
Universidad de Concepción
Dirección de Postgrado

Facultad de Ciencias Físicas y Matemáticas
Programa de Doctorado en Ciencias Aplicadas

con Mención en Ingeniería Matemática

MARCO TEÓRICO PARA EL PROBLEMA DEL DESPACHO
ECONÓMICO/AMBIENTAL

A THEORETICAL FRAMEWORK FOR THE
ENVIRONMENTAL/ECONOMIC DISPATCH PROBLEM

Tesis para optar al grado de Doctor en Ciencias
Aplicadas con mención en Ingeniería Matemática

Adrian Carrillo Galvez
concepción-chile

2022

Profesor Guía: Fabián Flores
Departamento de Ingeniería Matemática

Universidad de Concepción, Chile



A Theoretical Framework for the Environmental Economic Dispatch Problem
Adrian Carrillo Galvez

Director de Tesis: Fabián Flores, Universidad de Concepción, Chile.

Director de Programa: Raimund Bürger, Universidad de Concepción, Chile.

Comisión evaluadora

Prof.

Prof.

Prof.

Comisión examinadora

Firma:
Prof.

Firma:
Prof.

Firma:
Prof.

Firma:
Prof.

Calificación:

Concepción, 2022



Acknowledgments

I would like to especially thank my thesis advisor Fabián Flores Bazán, without whom I am sure
it would have been more difficult to walk the path that led me to present this doctoral thesis.
Thank you very much for your patience, dedication and trust. I also thank the professors Rodolfo
Rodríguez and Raimünd Burger, for all their support in leading the doctoral program; as well as
professor Gabriel Gatica, for all the facilities I had, as part of the CI2MA. To the professors who
helped me and introduced me, through their courses, in the world of the applied mathematical
research, specially professors Manuel Solano and Rodolfo Araya. To the CI2MA and DIM staff,
who have always supported me : Lorena Carrasco, Cecilia Leiva, Iván Tobar and Jorge Muñoz.

To my friends and fellow students, who made the experience unforgettable. I reserve a special
place of my heart for Yissedt, Yolanda and Néstor, my classmates. Also to all those with whom I
coincided in my time as student, especially to those who always had words of encouragement and
warm gestures when it was needed the most; to Bryan, Camilo, Cristian, Daniel, Eduardo, Elvis,
Felipe, Iván, Joaquín, Mario, Patrick, Paul, Paulo, Rafael, Ramiro, Rodrigo, Sergio and Willian
(alphabetically).

To my family, the reason of me doing everything in this life, thank you very much for all you support
to my brothers, cousins and uncles. Especially to my wife Ariadna López, for all her patience, love
and dedication during this journey that we undertook together, I love you.

I am grateful to the institutions that have financed my studies and research: ANID-Chile by fi-
nancing my National Doctorate Scholarship through CONICYT-PFCHA/Doctorado Nacional/2017-
21170239 and projects FONDECYT 1212004, ACE210010 and BASAL FB210005; to Dirección de
Postgrado and Departamento de Ingeniería Matemática of Universidad de Concepción for having
financed my stay in scientific events, and to CI2MA for providing the offices and facilities for my
Ph.D. studies.

Finally, more than give thanks, I dedicate this thesis to my parents; who are the main reason for
which I am here. Thank you for all your sacrifices, for all your love, for all your kindness. To my
mother and my father, I love you.

1



Agradecimientos

Me gustaría agradecer especialmente a mi tutor Fabián Flores Bazán, sin el cual estoy seguro
hubiese sido mucho más dificil transitar el camino que me lleva a presentar esta tesis de docto-
rado. Muchas gracias por la paciencia, dedicación y confianza. Agradezco también a los profesores
Rodolfo Rodríguez y Raimünd Burger, por todo su apoyo al frente del programa de doctorado; así
como al profesor Gabriel Gatica, por todas las facilidades que tuve como parte del CI2MA. A los
profesores que me ayudaron a encaminarme en el mundo de la investigación matemática mediante
sus cursos, especialmente los profesores Manuel Solano y Rodolfo Araya. Al personal del CI2MA
y del DIM que siempre me brindó su apoyo: Lorena Carrasco, Cecilia Leiva, Iván Tobar y Jorge
Muñoz.

A mis amigos y compañeros de doctorado, que hicieron que la experiencia fuese inolvidable. A
Yissedt, Yolanda y Néstor, mis compañeros de generación, los llevo en un lugar muy especial. Así
también como a todos aquellos con quienes coincidí en mi tiempo de doctorado, especialmente
a aquellos que siempre tuvieron palabras de aliento y gestos cálidos cuando más se necesitaban;
a Bryan, Camilo, Cristian, Daniel, Eduardo, Elvis, Felipe, Iván, Joaquín, Mario, Patrick, Paul,
Paulo, Rafael, Ramiro, Rodrigo, Sergio y Willian (alfabéticamente).

A mi familia, por la que hago todo en esta vida, muchas gracias por todo su apoyo a mis hermanos,
primos y tíos. Especialmente a mi esposa Ariadna López, por toda su paciencia, amor y dedicación
durante este viaje que emprendimos juntos, te amo.

Agradezco a las instituciones que han financiado mis estudios e investigación: a la Agencia Na-
cional de Investigación y Desarrollo (ANID) por el financiamiento de la Beca de doctorado nacional
a través del Programa de Formación de Capital Humano Avanzado (CONICYT-PFCHA/Doctorado
Nacional/2017-21170239) y los proyectos FONDECYT 1212004, ACE210010 y BASAL FB210005;
a la dirección de Postgrado de la Universidad de Concepción y al Departamento de Ingeniería
Matemática (DIM), por haber financiado mi estadía en eventos científicos, y al Centro de Investi-
gación en Ingeniería Matemática (CI2MA) por proveer las oficinas y facilidades para mi estadía en
el doctorado.

Finalmente, más que agradecer, dedico esta tesis a mis padres; quienes son el principal motivo por
el cual estoy aquí. Gracias por todos sus sacrificios, por todo su amor, por toda su bondad. A mi
madre y mi padre, los amo.

2



Abstract

In this dissertation several aspects regarding the Combined Environmental Economic Dispatch
(CEED) problem were analyzed. The CEED is a real problem concerning different approaches in
order to manage the polluting emissions and fuel cost of electrical power networks.
In the Introduction the motivation of the thesis is provided. We described the main components
of electrical power networks and its relationship with the different formulations usually employed
to handle combined emission/economic objectives. The main contributions and a brief overview of
the thesis are also presented.
In Chapter 1 a duality theory approach was proposed for solving the Environmental/Economic
Dispatch (EED) problem. The EED is a multiobjective optimization problem, where the polluting
emissions and the fuel cost are treated as two conflicting objectives, which are optimized simulta-
neously subjected to several practical constraints. For the multiobjective problem scalarization, the
Weighted Sum Method was used and the associated dual problem was solved by using a quadratic
programming algorithm. This strategy was tested on three systems with different number of gene-
rators and characteristics. The obtained results were compared with other previously reported,
showing some advantages of the proposed approach.
In Chapter 2 another alternative to diminish the polluting emissions released by the generating
units was analyzed, the Emission Constrained Economic Dispatch (ECED). This is an optimization
problem where the total fuel cost is minimized while treating emissions as a constraint with a pre-
specified limit. Usually, the fuel cost and emission functions of the generating units must be
experimentally derived, introducing then uncertainties in the obtained models. However, these
uncertainties are often neglected and the ECED problem is solved considering the coefficients of
the functions involved as exact (totally known) values. In this chapter we analyzed the effect
of the uncertainties associated to the experimental derivation of input-output curves of thermal
power plants. Particularly, when polynomial models are fitted through multiple linear regression,
we proposed an approach that, based on the respective prediction intervals, can provide solutions
immunized, in some sense, against variability in the coefficients estimates. We tested the proposed
approach in a real system from the Chilean electrical power network. For the analyzed system
we observed that, when uncertainties are not considered, the deterministic optimal solutions can
be environmentally infeasible in some scenarios; whereas solutions obtained through the proposed
approach, can significantly diminish the risk of environmental violations. The robustness of the
prediction interval-based solutions was obtained with a negligible increase of the total fuel cost in
all the cases studied.
In Chapter 3 we analyzed the nonconvex homogeneous optimization problem:

min{f(x) : g(x) = 1, x ∈ C},

where C ⊆ Rn is a (not necessarily convex) closed cone and f, g are positively homogeneous
functions on C with different degree such that g(x) > 0 for all x ∈ C, x 6= 0. This formulation
generalize the Portfolio Problem; which is particularly used to deal with the risks and uncertainties
associated to the continuous increase of the share of renewable energy sources, in modern energy
portfolios. Once a Lagrangian dual problem is associated, it is provided various characterizations
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for the validity of strong duality property. One of them is related to the convexity of (g, f)(C) +
R+(0, 1), revealing a hidden convexity and a suitable S-lemma. In the case where both functions are
of the same degree of homogeneity, a copositive reformulation of the original problem is established.
It is also derived a zero-order optimality conditions; KKT (local or global) optimality, giving rise to
the notion of L-eigenvalues with applications to symmetric tensors eigenvalues analysis. The case
when C is expressed by two quadratic forms is particularly studied. The results can be also applied
to a class of quadratic fractional optimization problems with two quadratic constraints, yielding
new necessary and sufficient second-order optimality conditions.
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Resumen

En este trabajo de tesis se analizan varios aspectos relacionados con el problema del Despacho Am-
biental de Cargas. Este es un problema real donde se busca gestionar las emisiones contaminantes
y el costo del combustible asociados a la generación de potencia eléctrica.
En la Introducción se proporciona la motivación de la tesis. Describimos los principales compo-
nentes de las redes de energía eléctrica y su relación con las diferentes formulaciones empleadas,
habitualmente, para gestionar las emisiones contaminantes y los costos. También se presentan las
principales contribuciones y una breve reseña de la tesis.
En el Capítulo 1 se propuso un enfoque basado en la teoría de la dualidad para resolver el pro-
blema de Despacho Económico Ambiental (EED). El EED es un problema de optimización mul-
tiobjetivo, donde las emisiones contaminantes y el costo del combustible se tratan como dos ob-
jetivos en conflicto, que se optimizan simultáneamente sujetos a varias restricciones derivadas de
las características técnicas del sistema. Para la escalarización del problema multiobjetivo se utilizó
el método de sumas ponderadas y el problema dual asociado se resolvió mediante un algoritmo
de programación cuadrática. Esta estrategia se probó en tres sistemas con diferentes número de
generadores y características. Los resultados obtenidos se compararon con otros reportados previa-
mente, mostrando algunas ventajas del enfoque propuesto.
En el Capítulo 2 se analizó otra alternativa para disminuir las emisiones contaminantes liberadas
por las unidades generadoras, el Despacho Económico con Restricciones Ambientales (ECED).
Este es un problema de optimización donde el costo total del combustible se minimiza mientras se
tratan las emisiones como una restricción con un límite máximo preestablecido. Por lo general, las
funciones de costo de combustible y emisión de las unidades generadoras deben obtenerse experi-
mentalmente, por lo que se introducen incertidumbres en los modelos obtenidos. Sin embargo, estas
incertidumbres a menudo no son consideradas y el ECED se resuelve considerando los coeficientes
de las funciones involucradas como valores exactos (totalmente conocidos). En este capítulo se
analizaron las incertidumbres derivadas de la obtención experimental de los modelos de costo y
emisiones, así como el efecto en la solución del ECED. En particular, cuando modelos polinomiales
se obtienen empleando regresión lineal múltiple, propusimos un enfoque que, basado en los interva-
los de predicción correspondientes, puede proporcionar soluciones inmunizadas, en cierto sentido,
contra la variabilidad en las estimaciones de los coeficientes. Probamos el enfoque propuesto en un
sistema real de la red eléctrica chilena. Para el sistema analizado observamos que, cuando no se
consideran las incertidumbres, las soluciones óptimas determinísticas pueden ser ambientalmente
inviables en algunos escenarios; mientras que las soluciones obtenidas a través del enfoque prop-
uesto pueden disminuir significativamente el riesgo de violaciones ambientales. La robustez de las
soluciones basadas en intervalos de predicción se obtuvo con un incremento insignificante del costo
total del combustible en todos los casos estudiados.
En el Capítulo 3 se discutió y analizó el problema de optimización homogéneo no convexo:

min{f(x) : g(x) = 1, x ∈ C},

donde C ⊆ Rn es un cono cerrado (no necesariamente convexo); f, g son funciones positivamente
homogéneas en C, con diferentes grados de homogeneidad y g(x) > 0 para toda x ∈ C, x 6= 0. Esta
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formulación generaliza, en particular, el Problema del Portafolio; herramienta ampliamente uti-
lizada para gestionar las incertidumbres y riesgos asociados a la penetración de fuentes renovables
de energía en las matrices energéticas modernas. Varias caracterizaciones son brindadas acerca
de la validez de la propiedad de dualidad fuerte respecto al problema dual Lagrangiano asociado.
Una de las caracterizaciones está relacionada con la convexidad de (g, f)(C) + R+(0, 1), revelando
cierta convexidad escondida y un S-lema. Cuando ambas funciones tienen el mismo grado de homo-
geneidad, se estableció una formulación copositiva del problema original. También son derivadas
condiciones de optimalidad de orden cero y condiciones KKT (locales o globales) que originan la
noción de L-valores propios con aplicaciones en análisis de tensores simétricos. Se estudió partic-
ularmente el problema cuando el cono C está dado por dos formas cuadráticas. Estos resultados
fueron aplicados además a una clase de problemas de optimización fraccionaria cuadrática con dos
restricciones cuadráticas, obteniéndose nuevas condiciones de optimalidad de segundo orden, tanto
necesarias como suficientes. Comparaciones fueron realizadas también respecto a la relajación SDP.
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Introduction

The production, distribution and consume of electricity are global concerns. In recent years and
due to the scarcity of energy resources, increasing power generation cost and ever-growing demand
for electric energy; optimal economic dispatch has become an extremely important issue in power
systems [81]. The economic operation of electric power systems involves two separate steps. The
first is the pre-dispatch or selection of equipment to be operated in order to meet the expected loads
on the system over some immediate future period of time at minimum total cost [153]. The second
step is the on-line economic dispatch which determines, instant to instant, the load to be carried
on each unit in operation, in such manner as to minimize the total fuel cost and supplying some
technical and functional requirements of the system [164]. This step is known as the Economical
Power Dispatch or Economical Dispatch (ED) and it is a constrained optimization problem, with
the total load demand as the principally constraint.
In recent years, increasing concerns about global warming and environmental deterioration has
drawn more attention on daily optimal operation of electric power systems, since more environ-
mentally friendly generation units need to be operated. Several strategies exist to mitigate both,
production and emission of pollutants during the generation of electrical power; but emission dis-
patch strategies become attractive solutions since it are easy to implement and require less addi-
tional cost [50, 143]. The incorporation of environmental concerns to the usual economic dispatch
have been treated by authors in different manners. On the Environmental/Economic Dispatch
(EED) problem, authors treat the pollution emissions and the fuel cost as two conflicting objec-
tives which are optimized simultaneously subjected to the practical constraints, see the survey
in [123]. Whereas in the Emission Constrained Economic Dispatch (ECED) problem, fuel cost is
minimized while treating emissions as a constraint with a pre-specified limit [2, 138, 156]. Both
problems are analyzed in this thesis work, in order to provide solutions with better performances
than the obtained elsewhere. Let us introduce first the corresponding formulations.

Economical Power Dispatch

According to the IEEE [78] (Institute of Electrical and Electronics Engineers), the Economical
Power Dispatch is a mathematical optimization problem, that has as objective to minimize the
cost of meeting the energy requirements of the system over some appropriate period of time and
in a manner consistent with reliable service. The ED is not a modern problem and have been
studied for almost a century. In 1962 Noakes and Arismunadar [109] listed references in the field
of optimum operation of power systems and related areas. They covered articles published in the
United States and Canada since 1919, when presumably power system engineers began to take
active interest in this matter. In recent decades the principal subject of research have been the
methods of solution of the ED, principally those based on artificial intelligence, although classical
and hybrid methods have been recently employed (comprehensive reviews of this subject can be seen
in [37, 83, 123, 143, 155]). These investigations also differ by the complexities of the mathematical
models considered, differences that are related with the constraints and the specific shape of the
cost function selected.
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The classical formulation of the ED problem is the following:

min F (p)
st 1>p = PD + PL,

0 ≤ pmin ≤ p ≤ pmax,

and will be detailed next.

Cost function

The total fuel cost is directly related with the specific type of power generating plant. If N
generating units are to be dispatched, the total fuel cost is:

F (p) .=
N∑
i=1

fi(pi).

where each fi : R → R is the fuel cost function of the corresponding generating unit. The most
used types are those based on thermal generators which burn fossil fuel (natural gas, coal, oil).
For these generating units, there exist several models generally used to describe its fuel cost. Most
authors group these models on smooths or non-smooths [140].

Smooth Models
In these kind of models, mainly, the fuel cost curve is determined by polynomial functions of the
generated power [126,128,140]:

f(p) = a0 +
M∑
j=1

ajp
j . (1)

By simplicity, usually the Generation Companies (GENCOs) consider fuel cost as a linear function
of the generated power, or as a convex quadratic function of the power, i.e., M ∈ {1, 2} and a2 ≥ 0
in (1).

Non Smooth Models
However, in real operation of the generating units, several aspects can affect the smoothness of
the fuel cost functions. Nowadays and partially motivated by the increase of the computationally
capacities, the investigators have been representing fuel cost functions by complex models that
take in count, for example, the valve-point effect. This phenomenon occurs in multi-valve steam
turbines, producing a ripple-like heat rate curve and motivates the addition of a sinusoidal term [7]:

f(p) = a0 +
M∑
j=1

ajp
j +

∣∣b sin (c(pmin − p))
∣∣.

According to [7], this kind of model increase the accuracy of the results, but evidently adds more
burden on the calculation process, specially by moving us away of the convexity assumptions.
In Figure 1 we can observe the shape of the fuel cost function when steam regulator valves are
considered.
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Figure 1: Fuel cost curve with valve-point effect [1].

Also, the generating units can have what it is known as prohibited operation zones. In this case,
discontinuities are introduced in the formulation, since now there exist zones where the generating
unit can not be operated, mainly due to technical aspects, such as shaft vibration or steam valves
characteristics. In Figure 2, a fuel cost curve for a generating unit with two prohibited operating
zones is shown.

Figure 2: Fuel cost curve with prohibited operation zones [94].

Other cost elements can be incorporated to the objective function, depending on the decision-maker
(DM) needs, for example:

• Cost due over-generation and under-generation of power [80,102]

• Maintenance and operation cost [91,102]

• Start-up cost (cold or hot) [102]

• Ramp cost [76]
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• Spinning reserve cost [76]

• Transmission cost [65]

Problem Constraints

Electrical power networks are very complex systems. Topology of such networks can be very diffe-
rent, but in general exist several participants that must be coordinated in addition to the GENCOs:
transmission companies (TRANSCOs) and distribution companies (DISTCOs) [154]. In Figure 3
we can observe a simple but illustrative power network. The electric energy produced by the GEN-
COs is transmitted by the TRANCOs, which own and operate transmission lines. The DISTCOs
own and operate distribution lines, which is the final stage in the delivery of electric power; it carries
electricity from the transmission system to individual consumers. This is made through distribu-
tion substations that are connected to the transmission system and have as objective to diminish
the transmission voltage to medium voltages required by the final consumers. This complexity is
incorporated to the ED problem via the considered constraints, that represent the technical and
operational boundaries of the whole system [3].

Figure 3: Tipical electric network.

1. Generation Constraints

Power Balance
A particularity of the power network systems is that electrical energy can not be stored in big
quantities. Then, the total power generation must be equal to the total load demand; additionally,
power losses on the transmission line may be modeled as well:

1>p− PD − PL = 0,

where p = (p1, p2, . . . , pN )> is the vector of the power output of each generating unit; PD is
the power demand and PL is the total transmission losses. The real power loss is obtained from
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calculation of the AC load flow problem, which has equality constraints on real and reactive power
at each bus as follows [103]:

PGi = PDi + Vi

NB∑
j=1

Vj [Gij cos(δi − δj)−Bij sin(δi − δj)],

QGi = QDi + Vi

NB∑
j=1

Vj [Gij sin(δi − δj) +Bij cos(δi − δj)],

where NB is the number of buses; PGi y QGi are the real and reactive power generated at the
ith bus respectively; PDi y QDi are the ith bus load real and reactive power respectively; Gij and
Bij are the transfer conductance and susceptance between bus i and j respectively; Vi and Vj are
the voltage magnitudes at bus i and j respectively; δi and δj are the voltage angles at bus i and
j respectively. There are several methods for solving the resulting nonlinear system, among the
most popular is the Newton-Raphson method. The load flow solution gives all the bus voltage
magnitudes and angles that can be used to calculate the transmission losses as follows:

PL =
NL∑
k=1

gk[V 2
i + V 2

j − 2ViVj cos(δi − δj)],

where NL is the number of transmission lines and gk is the conductance of the kth line that connects
bus i to bus j. Other authors determine the transmission loss by Kron’s loss formula [101]:

PL =
N∑
i=1

N∑
j=1

piBijpj +
N∑
i=1

B0ipi +B00,

where pi, pj are the power of generators i and j respectively and B,B0 and B00 are loss coefficients.

Generation limits
Each generator should produce power within lower and upper limits, limits that are set according
to specific technical parameters:

pmin ≤ p ≤ pmax.

Prohibitive operation zones
As previously discussed, in some generating units the whole operating range is not always available
for load allocation. These prohibited operation zones introduce discontinuities in the cost function
that are modeled as [112]:

pmin
i ≤ pi ≤ pLi,1,

pUi,k−1 ≤ pi ≤ pLi,k, k = 2, ..., ni,
pUi,ni

≤ pi ≤ pmax
i ,

where pmin
i and pmax

i are the ith unit minimum and maximum generation limits respectively; ni is
the prohibited zone number; k is the index of prohibited zones of an unit; pL,Ui,k are the lower and
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upper bounds of the kth prohibited zone of unit i respectively.

2. Security constraints

Line flow
The line flow constraint is used to avoid undesired line loadings due to power distribution. Thus,
transmission line loading Sl is restricted by its upper limit as [113]:

Sli ≤ S
max
li , i = 1, 2, ..., Nl,

where Nl is the number of lines of the system.

Apparent power flow
Sometimes it is also necessary to limit the apparent power flow (MVA) [146]:

|LFfi
| ≤ LFmax

fi
, i = 1, 2, ..., NT ,

where LFfi
is the apparent power flow in line fi; LFmax

fi
is the maximum limit for the apparent

power flow at line fi and NT is the total number of transmission lines.

System Spinning Reserve Constraint
To achieve a reliable and secure operation in power generation systems, it is usual to considerate a
Spinning Reserve. This reservation of power is saved for if encounter any unanticipated operation
condition, as unexpected outage of generating units or sudden increase in demand. In [163] this
constraint is modeled as:

N∑
i=1

SPGi ≥ SPR, SPGi =
{

0, ∀i ∈ Ω
PGmaxi

− PGi , other

where Ω is the set of generators with prohibited operating zones, SPGi is the spinning reserve
contribution of generator i; SPR is the system spinning reserve requirement; N is the total number
of generating units and PGi and PGmaxi

are the active power and its maximum limit for the ith
generator, respectively.

Combined Economic Emission Dispatch

On another hand, the environmental change sweeping the world and its visible effects has motivated
the developing of more environmental friendly power production systems. According to [118], since
70’s the study of the contribution of the power industry to deteriorating its surrounding has become
a major social task.
Power generation with fossil fuels comes with significant costs to the environment and human
health [68]. Combustion releases emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), partic-
ulate matter (PM), carbon monoxide (CO), volatile organic compounds (VOCs) and various trace
metals like mercury, into the air through stacks that can disperse this pollution over large areas.
Environmental effects of the above mentioned pollutants include impaired visibility, damage to
materials, damage to vegetation, deposition as acid rain, ozone formation and contribution to the
greenhouse effect [100]. On another hand, in Table 1, major air pollutants and their associated
health hazards are presented.

17



Table 1: Pollutants and their hazards [159].

Name of Pollutant Health Impacts
Respirable PM Respiratory illness, including chronic bronchitis and asthma; heart diseases
SO2 Heart diseases; respiratory problems including pulmonary emphysema, cancer, eye burning, headache
NO2 Lung irritation, viral infection, airway resistance, chest tightness
Suspended PM Pneumoconiosis, restrictive lung diseases, asthma, cancer
Ozone Impaired lung function, chest pain, coughing, irritation of eyes and nose
CO Cherry lips, unconsciousness, death by asphyxiation

Therefore, emission problems corresponding to the fossil fuels-based power plants cannot be ne-
glected. According to [95], many strategies like installation of air filters, pollutant-cleaning equip-
ment, switching to low emission fuels, replacement of aged equipment and generating units and
integration of renewable energy sources, have taken into consideration in order to minimize emis-
sions. But all of them need considerable amount of capital and huge replacement/modification or
upgrade strategy that can be considered as a long-term solutions. Thus, emission dispatch strate-
gies (where environmental concerns are now considered in the traditional ED formulation) become
attractive solutions, since are easy to implement and require less additional cost [50,143]. In order
to represent the emissions, several models are generally used. Mostly, CO2 is considered as a linear
function of the power output and SOx as proportional to the thermal unit’s fuel consumption, and
the corresponding emission function has the same form in (1). Whereas NOx emissions are more
difficult to evaluate because they come from two different sources, nitrogen in the air and in the
fuel, and their production is related to several factors including boiler temperature and air content.
Thus, the output curve of NOx can be characterized by an equation consisting of quadratic or linear
functions plus additional exponential therms [103, 133]. Then, according to the polluting emission
to assess, we must considerate the total emission as:

E(p) .=
N∑
i=1

M∑
j=1

α0i + αjip
j
i , or

E(p) .=
N∑
i=1

M∑
j=1

α0i + αjip
j
i + ξie

λipi ,

where αji, ξi and λi are the emission coefficients of the ith generating unit.

In Chapter 1 we analyze the Environmental/Economic Dispatch problem:

min (F (p), E(p)) (2)
st 1>p = PD,

pmin ≤ p ≤ pmax,

where, F (p) .=
∑N
i=1

∑M
j=1 â0i+ âjipji is the total fuel cost; E(p) .=

∑N
i=1

∑M
j=1 α̂0i+α̂jipji is the total

emission and system is considered as losseless. An approach based on duality theory is developed
and results are tested on several systems. By taking advantage of the smoothness and convexity of
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the functions involved, the proposed approach provide us solutions that dominate those reported
by other authors and obtained by metaheuristic algorithms instead. This chapter is mainly based
on paper [30]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: A duality theory
approach to the environmental/economic dispatch problem. Electric Power Systems Research,
vol 184, Art. Num. 106285, (2020).

We must point out that the above cited paper is the result of previous contributions published on
the following conferences proceedings [31,32]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: An Analytical
Approach to the Environmental/Economic Dispatch Problem. 2019 IEEE CHILEAN Con-
ference on Electrical, Electronics Engineering, Information and Communication Technologies
(CHILECON), (2019), pp. 1-5, doi: 10.1109/CHILECON47746.2019.8987495.

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: On the solution of
the Environmental/Economic Dispatch problem using Lagrangian duality. 2020 IEEE Inter-
national Conference on Industrial Technology (ICIT), (2020), pp. 619-623, doi: 10.1109/ICIT45
562.2020.9067261.

However, by analyzing the existing literature we became aware that there exist a previous problem
that, although extremely closely related to the emission dispatch, is consistently ignored. We point
out that when solving (2), all the coefficients of the emission and fuel cost functions are usually
considered as fixed (exactly known) values. This deterministic approach can lead to significantly
errors in the proposed optimal generation schedule. Note that, in real operation of electric power
networks, GENCOs must to establish the fuel cost and emission functions of the generating units.
This can be done by several methods: performance testing, determination from operating records
or use of manufacturer’s guarantee data adjusted to actual operating conditions [78]. But, high
cost of performance testing and possible incorrect representation of the shape of the input-output
curves provided by manufacturer’s data, makes the determination from operating records a suit-
able alternative; even more if we consider that, nowadays, operating data is readily available in
many generation companies. This strategy clearly introduces uncertainties on the experimentally
derived models, uncertainties that can lead to obtain dominated solutions (if the EED problem
is considered in its deterministic formulation (2)); or to infeasible environmental solutions (if the
ECED deterministic formulation is considered). In Chapter 2 we analyze the effect of coefficient
estimates in the ECED problem. We compare optimal generation schedules obtained by solving
the deterministic or the proposed approaches. The proposed approaches are based on statistical
intervals, particularly on the corresponding prediction intervals involved when multiple linear re-
gression is used to fit the models. In fact, since we have sum of response variables, a prediction
interval for this sum must be obtained. The proposed approach is also tested on a real system from
the Chilean electrical power network, consisting on 4 coal-based generating units. In this case, we
can observe the negative effects associated to ignoring uncertainties on models coefficients. This
can produce health affectations, particularly during the April-August period, when ventilation and
dispersion of air pollutants is critically deficient. The results of this chapter are mainly based on
document:
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• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: Effect of Models
Uncertainties on the Emission Constrained Economic Dispatch. A Prediction Interval-Based
Approach. Submitted to publication.

The results obtained in the second part of this thesis are more general than the obtained in the
first part. Although was developed mainly motivated by a specific problem, as we can see in
Chapter 3 results obtained were (are) broadly applicable and transcend the merely management
of emissions and cost for electrical power networks. Consider that, as was pointed out in [116],
modern energy systems and markets are overwhelmed by various sources of uncertainties, due to
the renewable energy (RE) revolution in recent years. The value of investments in RE technologies
has increased rapidly over the last decade as a result of political pressures to reduce carbon dioxide
emissions and the policy incentives to increase the share of RE in the energy mix. As the number
of RE investments increases, so does the need to measure the associated risks throughout planning,
constructing and operating these technologies. Energy developers, investors and policy makers
face a future that implicitly involves technological, financial and political risks and uncertainties.
Although, RE technologies potentially have a lower risk profile than conventional energy sources
because they are disconnected from fossil fuel prices; they still entail considerable technological,
financial and regulatory risk exposure, depending on the technology, country and regulatory regime.
Fluctuation of cost components of power generation units, volatile crude oil prices, electricity price
and carbon costing in the context of the global climate change mitigation strategy, are examples
of uncertainty components encountered by energy developers, investors and policy makers in the
energy sector [79]. On another hand, as pointed out in [19], a major drawback for renewable energies
in a competitive electricity market is their high price tag, which reduces their competitiveness.
Despite the above, RE is still advantageous in terms of cost if the monetary costs of embedded
risks related to conventional power are factored into the price of conventional power; and a very
suitable strategy to diminish polluting emissions. In this context, a useful tool for effectively manage
risk and uncertainty in sustainable energy system planning, is provided by mean-variance portfolio
(MVP) analysis, see for example [79,116] or review in [117].
In general the (classical mean-variance) portfolio optimization problem [97,98] can be stated as an
extension of the standard quadratic optimization problem (StQOP):

µq
.= min

{1
2x
>Ax : e>x = 1, x ∈ C

}
,

where A is a real symmetric matrix of order n, C ⊆ Rn is a pointed, closed, convex cone having
non-empty interior, and e ∈ int C∗. Here, C∗ is the non-negative polar cone of C. In Chapter 3 we
not only analyze the MVP problem, but a broad class of minimization problems where the objective
and the single constraint functions are positively homogeneous of possibly different degree, and, in
addition, a geometric constraint set being a (not necessarily polyhedral) convex cone is considered,
i.e., we discuss and analyze the nonconvex homogeneous optimization problem:

min{f(x) : g(x) = 1, x ∈ C},

where C ⊆ Rn is a (not necessarily convex) closed cone and f, g are positively homogeneous func-
tions on C with different degree such that g(x) > 0 for all x ∈ C, x 6= 0. Once a Lagrangian dual
problem is associated, it is provided various characterizations for the validity of strong duality prop-
erty. One of them is related to the convexity of (g, f)(C) + R+(0, 1), revealing a hidden convexity
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and a suitable S-lemma. In the case where both functions are of the same degree of homogene-
ity, a copositive reformulation of the original problem is established. It is also derived zero-order
optimality conditions; KKT (local or global) optimality, giving rise to the notion of L-eigenvalues
with applications to symmetric tensors eigenvalues analysis. The case when C is expressed by two
quadratic forms is particularly studied. The results are then applied to a class of quadratic frac-
tional optimization problems with two quadratic constraints, yielding new necessary and sufficient
second-order optimality conditions. Contrary to the SDP relaxation approach (yielding tightness,
which in turns implies the fulfillment of that standard strong duality), the present approach goes
beyond. The results of this chapter are mainly based on [29]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN: Non convex homogeneous opti-
mization: a general framework and applications to quadratic fractional programming and ten-
sor eigenvalues analysis. Submitted to publication. (Preprint available at: https://www.
ing-mat.udec.cl).
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Introducción

La producción, distribución y consumo de electricidad son preocupaciones globales. En los últimos
años el despacho económico de electricidad se ha convertido en un tema extremadamente importante
en los sistemas de energía, debido, entre otras cosas, a la escasez de recursos energéticos, el aumento
del costo de generación de energía y la creciente demanda de energía eléctrica [81]. La operación
económica de los sistemas de energía eléctrica implica dos pasos separados. El primero es la selección
de los equipos que operarán para cumplir con las cargas esperadas en el sistema durante un período
de tiempo futuro y a un costo total mínimo [153]. El segundo paso es el despacho económico
on-line que determina, instante a instante, la carga a generar en cada unidad en operación, de
tal manera que se minimice el costo total de combustible y se cumplan con los requerimientos
técnicos y funcionales del sistema [164]. Este paso se conoce como Despacho Económico de Energía
o Despacho Económico (ED) y es un problema de optimización con restricciones, con el balance de
carga como la restricción principal.
En los últimos años, la creciente preocupación por el calentamiento global y el deterioro ambiental
ha llamado más la atención sobre el funcionamiento diario óptimo de los sistemas de energía eléc-
trica, ya que es necesario operar unidades de generación más respetuosas con el medio ambiente.
Existen varias estrategias para mitigar tanto la producción como la emisión de contaminantes du-
rante la generación de energía eléctrica; pero las estrategias de despacho de emisiones constituyen
soluciones atractivas ya que son fáciles de implementar y requieren menos costos adicionales [50,143].
La incorporación de las preocupaciones medioambientales al despacho económico ha sido tratada
por los autores de distintas formas. En el problema del Despacho Económico Ambiental (EED),
los autores tratan las emisiones contaminantes y el costo del combustible como dos objetivos en
conflicto que se optimizan simultáneamente y están sujetos a restricciones prácticas [123]. Mien-
tras que en el problema del Despacho Económico con Restricciones Ambientales (ECED), el costo
del combustible se minimiza mientras se tratan las emisiones como una restricción con un límite
máximo preestablecido [2, 138, 156]. Ambos problemas se analizan en este trabajo de tesis, con
el fin de aportar soluciones con mejores desempeños que las obtenidas en otras investigaciones.
Introduzcamos primero las formulaciones correspondientes.

Despacho Económico

Según el IEEE [78] (Institute of Electrical and Electronics Engineers), el Despacho Económico de
Energía (ED) es un problema de optimización matemática, que tiene como objetivo minimizar
el costo de cumplir con los requerimientos energéticos del sistema eléctrico durante un período
de tiempo apropiado y de manera consistente con un servicio confiable. El ED no es un problema
moderno y se ha estudiado durante casi un siglo. En 1962, Noakes y Arismunadar [109] enumeraron
referencias en el área del funcionamiento óptimo de los sistemas de energía y áreas relacionadas.
Los autores recopilaron artículos publicados en los Estados Unidos y Canadá desde 1919, cuando
presumiblemente los ingenieros de sistemas de energía comenzaron a interesarse activamente en
este asunto.
En las últimas décadas el principal tema de investigación ha sido los métodos de solución del ED,
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principalmente los basados en inteligencia artificial, aunque recientemente se han empleado métodos
clásicos e híbridos (se pueden ver las revisiones exhaustivas de este tema realizadas en [37,83,123,
143, 155]). Estas investigaciones también se diferencian por los distintos modelos matemáticos
considerados, diferencias que están relacionadas principalmente con las restricciones y la forma
específica de la función de costo seleccionada.
La formulación clásica del ED es:

min F (p) (3)
st 1>p = PD + PL,

0 ≤ pmin ≤ p ≤ pmax,

y será detallada a continuación.

Función costo de combustible

El costo total del combustible está directamente relacionado con el tipo específico de planta gene-
radora de energía. Si N unidades generadoras son despachadas, el costo total del combustible
es:

F (p) .=
N∑
i=1

fi(pi),

donde cada fi : R→ R es la función de costo de combustible de la unidad generadora correspondien-
te. Los modelos más utilizados corresponden a unidades generadoras que consumen combustibles
fósiles (gas natural, carbón, petróleo). Para estas unidades generadoras, existen varios modelos que
generalmente se utilizan para describir su costo de combustible. La mayoría de los autores agrupan
estos modelos en suaves o no suaves [140].

Funciones costo de combustible suaves
En este tipo de modelos, principalmente la curva de costo de combustible está dada por funciones
de la potencia generada tipo polinomios [126,128,140]:

f(p) = a0 +
M∑
j=1

ajp
j . (4)

Para una mayor facilidad a la hora de resolver el problema (3), las Empresas de Generación (GEN-
COs) consideran el costo del combustible usualmente como una función lineal de la potencia gen-
erada, o como una función cuadrática convexa, i.e., M ∈ {1, 2} y a2 ≥ 0, en (4).

Funciones costo de combustible no suaves
Sin embargo, en la operación real de las unidades generadoras, varios aspectos pueden afectar la
suavidad de las funciones de costo de combustible. En la actualidad y parcialmente motivados
por el aumento de las capacidades computacionales, los investigadores han venido representando
funciones de costo de combustible mediante modelos más complejos que toman en cuenta, por
ejemplo, los efectos de las válvulas de admisión de vapor. Este fenómeno ocurre en turbinas de
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vapor con múltiples válvulas, produciendo una curva ondulada, lo que motiva la adición de un
término sinusoidal [7]:

f(p) = a0 +
M∑
j=1

ajp
j +

∣∣b sin (c(pmin − p))
∣∣.

Según [7], este tipo de modelo aumenta la precisión de los resultados, pero evidentemente agrega más
carga computacional, especialmente al perderse la convexidad. En la Figura 4 podemos observar
la forma de la función de costo de combustible cuando se consideran las válvulas reguladoras de
vapor.

Figure 4: Curva de costo de combustible de una unidad generadora con válvulas de vapor [1].

Asimismo, las unidades generadoras pueden tener lo que se conoce como zonas de operación pro-
hibidas. En este caso, se introducen discontinuidades en la formulación, ya que ahora existen zonas
donde no se puede operar la unidad generadora, principalmente por aspectos técnicos, como posi-
bles vibraciones del eje o por las propias características de las válvulas de vapor. En la Figura 5, se
muestra una curva de costo de combustible para una unidad generadora con dos zonas de operación
prohibidas.
Se pueden incorporar también otros elementos de costo a la función objetivo, dependiendo de las
necesidades del tomador de decisiones (DM), por ejemplo:

• Costo de sobre-generación o infra-generación [80,102]

• Costos de mantención y operación [91,102]

• Costo de arrancada (en frío o caliente) [102]

• Costo de rampa [76]

• Costo de reserva de giro [76]

• Costo de transmisión [65]

24



Figure 5: Curva de costo de combustible de una unidad generadora con zonas de operación pro-
hibidas [94].

Restricciones del problema

Las redes de energía eléctrica son sistemas muy complejos. Las topologías de dichas redes pueden ser
muy diferentes, pero en general existen varios agentes que deben coordinarse además de las GEN-
COs: las empresas de transmisión (TRANSCOs) y las empresas de distribución (DISTCOs) [154].
En la Figura 6 podemos observar una red de energía bien simple pero ilustrativa. La energía
eléctrica producida por las GENCOs es transmitida por las TRANCOs, que poseen y operan las
líneas de transmisión. Las DISTCOs por su parte poseen y operan las líneas de distribución, que
es la etapa final en la entrega de energía eléctrica; estas empresas son las encargadas de llevar
electricidad desde el sistema de transmisión a los consumidores individuales. Esto se realiza a
través de subestaciones de distribución que están conectadas al sistema de transmisión y tienen
como objetivo disminuir la tensión (voltaje) de transmisión a los valores medios y bajos de tensión
requeridos por los consumidores finales. Esta complejidad se incorpora al problema ED a través de
las restricciones consideradas, que representan los límites técnicos y operativos de todo el sistema [3].

1. Restricciones de generación

Balance de carga
Una particularidad de los sistemas de redes eléctricas es que la energía eléctrica no se puede al-
macenar, todavía, en grandes cantidades. Por ello, la generación de energía debe ser igual a la
demanda, más las pérdidas de potencia en la línea de transmisión:

1>p− PD − PL = 0,

donde p = (p1, p2, . . . , pN )> es el vector de potencias de cada unidad generadora; PD es la demanda
de energía y PL las pérdidas en la transmisión. Las pérdidas de potencia se obtienen resolviendo
el problema de flujo de carga, donde se tienen restricciones de igualdad para las potencias activas
y reactivas en cada barra [103]:
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Figure 6: Red de potencia eléctrica.

PGi = PDi + Vi

NB∑
j=1

Vj [Gij cos(δi − δj)−Bij sin(δi − δj)],

QGi = QDi + Vi

NB∑
j=1

Vj [Gij sin(δi − δj) +Bij cos(δi − δj)],

donde NB es el número de barras; PGi y QGi son la potencia real y reactiva generada en la barra
i; PDi y QDi son la carga de potencia real y reactiva en la barra i, respectivamente; Gij y Bij
son la conductancia de transferencia y la susceptancia de transferencia entre la barra i y la j
respectivamente; Vi y Vj son las magnitudes de voltaje en la barra i y j respectivamente; δi y δj son
los ángulos de voltaje en la barra i y j respectivamente. Existen varios métodos para resolver el
sistema no lineal resultante, entre los más populares se encuentra el método de Newton-Raphson.
La solución de flujo de carga proporciona todas las magnitudes y ángulos de voltaje de la barra y
se pueden usar para calcular las pérdidas de transmisión de la siguiente manera:

PL =
NL∑
k=1

gk[V 2
i + V 2

j − 2ViVj cos(δi − δj)],

donde NL es el número de líneas de transmisión y gk es la conductancia de la línea k conectando la
barra i a la j. Otros autores calculan las pérdidas utilizando la fórmula de coeficientes de Kron [101]:

PL =
N∑
i=1

N∑
j=1

piBijpj +
N∑
i=1

B0ipi +B00,

donde pi, pj son las potencias de los generadores i y j respectivamente y B,B0, B00 son coeficientes
de pérdida.

Límites de generación
Cada generador debe producir energía dentro de límites inferiores y superiores, límites que se
establecen de acuerdo con parámetros técnicos específicos:
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pmin ≤ p ≤ pmax.

Zonas de operación prohibidas
Como se discutió anteriormente, en algunas unidades generadoras no siempre está disponible todo
el rango operativo para la asignación de carga. Estas zonas de operación prohibida introducen
discontinuidades en la función de costo que se modelan como [112]:

pmin
i ≤ pi ≤ pLi,1,

pUi,k−1 ≤ pi ≤ pLi,k, k = 2, ..., ni,
pUi,ni

≤ pi ≤ pmax
i ,

donde pmin
i y pmax

i son los límites de generación mínimos y máximos de la unidad i, respectivamente;
ni es el número de zonas de operación prohibidas; k indica la zona de operación prohibida de una
unidad; pL,Ui,k son las fronteras inferior y superior de la zona prohibida k correspondiente a la unidad
i.

2. Restricciones de seguridad

Flujo de línea
La restricción de flujo de línea se utiliza para evitar cargas de línea no deseadas debido a la
distribución de energía. Por lo tanto, la carga de la línea de transmisión Sl está restringida por su
límite superior como [113]:

Sli ≤ S
max
li , i = 1, 2, ..., Nl,

donde Nl es el número de líneas del sistema.

Flujo de potencia aparente
A veces también es necesario limitar el flujo de potencia aparente [146]:

|LFfi
| ≤ LFmax

fi
, i = 1, 2, ..., NT ,

donde LFfi
es el flujo de potencia aparente en la línea fi; LFmax

fi
es el límite máximo para el flujo

de energía aparente en la línea fi y NT es el número total de líneas de transmisión.

Restricción de reserva de giro del sistema
Para lograr una operación confiable y segura en los sistemas de generación de energía, es habitual
considerar una reserva de (en) giro. Esta reserva de energía se guarda por si sucede alguna condición
de operación no anticipada, como una interrupción inesperada de las unidades generadoras o un
aumento repentino de la demanda. En [163] esta restricción se modela como:

N∑
i=1

SPGi ≥ SPR, SPGi =
{

0, ∀i ∈ Ω
PGmaxi

− PGi , otro

donde Ω es el conjunto de generadores con zonas de operación prohibidas, SPGi es la contribución
de reserva en giro del generador i; SPR es el requerimiento de reserva en giro del sistema; N es el
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número total de unidades generadoras y PGi ,PGmaxi
son la potencia activa y su límite máximo para

el generador i, respectivamente.

Despacho Económico y Ambiental

Por otro lado, el acelerado deterioro ambiental y sus marcados efectos ha motivado el desarrollo de
sistemas de producción de energía más respetuosos con el medio ambiente. Según [118], desde los
años setenta el estudio de la contribución de la industria energética al deterioro de su entorno se
ha convertido en una importante tarea social.
La generación de energía mediante combustibles fósiles afecta significativamente el medio ambiente
y la salud humana [68]. Durante la combustión se liberan emisiones de dióxido de azufre (SO2),
óxidos de nitrógeno (NOx), material particulado (PM), monóxido de carbono (CO), compuestos
orgánicos volátiles (COV), entre otros elementos. Estos son expulsados al aire a través de chimeneas,
afectando zonas aledañas a las unidades generadoras. Los efectos ambientales de los contaminantes
mencionados anteriormente, incluyen la reducción de la visibilidad, daños a los materiales, daños
a la vegetación, deposición en forma de lluvia ácida, formación de ozono y contribución al efecto
invernadero [100]. Por otro lado, en la Tabla 2, se presentan los principales contaminantes del aire
y las posibles afecciones asociadas.

Table 2: Contaminantes y sus efectos [159].

Contaminante Enfermedades asociadas
Material Particulado respirable Enfermedades respiratorias, incluyendo bronquitis crónica y asma, enfermedades cardíacas
SO2 Enfermedades cardíacas, efisémas pulmonares, cáncer, dolores de cabeza, irritación ocular
NO2 Irritación pulmonar, infecciones virales, opresión del pecho
Material Particulado suspendido Neumoconiosis, asma, cáncer
Ozono Deterioro de la función pulmonar, dolor en el pecho, tos, irritación nasal y ocular
CO Desmayos, muerte por asfixia

Por lo tanto, los problemas de las emisiones generadas por centrales eléctricas a base de combustibles
fósiles, no pueden pasarse por alto. Según [95], muchas estrategias, como la instalación de filtros de
aire y equipos de limpieza de contaminantes, el cambio a combustibles de bajas emisiones, la sustitu-
ción de equipos y unidades generadoras antiguas y la integración de fuentes de energía renovable, se
han tenido en cuenta para minimizar las emisiones. Pero todos estas variantes necesitan cantidades
considerables de capital y van asociadas a estrategias de reemplazo/modificación/actualización, por
lo que se pueden considerar como soluciones a largo plazo. Por lo tanto, las estrategias de despacho
de emisiones (donde las preocupaciones ambientales se adicionan a la formulación tradicional del
ED) resultan soluciones atractivas, ya que son fáciles de implementar y requieren menos costos
adicionales [50,143]. Usualmente para la representación de las emisiones se utilizan varios modelos.
En la mayoría, el CO2 se considera una función lineal de la potencia generada y el SOx se considera
proporcional al consumo de combustible de la unidad generadora, por lo tanto con una función de
emisiones con la misma forma de (4). Por otro lado, las emisiones de NOx son más difíciles de
evaluar porque provienen de dos fuentes diferentes: del nitrógeno en el aire y en el combustible;
además su producción está relacionada con varios factores, incluida la temperatura de la caldera y
el contenido de aire. Por lo tanto, la curva de salida de NOx se puede caracterizar por una ecuación
que consta de funciones cuadráticas o lineales, más términos exponenciales adicionales [103, 133].
Por tanto, atendiendo al tipo de contaminante a evaluar, debemos considerar la emisión total como:
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E(p) .=
N∑
i=1

M∑
j=1

α0i + αjip
j
i , ó

E(p) .=
N∑
i=1

M∑
j=1

α0i + αjip
j
i + ξie

λipi ,

donde αji, ξi y λi son los coeficientes de emisión de la unidad generadora i.

En el Capítulo 1 se analiza el problema del Despacho Económico Ambiental:

min (F (p), E(p)) (5)
st 1>p = PD,

pmin ≤ p ≤ pmax,

donde, F (p) .=
∑N
i=1

∑M
j=1 â0i+ âjipji es el costo total de combustible; E(p) .=

∑N
i=1

∑M
j=1 α̂0i+α̂jipji

son las emisiones totales y además se considera un sistema sin pérdidas en la transmisión. Se
propone un método de solución basado en teoría de dualidad y se comprueban los resultados
propuestos en varios sistemas. Las soluciones que se obtienen dominan las encontradas por otros
autores utilizando metaheurísticas. Este capítulo se basa fundamentalmente en el artículo [30]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: A duality theory
approach to the environmental/economic dispatch problem. Electric Power Systems Research,
vol 184, Art. Num. 106285, (2020).

A su vez, dicho artículo se compone de los siguientes trabajos previos, los cuales fueron presentados
y publicados en [31,32]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: An Analytical
Approach to the Environmental/Economic Dispatch Problem. 2019 IEEE CHILEAN Con-
ference on Electrical, Electronics Engineering, Information and Communication Technologies
(CHILECON), (2019), pp. 1-5, doi: 10.1109/CHILECON47746.2019.8987495.

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: On the solution of
the Environmental/Economic Dispatch problem using Lagrangian duality. 2020 IEEE Inter-
national Conference on Industrial Technology (ICIT), (2020), pp. 619-623, doi: 10.1109/ICIT45
562.2020.9067261.

Sin embargo, cuando se analiza la literatura existente, se puede evidenciar que existe un problema
estrechamente relacionado al despacho de emisiones y que es sistemáticamente ignorado. Debe te-
nerse en cuenta que, generalmente al resolver (5), todos los coeficientes de las funciones de emisión
y costo de combustible se consideran valores fijos (exactamente conocidos). Pero este enfoque de-
terminístico puede conducir a errores significativos en el programa de generación óptimo propuesto.
Consideremos que, en la operación real de las redes de energía eléctrica, las empresas generadoras
deben establecer el costo de combustible y las emisiones de manera experimental. Esto se puede
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hacer de diversas maneras: a través de pruebas de rendimiento, la determinación a partir de re-
gistros operativos o el uso de los datos de la garantía del fabricante, ajustados a las condiciones
reales de funcionamiento [78].
Pero, el alto costo de las pruebas de desempeño y la posible representación incorrecta de la forma de
las curvas de entrada-salida proporcionada por los fabricantes, hace que la determinación a partir
de los registros operativos sea la alternativa más empleada; más aún si tenemos en cuenta que, en
la actualidad, los datos operativos están fácilmente disponibles en muchas empresas de generación.
Esta estrategia claramente introduce incertidumbres en los modelos derivados experimentalmente,
incertidumbres que pueden llevarnos a obtener soluciones dominadas (si se considera el problema
EED en su formulación determinísitica (5)); o a soluciones ambientales inviables (si se considera
la formulación determinísitica para el ECED). En el Capítulo 2 analizamos el efecto que tiene las
incertidumbres en las estimaciones de los coeficientes. Comparamos los programas de generación
óptimos obtenidos al resolver los problemas determinísticos o utilizando las formulaciones propues-
tas. Los enfoques propuestos se basan en intervalos estadísticos, particularmente en los respectivos
intervalos de predicción involucrados cuando se utiliza la regresión lineal múltiple para ajustar los
modelos. De hecho, dado que se tiene la suma de variables respuesta, se debe obtener un intervalo
de predicción para esta suma. La formulación propuesta también fue comprobada en un sistema
real, consistente en 4 unidades generadoras del sistema eléctrico de Chile. Los resultados obtenidos
muestran las afectaciones que pudieran tenerse cuando no se consideran las incertidumbres en las
estimaciones de los coeficientes de costo y emisiones. Estas afectaciones pueden ser graves, sobre
todo durante el invierno, cuando la mala ventilación en diversas zonas del país disminuye la calidad
del aire. Los resultados de este capítulo se basan principalmente en:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN, Enrique LÓPEZ: Effect of Models
Uncertainties on the Emission Constrained Economic Dispatch. A Prediction Interval-Based
Approach. Sometido para publicación.

Los resultados contenidos en la segunda parte de esta tesis resultan más generales que los obtenidos
en la primera parte. Aunque fueron desarrollados y motivados principalmente por un problema
específico, como podemos ver en el Capítulo 3, los resultados obtenidos fueron (son) de amplia apli-
cación y trascienden la mera gestión de las emisiones y costos de redes eléctricas. Consideremos que,
como se señaló en [116], los sistemas y mercados energéticos modernos están envueltos en diversas
fuentes de incertidumbre, debido a la revolución de las energías renovables (ER) en los últimos
años. El valor de las inversiones en tecnologías renovables ha aumentado rápidamente durante la
última década, como resultado de las presiones políticas para reducir las emisiones de dióxido de
carbono y los incentivos políticos para aumentar la participación de las energías renovables en la
matriz energética. A medida que aumenta el número de inversiones en energía renovable, también
lo hace la necesidad de medir los riesgos asociados a la planificación, construcción y operación de
estas tecnologías. Los desarrolladores del sector de la energía, los inversores y los responsables
políticos se enfrentan a un futuro que implica implícitamente riesgos e incertidumbres tecnológicas,
financieras y políticas. Aunque, las tecnologías de ER tienen potencialmente un perfil de riesgo
más bajo que las fuentes de energía convencionales, porque están desconectadas de los precios de
los combustibles fósiles; aún conllevan una considerable exposición al riesgo tecnológico, financiero
y regulatorio, dependiendo de la tecnología, el país y el régimen regulatorio imperante. La fluc-
tuación de los componentes del costo de las unidades de generación de energía, los precios volátiles
del petróleo, el precio de la electricidad y el costo del carbono en el contexto de la estrategia global
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de mitigación del cambio climático, son ejemplos de componentes de incertidumbre que encuentran
los desarrolladores, inversionistas y legisladores en el sector energético [79]. Por otro lado, como se
señala en [19], un gran inconveniente de las energías renovables en un mercado eléctrico desregu-
lado es su alto precio, lo que reduce su competitividad. A pesar de lo anterior, la energía renovable
sigue siendo ventajosa y sobre todo una estrategia muy adecuada para disminuir las emisiones
contaminantes. En este contexto los análisis y resultados provenientes de la Teoría de Portafolios,
proporcionan una herramienta útil para la gestión eficiente de los riesgos e incertidumbres asociadas
a la planificación y operación de sistemas de energía sostenibles, ver por ejemplo [79,116] ó [117].
En general, la teoría clásica de portafolios (considerando medias y varianzas) [97,98] se basa en un
problema de optimización, que puede ser visto como una extensión del problema estándar cuadrático
(StQOP):

µq
.= min

{1
2x
>Ax : e>x = 1, x ∈ C

}
,

donde A es una matriz real y simétrica de orden n; C ⊆ Rn es un cono convexo, cerrado y puntiagudo
que tiene un interior no vacío y e ∈ int C∗, siendo C∗ el cono polar no negativo de C. En el
Capítulo 3 no sólo analizamos el Problema del Portafolio, sino una amplia clase de problemas de
minimización donde las funciones objetivo y la restricción son positivamente homogéneas de grados
posiblemente diferentes y, además, las restricciones geométricas vienen dadas por un cono convexo
(no necesariamente poliédrico); es decir, discutimos y analizamos el problema de optimización
homogénea no convexo:

min{f(x) : g(x) = 1, x ∈ C},

donde C ⊆ Rn es un cono cerrado (no necesariamente convexo) y f, g son funciones positivamente
homogéneas en C, con diferentes grados de homogeneidad y además g(x) > 0 para toda x ∈ C,
x 6= 0. Varias caracterizaciones son brindadas acerca de la validez de la propiedad de dualidad fuerte
respecto al problema dual Lagrangiano asociado. Una de las caracterizaciones está relacionada con
la convexidad de (g, f)(C) +R+(0, 1), revelando cierta convexidad escondida y un S-lema. Cuando
ambas funciones tienen el mismo grado de homogeneidad, se establece un formulación copositiva
del problema original. También son derivadas condiciones de optimalidad de orden cero y condi-
ciones KKT (locales o globales) que originan la noción de L-valores propios con aplicaciones además
al análisis de tensores simétricos. Se estudió particularmente el problema cuando el cono C está
dado por dos formas cuadráticas. Estos resultados fueron aplicados también a una clase de proble-
mas de optimización fraccionaria cuadrática con dos restricciones cuadráticas, obteniéndose nuevas
condiciones de optimalidad de segundo orden, tanto necesarias como suficientes. Los resultados
obtenidos en este capítulo se basan principalmente en [29]:

• Adrian CARRILLO-GALVEZ, Fabián FLORES-BAZÁN: Non convex homogeneous opti-
mization: a general framework and applications to quadratic fractional programming and ten-
sor eigenvalues analysis. Sometido para publicación. (Preprint disponible en: https://www.
ing-mat.udec.cl).
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Chapter 1

A duality theory approach to the EED

1.1 Introduction
Increasing concerns about global warming and environmental deterioration, has drawn more at-
tention on daily optimal operation of electric power systems. Several strategies exist to mitigate
both, production and emission of pollutants during the generation of electrical energy, but Envi-
ronmental Economic Power Dispatch or Environmental/Economic Dispatch (EED) has proved to
yield attractive solutions [95]; specially for electrical power networks, as the existing in developing
countries, with low penetration of renewable energy sources. Thus, the EED becomes an extension
of the traditional ED problem, when environmental concerns are added in the usual mathematical
formulation.
Numerous investigations have dealing with the EED problem (and similar problems derived from it),
but have been principally addressed to the solution methods and numerical results (comprehensive
reviews of the principal results and used techniques can be seen in [37,96,123]). These papers show
a clearly predominance of heuristic methods that are capable of achieve satisfactory but suboptimal
solutions. However, and this partially motivated our investigation, there are fewest papers focused
on theoretical analysis and giving some insights of the analytical treatment of the problem. The
principal reasons for this lack of analytical research is that the employed methods, in general, need
multiple runs to find the Pareto front, so computational time becomes longer; and some convexity
assumptions are needed. In this chapter we develop a duality theory approach to the EED problem
that handle these complexities. Due to the convexity of the Pareto front for the EED problem, we
obtained the whole Pareto front using the Weighted Sum Method (WSM). The structure of the
scalar problem resulting from the application of the WSM ensure, in a relatively easy way, strong
duality property to the primal problem. Therefore, we recover the solution to the EED by solving
the dual problem, which becomes a quadratic programming problem simplest than the original and
therefore with lower compilation times.
The remainder of the chapter is organized as follows: Section 1.2 is intended to introduce some
mathematical aspects about optimization theory, specially multiobjective optimization and duality
theory; in Section 1.3 the EED problem is analyzed and the duality theory approach is developed;
in Section 1.4 the solution method is tested on three study cases and the results are compared
with previous papers; in Section 1.5 we introduce a heuristic algorithm providing better distributed
non-dominated solutions; a comparison with some analytical solutions available appears in Section
1.6 and Section 1.7 concludes the chapter.
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1.2 Notation and basic optimization theory
For a better and complete understanding of the problem and future ideas, some previous theoretical
aspects are needed. Let us begin with some notation and definitions that will be used through this
chapter:

• The real line is denoted by R and the p-dimensional Euclidean space is denoted by Rp.

• The set of all non-negative vectors of Rp is denoted by Rp+, i.e., R
p
+
.=
{
x ∈ Rp : xi ≥ 0, ∀i =

1, 2, . . . , p
}
.

• When strict positivity holds we define Rp++
.=
{
x ∈ Rp : xi > 0 , ∀i = 1, 2, . . . , p

}
.

• 〈·, ·〉 represent the usual scalar product.

• ei ∈ Rp denotes the ith vector of the canonical base of Rp.

• Ip is the identity matrix of dimension p× p.

• A � 0 means the matrix A is positive semidefinite, i.e., x>Ax ≥ 0 for all x.

1.2.1 Multiobjective optimization

A multiobjective optimization problem (MOP) in that the decision-maker wants to optimize k
objectives, can be stated, in a general form, by:

min
x∈X

(f1(x), . . . , fk(x)), (1.1)

where x is a vector from Rp and X is referred as the feasible set or the set of alternatives of
the decision problem. This feasible set is determined by the set of constraints, from now on
gi : Rp −→ R and it can be of equality or inequality type. Additionally the set Y = f(X ) .= {y ∈
Rk : yi = fi(x) , i = 1, . . . , k, for some x ∈ X} is referred to as the image of the feasible set or the
feasible space in the criterion space via the objective functions.
The different existing notions of solution for a MOP are based on the observation that, when we
have multiple objectives to optimize, generally, the objective functions are non-commensurable and
often competing and conflicting. This gives a set of optimal solutions instead of only one; and the
type of the solutions is related to the form in that they are compared, since not total order in Rk
exist. We will use the following notation [46]:

Notation 1.1. For any y1, y2 ∈ Rk:

• y1 ≤ y2 ⇔ y2
i ∈ [y1

i ,∞), for all i = 1, . . . , k, y1 6= y2.

• y1 5 y2 ⇔ y2
i ∈ [y1

i ,∞), for all i = 1, . . . , k.

Let us see the next definition.

Definition 1.1. [46] A feasible solution x̄ is called efficient or Pareto optimal if there is no
other x ∈ X such that f(x) ≤ f(x̄). If x̄ is efficient, f(x̄) is called a non-dominated point. If
x1, x2 ∈ X and f(x1) ≤ f(x2), we say x1 dominates x2 and f(x1) dominates f(x2). The set of all
efficient solutions is denoted by XE and called the efficient set. The set of all non-dominated points
ȳ = f(x̄) ∈ Y, where x̄ ∈ XE is denoted YN and called the non-dominated set.
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There are other definitions of efficiency frequently used, and we shall refer often to one of which is
best suited in a particular context. Equivalently x̄ ∈ X is efficient if:

• there is no x ∈ X such that fk(x) ≤ fk(x̄) for k = 1, . . . , p, and fi(x) < fi(x̄) for some
i ∈ {1, . . . , p},

• there is no x ∈ X such that f(x)− f(x̄) ∈ −Rp+ \ {0},

• f(X ) ∩ (f(x̄)− Rp+) = {f(x̄)}.

Another notion is weakly efficient solution.

Definition 1.2. A feasible solution x̄ is called weakly efficient or weakly Pareto optimal if there
is no other x ∈ X such that f(x) < f(x̄), i.e. fk(x) < fk(x̄) for all k = 1, . . . , p. The point
ȳ = f(x̄) is then called weakly non-dominated. The weakly efficient and non-dominated sets are
denoted XwE and YwE respectively.

From the definitions is obvious that:
XE ⊂ XwE .

Among the existing solution techniques to MOPs, perhaps the most known are the ε-Constrained
Method and the already mentioned Weighted Sum Method.

ε-Constrained Method
In this method only one of the original objectives is minimized, while the others are transformed
to constraints , i.e., problem (1.1) is substituted by the ε-constraint problem [46]:

(ε) minx∈X fj(x) (1.2)
st fk(x) ≤ εk, k = 1, . . . , p, k 6= j,

where ε ∈ Rp. This method is quite popular between practitioners, since it is straightforward to
employ one-objective optimization technique now. From the properties of problem (1.2) and its
relationship with the efficient solutions of (1.1), we point out several theoretical results.

Proposition 1.1. [46] Let x̄ be an optimal solution of 1.2 for some j. Then x̄ ∈ XwE.

Proof. By the opposite, assume x̄ /∈ XwE . Then there is an x ∈ X such that fk(x) < fk(x̄) for all
k = 1, . . . , p. In particular, fj(x) < fj(x̄). Since fk(x) < fk(x̄) ≤ εk for k 6= j, the solution x is
feasible for (1.2). This is a contradiction to x̄ being an optimal solution of (1.2).

In order to strengthen the above proposition to obtain efficiency we require the optimal solution of
(1.2) to be unique.

Proposition 1.2. [46] Let x̄ be a unique optimal solution of 1.2 for some j. Then x̄ ∈ XE.

Proof. By the opposite, assume there is some x ∈ X with fk(x) ≤ fk(x̄) ≤ εk for all k 6= j. If
in addition fj(x) ≤ fj(x̄) we must have fj(x) = fj(x̄) because x̄ is an optimal solution of (1.2).
So x is an optimal solution of (1.2). Thus, uniqueness of the optimal solution implies x = x̄ and
x̄ ∈ XE .
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In general with appropriate choices of ε all efficient solutions can be found; however a previously
problem must be solve in order to provide minimum and maximum value of each individual objec-
tive function.

Weighted Sum Method
On another hand the WSM is based on the idea of solve (1.1), by solving instead a single objective
problem of the type:

(WS) min
x∈X

p∑
k=1

wkfk(x). (1.3)

Several important results exist for a vector x̄ solution of Problem (1.3) and its relationship with
(1.1).
The next propositions show us that optimal solutions of the weighted sum problem with posi-
tive (nonnegative) weights are always (weakly) efficient and that under convexity assumptions all
(weakly) efficient solutions are optimal solutions of scalarized problem with positive (nonnegative)
weights. The proofs are elementary and can be seen in [46].

Proposition 1.3. [46] Suppose that x̄ is an optimal solution of the weighted sum optimization
problem:

min
x∈X

p∑
k=1

wkfk(x),

with w ∈ Rp+. Then the following statements hold:

• If w ∈ Rp+ then x̄ ∈ XwE,

• If w ∈ Rp++ then x̄ ∈ XE,

To have results in the other direction, convexity assumptions are needed.

Proposition 1.4. [46] Let X be a convex set, and let fk be convex functions, k = 1, . . . , p. If
x̄ ∈ XwE there is some w ∈ Rp+ such that x̄ is an optimal solution of (1.3).

Particularly, in our investigation the WSM was selected over the ε-Constrained Method since, as
we will see later in this chapter:

• For the EED problem analyzed in here we have the convexity of the set Y. This follows from
the technical characteristics of most thermal generating units.

• In the ε-Constrained Method one of the objective function is treated as a restriction, intro-
ducing an extra Lagrange multiplier when the scalar optimization problem is solve. However,
for different fuel cost and emission functions, this method overcame the main disadvantage
of the WSM when convexity does not hold.
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1.2.2 Duality theory

Consider a nonlinear programming problem (1.4), which will be referred as the primal problem:

µ
.= min f(x) (1.4)

st gi(x) ≤ 0 for i = 1, . . . ,m,
hi(x) = 0 for i = 1, . . . , l,

x ∈ X .

There exist several closely related problems associated to this primal one in literature, known as
dual problems. Perhaps the most usual dual formulation is the Lagrangian:

ν
.= max θ(λ1, λ2), (1.5)

st λ1 ∈ Rl, λ2 ∈ Rm+

where:

θ(λ1, λ2) .= inf
x∈X
{f(x) + λ>1 h(x) + λ>2 g(x)}.

Clearly, for a nonlinear programming problem, several Lagrangian dual problems can be obtained,
depending on which constraints are handled as g(x) ≤ 0 and h(x) = 0 and which constraints are
treated by the set X . This choice can affect both, the optimal value of (1.5) (as in non-convex
situations) and the effort expended in evaluating and updating the dual function θ, during the
course of solving the dual problem. Hence, an appropriate selection of the set X must be made,
depending on the structure of the problem and the purpose for solving (1.5) [16]. Now we present
some basic results and definitions about the relationship between primal and dual problems. Further
(broader) results are in Chapter 3.

Theorem 1.1 (Weak Duality Theorem [16]). Let x̄ be a feasible solution to Problem (1.4); that
is, x̄ ∈ X , g(x̄) ≤ 0 and h(x̄) = 0. Also let (λ1, λ2) be a feasible solution to problem (1.5), this is,
λ2 ≥ 0. Then f(x̄) ≥ θ(λ1, λ2).

The proof is simple and can be viewed for example in [16]. From this result it can be proved that
the objective value of any feasible solution to the dual problem yields a lower bound on the objective
value of any feasible solution to the primal problem. In other words, the optimal value of the primal
problem is greater than or equal to the optimal value of the dual problem. If strict inequality holds
true (ν < µ), a duality gap is said to exist. It is said that (1.4) has the strong-duality property if the
duality gap is zero (ν = µ) and problem (1.5) admits any solution [16]. Therefore, if the structure
of the problem ensures strong duality property, Lagrangian duality becomes an attractive method
for non-linear programming. Note that θ(λ1, λ2) is a pointwise minimum of affine functions, then a
concave function. This way maximizing θ(λ1, λ2) over λ2 ∈ Rm+ is a convex optimization problem,
with less constraints than the primal problem.
There exist several theoretical results that give us conditions ensuring strong duality, but we remark
(for the applicability to EED problem and its theoretical simplicity) the following:
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Theorem 1.2 (Strong Duality Theorem [16]). Let X be a nonempty convex set in Rn, let f :
Rn −→ R and g : Rn −→ Rm be convex, and let h : Rn −→ Rl be affine; that is, h is of the form
h(x) = Ax−b. Suppose that the following constraint qualification holds true. There exists an x̄ ∈ X
such that g(x̄) < 0, h(x̄) = 0 and 0 ∈ int h(X ), where h(X ) .= {h(x) : x ∈ X}, then:

inf{f(x) : x ∈ X , g(x) ≤ 0, h(x) = 0} = sup
λ1∈Rl

λ2∈Rm
+

{θ(λ1, λ2)}.

This theorem shows that under suitable convexity assumptions and under a constraint qualification,
the optimal objective function values of the primal and dual problems are equal, so no duality gap
exists. As we will see in the next section, particularly for the EED problem becomes relatively easy
to ensure strong duality property.

1.3 EED mathematical analysis
In this section we analyze the EED problem and the properties that made a duality approach
feasible. We start formulating the problem as a MOP.

1.3.1 Mathematical formulation

As it was previously stated, the Environmental/Economic Dispatch problem has as objectives to
minimize the emissions of pollutants and the total fuel cost of meeting the energy requirements
of the system. In this chapter we are going to deal with the following objective functions and
constraints:

Objective functions

1. Objective function F (p) aims to minimize the total fuel cost for the entire system:

minF (p) = min
N∑
i=1

fi(pi),

where:

• p ∈ RN is the decision vector that denotes the power supply by each generating unit and
N is the number of generating units of the system.
• fi(pi) is the fuel cost function, in $/h, for the ith unit, which is modeled by a quadratic
polynomial function:

fi(pi) = aip
2
i + bipi + ci,

with ai, bi, ci, the fuel cost coefficients of unit i.

2. Objective function E(p) describes the total quantity of emissions released to the environment
by the operation of N units:
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minE(p) = min
N∑
i=1

ei(pi),

where:

• ei(pi) is the emission function, in kg/h, for the ith unit, which we particularly modeled,
as well, by a quadratic polynomial function:

ei(pi) = αip
2
i + βipi + γi,

with αi, βi, γi, the emission coefficients of unit i.

Constraints

1. The real power output limits are related with the technical capacities of each generating unit:

pmini ≤ pi ≤ pmaxi , i = 1, 2, . . . , N,

where:

• pmini , pmaxi are the minimum and maximum output limit of the ith generating unit in
MW.

2. The real power balance characterize the fact that, all the demanded load must be supplied,
instantly, by the electric power network. In a system this is modeled as:

N∑
i=1

pi = PD + PL,

where:

• PD is the total load demand of the power system in MW.
• PL is the system losses.

We will not considerate power losses for the development of the proposed approach. Therefore, in
matrix notation, the problem to solve is formulated as a multiobjective constrained problem:

min (F (p), E(p))
st 1>p = PD,

0 ≤ pmin ≤ p ≤ pmax,

where:

1. F (p) is the total fuel cost function:

F (p) = p>Ap+ b>p+ c,

where:
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• A .= diag(a1, . . . , aN), ai > 0, i = 1, 2, . . . ,N,
• b .= (b1, b2, . . . , bN )>.
• c .=

∑N
i=1 ci.

2. E(p) is the function of the total emission of pollutants:

E(p) = p>Qp+ r>p+ s,

where:

• Q .= diag(q1, . . . , qN), qi > 0, i = 1, 2, . . . ,N,
• r .= (β1, β2, . . . , βN )>.
• s .=

∑N
i=1 γi.

3. pmin, pmax ∈ RN are vectors whose ith component denotes, respectively, the minimum and
maximum output of power of the generator i and 1 is the all ones vector of N elements.

1.3.2 Mathematical structure analysis

Clearly, to minimize F (p) = p>Ap + b>p + c is equivalent to minimize F̄ (p) = 1
2(p>Ap + b>p),

similarly from E(p) we have the equivalent objective function Ē(p) = 1
2(p>Qp + r>p). Then, for

simplicity, we are going to be interested in to solve the MOP:

(P̄ ) min 1
2

(
p>Ap+ b>p, p>Qp+ r>p

)
st 1>p = PD,

0 ≤ pmin ≤ p ≤ pmax,

with A,Q both symmetric and positive semidefinite. This result is evident once that we realize
both matrices are diagonal and with positive entries. Hence, both objective functions are convex,
also continuous and differentiable, as well the constraint functions. Therefore (see Theorem 4.1
in [46]) we can compute the efficient solutions by varying the weight vector w = (w1, w2)> ∈ R2

+
and solving the scalarized problem:

min 1
2
[
p>(w1A+ w2Q)p+ (w1b+ w2r)>p

]
(1.6)

st 1>p = PD,

0 ≤ pmin ≤ p ≤ pmax.

Now we develop an approach based on duality theory to solve (1.6).

1.3.3 Duality theory approach

In this subsection the scalar problem (1.6) is solved by taking advantage of the structure of the
EED problem, particularly the previous results that guarantee strong duality.
Let us rewrite the scalar problem as:
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µ
.= min 1

2
[
p>(w1A+ w2Q)p+ (w1b+ w2r)>p

]
(1.7)

st 1>p = PD,

Bp ≤ c,

where:

B =
(
−IN
IN

)
, c =

(
−pmin
pmax

)
.

Let us define the Lagrangian function:

L(p, λ1, λ2) .= 1
2p
>(w1A+ w2Q)p+ 1

2(w1b+ w2r)>p+ λ1(1>p− PD) + λ>2 (Bp− c),

with λ1 ∈ R, λ2 ∈ R2N
+ ; then we associate to the primal problem (1.7), the (Lagrangian) Dual

Problem:

max
λ1∈R
λ2∈R2N

+

inf
p∈RN

L(p, λ1, λ2). (1.8)

If we define the dual function:

θ(λ1, λ2) .= inf
p∈RN

{1
2p
>(w1A+ w2Q)p+ 1

2(w1b+ w2r)>p+ λ1(1>p− PD) + λ>2 (Bp− c)
}
,

then we need to solve the Dual Problem:

ν
.= max

λ1∈R
λ2∈R2N

+

θ(λ1, λ2). (1.9)

Clearly we can define several dual problems, depending on which constraints are included in the
Lagrangian function or in the feasible set where θ(λ1, λ2) is searched. By choosing this specific dual
formulation (1.8) we can:

1. To ensure, in a relatively easy way, strong duality. Therefore we can find µ by solving (1.9),
which is easiest to solve since one less constraint must be considered.

Note that, in this formulation, we have:

• f(p) .= 1
2
[
p>(w1A+ w2Q)p+ (w1b+ w2r)>p

]
is convex,

• g(p) .= (g1(p), g2(p))> is convex; where ∀i = 1, . . . , N , we have:

o g1
i (p) = −〈p, ei〉+ 〈pmin, ei〉,

o g2
i (p) = 〈p, ei〉 − 〈pmax, ei〉,

• h(p) .= 1>p− PD is affine,
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• X = RN is convex.

Therefore, conditions of Theorem 1.2 hold, even the constraint qualification. Note that automati-
cally we have 0 ∈ int h(X ) . To see this we use the reasoning in [16]. Suppose that h(p) = 1>p−PD,
then clearly any y ∈ R can be represented as y = 1>p− PD, with p = (y + PD, 0, . . . , 0). This way
h(X ) = R and particularly 0 ∈ int h(X ).

2. To obtain θ(λ1, λ2) by solving a simple unconstrained Quadratic Programming problem in
RN . Therefore we can obtain an analytic solution, by finding the point p̄ in RN such that
∂L
∂p

∣∣∣
p=p̄

= 0. So we need to solve the equation:

∂L

∂p
= (w1A+ w2Q)p+ 1

2w1b+ 1
2w2r + λ11 +B>λ2 = 0.

Hence,

p̄ = −(w1A+ w2Q)−1
(1

2w1b+ 1
2w2r + λ11 +B>λ2

)
. (1.10)

If we substitute this result in (1.9), then:

Θ(λ1, λ2) = − λ2
11>Σ−11− λ>2 BΣ−1B>λ2 − 2λ11>Σ−1B>λ2

−
(1

2w11>Σ−1b+ 1
2w21>Σ−1r + 2PD

)
λ1

−
(1

2w1BΣ−1b+ 1
2w2BΣ−1r + 2c

)>
λ2.

Where we have defined Σ .= w1A + w2Q. Note that Σ−1 exist and even more is a symmetric
diagonal matrix if w1aii + w2qii 6= 0, ∀i = 1, . . . , N ; condition that holds true due to the entries in
the EED problem.
Then we must finally solve,

min
λ1∈R
λ2∈R2N

+

{
λ2

11>Σ−11 + λ>2 BΣ−1B>λ2 + 2λ11>Σ−1B>λ2 +
(1

2w11>Σ−1b+ 1
2w21>Σ−1r + 2PD

)
λ1

+
(1

2w1BΣ−1b+ 1
2w2BΣ−1r + 2c

)>
λ2
}

which become a relatively simple Quadratic Programming problem, because there only exist con-
straints of non-negativity over λ2. In matrix notation:

min
λ̄i≥0

i∈{2,...,2N+1}

1
2 λ̄

T Āλ̄+ b̄T λ̄, (1.11)
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where:

λ̄ =
(
λ1
λ2

)
, Ā =

(
1>Σ−11 1>Σ−1B>

BΣ−11 BΣ−1B>

)
,

b̄ =

1
2w11>Σ−1b+ 1

2w21>Σ−1r + 2PD
1
2w1BΣ−1b+ 1

2w2BΣ−1r + 2c

 ,
and necessarily 0 4 Ā ∈ R(2N+1)×(2N+1) for problem (QP ) have a solution. The next proposition
prove that indeed, matrix Ā is positive semidefinite.

Proposition 1.5. Let matrix Ā ∈ R(2N+1)×(2N+1) be as above. Then for all vector x ∈ R2N+1 we
have that:

x>Āx =
N∑
i=1

σii(xi+1 − x1 − xi+1+N )2 ≥ 0, (1.12)

where we have defined Σ−1 .= (σii).

Proof. We make the proof of the proposition by induction over N . It can be easily prove that, for
N = 1, (1.12) holds true. Suppose now that also holds true for N = n ∈ N and we are going to
prove that it remains true for N = n+ 1.
First note that if N = n, then:

Ā =

1>Σ−11 −1>Σ−1 1>Σ−1

−Σ−11 Σ−1 −Σ−1

Σ−11 −Σ−1 Σ−1


(2n+1)×(2n+1)

and for any R2n+1 3 x = (x1, x2, x3)>, x1 ∈ R, x2, x3 ∈ Rn , we have:

x>Ax = x2
11>Σ−11− 2x1x

>
2 Σ−11 + 2x1x

>
3 Σ−11− 2xT2 Σ−1x3 + xT2 Σ−1x2 + xT3 Σ−1x3. (1.13)

Now, suppose that N = n+ 1, then we have the matrix:

Ā =


1>Σ−11 + σn+1 −1>Σ−1 −σn+1 1>Σ−1 σn+1
−Σ−11 Σ−1 0 −Σ−1 0
−σn+1 0> σn+1 0> −σn+1
Σ−11 −Σ−1 0 Σ−1 0
σn+1 0> −σn+1 0> σn+1


(2n+3)×(2n+3)

.

Where we have defined Σ−1 .= (σii) and 0 the null vector of Rn. For simplicity in the notation also
we made σn+1

.= σn+1,n+1. Now we make x> = (x1, x
>
2 , xn+2, x

T
3 , x2n+3), then:

x>Āx = x2
1(1>Σ−11 + σn+1)− 2x1x

>
2 Σ−11 + 2x11>Σ−1x3 − 2x>2 Σ−1x3 + x>2 Σ−1x2

+ x>3 Σ−1x3 − 2x1xn+2σn+1 + 2x1x2n+3σn+12xn+2x2n+3σn+1 + x2
2n+3σn+1 + x2

n+2σn+1.
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Completing square on xn+2 we obtain:

σn+1(x2
n+2 − 2x1xn+2 − 2xn+2x2n+3) = σn+1(xn+2 − x1 − x2n+3)2 − σn+1x

2
1 − σn+1x

2
2n+3

− 2σn+1x1x2n+3

Therefore, if N = n+ 1 we have:

x>Āx =
n∑
i=1

σii(xi+1 − x1 − xi+1+n+1)2 + σn+1,n+1(xn+2 − x1 − x2n+3)2

where we have used that assumption of (1.12) holds true for n and (1.13). Then, note that:

σn+1,n+1(xn+2 − x1 − x2n+3)2 = σii(xi+1 − x1 − xi+1+n)2,

with i = n+ 1 and n = n+ 1.

Therefore ν ∈ R and we can use any efficient algorithm for Quadratic Programming to find its
value; and the optimal value of the primal problem can be recovered thanks to the Strong Duality
property, which ensure that ν = µ.
We point out that the proposed approach could be applied for problems where power losses are
considered as a fraction of the power demand or as a lineal function of the output power of the
generators. When power losses are considered as a quadratic function of the power output, an
explicit equation as (1.10) becomes more involved, but instead, a linearization strategy could be
used.
In the next section we study three problems, showing that our approach provides better solutions
than those obtained by other authors.

1.4 Study-cases
In order to show some advantages of our duality approach, we discuss three different problems
with data obtained from [69, 142, 165]. The solution to all the problems were obtained through
MATLAB on a computer with Intel(R) Core(TM) i7-4790S processor (3.20 GHz × 8) and 8 GB of
memory. The principal motivation for the numerical test was to check the general performance of
the proposed method. Hence, as a first approach, problem (1.11) was solved by using the built-in
MATLAB routine for Quadratic Programming convex problems (quadprog) and selecting, randomly,
a high number of solutions (1000) on the Pareto front, i.e., the weight vector is randomly selected.

1.4.1 A 6-generators system

In the first case we analyze the performance on a test system of 6 generating units [69], with a
power demand of 1000 MW and characteristics in Table 1.1.
In [69] the authors used a gravitational search algorithm (GSA) to solve the EED problem and
compare their results with those obtained in previous works. They find what they call "the best
EED results" with the schedule shown in Table 1.2.
We point out some facts from the solution obtained by our method, when the proposed duality
approach is applied, see Table 1.2:
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Table 1.1: 6-generating units system data.

Unit i ci bi ai si ri qi pmini pmaxi

1 756.800 38.540 0.1525 13.860 0.3300 0.0042 10 125
2 451.325 46.160 0.1060 13.860 0.3300 0.0042 10 150
3 1050.000 40.400 0.0280 40.267 -0.5455 0.0068 35 225
4 1243.530 38.310 0.0355 40.267 -0.5455 0.0068 35 210
5 1658.570 36.328 0.0211 42.900 -0.5112 0.0046 130 325
6 1356.660 38.270 0.0180 42.900 -0.5112 0.0046 125 315

Table 1.2: 6-generating units system results obtained by GSA and the proposed approach.

Element GSA Duality

Power Output Generator 1 78.821 80.9197
Power Output Generator 2 83.0013 80.6684
Power Output Generator 3 164.2907 165.4529
Power Output Generator 4 164.9136 164.2878
Power Output Generator 5 258.1108 255.1709
Power Output Generator 6 250.8619 253.5003
Cost ($/h) 51255.7880 51252.24827
Emissions (kg/h) 827.1380 827.1104821

Table 1.3: 6-generating units system results comparison.

Method Cost ($/h) Emission (kg/h)

γ-iteration [12] 51264.6 828.720
Recursive [12] 51264.5 828.715
PSO [12] 51269.6 828.863
DE [12] 51264.6 828.715
Simplified recursive [12] 51264.6 828.715
GA similarity [70] 51262.31 827.261
Proposed GSA [69] 51255.7880 827.1380
Duality Approach 51252.24827 827.1104821
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Figure 1.1: Pareto front generated by the method (6 generating units, 1000 non-dominated solu-
tions).
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Figure 1.2: A zoom at the Pareto front generated by the method (6 generating units, 1000 non-
dominated solutions).
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• As expected, the entire Pareto front can be obtained by varying the weights and consequently
a trade-off curve for the fuel cost and the amount of emission can be estimated, see Figure
1.1.

• Clearly, solutions on the Pareto front can not be compared; but respect to other investigations
we were able to improve some previously reported values with the specific proposed schedule,
see Table 1.3. Note that we found solutions with simultaneously cost and emission lowest
than those obtained in [12,69,70], see Figure1.2.

• Although compilation time in [69] was not presented, we want to highlight that we were able
to find the solutions in approximately 5 seconds and finding 1000 points on the Pareto front.

• Another important aspect is that no violation of the total power demand constraint occurs
in our schedule, we get

∑6
i=1 pi = 1000.

1.4.2 A 11-generators system

Here we consider the 69-bus, 11 generators system. The total power demand is PD = 2500 MW
and the system characteristics can be seen on Table 1.4. With the proposed approach solutions
were obtained and compared with the results presented in [165], where several metaheuristics are
tested, see Table 1.5. In this table appears the solution obtained for the EED problem selecting
one specific weight vector and NA means that this information was not available.

Table 1.4: 11-generating units system data.

Unit i ci bi ai si ri qi pmini pmaxi

1 387.85 1.92699 0.00762 33.93 -0.67767 0.00419 20.0 250.0
2 441.62 2.11969 0.00838 24.62 -0.69044 0.00461 20.0 210.0
3 422.57 2.19196 0.00523 33.93 -0.67767 0.00419 20.0 250.0
4 552.50 2.01983 0.00140 27.14 -0.54551 0.00683 60.0 300.0
5 557.75 2.22181 0.00154 24.15 -0.40006 0.00751 20.0 210.0
6 562.18 1.91528 0.00177 27.14 -0.54551 0.00683 60.0 300.0
7 568.39 2.10681 0.00195 24.15 -0.40006 0.00751 20.0 215.0
8 682.93 1.99138 0.00106 30.45 -0.5116 0.00355 100.0 455.0
9 741.22 1.99802 0.00117 25.59 -0.56228 0.00417 100.0 455.0
10 617.83 2.12352 0.00089 30.45 -0.41116 0.00355 110.0 460.0
11 674.61 2.10487 0.00098 25.59 -0.56228 0.00417 110.0 465.0

In this case we point out some facts from the comparison of the results obtained by our method
with those discussed in [165]:

• With the proposed approach, several existing results were improved [12, 69, 70]. This is
evident when we look at and compare the Pareto front obtained, see Figure 1.3. A closer
look at the Pareto front shows how the results of [165] (that were not directly comparable
with the reported in [69]) are also dominated by the solutions obtained with the proposed
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approach; particularly, we show a specific schedule in Table 1.5 for a better understanding of
this statement.
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Figure 1.3: Pareto front generated by the method (11 generating units, 1000 non-dominated solu-
tions).
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Figure 1.4: A zoom at the Pareto front generated by the method (11 generating units, 1000 non-
dominated solutions).

• When we generate 1000 non-dominated solutions compilation time was around 7 seconds,
Figure 1.3; and our approach generated what clearly appears to be a comprehensive Pareto
front. But when we just search 50 non-dominated solutions compilation time now oscillates
around 0.5 seconds and a well-distributed (smooth and uniform) Pareto front still can be
obtained, see Figure 1.5.
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Table 1.5: 11-generating units system results comparison.

Unit i GA-SC [70] GSA [69] SRA [12] PSO [12] DE [12] λ-iteration [12] RA [12] NGPSO [165] Duality

1 138.8618 138.9382 139.672 NA NA NA NA 243.3349 243.2094
2 112.1312 110.2728 112.781 NA NA NA NA 210.0 210.0
3 146.7169 147.9728 145.802 NA NA NA NA 250.0 250.0
4 222.1041 221.1072 221.527 NA NA NA NA 169.0338 169.0471
5 137.1962 137.7986 136.774 NA NA NA NA 142.6156 142.6563
6 217.3208 217.9015 218.578 NA NA NA NA 168.8431 168.8602
7 140.4711 141.3801 140.261 NA NA NA NA 142.5922 142.6051
8 348.9008 349.6497 345.46 NA NA NA NA 317.2895 317.3080
9 326.5188 327.3178 329.484 NA NA NA NA 276.5437 276.5512
10 363.5275 363.4766 363.645 NA NA NA NA 303.2289 303.2378
11 346.2508 344.1847 346.430 NA NA NA NA 276.5181 276.5249
Cost 12423.77 12422.66 12424.94 12428.63 12425.06 12424.94 12424.94 13025.9072 13025.5290
Emission 2003.0304 2002.9499 2003.3000 2009.7200 2003.3500 2003.3010 2003.3000 1661.7118 1661.6833
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Figure 1.5: Pareto front generated by the method (11 generating units, 50 non-dominated solutions).
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• There is not power balance constraint violation with the proposed schedule. A result that
is similar to the obtained in [69], but better than the obtained in [165]; where

∑6
i=1 pi =

2502.9998.

1.4.3 A 40-generators system

In this case a 40 generating units system is analyzed. The system data can viewed in [142] and the
power demand PD = 10500 MW. In [142] the authors proposed a Predictor-Corrector Primal-Dual
Interior Point Method and solve the problem using WSM and the ε-Constrained Method obtaining
the results showed in Figure 1.6. From the application of the proposed duality approach for the
solution of this system we remark that:

• Compilation time was around 8 seconds. This is a reasonable time considering that 1000
solutions were found over R40. Even more, this compilation time remains stable, i.e., do not
depend of the selection of an initial parameter set-up, as in [142].

• We improve the results of [142]. This is showed in Figure 1.6, where solutions found by us
dominate the previously obtained.
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Figure 1.6: Comparison between the proposed method and previous one for the 40 generating units
system.

1.5 Improving Pareto fronts’ shape
As it is known, a main drawback of the WSM is the criterion used to weights selection. Analyzing
the previous study-cases we can observe that, a random selection of the weights allowed us to
obtain the corresponding Pareto fronts, with low computational times. However, these solutions
on the Pareto fronts are not well distributed, showing a high density in certain regions (look at the
upper-left corner of Figure 1.6 or Figure 1.1); thus, providing the DM no useful information about
the trade-off between cost and emission elsewhere. As alternative, we propose a simple heuristic
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strategy, based on bisection algorithm, able to find solutions on the Pareto front preserving the
Euclidean distance between each of them. The main idea, see the pseudocode for the algorithm
1, is to obtain the ending points of the Pareto front and look for new solutions, while weights are
modified, that keep distance between consecutive solutions as approximately equal. For simplicity,
the distance between the last two solutions is set as free.

Data: 0 = w0 ←→ P0, 1 = wN ←→ PN,
Result: wi ←→ Pi, i = 0, ..., N.

1 Define the approximately Euclidean distance (D) to keep between consecutive solutions,
except PN and PN−1;

2 Calculate P1 such as d(P1, P0) ≈ D, by an iterative “bisection” strategy with

wj1 = wj0 + wjN
2

3 i=1; while d(Pi, PN ) 6≈ D do
4 w0 = wi −→ P0 = Pi;
5 Search for Pi+1 such as d(Pi+1, Pi) ≈ D by an iterative “bisection” strategy with

wji+1 = wj0 + wjN
2

i = i+ 1;
6 end

Algorithm 1: Finding weights that keep Euclidean distance between consecutive solutions
approximately as constant.

To evaluate the results obtained with this strategy, we compute an indicator measuring the diversity
of the solutions. Particularly, we use the normalized diversity metric (DMn), calculated as follows
[71]:

DMn = df + dl +
∑S
i=1 |di − d̄|

df + dl + (S − 1)d̄
,

where di is the Euclidean distance between consecutive solutions in the obtained non-dominated
set of solutions and d̄ is the average of all distances di (i = 1, .., S), assuming there are S solutions
in the obtained non-dominated set. The parameters df and dl are the Euclidean distances between
the extreme and the boundary solutions. This metric gives smaller values to better distributions
and the most widely and uniformly spreadout set of non-dominated solutions returns a DMn of
zero.
By using the proposed strategy, in the case of the 6-generators system we obtained the Pareto front
in Figure 1.7. In this case the DMn drops from 1.71 with the random strategy to just 0.005. Note
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that this value is even closest to zero than those obtained in [38, 45], where bi-objective problems
are also studied. If we compare Figure 1.1 and 1.7, it is clear the improvement obtained. Note
that solutions are now well distributed over the entire Pareto front, even in the lower-right corner,
filling the previously existing gaps.
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Figure 1.7: Pareto front for the 6-generators system based on the heuristic strategy (1000 non-
dominated solutions).

On another hand, for the 11-generators system we can observe in Figure 1.8 the new Pareto front
obtained. We can see now a better distribution, even just searching for 50 non-dominated solutions.
In this case the DMn also decreased, from 0.57 to 0.02.
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Figure 1.8: Pareto front for the 11-generators system based on the heuristic strategy (50 non-
dominated solutions).

Finally, for the 40-generators system we obtained now the Pareto front in Figure 1.9. In this case
the DMn drops from 0.96 to 0.05, improving also the shape of the Pareto front obtained in [142],
where the DMn = 0.87.
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Figure 1.9: Pareto front for the 40-generators system based on the heuristic strategy.

1.6 A final note about the obtained non-dominated solutions
Finally we point out that, under strong assumptions, analytical solutions can be obtained for the
EED problem. Althought in general, these exact solutions are difficult to obtain, particularly for
the 6-generators system and the 11-generators system discussed above, analytical solutions were
obtained. This allowed us to assess the performance of the solutions obtained by the duality
theory approach proposed. This is the main result in [31]; whereas the mathematical development
of the duality theory approach, is the main discussion in [32]. In Figures 1.10,1.11 and 1.12 we
can observe that solutions obtained by the proposed approach are closest to the corresponding
analytical solutions, than those obtained by metaheuristic algorithms. Therefore, we indeed have
outperformed the previous results.
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Figure 1.10: Comparison between analytical and duality theory based solutions ( 6-generators
system).
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Figure 1.11: Comparison between analytical and duality theory based solutions (zoom at the 6-
generators system).
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Figure 1.12: Comparison between analytical and duality theory based solutions ( 11-generators
system).
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1.7 Conclusions and future works
In general, the proposed method performs well in all the studied cases, where clearly several existing
results were improved. The analytical nature of our approach makes not initial parameter set-up
needed and that solutions obtained in each run be feasible, therefore is a robust method.
However, during the develop of this investigation, some evident aspects that could be improved
were detected and it motivate future works. A more efficient selection of weight vector could be
done. Note that the heuristic algorithm proposed to improve the Pareto fronts, needs multiple runs.
Therefore, with other strategies we could diminish even more the computational time. It must be
analyzed the implementation of better suited algorithms for solving the Quadratic Programming
problem (1.11). This will be beneficial in bigger power networks, since computational time can be
diminished. Also it must be included power losses, but note that when power loss is considered
as a fraction of the power demand or as a linear function of the power output, our method is
straightforward. Finally, a strategy to point out a single solution from the Pareto front is also
needed, since often the decision-maker need just one solution. An alternative could be to considerate
the non-dominated solution with minimum power loss.
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Chapter 2

Models uncertainties effect on the
ECED

2.1 Introduction
Although electricity is a clean and relatively safe form of energy when it is used, the generation and
transmission of electricity have severe effects on the environment; particularly when thermal power
plants (burning coal, natural gas or oil), are used to the generation. According to [68], power
generation with fossil fuels comes with significant costs to the environment and human health.
Combustion releases emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter
(PM), carbon monoxide (CO), volatile organic compounds (VOCs) and various trace metals like
mercury, into the air through stacks that can disperse this pollution over large areas. Environmental
effects of the above mentioned pollutants include impaired visibility, damage to materials, damage
to vegetation, deposition as acid rain, ozone formation and contribution to the greenhouse effect
[100]. On another hand, in Table 2.1, major air pollutants and their associated health hazards are
presented.

Table 2.1: Pollutants and their hazards [159].

Name of Pollutant Health Impacts
Respirable PM Respiratory illness, including chronic bronchitis and asthma; heart diseases
SO2 Heart diseases; respiratory problems including pulmonary emphysema, cancer, eye burning, headache
NO2 Lung irritation, viral infection, airway resistance, chest tightness
Suspended PM Pneumoconiosis, restrictive lung diseases, asthma, cancer
Ozone Impaired lung function, chest pain, coughing, irritation of eyes and nose
CO Cherry lips, unconsciousness, death by asphyxiation

Therefore, emission problems corresponding to the fossil fuels-based power plants cannot be ne-
glected. According to [95], many strategies like installation of air filters, pollutant-cleaning equip-
ment, switching to low emission fuels, replacement of aged equipment and generating units and
integration of renewable energy sources, have taken into consideration in order to minimize the emis-
sions. But all of them need considerable amount of capital and huge replacement/modification or
upgrade strategies that can be considered as long-term solutions. Thus, emission dispatch strategies
become attractive solutions, since are easy to implement and require less additional costs [50,143].
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The incorporation of environmental concerns to the usual economic dispatch have been treated by
authors in different manners. On the Environmental/Economic Dispatch (EED) problem, authors
treat the polluting emissions and the fuel cost as two conflicting objectives which are optimized si-
multaneously subjected to the practical constraints [30,123]. Whereas in the Emission Constrained
Economic Dispatch (ECED) problem, fuel cost is minimized while treating emissions as a constraint
with a pre-specified limit [2, 138,156].
The ECED problem is closely related to emission norms adopted in several regions and established
in order to improve local or regional air quality index (AQI), see for example [144]; air quality
that is affected by the emissions dispersed in the atmosphere and also with weather conditions
(temperature, precipitation and specially wind speed and direction). Note that, although envi-
ronmental standards restrict emissions levels from most thermal power plants, implementation of
the same norm across a country will not ensure uniform air quality. Therefore, a more effectively
strategy could be to implement emission standards for thermal power plants region-wise, in order
that power plants located at critically polluted areas will have stricter (lower) emissions limits than
those located at areas with good AQI’s. In such cases, the ECED provides a strategy to manage
the pollutant emissions from particular sets of generating units; obtaining optimal solutions within
the maximum emission level specified.
As was pointed out in [48], the final accuracy of the optimization process depends on many factors,
such as the selected models, the data and parameters used as well as the technique or the tool used
for solving the formulated problem. Several methods are generally used for establishing the fuel
cost and emission functions of generating units: performance testing, determination from operating
records or use of manufacturer’s guarantee data adjusted to actual operating conditions [78]. But,
high cost of performance testing and possible incorrect representation of the shape of the input-
output curves provided by manufacturer’s data, makes the determination from operating records
a suitable alternative; even more if we consider that, nowadays, operating data is readily available
in many generation companies.
By analyzing the literature, we can see that research efforts have been continually carried regarding
to model selection and estimation of its parameters, as well as the tools to obtain these parameters
from operating records. Least square (LS) is used in [64] to on-line steam unit dispatch, resulting
in minimum emissions. Several tests were carried out to represent the input-output (I/O) curves
and Newton-Raphson was used to overcome the mathematical difficulties derived from the non-
polynomial model selected. In [47], four algorithms for estimation of the parameters of models used
in optimal economic operation of electric power systems, are proposed: Weighted Least Squares,
Gauss-Newton Method or Bard-Algorithm, Marquardt Algorithm and Powell Regression Algorithm.
A second order function is taken as the fuel cost curve model. In [34] authors present an on-
line input-output curve identification based on the Linear Sequential Regression Technique and
Weighted Least Square Linear Regression. A method is proposed to estimate the actual fuel cost
function of power stations in [49]. The coefficients are obtained by using operating records and
LS regression technique. To obtain the representation of generators’ fuel costs, two polynomial
curve fitting methods, Gram-Schmidt orthonormalization and LS, are evaluated in [90]. In [136] an
algorithm is proposed, based on Least Absolute Value approximations, for estimating the coefficients
of a fuel cost curve, used for economic dispatch. The Kalman-Filtering algorithm for the on-line
identification of the I/O curve of thermal power plant is used in [135]. In [15] an environmental
dispatch algorithm is presented. In here the minimization of SO2 and NOx emissions is addressed
by considering quadratic models and parameters computed via the LS criteria. Several models
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of input-output curves of thermal units are considered in [7]. A Genetic Algorithm (GA) is used
and the accuracy of the results is evaluated by analyzing the difference between the actual cost
and the estimated cost, once the parameters were fitted. In [9, 48] a method for estimating the
parameters of fuel cost functions is proposed and tested. The total estimation error such that the
selected model follows field data measurements as closely as possible is minimized by using a Particle
Swarm Optimization (PSO) algorithm. The authors obtained more accuracy compared to when
LS technique was used. In [139] an Artificial Bee Colony (ABC) algorithm is used to estimate the
fuel cost curve parameters of thermal power plants. The total error with the estimated parameters
is the performance index used to compare the results obtained with the ABC algorithm and those
obtained with GA, PSO and LS. In [43, 44] a Teaching Learning Based Optimization is used in
the economic dispatch and results are compared with ABC, PSO and LS. In [125] a Differential
Evolution (DE) algorithm is proposed for estimating the optimal parameters of fuel cost curves;
whereas the Modified Radial Movement Optimization technique is used in [147]. In [10] a Crow
Search Algorithm is proposed for accurate estimation of the input-output characteristics of thermal
power plants with and with-out valve-point effect. In [126] the authors proposed an Improved
Differential Evolution (IDE)-based technique to estimate the optimal parameters of thermal power
plants. A Modified Whale Optimization (MWO) algorithm and a Chaotic MWO algorithm are
used to solving the problem of parameters estimation for input-output curves of thermal and hydro
generating units in [128]. In [140] the Improved Symbiotic Organism Search algorithm is proposed
to estimate parameters of smooth and non-smooth fuel cost functions for improving the solution
accuracy of economic dispatch problems.
However, in none of the above papers, authors deal with the inaccuracies related to parameter
estimations. In general, the coefficients obtained are considered as fixed values and the subsequent
optimization problem is solved. This deterministic approach can lead to significantly errors in the
proposed optimal schedule, specially when few operating points are used to fit the models. Even
more, in the case of the ECED problem, uncertainties can lead to obtain infeasible environmental
solutions, i.e., solutions with a high probability associated of generate emissions above the pre-
established limit.
In this chapter we propose an approach that, based on the statistical intervals of the experimentally
derived models, is able to deal with those uncertainties. This allow us, for the ECED problem, to
obtain optimal solutions that remain environmentally feasible, or at least risk of emission limits’
violations is diminished. The proposed strategy is tested in a real 4-generating units system from
the Chilean electrical power network and the results obtained show that optimal solutions based
on statistical intervals, can minimize the risk of environmental violations, by accepting a slightly
increase in the fuel cost. As we show in the next section, this approach entirely differs from previous
ones, where expected mean values are considered instead.
The remainder of this chapter is organized as follows. In Section 2.2 a review is conducted about
previous investigations dealing with emission and fuel cost function’s uncertainties. In Section
2.3 fuel cost and emission models are presented; multiple linear regression is used to estimate the
respectively coefficients and the statistical intervals associated. The proposed approach for solving
the Environmentally Constrained Economic Dispatch based on statistical intervals is developed in
Section 2.4. A study-case based on four generating units from the Chilean electrical power network
is analyzed in Section 2.5. Finally, conclusions and some extensions of this work are in Section 2.6.
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2.2 Literature review
Alternatives to deal with non-deterministic coefficients, both for fuel cost and emission functions,
have already been proposed by several authors. But, as we will see next, have been mainly focused
on the expected values of such coefficients.
In [67], authors analyzed the performance of a two-generating units system, when incremental cost,
used to solve the ED problem, is assumed incorrectly represented, as being higher for one generating
unit and lower for the other; an analytical determination of the economical loss is obtained. A
sensitivity analysis is used in [148] for correcting the economic dispatch when small order changes
in the system input parameters and cost function coefficients variations are considered. A four
plants system, with two thermal plants and two hydro plants is studied. At least in our knowledge,
among the earliest papers dealing with coefficients uncertainties and combined economic-emission
objectives are [40, 41], where the Economic Emission Load Dispatch (EELD) problem is studied.
Considering uncertainties in the system production cost and nature of the load demand, a stochastic
EELD problem is formulated. The fuel cost coefficients, emission coefficients and load demand are
considered random variables and the stochastic model is converted to its deterministic equivalent
by taking the expected values, with the assumption that all the random variables are normally
distributed and statistically dependent on each other. The Weighted Sum Method (WSM) is used
to solve the multiobjective problem, where expected fuel cost, NOx emissions and deviations due to
unsatisfied load are the objectives to minimize. The fuel cost curve is assumed to be approximated
by a quadratic function of the generator output and the expected value is obtained by expanding
the function, using Taylor’s series, about the mean, is represented by:

F 1 =
N∑
i=1

[aiP
2
i + biP i + ci + aivar(Pi) + 2P icov(ai, Pi) + cov(bi, Pi)],

where P i is the expected value of the generator output and ai, bi and ci are the expected cost
coefficients. A similar expression is obtained for the expected NOx emission:

F 2 =
N∑
i=1

[diP
2
i + eiP i + f i + divar(Pi) + 2P icov(di, Pi) + cov(ei, Pi)],

where di, ei and f i are the expected emission coefficients. A similar treatment of uncertainties
is realized in [13], but considering additionally objectives and using evolutionary and Hookes-
Jeeves methods. In [4, 5] three cases are studied depending on the stochastic variables considered:
power generated, power generated and system load, and power generated, system load and cost
and emission coefficients. They compared the results against the deterministic non-dominated
solutions, obtaining that stochastic solutions are generally dominated by the deterministic ones,
meaning that in practice, real world operation cost and emission would be higher. The authors
assumed decision variables PGi as normally distributed with mean PGi and standard deviation
σi = 0.1PGi . Simulations are performed for each solution having mean PGi and standard deviation
are created within 2σi. In the stochastic approach, the objective functions are reformulated as:
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minCost + 2σCost

min NOx + 2σNOx

st
∑n
i=1 PGi − PD − PL = 0
PGimin ≤ PGi ≤ PGimax

R ≥ Rcr,

where Cost,NOx, σCost, σNOx are the expected cost, expected NOx emission and standard deviation
of the expected fuel cost and the expected NOx emission, respectively. Reliability R is calculated
according to the number of cases for which P1 is found to be within 2σ1. This follows because
required reliability Rcr is 95.6% for which Pr{µ1 − 2σ1 < P1 < µ1 + 2σ1}. In [14] a stochastic
multiobjective line security constrained problem is formulated to minimize the expected operating
cost, polluting gas emission values and variance of active and reactive power generation, with
explicit recognition of statistical uncertainties in thermal power generation cost coefficients, power
demand and hence, power generation. The WSM is used to simulate the trade-off relationship
between conflicting objectives. Assumptions, expected values and deviations are considered as
in [40, 41]. In [149], a PSO algorithm is used to solve a stochastic economic emission dispatch
problem. As in [40, 41], the stochastic model is obtained through Taylor’s series expansion about
the mean and the expected values of cost, emissions and power loss are the objectives to minimize.
However, as can be noted, these relatively few investigations are mainly concerned on the uncer-
tainties and optimization of expected mean response variables; which can lead to inaccurate results
in some situations. As pointed out in [110], when coefficients of the fuel cost and emission functions
are estimated via regression, the variance of the predicted values (for a specific power output) is
bigger than for the expected value. This can lead to severe inaccuracies or even to obtain infeasible
“optimal” solutions. Take for instance polluted areas, where depending on air quality, emission
limits are established. Then, for a particular period, when the ECED problem is solved, we want
to obtain an optimal solution that satisfy the emission level, not considering the mean emissions
but the predicted point emission instead. The proposed approach developed in this chapter could
be particularly beneficial in the Chilean context, where geographical location (Andes mountain
range to the east and smaller coastal mountains in the west) and meteorological patterns of several
cities, impede the ventilation and dispersion of air pollutants. This problem and its health conse-
quences becomes specially acute in the April-August period [132]. Therefore, during these months,
controlling the predicted emission level is more important than just controlling the mean emission
level expected.

2.3 Experimentally derived fuel cost and emission functions

2.3.1 Fuel cost and emission models

As was pointed out in [43,48], parameter estimation is a crucial issue in power systems operation.
Several mathematical models are usually used for fuel cost and emissions representation, in this
investigation we consider smooth functions, particularly polynomials [126,128,140]:
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fi(pi) = a0i +
M∑
j=1

ajip
j
i , i = 1, . . . , N,

ei(pi) = α0i +
M∑
j=1

αjip
j
i , i = 1, . . . , N,

with M = {1, 2, 3}, N is the number of generating units and fi : R → R, ei : R → R are the fuel
cost and emission function of the ith generating unit, respectively.
To estimate the respectively coefficients, as was discussed in Section 2.1, different approaches have
been used. We consider Simple Linear and/or Multiple Linear Regression to obtain coefficients and
assess uncertainties associated to these coefficients, via its statistical intervals. In general, simple
regression is based on the assumption that the true relationship between a quantitative response y
and a single predictor variable x takes the form:

y = f(x) + ε, (2.1)

for some unknown function f and ε is a mean-zero random error term which is normally distributed.
If f is to be approximated by a linear function, then we are in the Linear Regression case, and we
can write relationship (2.1) as:

y = β0 + β1x+ ε. (2.2)

Linear regression (2.2) can be considered a particular case of the polynomial regression model [93]:

Y = Xβ + ε,

where Y .= (y1, . . . , yn)> is a vector of observations; X is a n × (M + 1) full column-rank design
matrix with the ith (i = 1, . . . , n) row given by (1, xi, . . . , xMi ); β .= (β0, . . . , βM )> is a vector of
unknown coefficients and ε

.= (ε1, . . . , εn)> is a vector of independent random errors with each
εi ∼ N(0, σ2), where σ2 is an unknown parameter.
In practice, coefficients β are unknown and must be estimated from observation pairs (xi, yi), i =
1, . . . , n; in such a form that the model fits available data well. There are a number of ways
measuring closeness (for the ECED problem see for example other criteria used in [43, 48]), but
the most common approach is the Least Square criterion, which we used in here. It is well known
that using LS criteria and solving the convex unconstrained problem associated, we can obtain the
estimate of β as:

β̂ = (X>X)−1X>Y. (2.3)

2.3.2 Statistical intervals

However, (2.3) give us point estimates for the regression coefficients, but usually, a more useful
result is to obtain a measure of the precision of the above estimates.
Confidence intervals (CI’s), gives us a range of values (with a prescribed confidence level), that will
cover the actual unknown population parameter that is being estimated from sample. For simple
linear regression, a 100(1−α) percent CI for E(y|x), the expected value of y for a given x, is [104]:
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β̂0 + β̂1x± tα/2,n−2

√√√√MSR
(

1
n + (x − x̄)2∑n

i=1(xi − x̄)2

)
,

where tα/2,n−2 is the percentile from Student’s t distribution with parameter equal to the degrees
of freedom of the error and α equal to the acceptable degree of risk; n is the number of observation
pairs used for the regression; xi is the predictor value of the observation pairs; x̄ is the average
value of such predictors and the quantity MSR is called the residual mean square, and is obtained
from:

MSR =
∑n

i=1(yi − ȳi)2 − β̂1
∑n

i=1 yi(xi − x̄)
n− 2 ,

where now yi stands for the response values of the observation pairs and ȳ is the average of such
response values.
On another hand, Prediction Intervals (PI’s) allow us to establish a band for prediction of future
observations, for an specified level of the regressor variable x and a selected confidence level [104]:

β̂0 + β̂1x± tα/2,n−2

√√√√MSR
(

1 + 1
n + (x − x̄)2∑n

i=1(xi − x̄)2

)
.

Clearly, we can observe that the prediction interval at x is always wider than the CI at x, because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.
Following [104], it is possible to generalize the previous results for polynomial regression models. In
this case, by using simple variable changes, we can analyze the problem by multiple linear regression
techniques. We have that a 100(1− α) percent CI on the mean response at the point x is:

x>0 β̂ ± tα/2,n−p
√

MSR x>0 (X>X)−1x0,

where x0
.= (1, x, x2, . . . , xM )>; p .= M + 1 and MSR = y>y− β̂>X>y

n− p . On another hand, a
100(1− α) percent PI for future observation estimation at the point x is:

x>0 β̂ ± tα/2,n−p
√

MSR
(
1 + x>0 (X>X)−1x0

)
.

2.4 Prediction Interval-Based Environmental Constrained Economic
Dispatch (PIB-ECED)

2.4.1 Prediction-Interval Constrained Programming

As motivation to the approach proposed in this chapter, we begin this section with a simple exam-
ple. In here just one constraint is considered as uncertain, since the function involved must be
experimentally derived. This example allow us to introduce the Prediction-Interval Constrained
Programming (PICP), which is the base of the later proposed approach.

Example 2.1. Suppose we are interested in to solve:
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min f(x1, x2) (2.4)
st g(x1, x2) ≤ Gmax,

x1 + x2 = D,

xmini ≤ xi ≤ xmaxi , i = 1, 2,

where the function g must be, somehow, experimentally derived. Particularly, consider the case
where f(x) = 891 + 7.85x1 + 0.00194x2

1 + 7.92x2 + 0.001562x2
2; xmin = (150, 100)>; xmax =

(600, 400)>; Gmax = 250; D = 430 and suppose that we know the true process model:

g(x) = 13.860 + 0.3300x1 + 0.0042x2
1 + ε, (2.5)

where ε ∼ N(0, 102). Now, using (2.5) and error term specified, we generated random samples
of observations. We used these observations to fit the corresponding model, through regression,
obtaining results in Table 2.2 (see also Figure 2.1).

Figure 2.1: Fitted model of Example 1.

Table 2.2: Table of fits Example 1.

Fitted Model DF R2 MSR
ĝ(x) .= −7.0922 + 0.4725x1 + 0.0040x2

1 27 0.9996 (10.9209)2

Following the usual deterministic approach, we solve now (2.4) considering the fitted model (ĝ(x))
without any further consideration of uncertainties associated to parameter estimates.
We obtained the nominal solution:

63



xnom .= (201.06, 228.94)>,

which have a cost of f(xnom) = 4442.8. However, although this solution is feasible regarding the
mean response, i.e.,

E(g(xnom)) = ĝ(xnom) = 249.9907 ≤ Gmax = 250,

it carries a high possibility of become infeasible in some scenarios. We simulated 1000 scenarios
considering (2.5), obtaining that violations occurs in 478 times; whereas the mean value of g(xnom)
was in fact 249.37 ≤ Gmax over the 1000 scenarios, see Figure 2.2a.

(a) Nominal solution (b) PI based solutions

Figure 2.2: Solutions performance on the simulated scenarios for Example 1.

Thus, when our main concern is to diminish possibilities of constraint violations on particular
situations, and not in average, just solving the nominal problem is not good enough. An alterna-
tive to overcome the aforementioned difficulty is provided by the Prediction-Interval Constrained
Programming formulation [110, 150]. In such formulation the variability inherent in the regression
approach is considered and yields an optimal solution for a specified level of risk. For the example
above, the PICP formulation would be:

min f(x1, x2) (2.6)

st ĝ(x1, x2) + |tα/2,n−3|
√

MSR
(
1 + x>0 (X>X)−1 x0

)
≤ Gmax,

x1 + x2 = D,

xmini ≤ xi ≤ xmaxi , i = 1, 2,

where the upper limit of the 100(1− α) percent PI is additionally considered. We solved (2.6) for
several values of α, obtaining the results in Table 2.3.

64



Table 2.3: PICP solutions for Example 1.

α xα Viol. Freq. Max. Viol. (%) f(xα)
0 xnom 478 15.14 4442.8
0.1 (191.50, 238.50)> 20 7.58 4443.2
0.05 (189.49, 240.51)> 5 6.02 4443.3
0.01 (185.25, 244.75)> 1 2.80 4443.8

From Table 2.3 we can see that solving problem (2.6) instead of the nominal (2.4), allow us to obtain
solutions with lower risk of become infeasible in some scenario. Clearly, the PICP formulation
give us more conservative solutions, but conservativeness can be controled through parameter α,
depending on the desicion-maker (DM) risk attitude and experience. Note that, for this particular
example, we obtained a considerable diminution in the constraint violations frequency (see Figure
2.2b), with a negligible increase on the objective function value, less than 0.05% in all the cases
(for all considered α). Therefore, uncertainties associated to parameter estimation can have great
influence on the performance of the optimal solutions; even if the expected (mean) response is
adequately represented by the obtained models, as we can appreciate in Figure 2.1 and Table 2.2.

2.4.2 PIB-ECED

In the Environmentally Constrained Economic Dispatch problem, the decision-maker wants to
obtain an optimum generation schedule at minimum cost, while polluting emissions are below a
pre-specified limit and several other technical constraints are also considered. Then, we must solve:

min F (p) (2.7)
st E(p) ≤ Emax,

1>p = PD,

pmin ≤ p ≤ pmax,

where p = (p1, p2, . . . , pN )> is the vector of the power output of each generating unit; F (p) .=∑N
i=1 fi(pi) is the total fuel cost; E(p) .=

∑N
i=1 ei(pi) is the total emission function; Emax is the

maximum allowed emission level; PD is the power demand and pmin, pmax are the minimum and
maximum power output for each generating unit, respectively. To solve this problem the usual
approach is to consider the “nominal ” ECED formulation (2.7), where all the coefficients of the
total fuel cost function and total emission function are considered as fixed (exactly known) val-
ues. However, as we already discussed, coefficients obtained through regression are point estimates,
therefore, approaches based on statistical intervals could give us better results, since uncertainties
in the estimates are then included. Note that in this case, differently to the PICP formulation,
uncertainties are involved both in the objective function and in the constraints; but even more
important, we have several experimentally derived functions and we are interested in to assess the
sum of these functions. To handle uncertainties when sum of experimentally derived functions
are involved, several approaches could be used in combination with the PICP formulation. For
simplicity in the notation, let us introduce the proposed approaches for a general problem and then
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for the ECED problem.

Individual PI’s based solution.
In general, consider we are interested in to solve the following problem:

min f(x) (2.8)
st g(x) ≤ Emax,∑N

i=1 xi = PD,

xmini ≤ xi ≤ xmaxi , i = 1, . . . , N,

where functions f(x) .=
∑N
i=1 fi(xi) and g(x) .=

∑N
i=1 gi(xi) must be experimentally obtained

and considered as polynomials. Differently to the usual deterministic approach, that consider
coefficients of the estimated models as known (fixed) values, we consider uncertainties on the
coefficients estimates through the respectively prediction intervals. Therefore, instead of solving
(2.8), perhaps the first and most natural approach would be to solve:

min
∑N
i=1 f̂i(xi) (2.9)

st
∑N
i=1 ĝi(xi) + |tα/2,ni−Mi−1|

√
MSRi

(
1 + x0i

(
X>i Xi

)−1 x0i

)
≤ Emax,∑N

i=1 xi = PD,

xmini ≤ xi ≤ xmaxi , i = 1, . . . , N,

where f̂i, ĝi are the respectively estimated functions through regression; ni is the respectively
number of observation pairs used for the regression; Mi is the order of the polynomial model
fitted; x0i = (1, xi, . . . , xMi )> and Xi is the corresponding model matrix of the regression. This
formulation allow us to obtain solutions immunized, in some sense, against uncertainties associated
to models estimates. Note that we are obtaining solutions that remains as feasible, even if the
uncertainties are such that the values of gi(xi) are in the upper bound of the corresponding 100(1−α)
percent prediction interval. Clearly, by varying the confidence level, the DM would obtain different
solutions: lower values of α give us more conservative solutions, but less likely to be infeasible in
some scenario. Note also that in (2.9), we are considering the minimization of the mean value
of f(x). However, if uncertainties in the objective function also need to be managed, several
formulations could be used motivated by robust optimization theory and DM needs. A possibility
could be to minimize the maximum predicted value of function f(x), i.e., to minimize instead the
function:

N∑
i=1

f̂i(xi) + |t
αf/2,nf

i −M
f
i −1|

√
MSRf

i

(
1 + x0i

(
Xf

i
>Xf

i

)−1
x0i

)
,

where we have introduced the f index to identify the regression of each fi function.

Joint prediction region based solution.
However, since we are interested in the sum of individual responses and not just in each response
individually (as in [110, 150, 158]), we need to develop a confidence region for this sum, since

66



formulation proposed in (2.9) becomes insufficient. Note that we can not effectively assess the risk
of constraint violation because, even if we ensure that P (x>0i

βi ∈ Ii) = 1 − α for all i = 1, . . . , N ;
we can expect that P (x>0i

βi ∈ Ii,∀i = 1, . . . , N) < 1 − α. In other words, the 100(1 − α) percent
prediction interval for the sum is not equal to the sum of the individuals 100(1 − α) prediction
intervals. Therefore, as alternatives to ensure an overall required confidence level (1−α), we could
use as is usual the Bonferroni’s inequality or as proposed in [73], let [yLi(x), yUi(x)] be the (1−αN )
prediction interval for yi(x), then the combination of these individuals PI’s:

Ω(x) .= [yL1(x), yU1(x)]× · · · × [yLN
(x), yUN

(x)],
can be regarded as the joint prediction region whose family error rate exactly equals to α. Thus,
for αN

.= 1− (1− α)1/N , we can re-formulate (2.8) considering now the constraint:

N∑
i=1

ĝi(xi) + |tαN/2,ni−Mi−1|
√

MSRi
(
1 + x0i

(
X>i Xi

)−1 x0i

)
≤ Gmax. (2.10)

Let us see a simple, but quite illustrative example where these two approaches are compared.

Example 2.2. Suppose we are interested in to solve the problem:

min f(x1, x2, x3) (2.11)
st g(x1, x2, x3) ≤ Emax,

x1 + x2 + x3 = PD,

xmini ≤ xi ≤ xmaxi , i = 1, 2, 3,

where f(x) .= x2
1 + 3x2 + 10x3

3; g(x1, x2, x3) .= g1(x1) + g2(x2) + g3(x3); xmin = (150, 100, 50)>;
xmax = (600, 400, 200)>; Emax = 3735; PD = 750 and suppose that we know the true process
models:

g1(x1) .= 13.860 + 0.33x1 + 0.0042x2
1 + ε1,

g2(x2) .= 561.0 + 7.92x2 + 0.001562x2
2 + ε2, (2.12)

g3(x3) .= 78.0 + 7.97x3 + 0.00482x2
3 + ε3,

with ε1 ∼ N(0, 102); ε2 ∼ N(0, 142) and ε3 ∼ N(0, 62). We generated random observation pairs
using (2.12), obtaining results in Table (2.4).

Table 2.4: Table of fits Example 2.

Fitted Model DF R2 MSR
ĝ1(x) .= −7.0922 + 0.4725x1 + 0.0040x2

1 27 0.9995 (10.9209)2

ĝ2(x) .= 531.6668 + 8.2192x2 + 0.0010x2
2 27 0.9997 (15.2892)2

ĝ3(x) .= 65.4287 + 8.2265x3 + 0.0038x2
3 27 0.9998 (6.5525)2

In the usual deterministic approach, we solve (2.11) considering the estimates models from Table
(2.4), obtaining the nominal solution:
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xnom = (551.04, 148.96, 50.00)>,

which have a cost f(xnom) = 1554087.17. As discussed previously, this solution, although remains
as feasible considering the expected response, carries a high possibility of become infeasible in some
scenarios, since uncertainties on the estimates coefficients have not been considered. In Figure 2.3
we can observe the performance of the nominal solution when 1000 scenarios were simulated using
the true models (2.12). In this case violation occurs 517 times.

Figure 2.3: Nominal solution performance on the simulated scenarios for Example 2.

Now, in order to handle uncertainties and provide more robust solutions, we re-formulate (2.11)
considering each individual 95% (α = 0.05) prediction interval, then we need to solve:

min f(x1, x2, x3) (2.13)

st
∑3
i=1 ĝi(x) + |t0.025,ni−3|

√
MSRi

(
1 + x0i

(
X>i Xi

)−1 x0i

)
≤ Emax,∑3

i=1 xi = PD,

xmini ≤ xi ≤ xmaxi , i = 1, 2, 3.

We obtained as solution:

xα = (571.23, 128.77, 50.0000)>,

which have a cost f(xα) = 1576690.39. In Figure 2.4 we can observe the performance of the solution
obtained in the 1000 scenarios simulated. Note that no violations of the constraint occur in this
case, whereas the increment in the cost was negligible, around 1.5%.

As another alternative of solution, consider now the joint prediction region approach. In this
case, for an overall α = 0.05 we must enhance each individual prediction interval considering
αN

.= 1− (1− α)1/N = 0.01695. Solving (2.13) for αN we obtain as solution:

xαN = (576.42, 123.58, 50.00)>,
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Figure 2.4: Prediction interval-based solutions performance on the simulated scenarios Example 2.

which have a cost f(xαN ) = 1582626.83. This represent an increase of 1.84%, regarding the
nominal cost; but as we can see in Figure 2.4 no violation occurs when xαN was implemented as
solution. Then, for this problem, we diminished the risk of constraint violations by considering
the uncertainties associated to the experimental derivation of the involved functions. Note that we
obtained solutions that remains as feasible in most scenarios and for this particular example, the
increase of the optimal value obtained was negligible in all the cases.
However, the main limitation with the approach proposed in (2.10) is that, when N increases,
αN → 1, implying the need of extremely large individual PI’s, making this approach useless (same
difficulty faced if we use Bonferroni inequality). In such cases, optimal solutions, if there exist,
need to be very conservatives, since the terms |tαN/2,ni−Mi−1| becomes bigger. As alternative, for
moderates values of N , the DM could diminish the overall confidence level required (1 − α) and
analyze if solutions obtained still perform well under uncertainties; but this strategy remains useless
for great values of N . On another hand, the DM can try to use formulation provided in (2.9) and
analyze the solutions obtained. Note that although this formulation have not a clear relationship
between individual confidence level and the overall confidence level required, still uncertainties on
the estimation of the models are considered. Thus, this approach can provide solutions with better
performance than the nominal ones, diminishing risk of constraint violations.

Approximated PI based solution.
To overcome the aforementioned disadvantages, we propose another alternative formulation to deal
with uncertainties of several experimentally derived functions. This approach is mainly based on
the results on [151, 152], about significance of the difference between means when several different
population variances are involved; and particularly, in the application to derive confidence statistics
over the sum of component regressions, as made in [145]. For the sake of completeness we present
here some of the relevant results of [151,152].
Let η be a population parameter which is estimated by an observed quantity y, normally distributed
with variance σ2

y . Let σ2
y =

∑N
i=1 λiσ

2
i where the λi, are known positive numbers and the σ2

i are
unknown variances. Suppose that the observed data provide estimates σ̂2

i of these variances, based
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on fi degrees of freedom, respectively. In such case, an approximation to the distribution of∑N
i=1 λiσ̂

2
i , using a Type III curve with start, mean and variance suitably adjusted, becomes useful.

We consider
∑N
i=1 λiσ̂

2
i of the form

∑N
i=1 aiχ

2
i , where ai = λiσ

2
i

fi
and each χ2

i is independently
distributed as a χ2 variate. For simplicity the case N = 2 is considered, but extension for N ∈ N is
straightforward. Let w .= a1χ

2
1 +a2χ

2
2, and the approximate distribution curve written in the form:

p(w)dw = 1
Γ
(

1
2f
)e− w2g ( w2g

) f
2−1

d

(
w

2g

)
. (2.14)

Then, making the first two moments of (2.14):

mean = fg,

variance = 2g2f,

agree with the two moments of w:

mean = a1f1 + a2f2,

variance = 2(a2
1f1 + a2

2f2),

we obtain that f = (a1f1+a2f2)2

a2
1f1+a2

2f2
and g = a2

1f1+a2
2f2

a1f1+a2f2 . Therefore, w/g is approximately distributed as
χ2 with degree of freedom f . This particularly allow us to say that the criterion:

v
.= y − η√

λ1σ̂2
1 + λ2σ̂2

2

follows approximately the Student’s t distribution with degree of freedom:

f = (λ1σ
2
1 + λ2σ

2
2)2

λ2
1σ

4
1

f1
+ λ2

2σ
4
2

f2

.

More generally, for N ∈ N, the same line of arguments leads to say that the criterion:

v = y − η√∑N
i=1 λiσ̂

2
i

is approximately distributed as Student’s t with degree of freedom:

f = (
∑N
i=1 λiσ

2
i )2∑N

i=1 λ
2
iσ

4
i /fi

. (2.15)

Not knowing the population variances σi’s in (2.15), Welch [152] proposed to use:

f =

(∑N
i=1 λiσ̂

2
i

)2
− 2

(∑N
i λ

2
i σ̂

4
i /(fi + 2)

)
∑N
i=1 λ

2
i σ̂

4
i /(fi + 2)

, (2.16)

since it may be shown that the numerator of (2.16) has, in repeated samples, an average value
(
∑N
i=1 λiσ

2
i )2, and the denominator has average value

∑N
i=1 λ

2
iσ

4
i /fi. In a certain sense, therefore,

(2.16) is a fair estimate of (2.15).
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In order to apply these results to the general problem (2.8), note that we want to estimate, for
N individual given predictors x̄ .= (x̄1, . . . , x̄N )>, g(x̄) .=

∑N
i=1 gi(x̄i), where each gi = Xiβi +

ei, i = 1, . . . , N ; by using the sum of the fitted values given by ĝ(x̄) .=
∑N
i=1 ĝi(x̄i), with ĝi =

Xiβ̂i. Therefore we know, from model’s assumptions and multiple linear regression theory, that the
variable:

u
.= g(x̄)− ĝ(x̄)√∑N

i=1 σ
2
i

(
1 + x̄>0i

(
X>i Xi

)−1
x̄0i

) = g(x̄)− ĝ(x̄)√∑N
i=1 σ

2
i λi
∼ N (0, 1) ,

where x̄0i = (1, x̄i, x̄2
i , . . . , x̄

M
i )> and λi

.= 1+x̄>0i

(
X>i Xi

)−1
x̄0i . Defining as before w .=

∑N
i=1 λiσ̂

2
i =∑N

i=1 aiχ
2
i ; we have that

√
fgu√
w
∼ tf , where now:

f =

(∑N
i=1 aifi

)2

∑N
i=1 a

2
i fi

, g =
∑N
i=1 a

2
i fi∑N

i=1 aifi
, ai = λiσ

2
i

fi
and fi = ni −Mi − 1.

Therefore,

√
fgu√
w

=
(g(x̄)− ĝ(x̄))

√∑N
i=1 aifi√∑N

i=1 σ
2
i λi

√∑N
i=1 σ̂

2
i λi

= g(x̄)− ĝ(x̄)√∑N
i=1 MSRiλi

∼ tf , (2.17)

where the effective degree of freedom is obtained from:

f =

(∑N
i=1 λiσ

2
i

)2

∑N
i=1 λ

2
iσ

4
i /fi

=

(∑N
i=1 σ

2
i

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

))2

∑N
i=1 σ

4
i

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

)2 /
(ni −Mi − 1)

. (2.18)

As before, an approximation to (2.18) can be obtained using:

f =

(∑N
i=1 σ̂

2
i

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

))2
− 2

(∑N
i=1 σ̂

4
i

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

)2 /
(ni −Mi + 1)

)
∑N
i=1 σ̂

4
i

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

)2 /
(ni −Mi + 1)

=

(∑N
i=1 MSRi

(
1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

))2
− 2

(∑N
i=1 MSRi

2
(

1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

)2 /
(ni −Mi + 1)

)
∑N
i=1 MSRi

2
(

1 + x̄>0i

(
Xi
>Xi

)−1
x̄0i

)2 /
(ni −Mi + 1)

.

(2.19)
Therefore, a prediction interval for g(x) =

∑N
i=1 gi(xi), given N predictors x .= (x1, . . . , xN )>, can

be obtained from (2.17), (2.19):

N∑
i=1

ĝi(xi)± tα/2,f

√√√√ N∑
k=1

MSRk

(
1 + x>0k

(
Xk
>Xk

)−1
x0k

)
.
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We point out that a simple approximation to the effective degree of freedom f can be obtained as
in [39,145]. In this case to approximate (2.15), instead of (2.16), we use that:

f = (
∑N
i=1 λiσ̂

2
i )2∑N

i=1 λ
2
i σ̂

4
i /fi

= (
∑N
i=1 λiMSRi)2∑N

i=1 λ
2
iMSRi

2/(ni −Mi − 1)
.= f̄ . (2.20)

Thus, we obtain the approximated prediction interval:

N∑
i=1

ĝi(xi)± tα/2,f̄

√√√√ N∑
k=1

MSRk

(
1 + x>0k

(
Xk
>Xk

)−1
x0k

)
. (2.21)

Thus, for the general problem (2.8), when N increases, we could use the proposed approximated
prediction intervals and solve then:

min f̂(x) (2.22)

st
∑N
i=1 ĝi(xi) +

∣∣tα/2,f̄(x)
∣∣√∑N

k=1 MSRk

(
1 + x>0k

(
Xk
>Xk

)−1
x0k

)
≤ Emax∑N

i=1 xi = PD,

xmini ≤ xi ≤ xmaxi , i = 1, . . . , N.

Note that, whatever we choose to use (2.19) or (2.20) as the effective degree of freedom in (2.22),
we just have one percentile of the Student’s t distribution involved (tα/2,f(x)) and not N as in
(2.9) or (2.10). However, this single value relates the degree of freedom and the mean squared
error on the regression of each function gi; as well as the specific value of the predictor where the
prediction interval need to be estimated. Then, in order to solve (2.22) we need to handle the
implicit dependency between the variable to optimize (x) and the Student’s t inverse cumulative
distribution function. This makes problem (2.22) more complicated than problems (2.9) or (2.10),
from the computational point of view. Optimization algorithms and strategies to efficiently solve
(2.22) will be analyzed in a forthcoming paper, but alternatives could be, for example, to use existing
quantile approximations for the Student’s t distribution, see [53, 84, 111, 127]. Nonetheless, for the
Example 2 and the 4-generating units system analyzed in Section 2.5, just by using MATLAB’s
incorporated routines, we were able to obtain solutions to the proposed formulation (2.22), by
considering the approximation (2.20).
Particularly for the Example 2, by using formulation proposed in (2.22), we obtain as solution:

xf̄ = (562.65, 137.35, 50.00)>,

which have a cost f(xf̄ ) = 1566990.69. As we can see in Figure 2.5, this solution have a low risk
of constraint violations, whereas have a cost less conservative than solutions xα and xαN . In this
case the cost increase around 0.83%, compared with the nominal cost and violations just occurs 18
times in the 1000 scenarios.
Therefore, by solving (2.22), we could effectively obtain robust solutions with low risk of con-
straint violations, while conservativeness of the solutions can be now effectively managed through
parameter α.
Then, considering all the exposed above, as alternative to handle uncertainties on the Environmental
Constrained Economic Dispatch problem, the decision-maker can solve the following problem:
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Figure 2.5: Solutions performance on the simulated scenarios for Example 2.

min Fαf (p) (2.23)
st Eαf (p) ≤ Emax

1>p = PD,

pmin ≤ p ≤ pmax,

where:

Fαf
(p) .=

N∑
i=1

M∑
j=1

â0i + âjip
j
i + |tα/2,fF (p)|

√√√√ N∑
k=1

MSRk
F

(
1 + p>0k

(
Xk

F
>Xk

F

)−1
p0k

)
,

Eαf (p) .=
N∑
i=1

M∑
j=1

α̂0i + α̂jip
j
i + |tα/2,fE(p)|

√√√√ N∑
k=1

MSRk
E

(
1 + p>0k

(
Xk

E
>Xk

E

)−1
p0k

)
,

where we have used fF (p) and fE(p) to identify the effective degree of freedom for the total fuel
cost and total emission generated, respectively.
Note that in (2.23) a minmax formulation have been used for the objective function, i.e., we are
minimizing the maximum predicted fuel cost for a given confidence level. However, if uncertainties
are not to be considered in the objective function, the DM can simple minimize the expected (mean)
total fuel cost instead:

F (p) =
N∑
i=1

M∑
j=1

â0i + âjip
j
i . (2.24)

The results presented in this section are particularly useful to deal with worst-case (pessimistic)
scenario approach. Consider polluted areas, where emission limits for power plants are enforced
to ensure air quality, air quality that is influenced by changing meteorological conditions [62, 63].
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Thus, for particular planning periods, we are interested in to find an optimal solution to the ECED
problem that remains environmentally feasible, or at least with low risk of becoming unfeasible. In
this case, a stochastic approach (as those discussed in Section 2.2) is not fully satisfactory. Note
that in such investigations optimal solutions are obtained regarding mean responses, therefore, as
pointed out in [110], solutions will be optimal or even feasible on average, but will carry a large
degree of risk of not meeting environmental limits when the obtained schedule is implemented.
This phenomenon becomes evident in the next section, where we analyzed a system consisting
on 4-generating units from the Chilean electrical power network. We compared and analyzed the
deterministic and robust solutions obtained.

2.5 Study-cases: 4-generating units system from the Chilean elec-
trical power network

In this section we analyze the effect of coefficients uncertainties in a real system. We use operating
data of four coal-fired generating units from the Chilean electric power network for, by firstly
estimating fuel cost and emission functions through regression, solving the nominal ECED problem.
Then, we consider the respectively prediction intervals to obtain robust solutions with lower risk of
become infeasible in some scenario. We particularly analyzed SO2 emissions and fuel consumption.
In order to obtain the fuel cost, consumption must be multiplied by the fuel’s price. We were
not able to obtain this value, but the analysis is similar, since the optimal solutions coincide if we
consider fuel consumption or fuel cost.

Table 2.5: Table of fit fuel consumption functions.

i Unit â0i â1i DF RMSR R2

1 Bocamina U1 8.0204 0.3575 6 2.5825 0.9720
2 Bocamina U2 1.0490 0.3634 8 3.7902 0.9908
3 Campiche 2.0698 0.4010 9 3.0707 0.9919
4 Santa María 10.7697 0.3393 6 10.7 0.94

Table 2.6: Table of fit SO2 emission functions.

i Unit α̂0i α̂1i α̂2i α̂3i DF RMSR R2

1 Bocamina U1 174.1 -5.77 0.3023 -0.001369 4 102.6 0.97
2 Bocamina U2 -10.93 -4.832 0.09296 -0.0001386 6 230.6 0.98
3 Campiche -2.941 28.11 -0.1505 0.0003207 7 249.5 0.93
4 Santa María 41.92 -3.363 0.03252 0 5 350.8 0.92

In Tables 2.5 and 2.6 we can observe the parameters obtained when multiple linear regression was
used. Note that a linear model (fi(pi) = â0i + â1ipi) represents well relationship between power out-
put and fuel consumption for each generating unit; whereas quadratic

(
ei(pi) = α̂0i + α̂1ipi + α̂2ip

2
i

)
and cubic models

(
ei(pi) = α̂0i + α̂1ipi + α̂2ip

2
i + α̂3ip

3
i

)
, seems to correctly represent relationship
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between power output and SO2 emissions. In Figure 2.6 we can see the fitted models (using the
observation pairs available) and its corresponding 95% prediction intervals.
Now, considering the above models’ parameter estimates, we solved the ECED problem and several
scenarios were simulated depending on different power demands and emission limits. We compared
the results when a deterministic approach was used (considering coefficients estimates as exacts)
against results obtained when uncertainties on coefficients estimated are considered. The scenarios
were created considering variance in the response given by the respectively mean squared error
computed. All the results we present in here were obtained by using MATLAB built-in functions
on a personal computer.

2.5.1 Case 1: PD = 600 MW and Emax = 10940 kg
For this case consider that the power demand is PD = 600 MW; maximum emission allowed during
the period Emax = 10940 kg; pmin = (70, 240, 140, 50)> and pmax = (128, 350, 270, 350)>. If not
uncertainties are considered on the coefficients estimates (most usual approach), then we need to
solve the nominal problem (2.7), that for our case becomes:

min
∑4
i=1 â0i + â1ipi (2.25)

st
∑4
i=1 α̂0i + α̂1ipi + α̂2ip

2
i + α̂3ip

3
i ≤ Emax,∑4

i=1 pi = PD,

pmini ≤ pi ≤ pmaxi ,

where coefficients are in Table 2.5 and Table 2.6. In this case, when we solve (2.25), we obtained
as optimal nominal solution pnom = (70, 240, 140, 150)>. This solution satisfy all the constraints in
(2.25).
Now, we analyze if considering uncertainties associated to emission functions coefficients estimates,
have any effect on the optimal solution. For simplicity and to provide fair comparisons, we consid-
ered the same objective function and try to solve now the problems:

min
∑4
i=1 â0i + â1ipi (2.26)

st
∑4
i=1 êi(pi) + |tα/2,ni−Mi−1|

√
MSRi

(
1 + p0i

(
X>i Xi

)−1 p0i

)
≤ Emax,∑4

i=1 pi = PD,

pmini ≤ pi ≤ pmaxi ,

and

min
∑4
i=1 â0i + â1ipi (2.27)

st
∑4
i=1 êi(pi) + |tα/2,f̄(p)|

√∑4
k=1 MSRk

(
1 + p0k

(
X>k Xk

)−1 p0k

)
≤ Emax,∑4

i=1 pi = PD,

pmini ≤ pi ≤ pmaxi ,
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(a) Bocamina U1 fuel cost (b) Bocamina U1 SO2 emissions

(c) Bocamina U2 fuel cost (d) Bocamina U2 SO2 emissions

(e) Campiche fuel cost (f) Campiche SO2 emissions

(g) Santa María fuel cost (h) Santa María SO2 emissions

Figure 2.6: Fuel cost and SO2 emissions regression.
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where êi is the fitted emission function of each generating unit. We will denoted solutions of (2.26)
as pα, whereas solutions of (2.27) will be denoted as pf̄ . In this case we obtain the same optimal
solution (pα = pnom) either if we consider the 95% percent individual or overall prediction intervals;
i.e., solving (2.26) considering α = 0.05 or αN = 0.0127 (as proposed in (2.10)). On another hand,
for this small power system we were able to efficiently solve formulation proposed in (2.27), just by
using the built-in routines in MATLAB. The same solution was obtained (pf̄ = pnom). Therefore,
uncertainties have not effect on the ECED problem in this situation. As we can see in Figure
2.7, the maximum emission level allowed is considerable bigger than the predicted (mean) total
emissions simulated, even if uncertainties on model estimates are considered. Therefore, violations
are not probably to occur and the deterministic formulation provides suitable solutions.

Figure 2.7: SO2 emission scenarios simulated (PD = 600 MW/Emax = 10940 kg).

2.5.2 Case 2: PD = 600 MW and Emax = 8940 kg
For this case, if the power demand PD = 600 MW is maintained, but now the maximum emission
level is diminished a little, we obtained the same nominal solution pnom = (70, 240, 140, 150)>) that
in the previous case. Even more, we obtain the same solutions if formulation provided in (2.26) and
(2.27) are used considering α = 0.05. However, the formulation provided in (2.10) that considers
the joint prediction region, becomes too conservative (as previously discussed) in this case, even
considering that a small number of generating units N = 4 are to be dispatched. In this case, no
feasible solution was obtained when we attempt to solve (2.26) for αN = 0.0127.

2.5.3 Case 3: PD = 850 MW and Emax = 8940 kg
Let us suppose now that the maximum SO2 emission level is the same Emax = 8940 kg, but the
power demand is increased PD = 850 MW.
Solving (2.25), we obtained the nominal solution pnom = (120, 240, 140, 350)>, which have an ex-
pected total fuel cost F (pnom) = 326.9185. In this case no feasible solution exist considering
α = 0.05 both for the individual or joint prediction interval-based formulations (2.9) and (2.10).
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Table 2.7: Comparison between deterministic and PI based robust solutions(PD = 850
MW/Emax = 8940 kg ).

α = 0.05 p1 p2 p3 p4 F (p) F (p)/F (pnom) E(p) Viol. Freq. Max. Viol.
pnom 120.00 240.00 140.00 350.00 326.9185 1 8448.19 168 9848.07
pα - - - - - - - -
pαN - - - - - - - -
pf̄ 70.98 240.00 210.97 328.05 330.4026 1.0107 7743.90 7 9143.78

However, by using the proposed formulation based on the approximated prediction interval (2.27),
we obtain as solution pf̄ = (70.98, 240.00, 210.97, 328.05)>, which have an expected total fuel cost
F (pf̄ ) = 330.4026. This represent an increase of 1.07% respect to the cost of the nominal solution,
but as we can see in Figure 2.8 and Table 2.7, the risk of environmental violation is diminished.
In the 1000 simulated scenarios, violations occur 168 times (with a maximum violation of 10.15%)
when the nominal solution was selected; whereas just 7 violations occur when pf̄ was selected (with
a maximum violation of 2.28%). Therefore, with a negligible increase in the total fuel cost, we
managed to significantly diminish (from 16.8% to 0.7%) the risk of environmental violations in this
situation.

Figure 2.8: SO2 emission scenarios simulated (PD = 850 MW/Emax = 8940 kg).

2.5.4 Case 4: PD = 980 MW and Emax = 9940 kg
Suppose that PD = 980 MW and Emax = 9940 kg. Solving the nominal problem we obtain the
solution pnom = (128.00, 350.00, 158.03, 343.97)>, which have a expected total fuel cost F (pnom) =
374.9374. In this case for α = 0.05 no feasible solution exist for any of the formulations (2.26),
(2.27). However, by varying the confidence level the DM could still obtain solutions with better
robustness than the nominal one.
In Table 2.8 we can observe that in general with the joint region approach, feasible solutions can
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(a) Nominal solution (b) α = 0.2 (c) α = 0.55

Figure 2.9: Simulated scenarios for several confidence levels.

not be obtained. This occurs because the proposed formulation becomes extremely conservative,
even considering a small number of generating units. In the case of the individual prediction
interval approach, for lower values of α (α = 0.1 and α = 0.2), neither solutions could be obtained;
however for α = 0.55 we obtained pα = (128.00, 350.00, 222.63, 297.37). This solution represent
an increase around 1.06% with respect to the nominal total cost and as we can see in Figure 2.9c
and Table 2.8, violations occur less frequently than when the nominal solution is selected. Finally,
note that formulation based on the approximated prediction interval give us solution for α = 0.2
and α = 0.55. As discussed previously, the conservativeness of solutions was effectively managed
through parameter α. Note that for lower values (α = 0.2), we obtained a solution less frequently
to be environmentally infeasible than for higher values (α = 0.55). This robustness comes with a
negative effect in the expected total cost. Note that (with respect to the nominal cost), we increased
the total fuel cost expected from 0.44% to 1.34% by selecting a most robust solution. In any case,
this increase on the cost can be seen as negligible, even more if we consider that the number of
violations was significantly decreased.

Table 2.8: Comparison between deterministic and PI based robust solutions(PD = 980
MW/Emax = 9940 kg ).

α = 0.05 (0.1) p1 p2 p3 p4 F (p) F (p)/F (pnom) E(p) Viol. Freq. Max. Viol.
pnom 128.00 350.00 158.03 343.97 374.9374 1 9939.99 485 11339.88
pα - - - - - - - - -
pαN - - - - - - - - -
pf̄ - - - - - - - - -

α = 0.20
pα - - - - - - - -
pαN - - - - - - - -
pf̄ 128.00 350.00 239.37 262.63 379.9516 1.0134 9162.77 60 10562.66

α = 0.55
pα 128.00 350.00 222.63 279.37 378.9198 1.0106 9235.28 82 10635.17
pαN - - - - - - - - -
pf̄ 128.00 350.00 184.96 317.04 376.5973 1.0044 9581.96 235 10981.84

Therefore, in the above studied real system, the uncertainties in the experimentally derived models
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have a significant effect on the ECED problem. When uncertainties in the coefficients of the fuel
cost and emission functions are not considered, we can obtain solutions that become environmen-
tally infeasible in some scenarios. In fact, these violations can be very frequently, depending on the
parameters of the power system (specially depending on the relationship between power demand
and emission level allowed). However, the quantity and maximum value of such violations can be
effectively diminished by considering the respectively prediction intervals obtained through regres-
sion. In all the cases studied the increase in the total fuel cost, associated to selecting prediction
interval-based solutions, instead of the nominal ones, was negligible. Finally, in Figure 2.10 we
present real operating data of the studied system in three subsequent months. As we can observe,
it seems that the fitted models adequately represent the real operation of the power system. Then,
solutions based on prediction intervals could provide, in fact, a useful tool for manage uncertainties
on the daily operation. We have also included the simulated scenarios of the four cases discussed
above, in order to show the correspondence between the simulated scenarios and the real operation
of the generating units.

2.6 Conclusions and future works
In this chapter, an approach based on prediction intervals was proposed to solve the ECED problem.
Differently to the usual deterministic approach, we incorporated to the ECED problem formulation
the uncertainties associated with the experimentally derived input-output curves of thermal power
plants. We analyzed the performance of the proposed approach in a real system consisting in
four generating units from the Chilean electrical power network. The results obtained show that,
when uncertainties are not considered, the deterministic solutions obtained can be environmentally
infeasible in some scenarios; whereas the prediction interval-based solutions can effectively diminish
the risk of such environmental violations, by a slight (and controllable) increase of the total fuel
cost.
We believe that several natural extensions of this investigation exist, motivating future works. First,
we need to develop efficient optimization algorithms that allow us to obtain optimal solutions to
problem (2.23). This will allow us to assess the effectiveness and performance of the proposed
approach in bigger electrical power networks. On another hand, statistical interval-based solutions
can be studied for non-polynomial input-output curves. This can be beneficial, for example, when
point-valves effect is considered in the ECED formulation.
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(a) Bocamina U1 (b) Bocamina U2

(c) Campiche (d) Santa María

Figure 2.10: Simulated scenarios in all the cases analyzed.
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Part II. Homogeneous optimization
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Chapter 3

Non convex homogeneous
optimization with applications

3.1 Introduction
In this chapter we analyze what we call as the “generalized minimum eigenvalue problem”:

µ0
.= min

{
f(x) : g(x) = 1, x ∈ C

}
, (3.1)

where C ⊆ Rn is a (not necessarily convex) closed cone and f, g are positively homogeneous
functions on C with degree p and q, respectively, such that g(x) > 0 for all x ∈ C, x 6= 0. Such a
formulation, spite its simplicity, encompasses several important problems in many different areas,
as we briefly describe below. One method to approximate µ0 is via the optimal value of a “dual
problem”, which is not uniquely determined. We propose the following (Lagrangian) dual problem:

ν
.= sup
λ∈R

inf
x∈C

{
f(x) + λ(g(x)− 1)

}
. (3.2)

Obviously ν is always a lower bound for µ0 (weak duality). It worth-while to mention that the dual
problem admits the unique solution −µ0

p

q
(Theorem 3.1).

One of the main purposes of this work is to discuss the validity of the equality µ0 = ν (zero duality
gap), and the strong duality property, which means that µ0 = ν and problem (3.2) has solution;
among other important issues including KKT optimality.
In many practical models, C is described by inequalities and/or equalities, and so, one can talk
about standard dual problem, whose associated Lagrangian involves all the constraint functions,
and so, the infimum in (3.2) is taken over Rn. With respect to this standard dual problem, we will
see that zero duality gap, or strong duality property occurs under very strong assumptions.
More precisely, we establish various characterizations for the fulfillment of strong duality property
(Theorem 3.1). In particular, it holds if, and only if (g, f)(C) +R+(0, 1) is convex. This is satisfied
if either µ0 = 0 or p = q (this holds for some of the models below), and in the latter situation, the
copositive formulation holds (Theorem 3.1 and Corollary 3.1):
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µ0 = ν = sup
{
λ : f − λg is copositive on C

}
,

= inf
{
f(x)− µ0(g(x)− 1) : x ∈ C

}
,

where by copositivity on C of any function h, we mean that h(x) ≥ 0 for all x ∈ C.
Furthermore, we introduce the notion of L(agrange)-eigenvalue (see Subsection 3.4.2) as a Lagrange
multiplier associated to the existence of a KKT-point (different from the zero vector) suitably
defined, which is related to a necessary optimality condition for the problem

inf
{
f(x)− µ0

p

q
(g(x)− 1) : x ∈ C

}
.

In some sense, our approach provides a variational scheme to the analysis of eigenvalues to certain
mappings; in particular, to real symmetric tensors (see Model 2). For other perspective we refer
to [74].
Before describing some of the main models where our approach applies, we list just a few con-
crete applications. For instance, a class of quadratic homogeneous optimization problems arises
in telecommunications and robust control as reported in [99, 131]; minimum eigenvalue of a sym-
metric matrix; minimization of a homogeneous polynomial over spheres or hyperspheres (for in-
stance [89, 108], giving rise to the sum of squares (SOS) relaxation as an aproximation method);
several important classes of quadratic programming problems lying in matrix theory; special rela-
tivity [51]; trust region problems [61,141] (for recent advances on this matter, we refer [162]).

Model 1: Quadratic fractional optimization problems with two quadratic constraints
This problem, to be analyzed in detail in Section 3.6, takes the form:

µqf
.= min

{w>Aw + a>x+ α

w>Bw + b>w + β
: w>B1w + b>1 w + β1 ≤ 0, w>w − δ ≤ 0

}
, (3.3)

where δ > 0; a, b, b1 are in Rn; α, β, β1 ∈ R; and A,B,B1 are (real) symmetric matrices of order
n satisfying w>Bw + b>w + β > 0 for all feasible w for (3.3). By using the generalized Charnes-
Cooper transformation, problem (3.3) reduces to one of the form (3.1) with p = q = 2, satisfying
the required assumptions. In particular, a copositive reformulation can be obtained (see Corollary
3.1), besides the validity of strong duality property (Theorem 3.1). This problem was studied in [52]
under the SDP relaxation approach, and so yielding tightness, which in turns implies that standard
strong duality holds. Our approach considers situations where standard strong duality may fail. In
addition, we establish a new necessary and sufficient second-order optimality conditions (Theorem
3.11). This will allow us, under very mild assumptions on the reference point, to identify optimality
by means of a first-order optimality condition (Theorem 3.12). Therefore, the problem is solvable
by using the notion of (Moore-Penrose) pseudoinverse.

Model 2: Tensors eigenvalues analysis
The analysis will be developed in detail in Section 3.7 and it refers to the problem:

µk
.= min

{
Axm : ‖x‖mk = 1, x ∈ C

}
, (3.4)

where A is an m-order n-dimensional real symmetric tensor, and so Axm defines a homogeneous
polynomial of degree m; ‖x‖k denotes the lk-norm, and C is a closed convex cone in Rn. It will be

84



showed that µk is the least L(agrange)-eigenvalue (to be introduced in Subsection 3.4.2) associated
to problem (3.4). By particularizing k = 2 or k = m and either C = Rn or C = Rn+, we recover the
notion of Z-eigenvalue (eigenvector) or H-eigenvalue (eigenvector), see [92, 122, 129, 137], among
others. Hence, we provide a unified approach in tensor analysis, and produce new results about
the copositivity meaning in this context (Proposition 3.8).

Model 3: Approaching linear complementarity problems
A quadratic programming approach to linear complementary problems (LCP) is to consider the
bilinear program (see, for instance [8]):

min{z>w : −Mz + w = q, z ≥ 0, w ≥ 0}.

This problem can be written, in a equivalent way as:

min{x>Ax : Hx = q, x ≥ 0}, (3.5)

where:

x =
(
z
w

)
, A =

 0 1
2 I

1
2 I 0

 , H =
(
−M | I

)
,

and 0, I stand for the null and identity matrices of order n × n, respectively, and A is indefinite
but copositive on R2n

+ , i.e., x>Ax ≥ 0 for all x ∈ R2n
+ .

We consider an example from [35] to illustrate how to re-formulate (3.5) in the form (3.1). In such
an example, we have:

M =

 0 0 0
1 0 0
−1 −1 −1

 , q =

 1
−1

3

 .
By setting f(x) .= x>Ax, g(x) .= 1

3(x1 + x2 + x3 + x6), g1(x) .= −x1 − x2 − x3 + 3x4 − x6,
g2(x) = 4x1 + x2 + x3 + 3x5 + x6, and choosing as C to be the closed convex cone C .= {x ∈ R6 :
x ≥ 0, g1(x) = 0, g2(x) = 0}, we have that f and g are positively homogeneous functions of degrees
p = 2 and q = 1, respectively. Moreover, g(x) > 0 for all x ∈ C, x 6= 0. Certainly, f is nonconvex
and f(x) ≥ 0 for all x ≥ 0. We refer to [56] for a great account about linear complementarity
problems.

Model 4: Extensions of the standard quadratic and portfolio optimization problems
We consider now two problems with the following general structure:

min
{
f(x) : e>x = 1, x ∈ C

}
,

where C ⊆ Rn is a pointed, closed, convex cone having non-empty interior, and e ∈ int C∗. Here,
C∗ is the non-negative polar cone of C.
For f(x) = 1

2x
>Ax, with A a real symmetric matrix of order n, problem:

µq
.= min

{1
2x
>Ax : e>x = 1, x ∈ C

}
, (3.6)
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is an extension of the standard quadratic optimization problem (StQOP). This model generalize the
problem introduced by Bomze in [22] (where C = Rn+, e = ł .= (1, . . . , 1)), which models: quadratic
allocation problems [77]; (classical mean-variance) portfolio optimization problems [97, 98]; the
maximum weight clique problem [66, 105]; the indefinite quadratic knapsacks problem [114], see
also [99,131], among others. Due to the structure of the feasible set, it is not restrictive to consider
homogeneous functions, since:

1
2x
>Ax+ a>x = 1

2x
>(A+ ae> + ea>)x.

The StQOP was introduced in [22] and further developed in [23–27] and references therein.
According to our Theorem 3.1, problem (3.6) has strong duality if, and only if A is copositive, since
p = 2 > q = 1. On the other hand, we can find a copositive formulation of (3.6), since it can be
written equivalently as:

µq
.= min

{1
2x
>Ax : x>ee>x = 1, x ∈ C

}
,

whose dual problem is:

νq
.= sup
λ∈R

inf
x∈C

{1
2x
>Ax+ λ(x>ee>x− 1)

}
.

By particularizing Corollary 3.1 (p = q = 2), one gets:

µq = νq = sup
λ∈R

{
− λ : A+ 2λee> is copositive on C

}
.

The case C = Rn+, allows us to introduce the standard dual problem, as we said at the beginning.
In this situation, standard strong duality is satisfied if, and only if A is positive semidefinite; and
therefore, in practice such a dual is useless.

On another hand, a different model to the mean-variance portafolio optimization problem (3.6), is
that known as the “standard deviation premium” considered in [87], where the variance is replaced
by the standard deviation, that is, f takes the form f(x) = a>x+ ρ

√
x>V x, so the problem is:

µp
.= min

{
a>x+ ρ

√
x>V x : e>x = 1, x ∈ C

}
.

We refer to [88] for a further discussion. Here, V is only required to be copositive on C. Since
p = q = 1, strong duality holds because of Theorem 3.1, and by Corollary 3.1, the copositive
formulation (g(x) = e>x) is:

µp = max{−λ : f + λg is copositive on C}.

If, instead, one considers the equivalent constraint g(x) .= x>ee>x = 1, then p = 1 < q = 2, and so
by the same theorem, strong duality is satisfied provided f(x̄) < 0 for some x̄ ∈ C.
Several other problems, after some mathematical manipulations like in Model 3, can also be for-
mulated as in (3.1).

This chapter is organized as follows. Section 3.2 serves to introduce some basic definitions and
preliminaries, as well as to revisit the Lagrangian duality scheme. Section 3.3 establishes various
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new characterizations of the validity of: strong duality for (3.1) (revealing convexity as Theorem
3.1 shows); the S-lemma (Lemma 3.2), a copositive formulation for (3.1) when p = q, as Corol-
lary 3.1 shows. In Section 3.4, it is discussed: zero-order optimality conditions; KKT optimality
and L-eigenvalues; the case when C is expressed by two quadratic forms, yielding new necessary
optimality conditions under strong duality; and when p = q = 2, those conditions become also
sufficient. Section 3.5 is devoted to compare our approach with the SDP relaxation scheme: this
is carried out for two examples discussed in [107]. Section 3.6 fully analyzes a class of quadratic
fractional optimization problems with two quadratic constraints. Finally, in Section 3.7 the case of
a real m-order n-dimensional supersymmetric tensor is discussed. In particular, some relationships
linking our notion of L-eigenvalue and those of Z-eigenvalue or H-eigenvalue, are presented.

3.2 Some notation, basic definition and preliminaries
Throughout this chapter, we will work on a finite dimensional space, say Rm. Given any nonempty
set M in Rm, its closure, topological interior, convex hull, closed convex hull, are denoted, respec-
tively, by M , int M , co M , co M . In addition, by aff M , span M , ri M and bd M we denote the
affine set of M , span of M , relative interior of M and the boundary of M , respectively. Moreover,
cone M is the smallest cone containingM , i.e., cone M =

⋃
t≥0 tM . The polar cone ofM is defined

by:

M∗
.= {z ∈ Rm : 〈z, y〉 ≥ 0 ∀ y ∈M}.

Here, 〈z, y〉 = z>y stands for the scalar product between two vectors z and y in Rm, where z>
means the transpose of the vector z, which is considered a column vector. More generally, if A is
a real matrix in Rm×n, A> is the transpose of A belonging to Rn×m.
Let h : Rm → R ∪ {±∞}, h and co h stand for the greatest lower semicontinuous function not
larger than h and for the greatest convex and lower semicontinuous function not larger than h,
respectively. Just for convenience, we need the following definition of epigraph of a function:
epi h .= {(y, t) ∈ Rm × R : h(y) ≤ t}. It is known that:

epi h = epi h; co(epi h) = epi co h.

Moreover,

co h(y) > −∞ ∀ y ∈ Rm =⇒ co h(y) = h∗∗(y) ∀ y ∈ Rm,

where h∗∗ = (h∗)∗ is the bipolar or biconjugate of h, that is, the conjugate (or polar) of h∗ defined
by:

h∗(z) .= sup
y∈Rm

{〈z, y〉 − h(y)}.

In addition, δM stands for the indicator function of the set M , defined by 0 on M , and +∞ on the
complementary of M .
There are examples showing the assumption co h(y) > −∞ for all y ∈ Rm is necessary to get the
equality h∗∗ = co h. In general we have h∗∗ ≤ co h ≤ h. For details see [124].
In case h : Rm → R ∪ {+∞}, the subdifferential of h at ȳ ∈ Rm is denoted by:
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∂h(ȳ) .= {ξ ∈ Rm : h(y) ≥ h(ȳ) + 〈ξ, y − ȳ〉, ∀ y ∈ Rm},

if ȳ ∈ dom h, and ∂h(ȳ) = ∅ elsewhere.
In the subsequent sections, we set R+

.= [0,+∞[; R++
.= ]0,+∞[. Given a vector a ∈ Rm \ {0},

R+a stands for the ray starting from the origin and direction a; and a⊥ is the orthogonal subspace
to a, which is a hyperplane.
In the remaining part of this section, we present a duality scheme for a minimization problem under
one single equality constraint and a geometric constraint set, mainly taken from Section 3 in [54].
Let f, g0 : Rn → R be any finite-valued functions, and let C ⊆ Rn be any nonempty set. Let us
consider the problem:

µ
.= inf{f(x) : g0(x) = 0, x ∈ C}, (3.7)

whose (Lagrangian) dual problem is defined by:

ν
.= sup
λ∈R

inf
x∈C

[f(x) + λg0(x)]. (3.8)

We say that there is no duality gap, or the duality gap is zero, between (3.7) and (3.8) if ν = µ.
It is said that (3.7) has the strong duality property with respect to (3.8), or simply that strong
duality holds for (3.7) if µ = ν and problem (3.8) admits a solution. One infers immediately that
ν ≤ µ. Thus, if µ = −∞ then there is no duality gap, and we conclude that any element in R is a
solution for the problem (3.8). Hence, we always have strong duality for (3.7) whenever µ = −∞.
So, we suppose from now on that µ ∈ R, which means, in particular, that the feasible set to (3.7)
is nonempty.
Set F (x) .=

(
g0(x), f(x)

)
. Notice that F = (f, g0) was used in [55] instead. Assuming that µ ∈ R,

we obtain:

(F (C)− µ(0, 1)) ∩ −({0} × R++) = ∅. (3.9)

We will show, next, that strong duality can be characterized by reinforcing (3.9).
The optimal value function ψ : R→ R ∪ {±∞} to problem (3.7) is defined by:

ψ(a) =
{

inf{f(x) : x ∈ K(a)} if K(a) 6= ∅;
+∞ otherwise,

where:

K(a) .= {x ∈ C : g0(x) = a}.

Notice that K = K(0), and K(a) 6= ∅ if and only if a ∈ g0(C), that is,

dom ψ
.= {a ∈ R : ψ(a) < +∞} = g0(C).

The sets:

F .= F (C) + R+(0, 1), Eρ
.= F − ρ(0, 1) (ρ ∈ R),

will play an important role in our analysis.
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Remark 3.1. (a) By definition, strong duality holds if and only if there exists λ0 ∈ R such that

f(x) + λ0g0(x) ≥ µ, ∀ x ∈ C,

or equivalently, LSD 6= ∅, where

LSD
.= {λ0 ∈ R : (λ0, 1) ∈ (Eµ)∗}.

Hence, LSD ⊆ SD with SD being the solution set to the dual problem (3.8). Moreover, LSD = SD
whenever zero duality gap holds.
(b) The following chain of inclusions shows useful and well-known properties of the optimal value
function ψ (see [55] for instance):
F (C) + R+(0, 1) ⊆ epi ψ ⊆ F (C) + R+(0, 1). Consequently,

Eµ = epi ψ − µ(0, 1) = epi ψ − µ(0, 1); co Eµ = co(epi ψ)− µ(0, 1) = epi(co ψ)− µ(0, 1).

The next result states various equivalences, of topological or geometric nature, to the validity of
strong duality.

Proposition 3.1. ( [55, Theorem 4.2]) Assume that µ = ψ(0) is finite. The following assertions
are equivalent:

(a) Strong duality holds for (3.7);

(b) cone(co Eµ) ∩ (−{0} × R++) = ∅;

(c) ∂ψ(0) 6= ∅;

(d) cone(Eµ) ∩ (−{0} × R++) = ∅ and cone(Eµ) is convex.

Hence, under any of the above conditions, one gets

∂ψ(0) = {−λ0 ∈ R : λ0 ∈ SD}.

We must point out that a more detailed description of the disjointness appearing in (d), is presented
in [28, Theorem 3]. On the other hand, one can see from the previous proposition that the convexity
of cone(Eµ) arises in a natural way under strong duality no matter the functions f and g are. The
equivalence between the validity of strong duality and the convexity of cone(F (C) + R+(0, 1) −
µ(0, 1)) was proved in [28,55] under a Slater-type condition. In case C = Rn and f, g are quadratic
functions, the authors in [59] established (under a Slater condition) that strong duality holds if and
only if F (Rn) + R+(0, 1) is convex. When C is a pointed closed convex cone, and f is a quadratic
form and g linear (see Model 4), such an equivalence with the convexity of F (C) + R+(0, 1), was
established in [54].
We have to mention that in case we have more than one constraint, one may proceed by including
all the constraints, except one, in the geometric constraint set C. Among the recent results about
the convexity of images of quadratic functions, we mention [17,54,59,82,157].
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3.3 Formulation of the problem: characterizing strong duality and
S-lemma; copositive reformulation

Let us go back to our original problem formulated in Section 3.1:

µ0
.= min

{
f(x) : g(x) = 1, x ∈ C

}
, (3.10)

whose feasible set is denoted by K (which is supposed to be nonempty), and where C ⊆ Rn is a
closed cone, and f, g : Rn → R satisfy the following assumption:
Assumption (A):
Let p, q be positive real numbers. The functions f and g are lower semicontinuous (lsc, in short)
such that:

(i) f(tx) = tpf(x) for all t > 0 and all x ∈ C;

(ii) g(tx) = tqg(x) for all t > 0 and all x ∈ C;

(iii) g(x) > 0 for all x ∈ C, x 6= 0; as a consequence, x ∈ C, g(x) = 0 if, and only if x = 0.

Some remarks are in order.

Remark 3.2. Let C be a closed cone.
(a) Let h : Rn → R ∪ {+∞} be a lsc function and positively homogeneous with degree p. Then,
h(0) = 0; the sets C ∩ dom h, C \ dom h are cones. Moreover, in case h is differentiable at
x ∈ C ∩ dom h, the so-called Euler identity holds:

∇h(x)>x = ph(x).

In addition, ∇h is positively homogeneous with degree p− 1.
(b) Notice that under (iii) and lsc on g, the set {x ∈ C : g(x) ≤ γ} is bounded for all γ ≥ 0.
(c) In most applications C is, in addition, convex and pointed, and g(x) = e>x with e ∈ int C∗;
thus g satisfies (iii). Another useful specialization is g(x) = (‖x‖m)m .= |x1|m+ |x2|m+ · · ·+ |xm|m
and C = Rm+ .

The fact that the cone C is not necessarily convex makes our model to be very versatil, as described
at the introduction section. On the other hand, by virtue of Assumption (A) and since K is
nonempty, problem (3.10) always fulfills the Slater condition: there exist x1, x2 ∈ C such that
g(x1) < 1 < g(x2).

It is said that h : Rn → R ∪ {+∞} is copositive on a cone P ⊆ Rn if h(x) ≥ 0 for all x ∈ P ; it is
strictly copositive on P if h(x) > 0 for all x ∈ P , x 6= 0. By extension, a (real) symmetric matrix
A is said to be (resp. strictly) copositive on P , if the function h(x) = x>Ax ≥ 0 (resp. > 0) for all
x ∈ P (resp. for all x ∈ P, x 6= 0).
By assumption, one gets:

C =
⋃
t≥0

tK,
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with K being a compact set. Thus, it is easy to check that:

• µ0 ≥ 0⇐⇒ f is copositive on C;
• µ0 = 0⇐⇒ f is copositive but not strictly copositive on C;
• µ0 > 0⇐⇒ f is strictly copositive on C.

The following lemma shows some intrinsic properties of problem (3.10), and relationships with the
problems:

µ+
.= inf

{
f(x) : g(x) ≥ 1, x ∈ C

}
; µ−

.= inf
{
f(x) : g(x) ≤ 1, x ∈ C

}
.

Set K+
.= {x ∈ C : g(x) ≥ 1} and K−

.= {x ∈ C : g(x) ≤ 1}.

Lemma 3.1. Let C be a closed cone, and f, g satisfy Assumption (A). The following assertions
hold.

(a) Assume that +∞ > µ0 ≥ 0. Then,

(a1) x ∈ C, f(x) < µ0 =⇒ g(x) < 1.
(a2) µ0 = µ+ and argmin

K
f ⊆ argmin

K+

f.

(a3) If µ0 > 0, then argmin
K

f = argmin
K+

f , and [x ∈ C, f(x) = µ0 =⇒ g(x) ≤ 1].

(b) Assume that µ0 ≤ 0. Then,

(b1) x ∈ C, f(x) < µ0 =⇒ g(x) > 1.
(b2) µ0 = µ− and argmin

K
f ⊆ argmin

K−

f.

(b3) If µ0 < 0, argmin
K

f = argmin
K−

f , and [x ∈ C, f(x) = µ0 =⇒ g(x) ≥ 1].

Proof. We only prove (a), being the other entirely similar.
(a1): Take any x ∈ C such that f(x) < µ0. Obviously the implication holds if x = 0. Suppose now
that g(x) > 1, and write x = ty for some t > 0 and y ∈ K. Thus tq > 1 and so t > 1. Moreover,
we obtain µ0 > f(x) = tpf(y) ≥ tpµ0, which implies µ0 < 0, and this contradicts our assumption.
(a2): Clearly µ+ ≤ µ0. Suppose that µ+ < µ0 and choose y ∈ K+ satisfying f(y) < µ0. By (a1),
g(y) < 1, a contradiction.
(a3) The first part follows easily, and the second one is similar to (a2).

Denote, given a ∈ R,

K(a) .= {x ∈ C : g(x) = 1 + a}.

It is worth noticing that a complete study in the case when p = 2, q = 1 was carried out in [54],
including some necessary or sufficient conditions for local or global optimality.
The following proposition, whose proof is straightforward, collects some basic facts on the optimal
value function:

ψ(a) .= min
x∈K(a)

f(x).
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In order to make compatible problem (3.10) with that of (3.7) we introduce the function g0(x) .=
g(x)− 1, and so set F .= (g0, f).

Proposition 3.2. Let C be a closed cone, and f, g satisfy Assumption (A). The following assertions
hold.

(a) K(a) 6= ∅ if, and only if a ≥ −1.

(b) Let a > −1. Then, x ∈ K if, and only if (a+ 1)1/qx ∈ K(a).

(c) The optimal value function is given by:

ψ(a) =
{
µ0(1 + a)p/q if a ≥ −1;

+∞ if a < −1.

(d) Assume that f and g are continuous. Then F (C) and F (C) +R+(0, 1) are closed, so epi ψ =
F (C) + R+(0, 1).

Proof. (a): It is obvious.
(b): Let x ∈ K. Then g((a + 1)1/qx) = (a + 1)g(x) = a + 1. Thus (a + 1)1/qx ∈ K(a), and so, by
symmetry, the result follows.
(c): It is a consequence of (b).
(d): We check the closedness of F (C) + R+(0, 1). The same argument also shows that F (C) is
closed. Let (a, r) ∈ F (C) + R+(0, 1). Then, there exist sequences xk ∈ C, qk ≥ 0 satisfying
f(xk) + qk → r and g(xk)− 1→ a. By assumption, the second relation implies the boundedness of
‖xk‖. Thus, up to a subsequence, xk → x̄ ∈ C, implying that qk = f(xk) + qk − f(xk)→ r − f(x̄).
Setting q .= r− f(x̄), we get q ≥ 0, and so (a, r) = (g(x̄)− 1, f(x̄) + q) ∈ F (C) +R+(0, 1). The last
part follows from (b) of Remark 3.1 when it applies to g0(x) = g(x)− 1.

By Proposition 3.2, it is not difficult to prove that:

cone(F (C) + R+(0, 1)− µ0(0, 1))

=


{(u, v) ∈ R2 : v ≥ µ0p

q
u} if [0 < q ≤ p, µ0 ≥ 0] or [0 < p ≤ q, µ0 ≤ 0];

{(u, v) ∈ R2 : v ≥ µ0u} ∪ (R+ × R) if 0 < q < p, µ0 < 0;
{(u, v) ∈ R2 : v ≥ µ0u} ∪ (R× R+) if 0 < p < q, µ0 > 0.

(3.11)

We now establish how the fulfillment of strong duality property reveals the hidden convexity of
some image set. To the best of our knowledge, this result is new and the first one (in a non-local
sense) for functions beyond the quadratic world.

Theorem 3.1. Let C be a closed cone, and f, g satisfy Assumption (A). Then, the following are
equivalent:

(a) strong duality holds.

(b) F (C) + R+(0, 1) is convex.
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(c) Exactly one of the following assertions is satisfied:

(c1) f is copositive but not strictly copositive on C (µ0 = 0).
(c2) f is strictly copositive on C (µ0 > 0) and p ≥ q > 0.
(c3) f is not copositive on C (µ0 < 0) and q ≥ p > 0.

Consequently, under any of conditions (a), (b) or (c), the unique solution to the dual problem (3.2)
is −p

q
µ0, and so

µ0 = inf
x∈C

[f(x)− µ0
p

q
(g(x)− 1)]. (3.12)

Proof. The equivalence between (b) and (c) follows from (c) of Proposition 3.2. The equivalence
between (b) and (a) is a consequence of (3.11) and Proposition 3.1. The remaining part also follows
from Proposition 3.1.

One of the interpretations of Theorem 3.1 follows. In case 0 < q ≤ p, Theorem 3.1 characterizes
the strict copositivity on C of every function f that is positively homogeneous with degree p on C,
by means of the convexity of (g, f)(C)+R+(0, 1) for some (any) function g positively homogeneous
with degree q on C.

From Theorem 3.1, we realize that when p = q it is possible to establish a copositive reformulation
of the dual problem, and so of the primal one. Such a formulation extends Lemma 3.2 and (main)
Theorem 3.5 in [121], which considers the quadratic (homogeneous) case with C = Rn+.

Corollary 3.1. (Copositive formulation) Let p = q > 0. Assume that f and g satisfy Assumption
(A). Then,

µ0 = ν = max
{
λ : f − λg is copositive on C

}
, and

• f − µ0g is copositive but not strictly copositive on C; that is, there exists x̄ ∈ C, x̄ 6= 0, such
that

µ0 = min
x∈C
x 6=0

f(x)
g(x) = f(x̄)

g(x̄) .

• ∀ γ < µ0, f − γg is strictly copositive on C;

• ∀ γ > µ0, f − γg is not copositive on C.

Proof. By the previous theorem we get strong duality, and so

µ0 = ν = sup
λ∈R

inf
x∈C

[f(x)− λ(g(x)− 1)] = sup
λ∈R

{
λ+ inf

x∈C
[f(x)− λg(x)]

}
= sup

λ∈R

{
λ : inf

x∈C
[f(x)− λg(x)] = 0

}
= max

{
λ : f − λg is copositive on C

}
.

The remaining assertions are straightforward.
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We utilize Corollary 3.1 and the bisection algorithm to propose an algorithm to determine µ0 or
an approximation of it once a tolerance ε > 0 is prescribed. Here, f, g and C are as above.
Algorithm
1. Select γ− and γ+ such that f −γ−g is strictly copositive (so γ− < µ0) and f −γ+g is not strictly
copositive on C (so µ0 < γ+).
2. Set γ .= (γ− + γ+)/2.
3. If f − γg is strictly copositive, set γ−

.= γ. Otherwise, γ+
.= γ.

4. If f − γ+g is copositive or if γ+ − γ− < ε, then µ0 = γ+ and stop. Otherwise, go to step 2.
This algorithm, when f and g are quadratic forms and C = Rn+, was discussed in more detail
in [121].

We are now ready to establish the S-lemma suitable for the problem (3.10). Such a lemma, which
will be formulated in its strict version, asks for the equivalence between (3.13) and (3.14):

x ∈ C, g(x)− 1 = 0 =⇒ f(x) > 0; (3.13)

∃ λ 6= 0, f(x) + λ(g(x)− 1) > 0 ∀ x ∈ C. (3.14)

Results of this kind goes back to the works by Yakubovich in [160, 161], who considered f , g to
be quadratic forms. To be more precise, his version reads as follows: the next two statements are
equivalent provided there exists x̄ satisfying x̄>Bx̄ < 0,

x ∈ Rn, x>Bx ≤ 0 =⇒ x>Ax ≥ 0.

∃ λ ∈ R : A+ λB is positive semidefinite.

Its inhomogeneous version was studied in [59,157]. A further development when C is a convex cone
is presented in [54]. A nice survey (until 2007) on the S-lemma in the quadratic word is [120]. More
recent results may be found in [60,157].

Lemma 3.2. (S-lemma) Let C be a closed cone, g satisfies (ii) and (i) of Assumption (A). The
following assertions are equivalent:

(a) for all lsc function f and positively homogeneous with degree p > 0 on C, one has

[x ∈ C, g(x) = 1 =⇒ f(x) > 0]⇐⇒ ∃ λ 6= 0, f(x) + λ(g(x)− 1) > 0 ∀ x ∈ C.

(b) p ≥ q.

Proof. (a) ⇒ (b): Take f(x) .= |x1|p + · · ·+ |xn|p, then it holds (3.13) because of the assumptions
on g. Thus (3.14) is satisfied if (a) holds. Then, by Theorem 3.1, f(x)− µ̄p

q
(g(x)− 1) ≥ µ̄ for all

x ∈ C, where µ̄ .= min{‖x‖p : g(x) = 1, x ∈ C} > 0. By using a simple argument on the preceding
inequality, one infers that p ≥ q.
(b)⇒ (a): From (3.13) it follows that µ0

.= min{f(x) : g(x)− 1 = 0, x ∈ C} > 0, and since p ≥ q,
strong duality for these data holds by Theorem 3.1. This means that f(x)−µ0

p

q
(g(x)−1) ≥ µ0 > 0

for all x ∈ C, proving the desired result.
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3.4 Characterizing optimality conditions
We are now interested in obtaining necessary and/or sufficient optimality conditions of order zero,
one or two, for local or global optimality for problem (3.10). All the results established in this
section are new. In particular, in case f is a quadratic form and g the square of the Euclidean
norm, Corollary 3.3 below enhances Proposition 3 of [130] since the convexity on C is not required.
We point out that for quadratic optimization problems on a polyhedron, some optimality conditions
were established in [24]. We refer to [18] for a method locating some particular local minima; some
copositivity-based escape procedures for the StQO problem on the simplex are analyzed in [21].

3.4.1 Zero-order optimality conditions

We now provide a relationship between the minima of the original objective function and those of
the Lagrangian, under strong duality and free of derivative.
Recall that L(λ, x) .= f(x) + λ(g(x)− 1).

Theorem 3.2. Let C be a closed cone, and f, g satisfy Assumption (A). Then,

(a) Strong duality holds and x̄ ∈ argmin
K

f

⇐⇒ x̄ ∈ K and x̄ ∈ argmin
C

L

(
−p
q
f(x̄), ·

)
.

(b) Strong duality holds and 0 ∈ argmin
C

L

(
−p
q
µ0, ·

)
⇐⇒ µ0(p− q) = 0.

Proof. (a) ⇒: This follows from (3.12):

L(−p
q
µ0, x̄) = f(x̄) = inf

x∈C
L(−p

q
µ0, x). (3.15)

⇐: We have

µ0 ≤ f(x̄) = L(−p
q
f(x̄), x̄) = inf

x∈C
L(−p

q
f(x̄), x)

≤ inf
x∈K

L(−p
q
f(x̄), x) = inf

x∈K
f(x) = µ0.

Thus the proof of (a) is complete once one notices that:

L(−p
q
µ0, x̄) = sup

λ∈R
inf
x∈C

L(λ, x).

(b): It is a consequence of (3.12):

µ0 = f(0)− µ0
p

q
(g(0)− 1) = µ0

p

q
.

When the assumption on strong duality is more precise, the following result is obtained.
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Corollary 3.2. Let C be a closed cone, and f, g satisfy Assumption (A).

(a) Assume that µ0(p− q) > 0. Then:

x̄ ∈ argmin
C

L(−p
q
µ0, ·)⇐⇒ x̄ ∈ argmin

K
f.

(b) Assume that p = q > 0. Then,

0 6= x̄ ∈ argmin
C

L(−µ0, ·) =⇒ 1
(g(x̄))1/p x̄ ∈ argmin

K
f.

Proof. (a): By assumption on p, q, µ0, strong duality holds. Thus, we need only to prove that
x̄ ∈ K, and then the result follows from the previous theorem. We consider the case µ0 > 0 and
p > q > 0 since the other is entirely similar. Suppose that x̄ 6∈ K; then x̄ 6= 0 due to the previous
theorem, and so we can write set x̄ = tȳ for some t > 0 and ȳ ∈ K. By (3.15), we get:

µ0 = min
x∈C

L(−p
q
µ0, x) = f(x̄)− p

q
µ0(g(x̄)− 1)) = tpf(ȳ)− p

q
µ0(tqg(ȳ)− 1)

≥ tpµ0 −
p

q
µ0(tq − 1).

By defining ϕ(ξ) .= ξq

q
− ξp

p
, we obtain:

ϕ(t) = tq

q
− tp

p
≥ ϕ(1) > 0. (3.16)

On the other hand, we have ϕ′(ξ) < 0 for all ξ > 1; ϕ′(ξ) > 0 for all ξ ∈ ]0, 1[. Simple arguments
show that the only possible value for t satisfying (3.16) is t = 1, which finally yields x̄ ∈ K.
(b): Simply use (3.12).

3.4.2 KKT-points, L(agrange)-eigenvalues and second-order optimality condi-
tions

We now derive first and second-order sufficient and/or necessary conditions for local or global
optimality.
As usual, the notion of contingent cone will be needed. Given a set M ⊆ Rn and x ∈ M , the
contingent cone of M at x, denoted by T (M ;x), is the set of vectors v ∈ Rn such that there exist
tk > 0, xk ∈ M , xk → x, satisfying tk(xk − x)→ v. For a great account of its properties, we refer
the book [11]. In general, we obtain:

T (M ;x) ⊆ cone(M − x), x ∈M.

The equality is satisfied whenever M is convex.
It is known that the notion of KKT-point plays a crucial role for optimality. Thus, we assume that
the functions f and g are differentiable at the reference point x̄ ∈ C.
Following [28] for instance, a point x ∈ C, x 6= 0, is said to be a KKT-point for problem (3.10) if
there exists (Lagrangian multiplier) λ ∈ R such that:
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∇f(x)− λp
q
∇g(x) ∈ (T (C;x))∗. (3.17)

Let us denote the set of such λ associated to x by L(x). Actually L(x) =
{f(x)
g(x)

}
whenever x is a

KKT-point because of ±x ∈ T (C;x) and Euler identity.
In what follows, a collection of useful results is stated.

Remark 3.3. Let f, g, C be as before. Given any x ∈ C, x 6= 0, the following assertions hold:

(i) ±x ∈ T (C;x), and so

∇f(x)− λp
q
∇g(x) ∈ (T (C;x))∗ =⇒ f(x) = λg(x);

(ii) by Euler’s identity,

f(x)− λg(x) = 0⇐⇒ x>
(
∇f(x)− λp

q
∇g(x)

)
= 0;

(iii) if, in addition, C is convex,

∇f(x)− λp
q
∇g(x) ∈ (T (C;x))∗ ⇐⇒

∇f(x)− λp
q
∇g(x) ∈ C∗;

f(x) = λg(x).

Motivated by the previous remark, some notions are introduced:

Definition 3.1. We say that λ ∈ R is (f, g)-eigenvalue (or simply, eigenvalue) if there exists
x ∈ C, x 6= 0, such that f(x) = λg(x). The dependence of f and g will be omitted when no
confusion arises. We say that λ ∈ R is L(agrange)-eigenvalue if there exists x ∈ C, x 6= 0 such
that λ ∈ L(x). The set of those x is denoted by K(λ), and so, λ is L-eigenvalue if and only if
K(λ) 6= ∅. Every x in K(λ) is called a L-eigenvector associated to λ. A pair (λ, x) ∈ R× (C \ {0})
with x ∈ K(λ) (or, equivalently, λ ∈ L(x)) is called L-eigenpair.

In view of Remark 3.3, under convexity on C, the L-eigenvalue problem reduces to the homogeneous
complementarity problem:

∇f(x)− λp
q
∇g(x) ∈ C∗

(∇f(x)− λp
q
∇g(x))>x = 0,

x ∈ C, x 6= 0.

From which we infer:

PC(x−∇f(x) + λ
p

q
∇g(x)) = x; PC0(x−∇f(x) + λ

p

q
∇g(x)) = −∇f(x) + λ

p

q
∇g(x),
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where C0 = −C∗, PM (v) stands for the orthogonal projection of v onto M . This is certainly the
basis for some proximal-point algorithms.

The next remark lists some basic facts from standard convex analysis.

Remark 3.4. Let ∅ 6= C ⊆ Rn be a cone. We obtain:

(i) C − C ⊆ span C = aff C;

(ii) if C is convex then cone(C − x̄) = C + Rx̄, and therefore [cone(C − x̄)]∗ = C∗ ∩ x̄⊥;

(iii) if x̄ ∈ ri C then cone(C − x̄) = span C = C − x̄, and so [cone(C − x̄)]∗ = (span C)⊥ =
(C − x̄)⊥ = C⊥.

We start with the following new second-order necessary optimality condition for local optimality.
This result asserts that every local optimal solution to problem (3.10) is a KKT-point provided
either C is convex or x̄ ∈ ri C, and so, f(x̄) is L-eigenvalue. Theorem 1 in [130] is a special case
of our result, when, besides the convexity of C, f is a quadratic form and g is the square of the
Euclidean norm.

Theorem 3.3. Let C be a closed cone, and f, g satisfy Assumption (A) with both functions being
twice differentiable at x̄, where x̄ is any local solution to problem (3.10). The following statements
hold.

(a) If either C is convex or x̄ ∈ ri C, then

∇f(x̄)− p

q
f(x̄)∇g(x̄) ∈ [cone(C − x̄)]∗.

As a consequence, (f(x̄), x̄) is an L-eigenpair. In other words, x̄ is a KKT-point having f(x̄) as
Lagrange multiplier;

(b) if C is convex, the matrix:

∇2f(x̄)− p

q
f(x̄)∇2g(x̄)− p

q

(p
q
− 1

)
f(x̄)∇g(x̄)∇g(x̄)> is copositive on D(x̄),

where D(x̄) .= [∇f(x̄)− p

q
f(x̄)∇g(x̄)]⊥ ∩ (cone(C − x̄))].

(c) If x̄ ∈ ri C, then

∇2f(x̄)− p

q
f(x̄)∇2g(x̄)− p

q

(p
q
− 1

)
f(x̄)∇g(x̄)∇g(x̄)> is copositive on cone(C − x̄).

Proof. Let x̄ be a local solution to problem (3.10), that is, f(x̄) ≤ f(x) for all x ∈ C ∩ U0 satisfying
g(x) = 1, for some open neighborhood, U0, of x̄.
(a): It is known that in case C is convex, given any v ∈ C − x̄, we can choose ε ∈ ]0, 1[ such that:

x̄+ tv

(g(x̄+ tv))1/q ∈ C ∩ U0, ∀ t ∈ ]0, ε[.
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Set

φ(t) .= f
( x̄+ tv

(g(x̄+ tv))1/q

)
= 1

(g(x̄+ tv))p/q
f(x̄+ tv).

By assumption, φ(0) ≤ φ(t) for all t ∈ ]0, ε[. This implies that the right-derivative of φ at 0 is
nonnegative:

0 ≤ φ′(0) =
(
∇f(x̄)− p

q
f(x̄)∇g(x̄)

)>
v.

It is valid for every v ∈ C − x̄, and so the conclusion follows provided C is convex.
We now consider the case when x̄ ∈ ri C. This means that U0 ∩ aff C = U0 ∩ (C − C) ⊆ C for
some open neighborhood, U0, of x̄. From this, we derive the same result as in the convex case for
the function:

φ(t) .= f
( x̄− tv

(g(x̄− tv))1/q

)
,

since cone(C − x̄) is a subspace.
(b): Let v ∈ [∇f(x̄)− p

q
f(x̄)∇g(x̄)]⊥ ∩ (C − x̄). We use the Maclaurin expansion for the function

φ:

φ(t) = φ(0) + tφ′(0) + 1
2φ
′′(0)t2 + t2o(t),

where o(t)→ 0 as t→ 0+. Then:

0 ≤ φ′′(0) = v>
(
∇2f(x̄)− p

q
f(x̄)∇2g(x̄)− p

q

(p
q
− 1

)
f(x̄)∇g(x̄)∇g(x̄)>

)
v.

From which, the desired result is obtained.
(c): Simply notice that the function φ introduced in (a) is defined in ]−ε, ε[, and by local opimality,
φ′(0) = 0.

A remark must be emphasized.

Remark 3.5. As was pointed out in Theorem 3.3, every local solution, x̄, is not necessarily a KKT-
point, even being global, except in the cases when either C is convex or x̄ ∈ ri C. Indeed, Example
3.2 shows an instance where every global solution is not a KKT-point. Here C is nonconvex and
certainly the global solution is not in the relative interior of C. Every solution will be a KKT-point
under strong duality, as Theorem 3.6 below shows. When no extra-conditions are imposed on the
data, a geometric characterization of KKT-points is established in (b) of Theorem 3.6.

Results of the following kind are standard, but you can see how the structure of our problem takes
place.
Recall that L(λ, x) .= f(x) + λ(g(x)− 1) and ∇xL(λ, x) .= ∇f(x) + λ∇g(x).
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Theorem 3.4. Let C be a closed cone, and f, g satisfy Assumption (A) with both functions being
twice differentiable at x̄ ∈ K. If,

∇xL(−p
q
f(x̄), x̄) ∈ [cone(C − x̄)]∗,

and the matrix:

∇2
xL(−p

q
f(x̄), x̄) is strictly copositive on cone(C − x̄),

then x̄ is a strict local minimum of L(−p
q
f(x̄), ·) on C.

Theorem 3.5. Let C be a convex closed cone, and f, g satisfy Assumption (A) with both functions
being twice differentiable at x̄ ∈ K. Assume that

∇xL(−p
q
f(x̄), x̄) ∈ [cone(C − x̄)]∗.

(a) If L(−p
q
f(x̄), ·) is pseudoconvex then x̄ is a solution to problem (3.10);

(b) If f is pseudoconvex and the function x 7→ −p
q
f(x̄)g(x) is quasiconvex, then x̄ is a solution

to problem (3.10).

An important consequence of Theorem 3.3 concerns the particular case when f and g are quadratic
forms. The next corollary does not require convexity on C as Proposition 3 in [130] does.

Corollary 3.3. Let C be a closed cone, and f(x) = x>Ax, g(x) = x>x with A = A>. Assume
that x̄ ∈ ri C is a local solution to problem (3.10). Then x̄ is a global solution.

Proof. For every x ∈ C, we have

L(−f(x̄), x)− L(−f(x̄), x̄) = ∇xL(−f(x̄), x̄)>(x− x̄) + 1
2(x− x̄)>∇2

xL(−f(x̄), x̄)(x− x̄)

= 1
2(x− x̄)>∇2

xL(−f(x̄), x̄)(x− x̄).

We now apply Theorem 3.3 together with the above expansion to conclude that:

x̄ ∈ argmin
C

L(−f(x̄), ·).

The result is obtained as a consequence of (a) in Theorem 3.2.

In what follows we consider the case C = Rn+.
Set I .= {1, . . . , n}. Given J ⊆ I, any x ∈ Rn is written as x = (xJ , x−J) where xJ

.= (xi)i∈J , that
is, xJ is the vector with components whose indexes belong to J ; and x−J is the vector with the
remaining components. Thus 0−J ∈ Rn−|J | is the vector with all its components being zero and
indexes in I \ J , where |J | means the cardinality of J .
The next result is expected.
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Proposition 3.3. Let f, g be differentiable functions satisfying Assumption (A) with C = Rn+,
and λ ∈ R. Then:

λ is L− eigenvalue ⇐⇒


∃ ∅ 6= J ⊆ I, ∃ ȳ ∈ R|J |++ :
∇Jf(ȳ, 0−J)− λp

q
∇Jg(ȳ, 0−J) = 0;

∇−Jf(ȳ, 0−J)− λp
q
∇−Jg(ȳ, 0−J) ∈ Rn−|J |+ .

Here, ∇Jf(x) (resp. ∇−Jf(x)) stands for the vector whose components are the partial derivatives
of f at x ∈ Rn with respect to the indexes belonging to J (resp. I \ J).

Proof. ⇒: Let x̄ ∈ K(λ). Then x̄ ∈ Rn+ \ {0}, and set J .= {i ∈ I : x̄i > 0}. Thus x̄ = (x̄J , 0−J)
and therefore:

∇f(x̄)− λp
q
∇g(x̄) ∈ [T (Rn+; x̄)]∗ = {0J} × Rn−|J |+ ,

since:

T (Rn+; x̄) = T (R|J |+ ; x̄J)× T (Rn−|J |+ ; 0−J).

By taking ȳ = x̄J ∈ R|J |++, the desired implication is proved.
⇐: By setting x̄ = (ȳJ , 0−J), we obtain:

∇f(x̄)− λp
q
∇g(x̄) ∈ {0J} × Rn−|J |+ = [T (Rn+; x̄)]∗.

This means that λ is L-eigenvalue.

Since ∇h is positively homogeneous with degree p− 1, the next assertions are easy to check.

• x ∈ K(λ) ⇐⇒ λ ∈ L(x);

• x ∈ K, µ0 ∈ L(x) =⇒ x ∈ argmin
K

f =⇒ L(x) ⊆ {µ0};

• given any x ∈ C, x 6= 0, it holds (p 6= q):

T (C;x) = T (C; tx) ∀ t > 0; λ ∈ L(x)⇐⇒ λtp−q ∈ L(tx) ∀ t > 0. (3.18)

The next result establishes a relationship between both types of eigenvalues under strong duality.

Proposition 3.4. Let C be a closed cone, and f, g be differentiable functions satisfying Assumption
(A). Then,

(a) µ0 = min {λ ∈ R : λ is eigenvalue};

(b) µ0 = min {λ ∈ R : λ is L−eigenvalue}, provided strong duality holds (see Theorem 3.1).
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Proof. (a): It is straightforward.
(b): By (a), we only need to check the inequality “≥”. Take any x̄ ∈ argmin

K
f . The usual necessary

optimality condition along with Theorem 3.2 allow us to infer that ∇f(x̄)−µ0
p

q
∇g(x̄) ∈ [T (C; x̄)]∗,

which shows that µ0 is L-eigenvalue, and so the proof is complete.

The next remark refers to eigenvalues analysis of symmetric (supersymmetric) tensors.

Remark 3.6. One important implication from Proposition 3.4 concerns the existence of L-eigen-
values of a real m-order n-dimensional symmetric tensor. See Sect. 3.7 for details.

Notice that, in principle, a KKT-point is defined also for infeasible points. In order to characterize
the validity of the KKT optimality conditions, (3.17), for problem (3.10), we need to consider the
linearized approximation problem defined, given x̄ ∈ C, by:

µL
.= inf
v∈G0(x̄)

∇f(x̄)>v, (3.19)

where:
G0(x̄) .=

{
v ∈ T (C; x̄) : ∇g(x̄)>v = 0

}
.

In our model, we have ∇g(x) 6= 0 for all x ∈ C, x 6= 0 because of the Euler identity.

Set FL(v) .= (∇g(x̄)>v,∇f(x̄)>v). It is obvious that µL ∈ {−∞, 0}, and:

µL = 0⇐⇒ [v ∈ T (C; x̄), ∇f(x̄)>v < 0 =⇒ ∇g(x̄)>v 6= 0] (3.20)
⇐⇒ FL(T (C; x̄)) ∩ −({0} × R++) = ∅
⇐⇒ [FL(T (C; x̄)) + R+(0, 1)] ∩ (−{0} × R++) = ∅. (3.21)

Some important facts on the set FL(T (C; x̄)) + R+(0, 1) are collected in the next remark.

Remark 3.7. With the above data and notation, we obtain the following

(i) λ ∈ L(x̄)⇐⇒ (−λp
q
, 1) ∈ [FL(T (C; x̄)) + R+(0, 1)]∗ ⇐⇒ (λ, x̄) is L-eigenpair.

(ii) Assume that FL(T (C; x̄)) + R+(0, 1) is convex. Then, either

1. FL(T (C; x̄)) + R+(0, 1) = R2, or

2. FL(T (C; x̄)) + R+(0, 1) =
{

(v, w) : w ≥ p

q

f(x̄)
g(x̄) v

}
.

Indeed, since ±x̄ ∈ T (C; x̄), FL(±x̄) = ±(∇g(x̄)>x̄,∇f(x̄)>x̄), and so, R
(
1, p
q

f(x̄)
g(x̄)

)
⊆

FL(T (C; x̄)). This implies

R
(
1, p
q

f(x̄)
g(x̄)

)
+ R+(0, 1) ⊆ FL(T (C; x̄)) + R+(0, 1).
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From which the conclusion follows.

We are now ready to describe, firstly, a new necessary and sufficient condition for a non-zero vector
to be a KKT-point; this shows, looking at carefully its proof, that a Fritz John point is indeed a
KKT-point, thanks to the structure of our model. Secondly, under strong duality, it establishes that
every minimizer is a KKT-point. Thus, next theorem supplements the results stated in Theorem
3.3.

Theorem 3.6. Let C be a closed cone, and f, g be differentiable functions satisfying Assumption
(A). Assume that x̄ ∈ C, x̄ 6= 0. The following assertions hold:

(a) x̄ is a KKT-point ⇐⇒ FL(T (C; x̄)) + R+(0, 1) is different from R2 and convex.

In such a case:

FL(T (C; x̄)) + R+(0, 1) =
{

(v, w) : w ≥ p

q

f(x̄)
g(x̄) v

}
.

(b) if strong duality holds, then, for x̄ ∈ K,

x̄ ∈ argmin
K

f ⇐⇒ µ0 ∈ L(x̄)(= {µ0})⇐⇒ x̄ ∈ K(µ0).

Proof. (a)⇒: x̄ is a KKT-point if and only if there exists λ ∈ R such that:

inf
v∈T (C;x̄)

〈
∇f(x̄)− λp

q
∇g(x̄), v

〉
≥ 0 ≥ inf

v∈G0(x̄)
∇f(x̄)>v.

Thus, x̄ ∈ is a KKT-point if and only if µL = 0 and (strong duality for (3.19) holds):

inf
v∈T (C;x̄)

〈
∇f(x̄)− λp

q
∇g(x̄), v

〉
= inf

v∈G0(x̄)
∇f(x̄)>v = µL.

We have already noticed that µL = 0 is equivalent to (3.20); which means that FL(T (C; x̄)) +
R+(0, 1) 6= R2. The convexity of FL(T (C; x̄)) +R+(0, 1) follows from Proposition 5.1 in [58], when
applying to A = FL(T (C; x̄)) and P = R+(0, 1).
⇐: By Remark 3.7,

R
(
1, p
q

f(x̄)
g(x̄)

)
+ R+(0, 1) = FL(T (C; x̄)) + R+(0, 1),

which yields (3.21). By applying a separation result on convex sets to (3.21), we have the existence
of α ∈ R, β ≥ 0, (α, β) 6= (0, 0) such that β∇f(x̄) + α∇g(x̄) ∈ [T (C; x̄)]∗. By Remark 3.3,
βpf(x̄) + αqg(x̄) = 0. Thus, if β = 0 then α = 0 since g(x̄) 6= 0, and so β > 0. Hence, the result is
obtained.
(b): It follows from Theorem 3.2 and the standard first-order necessary optimality condition for
x ∈ argmin

C
L
(
− µ0

p

q
, ·
)
.
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The next example shows an application of (a) in Theorem 3.6 without having strong duality, and
so (b) of the same theorem is not applicable; whereas Example 3.2 shows the result in (b) may be
false if strong duality fails.

Example 3.1. (Strong duality fails, and so (b) of Theorem 3.6 is not applicable, but (a) so is)
Let α and β be any positive real numbers. We will analyze the problem:

µ0(α, β) .= min
{
f(x) : gα,β(x) = 1, x ∈ R2

}
,

with the data f(x1, x2) = x1 + 2x2 and gα,β(x) = 4
√
αx2

1 + βx2
2 and C = R2. In this case, p = 1,

q = 1/2 and T (C;x) = R2 for all x ∈ R2. By virtue of (3.18), we search KKT-points only in the
feasible set K. Thus, from (3.17), we get 1− λαx1 = 0 = 2− λβx2, implying λ 6= 0, x1 6= 0 6= x2,
and therefore x2 = 2α

β
x1. For such points x and (v1, v2) ∈ R2, we obtain:

FL(v) =
(α

2 x1v2 + β

2x2v2, v1 + 2v2
)

=
(α

2 x1, 1
)(
v1 + 2v2

)
.

Then FL(T (C;x)) =
{

(w1, w2) : w2 = 2
αx1

w1, w1 ∈ R
}
, implying the convexity of FL(T (C;x)) +

R+(0, 1) and (3.21). Hence, by Theorem 3.6, (x1, x2) = x1
(
1, 2α

β

)
is a KKT-point with gα,β(x1, x2) =

1. That is,

{
x ∈ K : L(x) 6= ∅

}
=
{
±
√

β

αβ + 4α2

(
1, 2α

β

)}
.

It is easy to check that one is the minimizer (and the other the maximizer) with minimum value:

µ0 = µ0(α, β) = −
√
β + 4α
αβ

.

By applying the second-order optimality condition from Theorem 3.3, we discard those points which
are not local minima. For this example, we get:

∇2f(x̄)− p

q
f(x̄)∇2g(x̄)− p

q

(p
q
− 1

)
f(x̄)∇g(x̄)∇g(x̄)>

= −2f(x̄)
(
∇2g(x̄) +∇g(x̄)∇g(x̄)>

)
= −2f(x̄)


2α2

β + 4α − αβ

β + 4α
− αβ

β + 4α
β2

2(β + 4α)

 .
This is positive semidefinite if and only if f(x̄) ≤ 0, since the matrix

2α2

β + 4α − αβ

β + 4α
− αβ

β + 4α
β2

2(β + 4α)


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is positive semidefinite, having as eigenvalues 0 and 4α2 + β2

2(β + 4α) . This second-order condition is
satisfied only for the point:

x̄ = −
√

β

αβ + 4α2

(
1, 2α

β

)
.

Finally, by using Theorem 3.5, we conclude that such a point is, in fact, a minimizer.

The next example is also related with Theorem 3.3.

Example 3.2. (Strong duality fails, C is not convex, every minimizer is not a KKT-point, and
ri C = ∅)
Take the functions:

f(x1, x2, x3) .=
(x2

1 + x2
2 + 1

4x
2
3)4

√
x1 + x3

−
√
x15

3 , g(x1, x2, x3) .= 8

√
x2

1 + x2
2 + 1

4x
2
3.

and the closed, nonconvex, cone:

C
.=
{

(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1x2 = 0
}
.

Clearly, Assumption (A) fulfills for these data, with p = 15/2, q = 1/4. For x̄ ∈ K, we obtain:

f(x̄1, x̄2, x̄3) = 1√
x̄1 + x̄3

−
√
x̄15

3 , argmin
K

f = {(0, 0, 2)}, µ0 = f(x̄) = 1√
2
−
√

215 < 0.

Therefore strong duality does not hold. Moreover,

T (C, x̄) .= {(v1, v2, v3) ∈ R3 : v1v2 = 0, v1 ≥ 0, v2 ≥ 0, v3 ∈ R}.
[T (C, x̄)]∗ .= {(v1, v2, v3) ∈ R3 : v1 ≥ 0, v2 ≥ 0, v3 = 0}.

Since fx1(x̄) = − 1
2x̄3/2

3
< 0 and gx1(x̄) = 0, we infer that there is no λ ∈ R such that ∇f(x̄) −

λ
p

q
∇g(x̄) ∈ [T (C, x̄)]∗. We also obtain:

FL(v) .=
(
∇g(x̄)>v
∇f(x̄)>v

)
=
(

v3gx3(x̄)
v1fx1(x̄) + v3fx3(x̄)

)
.

Then FL(T (C; x̄)) =
{

(u1, u2) ∈ R2 : u2 ≤
fx3(x̄)
gx3(x̄)u1, u1 ∈ R

}
, where gx3(x̄) = 1/8 and fx3(x̄) =

−676.17, which yields FL(T (C; x̄)) +R+(0, 1) = R2. This means that (3.21), or equivalently, (3.20)
is not satisfied.

Let us establish a necessary and sufficient condition for x̄ to be a KKT-point when it is a minimizer
of f on K. By virtue of Lemma 3.1, we split our discussion into two cases: µ0 < 0 and µ0 > 0.
The remaining case µ0 = 0, which implies strong duality, can be dealt with (b) of Theorem 3.6.
We need the following notation:
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F−L (v) .= (−∇g(x̄)>v,∇f(x̄)>v),

and the condition:

[vk ∈ T (C; x̄),∇g(x̄)>vk → 0,∇f(x̄)>vk < 0] =⇒ lim sup
k
∇f(x̄)>vk = 0. (3.22)

Notice that Example 3.1 also shows that condition (3.22) cannot be substituted by (3.20) in the
following theorem.

Theorem 3.7. Let C be a closed cone, and f, g be differentiable functions at x̄ ∈ K, satisfying
Assumption (A).

(a) Assume that µ0 < 0 and x̄ ∈ argmin
K

f . Then,

x̄ is a KKT − point ⇐⇒ FL(T (C; x̄)) + R2
+ is convex and (3.22) is satisfied].

(b) Assume that µ0 > 0 and x̄ ∈ argmin
K

f . Then,

x̄ is a KKT − point ⇐⇒ F−L (T (C; x̄)) + R2
+ is convex and (3.22) is satisfied].

Proof. See Corollary 5.5 in [57] and Lemma 3.1.

A more verifiable condition than (3.22) is given next:

Proposition 3.5. With the data as above, we have:

(3.23) =⇒ (3.22) =⇒ µL = 0,

where:

[vk ∈ T (C; x̄), vk → v 6= 0,∇f(x̄)>vk < 0] =⇒ ∇g(x̄)>v 6= 0. (3.23)

Proof. Firstly, we easily obtain that (3.22) implies µL = 0 (simply take the constant sequence
vk = v to get µL = 0).
(3.23) ⇒ (3.22): Let vk ∈ T (C; x̄) such that ‖vk‖ → +∞, ∇g(x̄)>vk → 0, ∇f(x̄)>vk < 0. In case
vk → 0, we get (3.22) obviously holds. Now, two possibilities arise: sup

k∈N
‖vk‖ < +∞ with vk 6→ 0

and sup
k∈N
‖vk‖ = +∞. Under the first possibility, up to a subsequence, we get vk → v 6= 0. In such

a case, since ∇f(x̄)>vk < 0, by (3.23) we obtain ∇g(x̄)>v > 0, yielding a contradiction.
If second possibility holds, up to a subsequence, we may suppose that vk

‖vk‖
→ v0 6= 0. Since

∇f(x̄)> vk
‖vk‖

< 0 by (3.23) we get ∇g(x̄)>v0 6= 0. Moreover, since ∇g(x̄)>vk → 0, we have

∇g(x̄)> vk
‖vk‖

→ 0 = ∇g(x̄)>v0, which contradicts the fact that ∇g(x̄)>v0 6= 0. This proves that

under (3.23), the conditions in the left-hand side of (3.22) are fulfilled only if vk → 0, so that (3.22)
holds.
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3.4.3 The case when C comes from two quadratic forms

In most applications the closed cone C is defined by some quadratic forms. We will consider the
case of two forms:

C
.= {x ∈ Rn : x>B1x = 0, x>B2x = 0}.

Here Bi, i = 1, 2, are symmetric matrices of order n with real entries. Notice that any set of the
form {x ∈ Rn : x>Bix ≤ 0} can be reduced to a set with equality, simply by adding one additional
component:

{(x, xn+1) ∈ Rn+1 : x>Bix+ x2
n+1 = 0} = {x ∈ Rn+1 : x>B̃ix = 0},

for a suitable B̃i, as usual.
We start by a simple standard result:

Proposition 3.6. Let R ⊆ Rn be any nonempty set and S be a vector subspace in Rn. Then:

(R ∩ S)∗ = R∗ + S⊥.

Proof. We only need to check one inclusion. Take any z ∈ (R ∩ S)∗ and write z = z1 + z2 with
z1 ∈ S and z2 ∈ S⊥. We claim that z1 ∈ R∗. Let ξ ∈ R. If ξ ∈ S then:

z>1 ξ = z>ξ − z>2 ξ = z>ξ ≥ 0.

In case, ξ ∈ S⊥, then z>1 ξ = 0. Thus, the claim is proved, and the proof is complete.

Let Ci
.= {x ∈ Rn : x>Bix = 0}, for i = 1, 2. Then Ci = −Ci, and so co Ci is a vector subspace.

For a given x̄ ∈ Ci, it is well known that (see for instance [42]):

T (Ci; x̄) = (Bix̄)⊥, if x̄ 6∈ ker Bi; T (Ci; x̄) = Ci = Ci − x̄, if x̄ ∈ ker Bi.

and, in case Bi is indefinite, we have [115, Lemma 3.10]:

co Ci = Rn = span Ci.

Proposition 3.7. Let Ci, i = 1, 2, be as above, and x̄ ∈ C1 ∩ C2. Then T (C1 ∩ C2; x̄) =
T (C1; x̄) ∩ T (C2; x̄), under any of the following circumstances:

(a) {∇g1(x̄),∇g2(x̄)} is linearly independent.

(b) ∇g1(x̄) = 0 = ∇g2(x̄).

Proof. (a): It is [42, Theorem 2.2].
(b): In this case, we have Ci = Ci± x̄ = T (Ci; x̄) for i = 1, 2. Thus, if v ∈ T (C1; x̄)∩T (C2; x̄), then
(x̄+ tv)>Bi(x̄+ tv) = 0 for all t > 0 and i = 1, 2, which mean that x̄+ tv ∈ C1 ∩ C2 for all t > 0.
Hence v ∈ T (C1 ∩ C2; x̄), and since the other inclusion is easy, the proof is complete.
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Then, our problem becomes:

µ0
.= inf{f(x) : g(x) = 1, g1(x) = 0, g2(x) = 0}, gi(x) .= x>Bix, (3.24)

where f and g satisfy Assumption (A).
The dual problem is defined by:

ν
.= sup
λ∈R

inf
x∈C

L(λ, x). (3.25)

Recall that L(λ, x) .= f(x) + λ(g(x) − 1). Moreover, we also define the standard dual problem to
(3.24):

νS
.= sup

(λ,λ1,λ2)∈R3
inf
x∈Rn

LS(λ, λ1, λ2, x), (3.26)

where LS(λ, λ1, λ2, x) .= f(x) +λ(g(x)− 1) +λ1g1(x) +λ2g2(x) is termed the standard Lagrangian.
We say that problem (3.24) has standard strong duality (SSD) if µ0 = νS and problem (3.26)
admits solution. It is easy to check that:

νS ≤ ν ≤ µ0.

On the other hand, given a feasible point x̄ (x̄ 6= 0), it is said that x̄ is a standard KKT point to
problem (3.24), if for some (λ, λ1, λ2) ∈ R3, one has the first order optimality condition:

∇f(x̄) + λ∇g(x̄) + λ1∇g1(x̄) + λ2∇g2(x̄) = 0.

The next result establishes a necessary and suficient optimality condition under strong duality.

Theorem 3.8. Let f, g satisfy Assumption (A) with both functions being twice differentiable at
the feasible point x̄ for (3.24). Let g1, g2 be as above. The following assertions hold.

(a) Assume that {B1x̄, B2x̄} is linearly independent. Then T (C; x̄) = (B1x̄)⊥ ∩ (B2x̄)⊥ and
(a1) =⇒ (a2), where

(a1) Strong duality holds and x̄ is a solution for problem (3.24);

(a2) ∃ λi ∈ R, i = 1, 2, such that ∇f(x̄)− µ0
p

q
∇g(x̄) + λ1B1x̄+ λ2B2x̄ = 0 and

∇2f(x̄)− µ0
p

q
∇2g(x̄) + λ1B1 + λ2B2 is copositive on T (C; x̄).

(b) Assume that Bix̄ = 0, i = 1, 2. Then T (C; x̄) = C − x̄ = C, and (a1) =⇒ (b1), where:

(b1) ∇f(x̄)− µ0
p

q
∇g(x̄) ∈ [T (C; x̄)]∗ = [T (C; x̄)]⊥ and

∇2f(x̄)− µ0
p

q
∇2g(x̄) is copositive on T (C; x̄).

If, in addition, B1 is positive (or negative) semidefinite, then T (C; x̄) = (ker B1)∩ (C2−
x̄), and (b1) is substituted equivalently by (b1′):
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(b1′) ∃ y ∈ Rn such that ∇f(x̄)− µ0
p

q
∇g(x̄) +B1y ∈ (C2)⊥ and

∇2f(x̄)− µ0
p

q
∇2g(x̄) is copositive on (ker B1) ∩ (C2 − x̄).

(c) Assume that C = {x : x>B1x = 0}, B1x̄ = 0 and B1 indefinite. Then T (C; x̄) = C − x̄ = C,
co C = Rn = span C, and (a1) =⇒ (c1), where:

(c1) ∇f(x̄)− µ0
p

q
∇g(x̄) = 0 and

∇2f(x̄)− µ0
p

q
∇2g(x̄) is copositive on C − x̄ = C.

Proof. (a): (a1)⇒ (a2). By Proposition 3.7, and as noticed above:

∇f(x̄)− µ0
p

q
∇g(x̄) ∈ [T (C, x̄)]∗ = [T (C1; x̄) ∩ T (C2; x̄)]∗ = RB1x̄+ RB2x̄.

Hence, there exist λi ∈ R, i = 1, 2, satisfying ∇xLS(−µ0
p

q
, λ1, λ2, x̄) = 0. By Theorem 3.2,

x̄ ∈ argmin
C

L(−p
q
µ0, ·), and so x̄ ∈ argmin

C
LS(−p

q
µ0, λ1, λ2, ·).

Let v ∈ T (C; x̄). Then, there exist tk > 0, xk ∈ C, xk → x̄ such that tk(xk − x̄) → v. For all k
sufficiently large, we obtain:

0 ≤ LS(−µ0
p

q
, λ1, λ2, xk)− LS(−µ0

p

q
, λ1, λ2, x̄)

= ∇xLS(−µ0
p

q
, λ1, λ2, x̄)>(xk − x̄) + 1

2(xk − x̄)>∇2
xLS(−µ0

p

q
, λ1, λ2, x̄)(xk − x̄)

+‖xk − x̄‖2α(x̄;xk − x̄)

= 1
2(xk − x̄)>∇2

xLS(−µ0
p

q
, λ1, λ2, x̄)(xk − x̄) + ‖xk − x̄‖2α(x̄;xk − x̄),

where α(x̄;x− x̄)→ 0 as x→ x̄. This implies the desired claim.
(b): (a1) ⇒ (b1). As above, we get ∇f(x̄) − µ0

p

q
∇g(x̄) ∈ [T (C, x̄)]∗. From a previous discussion,

T (C; x̄) = (C1 − x̄) ∩ (C2 − x̄) = C − x̄ = C, and so [T (C; x̄)]∗ = (C − x̄)⊥ = C⊥. Thus:

∇f(x̄)− µ0
p

q
∇g(x̄) ∈ (C − x̄)⊥.

Let v ∈ T (C; x̄). Then, there exist tk > 0, xk ∈ C, xk → x̄ such that tk(xk − x̄) → v. As in the
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previous proof, it follows that for all k sufficiently large, and some ξ ∈ (C − x̄)⊥,

0 ≤ L(−µ0
p

q
, xk)− L(−µ0

p

q
, x̄)

= ∇xL(−µ0
p

q
, x̄)>(xk − x̄) + 1

2(xk − x̄)>∇2
xL(−µ0

p

q
, x̄)(xk − x̄)

+ ‖xk − x̄‖2α(x̄;xk − x̄)

= ξ>(xk − x̄) + 1
2(xk − x̄)>∇2

xL(−µ0
p

q
, x̄)(xk − x̄)

+ ‖xk − x̄‖2α(x̄;xk − x̄)

= 1
2(xk − x̄)>∇2

xL(−µ0
p

q
, x̄)(xk − x̄) + ‖xk − x̄‖2α(x̄;xk − x̄). (3.27)

Notice that ξ>(xk − x̄) = 0 for all k. Thus we reach the conclusion.
The last part is a consequence of Proposition 3.6 since C1 = ker B1.
(c): (a1) ⇒ (c1). By the above discussion, T (C; x̄) = C, and so [T (C; x̄)]∗ = (co C)∗ = {0},
which implies that ∇f(x̄)− µ0

p

q
∇g(x̄) = 0. By using the same relation (3.27), one concludes that

∇2f(x̄)− µ0
p

q
∇2g(x̄) is positive semidefinite on C = C − x̄.

3.4.4 The quadratic homogeneous case p = q = 2
We now consider the situation when:

f(x) .= 1
2x
>Ax, g(x) .= 1

2x
>Bx,

with A and B being real symmetric matrices, and C as in the preceding subsection.
Condition (iii) in Assumption (A) becomes:

x>B1x = 0 = x>B2x, x 6= 0 =⇒ x>Bx > 0. (3.28)

This implication is a consequence of the stronger assumption:

∃ λi ∈ R, i = 1, 2, B + λ1B1 + λ2B2 is positive definite.

We are ready to establish a necessary and sufficient optimality condition, which refines Theorem
3.8. First of all, we recall that since p = q, strong duality, in our sense, is satisfied.

Theorem 3.9. Let f, g, g1 and g2 be as above satisfying (3.28); x̄ be feasible for (3.24). The
following assertions hold.

(a) Assume that {B1x̄, B2x̄} is linearly independent. Then T (C; x̄) = (B1x̄)⊥ ∩ (B2x̄)⊥ and
(a1)⇐⇒ (a2), where:

(a1) x̄ is a solution for problem (3.24);
(a2) ∃ λi ∈ R, i = 1, 2, such that (A− µ0B + λ1B1 + λ2B2)x̄ = 0 and

A− µ0B + λ1B1 + λ2B2 is copositive on cone(C − x̄).
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(b) Assume that Bix̄ = 0, i = 1, 2. Then T (C; x̄) = C − x̄ = C, and (a1)⇐⇒ (b1), where:

(b1) (A− µ0B)x̄ ∈ [T (C; x̄)]∗ = [T (C; x̄)]⊥ and

A− µ0B is copositive on T (C; x̄).

If, in addition, B1 is positive (or negative) semidefinite, then T (C; x̄) = (ker B1)∩ (C2−
x̄), and (b1) is substituted by (b1′):

(b1′) ∃ y ∈ Rn such that (A− µ0B)x̄+B1y ∈ (C2)⊥ and

A− µ0B is copositive on (ker B1) ∩ (C2 − x̄).

Proof. (a): The first part follows from Theorem 3.8.
(a1) ⇒ (a2). We already know that ∇xLS(−µ0, λ1, λ2, x̄) = 0 for some λi ∈ R, i = 1, 2 and by
Theorem 3.2, x̄ ∈ argmin

C
L(−µ0, ·), and so x̄ ∈ argmin

C
LS(−µ0, λ1, λ2, ·).

For all x ∈ C, we obtain:

0 ≤ LS(−µ0, λ1, λ2, x)− LS(−µ0, λ1, λ2, x̄)

= ∇xLS(−µ0, λ1, λ2, x̄)>(x− x̄) + 1
2(x− x̄)>∇2

xLS(−µ0, λ1, λ2, x̄)(x− x̄)

= 1
2(x− x̄)>∇2

xLS(−µ0, λ1, λ2, x̄)(x− x̄).

From this relation also follows the implication (a2)⇒ (a1).
(b): (a1) ⇔ (b1). As above, we substitute xk by any x ∈ C in the proof of Theorem 3.8 and put
α ≡ 0.
The last part involving (b1′) follows easily once we notice that C1 = ker B1.

The next theorem, whose proof follows from Theorem 3.8 and Theorem 3.9, characterizes when
a feasible point is optimal provided the cone C is determined by a single equality constraint:
C = {x ∈ Rn : x>B1x = 0}.
In this case, Condition (iii) in Assumption (A) becomes:

x>B1x = 0, x 6= 0 =⇒ x>Bx > 0.

It is known ( [119]) that the previous implication is equivalent to:

∃ λ ∈ R, B + λB1 is positive definite. (3.29)

Theorem 3.10. Let f, g and g1 be as above satisfying (3.29); x̄ be feasible for (3.24) with g2 ≡ 0.
The following assertions hold.

(a) Assume that B1x̄ 6= 0. Then T (C; x̄) = (B1x̄)⊥ and (a1)⇐⇒ (a2), where

(a1) x̄ is a solution for problem (3.24);
(a2) ∃ λ0 ∈ R such that (A− µ0B + λ1B1)x̄ = 0 and

A− µ0B + λ1B1 is copositive on cone(C − x̄).
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(b) Assume that B1x̄ = 0, and B1 positive (or negative) semidefinite. Then (a1)⇐⇒ (b1), where

(b1) ∃ y ∈ Rn: (A− µ0B)x̄+B1y = 0 and A− µ0B is copositive on ker B1.

(c) Assume that B1x̄ = 0, and B1 indefinite. Then (a1)⇐⇒ (c1), where

(c1) (A− µ0B)x̄ = 0 and A− µ0B is copositive on C − x̄ = C.

3.5 Comparison between our approach and that which uses SDP
relaxation

We now compare our scheme developed in previous sections and that given by the SDP relaxation as
presented, for instance, in [6] and further expanded in [107]. First of all, we point out that when the
SDP relaxation is successfully applied, it leads to the fulfillment of standard strong duality; whereas
our approach provides a sharper lower estimate for the optimal value of the original problem in case
standard strong duality fails. The comparison will be carried out for the two examples discussed
in [107].

Example 3.3. (Example 2 in [107]) Standard strong duality property fails but strong duality in
our sense holds.
Let us consider the problem:

µ0
.= min

{
2.5x2

1 + 2x1x2 + x2
2 + 3x2

3 : g(x) = 1, x ∈ C
}
, x = (x1, x2, x3), (3.30)

where g(x) .= x2
1 + x2

2 + x2
3 and C .= {x ∈ R3 : −2x1x2 ≤ 0, −x2

1 + x2
2 ≤ 0}. Obviously, for these

data, Assumption (A) is satisfied, and so by Theorem 3.1 and Corollary 3.1, we have strong duality
in our sense, that is:

µ0 = ν
.= inf
x∈C
{f(x)− µ0(g(x)− 1)},

= max
{
λ : f − λg is copositive on C

}
. (3.31)

We already know that µ0 = ν. In what follows the expression f − λg will be analyzed by employing
simple manipulations. More precisely, we will prove that:

f(x)− λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ λ ≤ 2.5.

We split C into three sets, and the equivalence will be checked in each of these sets.
Case 1: x2 = 0. We obtain: f(x)− λg(x) = (2.5− λ)x2

1 + (3− λ)x2
3.

Case 2: x1 > 0, x2 > 0 (so x2 ≤ x1). Clearly 2x2
2 ≤ 2x1x2, which implies:

f(x)− λg(x) = (2.5− λ)x2
1 + (1− λ)x2

2 + (3− λ)x2
3 + 2x1x2 ≥ (2.5− λ)x2

1 + (3− λ)(x2
2 + x2

3).

Case 3: x1 < 0, x2 < 0 (so x2 ≥ x1). We obtain 2x1x2 ≥ 2x2
2, and so:

f(x)− λg(x) = (2.5− λ)x2
1 + (1− λ)x2

2 + (3− λ)x2
3 + 2x1x2 ≥ (2.5− λ)x2

1 + (3− λ)(x2
2 + x2

3).
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By combining all the previous cases, we conclude that:

f(x)− λg(x) ≥ 0, ∀ x ∈ C ⇐⇒ λ ≤ 2.5.

In other words, µ0 = ν = 2.5 because of (3.31). By looking at the objective function, one easily
sees that x̄ = (±1, 0, 0) are two (optimal) solutions.
What follows answers the question whether standard strong duality exists or not. To that purpose
we will apply (a) of Theorem 3.9.
We need to re-write C as defined by equality constraints.
Set now x = (x1, x2, x3, x4, x5), g1(x) .= −2x1x2 + x2

4, g2(x) .= −x2
1 + x2

2 + x2
5, so that (we keep the

same notation C for the conical constraint):

C
.= {x ∈ R5 : −2x1x2 + x2

4 = 0, −x2
1 + x2

2 + x2
5 = 0}.

We use the same terminology as in Subsection 3.4.4. Here, the solutions become x̄ = (±1, 0, 0, 0, 0).
By identifying the matrices A, B, B1, B2, one gets {B1x̄, B2x̄} is linearly independent (so (a) of
Theorem 3.9 is applicable) and

(A− 2.5B + λ1B1 + λ2B2)x̄ = 0⇐⇒ λ1 = 1, λ2 = 0.

Simple computations show that there is no λi ∈ R, i = 1, 2, such that A− 2.5B + λ1B1 + λ2B2 be
positive semidefinite, and so standard strong duality fails. But our Theorem 3.9 provides the extra
information that A− 2.5B +B1 is copositive on cone(C − x̄).

Under SDP relaxation
This approach requires the notation, given any two matrices of the same size U and V ,

U • V .= trace(UV >) = tr(UV >),

and uses the SDP relaxation to Problem (3.30) defined as:

µ̄ = min Q0 •X
st Qi •X ≤ 0, i = 1, 2 (3.32)

I •X = 1, X � 0,

where:

Q0 =

2.5 1 0
1 1 0
0 0 3

 , Q1 =

 0 −1 0
−1 0 0
0 0 0

 , Q2 =

−1 0 0
0 1 0
0 0 0

 , X = xx>.

The (conical) dual problem to (3.32) is:

ν̄ = sup − λ
st Z = Q0 + µ1Q1 + µ2Q2 + λI � 0, (3.33)

µ1 ≥ 0, µ2 ≥ 0.
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Obviously, ν̄ ≤ µ̄ ≤ µ0. One can easily see that Problem (3.33) satisfies the Slater condition, i.e,
there exist µi ≥ 0, i = 1, 2, λ ∈ R such that Z is positive definite (it is possible by choosing λ
sufficiently large). On the other hand, it is shown in [107] that x̃ =

(
2/
√

5, 1/
√

5, 0
)
is a Slater

point of Problem (3.30) (g(x̃) = 1, x̃>Qix̃ < 0, i = 1, 2), which implies that its SDP relaxation
(3.32) also admits a Slater point. As a consequence, µ̄ = ν̄ and both relaxed problems, (3.32) and
(3.33), admit solutions. In addition, it is known that, primal-dual feasible pair X̄ and (Z̄, λ̄, µ̄1, µ̄2)
are optimal if, and only if they satisfy the complementary conditions:

Z̄X̄ = 0, µ̄1Q1 • X̄ = 0, µ̄2Q2 • X̄ = 0.

In [107], the authors solve problems (3.32) and (3.33), and find the unique solutions, respectively,

X̄ =

0.5 0 0
0 0.5 0
0 0 0

 , and

Z̄ =

0 0 0
0 0 0
0 0 1.25

 , λ̄ = −1.75, µ̄1 = 0.75, µ̄2 = 1.

In order to verify whether there exists or not tightness, which means µ0 = µ̄, one applies Theorem
1 in [107]. This result ensures that (3.32) is tight if, and only if “Property J” (as defined in the
same work) fails.
We recall that an optimal complementary pair X̄ and (Z̄, λ̄, µ̄1, µ̄2) is said to have Property J, if
the following conditions are simultaneously satisfied:

1. µ̄1µ̄2 > 0;

2. rank Z̄ = n− 2;

3. rank X̄ = 2, and there is a rank-one decomposition of X̄ as X̄ = x1x1> + x2x2>, such that:

3.1. Q1 • x1x1> = Q1 • x2x2> = 0, [Q2 • x1x1>][Q2 • x2x2>] < 0];

3.2. x1>Q1x
2 6= 0. That is, x1 and x2 are not Q1-orthogonal.

In the present situation, the three conditions required by Property J are satisfied, as it is checked
in [107]. Thus, 1.75 = ν̄ = µ̄ < µ0. Observe that

f(2/
√

5, 1/
√

5, 0) = 3, f(1/
√

2, 1/
√

2, 0) = 2.75.

Here, (1/
√

2, 1/
√

2, 0) is obtained after using a rank-one decomposition to the above matrix X̄.
Finally, the original problem (3.30) is solved once we substitute x2

3 = 1− x2
1 − x2

2 on it. Thus, one
finds that

argmin
K

f = {(±1, 0, 0)}.

Example 3.4. (Example 3 in [107]) Standard strong duality holds.
Let us consider the problem:

µ0
.= min

{
2x2

1 − 2x2x3 + 20x2
3 : g(x) = 1, x ∈ C

}
, x = (x1, x2, x3), (3.34)
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where g(x) .= x2
1 + x2

2 + x2
3 and C .= {x ∈ R3 : 2x2x3 + x2

3 ≤ 0, x2
1 − x2

2 ≤ 0}. As previously,
Assumption (A) is satisfied, and so by Theorem 3.1 and Corollary 3.1, we have strong duality:

µ0 =ν .= inf
x∈C
{f(x)− µ0λ(g(x)− 1)},

= max{λ : f − λg is copositive on C
}
. (3.35)

Thus λ̄ = µ0 = ν. We analyze when the inequality f − λg ≥ 0 holds.
We re-write C as C .= {x ∈ R3 : max{(x2 + x3)2, x2

1} ≤ x2
2}. Since max{a, b} = (a+ b+ |a− b|)/2,

we obtain

f(x)− λg(x) = −(x2 + x3)2 + 3x2
2 + 21x2

3 − λ(x2
1 + x2

2 + x2
3)

≥ −2x2
2 + x2

1 + |(x2 + x3)2 − x2
1|+ 3x2

2 + 21x2
3 − λ(x2

1 + x2
2 + x2

3)
≥ (1− λ)x2

1 + (1− λ)x2
2 + (21− λ)x2

3 + |(x2 + x3)2 − x2
1|.

This implies that if 1−λ ≥ 0 then f(x)−λg(x) ≥ 0 for all x ∈ C. Hence, from (3.35) it follows that
µ0 = ν ≥ 1. By looking at the objective function, we immediately realize that f

(
1√
2 ,

1√
2 , 0
)

= 1,
and therefore µ0 = ν = 1. Consequently

argmin
K

f =
{(
± 1√

2
,

1√
2
, 0
)
,

(
± 1√

2
,− 1√

2
, 0
)}

.

It remains only to see whether there exists or not standard strong duality. We will apply again (a)
of Theorem 3.9.
By re-writing the constraints by equalities as in the previous example by adding the variables x4
and x5. Set now x

.= (x1, x2, x3, x4, x5), g1(x) .= 2x2x3 +x2
3 +x2

4, g2(x) .= x2
1−x2

2 +x2
5, so that (use

the same notation for C) C .= {x ∈ R5 : g1(x) = 0, g2(x) = 0}.
By identifying the matrices A,B,B1, B2, we obtain for all x̄ ∈ argmin

K
f :

(A−B + λ1B1 + λ2B2)x̄ = 0⇐⇒ λ1 = λ2 = 1.

Then A−B +B1 +B2 is positive semidefinite, which yields standard strong duality.

Under SDP relaxation
This approach uses the SDP relaxation to Problem (3.34). As in the previous case, the authors
in [107] find that x̄ =

(
0,− 2√

5 ,
1√
5

)
is a Slater point, and by direct computations, obtain an optimal

complementary pair

X̄ =

0.5 0 0
0 0.5 0
0 0 0

 , and

Z̄ =

0 0 0
0 0 0
0 0 20

 , λ̄ = 1 µ̄1 = µ̄2 = 1.

Thus µ̄ = ν̄ = 1. From this, the authors in [107] check that condition 3.2 in Property J fails. Hence,
there is tightness, and so standard strong duality is satisfied. By using the rank-one decomposition
method, from X̄, one gets an optimal solution given by x̄ =

(
1√
2 ,

1√
2 , 0
)
.
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3.6 A class of quadratic fractional optimization problems with two
quadratic constraints

Motivated by applications, we now consider the problem of minimizing an indefinite quadratic
fractional function under two quadratic constraints. This problem was also studied in [52] via the
approach of SDP relaxation, so the authors provide conditions under which, as a consequence,
standard strong duality is satisfied. On the contrary, our study goes beyond this situation. The
problem is the following:

µqf
.= min

{w>Aw + a>x+ α

w>Bw + b>w + β
: w>B1w + b>1 w + β1 ≤ 0, w>w − δ ≤ 0

}
, (3.36)

where δ > 0; a, b, b1 are in Rn, n ≥ 2; α, β, β1 ∈ R; and A,B,B1 are (real) symmetric matrices of
order n. The feasible set of problem (3.36) is:

K0
.= {w ∈ Rn : w>B1w + b>1 w + β1 ≤ 0, w>w − δ ≤ 0}.

A natural assumption to be imposed is:

w>Bw + b>w + β > 0, ∀ w ∈ K0. (3.37)

By using the generalized Charnes-Cooper transformation:

z = 1√
w>Bw + b>w + β

, y = w√
w>Bw + b>w + β

, (3.38)

problem (3.36) can be written “equivalently” (to be precised later) to the following homogeneous
quadratic minimization problem:

µ0
.= min y>Ay + a>yz + αz2 (3.39)

st y>By + b>yz + βz2 = 1,
y>B1y + b>1 yz + β1z

2 ≤ 0,
y>y − δz2 ≤ 0,

which fits our model with p = q = 2, impliying the validity of strong duality for (3.39), since δ > 0
and under (3.37), Assumption (A) is fulfilled for (3.39).
Problems (3.39) and (3.36) are equivalent in the sense that:

• if (y, z) is feasible (optimal) for problem (3.39) then z 6= 0 and w .= y/z is feasible (optimal)
for (3.36);

• if w is feasible (optimal) for problem (3.36) then (y, z) given by (3.38) is feasible (optimal)
for (3.39).

Hence, µqf = µ0, and so solutions to (3.36) can be obtained by solving a nonconvex homogeneous
quadratic problem.
In order to become the inequality constraints in problem (3.39) into equalities, we introduce the
slack variables xn+2, xn+3. Thus, setting x

.= (y, z, xn+2, xn+3), along with:
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f(x) .= x>Āx, g(x) .= x>B̄x, g1(x) .= x>B̄1x, g2(x) .= x>B̄2x,

where:

Ā =


A

a

2 0 0
a>

2 α 0 0
0 0 0 0
0 0 0 0

 , B̄ =


B

b

2 0 0
b>

2 β 0 0
0 0 0 0
0 0 0 0

 ,

B̄1 =


B1

b1
2 0 0

b>1
2 β1 0 0
0 0 1 0
0 0 0 0

 , B̄2 =


I 0 0 0
0 −δ 0 0
0 0 0 0
0 0 0 1

 ,

problem (3.36) reduces
µ0 = min{f(x) : g(x) = 1, x ∈ C}. (3.40)

Here, C .= {x ∈ Rn+3 : g1(x) = 0, g2(x) = 0}. As above, if δ > 0 and (3.37) holds, then f, g and
C satisfy Assumption (A). To make more readable the expressions, let us introduce some notation:

C0
.= {(y, z) ∈ Rn+1 : g1(y, z, 0, 0) ≤ 0, g2(y, z, 0, 0) ≤ 0};

f̃0(w) .= w>Aw + a>w + α; g̃0(w) .= w>Bw + b>w + β; h(w) .= f̃0(w)
g̃0(w) .

f0(y, z) .= z2f̃0
(y
z

)
; g0(y, z) .= z2g̃0

(y
z

)
= g(y, z, 0, 0);

g̃1(w) .= w>B1w + b>1 w + β1 = g1(w, 1, 0, 0); g̃2(w) .= w>w − δ = g2(w, 1, 0, 0).

The following remark will be taken into account without mentioning it explicitly.

Remark 3.8. For the data as above:

• if x = (y, z, xn+2, xn+3) is feasible for problem (3.40) then z 6= 0 and w .= y/z ∈ K0;

• if w ∈ K0 then:

1√
g̃0(w)

(
w, 1,±

√
−g̃1(w),±

√
−g̃2(w)

)
is feasible for (3.40).

• cone(C − tx) = cone(C − x) for all x ∈ C and all t > 0.

• the following hold:

(y, z, xn+2, xn+3) ∈ C ⇐⇒ (−y,−z, xn+2, xn+3) ∈ C
⇐⇒ (y, z,−xn+2, xn+3) ∈ C
⇐⇒ (−y,−z,−xn+2,−xn+3) ∈ C. (3.41)
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By virtue of Theorem 3.9, we need to compute the gradient of g1 and g2. It is easily seen that:

∇g1(x) = 2


B1y + z

2b11
2b
>
1 y + β1z

xn+2
0

 , ∇g2(x) = 2


y
−δz

0
xn+3

 with x = (y, z, xn+2, xn+3). (3.42)

The next lemma provides very mild conditions under which linear independence of the gradients is
obtained.

Lemma 3.3. Let us consider the above data and assume that x = (y, z, xn+2, xn+3) is feasible for
problem (3.40). The following assertions hold:

(a) ∇g2(x) 6= 0.

(b) If either xn+2 6= 0 or xn+3 6= 0, then {∇g1(x),∇g2(x)} is linearly independent.

(c) If xn+2 = 0 = xn+3, then

(c1) {∇g1(x),∇g2(x)} is linearly dependent ⇐⇒ ∇g1(x) = γ∇g2(x) for some γ ∈ R;

(c2) {∇g1(x),∇g2(x)} is linearly independent ⇐⇒
{
B1y + z

2b1, y
}

is linearly independent.

Proof. (a) This follows from the feasibility of x; (b) is a consequence of (3.42).
(c1) is straighforward; (c2): By (3.42) again, we get {∇g1(x),∇g2(x)} is linearly independent if,
and only if 

 B1y + z

2b11
2b
>
1 y + β1z

 ,( y
−δz

) is linearly independent.

This is equivalent to the linear independence of
{
B1y + z

2b1, y
}

by feasibility again.

Concerning (c) of the preceding lemma, it is not hard to check the equivalence between (3.43) and
(3.44) relating the variable x and the original one w:

[g(y, z, 0, 0) = 1, g1(y, z, 0, 0) = 0, g2(y, z, 0, 0) = 0] =⇒
{
B1y + z

2b1, y
}

is LI. (3.43)

[g1(w, 1, 0, 0) = 0, g2(w, 1, 0, 0) = 0] =⇒
{
B1w + 1

2b1, w
}

is LI. (3.44)

We are ready to establish a characterization of optimality under linear independence of the gradi-
ents.

Theorem 3.11. Let us consider the above data and w̄ be feasible for problem (3.36). Assume that
any of the conditions (a), (b), or (c) is satisfied:

(a) w̄>w̄ < δ;

(b) w̄>B1w̄ + b>1 w̄ + β1 < 0;
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(c) w̄>w̄ = δ, w̄>B1w̄ + b>1 w̄ + β1 = 0 and
{
B1w̄ + 1

2b1, w̄
}

is linearly independent.

Then, w̄ is optimal to (3.36) if, and only if there exist λ1, λ2 ∈ R such that:

Aw̄ + 1
2a− µ0

(
Bw̄ + 1

2b
)

+ λ1

(
B1w̄ + 1

2b1
)

+ λ2w̄ = 0

1
2a
>w̄ + α− µ0

(1
2b
>w̄ + β

)
+ λ1

(1
2b
>
1 w̄ + β1

)
− λ2δ = 0

λ1(w̄>B1w̄ + b>1 w̄ + β1) = 0
λ2(w̄>w̄ − δ) = 0

and Ā− µ0B̄ + λ1B̄1 + λ2B̄2 is copositive on cone(C − x̄), where x̄ belongs to

1√
g̃0(w̄)

{
(w̄, 1, x̃n+2, x̃n+3), (−w̄,−1, x̃n+2, x̃n+3), (w̄, 1,−x̃n+2, x̃n+3),

(−w̄,−1,−x̃n+2,−x̃n+3)
}
,

with:
x̃n+2 =

√
−w̄>B1w̄ − b>1 w̄ − β1 and x̃n+3 =

√
−w̄>w̄ + δ.

Proof. ⇒: Let w̄ be optimal to (3.36). Obviously there exist x̃n+2, x̃n+3 ∈ R satisfying w̄>B1w̄ +
b>1 w̄ + β1 + x̃2

n+2 = 0, w̄>w̄ − δ + x̃2
n+3 = 0. This allows us to infer, in view of (3.41), that any x̄

belonging to:

1√
g̃0(w̄)

{
(w̄, 1, x̃n+2, x̃n+3), (w̄, 1,−x̃n+2, x̃n+3), (w̄, 1, x̃n+2,−x̃n+3), (−w̄,−1, x̃n+2,−x̃n+3)

}
is optimal for problem (3.40) and µqf = µ0, as noticed above. Thus, by Lemma 3.3 and Theorem
3.9 (a), the conclusion is obtained.

In case of active feasible points, the preceding result becomes more precise. It asserts that solving
problem (3.36) amounts to solve a linear system with n+1 equations and three unknown variables;
where the matrix defining such a system has linearly independent column vectors.

Theorem 3.12. Let us consider the above data. Assume that w̄>w̄ = δ, w̄>B1w̄ + b>1 w̄ + β1 = 0
and

{
B1w̄ + 1

2b1, w̄
}
is linearly independent. Then, the following hold:

(a) w̄ is optimal to problem (3.36) if, and only if there exist λ1, λ2 ∈ R such that:(
−Bw̄ − 1

2b
)
µ0 +

(
B1w̄ + 1

2b1
)
λ1 + w̄λ2 = −Aw̄ − 1

2a (3.45)(
−1

2b
>w̄ − β

)
µ0 +

(1
2b
>
1 w̄ + β1

)
λ1 − δλ2 = −1

2a
>w̄ − α. (3.46)

(b) The matrix defining the linear system (3.45)-(3.46) has linearly independent columns.
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Proof. (a): The first order optimality condition follows from the preceding theorem. Conversely,
by combining (3.45) and (3.46), we get w̄>Aw̄+a>w̄+α−µ0(w̄>Bw̄+ b>w̄+β) = 0, which means
that w̄ is optimal.
(b): Let hi, i = 1, 2, 3 be the columns of the matrix, H ∈ R(n+1)×3, determining the linear system
(3.45)-(3.46), and let d be its right-hand side vector, that is,

H = (h1 h2 h3) =

−Bw̄ − 1
2b B1w̄ + 1

2b1 w̄

−1
2b
>w̄ − β 1

2b
>
1 w̄ + β1 −δ

 , d =

 −Aw̄ − 1
2a

−1
2a
>w̄ − α

 .
Suppose to the contrary that {h1, h2, h3} is linearly dependent. Then, there exist (γ1, γ2, γ3) ∈
R3 \ {0} such that:

γ1h1 + γ2h2 + γ3h3 = 0. (3.47)

By assumption, {h2, h3} is linearly independent, therefore γ1 6= 0. Without loss of generality, we
may suppose that γ1 = 1. Thus (3.47) reduces:

−Bw̄ − 1
2b+ γ2

(
B1w̄ + 1

2b1
)

+ γ3w̄ = 0 (3.48)

−1
2b
>w̄ − β + γ2

(1
2b
>
1 w̄ + β1

)
− γ3δ = 0. (3.49)

From (3.49) it follows that:

γ3 =
−b>w̄ − 2β + γ2

(
b>1 w̄ + 2β1

)
2δ .

By substituting in (3.48), we get:

−2Bw̄ − b+ γ2 (2B1w̄ + b1) +

−b>w̄ − 2β + γ2
(
b>1 w̄ + 2β1

)
δ

 w̄ = 0.

Taking the product with w̄> and using the facts that w̄>w̄ = δ and w̄>B1w̄ + b>1 w̄ + β1 = 0, we
obtain:

−2w̄>Bw̄ − b>w̄ + γ2
(
2w̄>B1w̄ + b>1 w̄ + b>1 w̄ + 2β1

)
− b>w̄ − 2β = 0,

which implies w̄>Bw̄ + b>w̄ + β = 0. This is impossible, proving that H has linearly independent
columns, and so rank H = 3.

Part (b) of Theorem 3.12 allows us to employ the (Moore-Penrose) pseudoinverse H† of H for
determining a solution (µ0, λ1, λ2). Indeed, since H has full column rank, it is known that H† =
(H>H)−1H> and H = QR, where Q ∈ R(n+1)×3 has orthonormal columns (Q>Q = I) and
R ∈ R3×3 is upper triangular with non-null diagonal elements. Thus, combining both results, we
have that H† = R−1Q>, see [20, 134]. Therefore, system (3.45)-(3.46) admits a unique solution
given by H†d if, and only if HH†d = d if, and only if QQ>d = d.
By writting:
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R =

R11 R12 R13
0 R22 R23
0 0 R33

 , R−1 =

r11 r12 r13
0 r22 r23
0 0 r33

 ,
and solving the following system of equations:

r11R12 + r12R22 = 0
r11R13 + r12R23 + r13R33 = 0

r22R23 + r23R33 = 0
rii = R−1

ii i = 1, 2, 3,

we get the expression for R−1. Hence, the unique solution of the linear system (under consistency)
is:

µ0 =
(
q1
R11
− R12
R11R22

q2 +
[

R12R23
R11R22R33

− R13
R11R33

]
q3

)>
d (3.50a)

λ1 =
(
q2
R22
− R23
R22R33

q3

)>
d (3.50b)

λ2 =q>3 d

R33
, (3.50c)

where q1, q2, q3 are the three columns of Q. Notice that all the data required in (3.50) are readily
available through few steps of the classical Gram-Schmidt algorithm [20]:
G-S Algorithm

for k = 1 : 3

for i = 1 : k − 1
Rik = q>i hk;

end
q̂k = hk −

∑k−1
i=1 Rikqi;

Rkk = ||q̂k||;
qk = q̂k/Rkk

end

In general, even if the linear system is not consistent, R−1Q>dminimizes the function ξ 7→ ‖Hξ−d‖2
over ξ ∈ R3.

3.7 L-eigenvalues as an extension of H and Z-eigenvalues in real
symmetric tensors problems

Let m,n ∈ N with m ≥ 2, n ≥ 2. A real m-order n-dimensional tensor A consists of nm entries in
R, and it is denoted by:
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A = (Ai1i2...im), i1, i2, . . . , im ∈ {1, 2, . . . , n}.

We say a tensor A is symmetric (the term supersymmetric is also used by some authors) if its entries
Ai1i2...im are invariant under any permutation of the indices (i1i2 . . . im). Furthermore, given any
x ∈ Rn, it is defined:

Axm .=
n∑

i1,··· ,im=1
Ai1i2···imxi1 . . . xim ,

which is anmth-degree homogeneous polynomial wheneverA is symmetric. Throughout this section
the tensor A will be symmetric.
Given x ∈ Rn: ‖x‖k stands for the lk-norm; Axm−1 is the vector in Rn whose i-th component is,

(
Axm−1

)
i

=
n∑

i2,··· ,im=1
Ai i2···imxi2 . . . xim for i = 1, . . . , n,

and set x[k] .= (xk1, . . . , xkn) and x[0] .= (1, . . . , 1).
We now consider the following constrained optimization problem:

µk
.= min

{
Axm : ‖x‖mk = 1, x ∈ C

}
, (3.51)

where C is a closed cone in Rn. Clearly, under symmetry on A, problem (3.51) is a particular
model of (3.1), where:

f(x) = Axm, g(x) = ‖x‖mk . (3.52)

Both functions f and g have the same degree of homogeneity, m, and satisfy Assumption (A). Thus
(Theorem 3.1):

µk = νk
.= sup
λ∈R

inf
x∈C

{
Axm + λ(‖x‖mk − 1)

}
= inf

x∈C

{
Axm − µk(‖x‖mk − 1)

}
.

By Theorem 3.2, x̄ is a solution to (3.51) if and only if:

‖x̄‖mk = 1 and x̄ ∈ argmin
C

L(−f(x̄), ·).

Hence, in order to obtain first- and second-order necessary optimality conditions, we can use The-
orem 3.3 or Theorem 3.8 (when C is determined by two quadratic forms); whereas Theorem 3.4
provides sufficient optimality conditions for strict local optimality. Here, we need the following
computation, given any x ∈ C, x 6= 0,

∇f(x) = mAxm−1, ∇2f(x) = m(m− 1)Axm−2.

The symbol Axm−2 denotes the (m− 2)-times product of the tensor A with the vector x, which is
defined as the matrix of Rn×n whose entries are

(Axm−2)i1i2 =
n∑

i3,...,im=1
Ai1i2i3...imxi3 · · ·xim .
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Moreover,
∇g(x) = m‖x‖m−kk ϕk(x), ∇2g(x) =

(
∇2g(x)ij

)
,

where ϕk(x) .= (x1|x1|k−2, x2|x2|k−2, . . . , xn|xn|k−2) and

∇2g(x)ij =


m(m− k)‖x‖m−2k

k (ϕk(x)i)2 +m‖x‖m−kk (k − 1)|xi|k−2, if i = j;

m(m− k)‖x‖m−2k
k ϕk(x)iϕk(x)j , if i 6= j.

Here, ϕk(x)i stands for the i-th component of the vector ϕk(x).

Observe that in case C ⊆ Rn+, one gets ∇g(x) = m‖x‖m−kk x[k−1] and

∇2g(x)ij =


m(m− k)‖x‖m−2k

k (xk−1
i )2 +m‖x‖m−kk (k − 1)xk−2

i , if i = j;

m(m− k)‖x‖m−2k
k xk−1

i xk−1
j , if i 6= j.

In matrix notation, by introducing the diagonal matrix, Xk−2(x), whose entries are the components
of vector x[k−2], that is, Xk−2(x) .= diag(x[k−2]), we obtain:

∇2g(x) = m(m− k)‖x‖m−2k
k x[k−1](x[k−1])> +m(k − 1)‖x‖m−kk Xk−2(x).

Consequently,

∇2g(x) = m(m− 1)Xm−2(x), if m = k;
∇2g(x) = m(m− 2)‖x‖m−4

2 xx> +m‖x‖m−2
2 I, if k = 2.

The case when C is convex.
We now assume that C is additionally convex. By Definition 3.1 and (iii) of Remark 3.3, any
L-eigenvalue λ ensures the existence of x ∈ Rn such that (see Subsection 3.4.2)

Axm−1 − λ‖x‖m−kk ϕk(x) ∈ C∗,
Axm − λ‖x‖mk = 0,
x ∈ C \ {0}.

(3.53)

A pair (λ, x) satisfying (3.53) is termed a L-eigenpair (see Definition 3.1 in Subsection 3.4.2). In
other words, x ∈ C, x 6= 0, is a KKT-point of (3.51) if (λ, x) is a L-eigenpar for some λ ∈ R.
According to the choice of m, k and C, such a pair takes different names, see the remarks below.
The system (3.53) is a class of homogeneous complementarity problem, since:

〈x,Axm−1 − λ‖x‖m−kk ϕk(x)〉 = 0⇐⇒ Axm − λ‖x‖mk = 0.

Remark 3.9. (Z-eigenvalues/eigenvectors, C = Rn)
The case k = 2 and C = Rn was discussed in [122], where the term Z-eigenvalues (eigenvectors)
is employed. The authors in [92] use the name l2-eigenvalues (eigenvectors). Here, (3.53) reduces:

Axm−1 − λ‖x‖m−2
2 x = 0,

Axm − λ‖x‖m2 = 0,
x ∈ C \ {0},
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since ϕ2(x) = x and T (Rn;x) = Rn.

Remark 3.10. (H-eigenvalues/eigenvectors, C = Rn)
The case k = m and C = Rn was also analyzed in [122], which gives rise to H-eigenvalues (eigen-
vectors). It coincides with the notion of lm-eigenvalues (eigenvectors), introduced in [92]. The
homogeneous complementarity problem (3.53) becomes:

Axm−1 − λϕm(x) = 0,
Axm − λ‖x‖mm = 0,
x ∈ C \ {0}.

Observe that when m is even, ϕm(x) = x[m−1], and if m is odd, one gets:

ϕm(x)i =
{

xm−1
i if xi ≥ 0;

−xm−1
i if xi < 0.

Remark 3.11. The cases C = Rn+ and either k = 2 or k = m were studied in [137]. In view of
the additional nonnegative constraint, ϕk(x) = x[k−1] for all k ∈ N. Here, problem (3.53) takes the
form: 

Axm−1 − λ‖x‖m−kk x[k−1] ≥ 0,
Axm − λ‖x‖mk = 0,
x ≥ 0, x 6= 0.

(3.54)

From the previous remarks and together with Proposition 3.4 and Theorem 3.1, the following result
extends those appeared in [92, 122, 137], where the cases C = Rn+ or C = Rn are only considered.
In what follows f and g are as in (3.52).

Proposition 3.8. Let A be an m-order n-dimensional symmetric tensor and C be a convex closed
cone in Rn. Then

(a) (Set C = Rn) For each case, the set of all Z-eigenvalues and that of all H-eigenvalues coincide
with our notion of L-eigenvalues, as well as with that of simply eigenvalues (See Definition
3.1).

(b) One has, for some x̄ ∈ C, x̄ 6= 0,

µk = min{λ ∈ R : λ is L− eigenvalue} = inf{Axm − µk(‖x‖mk − 1) : x ∈ C}

= min{λ ∈ R : λ is eigenvalue} = min
x∈C
x 6=0

Axm

‖x‖mk
= Ax̄

m

‖x̄‖mk
.

(c) µk = max{λ : f − λg is copositive on C}.

Remark 3.12. Among those KKT-points for problem (3.51), one can identify a solution, x̄, to
(3.51) simply by using Theorem 3.5, once we impose conditions implying the pseudoconvexity of f
and the quasiconvexiy of the function x 7→ −f(x̄)g(x). Notice that g is always quasiconvex, and so
we must take care on the sign of f(x̄).
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The case C .= Rn+ is of particular interest. In this situation, one can also consider the standard
dual problem to (3.51):

νS
.= sup

λ1≥0
λ2∈Rn

+

inf
x∈Rn

{
Axm + λ1(‖x‖mk − 1)− λ>2 x

}
.

We recall that, in this setting, the notions of copositivity or strict copositivity of A on C are referred
to f on C.

Theorem 3.13. Set C .= Rn+. Let A be a m-order, n-dimensional symmetric tensor, that is
copositive on C but not copositive in Rn. Then,

νS < 0 ≤ µk = νk.

As a consequence, standard strong duality does not hold.

Proof. By assumption, µk ≥ 0 and µk = νk (strong duality holds). We choose x̄ ∈ Rn such that

f(x̄) < 0. Set λ̄1
.= −f(x̄)

g(x̄) > 0; it follows that f(x̄)+λg(x̄) < 0 for all λ < λ̄1 and f(x̄)+λg(x̄) > 0

for all λ > λ̄1. Since for every t > 0

inf
x∈Rn

{
f(x) + λ1g(x)− λ>2 x)

}
≤ f(tx̄) + λ1g(tx̄)− tλ>2 x̄

= tm
[
f(x̄) + λ1g(x̄)− 1

tm−1λ
>
2 x̄

]
,

we obtain
inf
x∈Rn

{
f(x) + λ1g(x)− λ>2 x)

}
= −∞, ∀ λ1 < λ̄1, ∀ λ2 ∈ Rn+.

Moreover,

inf
x∈Rn

{
f(x) + λ1(g(x)− 1)− λ>2 x)

}
≤− λ1 ∀ λ1 ≥ λ̄1, ∀ λ2 ∈ Rn+.

Hence
νS

.= sup
λ1∈R
λ2∈Rn

+

inf
x∈Rn

{
f(x) + λ1(g(x)− 1)− λ>2 x

}
≤ −λ̄1 < 0 ≤ µk = νk,

and the proof is complete.

We end this section by making some comments about numerical approaches on computing eigenval-
ues of symmetric tensors. When only the smallest or the largest eigenvalue of a tensor is needed, one
can use: the NQZ method [33] or an iterative one as proposed in [106] (for irreducible nonnegative
tensors); an unconstrained optimization approach [72] for even order tensors; a SOS polynomial
optimization scheme as discussed in [75] (for essentially nonnegative tensors), or the S-HOPM or
SS-HOPM methods as presented in [85] and [86], respectively. For computing all the real eigenval-
ues of a symmetric tensor, an approach based on the Jacobian SDP relaxation method is introduced
in [36].
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3.8 Conclusions and future works
In this chapter an important class of positively homogeneous optimization problems is analyzed.
This class of problems groups various models: specially from classical portfolio (mean-variance)
problems to some of its variants appearing, when dealing with combined economic emission dis-
patch problems and integration of renewable energy sources. Results obtained in this chapter allow
us to overcome usual convexity and regularity assumptions needed in other investigations; there-
fore, we can provide results, for example, when fuel cost or emission functions are not necessarily
convex but given by homogeneous polynomials. Even more, as it can be seen, our results are addi-
tionally applicable for tensors eigenvalues analysis, quadratic fractional optimization problems and
in general, for a class of problems defined by homogeneous functions and the geometrical constraint
set given by two quadratic forms.
As future works, it would be interesting to identify and to analyze other real problems fitting in our
model, specially those where more traditional approaches fail. Particularly, for the combined eco-
nomic emission dispatch problem, we believe two particular subproblems must be addressed: when
the quadratic emission and/or cost functions are not convex and when these functions are given by
cubic polynomials instead. In the later case, is interesting to identify if a suitable homogenization
formulation can be used. On another hand, the copositive re-formulation and the bisection based
algorithm proposed to solve it, when p = q, must be enhanced. Note that, due to the constraint
g(x) = 1, the applicability just for the cases where p = q is not too restrictive and in general, a
enhanced version of this algorithm could be useful for obtaining the optimal value of a problem
(where not necessarily p = q) by solving an auxiliary problem instead. Finally, we also consider
that algorithms must be studied in order to provide not just theoretical insights but solutions when
other approaches fail.
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