppose that the porosity p satisfies (3.19), (3.30) and (3.32). Furthermore, assume
that

<1. (3.36)

o HW
P llLe ()

Then, given £ € WH1(0, T; L2(Q)) N L2(0,T;L3(Q)) and ug € L¥(Q) NH (¢f. (3.11)), there exists a
unique (o, 1) solution to (2.19) with u(0) = ug, a4(0) = o and v(0) = ~vo (cf. (3.12)). Moreover,
o € L*0,7;X), u € Wheo(0,T;L2(Q)) N L*(0,T;L*(Q)) and v € L2(0,T;L3, (), all of them
satisfying (3.20) in Theorem 3.4.

Proof. We first notice that it is enough to prove that the fixed-point equation (3.27) has a unique
solution. Once this is established, Lemma 3.2 ensures that (2.19) admits a unique solution, whose
regularity then follows from Theorem 3.4. We therefore focus on the former. In this regard, by
Theorem 3.8 the operator J is well-defined. We now show that J is Lipschitz continuous. Given
€1, € L2(0,T;X), since (3.26) is linear, we have that J(¢1) — J(¢2) corresponds to the unique
solution to (3.26) with f =0, ug = 0 and ¢ = {; — 2. Thus, applying the estimate (3.34), we obtain

\V4
17(1) = Tz < Cr pr

€1 — Callr2(0,mx) »
Le(Q)
which implies that J is Lipschitz continuous. Moreover, using (3.36), J is a contractive operator on
the Banach space L2(0, T’; X), so that the Banach fixed-point theorem ensures that J admits a unique
fixed-point. Hence, (3.27) has a unique solution, as desired. O

Remark 3.2. [t is worth noting that our analysis can be readily extended to the case of a non-
homogeneous Dirichlet boundary condition in (2.10), in a manner similar to [39, Section 2] (see
also [20, Theorem 4.10]). Specifically, if we prescribe u = up on I’ x (0,T] for some time-dependent
Dirichlet datum up : [0,T] — HY2(I'), a solution can be constructed as follows. Let (or,up) € XxY
solve the problem

[A(or(t), 7]+ [B'(ur(t), 7] + [Dy(ur(t)), 7] = (Tn,up(t))r V7 eX, (337)
[E(ur(?)),v] — B(or(®)),¥] + [Clur(t),v] = [F(t),v] Vvey, .

for all t € (0,T]. Notice that for each fized t € (0,T], the problem (3.37) is indeed well-posed owing
to a slight modification of the structure studied in Lemma 3.7 (see also (3.29)). Then, having ur as
data, we may define (oy,uy) : [0,T] = X XY as the solution of the problem

[A(ou(t)), 7] + [B'(ug(t)), 7] + [D)(uu(t)), 7] = 0 vreX,

(3.38)
8 [E(uy(t)),v] — [B(ou(t), v] + [C(ug(t),v] = [E(ur(t)) — &E(urp(t),v] YveY,
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which is also well-posed, as follows from the analysis developed in this section, by replacing the cor-
responding right-hand side in (2.19). Consequently, taking into account the linearity of both (3.37)
and (3.38), it is straightforward to verify that (o,u) = (or,ur) + (o5, uy) is indeed a solution to the
weak formulation of (2.10) with non-homogeneous Dirichlet boundary conditions.

4 Semidiscrete continuous-in-time approximation

In this section, we introduce and analyze the semidiscrete continuous-in-time approximation of (2.19).
The solvability is established by adapting the arguments introduced in Section 3. Subsequently, we
derive error estimates and identify the corresponding convergence rates.

4.1 Preliminaries

Let 75, be a shape-regular triangulation of €2 made up of triangles K (when d = 2) or tetrahedra K
(when d = 3) of diameter hg, and define the mesh-size h := max {hg : K € T, }. For a given integer
k>0 and K € Ty, we let P (K) be the space of polynomials of total degree at most k defined on K.
Its vector and tensorial counterparts are denoted by Pj(K) := [Pr(K)]¢ and Py(K) := [Py (K)]*9,
respectively. In addition, we let RT(K) := Pp(K) 4+ Pr(K) x be the local Raviart—-Thomas space of
order k defined on K, where x stands for a generic vector in R%. We denote by RTy(K) the tensor
space of functions whose rows lie in RTy(K). Furthermore, we let bx be the bubble function on K,
which is given by the product of its d + 1 barycentric coordinates. The local bubble space of order k
is then set as
B, (K) = {curl(bK Pi(K)) %f d=2,
curl(bg Pr(K)) ifd=3,

where the curl operators are defined as curl(v) := (d% _071) forv: K - R (if d = 2), and
curl(v) := V x v for v: K — R? (if d = 3). Finally, Bx(K) denotes the space of tensor functions in
which each row belongs to By (K). With these notations at hand, we introduce the following global

finite element spaces:

H(Q) = {vh e L2(Q) © valk € Pu(K) VKeﬁ},

(92

M €LXQ) © mlx € Pu(K) VK €T},

RTx (2

k(92

(@)= {
(@ = {
Q) : {ThGHdIVQ): Tl € RT4(K) VKeTh},
(= {

ThEHdIV Q) : Th|K€Bk(K) VKEE}.

Let X;, C Ho(div,; ), H C L¥(Q2) and H) C L2 () be finite-dimensional subspaces forming a
stable finite element triplet for the Banach spaces-based mixed elasticity with weakly imposed stress
symmetry. This means that there exists a positive constant 34, independent of h, such that

B(m,),v
sup [B(m).v4] Balvally — Vvy, = (vi,mp) € Yy, == Hp x HJ. (4.1)

O#TheXh HThHX

We immediately stress that (4.1) is the discrete counterpart of the inf-sup condition (3.6). Furthermore,
we point out that there exist several stable triples satisfying (4.1) with s = ¢ = 2, which corresponds to
the classical Hilbertian framework. Examples include the Amara—Thomas element [3], PEERS [7,35],
Stenberg [40], Arnold-Falk-Winther [8], and Cockburn—-Gopalakrishnan-Guzman [24] families. As
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established in [30, Lemma 4.8], if a triplet of finite element subspaces of H(div; ), L*(Q), and L2 ()
forms a stable triplet for linear elasticity in the Hilbertian setting, then, under certain assumptions
detailed therein, these spaces also satisfy (4.1). That is, stability extends to the Banach setting. In
particular, as shown in [30, Section 4.3.3], the Arnold—Falk—Winther and PEERS elements fulfill these
assumptions. Therefore, we shall focus on these two families. To be precise, the Arnold—Falk—Winther
element of order k, denoted AFWp, consists of the following subspaces:

X, = Pr1(Q) NH(div; Q) , H=Pr(Q), and H) := L2 () NPL(Q). (4.2)

skew

In turn, the plane elasticity element with reduced symmetry of order k, denoted by PEERSy, is defined
by

Xp :=RT(Q) ®Br(Q2), Hj :=Pp(Q), (43)

Sy1dxd ’
and H) := [C(Q)]7“ ML, (Q) NPry1(Q).

We notice that, even in the general framework where s and ¢ are not necessarily equal to 2, by setting
Xj, == Xp, NHo(div,; Q) both for AFW), and for PEERSy, the triplet (X, H}, HZ) is conforming with
the continuous setting. Next, by letting u; := (up,vn) € Y, the semidiscrete continuous-in-time
problem associated with (2.19) reads: Find (o, uy) : [0, 7] — X, X Y}, such that, for a.e. t € (0,7),

[A(on(t), ma] + [B'(uy,(t)), 7] + [Dy,(us (), 7] = 0 V7 € Xp,
5 (4.4)

g [E(u, (1), vy] — [B(on(t)), vi] + [C(u,(t),v] = [F(t),vs] Vv, €Yy,

and up,(0) = up0, where (a7,0,1, o) = (4,0, (Un,0,4,0)) is a suitable approximation of (o7, u,), which
is the solution to (3.18). Namely, we choose (o4,0,1y,) € X x Y}, solving

[A(0.0), Th] + [B'(Wy0)s 7] + D) (Wyo)sm] = 0 V€ Xy, s
~[B(ono), vy + [Clusg). vyl = [Go,v] Vv, €Yy, '

where Gy = (go, 0) is the linear functional defined as the right-hand side of (3.18). Notice that Gg €
Y’. In fact, by applying Cauchy—Schwarz inequality and the continuous embedding is o (cf. (1.3)), we
have

|[Go, V]| < Co{lldiv(pe(wo))lL2() + luollz } Ivly — VveY, (4.6)

where Co := 2y [[is || max{1, K™ "||Le(q)}. We stress here that we are assuming the hypothesis of
Lemma 3.3, that is, ug € L*(2) " H. The well-posedness of (4.5) is established below, in Lemma 4.1.
4.2 Existence and uniqueness of a solution

Following the approach of the continuous formulation (cf. Section 3), we aim to prove the solvability
of (4.4) by introducing a fixed-point strategy. To that end, we first let Vj, be the discrete kernel of B,
which is given by

Vy = {Th €Xp o [B(m),vy] =0 Vv, € Yh} .

In turn, from (4.2) and (4.3), we notice that div(X}) C H}!. Thus, V}, can be characterized as
Vy, = {Th €Xp : div(my) =0 in Q and (mp,m)o=0 Vn, e HZ}

Notice that although Vj is not a subspace of V (cf. (3.7)), the coercivity of A also holds in the
discrete kernel Vy, (cf. (3.9)), since the divergence-free condition was the only property required in the
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argument. Consequently, bearing in mind (4.1) and following the same reasoning did it to prove (3.10),
this time applying [25, Theorem 3.5], we obtain the existence of a positive constant A4, depending
only on f4, cs, i, po, p1, HK_luLoo(Q) and ||, such that, for all (¢, w;,) € Xp, X Y, there holds

Ag [[(Chwy) [xxy < sup [A(Cn), ] + B (wy,), 7] + [B(Cn), vi] — [C(wy), vi] .
R PR A 17w ey

(4.7)

Having established this inf-sup condition, we are in a position to prove the well-posedness of (4.5).

Lemma 4.1. Assume that ug € L*(Q) NH (¢f. (3.11)) and the porosity satisfies

HVJ’ < VdAa (4.8)

re 2

Then, there exists a unique solution (o 0,1y, ) € Xp X Y, to (4.5). Moreover, there exists a positive
constant Cy 4, depending only on Aq and Cy (cf. (4.6)), such that

1 (@n0: 1 0) v < Coa { Idivipe(uo)) ey + ollLeey } (4.9)

Proof. Similarly to [12, eq. (4.17)—(4.18)], we employ the inf-sup condition (4.7), the stability property
of D, (cf. (3.4b)), and the assumption (4.8), to establish a global inf-sup condition analogous to (4.7),
but incorporating D,. Similarly, it can be verified that this condition also holds when taking the
supremum over the other component. Therefore, by invoking the Banach—Necas—Babuska Theorem
(see, e.g. [26, Theorem 25.15]), we conclude that (4.5) is well-posed, together with the corresponding
a priori estimate. For the sake of brevity, we omit further details and refer the reader to [12, Lemma
4.3] for a similar analysis. O

Observe that (4.7) enables the stability of (4.4) to be established by following the same arguments as
in the continuous case (cf. Theorem 3.4). Although the precise statement is deferred to Theorem 4.7,
this observation motivates the introduction of a fixed-point operator Jgy : L(0,T;X}p) — L2(0,T;X},)
on the space L2(0,T;X}), in a similar fashion as in (3.26). The operator J3 is then defined by

Ja(Cr) =on V¢ € LX(0,T;Xp),
where (o, 1) : [0,T] — X}, x Y}, is the unique solution (to be confirmed below) to
[A(on(), ] + B'(wy (1)), 7] = 0 Vi € Xp,

gt[E(uh(t)),vh]—[ﬁ(ah(t))wh]+[C(uh(t)),vh] = [Fe,(t),vy] Vv, €Yy,

for a.e. t € (0,7) with u,(0) = up, where (4,0,1;) € Xp x Y}, is the unique solution (to be
confirmed in Lemma 4.5) to

(4.10)

[A(op0), 7] + [B' (W), m] = 0 V1, € Xy,
(4.11)

—[B(oh,0), vp] + [C(Eh,o)a!h] = [éoth] Vv, €Yy,

with Go = (g0,0) the linear functional on the right-hand side of (3.16). It follows from (3.17) and
the continuous embedding i (cf. (1.3)) that Gy € Y'. To prove the unique solvability of (4.10), we
first establish the discrete counterpart of Lemma 3.5. The proof is analogous to the continuous case,
employing the discrete inf-sup condition (4.1) in place of (3.6).
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Lemma 4.2. Assume that the porosity satisfies

H Vp _ Vd dfa (4.12)
Pl = 2
with Bq as given in (4.1). Then, the following inf-sup condition holds:
B
sup [B(7), vi) > Fa IN7Y13% Vv, €Y. (4.13)
0#TrEX), HThHX 2
Next, we define iv/h as the discrete kernel of the operator ]§, namely
Vp = {Th Xy - [B(m),v,]=0 Vv, Yh} . (4.14)
Then, we have the following result, which serves as the discrete counterpart of Lemma 3.6.
Lemma 4.3. Let ¢, be as in (3.8) and assume that the porosity satisfies
\/ﬁ cr
4.15
[, = 2 (419)
Then, with the same constant o as in Lemma 3.6, which is independent of h, it holds
A ~
sup [Alon) ] > allon|x Vop e V. (4.16)
07£Th€§7h H hH

Proof. Let o), € Vj. Since div(ey,) € HY, we can use (4.14) with v, = (div(ey),0) € Y),. Then, we
apply Cauchy—Schwarz inequality along with (4.15), thus obtaining

. L (Vp .
v = (2 -divien). e ) Idiv(on) ey lonllae)

d _2H5H

Now, using this estimate and the continuous embedding iy, which satisfies ||iz || = 10|20/ =
1Q|(5=2/(2%) = ||ig | (cf. (1.3)), we find that

[div(on)lLeo) <

C¢
iv(on)llizo) < 5 lonllz ) -

Having this established, the rest of the argument proceeds exactly as in the proof of Lemma 3.6,
thereby showing that (4.16) holds with the same constant. We omit further details. O

Lemma 4.4. Suppose that the porosity p satisfies (4.12) and (4.15). Then, for all f e L2(Q), there
exists a unique solution (op,uy) € Xp, X Yy, to the problem

[A(O’h),Th] + [E’(gh),rh] = 0 V1, € Xy,
(4.17)

B(on), vl — [(E+C)(w,),v,] = —(F vi)ao Vv, €Yy,

Proof. Bearing in mind Lemmas 4.2 and 4.3, and recalling that A and E+ C induce symmetric bilinear
forms, we apply [25, Theorem 3.5] to conclude. O
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Certainly, Lemma 4.4 proves the range condition of Theorem 3.1 in our discrete setting, thereby
establishing the discrete counterpart of Lemma 3.7. Moreover, by neglecting the operator E in (4.17),
we also prove that, under the same assumptions as in Lemma 4.4, the problem associated with the
initial conditions (4.11) has a unique solution. We state this in the following result.

Lemma 4.5. Assume that ug € L°(Q) NH (¢f. Lemma 3.3) and that the porosity p satisfies (4.12)
and (4.15). Then, the problem (4.11) has a unique solution (op0,1y) € Xp x Yy Moreover, there

exists a positive constant Coqa, depending only on «, fq, ||K_1”]Loo(ﬂ), po, and Co (cf. (3.17)), and
thus independent of h, such that

lonollx+ sl < Coa {lIdivipe(uo))la) + oz } (4.18)

Proof. Similarly to the proof of Lemma 4.4, we invoke [25, Theorem 3.5] to ensure existence and
uniqueness of the solution. Moreover, we use the a priori estimate provided by the same result,
together with the continuity of Gy established in (3.17), to obtain (4.18). We omit further details. [

The following result shows that (4.10) has a unique solution, which means that 73 is well-defined.

Theorem 4.6. Suppose that the porosity p satisfies (4.12) and (4.15). Let f € WL(0,T;L2(2)) N
L0, T;L%(Q)) and ug € L*(Q) N H be given, and let (op0,1y,) be solution to (4.5). Then, the
operator Jy is well-defined. In particular, for each ¢, € L?(0,T;X},), there exists a unique solution
(on,uy,) to (4.10) such that o), € L2(0,T;X4), up € WH(0, T3 HY), 45, € L2(0, T3 HY) ), up(0) = upp,

al(0) = 0270, Y,(0) = Yn,0, and Ja(Ch) = op. Moreover, there exist positive constants Cgq and Cyg,,

with C~'B7d depending only on i, po, p1, ||K_1||]Loo(Q), Ag, C~'0’d, d and ||, and Cg, depending only on
po, p1, Na, d and |Q|, such that

17a(Gh) l207) < Co.a {20,702 + Idivipe(uo))llnae) + uollia) |
(4.19)
+ de

IChllLz0,m:x) -

L= ()

Proof. Using the fact that X;, € X and Y, C Y, the proof is identical to the proof of Theorem 3.8, this
time relying on the discrete inf-sup conditions established in this section (cf. (4.1), (4.13), and (4.16)),
the discrete initial conditions (cf. (4.11)) and the bound (4.18) given in Lemma 4.5. O

We finally obtain the main result of this section, which is the existence and uniqueness of a solution
to (4.4) along with the stability of the discrete problem.

Theorem 4.7. Suppose that the porosity p satisfies (4.12), (4.15),

A
HV'O <cpa with cpq:= @ min {1, \/P>0} ; (4.20)
P Lo (Q) 2 ||15,2|| 4p1
and v
O |12 <1. (4.21)
P llree (@)

Then, given f € WH1(0,T;L?(Q)) NL?(0,T; L*(Q)) and ug € L¥(Q) NH, and denoting by (oh0,1y )
the unique solution to (4.5) (c¢f. Lemma 4.5), there exists a unique solution to (4.4) with o}, €
L2(0,T;Xp), wp € Whe(0,T;Hy), v, € L2(0,T5H)), up(0) = upp, o5(0) = o 5, a(0) = a0

23



Moreover, there exists a positive constant Cgq, depending only on p, po, p1, Ck, ||K_1||]Loo(9), Ag,
Coa, d and |Q|, such that

2 2 2 2
lonllT20.rx) + 1rllL20 750 () T 0 l1Te 0,200y + 101200, 70200

(4.22)
< Cpa {Hf”%P(O,T;Lz(Q)) + [[div(pe(uo)) 120y + HuOHiQ(Q)} :
Proof. Employing the same arguments as in the proof of Theorem 3.9, from (4.19) one verifies that J4
is Lipschitz continuous with constant Cz, ||V p/p||re (). Under the assumption (4.21), the fixed-point
operator is a contraction, and the Banach fixed-point theorem yields the solvability of (4.4). The
stability estimate (4.22) then follows by the same reasoning as in Theorem 3.4, this time relying on
the discrete global inf-sup condition (4.7) and applying the assumption (4.20). Finally, in analogy
with Lemma 3.2, it is straightforward to show that (4.4) is equivalent to (4.10) with ¢; = o}, and
that the initial conditions coincide. We omit further details. 0

Remark 4.1. The analysis developed in this section remains valid for any other triplet of finite
element spaces satisfying (4.1), provided that the sole requirement div(X) C H} is fulfilled.

4.3 Error analysis

We now proceed to establish the rates of convergence. For the sake of clarity, we restrict the analysis
to the PEERS element (cf. (4.3)), and indicate at the end of this section, in Remark 4.2, the minor
adjustments required for the AFW element (cf. (4.2)) or any other choice of triples. In this way, let
PrL(Q) — H}' and PZH L2, (Q) — H) be the L2-projection operators, satisfying
(u="Pf(u),vy),=0 Vv, €H},
(7 - P2+1(7)7nh)9 =0 V”?h € H?le

and, given p > 2d/(d + 2), we consider the space

(4.23)

H, := {Texz Tk € WHP(K) wcen},

so that we may define Hi : Hy, — RTx(2) as the tensorial counterpart of the Raviart-Thomas
interpolation operator, which satisfies the well-known commuting diagram property (cf. [9, Section
2.5.2] or [27, Section 3.4.1])

div(I15 (1)) = PE(div (7)) VT eH,. (4.24)

Furthermore, recalling the decomposition (2.16), let us define Hﬁ,o : H, — RTx(Q2) NHp(divy; Q) such

that, for each 7 € H, H];L’O(T) is the Ho(divy; Q)-component of TI¥(7). Then, we notice that the
range of Iy o is contained in X, as RTy(2) N Hy(div,; ) C Xj,. Moreover, one readily checks that
the property (4.24) also holds when TI¥ is replaced by Hlfl’o.

Now, let us define the errors e, := o — 0, and ey := (ey, ey) = (u—up,y —73), and consider the
decompositions
€ =05 +0, and ey =0y+ 6y = (0y+60y,6+64), (4.25)

where
0 =0 —II (o), O, :=1I} o(0) — o), Su:=u-—Pi(u), 6Oy:=P;u)—u,,
R
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Subtracting the discrete problem (4.4) from the continuous one (2.19), we obtain the following error
system:

[A(es), Th] + [B'(eu), 7n] + [D)(ew), ] = 0 V7, €Xp,
5 (4.26)
g [E(eu), v, — [B(es),v,] + [Cleu),vy] = 0 Vv, €Y.

In turn, using the projection properties (4.23) and (4.24), we find that
[B'(0u), 7] = (Th,0y) V7h € X, and [B(d5),vy] = (0o,m)0 Vv), € Y.
Hence, the error system (4.26) can be rewritten as
[A(05), 1] + [B'(0u), ] + [D,(0u), ] = —[A(d5), Ta] = (Th, 05)a — [D},(6u), 7],
P o (4.27)
ot [E(6u),v)] — [B(6s),vy] + [C(Ou), vs] = ot [E(0u), vi] + (065 m1) — [C(du), v4 ],

for all (13,,v},) € Xp x Y.

On the other hand, similar notation is introduced for the discrete initial conditions system (4.5).
Let us consider ey, := 09 — o0 and ey, 1= (€y,, €~,) = (up — up0,Y0 —Yh,0), with the corresponding
decompositions

€oy =05, + 05y and ey, = Oy, + Ou, = (duy + Ouy; 0+, + ), (4.28)
where
0oy 1= 00 — Hl,";’o(a'o) , O, = Hﬁ70(0'0) — Oho, Ouyy:=Uup— ’Plfb(uo) , Oy, = ’Pﬁ(uo) — U,
Gy =0 — Py (), and 64 := P (v0) —vn-

Thus, by subtracting the discrete initial conditions system (4.5) from the continuous one (3.18), we
obtain the error system

[A(esy), 7] + [B(eu,), 7] + [Dh(ey,). 7] = 0 V7, € Xy, )
~[B(€sy), ¥4 + [Cley,),vi] = 0 Vv, €Y. '

We now establish the main result of this section.

Theorem 4.8. Assume that the hypotheses of Theorems 3.9 and 4.7 hold. Furthermore, suppose that
the porosity satisfies

\/gpo Aq
Lo 8V2p1 szl
Let (o,u) and (op,uy,) be the unique solutions of the continuous and semidiscrete problems (2.19)

and (4.4), respectively, with the regularity specified in Theorems 3.9 and 4.7. Assume further that
o € H,, for some p > 2d/(d+2). Then, there exists a positive constant C, independent of h, such that

Vp
£ 4.30
H p (4.30)

HeUH%Q(O,T;X) + HeuH%%O,T;LS(Q)) + HeuHiw(o,T;m(Q)) + He’)’H%?(QT;L?(Q)) <CEs, (4.31)
where

Es := 100 1T2(0 7% + 10ullf20.0.ms 0y + 104120 7220)) T 10600 1200 72200
+ ||at5u||i2(o,T;L2(Q)) + Hat‘s‘YHi?(O,T;L?(Q)) + H(SO'HiOO(O,T;X) + H‘SUHiW(O,T;LS(Q))
11051100 (0 2 (62)) + 186 O) 1 + 100 3 + 1800 1Fs () + 103017 2y -
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Proof. First, notice that since o € H,, HZ’O(O') is well-defined. Then, proceeding similarly as in the
proof of Theorem 3.4, we use the discrete inf-sup condition (4.7), the error system (4.27), and the
assumption [|[Vp/p||ge ) < VdAg/ (2 |lis2ll) (cf. (4.20)), so that we obtain

A
5 6. 0y < C1 (1801l + 18ulln-) + 184]l20) + 110: dulle(e) (4.32)

+p1lis2l 10:0ullL2 @) »

where C] is a positive constant depending only on u, po, p1, |, |]K*1|]Loo(g), and [|Vp/pllLr@)- By
squaring (4.32), integrating from 0 to ¢ € (0,7, and performing some algebraic manipulations, we

arrive at
A2 /t , , 2
Q27 112 05 (s + [|Bu(s s + 1164 (s ds
sl ) {18+ 18u6) ey + 10+6) o)}
gt
<Oy / {||5a(S)||§g + [10u(s) () + 16+() 12 () + 1102 5u(s)|yi2(m} ds (4.33)

/ |0¢ Ou HL2(Q ds,

with 51 having the same dependence on the data and parameters as C.

In order to bound the last term in (4.33), we differentiate in time the first row of (4.27), test with
(Th,v,) = (05, 0; 04), and use the identity (64,0; 0)o = 0¢ (0o,0+)a — (0; 65, 0~)q, thus obtaining

1 1 _
ﬁ ( o 03’03)9 T ('Oat Ou, 0, 011)9 +u (K ! Ou, O HU)Q
1 d pd
- 2H at 60’700' - (pat 611)815 eu)Q - (eavat 6‘7)9 + 8t (60'70‘7)9
Q
1 /V _
- (&f do, 0’7)(2 + d <pp X euvtr(00)> - (K ! Ou, O HU)Q
Q

Now we use the monotonicity properties (cf. (3.5a) and (3.5b)), Cauchy-Schwarz and Young’s inequal-
ities (cf. (1.1)), so that, after some algebraic manipulations, the previous estimate becomes

M8t< 03,92) ||at0 oy + 5 at (K™ 04,64,
< C2 (1191 820 + 194 ullfz o + 116 \|%s<g>+uatwiz(m) (4.34)

HBCJ'H%{ + 8t (607 0’7)9

+ 01100 [1% + 62 104720 +7 H
Lo (Q)

with Cy depending only on u, pg, p1, HK‘1||]Loo(Q), and d1, d2 arbitrary positive numbers to be chosen
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later. Then, integrating (4.34) from 0 to ¢ € (0,77, and using the assumption (4.30), we get

C
OOy + L 10Oy + 2 [ 10005 iy

t
<Ca [ (10080 0Ny + 100 B9 oy + 1wy + 10049 Exe) s

t A2 4.35
+ 61 1|05 (8)||% + 82 (|0~ (s)||? ds+ ——————= P /9 ds (4.35)
6180 + 2 1030 i+ 52 [ 10001
#1800 e 1620210 + 1620 20 1850V eaiey + 1 1030 2o

T
+3 1K™ |0 0) ”Gu(o)”%ﬂ(ﬂ)
To bound the term [|6(t)|1.2(q), We observe from the first equation in (4.27) that
[B'(6y), 7] = —[A(eo), 7] — (8, Th)a — [DL(8u), Th]  ¥7h € X,

Then, applying the discrete inf-sup condition of B (cf. (4.13)), together with the Cauchy—Schwarz
inequality, yields
1 1
04 (t + od(t
5 1080+ 7 183 Oeco

2 2 Vp
— || 2
+5d” ~ () Iz Q)+f/6d

Consequently, by suitably applying Young’s inequality (cf. (1.1)), we obtain

10~z <

10u(®)llLs (@)
L™()

165 ()20 10 (8) 1200 < _4 03Ol +Cs (10 0+ 180t (o) + 105Dy ) - (436)

with C3 > 0 depending only on 4, , po, p1 and [|[Vp/p|l1r(q)-

On the other hand, to bound the last three terms in (4.35), we first observe that, similarly as
n (4.32), by using the discrete global inf-sup condition (4.7), together with Cauchy—Schwarz and
Young’s inequalities, and assumption (4.20), it follows from (4.29) that

1900 l1% + 1800 I + 16201220 < Ca (100 1% + 8ol oy + 103 B2ey) - (4:37)

with C4 > 0 depending only on A4, p, [, [[Vp/pllLe () HK’lHLm(Q) and pg. In turn, we recall from
Theorems 3.9 and 4.7 that 09(0) = o and o(0) = o} ,, which allows us to estimate

IIOg(U)HHﬁ(m = HHE’O(U(O))d —a%(0) +a§ — Hlﬁ,o(ao)d + Hﬁ,o(‘fo)d - Uiczl,OHV(Q) (4.38)
< 11650z + 183, Iz + 1165, 2@ < 186 (0)llx + 1800 [ + 160 -

Moreover, by the same results, u(0) = ug, v¥(0) = v, un(0) = up 0, and v,(0) = 4,0, which implies
that 8y, = 64(0) and 8-, = 0-(0). Hence, substituting these facts into (4.37), and then combining it
with (4.38), we obtain that

165 (0)]22 (0 + 10u(0) [+ (0 + 14(0) 220 < C5 B0, (4.39)
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where C5 > 0 depends only on Uy, and Es  is defined as

Es,0 1= (18 (0)[1% + 100 1% + 18uoIe () + 1040 ]IF 20

Thus, by replacing (4.36) and (4.39) into (4.35), and then applying Young’s inequality (cf. (1.1))
together with some algebraic manipulations, we deduce that

pC P
PO us <>Hm)+ 0 / 00 () 122 gy s
< Co [ (110:65(5)122(0y + 105 0u(®)|Z2qy + [18u() |20y + 10 () 12y )
> 02 ) t 00 (8)llL2() t OulS)llL2(Q) ulS)liLs(q) t Oy (8)llL2(q) ) @8
+ Cs (185 (IF + 18a(t) - 0 + 185(8)|Z2(q) + Eso)

¢ 2
po A3
+/o 811105 (s)|% + 02 [0+(5)1Z2q)) I + o me—5 128 2 i / 160 (s)[I% ds

(4.40)

with Cg > 0 depending only on C3 and C5. Then, we substitute (4.40) into (4.33), and choose d; and
09 sufficiently small, thereby yielding

t
[ (186 + 10w oy + 10352y ) + 1u(0) ey

~

t
<G { (18l + 180060 )+ 18,5) o) s

(4.41)
' 2 2 2
+/0 (Hat(SU(S)HLQ(Q) + 10e65 () |72 () + \\3t5v(s)\|m(9)) ds

+ o (165 ()1 + 18u(®) (@) + 185 (6) 22y + B )

with 61 and 62 depending on the previous constants, physical parameters and data. Finally, by using
the error decompositions (4.25) together with (4.41), we obtain (4.31), as desired. O

Next, in order to obtain the theoretical rates of convergence for the semidiscrete scheme (4.4), we
recall the approximation properties associated with the finite element spaces (cf. (4.2) and (4.3)),
and the operators ’Pﬁ, 'Piﬂ, and HZ. These properties basically follow from classical interpolation
estimates of Sobolev spaces and the commuting diagram property (cf. (4.24)). For details we refer
to [27, Section 3.4.4], [9, Section 2.5.5], or [15, Section 4.2.1].

(AP7) There exists a positive constant C, independent of h, such that for each ¥ € (0, k + 1] and for
each 7 € HY(Q) N X, with div(r) € W?¢(Q), there holds

I = Tl < €0 {7l + Iiv(7) sy | -

(AP}) There exists a positive constant C, independent of h, such that for each ¥ € [0, k 4 1] and for
each v.€ W?5(Q), there holds

IV =PE(W)ls@) < CAY [[VIwoso) -

(APZ) There exists a positive constant C, independent of h, such that for each ¥ € [0,k + 1] and for
each n € H?(Q)N1L2__ (), there holds

skew

ln =P )ll20) < € nllgo o)
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It is worth noting that (APY) is stated in terms of Hi instead of Hio. However, it is not difficult
to prove that, for all T € H?(Q) N X,

I~ T ()2 < (1 + d2 Q)2 [lr — TIf (7).

so the approximation property also holds for this operator, up to a multiplicative constant independent
of h. In this way, it follows that, under an extra regularity assumption on the exact solution, there
exist positive constants C (o), C(u), C(v), C(0:0), C(0xu), and C(0yy), whose explicit expression are
obtained from the right-hand side of the foregoing approximation properties, such that

16cllx < Cla)h”, Nulle) < CW)h”,  [[8yllL2() < C(v) k7,

(4.42)
10165 L2y < C(Bo) bV, ||8ibullrz) < C(Om) R, (0164 [l12) < C(Oy) bV

The following result establishes the theoretical rates of convergence of the semidiscrete continuous-in-
time scheme (4.4).

Theorem 4.9. Assume the same hypotheses as in Theorem 4.8. Furthermore, suppose that there
exists ¥ € (0,k + 1] such that o € H?(Q), div(e) € WP(Q), u € W?3(Q) and v € H?(Q). Then,
there exists a positive constant C(o,u), depending only on C (cf. Theorem 4.8) and the constants
defined in (4.42), such that

leo L2015 + leullizo. s @) + lleullLsorrz@) + leylizoriz@) < Clo,u) k. (4.43)

Proof. 1t follows from using (4.42) into (4.31), and performing some algebraic manipulations. We omit
further details. O

Remark 4.2. The error analysis remains valid for any triplet of finite element spaces that are stable
for the semidiscrete continuous-in-time scheme (cf. (4.4)), provided that the orthogonal projectors P¥
and 7PZ+1 are available, and that a mized interpolation operator satisfying the commuting diagram
property (4.24) exists. In particular, for the choice of AFW elements (cf. (4.2)), we can employ
the BDM interpolation operator (cf. [9, Section 2.5.1]), which also satisfies (4.24). Furthermore,
since property (AP ) also holds for this operator (cf. [9, Proposition 2.5.4]), Theorem 4.9 remains
unchanged.

5 Fully discrete approximation

In this section, we introduce and analize a fully discrete approximation of (2.19). For this purpose, we
employ the backward Euler method for the time discretization. Let At be the time step, T' = NAt,
and let t, = nAt, for eachn € {0,..., N}. Let dyu™ = (At)~! (u™ —u""1) be the first order (backward)
discrete time derivative, where u™ := u(t,). Then, the fully discrete method reads: Given f* € L2(Q)
and (02722) = (Uh,Oa (uh,0>7h,0)) satisfying (45)> find (02722) = (U;le (u277]72)) € Xp X Yp, for
n € {1,...,N}, such that

[A(o}), 7] + [B'(u}), 7] + [D)(up), 7] = 0 V1, € Xy, 65)

dy [E(up),v,] — [Bloy),vp] + [C(up),v,] = [F",v,] Vv, €Yy,

where [F", v, ] := (f",vp)q.
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In what follows, for a separable Banach space V equipped with the norm || - ||y, we define the
following discrete-in-time norms:

N
2 — 2 o
lullzz om0 '_AtZIHUnHv and full e o) 1= max[u”y -
n=

Endowed with these norms, we define the Banach spaces £2(0,7; V) and £°°(0,T; V) respectively as
C0,T;V) = {u — (s u™) e VY ullpora < +oo}, and
(0, T; V) := {u — (W) € VY fuflpeoriy < +oo} .

We begin our analysis of the fully discrete scheme (5.1) by establishing a stability result.

Theorem 5.1. Suppose that the hypotheses of Theorem 3.9 and Lemma 4.1 hold. Assume further
that the porosity satisfies
< Vid A4 po

< VdAap (5.2)
L) 8o [lisell

B
p

Let (o}, u}}) = (o7, (u},v;)) € X x Yy, be a solution to (5.1) with (Ug,gg) = (oh,0, (Un0,vn,0))

~

satisfying (4.5), and f* € L2(Q) with n € {1,...,N}. Then, there exists a positive constant Cs,
depending only on i, po, p1, Ck, Aa, Coa (¢f. (4.9)), K™ Lo () and [, such that

2 2 2 2
lonlliz o) + 1nlle2orime @) + allze 0,720 + 1Ml @)

~ . (5.3)
< Co (1€ o.rowe(en + Idiv(pe(uo) 220, + olaqey | -

Proof. Following a similar approach to that in Theorem 3.4, we first apply the discrete global inf-sup
condition (4.7), use the system (5.1), and recall that |[Vp/pllrrq) < VdAg/2 (cf. (4.8)), to obtain

A4 . .
- Mok, wp)lixxy < p1llisall lldeapllez (o) + lisall [ [[L2)

which, upon squaring, summing over the time steps n € {1,..., N}, and multiplying by At, becomes
the discrete counterpart of (3.21),

Cy {||UhH?2(o,T;X) + ”uhHg?(O,T;LS(Q)) + ||’Yh||g2(o,T;1L2(Q))} (5.4)

2 2 (1p(2
< ldeanlliz 020y + 017 1El20.1:02(0) -
where Cy = A3/(8 iz ]2 p2).
In order to bound the first term on the right-hand side of (5.4), we note that a discrete time
differentiation of the first equation in (5.1) can be obtained merely through algebraic manipulations,

which yield
[A(dio}), ] + [B'(dea})), ] + [D:)(dtg’ﬁ), ) =0 V1, €X;. (5.5)

In particular, testing with 75, = o' and using the second row of (5.1) with v;, = dsu} to handle the
second term of (5.5), we arrive at

[A(diop), o] + [E(dg), deap] + [C(up), dap] = [F*, diup] — [Dy(duuy), 03] (5.6)
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In turn, owing to the linearity of A and C, simple algebraic manipulations show that

[A(dioyy), op] = §dt[A(0h)70'h]+7[A(dt‘7h)adt‘7h}, 5
5.7
[Clup), diup] = ) dy[C(uyp), up] + ) [C(deuy), diayp]

so, substituting (5.7) into (5.6) and using the monotonicity properties (cf. (3.5a) and (3.5b)), together
with Cauchy—Schwarz and Young’s inequalities, leads to the discrete version of (3.22),

PO MCKAt n At n n n n
(54 250 Nty + gy Nh) oy + 5 de{ (AR, o]+ [CCu). )
1l (5.8)
<—||-£ (A +—||f"||L2
dpo || p Lo (Q)

Next, using (5.2) to bound ||V,o/p||%oo(m/(dpo) < (poC1)/8, summing over the time steps n €

{1,...,m}, with m € {1,..., N}, multiplying by At, and invoking once more the monotonicity of A
and C (cf. (3.5a)) together with the stability properties (cf. (3.4a) and (3.4d)), we obtain

po | pCx At S n 1 m MCK
(G4 1 ) A ey + g 16T ey + 5 I
001 At & At n 1
< ZH hHX+ ZHf ||L2 — llonllk
4ppo
+ — KL uy, ||
2 H18,2”2 H H]L () H hHL (%))

Notice that we have neglected the second term in (5.8). We now use the fact that o) = oy, and
u2 = uy, 0, together with the estimate (4.18), and after some algebraic manipulations, and the omission
of some terms for clarity, we obtain the discrete counterpart of (3.23),

= n QMCK m 2At n C1 At
At Z HdtuhH%ﬂ(Q) + o [[uy ”%2( < Z I HL2(Q Z loi 1%
n=1

+6, {||div<pe<uo>>||m> + luollZaay }

(5.9)

with C» depending only on Coa (cf. (4.18)), u, po, |2 and |]K*1|]Loo(9). Since m € {1,...,N} is
arbitrary, (5.9) implies

~

2,& CK 2 2 2 Cl

2 2
ldeanle o riwaqy) + =5 = Mnlleeo rinaiey) < 2 IEl20rme@) + 5 lonlleor

(5.10)
+ G {ldivipe(uo) 2 + oz }
Thus, substituting (5.10) into (5.4) yields (5.3) with constant

~ max {p;?+2py2, o}
min{C /2, 2uCk py*}

Sv

31



Certainly, one possible way to prove the well-posedness of (5.1) is to use an induction argument
to handle the discrete time derivative and to follow a similar approach to that in Lemma 4.5. This
consists in establishing the well-posedness of (5.1) while neglecting the operator D;,, deducing a global
inf-sup condition, and then assuming that ||V p/pl|re(q) is sufficiently small, depending on the global
inf-sup constant, to incorporate the term associated with D’p. However, this constant depends on the
time step At, which in turn implies that ||V p/p||pe~ () must be smaller than a constant depending
on the time step. To overcome this difficulty, we proceed similarly to Sections 3 and 4, introducing
an auxiliary problem and a fixed-point strategy to establish the well-posedness of (5.1). In fact, let
jd : 02(0,T;Xp,) — £2(0,T; X3) be the operator defined by

Ja(Cn) = o,

where (o7, 1) is the unique solution (to be confirmed below) to

[A(a}), ] + [ﬁ’(gﬁ),'f‘h] =0 V7, € Xy,
(5.11)

di [B(u}), vy — B(op). vl + [Cup), vy = [FE,vi] Vv, € Ya,

for all n € {1,..., N} with (o)), u))) given by (4.5). Here, [f‘gh,yh] = (f",vip)a — [D(C}), vyl
Now, we notice that establishing the well-posedness of (5.1) is equivalent to prove that there exists
a unique solution to the fixed-point equation
Jalon) = o (5.12)
The following result asserts that (5.11) is well-posed and a stability result for the fixed-point system.

Theorem 5.2. Suppose that the hypotheses of Theorem 3.9 and Lemma 4.5 hold. Then, jd 18 well-
defined. More precisely, given ¢, € £2(0,T;Xy), there exists a unique solution (o, ) to (5.11), with
o, € 12(0,T;Xy), uy € £°°(0, T HY), and ~y, € ¢%(0,T;H)). Moreover, there exist positive constants
Cpa and Cz , with Cpq depending only on i, po, p1, 1Ko () A, Coa (¢f- (4.18)), d and |9,
and Cfd depending only on po, p1, Ag, d and ||, such that

17a()lleo s < Coa { €l rna) + ldivioe(uo))la) + ol |
Vp

(5.13)
+ Cj;

1Chllez0,7:%,) -
Lee(Q2)

Proof. Let ¢, € £2(0,T;Xy) be given and recall from Lemma 4.5 that we have the discrete initial
conditions (o), u?) satisfying (4.18). We then proceed to establish the well-posedness of (5.11) at each
time step by induction. In fact, assuming that uz_l is known, we prove the existence and uniqueness
of the problem by following the same arguments as in Lemma 4.4. Consequently, we obtain the
existence and uniqueness of o, € (Xp,)V and u;, € (Y3)" satisfying (5.11). In turn, to prove (5.13),
one proceeds as in the proof of Theorem 5.1, arriving at (5.13) with a constant independent of h and
At. Further details are omitted. O

Theorem 5.3. Suppose that the hypotheses of Theorems 5.1 and 5.2 hold. Assume further that the
porosity satisfies

<1. (5.14)
P llLe (@)

Then, given (9, u9) = (oh0, (Un0,Yho)) satisfying (4.5) and £* € L*(Q) with n € {1,..., N}, there
exists a unique solution (o)}, u}) to the fully discrete scheme (5.1). Moreover, the solution satisfy the
stability estimate (5.3).
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Proof. The existence and uniqueness is achieved by arguments similar to those of the proof of Theo-
rems 3.9 and 4.7. In fact, it is straightforward to verify that TJa is Lipschitz continuous with constant
C% IVp/pllL=(e)- Then, by (5.14), it follows that Ja is a contractive operator in the Banach space
?2(0,T;X}). Thus, by the Banach fixed-point theorem, there exists a unique solution to (5.12), which is
equivalent to the existence and uniqueness of solution to (5.1). The stability follows from Theorem 5.1.
This completes the proof. O

Remark 5.1. We emphasize that the fully discrete scheme (5.1) yields exact conservation of momen-
tum when p, K and £*, for each n € {1,..., N}, are piecewise constant. In this case, p diu}, K 'u?,
and " all belong to H}}. This fact, together with the inclusion div(X,) C H}, implies from the second
equation in (5.1) that, for everyn € {1,...,N},

pdiuf + p Kt up —div(e]) =" in Q. (5.15)

Furthermore, if the data are not piecewise constant, (5.15) can only be obtained in an approrimate
sense, by replacing pdyua}, K='u} and " with PF(pdpull), PF(K -1 u}) and PF(f"), where P} is
defined as in (4.23). The numerical verification of this property is illustrated in Section 6.

In what follows, we establish the rates of convergence associated with the fully discrete scheme (5.1).
To this end, we subtract the fully discrete system (5.1) from its continuous counterpart (2.19) at each
time step n € {1,..., N}, yielding the following error system:

[A(o" — o), 7] + [B'(u" — u}), 7] + [D,(u" —u}), 7] = 0
(pdi(u™ —up), va)o — [B(e" —op), vy | + [C(u" —up),vi] = (pra(u),va)e

for all (13,,v;,) € Xj x Yj, where r,, is the difference between the continuous and discrete time
derivatives, that is,
rp(u) := dpu” — Jpu(ty) .

Additionally, we recall from [14, Lemma 4] that, if u € H2(0,7;L?(f2)), there holds

N
ALY ra()lffzg) < COuu) (A1?,  with  C(9yu) := C||0wul[f2 g 120 »
n=1

for some positive constant C, independent of At. Thus, we now state the theoretical rates of con-
vergence associated with the fully discrete scheme (5.1). The proof follows the same structure as
that of Theorem 4.8, relying on the approximation properties detailed in Section 4, and more pre-
cisely in (4.42), thereby yielding a result analogous to Theorem 4.9. Naturally, all arguments must be
adapted to the discrete-in-time setting, in a way similar to the proof of Theorem 5.1. For the sake of
brevity, we omit further details and restrict ourselves to stating the result.

Theorem 5.4. Suppose that there exists 9 € (0, k+1] such that the assumptions of Theorem 4.9 hold.
Assume further that the hypotheses of Theorem 5.3 hold and that u € H2(0, T;L%(Q2)). Then, for the
solution of the fully discrete scheme (5.1), there exists a positive constant é\(a,g), independent of h
and At, but depending on the exact solutions and Cs (cf. (5.3)), such that

Hea”ﬁ(O,T;X) + Hequ?(o,T;Ls(Q)) + HGUHZOO(O,T;L2(Q)) =+ He’YHZQ(O,T;]L?(Q)) <C(o,u) (hﬂ + At).
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Finally, inspired by the first equation in (2.10), (2.8), and (2.18), we observe that the gradient of
the velocity Vu, the pressure p, and the original stress tensor &, can be approximated through a
post-processing procedure as

1 1 /V 1
Vulf = o (o) = (2w ) I g = {20 (V- u) + te(o)} — Aoy
2pp d\r d " (5.16)
~ " . 2 '
and o =0y +Agpl, with Agn = —W/;“ (Vp,up)a,
for all n € {1,..., N}, where [Vu]p, pr, and o} denote the respective approximations of the variables

of interest. Consequently, from the rates of convergence of o, u, and ~ established in the previous
theorem, it follows directly that the same rates are inherited by [Vuly, pp and op,.

Lemma 5.5. Suppose the same assumptions as in Theorem 5.4. Then, there exists a positive constant
C(o,u), independent of h and At, but depending on the exact solutions and Cy (cf. (5.3)), such that

levullezo,75L2)) + l€pllezo,mr2 ) + ez lleorx) < C(a,u) (' + At),
where eyy := Vu — [Vulp, €, :=p —pp, and ez := o — o},

Remark 5.2. In the fully discrete scheme (5.1), we restrict ourselves to the backward Euler method
merely for simplicity. Nevertheless, the analysis in Section 5 can be readily extended to other time
discretizations, including BDF schemes and the Crank—Nicholson method.

6 Numerical results

In this section, we present three numerical experiments that illustrate the performance of the fully
discrete method (5.1). The implementation was carried out using the open-source finite element library
FEniCS [1]. We consider quasi-uniform triangulations and the finite element subspaces associated with
PEERS; and AFWp, as described in Section 4. Examples 1 and 2 aim to verify the expected rates
of convergence in two- and three-dimensional domains, respectively, and to corroborate numerically
that the conservation of momentum (5.15) holds. In these cases, the total simulation time is set to
T = 1072 with a time step of At = 1073, which is sufficiently small to ensure that the temporal
discretization error does not influence the observed convergence rates. Finally, Example 3 examines
the flow of a free fluid around a porous obstacle under various operating conditions, highlighting the
applicability of the proposed method to complex geometries and diverse physical scenarios.

For the first two examples, in addition to the errors in the velocity and vorticity, we also compute
the errors associated with the original Cauchy stress tensor and the pressure obtained from (5.16) and
Lemma 5.5, while omitting the computation of the velocity gradient for simplicity. In addition, we
compute the error associated with the conservation of momentum (5.15) as

enr = Pl(pdiuy) + pPEEK " up,) — div(ey) — PE(f).
We recall that the experimental rates of convergence are defined as

L log(e,/e,)

I gy Ol R)

where h and h’ denote two consecutive mesh sizes with errors e, and €.

Finally, we remark that the zero-mean constraint on tr(e,) over € is imposed via a scalar Lagrange
multiplier, which amounts to adding one row and one column to the matrix system corresponding
to (5.1).
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Example 1: Convergence against smooth exact solutions in a 2D domain

In this test, we analyze the convergence with respect to the spatial discretization using a manufactured
solution. The computational domain is the square Q := (0,1)2, and we set s = 4, which yields ¢ = 4/3
(cf. (2.13)). The viscosity is fixed at g = 1, and the permeability tensor is given by K := 10721
Following [19], the porosity function is defined through an exponential profile, while the source term
f is adjusted so that the manufactured solution coincides with the prescribed analytical functions
(cf. (2.1)). These functions are depicted in Figure 6.1. The model problem is complemented with the
corresponding Dirichlet boundary condition and suitable initial data.

1.00 : : \ 1.00
p(z,y) :=0.45+ 0.55 exp(—(1 —y)),
0.90¢ 11091
0801 oss s u = exp(t) p(a,y) " sin(7z) cos(my)
' a4 = P A Y —cos(mz) sin(my) )’

0.70¢ 110.74

/ p= exp(t) COS(7T$) exp(y) .
0.60 : : : 0.65

0 0.25 0.5 0.75 1

y

Figure 6.1: [Example 1] Graph of the porosity function (left) and analytical expressions of the porosity
and manufactured solutions (right).

Tables 6.1 and 6.2 report the convergence history for a sequence of quasi-uniform mesh refinements
using both PEERS; and AFWj, elements, for & € {0,1}. The results confirm that the optimal
spatial convergence rates O(h¥*!) predicted by Theorem 5.4 and Lemma 5.5 are achieved. Table 6.3
shows that, although the data is not piecewise constant, the error associated with the conservation of
momentum (5.15) is close to zero. In Figure 6.2, we display some solutions at the final time obtained
with the AFW; discretization with meshsize h = 0.014 and 20,000 triangle elements, representing
481,201 DOF.

032 006012 029 056 039 077 116 2 -4.13 -3.08 -197 -0.89 028 275 -135 0 135 275
012, h nmm— o |Un| m— emmm /12, e— 2 o

Figure 6.2: [Example 1] Computed stress component, magnitude of the velocity, vorticity component,
and pressure field.
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PEERS, discretization

DOF

ez le2(0,7;x)
error rate

lleullez(0,7Ls (02))
error rate

lleulles 0,152 (02))
error rate

ey llez0,m12(2)
error rate

lepllez(0,mi12(0))
error rate

266
1010
3938

15554
54362
150602

0.354
0.177
0.088
0.044
0.024
0.014

6.02E-01  —

2.92E-01 1.047
1.36E-01 1.101
6.45E-02 1.076
3.37E-02 1.032
2.01E-02 1.012

3.33E-02 —

1.70E-02 0.968
8.57E-03 0.992
4.29E-03 0.998
2.29E-03 0.999
1.37E-03 1.000

2.68E-01 -

1.36E-01  0.980
6.80E-02 0.996
3.40E-02 0.999
1.82E-02 1.000
1.09E-02 1.000

3.04E-02 -

7.64E-03 1.995
2.50E-03 1.610
9.58E-04 1.386
3.85E-04 1.449
1.80E-04 1.488

8.94E-02 -

4.44E-02 1.009
1.93E-02 1.200
8.56E-03 1.175
4.34E-03 1.081
2.56E-03 1.031

AFW, discretization

DOF

h

ez H£2(0,T;X)
error rate

lleullez (0,710 )
error rate

leulle=(0,7;L2(02))
error rate

ey ||e2(o,T;L2(Q))
error rate

lep H€2(0>T;L2(Q))
error rate

321
1217
4737

18689
65281
180801

0.354
0.177
0.088
0.044
0.024
0.014

5.39E-01 -

2.36E-01 1.189
1.13E-01 1.072
5.54E-02 1.022
2.94E-02 1.007
1.76E-02 1.002

3.33E-02 -

1.70E-02 0.966
8.57E-03 0.991
4.29E-03 0.998
2.29E-03 0.999
1.37E-03 1.000

2.68E-01 -

1.36E-01 0.981
6.80E-02 0.995
3.40E-02  0.999
1.82E-02 1.000
1.09E-02 1.000

8.60E-02  —

4.33E-02 0.991
2.16E-02 0.999
1.08E-02 1.000
5.77E-03 1.000
3.46E-03 1.000

2.89E-02 -

1.31E-02 1.143
6.27E-03 1.060
3.10E-03 1.017
1.65E-03 1.005
9.88E-04 1.002

Table 6.1: [Example 1, £ = 0] Number of degrees of freedom, meshsizes, errors, and rates of conver-

gence.

PEERS; discretization

DOF

||eb"H€2(O,T;X)
error rate

”eu”ZZ(O,T;LS(Q))
error rate

||eUHE°°(O,T;L2(Q))
error rate

leyllez(o,752(0))
error rate

Hep H(ZZ(O,T;V(Q))
error rate

818
3170
12482
49538
173522
481202

0.354
0.177
0.088
0.044
0.024
0.014

7.84E-02
1.87E-02
4.59E-03
1.14E-03
3.23E-04
1.16E-04

2.067
2.029
2.011
2.005
1.995

5.43E-03
1.39E-03
3.49E-04
8.75E-05
2.49E-05
9.00E-06

1.968
1.992
1.997
1.998
1.995

3.62E-02
9.18E-03
2.31E-03
5.77E-04
1.64E-04
5.91E-05

1.977
1.994
1.999
2.000
1.999

8.99E-03
2.62E-03
7.54E-04
2.02E-04
5.87E-05
2.13E-05

1.779
1.797
1.900
1.965
1.986

6.79E-03
2.00E-03
5.50E-04
1.44E-04
4.16E-05
1.51E-05

1.762
1.863
1.937
1.973
1.987

AFW; discretization

DOF

h

He& HEZ(O,T;X)
error rate

leullez0,751: (02))
error rate

leulle=(0,7;12(02))
error rate

le~lle2 0,72 ()
error rate

”ep HEZ(O,T;Lz(Q))
error rate

817
3169
12481
49537
173521
481201

0.354
0.177
0.088
0.044
0.024
0.014

7.86E-02
1.73E-02
4.05E-03
9.86E-04
2.78E-04
1.00E-04

2.181
2.098
2.037
2.014
1.997

5.40E-03
1.39E-03
3.49E-04
8.75E-05
2.49E-05
9.00E-06

1.960
1.990
1.997
1.998
1.995

3.62E-02
9.19E-03
2.31E-03
5.77E-04
1.64E-04
5.91E-05

1.978
1.994
1.999
2.000
1.999

1.16E-02
2.97E-03
7.50E-04
1.88E-04
5.37E-05
1.93E-05

1.967
1.986
1.994
1.997
1.997

3.20E-03 -

7.38E-04 2.115
1.88E-04 1.976
4.78E-05 1.973
1.37E-05 1.984
4.99E-06 1.983

Table 6.2: [Example 1, k& = 1] Number of degrees of freedom, meshsizes, errors, and rates of conver-

gence.

Example 2: Convergence against smooth exact solutions in a 3D domain

In the second numerical test, we study the convergence with respect to the spatial discretization using
a manufactured solution in the unit cube  := (0,1)3. We set s = 3, which yields £ = 3/2 (cf. (2.13)).
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PEERS,. discretization
h | 0354 | 0177 | 0.088 | 0.044 | 0.024 | 0.014

€m0l (0.6 () || 1.25E-12 | 1.71E-12 | 3.66E-12 | 1.34E-11 | 3.21E-11 | 9.89E-11
llem,1]le= 0,705 () || 4-9TE-12 | 2.32E-10 | 4.74E-09 | 1.58E-09 | 2.72E-09 | 3.38E-09

AFW,, discretization
h | 0354 | 0177 [ 0.088 [ 0.044 | 0.024 | 0.014

llew,olle (0,76 2y || 2.75E-12 | 3.64E-12 | 7.18E-12 | 1.98E-11 | 5.81E-11 | 2.04E-10
llen,1 e 0,70 2)) || 2.94E-12 | 5.57E-12 | 1.34E-11 | 5.08E-11 | 1.66E-10 | 4.89E-10

Table 6.3: [Example 1, k = 0, 1] Conservation of momentum for the fully discrete scheme.

Similarly to the first example, the viscosity is u = 1, the permeability tensor is given by K := 10721,
and the porosity function along with the manufactured solutions are given in Figure 6.3. The datum
f is computed according to this (cf. (2.1)).

1.00
1 HO% p(x,y,2z) :=0.45+ 0.55 exp(—(2 —y — 2)),
0.8 v sin(mzx) cos(my) cos(wz)
076 u = exp(t) p(z,y,2) "t | —2cos(rx) sin(ny) cos(nz) | ,
0.6 cos(mzx) cos(my) sin(wz)
. . 0.64
05 05 p = exp(t) cos(rz) exp(y + 2) .
00 0.52
y z

Figure 6.3: [Example 2] Graph of the porosity function (left) and analytical expressions of the porosity
and manufactured solutions (right).

p(x, y,2)

Table 6.4 shows the convergence history for a sequence of quasi-uniform mesh refinements using both
PEERS, and AFW, elements. Once again, the optimal spatial convergence rates O(h¥1) predicted
by Theorem 5.4 and Lemma 5.5 are confirmed. Regarding the conservation of momentum, Table 6.5
shows a behavior similar to that observed in the first example. Figure 6.4 displays the approximated
solutions at the final time obtained with the PEERS, discretization on a mesh with size h = 0.0962
and 34,992 tetrahedral elements, corresponding to 656,266 degrees of freedom.

Example 3: Free fluid flow around a porous obstacle

Our final test aims to evaluate the performance of the proposed method in a more complex physical
configuration, where a fluid interacts with a porous obstacle acting as a filter. This setting allows us to
examine how the formulation captures the coupling between the free flow and the porous medium, as
well as the influence of anisotropy and permeability contrasts on the global behavior of the flow. This
benchmark problem was first introduced in [33] and later examined in [6,37]. We consider a channel
Q) with dimensions 0.75 [m] x 0.25 [m], through which a fluid of viscosity x4 = 1.5 - 107° [m?/s] flows
due to a left-to-right pressure drop of 1-107%[m?/s?]. The channel consists of two regions. The first
one, e, is a free-fluid domain, whereas the second region represents a heterogeneous porous filter
composed of an outer isotropic subregion 25, and an inner anisotropic subregion {2,,. More precisely,
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PEERS, discretization

lezllez0,mx) | leullezo, 7m0 0)) | [1€ulles(o,miL2(0) | levllez0,rn2(0) | lepllezo,mi120))
DOF h error rate error rate error rate error rate error rate
7576 | 0.433 || 1.08E4+00 - 4.19E-02 3.65E-01 5.04E-02 1.30E-01

25006 | 0.289 || 7.16E-01 1.001 | 2.84E-02 0.957 | 2.47E-01 0.968 | 2.19E-02 2.054 | 8.78E-02 0.960
58636 | 0.216 || 5.29E-01 1.058 | 2.14E-02 0.979 | 1.86E-01 0.985 | 1.30E-02 1.805 | 6.37E-02 1.114
195808 | 0.144 || 3.40E-01 1.087 | 1.43E-02 0.989 | 1.24E-01 0.993 | 6.85E-03 1.588 | 3.89E-02 1.219
656266 | 0.096 || 2.19E-01 1.089 | 9.58E-03 0.995 | 8.29E-02 0.997 | 3.78E-03 1.462 | 2.33E-02 1.268

AFW, discretization

lezllez0,mx) | lleullezo,mme () | ll€ulleo,mir2(0)) | llexllezo,miz@)) | lepllezio,miz)
DOF h error rate error rate error rate error rate error rate
10081 | 0.433 || 9.49E-01 - 4.18E-02 — 3.65E-01 - 1.03E-01 — 5.88E-02 -

33049 | 0.289 || 6.01E-01 1.127 | 2.84E-02 0.957 | 2.47E-01 0.969 | 6.95E-02 0.964 | 3.41E-02 1.345
77185 | 0.216 || 4.38E-01 1.097 | 2.14E-02 0.978 | 1.86E-01 0.985 | 5.23E-02 0.984 | 2.37E-02 1.261
256609 | 0.144 || 2.85E-01 1.062 | 1.43E-02 0.989 | 1.24E-01 0.992 | 3.50E-02 0.993 | 1.48E-02 1.165
857305 | 0.096 || 1.87E-01 1.032 | 9.58E-03 0.995 | 8.29E-02 0.997 | 2.34E-02 0.997 | 9.52E-03 1.085

Table 6.4: [Example 2, kK = 0] Number of degrees of freedom, meshsizes, errors, and rates of conver-
gence.

PEERS discretization
h H 0.433 \ 0.289 \ 0.216 \ 0.144 \ 0.096

| [lem,0lle= (0,750 () || 7-96E-12 | 7.28E-12 | 7.30E-12 | 8.41E-12 | 9.32E-12 |

AFW, discretization
h H 0.433 \ 0.289 \ 0.216 \ 0.144 \ 0.096

| llen,olle= 0,750 () || 2-96E-12 | 3.87E-12 | 3.87E-12 | 4.56E-12 | 4.55E-12 |

Table 6.5: [Example 2, k = 0] Conservation of momentum for the fully discrete scheme.

N

000 088 175 2.62 3.48 00 208 415 622 83 7 35 0 35 7
(U7] — o /7] —  om Ph o . am

Figure 6.4: [Example 2] Computed stress component, magnitude of the velocity, vorticity streamlines,
and pressure field.

the domain under consideration is given by € = Qfee U Qigo U Qan, where
Qan = (0.32,0.385) x (0.05,0.12), Qg0 := (0.25,0.5) x (0.2) \ Qap ,
and  Qree := (0,0.75) x (0,0.25) \ (Qan U Qiso) -
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We denote by I' = T'top U I'bottom U I'right U T'et the boundary of €2, naturally partitioned into its
corresponding sides. We illustrate the geometrical setting in Figure 6.5. There is no transition region
between the free fluid and porous regions.

0.75[m]
1—‘top
A
Fleft eree [ R o
0.25[m] Qiso Q 0.2[m]
Qan 0.2{m] Lrignt 0070
| . l 0.0?[m] |
bottom : :
«~— 0.25[m]——><—— 0.25[m]— 0.07[m] 0.05[m] 0.13[m]

Figure 6.5: [Example 3] Geometrical configuration of the numerical experiment. The left panel shows
the channel €2, while the right panel depicts a detailed view of the porous filter consisting of isotropic
and anisotropic regions.

In the porous filter, the permeability tensor K., with % € {iso, an}, is given by

o 1 ~( cos(ax) —sin(ax) [ k/Bs O
K, :=M,C, M, M*'_<sin(a*) cosloy ) Co= (T ) (6

where k, and B, are positive parameters and o, is the anisotropy angle. Clearly, ajs, = 0 owing to
the isotropy. We consider the parameters of the model as

+00 in eree ; 1 in eree ;
K := { K in Qigo, and p:= Piso in Qigo,
Kan in Qan, Pan in Qay.

In the forthcoming presentation, we shall consider different porosity functions and parameters for the
permeability tensor in the porous region. We notice also that the fact that the permeability tensor is
identically +o0o in the free-fluid region means that K=! = 0 in Qpce.

No-slip boundary conditions are prescribed for the fluid velocity along the top and bottom walls of
the channel, whereas the pressure drop is induced by a traction difference between the left and right
boundaries. Namely,

u=0 on TipUTpottom X (0,7], on=—pmn on I x (0,7], 6.2)
and on= —pon on gy x (0,77, '

where piy = pref+1-1076 [m? /%], pout = Pret and preg := 1-107% [m?/s?]. These conditions translate the
Dirichlet boundary condition in (2.1) of our model into a mixed-type boundary condition. The analysis
developed in the previous sections can readily be adapted to handle this case. In particular, one may
employ a lifting of the normal trace in (6.2) and introduce a change of variable for the stress tensor,
so that the formulation derived in Section 2.2 is now posed on Hy(divy; Q2) instead of Hy(divy; ),
where Hy(div,; ) stands for tensors in H(divy;(2) with vanishing normal trace on I'ieg U I'iight.
Then, the analysis proceeds in a similar manner, provided that suitable geometric conditions on the
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domain hold, for instance assumptions on the maximal interior angle. In our case, the domain is
rectangular and therefore convex, so no technical issues arise. We omit further details and refer the
reader to [18, egs. (3.25)—(3.30)] for a more complete discussion. Finally, we set as initial condition
and source term ug = 0 and f = 0, respectively.

In all the following experiments, we consider a total simulation time of 7" = 80 [s] and the time step
size is set as At = 4 [s]. The mesh consists of 63,221 triangles and the element sizes goes from 4 - 1073
in the bulk fluid to 1-107% close to the interfaces (see Figure 6.9). For the spatial discretization,
we employ the AFW finite element triple (cf. (4.2)), which results in a total of 569,995 degrees of
freedom in the implementation.

In our first experiment, we consider a simple case when the porosity function is constant in each
region, given by piso = 0.5 and p,, = 0.25. Regarding the permeability tensor, we take ajso = 0,
Biso =1, kiso = 1-107%, qan = —7/4, Ban = 100, and kay = 1-107%. In the free-fluid region, the flow
circulates freely and tends to avoid the porous region, concentrating on the upper area of the filter due
to the porous and permeability effects. The isotropic region, with higher permeability and porosity,
allows the fluid to flow more freely, while the anisotropic region acts as a barrier that restricts flow in
certain directions due to both its lower permeability and the directional dependence encoded by the
rotation angle ay,. In turn, if we repeat the experiment with ka, = 11074, the contrast between the
isotropic and anisotropic regions decreases significantly. In this case, the anisotropic layer becomes
more permeable, allowing the fluid to penetrate and traverse it with less resistance. Consequently, the
flow field tends to distribute more uniformly across the porous domain, rather than being diverted
around the anisotropic region as in the previous configuration. In both scenarios, we observe that
the conservation of momentum error is close to zero. Indeed, bearing in mind that the porosity is
constant and f = 0, in order to verify that (5.15) holds, we compute ||pd;(uz) + pPFEK ') —
div(ay)| s (0,16 (), Obtaining 9.54 - 107 in both cases. In Figure 6.6, we display these results at
the final time 7. We only show the velocity profile for the sake of brevity.

3.68e-08 1.63e-5 3.33e-5 5.00e-5 6.64e-05 3.68e-08 1.63e-5 3.33e-5 5.00e-5 6.64e-05

Figure 6.6: [Example 3] Computed streamlines of the velocity with piecewise constant porosity and
kan = 1-107° (left) and kap = 1- 1074 (right).

As a second experiment, we consider the non-piecewise constant porosity functions given in Fig-
ure 6.7. In the isotropic region, we prescribe a linear variation of the porosity, representing a gradual
compaction or deposition of the porous material. Physically, this choice models a medium whose
microstructure becomes progressively denser along the horizontal axis, such as might occur due to
sedimentation or pressure-induced compaction in filtration processes. On the other hand, in the
anisotropic region, we consider an exponential porosity profile, decreasing from the outer boundary
toward the interior of the inclusion. This choice mimics a boundary-layer-type behavior, where the
porous structure becomes gradually denser as one moves inward, reflecting processes such as clog-
ging, compression, or material deposition within the anisotropic medium. Such a profile provides a
smooth yet strongly contrasting variation that highlights how the anisotropic permeability interacts
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with spatially varying microstructural properties. Notice that this choice is similar to those considered
in Examples 1 and 2.

— —0.25 — _ _

piso(,y) := 0.45 4 0.55 (£5522) pan(z,y) :=0.25 + 0.75 exp ( — (0.12 — )

1.00 ‘ ‘ ‘ ‘ ! .00 100 ‘ ‘ : ‘ : ‘ H 1.00

0.861 086 099 0.99
0.73} 10738 097/ 10975
& <

059 11059 096 1 i0.96

0.45 : ‘ : ‘ i0.45 0.95 ~ ‘ ‘ ; : : 0.95

0.25 0.3 0.35 0.4 0.45 05 005 006 007 008 009 01 011 0.12
x y

Figure 6.7: [Example 3] Porosity functions in the isotropic (left) and anisotropic (right) regions.

The permeability tensor is computed with parameters aiso = 0, Biso = 1, kiso = 11070, qan = 7/4,
Ban = 100, and ku, = 1-107%. The anisotropy angle a,p, unlike in the first test, takes a positive value,
meaning that the principal permeability directions are rotated so that the fluid enters the anisotropic
region from the upper side and exits through the lower one. Figure 6.8 shows the numerical results
obtained with these parameters, which confirm the physical intuition regarding the direction of the flow
induced by the anisotropy orientation. As in Figure 6.6, the fluid tends to move upward and bypass
the porous filter, avoiding direct penetration through it. Similarly, inside the porous medium, the
fluid still tends to circumvent the anisotropic region, although this effect is less pronounced because
the permeability contrast is lower than in the previous test. In Figure 6.9, a zoomed view of the
domain interfaces is presented, focusing on the upper-left corner of 5, and the entire interaction
between €2,, and its surrounding region. We can observe that the fluid tends to concentrate near
the corners, a behavior mainly driven by the anisotropy angle, which redirects the preferential flow
paths along the principal directions of permeability. This effect highlights how the orientation of the
anisotropic axes influences the local acceleration and deflection of the flow at the interface between both
materials. Finally, we compute the error associated with the conservation of momentum (cf. (5.15)),
now considering the non-piecewise constant porosity defined above and the datum f = 0 in €2, thus
obtaining

1P} (p dean) + pPh (K™ up) — div(os) || g 0,30 (0)) = 9-76 - 1077,

which confirms that momentum is conserved.

7 Conclusions

In this paper, we have introduced a new stress-velocity-vorticity formulation for the time-dependent
Brinkman problem with spatially varying porosity, together with its mixed finite element approxima-
tion. This system models flow through porous media and acts as an intermediate regime between the
Darcy and Stokes models. The proposed formulation offers several advantages. It naturally incorpo-
rates the porosity gradients and recovers the classical constant-porosity formulation as a particular
case, for which all assumptions involving |[Vp/p||1e(q) are no longer required. Moreover, it enables
the direct computation of physically meaningful quantities such as the Cauchy stress and vorticity
tensors, while the pressure, eliminated from the formulation, as well as the velocity gradient, can be
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300608 16365  333e-5 50005  6.646-05 30008 16365  333e-5 50005  6.64e-05
W] —— C— Ul — C —

9.72e-07 1.30e-6 15le-6 1.72e-6 2.04e-06 -2.55e-03 -4.76e-4  9.23e-4  2.36e-3 4.40e-03

Figure 6.8: [Example 3] Computed velocity and its streamlines (top), and the pressure and component
of the vorticity (bottom), with porosity function varying in space.

227607 33le5  6.606-05 1396-07 33167  5236-07
Unl  —  om (U] p—  om

Figure 6.9: [Example 3] Zoom view of the computational mesh near the interface between {25, and Q,,
(left). Zoom view of the computed velocity at the interfaces: free-fluid versus porous filter (center),
and isotropic versus anisotropic regions (right).

easily reconstructed through a simple post-processing step. The theoretical analysis relies heavily on
monotone operator techniques and is made possible by introducing a fixed-point strategy formulated
in a suitable Bochner space. This approach appears to be extendable to other related equations,
paving the way for the development of similar methods for more complex multiphysics problems, such
as the coupling of the Brinkman model with heat or transport equations. At the discrete level, we have
rigorously established the well-posedness of both the semi-discrete continuous-in-time and the fully
discrete schemes, and we have developed the corresponding error analysis. Moreover, the proposed
method inherits from the continuous problem the important property of being momentum conserva-
tive. From the numerical perspective, we have illustrated the robustness and accuracy of the method,
even in scenarios involving challenging physical parameters. In particular, the last numerical example
highlights the importance of mesh refinement near material interfaces, as illustrated in Figure 6.9.
This observation motivates future work on developing an a posteriori error analysis for the proposed
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method, which could then be employed to guide adaptive mesh refinement and achieve more accurate
approximations in this class of problems.
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