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Antonio Iván Garcı́a Alvear

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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Al Centro de Matemáticas para las Aplicaciones (CMA) de la Universidad de Oslo,

por haberme permitido y facilitado realizar mi estadı́a de investigación en ese lugar.

v





Resumen

Los flujos de suspensiones y emulsiones polidispersas son aproximados frecuentemente

por modelos cinemáticos unidimensionales, en los cuales la velocidad de cada especie de la

fase dispersa es una función explı́cita del vector de concentraciones de todas las especies.

Las ecuaciones de balance de masa para todas las especies forman entonces un sistema de

leyes de conservación que describe la segregación espacial y la creación de áreas de diferente

composición. Este tipo de modelos incluye también el flujo vehicular multi-clase, donde los

vehiculos pertenecen a clases diferentes de acuerdo a sus velocidades preferenciales. Estos

modelos también han sido extendidos a flujos que dependen discontinuamente de la coorde-

nada espacial, los cuales aparecen en modelos de clarificador-espesador, flujos en ductos con

variación abrupta del área de sección transversal, y flujo vehicular con condiciones variables

de la superficie del camino. Por otro lado, suspensiones polidispersas con partı́culas de N

clases distintas de tamaño se han utilizado principalmente en experimentos de laboratorio,

pero, en la mayorı́a de las aplicaciones reales, por ejemplo en procesamiento de minerales,

los tamaños de las partı́culas están distribuı́dos continuamente.

Primero, se presenta un modelo cinemático de separación y clasificación continua de

suspensiones polidispersas (separación continua de suspensiones monodispersas). Para este

fin, el montaje del clarificador-espesador (CT) es extendido a un clarificador-espesador gene-

ralizado (GCT). Los flujos de descarga son descritos por nuevos términos de sumidero sin-

gulares. Combinando el montaje GCT con el modelo para la velocidad relativa sólido-fluido

(modelo de Masliyah-Lockett-Bassoon (MLB), para suspensiones polidispersas) genera un

sistema de leyes de conservación no-lineales con una función de flujo discontinua y un

nuevo término de transporte no-conservativo que describe los sumideros. El análisis del

caso escalar (para suspensiones monodispersas) con un sumidero singular y área de sección

transversal constante está enfocado en las nuevas dificultades análiticas que surgen debido
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a este término no-conservativo. Para este fin, se formula un problema reducido, el cual con-

tiene el nuevo término de sumidero del modelo de clarificador-espesador generalizado, pero

no el término de fuente y las discontinuidades de la función flujo. Para el problema reducido,

se proporciona una definición de soluciones de entropı́a, basada en funciones y flujos de en-

tropı́a de tipo Kružkov. Se derivan condiciones de salto y se demuestra la unicidad de la

solución de entropı́a. La existencia de una solución de entropı́a se demuestra probando la

convergencia de un esquema monótono de diferencias finitas. En el caso escalar, los ejem-

plos numéricos ilustran que el esquema y dos variantes convergen a la solución de entropı́a,

pero introducen cantidades diferentes de difusión numérica. En el caso de sistemas, se pre-

senta un algoritmo numérico para la solución de este modelo junto con ejemplos numéricos,

adoptando en parte datos de la literatura. El análisis relacionado a la presencia de términos

de sumidero conduce a dos publicaciones.

Esta tesis presenta también dos trabajos que están relacionados por el estudio de ecua-

ciones conservativas con función de flujo discontinua. En el primero, se presenta una nueva

familia de esquemas numéricos para flujos cinemáticos con una función de flujo discontı́nua.

Se demuestra como un esquema muy simple para el caso escalar, el cual es adaptado a la

estructura “concentración × velocidad” de la función de flujo, puede extenderse a modelos

cinemáticos con velocidades de fase que cambian de signo, flujos con dos o más especies

(el caso de sistemas), y funciones de flujo discontinuas. Se prueba que dos esquemas par-

ticulares dentro de la familia, que se aplican a sistema de leyes de conservación, preservan

una región invariante de vectores admisibles de concentración, siempre que todas las ve-

locidades tengan el mismo signo. Además, se prueba que para el caso relevante de una

discontinuidad multiplicativa de la función de flujo y una densidad máxima constante, una

versión escalar converge a una solución de entropı́a BVt del modelo. En el otro trabajo, el

conocido modelo cinemático de tránsito vehicular de Lighthill-Whitham-Richards (LWR) es

extendido a un modelo de flujo unidireccional en el cual la densidad máxima a(x) representa

las heterogeneidades del camino (modelo LWR heterogéneo), tales como número variable de

pistas, y que puede variar en forma discontinua. Entonces, este modelo LWR heterogéneo

es una ley de conservación escalar con una función de flujo discontinua espacialmente.

Además, el diseño y análisis del esquema descrito anteriormente es mejorado, mientras

su simplicidad es mantenida. En particular, se reducen las pequeñas desviaciones espurias

que pueden ocurrir con la versión original. Se propone también una novedosa versión del
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esquema de Engquist-Osher que se aplica al modelo LWR heterogéneo. Además, se pro-

pone un concepto de solución que incluye desigualdades de entropı́a de tipo Kružkov, y se

prueba que estas desigualdades de entropı́a implican la unicidad de la solución. Este con-

cepto incluye una entropı́a adaptada similar al tipo recientemente propuesto por Audusse y

Perthame en [Proc. Royal Soc. Edinburgh Sect. A, 135, 253–265, 2005]. Se prueba que ambos

esquemas de diferencia y el esquema de Godunov mejorado usado por Daganzo en [Transp.

Res. B, 29, 79–93, 1995] convergen a la única solución de entropı́a. En ambos trabajos, para

las demostraciones de compacidad, se utiliza una novedosa estimación uniforme pero lo-

cal de la variación total espacial de las soluciones aproximadas. Además, puede idearse un

mejoramiento tipo MUSCL en combinación con una discretización del tiempo tipo Runge-

Kutta para alcanzar precisión de segundo orden. Ejemplos numéricos y estudios de error L1

ilustran el desempeño de los esquemas de primer y segundo orden.

Finalmente, el modelo cinemático unidimensional para sedimentación batch de suspen-

siones polidispersas de esferas pequeñas es extendido a suspensiones con distribución con-

tinua de tamaño de partı́culas. Para este propósito, se introduce la llamada función de den-

sidad de fase Φ = Φ(t, x, ξ), donde ξ ∈ [0, 1] es el tamaño normalizado al cuadrado de

las partı́culas, cuya integral con respecto a ξ en un intervalo [ξ1, ξ2], equivale a la fracción

volumétrica en (t, x) ocupada por las partı́culas en ese rango de tamaño. El nuevo modelo

matemático se obtiene combinando el modelo Masliyah-Lockett-Bassoon (MLB) para la ve-

locidad relativa sólido-fluı́do para cada especie sólida con el concepto de función de densi-

dad de fase, el cual es una ecuación cinética escalar de primer orden para Φ. Se presentan tres

esquemas numéricos para la solución de esta ecuación. Se observa de un ejemplo numérico

y de un estudio del error L1 que uno de estos esquemas introduce poca difusión numérica y

sin oscilaciones espurias cerca de las discontinuidades. Varios ejemplos numéricos ilustran

el comportamiento simulado de este tipo de suspensiones.
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Abstract

Flows of polydisperse suspensions and emulsions are frequently approximated by spa-

tially one-dimensional kinematic models, in which the velocity of each species of the dis-

perse phase is an explicitly given function of the vector of concentrations of all species. The

mass balance equations for all species then form a system of conservation laws, which de-

scribes spatial segregation and the creation of areas of different composition. This type of

models also includes multi-class traffic flow, where vehicles belong to different classes ac-

cording to their preferential velocities. These models have also been extended to fluxes that

depend discontinuously on the spatial coordinate, which appear in clarifier-thickener mod-

els, flows in ducts with abruptly varying cross-sectional area, and traffic flow with variable

road surface conditions. On the other hand, polydisperse suspensions with particles of N

distinct size classes have been mainly utilized in laboratory experiments, but, in most real-

world applications, for example in mineral processing, the sizes of particles are continuously

distributed.

First, a kinematic model of continuous separation and classification of polydisperse sus-

pensions (separation of monodisperse suspensions) is presented. To this end, the clarifier-

thickener (CT) setup for the continuous separation of suspensions is extended to a general-

ized clarifier-thickener (GCT). Discharge streams are described by new singular sink terms.

Combining the GCT setup with the model for the solid-fluid relative velocity (Masliyah-

Lockett-Bassoon (MLB) model, for polydisperse suspensions) yields a system of nonlinear

conservation laws with a discontinuous flux and a new non-conservative transport term de-

scribing the sinks. The analysis of the scalar case (for monodisperse suspensions) with one

singular sink and constant cross-sectional area is focused on the new analytical difficulties

arising due to this non-conservative term. To this end, a reduced problem is formulated,

which contains the new sink term of the generalized clarifier-thickener model, but not the
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source term and flux discontinuities. For the reduced problem, a definition of entropy solu-

tions, based on Kružkov-type entropy functions and fluxes, is provided. Jump conditions are

derived and uniqueness of the entropy solution is shown. Existence of an entropy solution is

shown by proving convergence of a monotone difference scheme. In the scalar case, numer-

ical examples illustrate that the scheme and two variants converge to the entropy solution,

but introduce different amounts of numerical diffusion. In the system case, a numerical al-

gorithm for the solution of this model is presented along with numerical examples, in part

adopting data from the literature. The analysis related to the presence of sink terms leads to

two papers.

This thesis also presents two works, which are related by the study of conservative equa-

tions with discontinuous flux. In the first one, a new family of numerical schemes for kine-

matic flows with a discontinuous flux is presented. It is shown how a very simple scheme for

the scalar case, which is adapted to the “concentration times velocity” structure of the flux,

can be extended to kinematic models with phase velocities that change sign, flows with two

or more species (the system case), and discontinuous fluxes. It is proved that two particular

schemes within the family, which apply to systems of conservation laws, preserve an invari-

ant region of admissible concentration vectors, provided that all velocities have the same

sign. Moreover, for the relevant case of a multiplicative flux discontinuity and a constant

maximum density, it is proved that one scalar version converges to a BVt entropy solution

of the model. In the other work, the well-known Lighthill-Whitham-Richards (LWR) kine-

matic traffic model is extended to a unidirectional road on which the maximum density a(x)

represents road inhomogeneities (inhomogeneous LWR model), such as variable numbers

of lanes, and is allowed to vary discontinuously. Then, this inhomogeneous LWR model is

a scalar conservation law with a spatially discontinuous flux. Furthermore, the design and

analysis of the scheme described above is improved, while its simplicity is maintained. In

particular, small spurious overshoots that can occur with the original version are reduced. A

novel version of the Engquist-Osher scheme that applies to the inhomogeneous LWR model

is also proposed. Furthermore, a solution concept involving Kružkov-type entropy inequal-

ities is proposed, and it is proved that these entropy inequalities imply uniqueness. This

concept includes an adapted entropy similar to the type recently proposed by Audusse and

Perthame in [Proc. Royal Soc. Edinburgh Sect. A, 135, 253–265, 2005]. It is proved that both

difference schemes and the improved Godunov scheme used by Daganzo in [Transp. Res. B,
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29, 79–93, 1995] converge to the unique entropy solution. In both works, for the compactness

proofs, a novel uniform but local estimate of the spatial total variation of the approximate so-

lutions is utilized. In addition, a MUSCL-type upgrade in combination with a Runge-Kutta

type time discretization can be devised to attain second-order accuracy. Numerical exam-

ples and L1 error studies illustrate the performance of both the first order and the second

order schemes.

Finally, the one-dimensional kinematic model for batch sedimentation of polydisperse

suspensions of small equal-density spheres is extended to suspensions with a continu-

ous particle size distribution. For this purpose, the so-called phase density function Φ =

Φ(t, x, ξ), where ξ ∈ [0, 1] is the normalized squared size of the particles, is introduced,

whose integral with respect to ξ on a interval [ξ1, ξ2], is equivalent to the volume fraction

at (t, x) occupied by the particles in that size range. The resulting mathematical model,

obtained by combining the MLB model for the solid-fluid relative velocity for each solids

species with the concept of phase density function, is a scalar first-order kinetic equation for

Φ. Three numerical schemes for the solution of this equation are introduced, and a numer-

ical example and an L1 error study show that one of these schemes introduces not much

numerical diffusion and without spurious oscillations near discontinuities. Several numeri-

cal examples illustrates the simulated behaviour of this kind of suspensions.
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Chapter 1

Motivación, Asuntos Preliminares y

Conclusiones

1.1 Ámbito del trabajo

Muchos flujos multifásicos en el campo de la ingenierı́a suponen el flujo de una

substancia dispersa, por ejemplo partı́culas minerales sólidas o gotas de aceite, a

través de una fase continua, digamos un lı́quido o gas. En numerosos casos, la

substancia dispersa consiste de pequeñas partı́culas que pertenecen a diferentes es-

pecies que difieren en alguna cantidad caracterı́stica tal como tamaño o densidad.

Como consecuencia, la substancia dispersa no se mueve como una sola fase; más

bien, las especies diferentes se segregan y crean áreas de diferente composición, lo

cual es la propiedad más interesante en varias aplicaciones. Este movimiento dife-

rencial de las especies se describe frecuentemente por modelos espacialmente uni-

dimensionales, y en la mayorı́a de los casos, el diámetro de las partı́culas es muy

pequeño comparado con el del ducto o recipiente, lo que justifica identificar cada

especie con una fase continua. Modelos similares incluyen también ciertas aproxi-

maciones continuas de tránsito vehicular en una autopista, si los automóviles con

conductores que tienen velocidades preferenciales diferentes son identificados como

especies diferentes.

1
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En general, distinguimos N especies diferentes que originan N fases continuas

sobrepuestas asociadas con fracciones volumétricas o concentraciones (en flujos

multifásicos, o, en el caso de flujo vehicular, densidades) φ1, . . . , φN . Si vi es la ve-

locidad unidimensional de la especie i, entonces las ecuaciones de continuidad de

las N especies en forma diferencial son

∂tφi + ∂x(φivi) = 0, i = 1, . . . , N, (1.1.1)

donde t es el tiempo y x es la posición espacial. Se asume que las velocidades

v1, . . . , vN son funciones dadas del vector Φ := (φ1(x, t), . . . , φN(x, t))T de concen-

traciones locales. Esto produce sistemas de leyes de conservación del tipo

∂tφi + ∂x

(
φivi(Φ)

)
= 0, i = 1, . . . , N. (1.1.2)

Los modelos de flujo unidimensional multi-especie dados por (1.1.2), que in-

volucran a las concentraciones como únicas variables de flujo, se llaman cinemáticos.

Estamos interesados especialmente en dos modelos especı́ficos que han atraı́do in-

terés reciente: uno de tránsito vehicular multi-especie [10, 168, 169, 176, 177, 178], y

uno de sedimentación de suspensiones polidispersas [12, 32, 149, 158, 170, 175].

En numerosas aplicaciones, el número N de especies puede ser grande. Además,

las especies diferentes son competitivas. Por tanto, es conveniente asumir una den-

sidad máxima φmax (por ejemplo, una densidad máxima de automóviles en modelos

de tránsito o la densidad máxima de empaquetamiento de esferas en modelos de

sedimentación), tal que el espacio de fase para (1.1.2) es

Dφmax :=
{
Φ = (φ1, . . . , φN)T ∈ RN :

φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · ·+ φN ≤ φmax

}
.

(1.1.3)

Introduciendo el vector flujo

f(Φ) =
(
f1(Φ), . . . , fN(Φ)

)T
:=
(
φ1v1(Φ), . . . , φNvN(Φ)

)T
, (1.1.4)

podemos reescribir (1.1.2) como el sistema no-lineal de leyes de conservación

∂tΦ + ∂xf(Φ) = 0. (1.1.5)
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Soluciones de (1.1.5) son en general discontinuas, y la velocidad de propagación

σ(Φ+,Φ−) de una discontinuidad en el campo de concentraciones φi que separa los

estados Φ+ y Φ− satisface la bien conocida condición de Rankine-Hugoniot

σ =
fi(Φ

+)− fi(Φ
−)

φ+
i − φ−i

.

Esta tesis trata de modelos cinemáticos de ecuaciones de continuidad (o balance)

de diferentes especies, con funciones de flujo que son discontinuas con respecto a la

variable espacial, es decir, ecuaciones del tipo Φt + f(γ(x),Φ)x = η(x)Φx, donde γ

es un vector de parámetros que es función discontinua de la posición espacial x, y,

la función posiblemente discontinua η(x) es el coeficiente de transporte del término

no conservativo η(x)Φx. El vector γ(x) puede describir, por ejemplo, en el modelo

de tránsito vehicular, condiciones de cambio abrupto de la superficie del camino,

y cambios en el número de pistas. El término η(x)Φx puede representar, por ejem-

plo, un sumidero singular que modela la extracción continua de material desde un

clarificador-espesador. Esta tesis se preocupa del análisis de buen planteamiento y,

de los métodos numéricos para la solución de problemas de valor inicial y proble-

mas de valores inicial y de contorno basados en estos modelos.

1.2 Novedad de este trabajo

Los nuevos temas introducidos y/o analizados en esta tesis incluyen los si-

guientes

en el Capı́tulo 3:

• Una extensión del modelo de clarificador-espesador estudiado en [31] me-

diante un sumidero singular a través del cual se extrae material de la unidad

(modelo completo)

• Formulación de un problema reducido a partir del modelo completo
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• Una definición de soluciones de entropı́a para el problema reducido

• Demostraciones de unicidad y existencia de una solución de entropı́a del pro-

blema reducido

• Un esquema de diferencias finitas explı́cito para los modelos completo y re-

ducido

• Dos variantes del esquema, los cuales varı́an en su facilidad de imple-

mentación y nivel de resolución no-difusiva

en el Capı́tulo 4:

• Un nuevo modelo para la clasificación y separación continuas de suspensiones

polidispersas, el cual extiende el modelo de clarificador-espesador por medio

de sumideros singulares que describen la descarga continua de productos en

varios puntos

• Un esquema numérico para su simulación y un método para calcular las con-

centraciones en los sumideros

• Ejemplos numéricos con datos de experimentos publicados en la literatura, y

comparación entre las simulaciones y los resultados experimentales

en el Capı́tulo 5:

• Una nueva familia de esquemas numéricos para modelos cinemáticos con

función de flujo discontinua, en los cuales el flujo numérico está basado

explı́citamente en la estructura “concentración × velocidad” de cada compo-

nente del flujo. Además, estos esquemas no requieren ningún cálculo de va-

lores propios (a parte de una estimación del radio espectral para la condición

CFL de estabilidad), vectores propios, descomposición campo-a-campo, par-

tición del vector flujo, etc.
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• Demostración que dos esquemas particulares dentro de la familia, que se apli-

can a sistemas de leyes de conservación, preservan una región invariante de

concentraciones o densidades admisibles, siempre que todas las velocidades

tengan el mismo signo

• Demostración de convergencia de un esquema de diferencias monótono a una

solución de entropı́a BVt para el caso escalar de función de flujo discontinua y

densidad máxima constante

• Una nueva estimación uniforme pero local de la variación total espacial de

soluciones aproximadas generadas por esquemas monótonos para leyes de

conservación con función de flujo discontinua

en el Capı́tulo 6:

• Una extensión del conocido modelo cinemático de tránsito vehicular de

Lighthill-Witham-Richards a un modelo de flujo unidireccional en el cual la

densidad máxima a(x) representa las inhomogeneidades del camino, tales

como número variable de pistas, y que puede variar en forma discontinua

• Mejora del diseño y el análisis del esquema propuesto por Bürger et al. in [25],

manteniendo su simplicidad. En particular, se reducen pequeñas desviaciones

espurias que pueden ocurrir con la versión original

• Una novedosa versión del esquema de Engquist-Osher que se aplica al mismo

modelo

• Un concepto de solución que incluye desigualdades de entropı́a de tipo

Kružkov, el cual incluye una entropı́a adaptada similar al tipo recientemente

propuesto por Audusse y Perthame [6]

• Demostración de unicidad de una solución de entropı́a del modelo
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• Demostración de convergencia a la única solución de entropı́a de ambos es-

quemas de diferencias finitas y del esquema mejorado de Godunov usado por

Daganzo en [49]

en el Capı́tulo 7:

• Un nuevo modelo matemático para la sedimentación de suspensiones con

distribución continua de tamaño de partı́culas, el cual extiende el modelo

cinemático unidimensional para la sedimentación batch de suspensiones po-

lidispersas de esferas pequeñas de igual densidad

• Una función de densidad de fase Φ = Φ(t, x, ξ), donde ξ ∈ [0, 1] es el tamaño

normalizado al cuadrado de las partı́culas

• Tres esquemas numéricos para la solución de problemas basados en esta

ecuación

Para insertar más este trabajo en el marco de la literatura, recordaremos

brevemente en las Secciones 1.3-1.6 algunos hechos conocidos acerca de modelos

cinemáticos, ingredientes no-estándar, y discretizaciones.

1.3 Modelos cinemáticos para flujo multi-especie

El modelo cinemático de tránsito para N = 1 se remonta a Lighthill y Whitham

[125], y Richards [146]; para la sedimentación de suspensiones, la referencia clásica

es Kynch [120]. La extensión del modelo de Lighthill-Whitham-Richards (LWR) al

tránsito multi-clase fue propuesto independientemente por Wong y Wong [168] y,

Benzoni-Gavage y Colombo [10], mientras extensiones análogas del modelo de se-

dimentación han sido sugeridas por varias décadas (ver reseñas en [20, 175]), prin-

cipalmente en la literatura de ingenierı́a quı́mica. Aunque los modelos cinemáticos

caen dentro del área de investigación establecida de leyes de conservación [48, 124],
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la aplicación de herramientas disponibles de análisis numérico y matemático es

difı́cil. Esto se debe en gran parte a la dependencia de las funciones vi(Φ) de todas

las variables φ1, . . . , φN , la cual es en general no-lineal. Para Φ en el interior deDφmax ,

el Jacobiano Jf (Φ) := (∂fi/∂φk)16i,k6N tiene usualmente solo componentes distintas

de cero, tal que fórmulas cerradas para sus valores propios y vectores propios son

al menos complicadas, y en general no disponibles para N ≥ 5. Por lo tanto, es en

general imposible resolver en forma cerrada el problema de Riemann para (1.1.2).

1.4 Análisis de modelos cinemáticos

Recordemos que el sistema (1.1.5) se llama hiperbólico en un estado Φ, si Jf (Φ)

solo tiene valores propios reales, y estrictamente hiperbólico si además éstos son dis-

tintos entre sı́. Para N = 2, un sistema con un par de valores propios complejos con-

jugados es elı́ptico. En algunas circunstancias, el tipo es mixto, lo cual significa que el

sistema es no-hiperbólico (o elı́ptico) para todo Φ ∈ E ⊂ Dφmax , yDφmax\E 6= ∅. Para

N ≤ 3, el criterio de elipticidad puede ser evaluado mediante el cálculo conveniente

de un discriminante [32].

Mientras las construcciones de soluciones exactas continuan siendo difı́ciles,

grandes avances se han hecho recientemente en el análisis de hiperbolicidad y car-

acterización de valores propios de modelos cinemáticos multi-especie. Para un mo-

delo de asentamiento de dispersiones aceite-en-agua, el cual es similar a los modelos

de sedimentación y tránsito, Rosso y Sona [149] probaron para N arbitrario hiper-

bolicidad estricta en el interior de Dφmax . La demostración se basa en derivar una

fórmula cerrada explı́cita del polinomio caracterı́stico p(λ; Φ) = det(Jf (Φ)−λI) me-

diante posibilidades de eliminación en el determinante. Luego, p(λ; Φ) es evaluado

en N argumentos λ apropiados que producen valores de signo alternado, lo cual

junto con una discusión de p(λ; Φ) para λ → ±∞ implica que p(λ; Φ) debe tener N

distintos ceros. Después de analı́sis preliminares para N ≤ 3 [32], Berres et al. [12]

probaron en una forma similar que el modelo de Masliyah-Lockett-Bassoon (MLB)

[12, 128, 129] para la sedimentación de suspensiones polidispersas con partı́culas
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de igual densidad es estrı́ctamente hiperbólico para un número arbitrario N de es-

pecies (clases de tamaño). La idea básica fue también usada por Zhang et al. [178]

para probar hiperbolicidad estricta del modelo de tránsito multi-clase propuesto en

[10, 168].

1.5 Ingredientes no-estándar de los modelos

Las aplicaciones en que estamos interesados originan también flujos espacial-

mente no-homogéneos, en los cuales la velocidad vi no solo depende de Φ, sino

también de un vector de parámetros γi que es una función de la posición espacial x,

γi = γi(x). Mientras que modelos para los cuales γi depende, por ejemplo, en forma

Lipschitz continua de x llevan a leyes de conservación que pueden ser tratadas con

métodos analı́ticos y numéricos estándar, aquı́ estamos interesados en el caso que γi

depende discontinuamente de x; más precisamente, asumimos que γi es suave por

tramos con un número finito de discontinuidades. El vector γi(x) puede describir,

por ejemplo, en el modelo de tránsito vehicular, condiciones de cambio abrupto de

la superficie del camino, como fue hecho en [27, 132] para un modelo de especie

única, y cambios en el número de pistas [75]; fuentes de alimentación singular y flu-

jos volumétricos divergentes en modelos de clarificador-espesador [23, 31]; y cam-

bios abruptos de área de sección transversal en recipientes para el asentamiento de

suspensiones y emulsiones.

Algunos modelos pueden incluir también términos de fuente y sumidero singu-

lares, los cuales pueden depender de la posición espacial x, del tiempo t, o ambos.

El término fuente puede representar, por ejemplo, la inyección de suspensión de

alimentación en clarificadores-espesadores, como fue hecho en [31], en el cual este

término no depende de x, y por consiguiente el modelo puede expresarse como una

ley de conservación homogénea con función de flujo discontinua. Mientras que, el

término de sumidero puede modelar, por ejemplo, la extracción de material desde

recipientes de clarificación-espesamiento, como se vió en [24], en el cual el término

de sumidero depende de x y t, debido a que depende de la solución del problema.
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Por otro lado, en la mayorı́a de las aplicaciones, por ejemplo en procesamiento de

minerales, las partı́culas no son de un número finito de distintas clases de tamaño,

sino que el tamaño de las partı́culas están distribuı́das continuamente [40, 170].

1.6 Discretizaciones

Para modelos cinemáticos escalares (N = 1) con función de flujo continua, diver-

sos esquemas numéricos ya han sido propuestos y analizados en la literatura (ver

por ejemplo LeVeque [124]). Para leyes de conservación escalares con función de

flujo discontinua, varios métodos numéricos se han desarrollado y analizado. Men-

cionaremos por ejemplo, el método front tracking y el esquema de diferencias finitas

upwind de Engquist-Osher.

El método front tracking se basa en los trabajos de Dafermos [47] y Holden et

al. [94]. Variantes del método han sido usados por muchos autores, ver Holden y

Risebro [96] para la historia y varias referencias del método. Por ejemplo, Gimse

y Risebro en [82] usaron este método para estudiar la ecuación de flujo bifásico.

Algunas variantes de la técnica front tracking también han sido usadas previamente

para calcular soluciones aproximadas de problemas de sedimentación batch, ver

Kunik [116, 117], Kunik et al. [118] y, Bustos y Concha [37]. Una demostración de

convergencia del método front tracking para el modelo de clarificador-espesador es

dado por Bürger et al. en [28].

El esquema de Engquist-Osher para problemas con función de flujo discontinua

se deriva modificando ligeramente el esquema upwind estándar de Engquist-Osher

[64]. Con el flujo numérico de Engquist-Osher, el algoritmo resultante es un bien

llamado esquema upwind, lo cual significa que la diferenciación de la función de

flujo es predispuesta en la dirección de las ondas entrantes, haciendo posible re-

solver los choques sin difuminación excesiva. Para el caso de un único parámetro

discontinuo, Towers en [159] probó que el esquema modificado de Engquist-Osher

converge para el caso de una función de flujo cóncava, y en [160] para una función

de flujo con cualquier número finito de puntos crı́ticos. Karlsen et al. en [104] ex-
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tendieron el esquema, tal que pueda aplicarse a ecuaciones parabólicas degeneradas

con discontinuidades en la función de flujo convectiva, y estableció la convergencia

a una solución débil. Bürger et al. en [31] probaron convergencia del esquema de

Engquist-Osher para el modelo de clarificador-espesador, es decir, el caso de dos

parámetros discontinuos.

A pesar de los nuevos resultados de hiperbolicidad, conocimientos más profun-

dos en cualquier modelo cinemático especı́fico de N especies con N ≥ 3 pueden

ser obtenidos de manera realista solamente a través de simulación numérica. Esque-

mas de alta resolución para sistemas de leyes de conservación, que aproximan las

discontinuidades marcadamente y sin oscilaciones espurias y que son al menos de

segundo orden en precisión en regiones suaves, son candidatos naturales para la

solución numérica de (1.1.2). Por ejemplo, Wong, Shu y sus colaboradores [176, 178]

aplicaron los esquemas esencialmente no-oscilatorios con peso (WENO) al modelo

de tránsito, mientras que Bürger, Karlsen y colaboradores [12, 20, 22, 145] emplearon

esquemas de diferencias centrales [119, 138] para el modelo de sedimentación. Mien-

tras tanto, esquemas centrales también han sido aplicados a un número de proble-

mas reales de sedimentación polidispersa, ver por ejemplo Xue y Sun [170], Simura

y Ozawa [153], y Wang et al. [167]. Recientemente [36], los esquemas WENO fueron

combinados con una técnica de multiresolución para producir un método para mo-

delos cinemáticos que concentran en forma adaptiva el esfuerzo computacional en

zonas de variación fuerte.

Todo estos métodos están basados en esquemas que pueden aplicarse univer-

salmente a sistemas de leyes de conservación, y que no están adaptados a una es-

tructura algebraica particular de la función vectorial de flujo. Los esquemas que son

de primer orden en precisión, pueden ser mejorados a un orden más alto de pre-

cisión empleando técnicas de tipo MUSCL [124].
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1.7 Perfil de este trabajo

Los Capı́tulos 3 a 7 de este trabajo están basados en artı́culos de investigación

originales que han sido publicados, aceptados o están en diferentes etapas de re-

visión, o en preparación. Se han aplicado ligeras correciones a las versiones de las

revistas para lograr un estilo uniforme de citaciones y referencias, y de diseño dentro

de este trabajo.

En el Capı́tulo 3, extendemos el modelo de clarificador-espesador estudiado en

[31] por un sumidero singular a través del cual se extrae material desde la unidad.

Una dificultad es que en contraste a la fuente singular, el término de sumidero no

puede ser incorporado en la función de flujo; más bien, el sumidero es represen-

tado por un nuevo término de transporte no-conservativo. Para centrarse en las

nuevas dificultades analı́ticas que surgen debido a este término no-conservativo,

formulamos un problema reducido, el cual contiene el nuevo término de sumidero

del modelo de clarificador-espesador extendido (modelo completo), pero no el

término de fuente y las discontinuidades de la función de flujo. Para el análisis

de buen planteamiento del problema reducido, proporcionamos una definición de

soluciones de entropı́a, basada en funciones y flujos de entropı́a de tipo Kružkov,

derivamos condiciones de salto y mostramos la unicidad de la solución de entropı́a.

Demostramos la existencia de una solución de entropı́a probando la convergencia

de un esquema de diferencias monótono. Introducimos dos variantes del esquema

numérico para ambos modelos (completo y reducido). Observamos de los resulta-

dos numéricos y de los estudios de error L1 que las tres variantes convergen a la

solución de entropı́a, pero introducen diferentes cantidades de difusión numérica.

El Capı́tulo 3 ha sido publicado como:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. On an extended clarifier-

thickener model with singular source and sink terms. European Journal of

Applied Mathematics 17 (2006), 257–292.
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En el Capı́tulo 4, empleamos el modelo cinemático para suspensiones po-

lidipersas de Masliyah-Lockett-Bassoon (MLB) para simular separación y clasifi-

cación continua de este tipo de suspensiones. Para este fin, extendemos el mon-

taje del clarificador-espesador (CT) para separación continua de suspensiones a un

clarificador-espesador generalizado (GCT), adicionando flujos de descarga (de pro-

ductos) en varios puntos, los cuales son descritos mediante nuevos términos de

sumidero singulares. Combinando el montaje GCT con el modelo MLB, se genera un

sistema de leyes de conservación no-lineales con una función de flujo discontinua y

un nuevo término de transporte no-conservativo que describe los sumideros. Defini-

mos un algoritmo numérico para la solución de esta ecuación, y un método para cal-

cular las concentraciones en los sumideros. Presentamos ejemplos numéricos, adop-

tando en parte datos de la literatura. Concluı́mos que el modelo describe la unidad

GCT con todos los parámetros de diseño crı́tcos, y predice las composiciones del re-

balse, descarga y sumideros, y la evolución espacio-temporal de las concentraciones

de las especies sólidas dentro de la unidad.

El Capı́tulo 4 ha sido aceptado para publicación como:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. (2007) A kinematic model

of continuous separation and classification of polydisperse suspensions. Com-

puters & Chemical Engineering, por aparecer.

En el Capı́tulo 5, presentamos una nueva familia de esquemas numéricos para

modelos cinemáticos con funciones de flujo que dependen discontinuamente de

la variable espacial. Extendemos un esquema muy simple para el caso escalar, el

cual se adapta a la estructura “concentración × velocidad” de la función de flujo,

a modelos cinemáticos con velocidades de fase que cambian de signo, flujos con

dos o más especies, y funciones de flujo discontinuas. Además, puede idearse un

mejoramiento tipo MUSCL en combinación con una discretización del tiempo tipo

Runge-Kutta para alcanzar precisión de segundo orden. Probamos que dos esque-

mas particulares dentro de la familia, que se aplican a sistema de leyes de conser-
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vación, preservan una región invariante de vectores admisibles de concentración,

siempre que todas las velocidades tengan el mismo signo. Además, probamos que

para el caso relevante de una discontinuidad multiplicativa de la función de flujo

y una densidad máxima constante, una versión escalar converge a una solución de

entropı́a BVt del modelo. En el último caso, la demostración de compacidad incluye

una novedosa estimación uniforme pero local de la variación total espacial de las

soluciones aproximadas. Presentamos ejemplos numéricos y estudios del error L1

para dos de los ejemplos, para ilustrar el desempeño de todas las variantes den-

tro de la nueva familia de esquemas, incluyendo aplicaciones a problemas de sedi-

mentación, tránsito vehicular, y asentamiento de emulsiones aceite-en-agua.

El Capı́tulo 5 ha sido aceptado para publicación como:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. (2007) A family of schemes

for kinematic flows with discontinuous flux. Journal of Engineering Mathematics,

por aparecer.

En el Capı́tulo 6, extendemos el conocido modelo cinemático de tránsito vehi-

cular de Lighthill-Witham-Richards a un modelo de flujo unidireccional en el cual

la densidad máxima a(x) representa las inhomogeneidades del camino, tales como

número variable de pistas, y que puede variar en forma discontinua. La evolución

de la densidad de automóviles φ = φ(x, t) puede ser descrita por el problema de

valor inicial

φt +
(
φv(φ/a(x)

)
x

= 0, (x, t) ∈ R× (0, T ); φ(x, 0) = φ0(x), x ∈ R. (1.7.1)

Aquı́ z 7→ v(z) es la función velocidad, donde se asume que v(z) ≥ 0, y z 7→ v(z) es

no-creciente. Ya que a(x) puede tener una discontinuidad de salto, (1.7.1) es una ley

de conservación escalar con una función de flujo discontinua espacialmente. Leyes

de conservación que tienen discontinuidades de flujo han recibido mucha atención

en los años recientes. Propusimos en el Capı́tulo 5 [25] un esquema de diferencias
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finitas simple para leyes de conservación como (1.7.1). En esta contribución, mejo-

ramos el diseño y el análisis de ese esquema, mientras mantenemos su simplici-

dad. En particular, se reducen pequeñas desviaciones espurias que pueden ocurrir

con la versión original. También proponemos una novedosa versión del esquema de

Engquist-Osher que se aplica al problema (1.7.1). Además, proponemos un concepto

de solución incluyendo desigualdades de entropı́a tipo Kružkov, y probamos que

estas desigualdades de entropı́a implican la unicidad de la solución. Este concepto

incluye una entropı́a adaptada similar al tipo propuesto recientemente por Audusse

y Perthame [6]. Probamos que ambos esquemas de diferencias finitas y el esquema

mejorado de Godunov usado por Daganzo en [49], convergen a la única solución de

entropı́a. Para establecer compacidad de la sucesión aproximante, utilizamos una

nueva cota local de la variación espacial [25] [Capı́tulo 5 de esta tesis). El concepto

de solución concuerda necesariamente con el que se deduce al considerar el prob-

lema presente como un sistema hiperbólico resonante. Esto se deduce del teorema

de unicidad presentado aquı́, junto con el teorema de convergencia que se aplica

a su esquema de Godunov. Presentamos resultados de experimentos numéricos y

un estudio del error L1 para los esquemas de primer orden, y para las versiones

MUSCL/Runge-Kutta que son formalmente de precisión de segundo orden.

El Capı́tulo 6 corresponde al siguiente artı́culo en preparación:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. A difference scheme and

entropy solutions for an inhomogeneous kinematic traffic flow model.

En el Capı́tulo 7, extendemos el modelo cinemático unidimensional para sedi-

mentación batch de suspensiones polidispersas de esferas pequeñas a suspensiones

con distribución continua de tamaño de partı́culas. Para este propósito, introduci-

mos la llamada función de densidad de fase Φ = Φ(t, x, ξ), donde ξ ∈ [0, 1] es el

tamaño normalizado al cuadrado de las partı́culas, cuya integral con respecto a ξ

en un intervalo [ξ1, ξ2], equivale a la fracción volumétrica en (t, x) ocupada por las

partı́culas en ese rango de tamaño. Obtenemos el nuevo modelo matemático combi-
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nando el modelo Masliyah-Lockett-Bassoon (MLB) para la velocidad relativa sólido-

fluı́do para cada especie sólida con el concepto de función de densidad de fase, el

cual es una ecuación cinética escalar de primer orden para Φ. Presentamos tres es-

quemas numéricos para la solución de esta ecuación. Observamos de un ejemplo

numérico y de un estudio del error L1 que uno de estos esquemas introduce poca

difusión numérica y sin oscilaciones espurias cerca de las discontinuidades. Final-

izamos con varios ejemplos numéricos que ilustran el comportamiento simulado de

este tipo de suspensiones.

El Capı́tulo 7 es parte de un trabajo más completo en preparación, el cual incluirá

un análisis de los valores propios de la ecuación del modelo. Los autores y el tı́tulo

del artı́culo son:

• Bürger, R., Garcı́a, A. & Kunik, M. Sedimentation of polydisperse suspensions

with a continuous particle size distribution.

Apéndice

En el Apéndice, presentamos ejemplos numéricos que fueron parte de versiones

anteriores del artı́culo “A kinematic model of continuous separation and classifica-

tion of polydisperse suspensions” (Capı́tulo 4 de este trabajo). La elección de ejem-

plos de la versión final de ese artı́culo está basada en los comentarios que recibimos

en las revisiones del mismo. No obstante, decidimos incluir los ejemplos previos

en esta tesis, ya que representan otros casos interesantes, tales como clasificación

continua en recipientes con área de sección transversal rectangular, clasificadores

operados en modo clarificador-espesador (es decir, el flujo de alimentación se di-

vide en flujos ascendente y descendente), y clasificación continua con cambios en

las variables de control.
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1.8 Perspectivas y problemas abiertos

En el Capı́tulo 3, nos hemos centrado en el modelo reducido y su esquema

numérico asociado para destacar los aspectos del problema que son más o menos

únicos a la porción de sumidero del modelo. Dejamos como un problema abierto

la tarea de combinar la definición de solución de entropı́a y los resultados de este

capı́tulo (buen planteamiento del problema reducido) con aquellos de [31] (buen

planteamiento del modelo de clarificador-espesador). El objetivo serı́a probar que

el problema completo está bien planteado. Por otro lado, debido a que es posible la

formación de un salto de concentraión a través del nivel del sumidero x = xD, el

valor u(xD, t) se vuelve indeterminado, y en consecuencia, es necesario desarrollar

un método para calcular la concentración de sólidos de la suspensión que se extrae

por el sumidero. Dejamos el diseño y análisis de ese método como otro problema

abierto.

En el Capı́tulo 4, un problema abierto serı́a el análisis de buen planteamiento

del modelo de clarificador-espesador generalizado. Además, es posible mejorar

este modelo por medio de otros modelos de velocidad relativa sólido-fluido, mo-

delos parabólicos, ecuaciones adicionales de balance (momento lineal, energı́a),

tratamiento multidimensional, etc. Por otra parte, se propuso un método numérico

para calcular la concentración de sólidos en los sumideros, a partir de balances de

masa de los sólidos y basados en la velocidad finita de propagación de las ondas de

concentración. Dejamos el análisis de este método como otro problema abierto.

En el Capı́tulo 5, los problemas abiertos serı́an probar que para el modelo de sed-

imentación polidispersa, los esquemas 6, 7 y 8 generan aproximaciones que asumen

valores en el dominio de las concentraciones fı́sicamente relevantes; y estudiar las

oscilaciones en la solución usando el esquema 9 (de segundo orden) en la ubicación

de un salto grande en φ.

En el Capı́tulo 6, si la función de flujo no es estrı́ctamente cóncava, nuestra teorı́a

de entropı́a producirá saltos que pueden no estar completamente de acuerdo con

nuestra motivación en términos de flujo vehicular. La pregunta de cómo modificar
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la definición de solución de entropı́a, y también los esquemas de diferencias fini-

tas, tal que la teorı́a de entropı́a concuerde completamente con nuestra noción de

comportamiento del conductor es un interesante problema abierto.

En el Capı́tulo 7, un problema abierto es el análisis de valores propios de la

ecuación del modelo.

1.9 Conclusiones

En el Capı́tulo 3, el modelo de clarificador-espesador estudiado en [31] fue exten-

dido por un sumidero singular a través del cual se extrae material desde la unidad.

La inyección de material de una concentración dada en un lugar fijo lleva a una

ley de conservación homogénea con función de flujo discontinua. Por otra parte,

la extracción de suspensión en un lugar fijo lleva a una ecuación de balance con

función de flujo discontinua, y que tiene un nuevo término de transporte no con-

servativo. Esta diferencia justificó estudiar el problema con trmino de sumidero por

derecho propio.

Los Esquemas 2 y 3 propuestos para el problema completo tienen el leve in-

conveniente que para evaluar el flujo numérico de Engquist-Osher, uno tiene que

determinar numéricamente los extremos de la función de flujo compuesta, que para

el Esquema 2 es q(u − uF) + b(u) para q ∈ {qL, q̃R}. Esto es una desventaja para el

desarrollo de metodologı́as de control.

Los ejemplos numéricos ilustran que el término de sumidero puede originar una

variedad de discontinuidades estacionarias a través del nivel del sumidero x = xD

(decreciente o creciente en al dirección de x creciente). Los parámetros pueden ser

escogidos de manera tal que el material sólido que fluye dentro de la zona de clari-

ficación sea completamente absorbido por el sumidero singular, o que el material

sea extraı́do a través del sumidero sin afectar la solución (concentración) en la zona

de clarificación. La existencia de una discontinuidad a través del nivel del sumidero

en algunos casos puede determinarse si miramos la condición de salto (3.3.9) del

problema reducido asociado para los parámetros dados en esos casos.
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Debido a que es posible la formación de un salto de concentración a través del

nivel del sumidero x = xD, el valor u(xD, t) se vuelve indeterminado, y en conse-

cuencia, es necesario el desarrollo de un método para calcular la concentración de

sólidos de la suspensión que se extrae por el sumidero. Dejamos el diseño y análisis

de ese método como un problema abierto.

En el Capı́tulo 4, se presenta un nuevo modelo para la separación y clasifi-

cación de suspensiones polidispersas. Para este propósito, se extendió el modelo del

clarificador-espesador (CT) para separación continua de suspensiones a un modelo

de clarificador-espesador generalizado (GCT), en el cual un número arbitrario de

flujos de descarga son descritos mediante términos de sumidero singulares. Esta

caracterśtica nos permite describir la extracción contı́nua de productos de com-

posición diferente.

Algunas simplificaciones son hechas en la formulación de las funciones de flujo

con el propósito de facilitar el cálculo, y ser consistente con los trabajos previos, en

particular, con el análisis de estabilidad de Bürger et al. [32]. Por ejemplo, se derivó

una fórmula explı́cita para la velocidad relativa sólido-fluido de cada especie a par-

tir de la formulación implı́cita definida por Masliyah [129], y se usó un exponente

de Richardson-Zaki promedio para todas las especies en el factor de asentamiento

obstaculizado V (φ).

En el Capı́tulo 3 [23] probamos que, para el caso de una suspensión monodis-

persa en un recipiente con área de sección transversal constante y un sumidero, el

modelo está bien planteado, y mostramos que un esquema numérico monótono con-

verge a la solución de entropı́a. Estos resultados junto con aquellos de [31] fueron

una motivación para formular nuestro modelo GCT.

Se propuso un método numérico para calcular la concentración de sólidos en los

sumideros, a partir de balances de masa de los sólidos y basados en la velocidad

finita de propagación de las ondas de concentración. Dejamos el análisis de este

método como un problema abierto.

En los Ejemplos 4.2 y 4.3 adoptamos datos experimentales dados por Chen et al.
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en [40], y nuestras simulaciones se ajustan razonablemente a los resultados de sus

experimentos.

Es claro que el modelo GCT está sujeto a limitaciones. Primero, el modelo se

aplica solamente a unidades que son (al menos aproximadamente) unidimensio-

nales, y donde los gradientes laterales de concentración o velocidad son despre-

ciables. Esto significa, por ejemplo, que las partı́culas debieran ser razonablemente

pequeñas, tal que los efectos de pared no sean importantes, y que cambios fuertes

en el área de sección transversal deben ser excluı́dos. Se presume también que los

parámetros del modelo MLB son conocidos, por ejemplo de un experimento de sedi-

mentación batch. El modelo MLB supone de hecho que las partı́culas son pequeñas

esferas rı́gidas. Mientras la esfericidad puede considerarse como una aproximación

conveniente para partı́culas de geometrı́a ligeramente más general, la rigidez de las

partı́culas es esencial.

En el Capı́tulo 5, se presentó una familia de esquemas numéricos aplicables a

flujos cinemáticos con función de flujo discontinua. El principio de diseño básico

de los esquemas, y el análisis de algunos de ellos, se basa en la estructura explı́cita

“concentración × velocidad” de la función de flujo de cada especie.

Una de las principales ventajas de estos nuevos esquemas es que no requieren

ningún cálculo de valores propios (a parte de una estimación del radio espectral

para la condición CFL de estabilidad), vectores propios, descomposición campo-

a-campo, partición del vector flujo, etc., que son requeridos usualmente para un

esquema upwind. En este sentido son como un esquema central.

Los modelos cinemáticos estudiados son algebraicamente muy similares, pero

pertenecen a dos grupos, uno formado por los modelos de tránsito vehicular y de

dispersión aceite-en-agua, para los cuales todas las velocidades son no negativas,

y otro incluyendo el modelo de sedimentación polidispersa, el cual para N ≥ 2

incluye velocidades de ambos signos.

Formalmente, casi todo sistema de leyes de conservación ∂tφi + ∂x

(
fi(Φ)

)
= 0,

i = 1, . . . , N , puede escribirse como un “sistema cinemático” ∂tφi + ∂x

(
φivi(Φ)

)
= 0,
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i = 1, . . . , N , si definimos vi(Φ) = fi(Φ)/φi (presumiendo que este cuociente per-

manece acotado cuando φi → 0). En consecuencia, los esquemas podrı́an ser aplica-

dos a casi cualquier sistema de leyes de conservación. Sin embargo, las propiedades

que son especı́ficas a los modelos cinemáticos escalares y esenciales para nuestro

análisis son que la velocidad v(φ) está dada por una coeficiente positivo preestable-

cido multiplicando una función de obstaculización, tal que v(φ) ≥ 0 y v′(φ) ≤ 0. Por

otro lado, algunas de las propiedades deseables, por ejemplo, que Φ pertenezca a

un espacio de fase acotado Dφmax , son tı́picas de los modelos multi-especie, pero por

supuesto, no tiene sentido para sistemas que representan balances de cantidades

fı́sicas diferentes tales como masa, momento lineal y energı́a.

Aunque el esquema básico, Esquema 1, puede ser adaptado para resolver

numéricamente modelos multi-especie de ambos grupos (Esquemas 4–8), sólo en

el caso de velocidades no negativas fue posible establecer un deseable principio

de región invariante (Teoremas 5.3.1 y 5.3.2). No es claro si este principio también

puede ser establecido para el modelo de sedimentación polidispersa.

Además, nuestro Ejemplo 5.8.1, por ejemplo (ver Figura 5.12 (d) y (f)), ilustra que

para N ≥ 2 nuestros esquemas de segundo orden no parecen obedecer un principio

de invarianza. No obstante, nuestras Figuras 5.5 and 5.8 ilustran que todos los es-

quemas de segundo orden convergen con errores consistentemente más pequeños

en el sentido L1, y a tasas ligeramente mejores que sus versiones de primer orden,

aún en el caso de sistemas que no está respaldado por un análisis de convergencia.

En cuanto a los aspectos que están mas relacionados a la discontinuidad del

flujo numérico, el principal desafı́o técnico para establecer la convergencia de una

sucesión aproximante para leyes de conservación con coeficientes discontinuos es

de algún modo controlar la variación espacial de la solución. La cota de variación

local desarrollada aquı́ se aplica solamente a las discontinuidades espaciales, no se

vuelve más complicada si el flujo es no convexo, y no requiere suposiciones acerca

de la no linealidad genuina.

Finalmente, nuestra definición (5.3.25) y el principio de invarianza para el Es-

quema 5, Teorema 5.3.1, incluye explı́citamente el caso de una densidad máxima
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variable (y posiblemente discontinua) φmax = φmax(x), el cual aparece en los Ejem-

plos 5.2 y 5.5, pero el análisis de convergencia de la Sección 5.4 está limitado al caso

de φmax constante. Mientras tanto, en el Capı́tulo 6 hemos hecho nuevos avances en

el análisis del problema donde permitimos a φmax(x) variar en forma discontinua.

En el Capı́tulo 6, el conocido modelo cinemático de tránsito vehicular de

Lighthill-Witham-Richards (LWR) fue extendido a un modelo de flujo unidirec-

cional en el cual la densidad máxima a(x) representa las inhomogeneidades del

camino, tales como número variable de pistas, y que puede variar en forma dis-

continua.

En el caso donde a(x) es constante (sin interfaz), nuestra motivación para discon-

tinuidades admisibles entrega las mismas condiciones de salto del llamado impulso

de viaje del conductor de Ansorge [5], que establece que los conductores suavizan

una solución discontinua si φL > φR, pero no si φL < φR. Este criterio también

coincide con la teorı́a clásica de Lax/Oleinik/Kružkov si la función de flujo f es

estrı́ctamente cóncava. Si la función de flujo no es estrı́ctamente cóncava, el impulso

de viaje del conductor y nuestro razonamiento dan una condición de salto que es

diferente de aquella dictada por la teorı́a clásica de Lax/Oleinik/Kružkov. En el

caso del impulso de viaje del conductor, esto fue señalado por Gasser [76].

En la situación más general considerada en el Capı́tulo 6, el impulso de viaje

del conductor no se aplica al salto en la discontinuidad de a. Esto se debe a que

no es posible suavizar la discontinuidad en x = 0, es decir, siempre habrá una dis-

continuidad ahı́ a menos que φL = φR = 0. Esta es la razón de por qué hemos

propuesto nuestro razonamiento aquı́, es decir, que el/la conductor(a) tratará de

acelerar cuando detecte que la velocidad inmediatamente adelante es mayor que su

propia velocidad (cuando la distancia entre su automóvil y el del frente está cre-

ciendo). Esto también parece más directamente relacionado al comportamiento del

conductor que el impulso de viaje del conductor, puesto que los conductores pueden

detectar más facilmente una diferencia en velocidad que una diferencia en densidad.
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En el Capı́tulo 7, se extendió el modelo cinemático unidimensional para sedi-

mentación batch de suspensiones polidispersas de esferas pequeñas a suspensiones

con distribución continua de tamaño de partı́culas. El modelo matemático resul-

tante, obtenido combinando el modelo Masliyah-Lockett-Bassoon (MLB) para la ve-

locidad relativa sólido-fluı́do para cada especie sólida con el concepto de función de

densidad de fase Φ, es una ecuación cinética escalar de primer orden para Φ.

De acuerdo a lo expuesto en el Capı́tulo 5 [25], no hay una demostración de

estabilidad para el esquema numérico utilizado (Esquema 3), pero se entrega una

condición CFL basada en el análisis de un modelo con velocidades no negativas.

No obstante, las Figuras 7.1 y 7.2, y las Tablas 5.1 y 5.2 indican la superioridad

del Esquema 3 sobre los Esquemas 1 y 2. En particular, la Figura 7.1 muestra que

el Esquema 2 introduce oscilaciones espurias cerca de las discontinuidades, y la

Figura 7.2 (a) ilustra la creciente viscosidad numérica del Esquema 1 cuando avanza

el tiempo.

Varios ejemplos numéricos nos permiten conocer más acerca del compor-

tamiento de este tipo de suspensiones. En particular:

En el Ejemplo 7.1 (sedimentación de una suspensión con equi-distribución de

tamaño de partı́culas), la Figura 7.3 ilustra que las partı́culas más grandes sedimen-

tan más rápido que las pequñas, y por lo tanto las más grandes ocupan las capas

inferiores del recipiente y forman capas gruesas de sedimento, y, las partı́culas más

pequeñas son parcialmente removidas del fondo y junto a las que están en sus-

pensión forman capas de sedimento muy delgadas sobre las más grandes.

En el Ejemplo 7.3 (comparación entre sedimentación de suspensiones con equi-

distribución y distribución Rosin-Rammler de tamaño de partı́culas), la Figura 7.12

indica que la suspensión con distribución Rosin-Rammler sedimenta más lenta-

mente que la suspensión con equi-distribución de tamaño de partı́culas, debido a la

mayor razón de partı́culas pequeñas a partı́culas grandes de la distribución Rosin-

Rammler con respecto a la equi-distribución.

En el Ejemplo 7.5 (sedimentación de una suspensión con dato inicial de Rie-

mann), la Figura 7.18 ilustra que hay una acumulación considerable de partı́culas
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de tamaño medio en la parte posterior de la onda de partı́culas sólidas.
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Chapter 2

Motivation and Preliminaries

2.1 Scope

Many multiphase flows in engineering applications involve the flow of one dis-

perse substance, for example solid mineral particles or oil droplets, through a conti-

nuous phase, say a liquid or gas. In numerous cases, the disperse substance consists

of small particles that belong to different species which differ in some characteris-

tic quantity such as size or density. As a consequence, the disperse substance does

not move as one phase; rather, the different species segregate and create areas of

different composition, which is the most interesting property in many applications.

This differential movement of the species is frequently described by spatially one-

dimensional models, and in most circumstances, the particles diameter is very small

compared to that of the flow duct or vessel, which justifies identifying each species

with a continuous phase. Similar models also include certain continuum approxi-

mations of traffic flow of vehicles on a highway if cars with drivers having different

preferential velocities are identified as different species.

In general, we distinguish N different species that give rise to N superimposed

continuous phases associated with volume fractions or concentrations (in multi-

phase flows; or, in the case of traffic flow, densities) φ1, . . . , φN . If vi is the one-

dimensional velocity of species i, then the continuity equations of the N species

25
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in differential form are

∂tφi + ∂x(φivi) = 0, i = 1, . . . , N, (2.1.1)

where t is time and x is the spatial position. The velocities v1, . . . , vN are assumed to

be given functions of the vector Φ := (φ1(x, t), . . . , φN(x, t))T of local concentrations.

This yields systems of conservation laws of the type

∂tφi + ∂x

(
φivi(Φ)

)
= 0, i = 1, . . . , N. (2.1.2)

One-dimensional multi-species flow models given by (2.1.2), which involve no

unknown flow variables other than the concentrations, are called kinematic. We are

especially interested in two specific models that have attracted recent interest: one

of multi-species traffic flow [10, 168, 169, 176, 177, 178], and one of sedimentation of

polydisperse suspensions [12, 32, 149, 158, 170, 175].

In many applications, the number N of species may be large. On the other hand,

the different species in these applications are competitive. It is therefore convenient

to assume a maximal density φmax (for example, a maximal ’bumper-to-bumper’ car

density in traffic models or the maximal sphere packing density φmax in sedimenta-

tion models), such that the phase space for (2.1.2) is

Dφmax :=
{
Φ = (φ1, . . . , φN)T ∈ RN :

φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · ·+ φN ≤ φmax

}
.

(2.1.3)

Introducing the flux vector

f(Φ) =
(
f1(Φ), . . . , fN(Φ)

)T
:=
(
φ1v1(Φ), . . . , φNvN(Φ)

)T
, (2.1.4)

we can rewrite (2.1.2) as the nonlinear system of conservation laws

∂tΦ + ∂xf(Φ) = 0. (2.1.5)

Solutions of (2.1.5) are discontinuous in general, and the propagation speed

σ(Φ+,Φ−) of a discontinuity in the concentration field φi separating the states Φ+

and Φ− satisfies the well-known Rankine-Hugoniot condition

σ =
fi(Φ

+)− fi(Φ
−)

φ+
i − φ−i

.
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This thesis deals with kinematic models consisting of continuity (or balance)

equations of different species, with flux functions that are discontinuous with re-

spect to the spatial variable, that is, we consider systems of equations of the type

Φt + f(γ(x),Φ)x = η(x)Φx, where γ is a vector of parameters, which is a discon-

tinuous function of the spatial position x, and, the possibly discontinuous function

η(x) is the transport coefficient of the non-conservative term η(x)Φx. The vector γ(x)

may describe, for instance, in the traffic flow model, abruptly changing road sur-

face conditions, and changes in number of lanes. The term η(x)Φx may represent,

for example, singular sinks that model the continuous extraction of material from

a clarifier-thickener. This thesis is concerned with the well-posedness analysis and,

the numerical methods for the solution of initial value problems and initial and

boundary value problems based on these models.

2.2 Novelty of this work

The new subjects introduced and/or analyzed in this thesis include the following

in Chapter 3:

• An extension of the clarifier-thickener model studied in [31] by a singular sink

through which material is extracted from the unit (full model)

• Formulation of a reduced problem from the full model

• A definition of entropy solutions for the reduced problem

• Proofs of uniqueness and existence of an entropy solution of the reduced pro-

blem

• An explicit finite difference scheme for the full and reduced models,



28 CHAPTER 2. MOTIVATION AND PRELIMINARIES

• Two variants of the scheme, which vary in their ease of implementation and

level of non-diffusive resolution

in Chapter 4:

• A new model for continuous separation and classification of polydisperse sus-

pensions, which extends the clarifier-thickener setup by means of singular

sinks describing the continuous discharge of products at several points

• A numerical scheme for its simulation and a method to calculate the sinks

concentrations

• Numerical examples with experimental data published in the literature, and

comparison between simulations and experimental results.

in Chapter 5:

• A new family of numerical schemes for kinematic models with discontinuous

flux, in which the numerical flux is explicitly based on the “concentration times

velocity” structure of each flux component. Moreover, these schemes do not

require any calculation of eigenvalues (other than an estimate of the spectral

radius for the CFL condition), eigenvectors, field-by-field decomposition, flux

vector splitting, etc.

• Proof that two particular schemes within the family, which apply to systems

of conservation laws, preserve an invariant region of admissible concentration

vectors, provided that all velocities have the same sign

• Proof of convergence of a monotone difference scheme to a BVt entropy solu-

tion for the scalar case (N = 1) of a discontinuous flux and a constant maxi-

mum density
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• A novel uniform but local estimate of the spatial total variation of approxi-

mate solutions generated by monotone schemes for conservation laws with

discontinuous flux

in Chapter 6:

• An extension of the well-known Lighthill-Whitham-Richards kinematic traffic

model to a unidirectional road on which the maximum density a(x) represents

road inhomogeneities, such as variable numbers of lanes, and is allowed to

vary discontinuously

• Improvement of the design and analysis of the scheme proposed in Chapter 5

[25], maintaining its simplicity. In particular, small spurious overshoots that

can occur with the original version are reduced

• A novel version of the Engquist-Osher scheme that applies to the same model

• A solution concept involving Kružkov-type entropy inequalities, which in-

cludes an adapted entropy similar to the type recently proposed by Audusse

and Perthame [6]

• Proof of uniqueness of an entropy solution of the model

• Proof of convergence of both difference schemes and the improved Godunov

scheme used by Daganzo in [49], to the unique entropy solution

in Chapter 7:

• A new mathematical model for sedimentation of suspensions with continuous

particle size distribution, which extends the one-dimensional kinematic model

for batch sedimentation of polydisperse suspensions of small equal-density

spheres
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• A phase density function Φ = Φ(t, x, ξ), where ξ ∈ [0, 1] is the normalized

squared size of the particles

• Three numerical schemes for the solution of problems based on this equation

To further embed this work in the framework of literature, we briefly recall

in Sections 2.3-2.6 some known facts about kinematic medels, non-standard ingre-

dients, and discretizations.

2.3 Kinematic models for multi-species flow

The kinematic traffic model for N = 1 goes back to Lighthill and Whitham

[125] and Richards [146]; for the sedimentation of suspensions, the classic reference

is Kynch [120]. The extension of the Lighthill-Whitham-Richards (LWR) model to

multi-class traffic flow was proposed independently by Wong and Wong [168] and

Benzoni-Gavage and Colombo [10], while analogous extensions of the sedimenta-

tion model have been suggested for several decades (see [20, 175] for reviews),

mainly in the chemical engineering literature. Though the kinematic models fall

within the mainstream research area of systems of conservation laws [48, 124],

the application of available tools of mathematical and numerical analysis is diffi-

cult. This is largely due to the dependence of the functions vi(Φ) on all variables

φ1, . . . , φN , which in general is nonlinear. For Φ from the interior of Dφmax , the Jaco-

bianJf (Φ) := (∂fi/∂φk)16i,k6N usually has nonzero entries only, such that closed for-

mulas for its eigenvalues and eigenvectors are at least complicated, and in general

unavailable for N ≥ 5. It is therefore in general not possible to solve the Riemann

problem for (2.1.2) in closed form. This contrasts with what is known for many sys-

tems of conservation laws representing balances of different variables (for example,

mass, linear momentum and energy) of a single-phase flow, such as the Euler equa-

tions of gas dynamics. Moreover, for multi-species kinematic flow models eigenva-

lues lack a direct physical interpretation, and in particular do not coincide with any

of the phase velocities v1, . . . , vN . (In contrast to this, the eigenvalues for the Euler
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equations of gas dynamics are the velocity of the gas, and the velocity plus or minus

sound speed.)

Most published solution constructions for multi-species kinematic flow mod-

els are based on simplifications. For example, Greenspan and Ungarish [85] and

Schneider et al. [151] solve the problem of settling of an N -disperse, initially homo-

geneous suspension with equal-density particle species under the assumption that

solutions exclusively consist of areas of constant composition that are separated by

straight, possibly intersecting kinematic shocks whose speeds are determined by the

Rankine-Hugoniot condition. Unfortunately, this construction violates Liu’s entropy

condition (see [48]). In fact, some of the kinematic shocks constructed in [85, 151]

should be replaced by rarefaction waves. For the case N = 2, correct solutions in-

cluding rarefaction waves were constructed by Fried and Roy [69]. The simplifica-

tion applied in [69] is the choice of the functions vi(Φ) = ci(1− φ) for i = 1, 2, where

ci > 0 are constants. A full solution construction of the case where the factor (1− φ)

is replaced by (1−φ)n with n > 1, for N = 2, which obeys Liu’s entropy principle, is

given in [11]. However, the result does not appear in closed or implicit form; rather,

certain trajectories have to be determined by numerical integration of ordinary dif-

ferential equations.

2.4 Analysis of kinematic models

We recall that the system (2.1.5) is called hyperbolic at a state Φ if Jf (Φ) only has

real eigenvalues, and strictly hyperbolic if these are moreover pairwise distinct. For

N = 2, a system with a pair of complex conjugate eigenvalues is elliptic. In some

circumstances, the type is mixed, which means that the system is non-hyperbolic (or

elliptic) for all Φ ∈ E ⊂ Dφmax , and Dφmax\E 6= ∅. For N ≤ 3, the ellipticity criterion

can be evaluated by a convenient calculation of a discriminant [32].

While exact solution constructions remain difficult, great advances were made

recently in the hyperbolicity analysis and characterization of eigenvalues of multi-

species kinematic models. For a model of settling of oil-in-water dispersions, which
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is similar to the sedimentation and traffic models, Rosso and Sona [149] proved

for arbitrary N strict hyperbolicity in the interior of Dφmax . The proof is based

on deriving an explicit closed formula of the characteristic polynomial p(λ; Φ) =

det(Jf (Φ) − λI) by exploiting elimination possibilities in the determinant. Then

p(λ; Φ) is evaluated at N suitable λ-arguments that produce values of alternating

sign, which along with a discussion of p(λ; Φ) for λ → ±∞ implies that p(λ; Φ)

must have N distinct zeros. After preliminary analyses for N ≤ 3 [32], Berres et

al. [12] proved in a similar way that the Masliyah-Lockett-Bassoon (MLB) model

[12, 128, 129] for sedimentation of polydisperse suspensions with equal-density par-

ticles is strictly hyperbolic for an arbitrary number N of species (size classes). The

basic idea was also used by Zhang et al. [178] to prove strict hyperbolicity of the

multi-class traffic model proposed in [10, 168].

2.5 Non-standard model ingredients

The applications which we are interested in also give rise to spatially non-

homogeneous flows, in which the velocity vi not only depends on Φ, but also on

a vector of parameters γi that is a function of the spatial position x, γi = γi(x).

While models for which γi depends, for example, Lipschitz continuously on x lead

to conservation laws that can be treated with standard analytical and numerical

methods, we are here interested in the case that γi depends discontinuously on x;

more precisely, we assume that γi is piecewise smooth with a finite number of dis-

continuities. The vector γi(x) may describe, for instance, in the traffic flow model,

abruptly changing road surface conditions, as was done in [27, 132] for a single-

species model, and changes in number of lanes [75]; singular feed sources and di-

verging bulk flows in clarifier-thickener models [23] (Chapter 3 of this thesis),[31];

and abruptly changing cross-sectional areas in vessels for the settling of suspensions

and emulsions.

Some models can also include singular source and sink terms, where the function

multiplying the Dirac delta function may depend on either the spatial position x, or
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the time t, or both. The source term can represent, for example, the injection of feed

suspension in clarifier-thickener units, as was done in [31], in which the function

multiplying δ(·) does not depend on x, and consequently the model can be expressed

as a homogeneous conservation law with discontinuous flux. While, the sink term

can model, for instance, the extraction of material from clarifier-thickener vessels,

as is seen in Chapter 4 [24], in which the multiplicative function depends on both x

and t, because it involves the solution of the problem.

On the other hand, in most real-world applications, for example in mineral pro-

cessing, the particles are not of a finite number of distinct size classes, but the size of

particles are continuously distributed [40, 170].

2.6 Discretizations

For scalar kinematic models (N = 1) with continuous flux, many numerical

schemes have been proposed and analysed already in the literature (see for example

LeVeque [124]). For scalar conservation laws with discontinuous flux, several nu-

merical methods have been developed and analysed. Let us mention for instance,

the front tracking method and the Engquist-Osher upwind finite difference scheme.

The front tracking method is based on the works of Dafermos [47] and Holden

et al. [94]. Variants of the method have been used by many authors, see Holden

& Risebro [96] for the history and many references. For example, Gimse & Risebro

in [82] used this method to study the two phase flow equation. Some variants of

the front tracking technique have also been used earlier to compute approximate

solutions to batch sedimentation problems, see Kunik [116, 117], Kunik et al. [118]

and, Bustos and Concha [37]. A convergence proof for the front tracking method for

the clarifier-thickener model is given by Bürger et al. in [28].

The Engquist-Osher scheme for problems with discontinuous flux is derived by

slightly modifying the standard Engquist and Osher upwind scheme [64]. With the

Engquist-Osher flux, the resulting algorithm is a so-called upwind scheme, mean-

ing that the flux differencing is biased in the direction of incoming waves, making
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it possible to resolve shocks without excessive smearing. For the case of a single

discontinuous parameter, the modified Engquist-Osher scheme was proven to con-

verge for the case of a concave flux by Towers in [159] and for a flux with any finite

number of critical points by Towers in [160]. Karlsen et al. in [104] extended the

scheme so that it would apply to degenerate parabolic equations with discontinu-

ities in the convective flux, and established convergence to a weak solution. Bürger

et al. in [31] proved convergence for the Engquist-Osher scheme for the clarifier-

thickener model, i.e., the case of two discontinuous parameters.

Despite the new hyperbolicity results, insight into any specific N -species kine-

matic model with N ≥ 3 can realistically be gained through numerical simula-

tion only. High resolution schemes for systems of conservation laws, which ap-

proximate discontinuities sharply and without spurious oscillations and are at least

second-order accurate in smooth regions, are natural candidates for the numerical

solution of (2.1.2). For example, Wong, Shu and their collaborators [176, 178] ap-

plied weighted essentially non-oscillatory (WENO) schemes to the traffic model,

while Bürger, Karlsen and collaborators [12, 20, 22, 145] employed central differ-

ence schemes [119, 138] for the sedimentation model. Meanwhile, central schemes

have also been applied to a number of real-world problems of polydisperse sedi-

mentation, see for example Xue and Sun [170], Simura and Ozawa [153] and Wang

et al. [167]. Recently [36], WENO schemes were combined with a multiresolution

technique to yield a numerical method for kinematic models that adaptively con-

centrates computational effort on zones of strong variation.

All these methods are based on schemes that can be applied universally to sys-

tems of conservation laws, and that are not tailored to a particular algebraic struc-

ture of the flux vector. The schemes, which are first-order accurate, can be upgraded

to higher order accuracy by employing MUSCL-type techniques [124].



2.7 Outline of this work 35

2.7 Outline of this work

Chapters 3 to 7 of this work are based on original research papers that have been

published or are in different stages of review. Slight edits of the journal versions

have been applied to attain a uniform reference and citation style, and layout within

this work.

In Chapter 3, we study an extended clarifier-thickener model given by the equa-

tion

ut + f
(
γ(x), u

)
x

= γ3(x)ux, (x, t) ∈ ΠT := R× (0, T ), (2.7.1)

where γ(x) = (γ1(x), γ2(x)) is a vector of discontinuous parameters which corres-

pond to singular feed sources and flux discontinuities. The discontinuous function

γ3(x) is the transport coefficient of the non-conservative term γ3(x)ux, which re-

presents a new singular sink that models the continuous extraction of material from

the clarifier-thickener. The function γ3 is a Heaviside-type function whose jump is

located at the position of the sink. On the other hand, the functions γ1 and γ2 are

continuous across the sink position. Since their discontinuities do not interfere with

the sink, and we already know from [31] how to deal with them, we concentrate in

Chapter 3 on an initial-value problem for the reduced equation

ut + ϕ(u)x − γ(x)ux = 0, (x, t) ∈ ΠT . (2.7.2)

Roughly speaking, the nonlinear function ϕ arises from evaluating f(γ(x), u) at a

fixed point of continuity of γ, and the remaining discontinuous coefficient γ repre-

sents γ3 after the sink has been shifted to x = 0. We refer to (2.7.1) and (2.7.2) as the

full equation and the reduced equation, respectively. Together with an initial condition

and further assumptions on the nonlinearity of the flux and on the discontinuous co-

efficients, these equations form the full extended clarifier-thickener model (or, in short,

full model) and the reduced problem, respectively. We introduce a definition of entropy

solutions for the reduced problem, which consists of two separate Kružkov-type
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[114] integral inequalities for the two half-spaces on either side of x = 0. The solu-

tions on both sides are coupled by a series of jump conditions. We then prove that

these jump conditions ensure an L1 stability property, which implies uniqueness of

an entropy solution. We introduce an explicit finite difference scheme for the full

model, which is the scheme analyzed in [31] extended by an upwind discretization

of γ3(x)ux. We prove that the numerical solution remains in the interval [0, 1], that

the scheme is monotone, that it satisfies a time continuity property, and that for the

reduced problem, it converges to an entropy solution. Thus, the reduced problem

is well posed. Numerical examples and L1 error studies demonstrate that several

variants of the scheme, which vary in their ease of implementation and level of non-

diffusive resolution, converge to entropy solutions of both the reduced problem and

the full model.

Chapter 3 has been published as:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. On an extended clarifier-

thickener model with singular source and sink terms. European Journal of Ap-

plied Mathematics 17 (2006), 257–292.

In Chapter 4, we present a new model for continuous separation and classifi-

cation of polydisperse suspensions, which extends the CT setup (Berres et al. [13],

Bürger et al. [31], Diehl [59], Zeidan et al. [174]). The new feature are singular sinks

describing the continuous discharge of products at several points, whose compo-

sition will vary during a transient startup procedure. The mathematical treatment

and discretization of a singular sink is not entirely analogous to that of a singular

feed source, since the composition of the sink stream is part of the solution. The

singular sinks give rise to a novel so-called non-conservative transport term. The

well-posedness of the resulting model and the convergence of a numerical scheme

for N = 1 and for sinks located above the feed level or when the whole device is

operated as a fluidization column, are proved by Bürger et al. in [23] (Chapter 3

of this thesis). We herein formulate an analogous model for a generalized clarifier-
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thickener (GCT) setup, which may include several sinks, can also be operated as a

fluidization column, and is allowed to have a varying cross-sectional area. We define

a numerical scheme for its simulation and a method to calculate the sinks concen-

trations, and present numerical examples, in part adopting data from the literature.

Chapter 4 has been accepted for publication as:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. (2007) A kinematic model

of continuous separation and classification of polydisperse suspensions. Com-

puters & Chemical Engineering, to appear.

In Chapter 5, we formulate, in part analyze, and present numerical experiments

for easy-to-implement numerical schemes for kinematic models, in which the nu-

merical flux is explicitly based on the “concentration times velocity” structure of

each flux component. The starting point is a simple two-point monotone numeri-

cal flux for scalar (N = 1) kinematic flows with a non-negative velocity function

v = v(φ). We develop extensions of the scheme defined by this numerical flux to

equations with a velocity of variable sign, to equations with a discontinuous flux, to

systems of conservation laws (N ≥ 2 species), and finally to schemes with second-

order accuracy. All these variants form the family of new schemes under study. It is

proved that for N ≥ 1 flows with non-negative velocities, the schemes preserve an

invariant region, i.e. generate approximations that assume values in the domain of

physically relevant concentrations only. For the scalar case (N = 1) and a discontin-

uous flux, we prove convergence to a BVt entropy solution. The proof is based on

a new uniform but local estimate of the spatial total variation of approximate solu-

tions. Numerical experiments and L1 error studies demonstrate the performance of

the new family of schemes. What is intriguing about the new schemes is that (other

than an estimate of the spectral radius for the CFL condition) they do not require

any calculation of eigenvalues, eigenvectors, field-by-field decomposition, flux vec-

tor splitting, etc., that are usually required for an upwind scheme. In this sense they

are like a central scheme. However, in many cases the first-order accurate version of



38 CHAPTER 2. MOTIVATION AND PRELIMINARIES

the new schemes is much less dissipative than the first-order version of the central

scheme (the Lax-Friedrichs scheme).

Chapter 5 has been accepted for publication as:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. (2007) A family of schemes

for kinematic flows with discontinuous flux. Journal of Engineering Mathematics,

to appear.

In Chapter 6, we first extend the well-known Lighthill-Witham-Richards kine-

matic traffic model to a unidirectional road on which the maximum density a(x)

represents road inhomogeneities, such as variable numbers of lanes, and is allowed

to vary discontinuously. The new model can then be described by the initial value

problem

φt +
(
φv(φ/a(x)

)
x

= 0, (x, t) ∈ R× (0, T ); φ(x, 0) = φ0(x), x ∈ R. (2.7.3)

Here z 7→ v(z) is the velocity function, where it is assumed that v(z) ≥ 0, and

z 7→ v(z) is nonincreasing. Since a(x) is allowed to have a jump discontinuity, (2.7.3)

is a scalar conservation law with a spatially discontinuous flux. Moreover, we ad-

vance a well-posedness and numerical analysis for the initial value problem (2.7.3).

In particular, we present an entropy solution concept, a new uniqueness result in-

cluding jump conditions, a convergence result for the adaptation of three known

schemes for the case with constant a to the conservation law (2.7.3), and numeri-

cal experiments. For each scheme, this adaptation consists the definition of a nu-

merical interface flux that handles the flux discontinuities. For two of the schemes,

these interface versions are new. A further novelty of our approach is the applica-

tion of so-called connections between fluxes adjacent to a flux discontinuity, see e.g.

Adimurthi et al. [2], in combination with the recent, related concept of adapted en-

tropies for discontinuous flux problems due to Audusse and Perthame [6]. Results

of numerical experiments and an L1 error study are presented both for the first order

schemes, and for the MUSCL/Runge-Kutta versions that are formally second order

accurate.
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Chapter 6 corresponds to the following article under preparation:

• Bürger, R., Garcı́a, A., Karlsen, K.H. & Towers, J.D. A difference scheme and

entropy solutions for an inhomogeneous kinematic traffic flow model.

In Chapter 7, we present a new mathematical model for sedimentation of

suspensions with continuous particle size distribution, which extends the one-

dimensional kinematic model for batch sedimentation of polydisperse suspensions

of small equal-density spheres [12, 32, 158, 170, 175]. We know that polydisperse

suspensions with particles of N distinct size classes have been mainly utilized in

laboratory experiments [40, 41, 134, 135, 136]. However, in most real-world appli-

cations, for example in mineral processing, the sizes of particles are continuously

distributed [40, 170]. To develop the new model, we introduce the so-called phase

density function Φ = Φ(t, x, ξ), where ξ ∈ [0, 1] is the normalized squared size of the

particles, whose integral with respect to ξ on a interval [ξ1, ξ2], is equivalent to the

volume fraction at (t, x) occupied by the particles in that size range. The resulting

mathematical model, obtained by using the Masliyah-Lockett-Bassoon (MLB) model

[128, 129] for the solid-fluid relative velocity for each solids species and replacing

the concept of volume fraction for that of phase density function, is a scalar first-

order kinetic equation for Φ. We introduce three numerical schemes for the solution

of this equation, and a numerical example and an L1 error study show that one of

these schemes introduces not much numerical diffusion and without spurious os-

cillations near discontinuities. Several numerical examples illustrates the simulated

behaviour of this kind of suspensions.

Chapter 7 corresponds to the following article under preparation:

• Bürger, R., Garcı́a, A. & Kunik, M. Sedimentation of polydisperse suspensions

with a continuous particle size distribution.

In the Appendix, we present numerical examples that were part of earlier ver-

sions of the article “A kinematic model of continuous separation and classification
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of polydisperse suspensions” (Chapter 4 of this work). The choice of examples of

the final version of that paper is based on comments we received in the reviews of

that. Nevertheless, we decided to include the earlier examples in this thesis, since

they represent other interesting cases, such as continuous classification in vessels

with rectangular cross-sectional area, classifier operated in clarifier-thickener mode

(i.e., the feed flow is divided into upwards- and downwards-directed bulk flows),

and continuous classication with changes in the control variables.

2.8 Outlook and open problems

In Chapter 3, we have focused on the reduced model and its associated scheme

in order to highlight the aspects of the problem that are more or less unique to the

sink portion of the model. We leave as an open problem the task of combining the

definition of entropy solution and the results of this chapter (well-posedness of re-

duced problem) with those of [31] (well-posedness of clarifier-thickener model). The

goal would be to prove that the full problem is well-posed. On the other hand, due to

that the formation of a jump of concentration across the sink level x = xD is possible,

the value u(xD, t) becomes indeterminate, and therefore, it is necessary to develop

a method to calculate the solids concentration of the suspension extracted through

the sink. We leave the devise and analysis of that method as other open problem.

In Chapter 4, an open problem would be the well-posedness analysis of the gen-

eralized clarifier-thickener model. Moreover, it is possible to improve this model

by means of others slip velocity models, diffusive-like models, additional balance

equations (of lineal momentum, energy), multidimensional treatment, etc. On the

other hand, we propose a numerical method to calculate the solids concentration in

the sinks, from mass balances of solids and based on the finite speed of propaga-

tion of the concentration waves. We leave the analysis of this method as other open

problem.

In Chapter 5, open problems would be proving that for the polydisperse sedi-

mentation model, Schemes 6, 7 and 8 generate approximations that assume values
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in the domain of physically relevant concentrations; and studying the oscillations in

the solution using Scheme 9 (of second order) at the location of a large jump in φ.

In Chapter 6, if the flux is not strictly concave, our entropy theory will give jumps

that may not be completely in agreement with our motivation in terms of traffic

flow. The question of how to modify the definition of entropy solution, and also the

difference schemes, so that the entropy theory completely agrees with our notion of

driver behavior is an interesting open problem.

In Chapter 7, an open problem is the eigenvalue analysis of the model equation.
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Chapter 3

On an Extended Clarifier-Thickener

Model with Singular Source and Sink

Terms

A one-dimensional model of clarifier-thickener units in engineering appli-

cations can be expressed as a conservation law with a flux that is discontinuous

with respect to the spatial variable. This model also includes a singular feed

source. In this paper, the clarifier-thickener model studied in the paper Numer.

Math. 97 (2004) 25–65, is extended by a singular sink through which material is

extracted from the unit. A difficulty is that in contrast to the singular source, the

sink term cannot be incorporated into the flux function; rather, the sink is repre-

sented by a new non-conservative transport term. To focus on the new analytical

difficulties arising due to this non-conservative term, a reduced problem is for-

mulated, which contains the new sink term of the extended clarifier-thickener

model, but not the source term and flux discontinuities. The paper is concerned

with numerical methods for both models (extended and reduced) and with the

well-posedness analysis for the reduced problem. For the reduced problem, a

definition of entropy solutions, based on Kružkov-type entropy functions and

fluxes, is provided. Jump conditions are derived and uniqueness of the entropy

43
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solution is shown. Existence of an entropy solution is shown by proving conver-

gence of a monotone difference scheme. Two variants of the numerical scheme

are introduced. Numerical examples illustrate that all three variants converge

to the entropy solution, but introduce different amounts of numerical diffusion.

3.1 Introduction

3.1.1 Scope

In recent years there has been an increased interest in the analysis and numerics

of conservation laws of the type ut + f(γ(x), u)x = 0, where γ(x) is a vector of

parameters that depend discontinuously on the spatial position x. This equation is

the main ingredient of a clarifier-thickener model (see e.g. [28, 31, 34, 53]), but also

appears in other applications [27, 33, 39, 102, 132, 141, 148, 164]. We herein study an

extended clarifier-thickener model given by the equation

ut + f
(
γ(x), u

)
x

= γ3(x)ux, (x, t) ∈ ΠT := R× (0, T ), (3.1.1)

where γ(x) = (γ1(x), γ2(x)) is a vector of discontinuous parameters which corre-

spond to singular feed sources and flux discontinuities. The discontinuous function

γ3(x) is the transport coefficient of the non-conservative term γ3(x)ux, which rep-

resents a new singular sink that models the continuous extraction of material from

the clarifier-thickener. The function γ3 is a Heaviside-type function whose jump is

located at the position of the sink. On the other hand, the functions γ1 and γ2 are

continuous across the sink position. Since their discontinuities do not interfere with

the sink, and we already know from [31] how to deal with them, we concentrate in

this paper on an initial-value problem for the reduced equation

ut + ϕ(u)x − γ(x)ux = 0, (x, t) ∈ ΠT . (3.1.2)

Roughly speaking, the nonlinear function ϕ arises from evaluating f(γ(x), u) at a

fixed point of continuity of γ, and the remaining discontinuous coefficient γ repre-

sents γ3 after the sink has been shifted to x = 0. We refer to (3.1.1) and (3.1.2) as the
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full equation and the reduced equation, respectively. Together with an initial condition

and further assumptions on the nonlinearity of the flux and on the discontinuous co-

efficients, these equations form the full extended clarifier-thickener model (or, in short,

full model) and the reduced problem, respectively.

In this paper, we introduce a definition of entropy solutions for the reduced pro-

blem, which consists of two separate Kružkov-type [114] integral inequalities for

the two half-spaces on either side of x = 0. The solutions on both sides are coupled

by a series of jump conditions. We then prove that these jump conditions ensure

an L1 stability property, which implies uniqueness of an entropy solution. We in-

troduce an explicit finite difference scheme for the full model, which is the scheme

analyzed in [31] extended by an upwind discretization of γ3(x)ux. We prove that the

numerical solution remains in the interval [0, 1], that the scheme is monotone, that it

satisfies a time continuity property, and that for the reduced problem, it converges to

an entropy solution. Thus, the reduced problem is well posed. Numerical examples

demonstrate that several variants of the scheme, which vary in their ease of imple-

mentation and level of non-diffusive resolution, converge to entropy solutions of

both the reduced problem and the full model.

To put the treatment in the proper perspective, let us first recall some known

results for the equation ut + f(γ(x), u)x = 0. The basic difficulty is that its well-

posedness is not a straightforward limit case of the standard theory for conserva-

tion laws with a flux that depends smoothly on x. In fact, several extensions of the

Kružkov entropy solution concept [114] to conservation laws with a discontinuous

flux were proposed in recent years [3, 6, 7, 80, 82, 103, 106, 112, 113, 130, 150, 159,

160]. Each of these concepts is supported by a convergence analysis of a numerical

scheme; the differences between them appear in the respective admissibility condi-

tions for stationary jumps of the solution across the discontinuities of γ [29].

The choice of the entropy solution concept depends on the regularizing viscous

physical model. For clarifier-thickener models, the appropriate concept emerges

from the limit ε → 0 of a viscous regularization εuxx with a diffusion constant

ε > 0 [34]. Thorough analyses of and construction of exact entropy solutions for
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clarifier-thickener models were advanced by Diehl [52, 53, 54, 55, 56, 57]. On the

other hand, the authors with collaborators made a series of contributions (including

[13, 28, 30, 31, 34, 35]) to the well-posedness and numerical analysis for these mo-

dels, whose basic non-standard ingredient is a singular feed source that produces

diverging bulk flows, which causes the discontinuous x-dependence of the flux.

We may also write the reduced equation (3.1.2) as a non-strictly hyperbolic sys-

tem

at = 0, ut + F (a, u)x −G(a, u)ax = 0, x ∈ R, t ≥ 0;

(a, u)(0, x) = (a0(x), u0(x)), x ∈ R,
(3.1.3)

where we define a0(x) := H(x), G(a, u) := u and F (a, u) := (q + a)u + b(u). In

passing, we note that for F (a, u) := f(a, u), G ≡ 0, and a0(x) := γ(x), (3.1.3) is

equivalent to the Cauchy problem for ut+f(γ(x), u)x = 0 with a scalar discontinuous

parameter γ(x). The resulting triangular hyperbolic system has been the starting

point of several analyses of this Cauchy problem [28, 54, 61, 80, 82, 112, 113].

Systems of the type (3.1.3) with G 6≡ 0 were recently analyzed by Amadori et al.

[4]. They solve the Riemann problem for (3.1.3), prove convergence of a Godunov

scheme, and address uniqueness by a Kružkov-type technique. However, our re-

duced model is not a sub-case included in their analysis, since some of their struc-

tural assumptions are not satisfied in our case. For example, their requirement (P4),

stating that Fa−G 6= 0 for all (a, u) with Fu(a, u) = 0, is not satisfied, since Fa−G ≡ 0

in our case. Let us point out that their uniqueness result does not hold for a discon-

tinuous coefficient a, while our approach does include uniqueness.

3.1.2 Reduced problem and full model

The novel feature of our new extended clarifier-thickener model is a singular

sink through which material may be extracted. The reduced problem emerges from

the new model if the “unit” is assumed to have a sink only, but no sources, and is

defined by the reduced equation (3.1.2) along with

u(x, 0) = u0(x), x ∈ R, u0 ∈ [0, umax], umax ∈ (0, 1], (3.1.4)
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ϕ(u) = qu+ b(u), γ(x) =

0 for x < 0,

γ+ for x > 0,
q ≤ 0, γ+ > 0. (3.1.5)

Here, the function b(u) is assumed to be Lipschitz continuous, positive for u ∈ (0, 1),

and to vanish for u /∈ (0, 1). We assume that b(u) is twice differentiable in (0, 1), that

b′(u) = 0 at exactly one location u = u∗b ∈ (0, 1), where b(u) has a maximum, and that

b′′(u) = 0 at no more than one inflection point uinfl ∈ (0, 1); if such a point is present,

we assume that uinfl ∈ (u∗b , 1). The restriction q ≤ 0 is required in the stability and

uniqueness analysis. See Section 3.2 for a detailed derivation.

If we set umax = 1, then the assumptions on b(u) are satisfied by the frequently

used Richardson-Zaki [147] type function

b(u) =

v∞u(1− u)n for u ∈ [0, umax],

0 otherwise,
n > 1, v∞ > 0, (3.1.6)

where v∞ is the settling velocity of a single particle in an unbounded medium. With

the assumptions on b(u) and the sign of q, the flux ϕ(u) has a single maximum at

u∗ ∈ [0, 1], and ϕ is non-decreasing on [0, u∗] and non-increasing on [u∗, 1].

The full model is defined by (3.1.1) along with the initial condition (3.1.4) and

f
(
γ(x), u

)
:= γ1(x)b(u) + γ2(x)(u− uF), γ(x) :=

(
γ1(x), γ2(x)

)
, (3.1.7)

γ1(x) :=

0 for x 6∈ [xL, xR],

1 for x ∈ [xL, xR],
γ2(x) :=

q̃R − qF for x < 0,

q̃R for x > 0,
(3.1.8)

where uF denotes the feed concentration, xL < xD < 0 < xR are the overflow,

sink, and discharge levels, respectively, reflecting the design of the unit, and q̃R < 0

and qF > 0 are given bulk flow velocities describing operating conditions. Thus,

f(γ(x), u) incorporates the batch flux, the source term, and the discontinuities at

the discharge and overflow levels. (The precise meaning of all variables is given in

Section 3.2.) Finally, the discontinuous transport coefficient γ3(x) is given by

γ3(x) :=

0 for x < xD,

−qD > 0 for x > xD,
(3.1.9)
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where qD < 0 is another velocity related to sink control (see Section 3.2). Observe

that the full model is defined by a conservation law with a flux that is discontinuous

at the source and transition points, but not at the location of the singular sink.

3.1.3 Outline of the paper

The remainder of this paper is organized as follows. The full extended clarifier-

thickener model and the reduced problem are derived in Section 3.2. For the reduced

problem, we present in Section 3.3 the definition of entropy solutions and, using the

jump conditions, establish an L1 stability property, which implies uniqueness of an

entropy solution.

In Section 3.4, we introduce an explicit finite difference scheme for the full model,

and prove that the numerical solution remains in the interval [0, 1], that the scheme is

monotone, and that it satisfies a time continuity property. In Section 3.5 we focus on

the reduced problem and prove that the scheme satisfies a spatial variation bound.

Starting from a discrete entropy inequality, using the monotonicity and proceeding

as in the proof of the Lax-Wendroff theorem, we then show that the scheme con-

verges to an entropy solution of the reduced problem. The analysis is summarized

in Theorem 3.5.1 stating the well-posedness of the reduced problem.

Several suitable schemes for the reduced or full equation can be formulated by

combining upwind discretizations for the linear terms with an Engquist-Osher type

numerical flux for the remaining nonlinear portion. Based on this observation, we

introduce in Section 3.6 two different variants of our scheme, which are referred to as

“Scheme 1” and “Scheme 3”, respectively, while the scheme analyzed so far is called

“Scheme 2”. (This nomenclature anticipates the observed ranking in performance.)

The analysis of Scheme 2 in Sections 3.4 and 3.5 also fully holds for Scheme 1. The

convergence result also applies to Scheme 3, while the entropy analysis may require

different arguments. Numerical examples for the three schemes are presented in

Section 3.7 for both the reduced problem and the complete model.

Section 3.8 collects some conclusions that can be drawn from our well-posedness
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and numerical analysis. Moreover, we comment on the numerical results of Sec-

tion 3.7. It turns out that although all three schemes converge to the entropy solution,

they significantly differ in the degree of numerical diffusion introduced. Scheme 1

is very easy to implement, but turns out to be very diffusive, especially for steady-

state, while Scheme 3 produces sharp resolution.

3.2 The extended clarifier-thickener model

3.2.1 Clarifier-thickener models, singular sources, and singular

sinks

Clarifier-thickener units are widely used in chemical engineering, wastewater

treatment, mineral processing and other applications to separate a suspension of

finely divided solid particles dispersed in a viscous fluid into its solid and liquid

components. The basic clarifier-thickener model can be derived from the scalar con-

servation law

ut + b(u)x = 0, x ∈ [0, L], t > 0; u(x, 0) = u0(x), x ∈ [0, L] (3.2.1)

of the kinematic sedimentation model [38, 120], which describes the settling of a sus-

pension of initial concentration u0(x) in a settling vessel of height L. Here, u is the

sought concentration as a function of depth x and time t, and b(u) is the hindered

settling function or batch flux density function, which is a material-dependent func-

tion. A typical example is the function (3.1.6).

Suppose now that we pump the suspension into a vertical tube that is filled with

water at a feed level x = 0, and that part of the mixture flows upwards at velocity

qL < 0, while the remainder flows downwards at velocity qR > 0, as in the left

diagram of Figure 3.1. Consequently, if S is the cross-sectional area of the tube, then

QF = (qR − qL)S. Assuming for a moment that we inject only clear water at x = 0,
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Figure 3.1: Basic flow variables for a singular source term (left) and a singular sink

term (right).

we obtain the conservation law with discontinuous flux

ut +
(
q(x)u+ b(u)

)
x

= 0, q(x) :=

qL < 0 for x < 0,

qR > 0 for x > 0.
(3.2.2)

Now let us inject feed suspension of a given concentration uF at a volume rate QF.

Since the feed source is concentrated at x = 0, we need to add the singular source

term δ(x)(qR − qL)uF to the right-hand side of the equation in (3.2.2), obtaining

ut +
(
q(x)u+ b(u)

)
x

= δ(x)(qR − qL)uF. (3.2.3)

However, using the Heaviside function H(x), we may formally write

δ(x)(qR − qL)uF = (H(x)(qR − qL)uF)x.

Then (3.2.3) assumes the form

ut +
(
q(x)u+ b(u)−

(
H(x)(qR − qL)uF

))
x

= 0, (3.2.4)
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so that the singular source is expressed as a discontinuity of the flux function. This

is possible since uF is a given constant (or possibly a given (control) function of t).

Thus, the governing conservation law can be written as

ut + g(u, x)x = 0, g(u, x) :=

qL(u− uF) + b(u) for x < 0,

qR(u− uF) + b(u) for x ≥ 0.
(3.2.5)

Note that the injection of material of given concentration and at given rate leads to

a homogeneous conservation law with discontinuous flux. This property has made

the clarifier-thickener model tractable.

In the present work, we extend the clarifier-thickener model to the case that we

also extract material at a fixed location. To elucidate the problem, consider a column

with an upwards directed bulk flow of QR < 0. At depth x = 0, we divide the flow

into a discharge flowQD < 0 and the remaining upwards directed bulk flowQL with

QR < QL < 0, see the right diagram of Figure 3.1. Considering that the concentration

u(0, t) of the suspension extracted is unknown beforehand and defining qR := QR/S
and qL := QL/S, we obtain instead of (3.2.5) the equation

ut + h(u, x)x = δ(x)(qR − qL)u(x, t), h(u, x) =

qLu+ b(u) for x < 0,

qRu+ b(u) for x > 0.
(3.2.6)

Note that we cannot use the Heaviside function in the same way as in (3.2.4), since

now the solution value u(x, t) replaces the constant uF in the singular term. This

difference justifies studying the sink term problem in its own right, rather than clai-

ming that it is just analogous to the source term problem.

Finally, let us mention that several researchers in chemical engineering and mi-

neral processing have reported experiments with separation devices that can be mo-

deled by the extended clarifier-thickener concept by possibly considering several

discharge sink terms located at different depths. (It is clear that if we know how

to properly handle one sink term, then we can also deal with any array of them.)

References to experimental information include [71, 72, 73, 134, 135, 136, 139, 154].
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Figure 3.2: The extended clarifier-thickener setup showing the known bulk flows

and control variables.

3.2.2 Bulk flow variables

Consider the extended clarifier-thickener drawn in Figure 3.2, which is supposed

to have a constant cross-sectional area S. This setup is similar to that considered in

[28, 30, 31], but is equipped with an additional sink located at depth xD. This (of

course, idealized) unit is operated as follows.

At x = 0, suspension is fed into the unit at a volume rate QF(t) ≥ 0. The feed

suspension is loaded with solids of the volume fraction uF(t) ∈ [0, umax], where

umax is a maximum solids concentration. At x = 0, the feed flow divides into an

upwards-directed and a downwards-directed bulk flow. We also prescribe the un-

derflow volume rate QR(t) ≥ 0 with QR(t) ≤ QF(t). Thus, the signed volume rate of

the upwards-directed bulk flow immediately above the feed source is

QM(t) = QR(t)−QF(t) ≤ 0. (3.2.7)

At depth x = xD, xL < xD < 0, a discharge sink is located. Suspension is extracted

from the column at a signed volume rate QD(t) ≤ 0, where we assume QD(t) ≥
QM(t). Above the discharge sink, for xL ≤ x ≤ xD, there is an upwards directed bulk
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flow with the volume rate

QL(t) = QM(t)−QD(t) = QR(t)−QF(t)−QD(t) ≤ 0. (3.2.8)

Summarizing, we prescribe the volume rates QF(t), QR(t) and QD(t) and the feed

concentration uF(t) as independent control variables. From these we calculate the

dependent control variables QM(t) and QL(t) by (3.2.7) and (3.2.8), respectively.

For the remainder of the paper, we assume that all control variables are cons-

tant, and introduce the velocities qc := Qc/S, c ∈ {D,F,L,M,R}. Disregarding for

a moment the solids sources and sinks but taking into account the bulk flows and

utilizing independent control variables only, we can write the flux function as

g̃(u, x) =



(qR − qF − qD)u for x ≤ xL,

(qR − qF − qD)u+ b(u) for xL < x ≤ xD,

(qR − qF)u+ b(u) for xD < x ≤ 0,

qRu+ b(u) for 0 < x ≤ xR,

qRu for x > xR.

(3.2.9)

3.2.3 Solids feed and sink terms

Including now the solids feed and sink mechanisms, we obtain the conservation

law with source terms

ut + g̃(u, x)x =qFuFδ(x) + qDu(x, t)δ(x− xD)

=qFuFH
′(x) + qD

(
H(x− xD)u(x, t)

)
x
− qDH(x− xD)ux(x, t),

(3.2.10)

where δ(·) denotes the Dirac delta mass. Observe that the differentiation by parts

used here,

u(x, t)δ(x− xD) =
(
H(x− xD)u(x, t)

)
x
−H(x− xD)ux(x, t),

is not defined in the sense of distributions. However, we continue to use the se-

cond equality in (3.2.10) as the defining equation of the extended clarifier-thickener
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model. This is supported by the integral version of the balance law, and the desired

effect of the singular sink. Namely, if we fix a ∈ (xL, xD) and b ∈ (xD, 0), so that

xD ∈ [a, b] and define the total amount of solids

U[a,b](t) :=

∫ b

a

u(x, t) dx,

then the rate of change of U[a,b](t) should be given by the solids flux through x = a

minus the flux through x = b minus the rate at which solids are extracted through

x = xD. However, integrating the second equality in (3.2.10) over [a, b], taking into

account the definition of g(x, u) and assuming that the solution is smooth, we obtain

U ′
[a,b](t) = −

(
g̃(u(b, t), b)− g̃(u(a, t), a)

)
+ qDH(b− xD)u(b, t)− qDH(a− xD)u(a, t)

− qD

∫ b

a

H(x− xD)ux(x, t) dx

= −
(
g̃(u(b, t), b)− g̃(u(a, t), a)

)
+ qDu(b, t)− qD

∫ b

xD

ux(x, t) dx

= g̃(u(a, t), b)− g̃(u(b, t), b) + qDu(xD, t),

which ensures equivalence at least at the level of smooth solutions between the first

equation of (3.2.10) and the full extended clarifier-thickener model (3.1.1).

Next, absorbing the term qFuFH
′(x) + qD(H(x − xD)u(x, t))x into the convective

flux yields the equation

ut + g(u, x)x = −qDH(x− xD)ux(x, t), (3.2.11)

where, after defining q̃R := qR − qD and adding −qLuF, we obtain the flux function

g(u, x) =



(q̃R − qF)(u− uF) for x ≤ xL,

(q̃R − qF)(u− uF) + b(u) for xL < x ≤ 0,

q̃R(u− uF) + b(u) for 0 < x ≤ xR,

q̃R(u− uF) for x > xR,

(3.2.12)

which is continuous across x = xD. Defining the discontinuous parameters γ1(x),

γ2(x) and γ3(x) via (3.1.8) and (3.1.9) yields g(u, x) = f(γ(x), u), where f(γ(x), u)
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is defined by (3.1.7), so that the governing balance law (3.2.11) takes the final form

(3.1.1).

3.2.4 Reduced problem

The analysis in this paper is focused on the reduced problem (3.1.2), (3.1.4),

(3.1.5), which emerges from the model derived above if we consider only the vicinity

of the sink term and assume that the velocities have been normalized such that qD
(in the original problem description) equals −γ+, and that q ≤ 0. Recall that we re-

fer to (3.1.2), (3.1.4), (3.1.5) as reduced problem, while (3.1.1), (3.1.4), and (3.1.7)–(3.1.9)

form the full extended clarifier-thickener model (in short, full model).

3.3 Entropy solution and uniqueness analysis of the re-

duced problem

Before stating the definition of entropy solution, we recall the notation a ∨ b :=

max{a, b}, a ∧ b := min{a, b}. Also, we use the notation D(ΠT ) to denote the set of

test functions; D(ΠT ) = C∞
c (ΠT ).

Definition 3.3.1 (Entropy solution) A function u : ΠT 7→ R is an entropy solution of

the initial value problem (3.1.2), (3.1.4), (3.1.5) if it satisfies the following conditions:

(D.1) u ∈ L1(ΠT ) ∩BV (ΠT ) and u(x, t) ∈ [0, 1] for a.e. (x, t) ∈ ΠT .

(D.2) If 0 ≤ ψ ∈ D(ΠT ) vanishes for x > 0, then∫∫
ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u)− ϕ(c)

)
ψx

)
dt dx ≥ 0 ∀c ∈ R, (3.3.1)

and if 0 ≤ ψ ∈ D(ΠT ) vanishes for x < 0, then∫∫
ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u)− ϕ(c)− γ+(u− c)

)
ψx

)
dt dx ≥ 0

∀c ∈ R.
(3.3.2)
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(D.3) With the abbreviation u± = u(0±, t), the following jump conditions hold at x = 0 for

a.e. t ∈ (0, T ): if u− ≤ c ≤ u+, then

ϕ(u+)− ϕ(c) ≤ γ+(u+ − c), (3.3.3)

ϕ(u−)− ϕ(c) ≤ 0, (3.3.4)

and if u− ≥ c ≥ u+, then

ϕ(u+)− ϕ(c) ≥ γ+(u+ − c), (3.3.5)

ϕ(u−)− ϕ(c) ≥ 0. (3.3.6)

(D.4) The initial condition is satisfied in the following strong L1 sense:

ess lim
t↓0

∫
R

∣∣u(x, t)− u0(x)
∣∣dx = 0. (3.3.7)

Remark 3.3.1 For the full extended clarifier-thickener model captured by equation

(3.1.1), we would have to replace the condition u ∈ BV (ΠT ) by the weaker condition

u ∈ BVt(ΠT ). Here BVt(ΠT ) is the class of functions W (x, t) with ∂tW being a finite

measure. The presence of the discontinuities in the parameter vector γ makes it

difficult (in the case of the extended model (3.1.1)) to get global control of the spatial

variation of the solution u.

Remark 3.3.2 It is clear from (3.3.1), (3.3.2) that if u is an entropy solution in the

sense of Definition 3.3.1, then for x < 0, u is an entropy solution in the usual Kružkov

sense of the conservation law ut+ϕ(u)x = 0, while for x > 0, u is an entropy solution

(in the usual Kružkov sense) of the conservation law ut + (ϕ(u)− γ+u)x = 0.

Remark 3.3.3 The reduced equation (3.1.2) has a so-called non-conservative pro-

duct. More specifically, we have what amounts to a δ function, ux, multiplied by a

discontinuous function γ(x). We expect a jump condition of the form

ϕ(u+)− ϕ(u−) = γ̄(u+ − u−), (3.3.8)
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where γ̄ is some intermediate value of γ, i.e. 0 = γ− ≤ γ̄ ≤ γ+. In fact, when u− ≤ u+,

we can take c = u− in (3.3.3) and then c = u+ in (3.3.4) to get

0 ≤ ϕ(u+)− ϕ(u−) ≤ γ+(u+ − u−),

which implies (3.3.8). Similarly, when u− ≥ u+, we can take c = u− in (3.3.5) and

then c = u+ in (3.3.6) to get

γ+(u+ − u−) ≤ ϕ(u+)− ϕ(u−) ≤ 0,

which again implies (3.3.8).

From the jump conditions in Definition 3.3.1 we derive the following additional

jump conditions.

Lemma 3.3.1 Let u be an entropy solution of the reduced problem in the sense of Defi-

nition 3.3.1. The following jump conditions hold at x = 0 for a.e. t ∈ (0, T ) for which

u−(t) 6= u+(t):

0 ≤ ϕ(u+)− ϕ(u−)

u+ − u−
≤ γ+, (3.3.9)

u+ < u− ⇒ u+ < u− ≤ u∗, (3.3.10)

where u∗ is the single maximum of ϕ(u) (see Subsection 3.1.2).

Proof. To prove (3.3.9), first take the case where u− < u+. Letting c = u− in (3.3.3),

and then c = u+ in (3.3.4), yields the inequalities

ϕ(u+)− ϕ(u−) ≤ γ+(u+ − u−), ϕ(u+)− ϕ(u−) ≥ 0,

which imply inequality (3.3.9). If u+ < u−, we arrive at (3.3.9) by a similar calcula-

tion, this time taking c = u− in (3.3.5), and then c = u+ in (3.3.6).

To prove (3.3.10), it suffices to show that neither of the orderings u+ ≤ u∗ < u−,

u∗ < u+ < u− is possible. If u+ ≤ u∗ < u−, letting c = u∗ in (3.3.6) results in

ϕ(u∗)− ϕ(u−) ≤ 0, which contradicts our assumptions about the shape of the graph

of u 7→ ϕ(u). If u∗ < u+ < u−, letting c = u+ in (3.3.6) yields ϕ(u+)−ϕ(u−) ≤ 0. Since

ϕ is strictly decreasing on [u∗, 1], this is a contradiction. 2



58 CHAPTER 3. EXTENDED CLARIFIER-THICKENER MODEL

Remark 3.3.4 In the absence of the sink term (γ+ = 0), the jump condition (3.3.9)

becomes
ϕ(u+)− ϕ(u−)

u+ − u−
= 0,

which is the usual Rankine-Hugoniot condition satisfied by a zero-speed disconti-

nuity for the conservation law ut+ϕ(u)x = 0. Based on this observation, it seems that

(3.3.9) is playing the role of a Rankine-Hugoniot condition for a steady jump located

at x = 0 where the delta-function due to the sink term is concentrated. Maintain-

ing for the moment our focus on the situation where γ+ = 0, the shape of the flux

function u 7→ ϕ(u), along with the Rankine-Hugoniot condition, ϕ(u+) = ϕ(u−), re-

quires that u∗ lies between u− and u+. It follows from (3.3.10) that in this situation

u− < u∗ < u+ if u− 6= u+. Thus when γ+ = 0, the local entropy condition implied by

the jump conditions (D.3) is the classical Lax condition for a steady shock.

Remark 3.3.5 If we set ϕ ≡ 0, the partial differential equation (3.1.2) reduces to

ut − γ(x)ux = 0, (3.3.11)

a simple transport equation. Note that due to the form of the coefficient γ(x), the

interface values u(0−, t) and u(0+, t) are determined by the initial data alone, i.e., no

interface conditions are required. Indeed, in the limiting case where ϕ vanishes, our

jump conditions at x = 0 are satisfied trivially, i.e., they impose no restrictions on u−
and u+. Using (3.3.1), (3.3.2) and (3.3.7), we find that the solution to (3.3.11) that is

dictated by our definition of entropy solution is

u(x, t) =

u0(x) for x < 0,

u0(x+ γ+t) for x > 0,
(3.3.12)

as expected from the form of (3.3.11) and the definition of γ. We refer the reader to

the work of Bouchut and James [17] for a detailed study of linear transport equations

with discontinuous coefficients such as (3.3.11). Note that (3.3.11) can be written in

the form of [17, Eq. (1.1)], ut + a(x)ux = 0, if we define a(x) = −γ(x). In view

of our definition of γ(x), (3.1.5), the function a(x) is then piecewise constant with
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one decreasing jump. Thus, the one-sided Lipschitz condition [17, (1.8)] is trivially

satisfied, and our solution (3.3.12) of (3.3.11) is also a solution in the sense of [17].

We are now ready to prove that entropy solutions areL1 stable and hence unique.

Theorem 3.3.2 (L1 stability and uniqueness) Let u and v be two entropy solutions in

the sense of Definition 3.3.1 of the initial value problem (3.1.2), (3.1.4), (3.1.5) with initial

data u0 and v0, respectively. Then, for a.e. t ∈ (0, T ),∫
R

∣∣u(x, t)− v(x, t)
∣∣ dx ≤ ∫

R

∣∣u0(x)− v0(x)
∣∣ dx.

In particular, there exists at most one entropy solution of the reduced model (3.1.2), (3.1.4),

(3.1.5).

Proof. Using standard methods and in particular the doubling of variables tech-

nique [114], one can derive from (3.3.1) and (3.3.2) the following pair of integral

inequalities for u and v:

∀ψ1 ∈ D(ΠT ), ψ1(x, t) = 0 for x > 0:∫∫
ΠT

(
|u− v|ψ1

t + sgn(u− v)
(
ϕ(u)− ϕ(v)

)
ψ1

x

)
dt dx ≥ 0,

(3.3.13)

∀ψ2 ∈ D(ΠT ), ψ2(x, t) = 0 for x < 0:∫∫
ΠT

(
|u− v|ψ2

t + sgn(u− v)
(
ϕ(u)− ϕ(v)− γ+(u− v)

)
ψ2

x

)
dt dx ≥ 0.

(3.3.14)

An approximation argument reveals that we may choose ψ1(x, t) = Φ(t)νh(x) and

ψ2(x, t) = Φ(t)µh(x), where Φ ∈ C2
0(0, T ), Φ(·) ≥ 0, and {µh}h>0 and {νh}h>0 are

standard boundary layer sequences that are assumed to satisfy µh ∈ C1(R), µh(x) =

0 for x ≤ 0, 0 ≤ µh(·) ≤ 1, µh(x) = 1 for x > h, |µ′h(·)| ≤ C/h, where C is a constant

independent of h, and νh(x) := 1 − µh(x + h). Since the solutions u and v possess

traces with respect to x→ 0, we obtain by inserting ψ1 and ψ2 in (3.3.13) and (3.3.14),

letting h → 0, and using that for all h, ψ1 vanishes for x ≥ 0, while ψ2 vanishes for

x ≤ 0, the inequalities∫ 0

−∞

∫ T

0

|u− v|Φ′(t) dt dx ≥
∫ T

0

sgn(v− − u−)
(
ϕ(v−)− ϕ(u−)

)
Φ(t) dt, (3.3.15)
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∫ ∞

0

∫ T

0

|u− v|Φ′(t) dt dx

≥ −
∫ T

0

sgn(v+ − u+)
(
ϕ(v+)− ϕ(u+)− γ+(v+ − u+)

)
Φ(t) dt.

(3.3.16)

In a standard fashion, let now ωh be a non-negative C∞ mollifier with support on

(−h, h) and ‖ωh‖L1(R) = 1. Then let %h(x) :=
∫ x

0
ωh(ξ) dξ and take Φ(t) := %h(t− t1)−

%h(t− t2), where 0 ≤ t1 < t2 ≤ T . Taking h→ 0, we obtain∫
R

∣∣u(·, t2)− v(·, t2)
∣∣ dx− ∫

R

∣∣u(·, t1)− v(·, t1)
∣∣ dx ≤ E,

E :=

∫ t2

t1

{
sgn(v+ − u+)

(
ϕ(v+)− ϕ(u+)− γ+(v+ − u+)

)
− sgn(v− − u−)

(
ϕ(v−)− ϕ(u−)

)}
dt.

(3.3.17)

To prove the L1 contraction property, we verify that E ≤ 0 by showing that the

jump conditions ensure that the integrand in (3.3.17) is non-positive for almost all

t ∈ (0, T ). To this end, we give a name to this integrand:

S := sgn(v+ − u+) (ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+)− sgn(v− − u−) (ϕ(v−)− ϕ(u−)) .

Our goal now is to show that S ≤ 0. We prove this by examining the cases corres-

ponding to the ordering among the four numbers u−, u+, v−, v+. There are 24 such

cases, but we can eliminate half of them, since interchanging u− with v− and u+ with

v+ leads to the same proofs, only with different labels.

Case 1. u− ≤ v− ≤ u+ ≤ v+. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
.

Taking c = v− in (3.3.4), we get

ϕ(u−)− ϕ(v−) ≤ 0.

Interchanging u and v and setting c = u+ in (3.3.3), we obtain ϕ(v+)−ϕ(u+)−γ+(v+−
u+) ≤ 0, which makes it clear that S ≤ 0.
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Case 2. u− ≤ v− ≤ v+ ≤ u+. In this case

S = ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−)− ϕ(u−)

)
≤ ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+.

Here we have used that ϕ(v−)−ϕ(u−) ≥ 0, which results by taking c = v− in (3.3.4).

Now letting c = v+ in (3.3.3), we get ϕ(u+) − ϕ(v+) ≤ γ+(u+ − v+), which implies

S ≤ 0.

Case 3. u− ≤ u+ ≤ v− ≤ v+. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
.

From (3.3.9), ϕ(u−)− ϕ(u+) ≤ 0, and so

S ≤ ϕ(v+)− ϕ(v−)− γ+(v+ − u+) ≤ ϕ(v+)− ϕ(v−)− γ+(v+ − v−).

Taking c = v− in (3.3.3), it is now clear that S ≤ 0.

Case 4. u− ≤ u+ ≤ v+ ≤ v−. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
.

From (3.3.9), ϕ(u−)− ϕ(u+) ≤ 0, ϕ(v+)− ϕ(v−) ≤ 0 and so

S ≤ −γ+(v+ − u+) ≤ 0.

Case 5. u− ≤ v+ ≤ v− ≤ u+. In this case

S = ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−)− ϕ(u−)

)
.

Taking c = v+ in (3.3.3), and then c = v− in (3.3.4), we find that

ϕ(u+)− ϕ(v+)− γ+(u+ − v+) ≤ 0, ϕ(v−)− ϕ(u−) ≥ 0,

which clearly yields S ≤ 0.

Case 6. u− ≤ v+ ≤ u+ ≤ v−. In this case

S = ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−)− ϕ(u−)

)
.
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Letting c = v+ in (3.3.3) results in

ϕ(u+)− ϕ(v+) ≤ γ+(u+ − v+),

and so

S ≤ −
(
ϕ(v−)− ϕ(u−)

)
.

Taking c = v+ in (3.3.4) gives ϕ(v+) − ϕ(u−) ≥ 0. Also, from (3.3.9), we see that

ϕ(v−) ≥ ϕ(v+). Combining these inequalities gives ϕ(v−) − ϕ(u−) ≥ 0, and thus

S ≤ 0.

Case 7. u+ ≤ u− ≤ v− ≤ v+. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
≤ ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −

(
ϕ(v−)− ϕ(u−)

)
+ γ+v− − γ+u−

= ϕ(v+)− ϕ(v−)− γ+(v+ − v−)−
(
ϕ(u+)− ϕ(u−)− γ+(u+ − u−)

)
.

By (3.3.9), we have the inequalities

ϕ(v+)− ϕ(v−)− γ+(v+ − v−) ≤ 0, ϕ(u+)− ϕ(u−)− γ+(u+ − u−) ≥ 0,

yielding S ≤ 0.

Case 8. u+ ≤ u− ≤ v+ ≤ v−. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
.

By (3.3.9), ϕ(v+) ≤ ϕ(v−), which results in the inequality

S ≤ ϕ(u−)− ϕ(u+)− γ+(v+ − u+) ≤ ϕ(u−)− ϕ(u+)− γ+(u− − u+).

Taking c = u− in (3.3.5), we find that ϕ(u−) − ϕ(u+) − γ+(u− − u+) ≤ 0, yielding

S ≤ 0.

Case 9. v+ ≤ u− ≤ v− ≤ u+. In this case

S = ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−)− ϕ(u−)

)
.
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Taking c = u− in (3.3.5) gives ϕ(v+)− ϕ(u−) ≥ γ+(v+ − u−), which we can rearrange

as −ϕ(v+) + ϕ(u−) + γ+v+ ≤ γ+u−. From this it follows that

S ≤ ϕ(u+)− ϕ(v−)− γ+u+ + γ+u−.

Now (3.3.10) tells us that v+ ≤ v− ≤ u∗. Recalling that u 7→ ϕ(u) is non-decreasing

on [0, u∗], and that v+ ≤ u− ≤ v−, we find that ϕ(u−) ≤ ϕ(v−), and so

S ≤ ϕ(u+)− ϕ(u−)− γ+u+ + γ+u−.

The right side of this last inequality is non-positive due to (3.3.9), and so S ≤ 0.

Case 10. v+ ≤ u− ≤ u+ ≤ v−. In this case

S = ϕ(u+)− γ+u+ − ϕ(v+) + γ+v+ −
(
ϕ(v−)− ϕ(u−)

)
.

Taking c = u+ in (3.3.5) gives ϕ(v+) − ϕ(u+) ≥ γ+(v+ − u+), from which we derive

S ≤ ϕ(u−)−ϕ(v−). From (3.3.10) we have that v+ ≤ v− ≤ u∗. Since also u− ≤ v− ≤ u∗,

we see that ϕ(u−) ≤ ϕ(v−), yielding S ≤ 0.

Case 11. u+ ≤ v− ≤ u− ≤ v+. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(u−)− ϕ(v−)

)
.

Taking c = u− in (3.3.3) results in

ϕ(v+)− ϕ(u−)− γ+v+ ≤ −γ+u−,

which in turn gives us

S ≤ −ϕ(u+) + γ+u+ + ϕ(v−)− γ+u−.

From (3.3.10) we have that u+ ≤ u− ≤ u∗. Since also v− ≤ u− ≤ u∗, we have ϕ(v−) ≤
ϕ(u−), and so

S ≤ −ϕ(u+) + γ+u+ + ϕ(u−)− γ+u− = ϕ(u−)− ϕ(u+)− γ+(u− − u+).

This last quantity is non-positive, due to (3.3.9), resulting in S ≤ 0.
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Case 12. u+ ≤ v+ ≤ u− ≤ v−. In this case

S = ϕ(v+)− γ+v+ − ϕ(u+) + γ+u+ −
(
ϕ(v−)− ϕ(u−)

)
.

Taking c = v+ in (3.3.5) results in

ϕ(v+)− ϕ(u+)− γ+(v+ − u+) ≤ 0,

which in turn gives us S ≤ ϕ(u−)− ϕ(v−). From (3.3.10) we have that v+ ≤ v− ≤ u∗.

Since also u− ≤ v− ≤ u∗, we have ϕ(u−) ≤ ϕ(v−), making it clear that S ≤ 0. 2

3.4 Numerical scheme and some properties

In this section we discuss a difference scheme that applies to the full model

(3.1.1). We begin the definition of the algorithm by discretizing the spatial domain R
into cells Ij := [xj−1/2, xj+1/2), j ∈ Z, where xk = k∆x for k = 0,±1/2,±1,±3/2, . . . .

Similarly, the time interval (0, T ) is discretized via tn = n∆t for n = 0, . . . , N , where

N = bT/∆tc + 1, which results in the time strips In := [tn, tn+1), n = 0, . . . , N − 1.

Here ∆x > 0 and ∆t > 0 denote the spatial and temporal discretization parame-

ters, respectively. These parameters are chosen so that the following CFL condition

holds:

λ max
u∈[0,1],x∈R

∣∣fu

(
γ(x), u

)∣∣+ λmax
x∈R

γ3(x) ≤ 1

2
, λ :=

∆t

∆x
. (3.4.1)

When sending ∆ ↓ 0 we will do so with the ratio λ kept constant. We use the symbol

∆ to refer to the discretization parameters collectively: ∆ = (∆x,∆t).

We propose a scheme that is a direct modification of the one described in [31].

Let Un
j denote our approximation to u(xj, t

n). Then the marching formula for our

new scheme is

Un+1
j = Un

j − λ∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
+ λγ3

j ∆+U
n
j . (3.4.2)

Here γj+1/2 = γ(xj+1/2−), and γ3
j := γ3(xj−). In (3.4.2) the symbols ∆± are spatial

difference operators:

∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
= h

(
γj+1/2, U

n
j+1, U

n
j

)
− h
(
γj−1/2, U

n
j , U

n
j−1

)
,
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and ∆+U
n
j = Un

j+1 − Un
j .

The main difference between (3.4.2) and the scheme defined in [31] is the new

term λγ3
j ∆+U

n
j that incorporates the sink feature. The use of the forward difference

∆+ in this new sink term is deliberate; we bias this difference to preserve the upwind

nature of the scheme. Here we are explicitly using the assumption that γ3(x) ≥ 0.

The function h(γ, v, u) is the Engquist-Osher (EO henceforth) numerical flux [65]

h(γ, v, u) :=
1

2

(
f(γ, u) + f(γ, v)

)
− 1

2

∫ v

u

|fu(γ, w)| dw. (3.4.3)

To define an approximate solution not just at the mesh points, but on all of ΠT ,

we let χn
j denote the indicator for the rectangle Ij × In and introduce

u∆(x, t) :=
N∑

n=0

∑
j∈Z

χn
j (x, t)Un

j .

Although the scheme is not conservative, several important properties of mono-

tonicity are preserved. The following lemma is adapted from Lemma 3.1 of [31].

Lemma 3.4.1 The computed solution Un
j belongs to the interval [0, 1]. Moreover, the diffe-

rence scheme (3.4.2) is monotone.

Proof. We start by noting that the marching formula (3.4.2) defines Un+1
j as a func-

tion of the three independent variables Un
j−1, Un

j , Un
j+1 Using (3.4.2), we compute the

partial derivatives of Un+1
j with respect to these variables:

∂Un+1
j

∂Un
j+1

= −λf−u
(
γj+1/2, U

n
j+1

)
+ λγ3

j ≥ 0,
∂Un+1

j

∂Un
j−1

= λf+
u

(
γj−1/2, U

n
j−1

)
≥ 0,

∂Un+1
j

∂Un
j

= 1 + λf−u
(
γj−1/2, U

n
j

)
− λf+

u

(
γj+1/2, U

n
j

)
− λγ3

j .

Thus Un+1
j is a non-decreasing function of the conserved variables at tn if

1 + λf−u
(
γj−1/2, U

n
j

)
− λf+

u

(
γj+1/2, U

n
j

)
− λγ3

j ≥ 0.

This will hold if Un
j ∈ [0, 1] for all j and the CFL condition (3.4.1) is satisfied. The

rest of the proof is similar to the proof of Lemma 3.1 of [31], and is omitted. 2

Next we establish a fundamental time-continuity estimate.
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Lemma 3.4.2 There exists a constant C, independent of ∆ and n, such that

∆x
∑
j∈Z

∣∣Un+1
j − Un

j

∣∣ ≤ ∆x
∑
j∈Z

∣∣U1
j − U0

j

∣∣ ≤ C∆t. (3.4.4)

Proof. Starting from the marching formula (3.4.2), we can express the time diffe-

rences as follows:

Un+1
j − Un

j = Un
j − Un−1

j − λ∆−
[
h
(
γj+1/2, U

n
j+1, U

n
j

)
− h
(
γj+1/2, U

n−1
j+1 , U

n−1
j

)]
+ λγ3

j ∆+U
n
j − λγ3

j ∆+U
n−1
j

=
(
1− λC

n− 1
2

j+1/2 + λB
n− 1

2

j−1/2 − λγ3
j

)(
Un

j − Un−1
j

)
− λB

n− 1
2

j+1/2

(
Un

j+1 − Un−1
j+1

)
+ λC

n− 1
2

j−1/2

(
Un

j−1 − Un−1
j−1

)
+ λγ3

j

(
Un

j+1 − Un−1
j+1

)
,

where we define

B
n− 1

2

j+1/2 :=

∫ 1

0

f−u
(
γj+1/2, θU

n
j+1 + (1− θ)Un−1

j+1

)
dθ ≤ 0,

C
n− 1

2

j+1/2 :=

∫ 1

0

f+
u

(
γj+1/2, θU

n
j + (1− θ)Un−1

j

)
dθ ≥ 0.

Due to the CFL condition (3.4.1),

1− λC
n− 1

2

j+1/2 + λB
n− 1

2

j−1/2 − λγ3
j ≥ 0.

Thus, we conclude that∣∣Un+1
j − Un

j

∣∣ ≤(1− λC
n− 1

2

j+1/2 + λB
n− 1

2

j−1/2 − λγ3
j

)∣∣Un
j − Un−1

j

∣∣
− λB

n− 1
2

j+1/2

∣∣Un
j+1 − Un−1

j+1

∣∣+ λC
n− 1

2

j−1/2

∣∣Un
j−1 − Un−1

j−1

∣∣+ λγ3
j

∣∣Un
j+1 − Un−1

j+1

∣∣
≤
(
1− λC

n− 1
2

j+1/2 + λB
n− 1

2

j−1/2 − λγ3
j

)∣∣Un
j − Un−1

j

∣∣
− λB

n− 1
2

j+1/2

∣∣Un
j+1 − Un−1

j+1

∣∣+ λC
n− 1

2

j−1/2

∣∣Un
j−1 − Un−1

j−1

∣∣+ λγ3
j+1

∣∣Un
j+1 − Un−1

j+1

∣∣.
Here we have used the fact that x 7→ γ3(x) in non-decreasing when replacing γ3

j by

γ3
j+1. Summing this inequality over j and multiplying by ∆x gives

∆x
∑
j∈Z

∣∣Un+1
j − Un

j

∣∣ ≤ ∆x
∑
j∈Z

∣∣Un
j − Un−1

j

∣∣.
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Applying this last inequality inductively, we arrive at

∆x
∑
j∈Z

∣∣Un+1
j − Un

j

∣∣ ≤ ∆x
∑
j∈Z

∣∣U1
j − U0

j

∣∣.
The rest of the proof is similar to the proof of Lemma 3.2 of [31] and is omitted. 2

Lemmas 3.4.1 and 3.4.2 provide several important stability properties of our new

difference scheme. We will not pursue the analysis for the full model (3.1.1), but

focus on the reduced problem described in Section 3.2.4.

3.5 Convergence to an entropy solution for the reduced

problem

We can write the scheme for the reduced problem (3.1.2) as

Un+1
j = Un

j − λ∆−h(U
n
j+1, U

n
j ) + λγj∆+U

n
j . (3.5.1)

Here we are abusing the notation slightly by continuing to use the symbol h of Sec-

tion 3.4 for the numerical flux, i.e.

h(v, u) =
1

2

(
ϕ(v) + ϕ(u)

)
− 1

2

∫ v

u

|ϕ′(w)| dw.

The appropriate CFL condition for our reduced problem is

λ max
u∈[0,1],x∈R

|ϕ′(u)|+ λmax
x∈R

γ(x) ≤ 1

2
, λ :=

∆t

∆x
. (3.5.2)

Lemmas 3.4.1 and 3.4.2 remain valid in this setting, and need not be repeated. In

order to establish compactness, we will also need a spatial variation bound, which is

provided by the following lemma. Let TV (z) denote the total variation of a function

z ∈ L1
loc(R).

Lemma 3.5.1 For any t ∈ [0, T ] we have the spatial variation bound

TV
(
u∆(·, t)

)
≤ C, (3.5.3)

where C is independent of ∆ and t for t ∈ [0, T ].



68 CHAPTER 3. EXTENDED CLARIFIER-THICKENER MODEL

Proof. We start by writing the scheme (3.5.1) in incremental form

Un+1
j = Un

j + Cn
j+1/2∆+U

n
j −Dn

j−1/2∆−U
n
j ,

where

Cn
j+1/2 = λ

(
ϕ(Un

j )− h(Un
j+1, U

n
j )

∆+Un
j

+ γj

)
, Dn

j−1/2 = λ
ϕ(Un

j )− h(Un
j , U

n
j−1)

∆−Un
j

.

Using the monotonicity of the numerical flux h, that γj ≥ 0, and the CFL condition

(3.5.2), one can easily check that

Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 +Dn

j+1/2 ≤ 1.

It now follows from Harten’s lemma (Lemma 2.2 of [88]) that∑
j∈Z

∣∣Un+1
j+1 − Un+1

j

∣∣ ≤∑
j∈Z

∣∣Un
j+1 − Un

j

∣∣ .
Continuing by induction, we conclude that

TV
(
u∆(·, t)

)
≤ TV

(
u∆(·, 0)

)
≤ TV (u0),

and the proof is complete. 2

In what follows, we will employ the following regularizations of the function

γ(x).

γε(x) :=


0 for x ≤ −ε,

((x+ ε)/ε)γ+ for −ε ≤ x ≤ 0,

γ+ for x ≥ 0,

γε(x) :=


0 for x ≤ 0,

(x/ε)γ+ for 0 ≤ x ≤ ε,

γ+ for x ≥ ε.

Observe that γε(x) ≤ γ(x) ≤ γε(x) for all x ∈ R. When discretizing γε and γε, we do

so in the same manner as γ, thus preserving the ordering γε
j
≤ γj ≤ γε

j .
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One more preliminary issue before we discuss entropy conditions is the existence

of traces along the line x = 0, t ∈ [0, T ]. Our spatialBV bounds carry over to the limit

solution u, guaranteeing that we have limits from both the left and right, denoted

u−(t), u+(t) or simply u−, u+, for a.e t ∈ [0, T ].

Lemma 3.5.2 Any (subsequential) limit u of the scheme (3.5.1) satisfies the entropy condi-

tions (3.3.1)–(3.3.6).

Proof. The proof of the Kružkov-type entropy inequalities (3.3.1), (3.3.2) is standard

[45], and is omitted.

We now turn to the proof of (3.3.3). The following discrete entropy inequality

holds for any c ∈ R; this follows from the monotonicity of the scheme:

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+h
(
Un

j ∨ c, Un
j−1 ∨ c

)
+ λγj∆+

(
Un

j ∨ c
)
. (3.5.4)

Now let

V n
j :=

c for j ≤ 0,

Un
j ∨ c for j > 0,

v(x, t) :=

c for x < 0,

u(x, t) ∨ c for x > 0.

Note that

∆+V
n
0 = Un

1 ∨ c− c ≥ 0. (3.5.5)

Since γj = 0 for j ≤ 0, and ∆+V
n
j = ∆+(Un

j ∨ c) for j > 0, we can replace inequality

(3.5.4) by

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+h
(
Un

j ∨ c, Un
j−1 ∨ c

)
+ λγj∆+V

n
j . (3.5.6)

Since γε
j ≥ γj = 0 for j ≤ 0 and γε

j = γj = γ+ for j > 0, in view of (3.5.5) we can

replace inequality (3.5.6) by

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+h
(
Un

j ∨ c, Un
j−1 ∨ c

)
+ λγε

j∆+V
n
j . (3.5.7)

Employing the identity

Aj∆+Bj = ∆+ (AjBj)−Bj+1∆+Aj, (3.5.8)
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we can rewrite (3.5.7) in the form

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γε

jV
n
j

)
− λV n

j+1∆+γ
ε
j. (3.5.9)

Let 0 ≤ ψ ∈ D(ΠT ), and ψn
j = ψ(xj, t

n). Proceeding as in the proof of the Lax-

Wendroff theorem, we move all terms in (3.5.9) to the left-hand side of the inequality,

multiply by ψn
j ∆x, and sum over j ∈ Z, n ≥ 0, and finally sum by parts to get

∆x∆t
∑
j∈Z

∑
n≥0

(
Un

j ∨ c
) ψn+1

j − ψn
j

∆t

+ ∆x∆t
∑
j∈Z

∑
n≥0

[
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γε

jV
n
j

] ∆+ψ
n
j

∆x

−∆x∆t
∑
j∈Z

∑
n≥0

∆+γ
ε
j

∆x
V n

j+1ψ
n
j ≥ 0.

(3.5.10)

When ∆ ↓ 0, the bounded convergence theorem yields∫∫
ΠT

(
(u∨ c)ψt + (ϕ(u ∨ c)− γε(x)v)ψx

)
dx dt−

∫∫
ΠT

(γε)′(x) v ψ dx dt ≥ 0. (3.5.11)

With the observation that

(γε)′(x) =

γ+/ε for x ∈ (−ε, 0),

0 for x /∈ (−ε, 0),

when ε ↓ 0 we obtain∫∫
ΠT

(γε)′(x) v ψ dx dt→ γ+c

∫ T

0

ψ(0, t) dt.

Combining this with an application of the bounded convergence theorem, when

ε ↓ 0, (3.5.11) yields the inequality∫∫
ΠT

(
(u ∨ c)ψt +

(
ϕ(u ∨ c)− γ(x)v

)
ψx

)
dx dt− γ+c

∫ T

0

ψ(0, t) dt ≥ 0. (3.5.12)

By applying a standard test function argument to (3.5.12), we find that for a.e. t ∈
(0, T ),

ϕ(u−(t) ∨ c)− γ−c−
(
ϕ(u+(t) ∨ c)− γ+(u+(t) ∨ c)

)
− γ+c ≥ 0.
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Recalling that γ− = 0, u− ≤ c ≤ u+, dropping the dependence on t, and rearranging,

this inequality becomes

ϕ(u+)− ϕ(c) ≤ γ+(u+ − c),

and the proof of (3.3.3) is complete.

For the proof of (3.3.4) we use the monotonicity of the scheme to derive the dis-

crete entropy inequality

Un+1
j ∧ c ≥ Un

j ∧ c− λ∆+h
(
Un

j ∧ c, Un
j−1 ∧ c

)
+ λγj∆+

(
Un

j ∧ c
)
. (3.5.13)

Let

W n
j :=

c for j ≤ 0,

Un
j ∧ c for j > 0,

, w(x, t) :=

c for x < 0,

u(x, t) ∧ c for x > 0.

Observing that

∆+(Un
0 ∧ c) = Un

1 ∧ c− Un
0 ∧ c ≥ ∆+W

n
0 = Un

1 ∧ c− c ≤ 0,

we find that the following inequality holds:

Un+1
j ∧ c ≥ Un

j ∧ c− λ∆+h
(
Un

j ∧ c, Un
j−1 ∧ c

)
+ λγj∆+W

n
j .

Using 0 ≤ γj ≤ γε
j and ∆+W

n
0 ≤ 0, we also have

Un+1
j ∧ c ≥ Un

j ∧ c− λ∆+h
(
Un

j ∧ c, Un
j−1 ∧ c

)
+ λγε

j∆+W
n
j .

Proceeding as in the proof of (3.3.3), we find that∫∫
ΠT

(
(u ∧ c)ψt +

(
ϕ(u ∧ c)− γε(x)w

)
ψx

)
dx dt−

∫∫
ΠT

(γε)′(x)wψ dx dt ≤ 0,

from which it follows that

ϕ(u−(t) ∧ c)− γ−c−
(
ϕ(u+(t) ∧ c)− γ+(u+(t) ∧ c)

)
− γ+c ≤ 0,

and this holds for a.e. t ∈ [0, T ]. Recalling that γ− = 0, and then observing that the

terms involving γ+(u+(t) ∧ c) and γ+c cancel, the proof of (3.3.4) is complete.
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For the proof of (3.3.6), we start from the discrete entropy inequality (3.5.4), and

then apply the identity (3.5.8) to get

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γj(U

n
j ∨ c)

)
− λ(Un

j+1 ∨ c)∆+γj.
(3.5.14)

We then define

Ṽ n
j :=

Un
j ∨ c for j ≤ 0,

c for j > 0,
ṽ(x, t) :=

u(x, t) ∨ c for x < 0,

c for x > 0,

and observe that it is possible to replace the inequality (3.5.14) by

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γj(U

n
j ∨ c)

)
− λṼ n

j+1∆+γj.

More specifically, this inequality holds because ∆+γj = 0, except at j = 0, and

Un
1 ∨ c ≥ Ṽ1 = c. Another application of the identity (3.5.8) yields

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γj(U

n
j ∨ c) + γjṼ

n
j

)
+ λγj∆+Ṽ

n
j .

(3.5.15)

Since ∆+Ṽ
n
j = 0 for j > 0, ∆+Ṽ

n
0 ≤ 0, γε

j
= γj for j < 0, and γε

j
≤ γj for j ≥ 0, we can

replace (3.5.15) by

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γj(U

n
j ∨ c) + γjṼ

n
j

)
+ λγε

j
∆+Ṽ

n
j .

A final application of (3.5.8) results in

Un+1
j ∨ c ≤ Un

j ∨ c− λ∆+

(
h
(
Un

j ∨ c, Un
j−1 ∨ c

)
− γj(U

n
j ∨ c) + (γj − γε

j
)Ṽ n

j

)
− λṼ n

j+1∆+γ
ε

j
.

The rest of the proof of (3.3.6) is similar to the proofs of (3.3.3) and (3.3.4), and so we

omit the details.

The proof of (3.3.5) is similar to that of (3.3.6), the main difference being that one

starts from the discrete entropy inequality (3.5.13) and uses the modified functions

W̃ n
j :=

Un
j ∧ c for j ≤ 0,

c for j > 0,
, w̃(x, t) :=

u(x, t) ∧ c for x < 0,

c for x > 0.
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We omit the details. 2

We can now state and prove our main theorem.

Theorem 3.5.1 As ∆ ↓ 0, the approximations u∆ generated by the scheme (3.5.1) converge

in L1(ΠT ) and a.e. in ΠT to the unique entropy solution u of the initial value problem (3.1.2),

(3.1.4), (3.1.5).

Proof. For the approximations u∆, we have an L∞ bound (Lemma 3.4.1), a time con-

tinuity bound (Lemma 3.4.2), and a spatial variation bound (Lemma 3.5.1). In ad-

dition, it is a straightforward exercise using the time continuity bound provided by

Lemma 3.4.2 to derive a bound for the approximations u∆ in theL1(ΠT ) norm. More-

over, these bounds are independent of ∆, for (x, t) ∈ ΠT . It follows from standard

compactness arguments that there is a subsequential limit, converging in L1(ΠT ),

and a.e. in ΠT , which we will denote u. A proof of (3.3.7), i.e., that the initial values

are assumed in the strong L1 sense is standard and is thus omitted. The proof is

completed with an application of our Lemma 3.5.2, which guarantees that the sub-

sequential limit u is an entropy solution. By our uniqueness result (Theorem 3.3.2),

the entire sequence converges to u. 2

Theorem 3.5.1 shows that there exists a unique entropy solution to the initial

value problem (3.1.2), (3.1.4), (3.1.5), i.e., that this problem is well-posed.

3.6 Variants of the difference scheme

The scheme described herein for the full problem has the slight inconvenience

that to evaluate the Engquist-Osher flux function, one has to determine the extrema

of the composite flux function q(u − uF) + b(u) for q ∈ {qL, q̃R} numerically. This

can be avoided if we determine the Engquist-Osher flux function for the function

b(u) only, and discretize the linear portion q(u− uF) by a properly oriented upwind

stencil. The resulting scheme, to which we shall refer as “Scheme 1”, then reads

Un+1
j = Un

j − λ∆−h
1
(
γ1

j+1/2, U
n
j+1, U

n
j

)
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− λw
(
γ2

j−1/2, γ
2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)
+ λγ3

j ∆+U
n
j ,

where γ1, γ2, γ3 are defined in (3.1.8) and (3.1.9), and the function h1 is the EO flux

applied to the function γ1b(u), i.e.,

h1(γ1, v, u) =
γ1

2

(
b(u) + b(v)−

∫ v

u

|b′(s)| ds
)
,

and the function w arises from determining the EO flux for the linear term γ2(x)(u−
uF), followed by differencing with respect to x, i.e.,

w
(
γ2

j−1/2, γ
2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)
:= ∆−h̃

(
γ2

j+1/2, U
n
j+1 − uF, Uj − uF

)
,

where we define

h̃(γ2, v, u) :=
1

2

(
γ2(u+ v)−

∫ v

u

|γ2|ds
)
.

This yields the upwind formula

w
(
γ2

j−1/2, γ
2
j+1/2, U

n
j−1, U

n
j , U

n
j+1

)

=


γ2

j+1/2

(
Un

j − uF

)
− γ2

j−1/2

(
Un

j−1 − uF

)
if γ2

j−1/2 ≥ 0 and γ2
j+1/2 ≥ 0,

γ2
j+1/2

(
Un

j+1 − uF

)
− γ2

j−1/2

(
Un

j − uF

)
if γ2

j−1/2 < 0 and γ2
j+1/2 < 0,(

γ2
j+1/2 − γ2

j−1/2

)(
Un

j − uF

)
if γ2

j+1/2 ≥ 0 and γ2
j−1/2 < 0.

For easy reference, let us refer to the scheme (3.4.2), (3.4.3), which is analyzed in

this paper, as “Scheme 2”. Clearly, Scheme 1 emerges from Scheme 2 by applying

a direct upwind linearization, and avoiding the EO formula, for as many terms as

possible. As we shall see, the performance of Scheme 1 is much inferior to that of

Scheme 2 in terms of numerical viscosity. On the other hand, this observation sug-

gests that an even better scheme can possibly be produced if we replace Scheme 2

by a new scheme, called Scheme 3, if we avoid any explicit linear upwind differ-

ences at all, and express the numerical flux on all segments as one EO flux. Thus,

the marching formula for Scheme 3 is

Un+1
j =

Un
j − λ∆−h

3
(
γ̃j+1/2, γ

3
j+1/2, U

n
j+1, U

n
j

)
for j > 0,

Un
j − λ∆−h

2
(
γ̃j+1/2, U

n
j+1, U

n
j

)
for j ≤ 0,
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Case q −γ+ u0(x) λ

1 −4.9 −4.3 0.1χ[−2,2](x) 0.03125

2 −2.8 −2.6 0.1χ[−1,1](x) 0.04

3 −4.9 0 0.1χ[−2,−0.4](x) 0.04

4 −4.9 −4.9 0.1χ[−2,−0.4](x) 0.025

Table 3.1: Parameters for the numerical examples for the reduced problem shown in

Figure 3.3.

where we define γ̃ := (γ1, γ2) and

h2(γ̃, v, u) :=
1

2

(
f(γ̃, u) + f(γ̃, v)−

∫ v

u

∣∣fu(γ̃, w)
∣∣ dw),

h3(γ̃, γ3, v, u) :=
1

2

(
f(γ̃, u) + f(γ̃, v)− γ3(u+ v)−

∫ v

u

∣∣fu(γ̃, w)− γ3
∣∣ dw).

For the simplified version of Scheme 1 that applies to the reduced problem (3.1.2),

(3.1.4), (3.1.5), it is possible to prove convergence to an entropy solution by repeating

the analysis in Section 3.5. For Scheme 3, the convergence proof still goes through,

but it is not clear that our proof of convergence to an entropy solution (Lemma 3.5.2)

is directly applicable. However, our numerical experiments seem to indicate that

approximations generated by Scheme 3 converge to the same (entropy) solutions as

provided by Schemes 1 and 2.

3.7 Numerical results

3.7.1 Numerical solutions of the reduced problem

In the first series of examples, Cases 1 to 4, we consider the reduced problem

(3.1.2), (3.1.4), (3.1.5). We assume that the function b(u) is given by (3.1.6) with v∞ =

6.75, umax = 1 and n = 2. The plots of Figure 3.3 correspond to the parameters

given in Table 3.1. The simulations have been made with Scheme 3, ∆x = 1/80, and
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(a) Case 1 (b) Case 2
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(c) Case 3 (d) Case 4
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Figure 3.3: Numerical examples with ∆x = 0.0125 for the reduced problem.

the values of λ = ∆t/∆x indicated in Table 3.1. Note that the sink term in Case 3

is switched off. This solution of a standard nonlinear conservation law has been

included to illustrate the difference to Case 4, where the sink term is included, but

all other parameters are the same.

3.7.2 Numerical solutions of the full problem

Next, we consider the full extended clarifier-thickener model (3.1.1), (3.1.4),

(3.1.7)–(3.1.9). The parameters of four different simulations shown in Figure 3.4,
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Case qL qD qR uF λ

5 0.0 −1.0 0.6 0.7 0.05333

6 −0.7 −0.3 0.6 0.7 0.06250

7 −2.25 −2.25 1.35 0.3 0.03922

8 −3.6 −2.25 1.35 0.3 0.03968

Table 3.2: Parameters for the numerical examples for the full model shown in Fig-

ure 3.4.

Cases 5 to 8, are shown in Table 3.2. In all cases, we start from an initially empty

clarifier-thickener unit (u0 ≡ 0), and consider the same function b(u) as for Cases 1

to 4. The simulations have been made with ∆x = 1/80 and the values of λ given in

Table 3.2.

3.7.3 Error study

We consider first Case 1, which corresponds to the reduced problem. Figure 3.5

shows the numerical solution produced by Schemes 1, 2 and 3 for t = 0.5 and t = 2,

while Table 3.3 displays the approximate L1 error for this case, measured over the

interval [−1, 1].

Next, we consider Case 5, which corresponds to the full problem. Figure 3.6

shows the numerical solution produced by Schemes 1, 2 and 3 for t = 1, t = 2 and

t = 4, respectively, while Table 3.4 displays the approximate L1 error for this case,

measured over the interval [−2.1, 1.1] (so that all flux discontinuities are included).

Finally, we present in Figure 3.7 numerical solutions generated by all three schemes

for Case 7 and t = 0.3 and t = 10. The corresponding approximate L1 errors are

shown in Table 3.5.
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(a) Case 5 (b) Case 6
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(c) Case 7 (d) Case 8
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Figure 3.4: Numerical examples with ∆x = 0.0125 for the full extended clarifier-

thickener model.

3.8 Conclusion

3.8.1 Discussion of the numerical results

Figure 3.3 illustrates that the sink term gives rise to a variety of stationary discon-

tinuities. In fact, the reduced problem models how material whose flow is otherwise

governed by the conservation law ut + ϕ(u)x = 0 is absorbed by a singular sink. In

Cases 1 and 4, the sink produces a decreasing step (in the direction of increasing x),
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(a) Case 1, t = 0.5, ∆x = 1/40 (b) Case 1, t = 0.5, ∆x = 1/80
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(c) Case 1, t = 2, ∆x = 1/40 (d) Case 1, t = 2, ∆x = 1/80
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Figure 3.5: Comparison of Scheme 1 (◦), Scheme 2 (2) and Scheme 3 (4) applied to

Case 1. The solid line is a reference solution with ∆x = 1/1600.

while in Case 2, an increasing step is generated. Observe that in Case 2, roughly

at t = 2, the stationary discontinuity at x = 0 ceases to exist, and is followed by a

curved shock moving in direction of x > 0.

The parameters in Figure 3.4 have been chosen in such a way that either the solid

material flowing into the clarifier zone is fully absorbed by the singular sink term

(Cases 5 and 7), or material is extracted through the sink without affecting the so-

lution in the clarifier zone (Cases 6 and 8). The absence of a discontinuity across

x = xD = −1 in these cases can be made plausible if we look at the associated
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t = 0.5 t = 2

J = 1/∆x approx. conv. approx. conv.

L1 error rate L1 error rate

Scheme 1

20 1.715e-2 6.214e-2

40 1.195e-2 0.522 4.418e-2 0.492

80 8.363e-3 0.515 2.616e-2 0.756

160 5.610e-3 0.576 1.510e-2 0.793

320 3.571e-3 0.652 8.573e-3 0.817

Scheme 2

20 7.785e-3 8.310e-3

40 5.285e-3 0.559 4.332e-3 0.940

80 3.422e-3 0.627 2.221e-3 0.963

160 2.081e-3 0.718 1.107e-3 1.005

320 1.174e-3 0.826 5.171e-4 1.098

Scheme 3

20 8.067e-3 7.033e-3

40 5.045e-3 0.677 3.694e-3 0.929

80 3.003e-3 0.749 1.903e-3 0.957

160 1.674e-3 0.843 9.476e-4 1.006

320 8.487e-4 0.980 4.379e-4 1.114

Table 3.3: Approximate L1 errors for Case 1.

reduced problem for the parameters given in these cases. For instance, Case 6 cor-

responds to q = qL = −0.7. We observe in Figure 3.4 (b) that the solution in the

clarification zone after the solids break through the feed level assumes at least a

value of 0.78. However, inspecting the shape of u 7→ b(u) it is easy to see that we
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(a) Case 5, t = 1, ∆x = 1/40 (b) Case 5, t = 1, ∆x = 1/80
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(c) Case 5, t = 2, ∆x = 1/40 (d) Case 5, t = 2, ∆x = 1/80
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(e) Case 5, t = 4, ∆x = 1/40 (f) Case 5, t = 4, ∆x = 1/80
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Figure 3.6: Comparison of Scheme 1 (◦), Scheme 2 (2) and Scheme 3 (4) applied to

Case 5. The solid line is a reference solution with ∆x = 1/1600.
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t = 1 t = 2 t = 4

J = 1/∆x approx. conv. approx. conv. approx. conv.

L1 error rate L1 error rate L1 error rate

Scheme 1

20 1.139e-1 9.123e-2 7.228e-2

40 6.561e-2 0.796 4.836e-2 0.916 2.739e-2 1.400

80 4.000e-2 0.714 3.178e-2 0.605 1.488e-2 0.880

160 2.587e-2 0.628 2.123e-2 0.582 8.269e-2 0.848

320 1.665e-2 0.636 1.383e-2 0.619 4.521e-3 0.871

Scheme 2

20 7.118e-2 6.616e-2 5.614e-2

40 2.876e-2 1.308 2.201e-2 1.588 1.856e-2 1.597

80 1.268e-2 1.182 1.106e-2 0.994 1.001e-2 0.891

160 7.428e-3 0.771 5.740e-3 0.946 5.577e-3 0.844

320 4.713e-3 0.656 4.111e-3 0.482 3.025e-3 0.882

Scheme 3

20 3.483e-2 3.151e-2 2.466e-2

40 1.990e-2 0.808 1.753e-2 0.846 1.241e-2 0.991

80 1.101e-2 0.854 9.637e-3 0.863 6.164e-3 1.009

160 6.118e-3 0.847 3.984e-3 1.274 2.979e-3 1.049

320 3.128e-3 0.968 1.906e-3 1.064 1.352e-3 1.140

Table 3.4: Approximate L1 errors for Case 5.

have

sup
u+∈[0.78,1]

max
u−∈[0,1]

ϕ(u+)− ϕ(u−)

u+ − u−
= q + sup

u+∈[0.78,1]

max
u−∈[0,1]

b(u+)− b(u−)

u+ − u−

≤ q +
b(0.78)− b(0)

0.78
= −0.7 + 6.75× 0.222 = −0.3733,

so for this value and u+ ≥ 0.78 (in fact, we may choose this lower bound even
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(a) Case 7, t = 0.3, ∆x = 1/40 (b) Case 7, t = 0.3, ∆x = 1/80
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(c) Case 7, t = 10, ∆x = 1/40 (d) Case 7, t = 10, ∆x = 1/80
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Figure 3.7: Comparison of Scheme 1 (◦), Scheme 2 (2) and Scheme 3 (4) applied to

Case 7. The solid line is a reference solution with ∆x = 1/1600.

smaller), the left-hand inequality in jump condition (3.3.9) is never satisfied. In other

words, from an engineering point of view, jump condition (3.3.9) helps to predict

under which flow conditions extracting material from a sink affects the bulk con-

centration (i.e., causes a concentration jump) and under which conditions this does

not happen (as in our Cases 6 and 8).

Figures 3.5 to 3.7 and Tables 3.3 to 3.5 illustrate that all schemes converge to

the unique entropy solution of the reduced problem or the full extended clarifier-

thickener model. However, all these results also show that Scheme 1, though it
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t = 0.3 t = 10

J = 1/∆x approx. conv. approx. conv.

L1 error rate L1 error rate

Scheme 1

20 9.406e-2 1.946e-1

40 6.394e-2 0.557 1.069e-1 0.864

80 4.255e-2 0.588 6.332e-2 0.756

160 2.685e-2 0.664 3.694e-2 0.778

320 1.609e-2 0.739 2.084e-2 0.826

Scheme 2

20 7.619e-2 1.365e-1

40 5.023e-2 0.601 7.423e-2 0.879

80 3.176e-2 0.661 4.303e-2 0.787

160 1.888e-2 0.751 2.465e-2 0.804

320 1.069e-2 0.821 1.358e-2 0.860

Scheme 3

20 3.092e-2 4.109e-2

40 1.738e-2 0.831 2.041e-2 1.010

80 9.185e-3 0.920 1.000e-2 1.029

160 4.420e-3 1.055 4.766e-3 1.069

320 2.134e-3 1.051 2.131e-3 1.161

Table 3.5: Approximate L1 errors for Case 7.

has the convenience of being easy to implement, suffers from excessive numeri-

cal viscosity, which becomes apparent in smearing of transient shocks travelling at

nonzero speed (for example, near x = 0.5 in Figures 3.6 (a) and (b)) and the for-

mation of one-sided boundary layers near discontinuities of the flux function (for

example, near x = 0 in Figures 3.7 (c) and (d)). Scheme 2 exhibits smaller numerical
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viscosity, while Scheme 3 sharply resolves all flux discontinuities. Both Schemes 2

and 3 sharply resolve the solution near xD = −1. Let us comment that the superior-

ity of Scheme 3 is in part balanced by the slightly increased effort needed to evaluate

the flux functions h2 and h3, which need to be calculated anew (by a discussion of

extrema) for each value of the control variables qR, qF, qD and uF.

3.8.2 Discussion of the entropy condition.

From the proof of Lemma 3.5.2, it is evident that the entropy jump conditions

(D.3) that hold at the interface ultimately result from the dissipation built into the

monotone difference scheme described in Section 3.4. To be more specific, in the

proof of Lemma 3.5.2 we employ two different Lipschitz-continuous regulariza-

tions, γε(x) ≥ γ(x) and γε(x) ≤ γ(x), which approximate the parameter function

γ(x). Examining that proof, it is clear that the entropy conditions (D.3) can be de-

rived by employing monotone schemes for each of the two regularized conserva-

tion laws that result by replacing γ by γε and γε. This yields ε-dependent entropy

conditions. The entropy conditions (D.3) then result by letting the regularization

parameter ε→ 0.

3.8.3 An open problem.

Using the monotone difference scheme (3.5.1), we have established well-

posedness of the reduced model. Our ultimate interest is the more complicated

scheme (3.4.2) which we use to construct approximate solutions of the full model.

We have focused on the reduced model and its associated scheme in order to high-

light the aspects of the problem that are more or less unique to the sink portion of the

model. We leave as an open problem the task of combining the definition of entropy

solution and the results of the present paper with those of [31]. The goal would be to

prove that the version of Theorem 3.5.1 that applies to the full problem is also true.
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Chapter 4

A Kinematic Model of Continuous

Separation and Classification of

Polydisperse Suspensions

Kinematic models for polydisperse suspensions are based on specifying the

solid-fluid relative velocity for each solids species as a function of the local

solids concentrations. One such model, the Masliyah-Lockett-Bassoon (MLB)

model, is employed herein to simulate continuous separation and classification

of polydisperse suspensions. To this end, the clarifier-thickener (CT) setup for

the continuous separation of suspensions is extended to a generalized clarifier-

thickener (GCT). Discharge streams (or products) are described by new sin-

gular sink terms. Combining the GCT setup with the MLB model yields a

system of nonlinear conservation laws with a discontinuous flux and a new

non-conservative transport term describing the sinks. A numerical algorithm

for the solution of this equation is presented along with numerical examples.

The model describes the GCT unit with all critical design parameters, and pre-

dicts the composition of the overflow, underflow and discharge streams and the

spatio-temporal evolution of the solids species concentrations inside the unit.

87
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4.1 Introduction

Kinematic models are common approximate descriptions for multiphase flows

that are essentially one-dimensional, for example in columns and ducts that are

aligned with the driving body force. Usually, in these applications the relative (dif-

ferential) movement of the phases is more important than are lateral flow compo-

nents, and one continuous phase (for solid-liquid suspensions, the fluid), and N

disperse phases (species) are distinguished. We here consider polydisperse suspen-

sions with a finite number N of solid particle species, where particles of species i

have diameter di and density ρi, and di 6= dj or ρi 6= ρj for i 6= j. To be consistent

with previous works of the authors we assume here d1 ≥ d2 ≥ · · · ≥ dN .

Kinematic models are based on the specification of the velocity of each species

relative to that of the fluid as a function of the local concentrations of all species. For

batch settling, this leads to a strongly coupled system of N nonlinear and spatially

one-dimensional scalar conservation laws for the volume fractions φ1, . . . , φN of all

species. The extension to a continuously operated clarifier-thickener (CT) unit with

a singular feed source leads to a system with an additional transport flux whose

velocity is a discontinuous function of the spatial position.

We are aware of the progress has been made over the past 10 years concerning

the two-and three-dimensional modelling of the flow of particles in fluidized beds,

including, for example, the works of Tsuji and co-workers [77, 107, 108, 161, 162, 171]

and Glowinski, Joseph, Pan and their collaborators [83, 142] for gas-solid and liquid-

solid fluidized beds, respectively. Results of fluidized bed modelling are also well

documented in the monographs by Crowe et al. [46], Jackson [97] and Gibilaro [78]

and in the slightly older book by Gidaspow [79]; for the alternative two-phase flow

and discrete particle modelling approaches, we also refer to the reviews by En-

wald et al. [66] and Deen et al. [51]. Most of the cited works are biased towards

providing insight into the interaction between the fluid and individual particles,

or between individual particles. They consider relatively small numbers of parti-

cles, which in turn are relatively large compared with the vessel interior diame-
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ter so that wall effects are dominant. Moreover, these models are associated with

considerable computational effort. In contrast to this, our model is motivated by

industrial applications, in which the particles are small with respect to the vessel

diameter and computational effort in calculating each of them would be excessive.

A one-dimensional description is adequate, since for small particles in liquid-solid

fluidized beds, velocities and compositions are mostly horizontal in the lateral di-

rection. In addition, the model presented herein is supposed to form the basis of

design and control calculations, for which low computational cost is desirable. This

view is implicitly adapted in many engineering treatments of fluidized beds, see for

example [40, 41, 85, 110, 134, 135, 136, 174, 175], and other work cited herein.

In this paper, we present a new model for continuous separation and classifi-

cation of polydisperse suspensions, which extends the CT setup [13, 31, 59, 174].

The new feature are singular sinks describing the continuous discharge of products

at several points, whose composition will vary during a transient startup proce-

dure. The mathematical treatment and discretization of a singular sink is not en-

tirely analogous to that of a singular feed source, since the composition of the sink

stream is part of the solution. The singular sinks give rise to a novel so-called non-

conservative transport term. The well-posedness of the resulting model and the con-

vergence of a numerical scheme for N = 1 and for sinks located above the feed level

or when the whole device is operated as a fluidization column, are proved by Bürger

et al. in [23] (Chapter 3 of this thesis). We herein formulate an analogous model for

a generalized clarifier-thickener (GCT) setup, which may include several sinks, can

also be operated as a fluidization column, and is allowed to have a varying cross-

sectional area. We define a numerical scheme for its simulation and present numer-

ical examples, in part adopting data from the literature.

The remainder of the paper is organized as follows. We briefly outline in Sec-

tion 4.2.1 kinematic models for polydisperse suspensions, recall in Section 4.2.2

recent advances in the analysis and simulation of CT models, and review in Sec-

tion 4.2.3 related work from the literature. In Section 4.3 we outline the kinematic

model of polydisperse suspensions due to Masliyah [129] and Lockett and Bassoon
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[128] (MLB model), and recall its stability properties. In Section 4.4 we describe the

GCT setup by balancing feed, sink, discharge and overflow bulk flows, and com-

bine it with the MLB model to obtain the final model, which is a system of balance

laws, where the nonlinear flux vector depends discontinuously on the space vari-

able and a non-conservative transport term models the new sink feature. The nu-

merical scheme proposed in Section 4.5 for the final model is based on a scheme by

Kurganov and Tadmor [119]. In Section 4.5.1, we describe the scheme for the spatio-

temporal evolution of the solids concentrations in the interior of the GCT, while Sec-

tion 4.5.2 provides a method to calculate the sink concentrations. Section 4.6 presents

three different numerical examples, and Section 4.7 collects some conclusions.

4.2 Motivation

4.2.1 Kinematic sedimentation models

The basic postulate of the kinematic model by Kynch [120] states that the settling

velocity vs of a particle in a monodisperse suspension of solids concentration φ is

given by vs = v∞(1−φ)2V (φ), where v∞ is the settling velocity of a single particle in

an unbounded fluid, and V (φ) is a hindered settling factor that takes into account the

presence of other particles. This function can for example, be chosen as (Richardson

and Zaki [147])

V (φ) =

(1− φ)n−2 for φ ∈ [0, φmax],

0 otherwise,
n > 2, (4.2.1)

where 0 < φmax ≤ 1 is a maximum concentration, and n is specified later. The one-

dimensional solids continuity equation then turns into the following conservation

law, where t is time and x is depth:

∂tφ+ ∂xf(φ) = 0, f(φ) = φvs = v∞φ(1− φ)2V (φ),

which describes the settling of a suspension in a column. Due to the nonlinearity

of f(φ), its solutions of are in general discontinuous.
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For polydisperse suspensions, the sought quantity is the vector Φ :=

(φ1, . . . , φN)T as a function of x and t, where φi is the concentration of species i

having diameter di and density ρi. For batch settling of an N -disperse suspension

with initial concentration Φ0(z) in a column of height L, the kinematic model can be

expressed as the initial-boundary value problem of a system of conservation laws

∂tΦ + ∂xf(Φ) = 0,

Φ(x, 0) = Φ0(x), 0 ≤ x ≤ L; f |x=0 = f |x=L = 0, t > 0,
(4.2.2)

where f(Φ) = (f1(Φ), . . . , fN(Φ))T is the vector of flux densities fi(Φ) = φivi,

where vi, is the velocity of particle species i, i = 1, . . . , N . Choices of f(Φ) proposed

in the literature are compared by Ha and Liu [86], Bürger et al. [20, 32] and Zeidan

et al. [175]. In this paper, we adopt the MLB model [129, 128]. Our preference of this

model is based on the experimental study by Law et al. [122] and analyses of global

stability [32, 12]. Since each function fi(Φ) depends nonlinearly on all concentrations

φ1, . . . , φN , and exact solution constructions are at least complicated [85, 69], numer-

ical methods are needed for the solution of (4.2.2). Clearly, its solutions are also in

general discontinuous.

4.2.2 Clarifier-thickener models

The model (4.2.2) can be extended to continuous flow if a linear transport term

q(x, t)Φ is added to the flux f(Φ), which describes the differential motion of the

species. The velocity q(x, t) is controlled externally. We then obtain the system

∂tΦ + ∂x

(
q(x, t)Φ + f(Φ)

)
= 0. (4.2.3)

Models of continuously operated CT units have a clarification zone, corresponding

to depth x < 0, adjacent to a thickening zone with x > 0. The feed mechanism is

represented as a singular source sitting at x = 0. Usually, part of the feed bulk flow

is directed into the thickening zone (this can be controlled by a discharge valve),
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while the remainder flows upwards into the clarification zone. This means that

q(x, t) =

qL(t) < 0 for x < 0,

qR(t) > 0 for x > 0,
(4.2.4)

so that the total flux q(x, t)Φ + f(Φ) is discontinuous across x = 0. If the unit is

operated as a fluidization column, then we have q(x, t) < 0 throughout, but this

quantity is equally discontinuous across x = 0. We continue to refer to “clarifier-

thickener” units for polydisperse suspensions, even if in the latter case they are

used for classification.

The basic difficulty is that the discontinuous flux model (4.2.3), (4.2.4) is not well

posed a priori, and that numerical methods need to be tailored for its simulation.

In fact, even in the scalar (monodisperse) case, the well-posedness of (4.2.3), (4.2.4)

(i.e., existence and uniqueness of a properly defined solution) is not a straightfor-

ward limit case of the standard theory for conservation laws with a flux that de-

pends smoothly on x. Even when q is constant, and N = 1, solutions of (4.2.3) are in

general discontinuous, and require an entropy condition to select the physically rel-

evant solution. In addition, they are also discontinuous across the stationary jumps

of q(x, t), which calls for the application of a further entropy condition. The design

of entropy conditions in order to single out a unique admissible solution for a con-

servation law with discontinuous flux is a topic of current research. The extension of

findings of mathematical analysis forN = 1 toN ≥ 2 is strongly based on numerical

experimentation. We refer to [174] and [21] for details and references.

The new ingredient of the GCT setup are one or several singular sinks, which

affect the continuity equation in two ways: first, the deviation of part of the bulk

flow through a sink causes a new discontinuity of q(x, t), and second, the extraction

of solids through a sink gives rise to an additional solution-dependent singular term.

Combining both ingredients admits to replace the new flux discontinuity and the

singular term by a non-conservative transport term. For N = 1 and for sinks located

above the feed level or when the whole device is operated as a fluidization column,

we proved that the model is well posed [23] (Chapter 3 of this thesis).
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4.2.3 Related work

Several groups of researchers have proposed mathematical models and numeri-

cal techniques for, and conducted experiments with separation devices that are spe-

cial cases of our GCT setup. Nasr-el-Din et al. [134, 135, 136] study vertical columns

for the gravity separation and classification of polydisperse suspensions that have

a feed source at a central depth level, and which are tapped near the top and bot-

tom ends. They also present a mathematical model which, however, handles the

steady-state case only. Experimental results for a similar setup are also presented by

Spannenberg et al. [154].

A shortcoming of the model outlined in [134, 135, 136] is their source zone of

finite depth, in which the composition of the mixture is supposed to be uniform and

which acts as a buffer between the downwards- and upwards-directed bulk flows

(if the unit is operated as the CT mode, that is, with a co-gravity bulk flow in the

thickening zone), so that these flows take place in spatially separated regions. More-

over, Nasr-el-Din et al. [135] require that “the solids and the carrier fluid are allowed

to exit through the overflow or the underflow boundaries, but they are not allowed

to enter the source zone through the feed stream”. However, a CT model in which

the clarification and thickening zones are disconnected does not capture interesting

cases such as solids breaking through into the clarification zone due to overload,

and it cannot be easily modified to the accommodate the fluidization column mode

of operation (in which the thickening zone is fluidized by a counter-gravity bulk

flow).

Chen et al. [40, 41] develop a model of a liquid fluidized-bed classifier, first for

steady state [40] and then for the transient case [41]. (A closely related experimental

study is that of Mitsutani et al. [131].) The model is similar to ours in the fluidization

column mode of operation, but differs in the detailed treatment of sources, sinks,

overflows and boundary conditions. It is based on both the continuity equation and

the linear momentum balance for each particle species, and includes several regular-

izing elements, in particular an axial dispersion (in mathematical terms, diffusion)

coefficient, by which, as the authors write, “turbulence and non-uniformities are
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[. . . ] taken into account indirectly”. Mathematically, this term acts as a regularizing

diffusion term. Moreover, the feed source and discharge sink are blended in over a fi-

nite depth interval (by means of the parameter α in Table 1 of [41]), and the imposed

boundary condition is equivalent to stating that the concentrations are continuous

across the overflow and underflow levels. The latter condition is consistent with the

global diffusion assumed by Chen et al. [41], but is incompatible with the condition

of equality of fluxes for a kinematic model. Our approach shows that regularizing

ingredients, which tend to blur features of a “true” solution such as sharp interfaces,

are unnecessary, and that a complete GCT model can be based on a kinematic ap-

proach with singular sources, sinks, and flux transitions at overflow and underflow

or fluidization levels.

A similar model of a so-called hindered-settling column was proposed by Kim

and Klima [110], see also [173] for experimental findings. Kim and Klima [110] solve

a scalar convection-diffusion equation for each species, which represents the con-

tinuity equation. Again, positive diffusivity is introduced, this time called a “mix-

ing coefficient”. The setup considered by Kim and Klima [110] is that of a clarifier-

thickener. One remarkable feature of the discretization chosen by Kim and Klima

[110] is that the overflow, underflow and feed mechanisms are assigned to one cell

each, of the same width ∆z as that of the discretization, so that their sinks and

sources become singular in the limit ∆z → 0. Unfortunately, Kim and Klima [110]

do not indicate the precise algebraic treatment of these mechanisms.

The model of Zeidan et al. [174] is equivalent to ours in the special case that there

are no sinks, and a cylindrical vessel is considered. Thus, our GCT setup and its

numerical treatment can be viewed as a direct extension of the model by Zeidan et

al. [174]. Moreover, they use Godunov’s method for discretization of the governing

equations. This method is sound, but only first-order accurate, while our method

is second-order accurate both in time and space. (Of course, the formal order of

accuracy is recovered on smooth portions of the solution only.) The discretization

chosen by Zeidan et al. [174] is extremely coarse; the entire CT unit is subdivided

into 8 cells only.
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4.3 Mathematical model of polydisperse sedimenta-

tion

4.3.1 Model equations

Model equations for the three-dimensional motion of a polydisperse suspension

were derived from the mass and linear momentum balances for the fluid and each

solid species, considered as N + 1 separate phases, by introducing constitutive as-

sumptions and simplifying the equations through a dimensional analysis [12]. The

result is a particular expression of the solid-fluid relative velocity of each species as

a function of Φ, which in one space dimension is equivalent to expressions stated by

Masliyah [129] and Lockett and Bassoon [128], see (4.3.5) below.

We denote by φ := φ1 + · · · + φN the total solids concentration. If vf is the fluid

phase velocity, and S(x) is the cross-sectional area of the vessel at depth x, then the

one-dimensional continuity equations for the N solids phases and the fluid can be

written as

S(x)∂tφi + ∂x

(
S(x)φivi

)
= 0, i = 1, . . . , N, (4.3.1)

− S(x)∂tφ+ ∂x

(
S(x)(1− φ)vf

)
= 0. (4.3.2)

Introducing the volume average flow velocity weighted with S(x),

Q(x, t) := S(x)
(
φ1v1 + · · ·+ φNvN + (1− φ)vf

)
, (4.3.3)

we obtain by adding (4.3.1) and (4.3.2) the mixture continuity equation ∂xQ(x, t) = 0.

Since a constitutive equation will be introduced for the solid-fluid relative velocities

or slip velocities ui := vi−vf , i = 1, . . . , N , we use (4.3.3) and ∂xQ(x, t) = 0 to rewrite

(4.3.1) as

S(x)∂tφi + ∂x

(
Q(x, t)φi + S(x)φi

[
ui −

N∑
j=1

φjuj

])
= 0, i = 1, . . . , N. (4.3.4)

We define the parameters δi := d2
i /d

2
1 and ρ̄i := ρi − ρf for i = 1, . . . , N , and µ :=

gd2
1/(18µf), where ρf and µf are the density and the viscosity of the fluid, respectively,

and g is the acceleration of gravity.
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Within the MLB model, ui is specified as

ui = ui(Φ) =
µδi

1 + 0.15Re0.687
i

V (φ)(ρ̄i − ρ̄TΦ), i = 1, . . . , N,

for Rei < 1000,

(4.3.5)

where ρ̄ := (ρ̄1, . . . , ρ̄N)T, the hindered settling factor V (φ) may be chosen as (4.2.1),

and Rei is the particle Reynolds number for species i,

Rei := |ui|(1− φ)
diρf

µf

. (4.3.6)

The pair of equations (4.3.5) and (4.3.6) (see e.g. [129]) defines ui implicitly. To avoid

this implicit form and to be consistent with previous work, in particular, with the

stability analysis of Bürger et al. [32], we approximate Rei by

Rei ≈ R̃ei := µδi|ρi − ρf |(1− βφmax)
ndiρf

µf

, (4.3.7)

where β ∈ [0, 1] is a constant parameter that has to be adjusted, and the exponent n

is specified below.

For sufficiently small Reynolds numbers, namely less than 0.1, we may set the

denominator in (4.3.5) to one. To be definite, we utilize

ui = µδ̃iV (φ)(ρ̄i − ρ̄TΦ),

δ̃i :=

δi if R̃ei < 0.1,

δi/
(
1 + 0.15R̃e0.687

i

)
if 0.1 < R̃ei < 1000,

i = 1, . . . , N.
(4.3.8)

The specific property of the MLB model is the appearance of the factor V (φ)(ρ̄i−
ρ̄TΦ) in (4.3.5), which in a reduced form reflects the linear momentum balances.

For spherical particles and in the monodisperse case, the exponent n depends on

the particle Reynolds number at infinite dilution and the particle to vessel diameter
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ratio, and may be given by

n =



4.65 + 19.5d/W for Re∞ ≤ 0.2,

(4.35 + 17.5d/W )Re−0.03
∞ for 0.2 < Re∞ ≤ 1,

(4.45 + 18d/W )Re−0.1
∞ for 1 < Re∞ ≤ 200,

4.45Re−0.1
∞ for 200 < Re∞ ≤ 500,

2.39 for Re∞ > 500,

(4.3.9)

according to Richardson and Zaki [147]. Here, d is the diameter of the particles, W

is the vessel diameter (of the cylindrical section of its interior), and Re∞ := ρfv∞d/µf

is the particle Reynolds number based on the particle settling velocity at infinite

dilution, v∞, which we calculate as follows [115]:

v∞ =
(µf(ρs − ρf)g)

1/3

ρ
2/3
f

(
18

(d∗)2 +
0.591

(d∗)0.5

) , d∗ := d

(
ρf(ρs − ρf)g

µ2
f

)1/3

. (4.3.10)

In our examples, we calculate N exponents n1, . . . , nN using (4.3.9) and (4.3.10)

with d and ρs replaced by di and ρi, respectively, for i = 1, . . . , N , and finally use

n = (n1 + · · ·+ nN)/N in the hindered settling factor.

Inserting (4.3.5) into (4.3.4) yields the system of conservation laws

S(x)∂tΦ + ∂x

(
Q(x, t)Φ + S(x)fM(Φ)

)
= 0, (4.3.11)

where the components of the vector

fM(Φ) :=
(
fM

1 (Φ), . . . , fM
N (Φ)

)T (4.3.12)

are the MLB flux functions fM
1 (Φ), . . . , fM

N (Φ) given by

fM
i (Φ) := µV (φ)φi

[
δ̃i(ρ̄i − ρ̄TΦ)−

N∑
k=1

δ̃kφk(ρ̄k − ρ̄TΦ)

]
, i = 1, . . . , N. (4.3.13)
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4.3.2 Stability of the MLB model

The system (4.2.2) is called hyperbolic if the eigenvalues of the Jacobian Jf (Φ) :=

(∂fi/∂φk)1≤i,k≤N are real, and strictly hyperbolic if these are also pairwise distinct. For

N = 2, a system with a pair of complex conjugate eigenvalues is elliptic. Some of the

flux density vectors f(Φ) proposed in the literature cause (4.2.2) to be of mixed type,

depending on the size and density parameters, where the type is called mixed if the

system is non-hyperbolic for certain choices of Φ.

The criterion for ellipticity is equivalent to the instability criterion by Batche-

lor and Janse van Rensburg [8]. Bürger et al. [32] showed that loss of hyperbolicity,

that is the occurrence of complex eigenvalues of Jf (Φ), provides an instability cri-

terion for polydisperse suspensions for arbitrary N . For N = 3, this criterion can

be evaluated by a convenient calculation of a discriminant, which is an explicit al-

gebraic function of pointwise values of the partial derivatives ∂fi/∂φj . Biesheuvel

et al. [15] and Bürger et al. [32] determine instability regions for N = 2, 3 and

different choices of f(Φ). Berres et al. [12] proved that for equal-density particles

(ρ̄1 = · · · = ρ̄N = ρs − ρf) and arbitrary particle size distributions with δ̃i 6= δ̃j for

i 6= j, the system (4.2.2) with the flux vector f(Φ) given by (4.3.12), (4.3.13) is strictly

hyperbolic for all Φ ∈ D1 with φ1 > 0, . . . , φN > 0 and φ < 1.

The instability criterion for one-dimensional batch settling is the same as for the

full two- or three-dimensional model, in which the corresponding first-order system

of conservation laws is coupled with additional equations of motion for the mixture.

Likewise, for a given vector Φ the equation (4.3.11) and the final governing equation

for the GCT developed herein (see Section 4.4.3) is instable if and only if the system

(4.2.2) with (4.3.12), (4.3.13) is.

Biesheuvel et al. [15] provide a vivid description of the consequences of lack

of stability, which include the formation of blobs and “fingers” in bidisperse sedi-

mentation, increased sedimentation rates, decreased separation quality of hydraulic

classifiers, and non-homogeneous sediments in material manufacturing by suspen-

sion processing. These phenomena have indeed been observed in experiments (e.g.

by Weiland et al. [166]) under the circumstances predicted by the instability crite-
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Figure 4.1: Generalized clarifier-thickener (GCT).

rion. On the other hand, the hyperbolicity, and thus stability result for equal-density

spheres agrees with experimental evidence, since instabilities never have been ob-

served with this type of mixtures, but always involve particles of different densities

[166].

For one-dimensional kinematic models, such as ours, lack of stability may lead

to anomalous behaviour of the numerical solution, for example to oscillations or a

“locking” effect, i.e., heavy and buoyant particles block each other within the vessel;

such an example is presented by Berres et al. ([13], Figure 10). These phenomena do,

however, not appear in the examples of this paper.



100 CHAPTER 4. CLASSIFICATION OF POLYDISPERSE SUSPENSIONS

4.4 The generalized clarifier-thickener (GCT) model

We consider a vessel with axisymmetric circular interior cross-sectional area and

circular cylindrical outer pipes, see Figure 4.1. This unit can be operated continu-

ously in two modes, the clarifier-thickener (CT) mode and the fluidization column

(FC) mode. In the CT mode, the feed flow is divided into upwards- and downwards-

directed bulk flows, and the upper and lower ends of the unit are identified as over-

flow and underflow levels, respectively, whereas in the FC mode, there is an addi-

tional counter-gravity bulk inflow of liquid from x = xR. Our numerical examples

are limited to the FC mode; for examples of the CT mode, we refer to [13] and [23]

(Chapter 3 of this thesis).

We subdivide the unit into four different zones: the overflow zone (x < xL), the

clarification zone (xL < x < 0), the settling zone (0 < x < xR), and the underflow

(in CT mode) or fluidization (in FC mode) zone (x > xR). The vessel is continuously

fed at depth x = 0, the feed level, with fresh feed suspension, and it has discharge

outlets for products at different depths located above and below the feed point.

4.4.1 Suspension bulk flows

If QF(t) ≥ 0 is the volume feed rate of suspension, and assuming for a moment

that the discharge outlets are not active, we require that the global suspension con-

tinuity equation

QF(t) = QR(t)−QL(t) (4.4.1)

be always satisfied, whereQR(t) > 0 andQR(t) ≤ 0 in the CT and FC modes, respec-

tively, and QL(t) ≤ 0.

Now let us include discharge openings located at 0 > x1
L > · · · > xnL

L > xL and

0 < x1
R < · · · < xnR

R < xR associated with the respective discharge rates Q1
L(t) ≤

0, . . . , QnL
L (t) ≤ 0 and Q1

R(t) ≤ 0, . . . , QnR
R (t) ≤ 0. We now denote by QL(t) and QR(t)

the volume bulk flows adjacent to x = 0, so that (4.4.1) remains valid. Using the
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Heaviside function

H(ξ) :=

1 if ξ ≥ 0,

0 if ξ < 0,

we can write the piecewise constant (with respect to x) bulk flow as

Q(x, t) =


QL(t)−

nL∑
m=1

Qm
L (t)H(xm

L − x) for x < 0,

QR(t) +

nR∑
m=1

Qm
R (t)H(x− xm

R ) for x > 0.

(4.4.2)

4.4.2 Solids feed and sink terms

As in [21], we assume that for x > xR and x < xL, the cross-sectional area shrinks

to a very small value, so that these zones actually correspond to transport pipes in

which all solids (if any) move with the velocity of the fluid. Consequently, the slip

velocities u1, . . . , uN are “switched off” outside the vessel interior (xL, xR) by the

discontinuous function

γ1(x) :=

S(x) if xL < x < xR,

0 otherwise.

The next step is to replace (4.3.11) by the equation

S(x)∂tΦ + ∂x

(
Q(x, t)Φ + γ1(x)fM(Φ)

)
= 0, (4.4.3)

where Q(x, t) is given by (4.4.2). Next, we consider that at x = 0, the unit is fed

at a volume rate QF(t) ≥ 0 with feed suspension that contains solids of species 1

to N at the volume fractions φF
1 (t) to φF

N(t). Specifying the phase space of physically

relevant concentrations

Dφmax :=
{
(φ1, . . . , φN)T : φ1 ≥ 0, . . . , φN ≥ 0, φ ≤ φmax

}
,

where φmax is the maximal solids concentration, we assume that

ΦF(t) := (φF
1 (t), . . . , φF

N(t))T ∈ Dφmax for all t > 0.
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The feed mechanism gives rise to an additional singular source term to (4.4.3), so

that we now consider the equation

S(x)∂tΦ + ∂x

(
Q(x, t)Φ + γ1(x)fM(Φ)

)
= δ(x)QF(t)ΦF(t), (4.4.4)

where δ(x) is the Dirac delta function centered at x = 0. Using the Heaviside func-

tion and QR(t) and QL(t) as control variables, we may absorb the right-hand side of

(4.4.4) into the flux function. Furthermore, we take into account that the sink terms

model the discharge of suspension of unknown concentration. This leads to the equa-

tion

S(x)∂tΦ + ∂x

(
Q(x, t)Φ + γ1(x)fM(Φ)−H(x)

(
QR(t)−QL(t)

)
ΦF(t)

)
=

nL∑
m=1

δ(x− xm
L )Qm

L (t)Φ(x, t) +

nR∑
l=1

δ(x− xl
R)Ql

R(t)Φ(x, t).
(4.4.5)

Finally, we define the piecewise constant (with respect to x) function

H(x, t) := −
nL∑

m=1

H(x− xm
L )Qm

L (t)−
nR∑
l=1

H(x− xl
R)Ql

R(t),

and we may rewrite the right-hand side of (4.4.5) as

−Φ(x, t)∂xH(x, t) = −∂x

(
H(x, t)Φ(x, t)

)
+H(x, t)∂xΦ(x, t),

so that we obtain from (4.4.5) the following equation:

S(x)∂tΦ + ∂x

(
Q(x, t)Φ + γ1(x)fM(Φ) +H(x, t)Φ

−H(x)
(
QR(t)−QL(t)

)
ΦF(t)

)
= H(x, t)∂xΦ(x, t).

(4.4.6)

Remark 4.4.1 The motivation for writing this way the model equation comes from

that expound in the section 3.2.3 of the Chapter 3.
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4.4.3 Final form of the mathematical model

We assume that the control variables QF(t), QR(t) and QL(t) as well as the dis-

charge fluxes controlling the sink terms are constant. Then, in view of (4.4.2), and

defining Q̃L := QL − (Q1
L + · · ·+QnL

L ), we can rewrite (4.4.6) as

S(x)∂tΦ + ∂xg̃(x,Φ) = H(x)∂xΦ,

where we define

g̃(x,Φ) :=

Q̃LΦ + γ1(x)fM(Φ) for x < 0,

QRΦ− (QR −QL)ΦF + (Q̃L −QL)Φ + γ1(x)fM(Φ) for x ≥ 0,

and H(x) is the time-independent version of H(x, t). Adding the constant vector

−Q̃LΦF to g̃(x,Φ), and defining Q̃R := QR − (Q1
L + · · · + QnL

L ), we obtain the flux

vector

g(x,Φ) :=

Q̃L(Φ− ΦF) + γ1(x)fM(Φ) for x < 0,

Q̃R(Φ− ΦF) + γ1(x)fM(Φ) for x ≥ 0.

Defining the discontinuous parameter

γ2(x) :=

Q̃L for x < 0,

Q̃R for x ≥ 0

and the vector γ(x) := (γ1(x), γ2(x)), we obtain

g(x,Φ) = f
(
γ(x),Φ

)
:= γ1(x)fM(Φ) + γ2(x)(Φ− ΦF).

This yields the governing equation

S(x)∂tΦ + ∂xf
(
γ(x),Φ

)
= H(x)∂xΦ. (4.4.7)

This system is solved together with the initial condition

Φ(x, 0) = Φ0(x) :=
(
φ0

1(x), . . . , φ
0
N(x)

)T ∈ Dφmax . (4.4.8)

Note that the decisive new feature of (4.4.7) is the non-conservative transport term

H(x)∂xΦ, which models the singular sinks.
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4.5 Numerical scheme

4.5.1 Discretization of the interior of the GCT

We discretize the spatial domain into cells Ij := [xj−1/2, xj+1/2), j = 0,±1,±2, . . . ,

where xk = k∆x for k = 0,±1/2,±1,±3/2, . . . . Similarly, the time interval (0, T ) is

discretized via tn = n∆t for n = 0, . . . ,N , where N = bT/∆tc + 1, which results in

the time strips In := [tn, tn+1), n = 0, . . . ,N − 1. Here ∆x > 0 and ∆t > 0 denote the

spatial and temporal discretization parameters, respectively. These parameters are

chosen so that the following stability condition (CFL condition) holds:

∆t

∆xSmin

(
max ρ

(
Jf (γ,Φ)

)
+ max

x∈(−∞,∞)
H(x)

)
≤ 1

8
,

where ρ(·) denotes the spectral radius, Jf (γ,Φ) the N × N Jacobian of f(γ,Φ), and

Smin = minx∈(−∞,∞) S(x).

In the numerical scheme, we approximate max ρ(Jf (γ,Φ)) by

α := max
x∈(−∞,∞)

|γ2(x)|+ Smax max
1≤i≤N

{
|vi
∞|
}
,

where Smax = maxx∈(−∞,∞) S(x), and vi
∞ is given by (4.3.10) with d and ρs replaced

by di and ρi, respectively.

Our scheme is a direct modification of the one described by Kurganov and Tad-

mor in [119] and the CFL condition is the extension to our system of that stated

there for scalar equations. Let Un
j := (Un

1,j, . . . , U
n
N,j)

T denote our approximation

to Φ(xj, tn). Expressed in terms of the forward Euler solver, we consider the one-

parameter family of Runge-Kutta schemes

U
(1)
j = Un

j − λj∆−h
(
γj+1/2,U

n
j−1, . . . ,U

n
j+2

)
+ λjHj ∆+Un

j ,

U
(k+1)
j = (1− ηk)

(
U

(k)
j − λj∆−h

(
γj+1/2,U

(k)
j−1, . . . ,U

(k)
j+2

)
+ λjHj ∆+U

(k)
j

)
+ ηkU

n
j , k = 1, 2, . . . , s− 1,

Un+1
j := U

(s)
j ,

(4.5.1)

where we denote byG(x−) the limit of a functionG(ξ) for ξ → x, ξ < x, introduce the

difference operators ∆−Vj := Vj − Vj−1 and ∆+Vj := Vj+1 − Vj , and define γj+1/2 :=
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γ(x−j+1/2), λj := ∆t/(Sj∆x) with Sj := S(x−j ), Hj := H(x−j ), and U0
j := Φ0(x

−
j ). We

employ second-order time differencing (s = 2), for which η1 = 1/2; for third-order

time differencing (s = 3), the appropriate values are η1 = 3/4 and η2 = 1/3.

Before describing the computation of the numerical flux vector h, we briefly jus-

tify the scheme. The main differences between (4.5.1) and the scheme originally de-

fined by Kurganov and Tadmor [119] (KT scheme) and adapted to the CT setup

by Berres et al. [13] are the coefficient λj and the term λjHj ∆+Un
j . The original KT

scheme is a high-resolution central difference scheme for the approximation of first-

order systems of conservation laws with a flux that depends continuously on Φ, such

as our system (4.2.2). High-resolution schemes approximate smooth parts of solu-

tions with at least second order of accuracy, and resolve discontinuities sharply and

without spurious oscillations. The main advantage of the KT scheme for our model

is that as a central scheme, and unlike upwind schemes, it avoids approximate Rie-

mann solvers, projections along characteristic directions, and splittings of the flux

vector in upwind and downwind directions. It shares these properties with the pre-

vious central scheme due to Nessyahu and Tadmor [138] (NT scheme), but the KT

scheme has a smaller numerical viscosity than the NT scheme, is better suited for

near-steady-state solutions, and admits a convergent semi-discrete variant. Berres et

al. [13] applied this scheme to a CT model for polydisperse suspensions, compared

it with alternative discretizations and demonstrated that these advantages persist

when the scheme is applied to a system of conservation laws with discontinuous

flux.

The new ingredient is the term λjHj ∆+Un
j that has been added to incorporate

the sink feature of the model, and which discretizes the transport term H(x)∂xΦ in

the right-hand side of (4.4.7). Since this term is non-conservative, its discretization

cannot simply be made part of the KT scheme. For the scalar case, several possi-

bilities to discretize this term are compared by Bürger et al. [23] (Chapter 3 of this

thesis); the simplest one is the difference λjHj ∆+Un
j that has been chosen here. The

orientation of the stencil is deliberate; in view of H(x) ≥ 0, we chose here the for-

ward difference ∆+ as a discretization that has an upwind property. Moreover, this
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is the discretization to which the convergence analysis for the scalar scheme intro-

duced by Bürger et al. [23] (Chapter 3 of this thesis) directly applies.

The numerical flux vector h appearing in (4.5.1) is given by

h
(
γj+1/2,U

n
j−1, . . . ,U

n
j+2

)
:=

1

2

[
f
(
γj+1/2,U

+
j+1/2(tn)

)
+ f
(
γj+1/2,U

−
j+1/2(tn)

)]
− 1

2
an

j+1/2

[
U+

j+1/2(tn)−U−
j+1/2(tn)

]
,

which is expressed in terms of the intermediate values

U+
j+1/2(tn) := Un

j+1 −
∆x

2
(Φx)

n
j+1, U−

j+1/2(tn) := Un
j +

∆x

2
(Φx)

n
j ,

and the local speeds of propagation an
j+1/2, which we estimate by

aj+1/2 = γ1
(
x−j+1/2

)
max

{
|v1
∞|, . . . , |vN

∞|
}

+
∣∣γ2
(
x−j+1/2

)∣∣.
The numerical derivatives are determined by

(Φx)
n
j :=

1

∆x
MM

{
θ(Un

j −Un
j−1),

1

2
(Un

j+1 −Un
j−1), θ(U

n
j+1 −Un

j )

}
,

where θ ∈ [1, 2] is a parameter and MM(·, ·, ·) is the minmod function:

MM(a, b, c) :=


min{a, b, c} if a, b, c > 0,

max{a, b, c} if a, b, c < 0,

0 otherwise.

As stated by Kurganov and Tadmor [119], in the scalar case (N = 1) the value

θ = 2 corresponds to the least dissipative limiter, while θ = 1 ensures the non-

oscillatory nature of the approximate solution. The best choice of θ depends on the

model considered. For systems, the optimal values of θ vary between 1.1 and 1.5 (see

[119]). As a compromise, and following previous works [13, 145], we choose θ = 1.3

in all examples.
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4.5.2 Calculation of the sink concentrations

The concentrations of each species in the GCT sinks can be computed a posteri-

ori from the concentration distribution in the interior, for example after every time

interval whose length is a fixed multiple of ∆t.

For a GCT with exactly one sink, the sink concentrations follow from the over-

all mass balance of each particle species. To specify this balance, let x̃L := ML∆x

and x̃R := MR∆x be chosen such that x̃L < xL and x̃R > xR, and assume that the ap-

proximate solution of the problem between these two positions has been stored. The

difference between the total flow rate into and out of the vessel for particle species i

must equal the accumulation rate of that particle species in it, i.e.

Q(x̃L, t)φi(x̃L, t) +QF(t)φF
i (t) +QS(t)φ

S
i (t)−Q(x̃R, t)φi(x̃R, t)

=
d

dt

∫ x̃R

x̃L

φi(ξ, t)S(ξ) dξ,
(4.5.2)

where QS(t) and φS
i (t) are the volume flow rate and the volume fraction of the

species i in the sink located at x = xS at time t, respectively.

For t = tn, we approximate the right-hand side of (4.5.2) by

Ii(x̃L, x̃R, tn) :=

MR−1∑
k=ML+1

Un+1
i,k − Un

i,k

λk

+
Un+1

i,ML
− Un

i,ML

2λML

+
Un+1

i,MR
− Un

i,MR

2λMR

. (4.5.3)

We approximate φS
i (tn) by the following formula, which follows from replacing the

right-hand side of (4.5.2) by (4.5.3), and the exact solution φi by the approximate

solution Un
i,k:

φS
i (tn) ≈ 1

QS(tn)

(
Ii(x̃L, x̃R, tn)−Q(x̃L, tn)Un

i,ML
−QF(tn)φF

i (tn) +Q(x̃R, tn)Un
i,MR

)
.

Now we consider a GCT with two or more sinks. First we explain the method

for calculating the concentrations of the sinks located from x1
L to xnL

L , i.e. above the

feed level. For a sink located at xµ
L, we solve in the order µ = nL, nL − 1, . . . , 1,

with our numerical scheme, a set of auxiliary problems with the initial condition

Φ̃(x, 0) = Φ(x, tn). These auxiliary problems are based on the original problem
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(4.4.7), (4.4.8), but we turn off the sinks located at xµ
L to xnL

L and add their discharge

rates to the bulk flow Q(x, t) in x < xµ
L. Then, for each tn we write the overall mass

balances of each particle species for the original problem and for the corresponding

auxiliary problem. Due to the finite speed of propagation and the smallness of the

time interval [tn, tn+1), we may assume that the concentrations of the sinks located

below xµ
L and of the underflow are the same for both problems. Then, the difference

between both mass balances of each particle species gives

Q(x̃L, t)
(
φi(x̃L, t)− φ̃i(x̃L, t− tn)

)
+

nL∑
j=µ

Qj
L(t)

(
φj

i,L(t)− φ̃i(x̃L, t− tn)
)

=
d

dt

∫ x̃R

x̃L

(
φi(ξ, t)− φ̃i(ξ, t− tn)

)
S(ξ)dξ,

(4.5.4)

where φ̃i(x, t − tn) is the volume fraction of species i for the auxiliary problem, and

φ̃j
i,L(t) is the volume fraction of species i in the sink located in xj

L, j = µ, . . . , nL, at

time t. As in the case with one sink, we denote the numerical approximation of the

right hand side of (4.5.4) as Iµ
i,L(x̃L, x̃R, t) and replace the exact solutions φi and φ̃i by

the approximate solutions Un
i,k and Ũn

i,k, respectively. Then we obtain

φµ
i,L(tn) ≈ Ũn

i,ML
+

1

Qµ
L(tn)

{
Iµ
i,L(x̃L, x̃R, tn)−Q(x̃L, tn)

(
Un

i,ML
− Ũn

i,ML

)
−

nL∑
j=µ+1

Qj
L(tn)

(
φj

i (tn)− Ũn
i,ML

)}
.

Note that the initial condition of the auxiliary problems implies that Un
i,k = Ũn

i,k. The

value of Iµ
i,L(x̃L, x̃R, tn) is then calculated by

Iµ
i,L(x̃L, x̃R, tn) :=

MR−1∑
k=ML+1

Un+1
i,k − Ũn+1

i,k

λk

+
Un+1

i,ML
− Ũn+1

i,ML

2λML

+
Un+1

i,MR
− Ũn+1

i,MR

2λMR

.

For the sinks located at x2
R to xnR

R we follow the same method as for those located

at x1
L to xnL

L . For the sink at x1
R we only use the overall mass balance of each particle

species. Then we have

φ1
i,R(tn) ≈ 1

Q1
R(tn)

{
I1
i,R(x̃L, x̃R, tn)−Q(x̃L, tn)Un

i,ML
−QF(tn)φF

i (tn)
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+Q(x̃R, tn)Un
i,MR

−
nL∑
j=1

Qj
L(tn)φj

i,L(tn)−
nR∑
j=2

Qj
R(tn)φj

i,R(tn)

}
,

where I1
i,R(x̃L, x̃R, tn) is calculated by (4.5.3).

Remark 4.5.1 For the general case with two or more sinks, we first had calculated

the sink concentrations with mass balances around each sink, but we observed that

such a method introduced oscillations in these values, so we prefer the method ex-

pound here.

4.6 Numerical examples

4.6.1 Preliminary remarks

We consider three GCT vessels, which are operated in FC mode and have varying

cross-sectional area, see Figures 4.2, 4.6 and 4.11. Associated to Vessels 1, 2, and 3 are

Examples 4.1, 4.2, and 4.3, respectively, whose parameters are given in Table 4.1. In

all cases, the fluid is water at 20 ◦C with ρf = 998.2 kg/m3 and µf = 1.005× 10−3 Pa s

Example 4.1 is “virtual” and has been included to study the behaviour of parti-

cles differing both in size and density, while Examples 4.2 and 4.3 are based on, and

in part compared with, experimental data by Chen et al. [40] for equal-density par-

ticles. Published data on classifier-type experiments with particles having different

densities is scarce; for comparisons of experiments with such suspensions with nu-

merical simulations in the (simpler) cases of batch settling and a CT setup (without

sinks), we refer to [20] and [13].

To ensure that the solution assumes values in Dφmax , we replace (4.2.1) by the

following function, which continuously goes to zero as φ → φmax and where 0 <
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Figure 4.2: Vessel 1 with varying interior area and two sinks.

φq < φmax is a parameter:

V (φ) =


(1− φ)n−2 for φ ∈ [0, φq),

(1− φq)
n−2 φmax − φ

φmax − φq

for φ ∈ [φq, φmax],

0 otherwise,

n > 2. (4.6.1)
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Example 4.1 Example 4.2 Example 4.3

N 3 2 6

d1 [m] 1.5× 10−4 9.0× 10−4 2.3× 10−3

d2 [m] 5.0× 10−5 5.5× 10−5 1.7× 10−3

d3 [m] 3.5× 10−5 — 1.2× 10−3

d4 [m] — — 8.6× 10−4

d5 [m] — — 6.1× 10−4

d6 [m] — — 4.0× 10−4

ρ1 [kg/m3] 1050 2470? 2470?

ρ2 [kg/m3] 2403 — —

ρ3 [kg/m3] 2850 — —

n 4.66 2.91 2.74

φF
1 0.0728 0.0676 0.00787

φF
2 0.0676 0.0624 0.02616

φF
3 0.0624 — 0.03485

φF
4 — — 0.02484

φF
5 — — 0.01480

φF
6 — — 0.01147

QF [m3/s] 1.78× 10−5 5.9596× 10−3 6.074× 10−3

QR [m3/s] 2.1× 10−6 −1.444× 10−3 −1.378× 10−3

Q1
L [m3/s] −4.2× 10−6 0 0

QL [m3/s] −1.99× 10−5 −7.404× 10−3 −7.452× 10−3

Q1
R [m3/s] −3.5× 10−6 −3.668× 10−4 −4.183× 10−4

∆x [10−3 m] 8.081 5.206 5.693

∆t [10−3 s] 105.0 0.1096 0.05315

Table 4.1: Parameters for the numerical simulations. ?: species of equal density.
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Figure 4.3: Example 4.1: Simulated concentrations (a) φ1 (species 1), (b) φ2 (species

2).
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Figure 4.4: Example 4.1: (a) Simulated concentration φ3 (species 3), (b) simulated

total concentration φ.

4.6.2 Example 4.1

We consider Vessel 1 with the function

S(x) =



0.01815 m2 for x ≤ −1.200 m,

0.0287 m2 for −1.200 m < x ≤ 0.915 m,

S1(x) for 0.915 m < x ≤ 1.709 m,

8.17× 10−3 m2 for x > 1.709 m,
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(a)

(b) (c)

Figure 4.5: Example 4.1: (a) Overflow, (b) upper sink, (c) lower sink concentrations.

where the conical segment is described by

S1(x) := 0.7854(0.191 m− 0.1121(x− 0.915 m))2.

The solids are supposed to be spheres made of of polystyrene (species 1), glass

(species 2) and ballotini (species 3). We here obtain n = 4.66, and utilize (4.6.1) with

φq = 0.63 and φmax = 0.68. In light of the low particle Reynolds numbers, we employ

the first alternative in (4.3.8).

Since different densities are involved here, the equations are possibly unstable

for certain concentration vectors Φ. However, we evaluated the instability criterion

for the numerical solution obtained here, with the result that the solution completely
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Figure 4.6: Vessel 2 with varying interior area and one sink.

sojourns in the stability region. In other words, instability phenomena do not occur

here.

Figures 4.3 (a) and (b) and Figure 4.4 (a) show the simulated concentrations φ1,

φ2 and φ3 until a steady state is attained. We observe in Figure 4.5 that the overflow,

upper sink, and lower sink streams are mainly composed by species 1, 3, and 2,

respectively. Figure 4.4 (b) shows the total volume fraction of solids for this example.

4.6.3 Example 4.2

We here adopt experimental data by Chen et al. ([40], Figure 3) for the steady-

state separation of a bidisperse suspension in a liquid fluidized bed classifier. Ves-
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Figure 4.7: Example 4.2: Simulated concentrations (a) φ1 (large particles), (b) φ2

(small particles).

sel 2 corresponds to equipment “T-2” of [40], and is described by

S(x) =



4.54× 10−3 m2 for x ≤ −0.165 m,

0.0287 m2 for −0.165 m < x ≤ 0.915 m,

S2(x) for 0.915 m < x ≤ 1.709 m,

2.04× 10−3 m2 for x > 1.709 m,
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Figure 4.8: Example 4.2: Simulated total concentration φ.

including a conical segment defined by

S2(x) := 0.7854(0.191 m− 0.1763(x− 0.915 m))2.

The solids parameters correspond to glass beads of two sizes. For this suspen-

sion, we obtain n = 2.91 and use (4.6.1) with φq = 0.63 and φmax = 0.68, and use the

second alternative of (4.3.8) with β = 0.65.

Figure 4.7 shows the simulated concentrations φ1 and φ2 until a steady state is

attained. Figure 4.8 presents the total concentration of solids. We observe in Fig-

ure 4.9 that at steady state, species 1 and 2 leave the vessel by the sink stream and

overflow, with an increase of the concentration of species 1 and a decrease of that

of species 2 with respect to the feed concentration, whereas in the overflow, concen-

trations of both species are smaller in relation to feed. Figure 4.10 indicates that the

model fits reasonably well the experimental data; here, we use those data reported

in Figure 3 of [40] that have been obtained by sampling, plus the recorded overflow

and underflow concentrations.

Of course, our Figure 4.10 displays some discrepancy between the fourth ex-

perimental data point and our numerical solution (roughly, near x = 0.25 m). This
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(a) (b)

Figure 4.9: Example 4.2: (a) Overflow, (b) sink concentrations.

Figure 4.10: Example 4.2: Comparison of total concentration φ in steady state pre-

dicted by the model with experimental data extracted from [40].
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Figure 4.11: Vessel 3 with varying interior area and one sink.

difference is possibly due to voidage fluctuations in the radial direction, which are

particularly likely to occur near the feed inlet. This reveals a limitation of the one-

dimensional model used herein. On the other hand, experimental uncertainty is

present in the data recorded by Chen et al. [40], which is indicated by the differ-

ent values, and the error bars, associated with different types of measurement, see

Figure 3 of and the authors’ discussion in [40].

4.6.4 Example 4.3

Chen et al. [40] also study the steady-state separation of a suspension with a

continuous particle size distribution fitted by the Rosin-Rammler equation, show-

ing results for six representative species. We here apply our model to a suspension

composed of N = 6 species, adopting the experimental data in [40]. Vessel 3 corre-



120 CHAPTER 4. CLASSIFICATION OF POLYDISPERSE SUSPENSIONS

(a)

−0.165    0     0.229 
0.851 

1.372 

0

100

200

300

400

500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x[m]

t[s]

φ
1

(b)

−0.165    0     0.229 
0.851 

1.372 

0

100

200

300

400

500
0

0.025

0.05

0.075

0.1

0.125

0.15

x[m]

t[s]

φ
3

Figure 4.12: Example 4.3: Simulated concentrations (a) φ1 (largest species), (b) φ3

(medium species).

sponds to their equipment “C-0”, and is described by

S(x) =



4.54× 10−3 m2 for x ≤ −0.165 m,

0.0670 m2 for −0.165 m < x ≤ 0.127 m,

S3(x) for 0.127 m < x ≤ 0.229 m,

0.0287 m2 for 0.229 m < x ≤ 0.915 m,

S4(x) for 0.915 m < x ≤ 1.372 m,

2.04× 10−3 m2 for x > 1.372 m,
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Figure 4.13: Example 4.3: (a) Simulated concentration φ6 (smallest species), (b) sim-

ulated total concentration φ.

including conical segments defined by

S3(x) := 0.7854(0.292 m− 0.9902(x− 0.127 m))2,

S4(x) := 0.7854(0.191 m− 0.3063(x− 0.915 m))2.

The solids parameters correspond to glass beads of six different sizes. We here
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Figure 4.14: Example 4.3: Overflow concentrations.

obtain n = 2.74, and use (4.6.1) with φq = 0.95 and φmax = 1.0, along with the

second alternative of (4.3.8) with β = 0.3. Figures 4.12 (a) and (b) and Figure 4.13 (a)

shows the simulated concentrations φ1, φ3 and φ6 until a steady state is attained. In

Figure 4.13 (b) we show the total concentration φ for this simulation. We observe in

Figure 4.14 that at steady state, all species leave the vessel by the overflow, whereas

in Figure 4.15 we see that only species 1, 2, 3 and 4 leave the vessel by the sink

stream.

Figure 4.16 displays the relative volume fraction Ci := φi/φ, i = 1, . . . , N , at

steady state, i.e., after a simulated time of t = 500 s, within the unit. Thus, we can

compare numerical results with measurements displayed in Figure 5 of [40]. Our

Figure 4.16 shows that for this example our model agrees well with the experimental

data.

However, some discrepancy becomes visible in the “bump” of the profile of nor-

malized solids volume fraction of species 4 (see Figure 4.16 (b)) in the zone below

the feed inlet. The concentrations of species 1 to 3 also experience a kind of “bump”
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Figure 4.15: Example 4.3: Sink concentrations.

in that zone; this does not become apparent in Figure 4.16 (a) since the normalized

concentration φi/φ of these species seems not to change significantly. The obvious

model ingredient that is responsible for this behaviour is the sudden change of cross-

sectional area. If seen from downwards, in the direction of the fluidization bulk

flow, the vessel widens rapidly for x ≤ 0.229 m. As a consequence, and consider-

ing the system at steady state, the relative importance of the particle entrainment by

counter-gravity bulk flow compared to that of gravity settling (associated with the

flux vector fM(Φ)) diminishes, which explains the overall enrichment of solids con-

centrations in [0 m, 0.229 m] (see also Figure 4.13 (b)). On the other hand, the vector

fM(Φ) depends nonlinearly on Φ, so the normalized concentrations φi/φ may change

when the vessel widens. In fact, in several terms of fM(Φ), the concentration φi is

associated with the coefficient δ̃i. Roughly speaking, we can therefore expect that

the concentrations of smaller species are more sensitive to changes of vessel diame-

ter at equilibrium, since the equilibrium composition is algebraically determinated

by equating S(x)fM(Φ) to some linear bulk flow QΦ, and possibly other terms, that



124 CHAPTER 4. CLASSIFICATION OF POLYDISPERSE SUSPENSIONS

Figure 4.16: Example 4.3: Comparison of simulated normalized solids volume frac-

tions Ci = φi/φ with experimental data by Chen et al. ([40], Figure 5).

do not depend on S(x), nor on δ̃1, . . . , δ̃N . This makes it ultimately plausible that the

proportion of species 4, the smallest of those that enter the settling zone, increases in

[0 m, 0.229 m]. Finally, it should be commented that the simulated sudden increase of

φ4/φ is observed in a relatively small sub-zone of the vessel, whereas below or above

that agreement with experimental values is acceptable. It seems that our simulated

behaviour in that sub-zone, though explicable within our model, is not observed

in the experimental data, nor in the numerical simulation by Chen et al. [40], since

both in the real-world system and their numerical simulation diffusive mechanisms

that tend to diminish extremal concentrations are active. The proximity of the feed

inlet to this sub-zone may also have caused radial voidage fluctuations, and again

question the appropiateness of the one-dimensional model used for that zone.
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4.7 Conclusions

The discontinuous-flux CT model for the continuous solid-liquid separation of

suspensions has been extended to a generalized clarifier-thickener model (GCT), in

which an arbitrary number of discharge streams (or products) is described by singu-

lar sink terms. This feature allows us to describe the continuous extraction of prod-

ucts of different composition. A GCT can be operated either in the CT mode or in

the FC mode, depending on whether the feed bulk flow is split into diverging bulk

flows or not. Such a unit can be employed for continuous solid-liquid separation or

classification of suspensions. To this end, the GCT setup is combined with a kine-

matic model of sedimentation of polydisperse suspensions. The governing equation

of the resulting model is a strongly coupled system of nonlinear conservation laws

that has a discontinuous flux and a non-conservative transport term describing the

sinks. A numerical algorithm for the solution of this system has been presented,

along with three numerical examples. The model provides a complete description

of the GCT unit including all critical design parameters, and predicts the composi-

tion of the overflow, underflow and discharge streams as well as the spatio-temporal

evolution of the composition inside the unit.

Clearly, the model presented herein is subject to limitations that already appear

in the assumptions stated in Sections 4.2–4.4. Obviously, the model applies only to

units that are (at least approximately) one-dimensional, and where lateral concen-

tration or velocity gradients are negligible. This means, for example, that particles

should be reasonably small, so that wall effects are unimportant, and that inclined

settlers are at present excluded. It also presumed that the model parameters for the

MLB framework are known, for example from batch settling experiment. The MLB

framework actually presumes that particles are small rigid spheres. While spherical-

ity can be considered as a useful approximation for particles of slightly more gen-

eral geometry, the rigidity of particles is essential. For example, soft particles, such

as flocs, form compressible sediments with curved iso-concentration lines, which

cannot be captured by a purely kinematic model; rather, dynamic effects such as
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effective solids stress have to be taken into account. This can be achieved by a de-

generate hyperbolic-parabolic system of equations, which is slightly more involved

than (4.4.7), see [12].



Chapter 5

A Family of Numerical Schemes for

Kinematic Flows with Discontinuous

Flux

Multiphase flows of suspensions and emulsions are frequently approxi-

mated by spatially one-dimensional kinematic models, in which the velocity

of each species of the disperse phase is an explicitly given function of the vec-

tor of concentrations of all species. The continuity equations for all species then

form a system of conservation laws which describes spatial segregation and the

creation of areas of different composition. This class of models also includes

multi-class traffic flow, where vehicles belong to different classes according to

their preferential velocities. Recently, these models were extended to fluxes that

depend discontinuously on the spatial coordinate, which appear in clarifier-

thickener models, in duct flows with abruptly varying cross-sectional area, and

in traffic flow with variable road surface conditions.

This paper presents a new family of numerical schemes for such kinematic

flows with a discontinuous flux. It is shown how a very simple scheme for

the scalar case, which is adapted to the “concentration times velocity” struc-

ture of the flux, can be extended to kinematic models with phase velocities that

change sign, flows with two or more species (the system case), and discontinu-
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ous fluxes. In addition, a MUSCL-type upgrade in combination with a Runge-

Kutta type time discretization can be devised to attain second-order accuracy. It

is proved that two particular schemes within the family, which apply to systems

of conservation laws, preserve an invariant region of admissible concentration

vectors, provided that all velocities have the same sign. Moreover, for the rele-

vant case of a multiplicative flux discontinuity and a constant maximum den-

sity, it is proved that one scalar version converges to a BVt entropy solution of

the model. In the latter case, the compactness proof involves a novel uniform

but local estimate of the spatial total variation of the approximate solutions.

Numerical examples illustrate the performance of all variants within the

new family of schemes, including applications to problems of sedimentation,

traffic flow, and the settling of oil-in-water emulsions.

5.1 Introduction

5.1.1 Scope of the paper

Numerous multiphase flows involve the flow of one disperse substance, for ex-

ample solid mineral particles or oil droplets in an emulsion, through a continuous

phase, say a liquid or gas. In many cases, the disperse substance consists of small

particles that belong to different species which differ in some characteristic quan-

tity such as size or density. The different species will segregate and create areas of

different composition, which is the most interesting property in many applications.

Similar models also include certain continuum approximations of traffic flow of ve-

hicles on a highway if cars with drivers having different preferential velocities are

identified as different species.

In general, we distinguish between N different species that give rise to N

superimposed continuous phases associated with volume fractions (or densities)

φ1, . . . , φN . If vi is the one-dimensional velocity of species i, then the continuity equa-
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tions of the N species in differential form are

∂tφi + ∂x(φivi) = 0, i = 1, . . . , N, (5.1.1)

where t is time and x is the spatial position. The basic assumption of kinematic mod-

els is that the velocities v1, . . . , vN are given functions of the vector Φ := (φ1, . . . , φN)T

of local concentrations of all species, vi = vi(Φ). This yields systems of conservation

laws of the type

∂tφi + ∂x

(
φivi(Φ)

)
= 0, i = 1, . . . , N. (5.1.2)

We focus on three specific kinematic models that recently attracted interest: one

of multi-species traffic flow [10, 168, 169, 176, 177, 178], one of sedimentation of

polydisperse suspensions [12, 32, 158, 170, 175], and one of separation of oil-in-water

dispersions [149].

All these applications also give rise to spatially non-homogeneous flows, in

which the velocity vi not only depends on Φ, but also on a vector of parameters γi

that is a function of the spatial position x, γi = γi(x). While models for which γi de-

pends, for example, Lipschitz continuously on x lead to conservation laws that can

be treated with standard analytical and numerical methods, we are here interested

in the case that γi depends discontinuously on x; more precisely, we assume that γi

is piecewise smooth with a finite number of discontinuities. The vector γi(x) may

describe, for instance, abruptly changing road surface conditions in the traffic flow

model, as was done in [27, 132] for a single-species model; singular feed sources and

diverging bulk flows in clarifier-thickener models [23] (Chapter 3 of this thesis),[31];

and abruptly changing cross-sectional areas in vessels for the settling of suspensions

and emulsions.

It is the purpose of this contribution to formulate, in part analyze, and present

numerical experiments for easy-to-implement numerical schemes for kinematic

models, in which the numerical flux is explicitly based on the “concentration times

velocity” structure of each flux component. The starting point is a simple two-point

monotone numerical flux for scalar (N = 1) kinematic flows with a non-negative
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velocity function v = v(φ). We develop extensions of the scheme defined by this

numerical flux to equations with a velocity of variable sign, to equations with a

discontinuous flux, to systems of conservation laws (N ≥ 2 species), and finally

to schemes with second-order accuracy. All these variants form the family of new

schemes under study. It is proved that for N ≥ 1 flows with non-negative velocities,

the schemes preserve an invariant region, i.e. generate approximations that assume

values in the domain of physically relevant concentrations only. For the scalar case

(N = 1) and a discontinuous flux, we prove convergence to a BVt entropy solution.

The proof is based on a new uniform but local estimate of the spatial total variation

of approximate solutions. Numerical experiments demonstrate the performance of

the new family of schemes.

What is intriguing about the new schemes is that (other than an estimate of the

spectral radius for the CFL condition) they do not require any calculation of eigen-

values, eigenvectors, field-by-field decomposition, flux vector splitting etc. that are

usually required for an upwind scheme. In this sense they are like a central scheme.

However, in many cases the first-order accurate version of the new schemes is much

less dissipative than the first-order version of the central scheme (the Lax-Friedrichs

scheme).

5.1.2 Multi-species kinematic models

In this and the following section, we recall some known properties and dis-

cretizations of kinematic models of the type (5.1.2), while some results related to

conservation laws with discontinuous flux are reviewed in Section 5.1.5.

In many applications, the number N of species may be large, and the different

species in these applications are competitive. It is therefore convenient to assume a

maximal density φmax (for example, a maximal ’bumper-to-bumper’ car density in

traffic models or the maximal sphere packing density φmax ≈ 0.66 in sedimentation
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models), such that the phase space for (5.1.2) is

Dφmax :=
{
Φ = (φ1, . . . , φN)T ∈ RN : φ1 ≥ 0, . . . , φN ≥ 0,

φ := φ1 + · · ·+ φN ≤ φmax

}
.

(5.1.3)

Introducing the flux vector

f(Φ) =
(
f1(Φ), . . . , fN(Φ)

)T
:=
(
φ1v1(Φ), . . . , φNvN(Φ)

)T
, (5.1.4)

we can rewrite (5.1.2) as the nonlinear system of conservation laws

∂tΦ + ∂xf(Φ) = 0. (5.1.5)

It is well known that solutions of (5.1.5) are discontinuous in general, and that

the propagation speed σ(Φ+,Φ−) of a discontinuity in the concentration field φi sep-

arating the states Φ+ and Φ− is given by the Rankine-Hugoniot condition

σ =
fi(Φ

+)− fi(Φ
−)

φ+
i − φ−i

.

We recall that the system (5.1.5) is called hyperbolic at a state Φ if the Jacobian

Jf (Φ) := (∂fi/∂φk)1≤i,k≤N only has real eigenvalues, and strictly hyperbolic if these

are moreover pairwise distinct.

The kinematic traffic model for N = 1 goes back to Lighthill and Whitham [125]

and Richards [146] (“LWR model”); for the sedimentation of suspensions, the classic

reference is Kynch [120]. The extension of the LWR model to multi-class traffic flow

was proposed by Benzoni-Gavage and Colombo [10] and Wong and Wong [168],

while extensions of the sedimentation model to several species have been suggested

for several decades (see [20, 175] for reviews), mainly in the chemical engineering

literature. The application of available tools of mathematical and numerical analysis

to kinematic flow models is difficult due to the dependence of the functions vi(Φ)

on all variables φ1, . . . , φN , which in general is nonlinear. Closed formulas for the

eigenvalues and eigenvectors of Jf (Φ) are at least complicated, if not unavailable

for N ≥ 5. It is therefore in general not possible to solve the Riemann problem for
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(5.1.2) in closed form. Moreover, for multi-species kinematic models eigenvalues

lack a direct physical interpretation, and in particular do not coincide with any of

the phase velocities v1, . . . , vN .

Advances were made recently in the hyperbolicity analysis and characterization

of eigenvalues of kinematic models. For the model of settling of oil-in-water dis-

persions, Rosso and Sona [149] proved for arbitrary N strict hyperbolicity in Dφmax .

The proof is based on deriving an explicit closed formula of the characteristic poly-

nomial of Jf (Φ), and discussing its zeros. Berres et al. [12] proved in a similar way

that the model [12, 128, 129] for the sedimentation of polydisperse suspensions uti-

lized herein is strictly hyperbolic for arbitrary N , provided that all particles have

the same density. The basic idea was also used by Zhang et al. [177] to prove strict

hyperbolicity of the multi-class traffic model proposed in [10, 168].

5.1.3 Limitations of kinematic models

Before proceeding with the discussion, we comment on the limitations of our

class of kinematic models. The one-dimensional setting may be adequate for traf-

fic models, but certainly presents a strong simplification for multiphase flows of

real materials such as suspensions and emulsions. Nevertheless, one-dimensional

multiphase flow models are widely used in engineering applications under well-

controlled flow conditions, especially for separation processes in ducts (e.g., settling

columns or hydraulic classifiers) that are aligned with the body force (gravity or cen-

trifugal force) that drives the separation. If one assumes that the sizes of particles or

droplets are small compared with the diameter of the vessel, then wall effects be-

come negligible, and in many circumstances one-dimensional approximation is ac-

ceptable. Experimental support for one-dimensional kinematic models is provided

in [14, 63, 68, 70, 86, 89, 90, 98, 99, 100, 122, 128, 133, 143, 144, 151, 170, 172, 175] (this

list is not complete). Of course, multiphase flows under more general circumstances,

for example in equipments with more complicated geometry, in natural ducts or

under a combination of various body forces require a truly multidimensional treat-
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ment, which is also necessary for the description of the formation of structures like

plumes and eddies that are not easily modeled in one dimension. Monographs deal-

ing with multi-dimensional multiphase flow models include [19, 46, 62, 97, 163].

The dimensionality of a multiphase flow model is intimately related with the

number and structure of balance equations that describe its evolution. For exam-

ple, in more than one space dimension, the flux appearing in the solids continuity

equations of sedimentation models has a linear contribution involving the bulk ve-

locity of the mixture [12, 32]. This quantity is then not just a controllable constant,

as in one space dimension, but a flow variable with its own equations of evolu-

tion, for example a variant of the Navier-Stokes equation which is strongly coupled

with the continuity equations. On the other hand, independently from the number

of space dimensions, a physically more accurate description (than kinematic mod-

elling) of traffic and multiphase flows requires that we take into account further bal-

ance equations, for example for the linear momentum and energy of each species. As

a consequence, the flow velocity vi of a particular species is no longer an explicitly

prescribed function of Φ, but is governed by its own equation of evolution. In traf-

fic modeling, this leads to so-called second-order traffic models, which include ele-

ments such as anticipation length, and reaction time. For the more involved physics

of non-kinematic multiphase flow models, we refer again to [19, 46, 62, 97, 163]; for

traffic models, see [9, 75, 91, 111].

Frequently, the flux of a species is assumed to depend not only on Φ, but also

on ∇Φ (in one space dimension, ∂xΦ), which results in diffusive-like models. These

gradient-type terms either emerge from simplified versions of additional balance

equations, as in sedimentation models, where they reflect sediment compressibil-

ity [12]; accrue from truncated expansions of velocities with displaced arguments

reflecting anticipation length, reaction time, and relaxation to equilibrium in traf-

fic modelling [27, 91, 137]; or are postulated a priori as a formal generalization

vi = vi(Φ,∇Φ) of the dependency vi = vi(Φ) of kinematic models [16, 18, 43, 67].

In traffic modelling, the last assumption has the behavioristic interpretation that

drivers are not only sensitive to the local density, but to the gradient of density.
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Some diffusive models are actually strongly degenerate, which means that diffusion

is present only wherever the density exceeds a critical value. The governing equa-

tions is of mixed parabolic-hyperbolic type, where the location of the type-change

interface is unknown beforehand. Sedimentation and traffic models of this kind are

discussed in [12] and [27, 137], respectively.

5.1.4 Numerical schemes for kinematic models

Despite the new hyperbolicity results, insight into any specific N -species kine-

matic model with N ≥ 3 can realistically be gained through numerical simula-

tion only. High resolution schemes for systems of conservation laws, which ap-

proximate discontinuities sharply and without spurious oscillations and are at least

second-order accurate in smooth regions, are natural candidates for the numerical

solution of (5.1.2). For example, Wong, Shu and their collaborators [176, 178] ap-

plied weighted essentially non-oscillatory (WENO) schemes to the traffic model,

while Bürger, Karlsen and collaborators [12, 20, 22, 145] employed central differ-

ence schemes [119, 138] for the sedimentation model. Meanwhile, central schemes

have also been applied to a number of real-world problems of polydisperse sedi-

mentation, see for example Xue and Sun [170], Simura and Ozawa [153] and Wang

et al. [167]. Recently [36], WENO schemes were combined with a multiresolution

technique to yield a numerical method for kinematic models that adaptively con-

centrates computational effort on zones of strong variation.

All these methods are based on schemes that can be applied universally to sys-

tems of conservation laws, and that are not tailored to a particular algebraic struc-

ture of the flux vector. Our new family of schemes does, however, explicitly make

use of the structure of fluxes for kinematic models. The schemes, which are first-

order accurate, can be upgraded to higher order accuracy by employing MUSCL-

type techniques.
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5.1.5 Well-posedness analysis and numerical schemes for conser-

vation laws with discontinuous flux

To put the treatment in the proper perspective, we first recall some known results

for the equation ut + f(γ(x), u)x = 0. The basic difficulty is that its well-posedness is

not a straightforward limit case of the standard theory for conservation laws with a

flux that depends smoothly on x. In fact, several extensions of the Kružkov entropy

solution concept [114] to conservation laws with a flux that is discontinuous with

respect to x were proposed in recent years [3, 6, 7, 82, 103, 104, 105, 106, 112, 113,

130, 150, 159, 160]. Each of these concepts is supported by a convergence analysis

of a numerical scheme; the differences between them appear in the respective ad-

missibility conditions for stationary jumps of the solution across the discontinuities

of γ [29].

The choice of the entropy solution concept depends on the regularizing viscous

physical model. For clarifier-thickener models, the appropriate concept emerges

from the limit ε→ 0 of a viscous regularization εuxx with a diffusion constant ε > 0

[34]. Diehl advanced thorough analyses and construction of exact entropy solutions

for clarifier-thickener models, which are culminating in his series of papers “Oper-

ating charts for continuous sedimentation” [57, 58, 59, 60]. On the other hand, the

authors with collaborators made a series of contributions (including [23] (Chapter 3

of this thesis), [31, 34, 28]) to the well-posedness and numerical analysis for these

models, whose basic non-standard ingredient is a singular feed source that produces

diverging bulk flows, which causes the discontinuous x-dependence of the flux. The

same entropy solution concept has also been applied to establish well-posedness,

and to construct a working numerical scheme, for a model of single-species traffic

flow with abruptly changing road surface conditions [27].

The rigorous analysis is limited to the scalar case, but the numerical schemes that

have been used to constructively establish existence of weak solutions to the scalar

clarifier-thickener model also possess working versions for systems with discontin-

uous flux. In the context of clarifier-thickener models, such systems model fluidiza-
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tion and classification units for polydisperse suspensions, see [13],[24] (Chapter 4 of

this thesis).

5.1.6 Contents of the paper

The remainder of the paper is organized as follows. In Section 5.2, three specific

kinematic models are presented. Section 5.2.1 presents the multi-class kinematic traf-

fic model, which gives rise to an initial-value problem with periodic boundary con-

ditions. Next, in Section 5.2.2, we outline the polydisperse sedimentation model, for

which the zero-flux boundary condition is relevant. A similar model for the separa-

tion of oil-in-water dispersions is mentioned in Section 5.2.3. The distinctive prop-

erty of the sedimentation model is that the phase velocities of the particle species

may be positive, zero or negative, due to buoyancy effects, while in the two other

models, these velocities are always non-negative.

Section 5.3 is devoted to the presentation of the family of schemes. To this end,

we first introduce in Section 5.3.1 the basic time and space discretizations. In Sec-

tion 5.3.2, the scalar versions (i.e., for N = 1) of the schemes are introduced, starting

with Schemes 1 and 2 for fluxes with non-negative velocity and a velocity of variable

sign, respectively. It is shown that both schemes are monotone provided that a CFL

condition is satisfied. Furthermore, we extend Scheme 1 to an equation with discon-

tinuous flux (Scheme 3). In Section 5.3.3, we formulate schemes for multi-species

kinematic models, that is, for systems of conservation laws (N ≥ 1). The systems

variants of the scalar Schemes 1 and 3 for models with non-negative velocities only

are Schemes 4 and 5. For models with velocities of variable sign, the direct exten-

sion of the scalar Scheme 2 is Scheme 6. However, as is detailed in Section 5.3.3, this

scheme produces sharply resolved interfaces, but overshoots in certain situations.

An analysis of the viscosity coefficients of Scheme 6 leads to the improved Scheme 7.

It turns out that for the sedimentation model, this scheme still produces overshoots

near stationary discontinuities; for this reason, the final scheme advocated for sys-

tems with velocities of variable sign is Scheme 8, which is slightly more viscous than
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Scheme 7. One desirable property of schemes for kinematic models consists in the

preservation of an invariant region, i.e. under a suitable CFL condition, the scheme

should produce approximations that assume values within the physically relevant

phase space only (i.e., concentrations should be non-negative and sum up at most to

the maximal concentration). We show in Section 5.3.4 that Scheme 5, applied to the

traffic model, and Scheme 4, applied to the oil-in-water dispersion model, indeed do

have these properties. Experience with the traffic and oil-in-water dispersion model

leads us to propose a working CFL condition also for the sedimentation model. In

Section 5.3.5 we demonstrate how the schemes developed so far can be improved

to second-order accuracy both in space and time by combining Runge-Kutta tempo-

ral differencing with MUSCL-type spatial differencing. The latter involves the use

of slope limiter functions; we refer to the variants with the minmod and Van Leer

limiter functions as Scheme 9 and 10, respectively. We show that if applied to scalar

problems with a flux that does not depend on x, these schemes preserve the maxi-

mum principle and the TVD property of the first-order version under the same CFL

condition.

In Section 5.4, we consider a scalar initial-boundary value problem with periodic

boundary conditions and a discontinuous flux, and prove that Scheme 3 generates

a sequence of approximate solutions that converge to the unique BVt entropy so-

lution of the problem as the mesh parameters tend to zero. One basic ingredient of

the compactness argument involved here is a new type of local but uniform esti-

mate of the total spatial variation of approximate solutions. This type of argument

(see Lemma 5.4.2 in Section 5.4 and its proof) is new, and has not been used in any

previous work on discontinuous flux problems.

In Section 5.5, we present eight numerical examples to demonstrate the perfor-

mance of the schemes of the family, especially compared to variants of the Lax-

Friedrichs scheme. Examples 5.1 and 5.2 refer to scalar equations that do not repre-

sent a particular application. Example 5.3 presents a simulation of a scalar clarifier-

thickener model, and allows comparison with a numerical result published in [31].

In Example 5.4, we study the multi-species traffic model with N = 9, but with-
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out flux discontinuities, and choose parameters in such a way that results can be

compared with those presented in [176]. In addition, for this example (and for Ex-

ample 5.6) we present a history of approximate L1 numerical errors. This is done for

the first- and second-order variants of the scheme, as well as for the corresponding

variants of the LxF scheme. Example 5.5 corresponds to the traffic model with a dis-

continuously varying parameter, and the numerical results can be compared those

of Zhang et al. [178]. In Example 5.6, we simulate the settling of a suspension with

N = 2 species in a column using parameters from a well-documented experiment

by Schneider et al. [151]. These results, as those of Example 5.7, where we consider

a suspension with N = 11 species, can also be compared with those of [36]. Finally,

Example 5.8 presents a simulation of the settling of an oil-in-water dispersion with

N = 10 species.

Section 5.6 collects some conclusions of this paper.

5.2 Examples of kinematic flow models

5.2.1 Traffic flow models

The classical LWR kinematic wave model [125, 146] for unidirectional traffic flow

on a single-lane highway starts from the principle of “conservation of cars”, where

φ is the density of cars as a function of distance x and time t and v = v(x, t) is the

velocity of the car located at position x at time t:

∂tφ+ ∂x(φv) = 0, x ∈ R, t > 0, (5.2.1)

The original LWR model (5.2.1) is a single-species model (N = 1), whose basic as-

sumption v = v(φ) states that each driver instantaneously adjusts his velocity to the

local car density. A common choice is v(φ) = vmaxV (φ), where vmax is a preferential

velocity a assumed on a free highway, and V (φ) is a hindrance function taking into

account that the presence of other cars urges each driver to adjust his speed. Thus,
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the flux is

f(φ) := φv(φ) =

vmaxφV (φ/φmax) for 0 ≤ φ ≤ φmax,

0 otherwise,
(5.2.2)

where φmax is the maximum “bumper-to-bumper” car density.

Recently, Benzoni-Gavage and Colombo [10] and Wong and Wong [168] inde-

pendently formulated an extension of the LWR model to multi-class traffic flow,

considering that cars belong to a finite number N of classes (species), each associ-

ated with a function v = vi(Φ). It is assumed that drivers of each species adjust their

velocity to the global car density φ = φ1 + · · ·+φN seen at a point (x, t), which means

that vi(Φ(x, t)) = vi(φ(x, t)) for i = 1, . . . , N , and that all drivers adjust their velocity

in the same way, such that

vi(Φ) = vi
maxV (φ/φmax), i = 1, . . . , N. (5.2.3)

Here, vi
max is the preferential (maximum) of species i and the function V : [0, φmax] →

[0, 1] describes the attitude of drivers [10], that is, represents the same hindrance

function as in the single-class case.

Also of interest are models where we replace (5.2.3) by

vi = vi(x,Φ) = vi
max(x)V (φ/φmax(x)), vi

max(x) > 0, i = 1, . . . , N. (5.2.4)

By allowing vi to vary spatially through the coefficients vi
max(x) and φmax(x), it is

possible to model road conditions that change from location to location.

For the traffic model, we assume a circular road of length L and assume an initial

traffic density

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ
0
N(x)

)T ∈ Dφmax , 0 ≤ x ≤ L. (5.2.5)

The periodicity condition is

φi(0, t) = φi(L, t), t > 0, i = 1, . . . , N.
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5.2.2 Sedimentation of polydisperse suspensions

We consider a polydisperse suspension of rigid spherical particles which are dis-

persed in a viscous fluid of density %f and of dynamic viscosity µf . The solid par-

ticles belong to N different species having sizes (diameters) d1 ≥ d2 ≥ · · · ≥ dN

and densities %1, . . . , %N , where di 6= dj or %i 6= %j for i 6= j. Model equations for the

three-dimensional motion of such a mixture were derived in [32], based on earlier

work by Masliyah [129] and Lockett and Bassoon [128]. We consider here the kine-

matic model obtained by reducing these equations to one space dimension, see [32]

for details. The relevant parameters are δi := d2
i /d

2
1 and %̄i := %i − %f for i = 1, . . . , N .

Here, φmax denotes a maximum solids volume fraction, which we here assume to

be constant. Moreover, we introduce the vector %̄ := (%̄1, . . . , %̄N)T, the cumulative

solids fraction φ := φ1 + · · ·+φN , the viscosity parameter µ := gd2
1/(18µf) > 0, where

g is the acceleration of gravity, and the hindered settling factor V = V (φ), which

may be chosen as

V (φ) =

(1− φ)n−2 if Φ ∈ Dφmax ,

0 otherwise,
n > 2. (5.2.6)

The phase velocity of particle species i is then given by

vi(Φ) = µV (φ)

[
δi(%̄i − %̄TΦ)−

N∑
m=1

δmφm(%̄m − %̄TΦ)

]
, i = 1, . . . , N. (5.2.7)

For one-dimensional batch settling of a suspension in a closed vessel of depth L, the

initial condition is again (5.2.5), while the zero-flux boundary conditions are

f |x=0 = f |x=L = 0. (5.2.8)

If the particles differ in size only (i.e., %1 = %2 = · · · = %N =: %s), then (5.2.7)

simplifies to the following expression, where v∞ = µ(%s − %f) is the settling velocity

of a single particle of the largest species in an unbounded medium (the so-called

Stokes velocity of the largest species):

vi(Φ) = v∞(1− φ)V (φ)
(
δi − (δ1φ1 + · · ·+ δNφN)

)
, i = 1, . . . , N. (5.2.9)
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In [12] it is proved that for equal-density particles (%̄ = · · · = %̄N = %s − %f),

arbitrary N and particle size distributions, the system (5.1.5) is strictly hyperbolic for

all Φ ∈ D with φ1 > 0, . . . , φN > 0 and φ < 1 if the flux vector (5.2.7) is chosen. As

mentioned in Section 5.1.2, the proof proceeds in a similar fashion to that of Rosso

and Sona [149] outlined in Section 5.1.2.

5.2.3 Separation of oil-in-water dispersions

Kinematic models have also been proposed for the sedimentation of small oil

droplets in liquid-liquid dispersions. The separation process is similar to the set-

tling of a polydisperse suspension, the major difference being that since the density

of oil is smaller than that of water, the oil droplets move upwards, a process called

creaming; however, to make results comparable with the sedimentation model, we

assume that the separation takes place in the direction of the positive x-axis, so x

is considered here to be a height variable. Numerous contributions to kinematic

models for liquid-liquid dispersions have been made by Hartland, Jeelani, and their

collaborators, see for example [89, 90, 98, 99, 100]. The analogy between suspension

and dispersion models is also emphasized by Nadiv et al. [133] and Frising et al.

[70]. The model utilized herein is due to Rosso and Sona [149], who consider the

separation of small oil droplets in an oil-in-water dispersion. (It is worth mention-

ing that Rosso and Sona explicitly refer to [143], a doctoral thesis prepared under

Hartland’s guidance.)

The model outlined in [149] can be written in the form (5.1.2) if we consider

oil droplets of N different volumes V∞ > V2 > · · · > VN > 0, where x is the

upward-increasing height variable and φi = φi(x, t) is the volume fraction occu-

pied by droplets of volume Vi. The model is similar to that of sedimentation, but as

the authors argue, the differential motion of the particle species is not driven by the

dispersion-water density difference, which actually can be considered constant, but

rather by differences in viscosity. The basic nonlinearity is introduced by a viscosity

function µd = µd(Φ) = µd(φ1, . . . , φN). If we denote again by µf the viscosity of pure
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water (without oil), then µd(Φ) is assumed to satisfy

µd ∈ C1(D); µd(Φ) > 0,
∂µd

∂φ1

> 0, . . . ,
∂µd

∂φN

> 0 ∀Φ ∈ D; µd(0, . . . , 0) = µf .

The velocity functions v1(Φ), . . . , vN(Φ) are then given by

vi(Φ) = c
V2/3

i

µd(Φ)
(1− φ), i = 1, . . . , N, c :=

2g(%f − %oil)

9(4π/3)2/3
, (5.2.10)

where g, %f and %oil denote the acceleration of gravity, the density of pure water and

density of pure oil, respectively. For separation of a dispersion in a column of height

L, we may again employ the initial and boundary conditions (5.2.5) and (5.2.8).

5.3 Numerical schemes

Section 5.2 shows that we are interested in schemes for kinematic models with

a flux that possibly depends discontinuously on the spatial position x. Thus, seek

weak solutions to the initial value problem

∂tφi + ∂xfi(x,Φ) = 0, (x, t) ∈ (0, L)× (0, T ) =: ΠT , i = 1, . . . , N,

fi(x,Φ) = φivi

(
γi(x),Φ

)
, Φ(x, 0) = Φ0(x), x ∈ (0, L),

(5.3.1)

which may be supplemented by periodic boundary conditions

Φ(0, t) = Φ(L, t), t > 0,

or zero-flux boundary conditions

fi(0,Φ) = fi(L,Φ) = 0, i = 1, . . . , N.

This setup is general enough to include the models discussed in the previous section.

5.3.1 Discretizations

We start by discretizing the domain [0, L]×[0, T ]. To discretize the spatial interval

[0, L], we choose a mesh width ∆x and an integer J such that (J + 1)∆x = L, and
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set

xj = (j + 1/2)∆x, j = −1/2, 0, 1/2, 1, 3/2, . . . ,J − 1,J + 1/2.

With this setup, x−1/2 = 0, xJ+1/2 = L. We discretize the time interval [0, T ] by select-

ing an integer N and a sequence of temporal mesh widths ∆tn, and defining t0 := 0

and tn+1 := tn+∆tn for n = 0, 1, . . . ,N subject to the condition ∆t0+· · ·+∆tN−1 = T .

The ratio λn := ∆tn/∆x is always assumed to satisfy a CFL condition, which

will be specified below. Our numerical schemes will generate an approximation

Φn
j ≈ Φ(xj, tn) defined at the mesh points (xj, tn) for j ∈ {0, 1, . . . ,J } =: ZJ and

n = 0, 1, . . . ,N . For our first-order accurate scheme, we start by discretizing the

initial data and the parameter vectors

Φ0
j = Φ0

(
x+

j

)
:= lim

x↓xj

Φ0(x), γi,j := γi

(
x+

j

)
, i = 1, . . . , N.

Here we have arbitrarily chosen the limit from above to resolve the ambiguities at

possible jump discontinuities in the data. This is somewhat arbitrary; we could also

use the limit from below, or any average of the two. We then march the solution

forward in time according to

Φn+1
j = Φn

j − λn

(
hn

j+1/2 − hn
j−1/2

)
, j ∈ ZJ , n = 0, 1, . . . ,N . (5.3.2)

The numerical flux vector hn
j+1/2 is

hn
j+1/2 :=

(
h1

(
γ1,j+1,Φ

n
j+1,Φ

n
j

)
, . . . , hN

(
γN,j+1,Φ

n
j+1,Φ

n
j

))T
. (5.3.3)

Recall that we are considering two types of boundary conditions. When dealing

with zero flux boundary conditions, we always set

hn
−1/2 = hn

J+1/2 = 0, n = 0, 1, 2, . . . (5.3.4)

When dealing with periodic boundary conditions, we may have formulas where

j < −1/2 or j > J + 1/2. In such cases we simply interpret j modulo (J + 1), in

such a way that it lies within the proper range. For periodic boundary conditions,

we will always have

hn
−1/2 = hn

J+1/2, n = 0, . . . ,N . (5.3.5)
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With these observations, we can deal with both types of boundary conditions simul-

taneously, and mostly avoid discussing special processing at the boundaries.

5.3.2 The scalar case

To discuss our new numerical flux in the simplest possible setting, we start with

scalar kinematic wave models, where no spatially dependent parameter vector oc-

curs:

φt + f(φ)x = 0, (5.3.6)

where the flux takes the special form for kinematic flow models

f(φ) = φv(φ). (5.3.7)

The assumptions are that φ ≥ 0, and that v(φ) is given by a positive default velocity

multiplying a hindrance function. Since the hindrance increases with φ, the assump-

tions v(φ) ≥ 0 and v′(φ) ≤ 0 are very natural, and clearly satisfied for all examples

of kinematic models considered herein. For traffic flow, φ is the traffic density, and v

is the velocity of cars as a function of density, while for sedimentation, φ is the solids

volume fraction and v is the solids phase velocity.

Scheme 1 for scalar equations (N = 1) with non-negative velocity

The following is a two-point numerical flux consistent with the actual flux (5.3.7):

h(φj+1, φj) := φjv(φj+1). (5.3.8)

For easy reference, we refer to the scheme (5.3.2), (5.3.3) with N = 1, γ ≡ const. and

the flux (5.3.8) as Scheme 1. Due to the special structure of this problem (φ ≥ 0,

v(φ) ≥ 0, v′(φ) ≤ 0), Scheme 1 is monotone [45], meaning that the function

h(φj+1, φj) is non-increasing with respect to φj+1 and nondecreasing with respect

to φj . Therefore, Scheme 1 produces approximations that converge to the correct en-

tropy solution to the conservation law (5.3.6). However, these approximations will
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be at best first order accurate. What makes the flux (5.3.8) interesting is that like

the Lax-Friedrichs numerical flux, it is very simple (there is no Riemann solver in-

volved), but in many cases it is less dissipative than the Lax-Friedrichs numerical

flux. This motivates us to use (5.3.8), and various extensions to deal with systems

and discontinuous coefficients, as a starting point to build a second-order scheme.

Scheme 2 for scalar equations (N = 1) with a velocity of variable sign

Motivated by the polydisperse settling model, where the velocities may become

negative, we next consider the scalar case where the velocity v may become negative.

It is easy to check that the following modification of (5.3.8) is a flux that retains the

monotonicity property in this more general situation:

h(φj+1, φj) = φj max
{
0, v(φj+1)

}
+ φj+1 min

{
0, v(φj+1)

}
. (5.3.9)

We refer to the scheme (5.3.2), (5.3.3) for N = 1 and γ ≡ const. with the flux (5.3.9)

as Scheme 2. Another formulation of (5.3.9) that will be useful in what follows is the

so-called viscous form:

h(φj+1, φj) =
1

2

(
f(φj+1) + f(φj)

)
− 1

2λ
Q(φj+1, φj)(φj+1 − φj), (5.3.10)

where the numerical viscosity coefficient Q(φj+1, φj) is defined by

Q(φj+1, φj) := λ
∣∣v(φj+1)

∣∣+ λφj
v(φj)− v(φj+1)

φj+1 − φj

. (5.3.11)

To derive CFL conditions, let us concentrate for now on the case where the

boundary conditions are periodic. If we write Scheme 2 in incremental form

φn+1
j = φn

j + Cj+1/2∆+φ
n
j −Dj−1/2∆−φ

n
j ,

where we define the spatial difference operators ∆−Vj := Vj − Vj−1 and ∆+Vj :=

Vj+1 − Vj , the incremental coefficients are given by

Cj+1/2 = λφj

v(φn
j )− v(φn

j+1)

φn
j+1 − φn

j

− λmin
{
0, v(φn

j+1)
}
,

Dj+1/2 = λmax
{
0, v(φn

j+1)
}
.

(5.3.12)
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To have a maximum principle

min
{
φn

j−1, φ
n
j , φ

n
j+1

}
≤ φn+1

j ≤ max
{
φn

j−1, φ
n
j , φ

n
j+1

}
(5.3.13)

and the Total Variation Decreasing (TVD) property

J∑
j=0

∣∣φn+1
j+1 − φn+1

j

∣∣ ≤ J∑
j=0

∣∣φn
j+1 − φn

j

∣∣, (5.3.14)

sufficient conditions are [88, 156]

Cj+1/2 +Dj+1/2 ≤ 1, Cj+1/2 +Dj−1/2 ≤ 1, Cj+1/2 ≥ 0, Dj+1/2 ≥ 0.

It is clear from (5.3.12) thatCj+1/2 ≥ 0 andDj+1/2 ≥ 0 are already satisfied. To enforce

the first two inequalities, we impose the CFL conditions

λmax
j∈ZJ

∣∣v(φj)
∣∣ ≤ α, α = 1/4, λmax

j∈ZJ
φj ·max

j∈ZJ

∣∣v′(φj)
∣∣ ≤ α, α = 1/2. (5.3.15)

In this paper we state a CFL condition, like those in (5.3.15), in terms of the num-

ber α for ease of comparison with other CFL conditions (with different values of α)

that will appear elsewhere.

If the speed v is nonnegative, the second term on the right-hand side of the equa-

tion for Cj+1/2 in (5.3.12) is not present, and we can replace (5.3.15) by the less re-

strictive CFL conditions

λmax
j∈ZJ

v(φj) ≤ α, λmax
j∈ZJ

φj ·max
j∈ZJ

∣∣v′(φj)
∣∣ ≤ α, α = 1/2. (5.3.16)

Scheme 3 for scalar equations (N = 1) with non-negative velocity with a discon-

tinuous flux

We will also consider scalar conservation laws of the form

φt + f
(
γ(x), φ

)
x

= 0, f
(
γ(x), φ

)
= φv

(
γ(x), φ

)
, v(γ, φ) ≥ 0, (5.3.17)

where the spatially varying coefficient vector γ may have jump discontinuities. For

the traffic flow model, the coefficient γ modulates the velocity function, and pro-

vides a way to model spatially varying road conditions. For the conservation law
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(5.3.17), our numerical flux becomes

h(γj+1, φj+1, φj) = φjv(γj+1, φj+1), γj+1 := γ
(
x+

j+1

)
. (5.3.18)

For the scheme defined by (5.3.18), Scheme 3, we cannot derive CFL conditions by

enforcing a maximum principle like (5.3.13) or TVD property like (5.3.14). Never-

theless, we demonstrate in Section 5.4 that at least in one important case the scheme

is stable and convergent if the following CFL conditions are satisfied:

λmax
j∈ZJ

v(φj,γj) ≤ α, λmax
j∈ZJ

φj ·max
j∈ZJ

∣∣∂φv(γj, φj)
∣∣ ≤ α, α = 1/2.

5.3.3 Numerical flux for systems of conservation laws

When generalizing the numerical flux to multi-species kinematic flows governed

by (5.1.1) one should observe that only for the traffic and dispersion models, the ve-

locities vi(Φ) are always nonnegative; for the sedimentation model, the velocities

vi(Φ) are defined by (5.2.3) and may become negative due to buoyancy effects. This

also occurs in the special case that all particles have the same density, and the veloc-

ities vi(Φ) are defined by (5.2.9).

Scheme 4 for systems (N ≥ 1) with non-negative velocities

In light of the above observation, for the multi-class traffic and the dispersion

models a reasonable generalization of the scalar flux (5.3.8) is

hi,j+1/2 = hi(Φj+1,Φj) = φi,jvi(Φj+1), i = 1, . . . , N. (5.3.19)

We refer to the corresponding scheme as Scheme 4.

Scheme 5 for systems (N ≥ 1) with non-negative velocities and discontinuous

flux

As mentioned previously, for the multi-class traffic model, we are also interested

in spatially varying velocities of the form (5.2.4). In that case we replace the numer-
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ical flux (5.3.19) by

hi,j+1/2 = hi(ki,j+1,Φj+1,Φj) = φi,jv
i
max,j+1V (φj+1/φmax,j+1),

vi
max,j+1 := vi

max

(
x+

j+1

)
, φmax,j+1 := φmax

(
x+

j+1

)
, i = 1, . . . , N

(5.3.20)

(Scheme 5).

Schemes 6, 7 and 8 for systems (N ≥ 1) with velocities of variable sign

For the sedimentation model, where the velocities may become negative, a po-

tential generalization of the scalar numerical flux (5.3.9) is

hi(Φj+1,Φj) = φi,j max
{
0, vi(Φj+1)

}
+ φi,j+1 min

{
0, vi(Φj+1)

}
, i = 1, . . . , N

(5.3.21)

(Scheme 6), and for this flux, the numerical viscosity coefficients are given by

Qi(Φj+1,Φj) = λ
∣∣vi(Φj+1)

∣∣+ λφi,j
vi(Φj)− vi(Φj+1)

φi,j+1 − φi,j

. (5.3.22)

Our numerical experiments with (5.3.19) give satisfactory results, and this is the

first-order version of the flux that we use for systems where there are no negative

velocities. When negative velocities are present, numerical experiments with (5.3.21)

produce sharply resolved interfaces, but with overshoot in certain situations. To de-

vise a numerical flux which overcomes this shortcoming, we return to the viscous

formulation (5.3.10), (5.3.11) of the scalar numerical flux and observe that due to our

assumption that v(·) is non-increasing, both terms on the right-hand side of (5.3.11)

are nonnegative. In fact, we can rewrite (5.3.11) in the equivalent form

Q(φj+1, φj) = λ
∣∣v(φj+1)

∣∣+ λφj

∣∣∣∣v(φj)− v(φj+1)

φj+1 − φj

∣∣∣∣
= λ

∣∣v(φj+1)
∣∣+ λφj

|v(φj)− v(φj+1)|
φj+1 − φj

sgn(φj+1 − φj).

Inserting this into (5.3.10) yields the following form of the scalar numerical flux

(5.3.9):

h(φj+1, φj) =
1

2

(
f(φj+1) + f(φj)

)
− 1

2

∣∣v(φj+1)
∣∣(φj+1 − φj)

− φj

2

∣∣v(φj)− v(φj+1)
∣∣ sgn(φj+1 − φj),

(5.3.23)
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and this is the formulation that we generalize to systems when the velocities can

become negative. In light of (5.3.23), a natural candidate for systems with velocities

of both signs is

hi(Φj+1,Φj) =
1

2

(
φi,j+1vi(Φj+1) + φi,jvi(Φj)

)
− |vi(Φj+1)|

2
(φi,j+1 − φi,j)

− φi,j

2

∣∣vi(Φj)− vi(Φj+1)
∣∣ sgn(φi,j+1 − φi,j), i = 1, . . . , N,

(5.3.24)

which defines Scheme 7. For this flux the numerical viscosity coefficient is

Qi(Φj+1,Φj) = λ
∣∣vi(Φj+1)

∣∣+ λφi,j

∣∣∣∣vi(Φj)− vi(Φj+1)

φi,j+1 − φi,j

∣∣∣∣ .
Our modification (5.3.24) to the numerical flux (5.3.19) consists in forcing the second

term in the viscosity coefficient (5.3.22) to be positive. For scalar equations, this term

is always positive, but this is not always true for systems. This modification is also

potentially applicable to systems where all of the velocities are nonnegative, but we

have found that the original flux (5.3.19) is satisfactory for such systems.

For polydisperse settling problems we find that (5.3.24) is an improvement over

(5.3.21) but still sometimes gives non-physical overshoots at the interfaces between

beds of sediment. For these problems we propose a slightly more viscous version of

(5.3.24) that provides a good compromise between sharply resolved interfaces and

suppression of overshoots:

hi(Φj+1,Φj) =
1

2

(
φi,j+1vi(Φj+1) + φi,jvi(Φj)

)
− Ej+1

2
(φi,j+1 − φi,j)

− φi,j

2

∣∣vi(Φj)− vi(Φj+1)
∣∣ sgn(φi,j+1 − φi,j), i = 1, . . . , N,

which defines Scheme 8, and where Ej+1 := max{|v1(Φj+1)|, . . . , |vN(Φj+1)|} .

5.3.4 Invariant regions and CFL conditions for systems

In Section 5.3.2 we derived CFL conditions by enforcing the TVD property and a

very strong maximum principle. Both of these regularity properties are satisfied by
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the true solutions of the scalar conservation laws being approximated, but not gen-

erally for systems of conservation laws. In this section we derive CFL conditions for

systems. We first derive the form of these CFL conditions by requiring that a certain

invariant region be preserved. Once we have the form of the CFL conditions, we

determine the constants on the right sides by referring to our scalar CFL conditions.

As discussed in Section 5.1.1, the problems of interest to us have a natural in-

variant region Dφmax defined by (5.1.3). It is possible to show that our first-order

scheme preserves this invariant region if we place some restrictions upon the veloc-

ity functions vi(Φ). Since we also wish to allow for spatially varying coefficients, we

generalize the definition (5.1.3), allowing it to vary spatially:

Dφmax,j
:=
{
Φ = (φ1, . . . , φN)T ∈ RN :

φ1 ≥ 0, . . . , φN ≥ 0, φ := φ1 + · · ·+ φN ≤ φmax,j

}
.

(5.3.25)

The following theorem applies to the multi-class traffic flow model discussed in

Section 5.2.1.

Theorem 5.3.1 Consider Scheme 5 defined by (5.3.2) with numerical flux (5.3.20), and

either type of boundary conditions, (5.3.4) or (5.3.5). Assume that all velocity functions vi

are of the form (5.2.4), where 0 ≤ vi
max(x) ≤ vi

max ≤ vmax and 0 < φ
max

≤ φmax(x) ≤ φmax,

and that the hindrance factor V (z) satisfies

0 ≤ V (z) ≤ Vmax, V
′(z) ≤ 0, |V ′(z)| ≤ |V ′|max , z ∈ [0, 1]; V (1) = 0. (5.3.26)

Then if Φn
j ∈ Dφmax,j

and the CFL conditions

λvmaxVmax ≤ α, λ
(
φmax/φmax

)
vmax |V ′|max ≤ α, α = 1 (5.3.27)

are satisfied at time level n, we will also have Φn+1
j ∈ Dφmax,j

.

Proof. Assume for now that the boundary conditions are periodic. The marching

formula takes the form

φn+1
i,j = φn

i,j − λφn
i,jv

i
max,j+1V

(
φn

j+1

φmax,j+1

)
+ λφn

i,j−1v
i
max,jV

(
φn

j

φmax,j

)
, i = 1, . . . , N.

(5.3.28)
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From this expression, it is clear that

φn+1
i,j ≥ φn

i,j − λφn
i,jv

i
max,j+1V

(
φn

j+1

φmax,j+1

)
=

[
1− λvi

max,j+1V

(
φn

j+1

φmax,j+1

)]
φn

i,j

for i = 1, . . . , N . This inequality implies that if Φn
j ∈ Dφmax,j for all j ∈ ZJ we will

have φn+1
i,j ≥ 0 if the first CFL condition appearing in (5.3.27) is satisfied.

Returning to the marching formula (5.3.28), we obtain that

φn+1
i,j ≤ φn

i,j + λφn
i,j−1v

i
max,jV

(
φn

j

φmax,j

)
≤ φn

i,j + λφn
i,j−1vmaxV

(
φn

j

φmax,j

)
.

Summing over i gives

φn+1
j ≤ φn

j + λ
N∑

i=1

φn
i,j−1vmaxV

(
φn

j

φmax,j

)
=: G(φn

j ).

Assumption (5.3.26) implies that G(φmax,j) = φmax,j . Moreover,

G′(φn
j ) = 1 + λ

N∑
i=1

φn
i,j−1vmax

φmax,j

V ′
(

φn
j

φmax,j

)
.

From this expression we deduce that if the second of the CFL conditions appearing

in (5.3.27) is satisfied, the function G will be a nondecreasing function of φn
j . Thus,

max
φn

j ∈[0,φmax,j ]
G(φn

j ) = G(φmax,j) = φmax,j,

implying that φn+1
j ≤ φmax,j . Finally, if the boundary conditions are of the zero-flux

type, we only have to modify the proof at the two mesh points j = 0 and j = J ,

where one of the flux contributions in (5.3.28) will be zero. Retracing the steps of the

proof, we see that all inequalities remain valid. 2

It is common in traffic modeling to use a linear version of V , i.e., V (z) = 1− z. In

that case the CFL conditions (5.3.27) can be reduced to the single condition

λ
(
φmax/φmax

)
vmax ≤ α, α = 1, (5.3.29)
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and if φmax does not depend on x, i.e., φmax(x) ≡ φmax, this can be simplified even

further to

λvmax ≤ α, α = 1. (5.3.30)

The oil-in-water dispersion model of Section 5.2.3 does not quite fit the hypothe-

ses of the previous theorem, but it is still possible to prove that the scheme preserves

the invariant region Dφmax if appropriate CFL conditions are enforced.

Theorem 5.3.2 Consider Scheme 4 defined by (5.3.2) with numerical flux functions defined

by (5.3.19), and the zero-flux boundary conditions (5.3.5). With the form of the velocities vi

for the oil-in-water dispersion model specified in Section 5.2.3, if Φn
j ∈ Dφmax (here φmax = 1)

and the CFL conditions

λvi(Φ
n
j ) ≤ α, i = 1, . . . , N, j ∈ ZJ ;

λ
c

µd(Φn
j )

N∑
i=1

φn
i,j−1 V

2/3
i ≤ α, α = 1, j ∈ ZJ

(5.3.31)

are satisfied, then Φn+1
j ∈ Dφmax .

Proof. First take the case where the boundary condition is not involved, 0 < j < J
(an interior point). The marching formula then takes the form

φn+1
i,j = φn

i,j − λφn
i,jvi

(
Φn

j+1

)
+ λφn

i,j−1vi

(
Φn

j

)
, i = 1, . . . , N. (5.3.32)

This expression implies that

φn+1
i,j ≥ φn

i,j − λφn
i,jvi

(
Φn

j+1

)
=
(
1− λvi

(
Φn

j+1

))
φn

i,j, i = 1, . . . , N.

Using this inequality, along with the first CFL condition in (5.3.31), we conclude

that if φn+1
i,j ≥ 0. The marching formula (5.3.32) also implies that φn+1

i,j ≤ φn
i,j +

λφn
i,j−1vi(Φ

n
j ). Summing over i gives

φn+1
j ≤ φn

j + λ
N∑

i=1

φn
i,j−1vi

(
Φn

j

)
=: G

(
Φn

j

)
.
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To simplify notation, we write G as

G(Φ) = φ+ λ

N∑
i=1

ψi vi(Φ), Φ = Φn
j , φ = φn

j , ψi = φn
i,j−1.

Recalling that for this model φmax = 1, we complete the proof by showing that

max
Φ∈Dφmax

G(Φ) ≤ 1. (5.3.33)

From (5.2.10), we obtain that

G(Φ) = φ+ λB · 1− φ

µd(Φ)
, B := c

N∑
i=1

ψi V2/3
i . (5.3.34)

Rearranging (5.3.34) and using φ ≤ φmax = 1 yields

G(Φ) =

(
1− λ

B

µd(Φ)

)
φ+ λ

B

µd(Φ)
≤ 1.

To obtain the last inequality, we have used the second CFL condition appearing in

(5.3.31). Thus, (5.3.33) is valid, and the proof is complete for each interior point. To

complete the proof, we must deal with the remaining mesh points x0 and xJ . At x0,

the marching formula (5.3.32) simplifies to

φn+1
i,0 = φn

i,0 − λφn
i,0vi

(
Φn

1

)
, i = 1, . . . , N. (5.3.35)

That φn+1
i,0 ≥ 0 now follows from the CFL condition exactly as in the case of an

interior point. For the upper bound, it is immediate by summing over i in (5.3.35)

that φn+1
0 ≤ φn

0 , and thus Φn+1
0 ∈ Dφmax . At xJ , the marching formula (5.3.32) becomes

φn+1
i,J = φn

i,J + λφn
i,J−1vi

(
Φn
J
)
, i = 1, . . . , N. (5.3.36)

Now the proof that φi,J ≥ 0 is clear from (5.3.36), and the upper bound φn+1
J ∈ Dφmax

follows exactly as in the proof above for an interior point. 2

In light of (5.2.10), the maximum velocities are given by vi
max = cV2/3

i /µf . Using

these maximum velocities, it is possible to combine the CFL conditions (5.3.31) for
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the oil-in-water dispersion model into the single and simplified, but possibly more

restrictive, condition

λ max
i=1,...,N

vi
max ≤ α, α = 1. (5.3.37)

In the scalar case (N = 1), the CFL conditions (5.3.27) and (5.3.31) are essentially

the CFL conditions (5.3.16), except with Courant number α = 1 instead of 1/2. The

smaller α = 1/2 on the right side of (5.3.16) can be explained by the fact that those

conditions were derived in order to enforce both a TVD property and a more restric-

tive local maximum principle. The non-oscillatory property of our scalar scheme is

due to the TVD property. Since we wish to extend this property to the systems ver-

sion of our scheme, in practice we use the more restrictive Courant number α = 1/2

in (5.3.27) for the multi-class traffic model. Similarly, we use α = 1/2 in the CFL

condition (5.3.31) for the scheme as it applies to the oil-in-water dispersion model.

Finally, we replace Courant number α = 1 by α = 1/2 in the simplified single CFL

conditions (5.3.29) and (5.3.30) and the simplified single CFL condition (5.3.37) for

the oil-in-water model.

For the multi-class traffic model and the oil-in-water dispersion model, we have

found the form that CFL conditions should take by enforcing certain invariant re-

gions, and then modifying the parameter on the right side of the CFL inequalities

by referring back to simpler scalar conservation laws. For the polydisperse sedi-

mentation model, we do not currently have a proof that our scheme preserves the

invariant region Dφmax , so we can not directly carry out such a program. However,

based on our analysis of the simpler multi-class traffic and oil-in-water dispersion

models, the CFL condition of the following type seems reasonable for the polydis-

perse sedimentation model:

λ max
i=1,...,N

|vi|max ≤ α, α = 1/2, |vi|max := max
Φ∈Dφmax

|vi(Φ)| . (5.3.38)

Due to the complicated form of the velocities vi for the polydisperse sedimentation

model, these maximum velocities may be difficult to calculate. As an alternative, we

can replace the CFL condition (5.3.38) by

λn max
j∈ZJ

max
i=1,...,N

∣∣vi(Φ
n
j )
∣∣ ≤ α, α = 1/2.
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We enforce this CFL condition by computing at each time level

λn =
1

2 maxj∈ZJ maxi=1,...,N |vi(Φn
j )|
,

and then computing the time step via ∆tn = λn∆x. Our numerical experiments

indicate that this approach works well.

5.3.5 Higher-order versions (Schemes 9 and 10)

Schemes 1 to 8 are only first-order accurate, meaning that a very fine mesh is

required in order to accurately resolve some features of the solution. To improve

on this situation, we propose a formally second-order scheme, constructed by us-

ing MUSCL [124] spatial differencing, and Runge-Kutta temporal differencing. The

MUSCL version of the ith flux component reads

hm
i (γi,j+1,Φj+2,Φj+1,Φj,Φj−1) = hi

(
γi,j+1,Φj+1 −

1

2
σj+1,Φj +

1

2
σj

)
, (5.3.39)

γi,j+1 := γi

(
x+

j+1

)
, i = 1, . . . , N, (5.3.40)

where hi is the first-order version of the flux, and we define the slope vector σj :=

(σ1,j, . . . , σN,j)
T with

σi,j =

minmod{φi,j+1 − φi,j, φi,j − φi,j−1} if j = 1, . . . , J − 1,

0 if j = 0 or j = J,

i = 1, . . . , N,

(5.3.41)

where, as usual, minmod{a, b} := (sgn(a) + sgn(b)) min{|a|, |b|}/2, or the less dissipa-

tive Van Leer limiter

σi,j =

Θi,j if j = 1, . . . , J − 1,

0 if j = 0 or j = J,
i = 1, . . . , N,

Θi,j :=
|φi,j − φi,j−1|(φi,j+1 − φi,j) + |φi,j+1 − φi,j|(φi,j − φi,j−1)

|φi,j − φi,j−1|+ |φi,j+1 − φi,j|
.

(5.3.42)
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When the boundary conditions are of the zero-flux type, we simply set σj = 0 when

j = 0,J . In the scalar case, this avoids non-physical overshoot that can occur other-

wise.

In all examples in this paper, the parameter γ is piecewise constant. If γ is piece-

wise smooth, it is necessary to use γi,j+1/2 := γi(x
+
j+1/2) in (5.3.39) instead of γi,j+1 in

order to achieve second-order accuracy. Some care is required here in order to avoid

non-physical overshoots at jumps in γ. A simple way to avoid such overshoots is to

use γj+1 instead of γj+1/2 when there is a jump in γ between xj and xj+1. Note that

in any case we are not attempting to achieve higher than first-order accuracy at the

location of jumps in γ.

Consequently, away from the boundaries, the MUSCL scheme is formally

second-order accurate in space, but not in time. To achieve formal second-order ac-

curacy in time also, we use second-order Runge-Kutta (RK) time stepping. More

specifically, if we write our scheme with first-order Euler time differencing and

second-order spatial differencing abstractly as

Φn+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
, (5.3.43)

then the RK version takes the following two-step form

Φ̃n+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,

Φn+1
j =

1

2
Φn

j +
1

2
Φ̃n+1

j − 1

2
Γj

(
Φ̃n+1

j+2 , Φ̃
n+1
j+1 , Φ̃

n+1
j , Φ̃n+1

j−1 , Φ̃
n+1
j−2

)
.

(5.3.44)

This type of time discretization is formally second-order accurate in time, Strong

Stability Preserving (SSP), see [84], and does not require any additional reduction of

the allowable time step. We refer to the scheme based on the first-order flux (5.3.8)

and extended to second-order in space and time accuracy by (5.3.39), (5.3.41) and

(5.3.43), (5.3.44), respectively, as Scheme 9, while the variant that uses the Van Leer

limiter (5.3.42) (instead of (5.3.41)) as Scheme 10.

Theorem 5.3.3 Consider the scalar initial value problem with flux (5.3.6) and periodic

boundary conditions. Assume that v′(φ) ≤ 0, v(φ) ≥ 0, v(φmax) = 0, v(0) = vmax. Assume
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that the initial data satisfies φ0(x) ∈ [0, φmax], TV (φ0) < ∞. Then Schemes 9 and 10 pro-

duce approximations that satisfy the maximum principle (5.3.13) and TVD property (5.3.14)

if the CFL condition (5.3.16) is satisfied and the slopes σj satisfy

0 ≤ σj

2∆+φj

≤ 1, 0 ≤ σj

2∆−φj

≤ 1. (5.3.45)

Remark 5.3.1 The main point of the preceding theorem is that we do not have to

reduce the allowable time step when using the second-order scheme. Also, note that

both the minmod limiter and the Van Leer limiter enforce the inequalities (5.3.45).

Proof. Since the RK processing does not affect the stability properties, we carry out

the proof for the scheme where only the MUSCL processing is included. Following

[140], we write the scheme in incremental form

φn+1
j = φn

j + Cn
j+1/2∆+φ

n
j −Dn

j−1/2∆−φ
n
j ,

where

Cn
j+1/2 =

−λ
∆+φn

j

[(
φn

j +
σn

j

2

)
v

(
φn

j+1 −
σn

j+1

2

)
−
(
φn

j +
σn

j

2

)
v

(
φn

j −
σn

j

2

)]
,

Dn
j−1/2 =

λ

∆−φn
j

[(
φn

j +
σn

j

2

)
v

(
φn

j −
σn

j

2

)
−
(
φn

j−1 +
σn

j−1

2

)
v

(
φn

j −
σn

j

2

)]
.

A straightforward calculation gives

Cn
j+1/2 = −λ

(
φn

j +
σn

j

2

)
v′
(
ξn
j+1/2

)[
1−

σn
j+1

2∆+φn
j

+
σn

j

2∆+φn
j

]
, (5.3.46)

Dn
j−1/2 = λv

(
φn

j −
σn

j

2

)[
1 +

σn
j

2∆−φn
j

−
σn

j−1

2∆−φn
j

]
. (5.3.47)

The assumptions on φ0 imply φ0
j ∈ [0, φmax] and TV (φ0) < ∞. Assume that

φn
j ∈ [0, φmax] and TV (φn) < ∞ also hold. Thanks to (5.3.45), the bracketed terms

in (5.3.46) and (5.3.47) are nonnegative. The requirement (5.3.45) also implies that

the quantities φn
j ± σn

j /2 are contained in the interval [0, φmax]. With these observa-

tions, it is clear that Cn
j+1/2 ≥ 0 and Dn

j−1/2 ≥ 0.

Finally, (5.3.45) implies that the bracketed terms in (5.3.46) and (5.3.47) do not

exceed 2. Combining this fact with the CFL condition (5.3.16), it is clear that Cn
j+1/2 ≤
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1/2 and Dn
j−1/2 ≤ 1/2. Thus Cn

j+1/2 +Dn
j+1/2 ≤ 1 and Cn

j+1/2 +Dn
j−1/2 ≤ 1. Combining

these inequalities with the non-negativity of Cn
j+1/2 and Dn

j+1/2 proves that φn+1
j ∈

[0, φmax], and TV (φn+1) <∞, and thus the proof is complete by induction on n. 2

5.4 Convergence analysis

In this section we focus on the scalar initial value problem with periodic bound-

ary conditions:

φt +
(
k(x)φV (φ/φmax)

)
x

= 0, (x, t) ∈ [0, L]× (0, T ) =: ΠT

φ(x, 0) = φ0(x),

φ(0, t) = φ(L, t),

(5.4.1)

with the initial datum φ0 satisfying

φ0 ∈ BV ([0, L]) ∩ L1([0, L]) ∩ L∞([0, L]), φ0(x) ∈ [0, φmax] for all x ∈ [0, L]. (5.4.2)

We assume that the coefficient k is positive, bounded, and piecewise constant:

0 < kmin ≤ k(x) ≤ kmax, ∃ξ1, . . . , ξM ∈ (0, L) : k|(ξm,ξm+1) ≡ km. (5.4.3)

Note that the coefficient k has jumps at the points ξm.

Let f(φ) := φV (φ/φmax). We assume that V : [0, 1] 7→ [0, Vmax] is C1, satisfies

(5.3.26), and that

∃φ∗ ∈ (0, φmax) : f ′(φ) > 0 for φ ∈ (0, φ∗) and f ′(φ) < 0 for φ ∈ (φ∗, φmax). (5.4.4)

This last condition is satisfied if for example, V (z) = (1− z)n, where n ≥ 1.

This is a simple scalar model of traffic flow discussed in Section 5.2.1. Relating

this to (5.2.2)–(5.2.4), we obtain the scalar velocity v(x, φ) = k(x)V (φ/φmax). The

parameter k(x) is playing the role of v1
max(x); we make this change to simplify the

notation in this section. Also, we take φmax to be constant in this section. With this

simplification, along with the other assumptions stated above, the problem is a well-

studied one.
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Definition 5.4.1 (BVt entropy solution) A measurable function φ : ΠT → R is a BVt

entropy solution of the initial value problem (5.4.1) if

φ ∈ L1(ΠT ) ∩BVt(ΠT ) ∩ L∞(ΠT ),

φ(x, t) ∈ [0, φmax] for a.e. (x, t) ∈ ΠT ;
(5.4.5)

the following Kružkov-type entropy inequality holds for any ψ ∈ D(ΠT ), ψ ≥ 0, ψ(0, t) =

ψ(L, t): ∫∫
ΠT

(
|φ− c| ∂tψ + sgn(φ− c)

(
k(x)f(φ)− k(x)f(c)

)
∂xψ

)
∆t∆x

+

∫ T

0

M∑
m=0

∣∣k(ξ+
m

)
− k
(
ξ−m
)∣∣f(c)ψ(ξm, t)∆t ≥ 0 ∀c ∈ R;

and the initial condition is satisfied in the following strong L1 sense:

ess lim
t↓0

∫
R

∣∣φ(x, t)− φ0(x)
∣∣∆x = 0. (5.4.6)

Due to our assumptions on the flux f and the coefficient k, there is a well-

developed uniqueness and existence theory for the problem (5.4.1). In particular,

by combining the results of [104] and [105], we have

Theorem 5.4.2 Problem (5.4.1) with assumptions (5.4.2)–(5.4.4) has a uniqueBVt entropy

solution in the sense of Definition 5.4.1.

To construct approximate solutions to the initial value problem (5.4.1) we dis-

cretize ΠT as in Section 5.3.1, and use the marching formula

φn+1
j = φn

j − λ
(
hn

j+1/2 − hn
j−1/2

)
, hn

j+1/2 := kj+1φ
n
j V (φn

j+1/φmax). (5.4.7)

Here the flux hn
j+1/2 is defined by (5.3.18) (Scheme 3), as applied to the assumptions

of this section.

To simplify the analysis, we choose a uniform time step ∆tn = ∆t such that the

CFL condition

λkmaxVmax ≤ α, λkmax |V ′|max ≤ α, α = 1/2 (5.4.8)
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is satisfied. This is the version of (5.3.27) that applies to the present situation. We

extend the grid function φn
j so that it is defined on all of ΠT via

φ∆(x, t) =
N∑

n=0

J∑
j=0

φn
j χj(x)χn(t),

where χj(x) is the characteristic function for the spatial interval [xj − ∆x/2, xj +

∆x/2) and χn(t) is the characteristic function for the temporal interval [tn, tn + ∆t).

Lemma 5.4.1 Scheme 3 is monotone in the sense that if {φn
j } and {ψn

j } are two approximate

solutions lying in the interval [0, φmax] such that φn
j ≤ ψn

j for all j ∈ ZJ , then φn+1
j ≤ ψn+1

j

for all j ∈ ZJ . Furthermore, if the initial data φ0(x) lies in the interval [0, φmax] for all

x ∈ [0, L], then the computed approximation also satisfies φn
j ∈ [0, φmax] for all n ≥ 0 and

all j ∈ ZJ . In addition, we have the discrete time continuity estimate

J∑
j=0

∣∣φn+1
j − φn

j

∣∣ ≤ C, n = 0, 1, . . . ,N , (5.4.9)

where the constant C is independent of the mesh size ∆ and the time level n.

Proof. Substituting the formula for the numerical flux into the marching formula

(5.4.7) and then taking partial derivatives yields

∂φn+1
j

∂φn
j+1

= −
λkj+1φ

n
j

φmax

V ′
(
φn

j+1

φmax

)
,

∂φn+1
j

∂φn
j−1

= λkjV (φn
j /φmax),

∂φn+1
j

∂φn
j

= 1− λkj+1V

(
φn

j+1

φmax

)
+
λkjφ

n
j−1

φmax

V ′
(

φn
j

φmax

)
.

That the first two partial derivatives are nonnegative is obvious. The third one is

nonnegative thanks to the CFL condition. The first assertion is now an immediate

consequence of the non-negativity of these partial derivatives. For the second asser-

tion, note that if we apply the scheme to the constant data p0
j ≡ 0 and q0

j ≡ φmax,

the result is p1
j ≡ 0 and q1

j ≡ φmax. Since 0 = p0
j ≤ φ0

j ≤ q0
j ≤ φmax, we will have

0 = p1
j ≤ φ1

j ≤ q1
j ≤ φmax; this follows from the monotonicity. Continuing this way

by induction completes the proof of the second assertion. The third assertion (5.4.9)
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is basically a consequence of the Crandall-Tartar lemma [45], along with the bound-

edness of the variation of the initial data. The proof is very similar to that of [104,

Lemma 3.3], so we omit the details. 2

In order to establish compactness, we a need a spatial variation bound, which is

provided by the following lemma. Let V b
a (z) denote the total variation of the func-

tion x 7→ z(x) over the interval [a, b].

Lemma 5.4.2 For any interval [a, b] such that {ξ1, . . . , ξM}∩ [a, b] = ∅, and any t ∈ [0, T ]

we have a spatial variation bound of the form V b
a (φ∆(·, t)) ≤ C(a, b), where C(a, b) is

independent of ∆ and t for t ∈ [0, T ].

Proof. Due to our time continuity estimate (5.4.9), there is a constant K such that

∆x
J∑

j=0

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K. (5.4.10)

Since {ξ1, . . . , ξM} ∩ [a, b] = ∅, we can assume that there is an index m such that

ξm < a < b < ξm+1. Fix r > 0 satisfying 2r < min{dist (ξm, [a, b]) ,dist (ξm+1, [a, b])} ,

and without loss of generality, assume that r > ∆x for all mesh sizes ∆x of interest.

Let

A := A(∆) := {j|xj ∈ [a− r −∆x, a]}, B := B(∆) := {j|xj ∈ [b, b+ r + ∆x]},

and observe that |A|∆x ≥ r, |B|∆x ≥ r. It is then clear from (5.4.10) that

∆x
∑
j∈A

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K, ∆x
∑
j∈B

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ ≤ K. (5.4.11)

We can choose ja = ja(∆), jb = jb(∆) with ja ∈ A, jb + 1 ∈ B such that

N∑
n=0

∣∣φn+1
ja

− φn
ja

∣∣ = min
j∈A

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ , N∑
n=0

∣∣φn+1
jb+1 − φn

jb+1

∣∣ = min
j∈B

N∑
n=0

∣∣φn+1
j − φn

j

∣∣ .
It follows from (5.4.11) that

N∑
n=0

∣∣φn+1
ja

− φn
ja

∣∣ ≤ K

|A|∆x
≤ K

r
,

N∑
n=0

∣∣φn+1
jb+1 − φn

jb+1

∣∣ ≤ K

|B|∆x
≤ K

r
. (5.4.12)
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Due to the way that we selected ja and jb, for ja ≤ j ≤ jb we can write the scheme

as

φn+1
j = φn

j − kmλ∆−f̄(φn
j+1, φ

n
j ), f̄(φn

j+1, φ
n
j ) := φn

j V (φn
j+1/φmax). (5.4.13)

The formula (5.4.13) can also be written in incremental form

φn+1
j = φn

j + Cn
j+1/2∆+φ

n
j −Dn

j−1/2∆−φ
n
j , (5.4.14)

where

Cn
j+1/2 = λkm

f(φn
j )− f̄(φn

j+1, φ
n
j )

∆+φn
j

, Dn
j−1/2 = λkm

f(φn
j )− f̄(φn

j , φ
n
j−1)

∆−φn
j

.

Using the definitions of f and f̄ , and invoking the CFL condition (5.4.8), it is easy to

check that

Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 +Dn

j+1/2 ≤ 1. (5.4.15)

The incremental form (5.4.14) implies that the differences evolve according to

∆+φ
n+1
j = ∆+φ

n
j + Cn

j+3/2∆+φ
n
j+1 − Cn

j+1/2∆+φ
n
j

−Dn
j+1/2∆+φ

n
j +Dn

j−1/2∆−φ
n
j .

(5.4.16)

Note that when j = ja, we can write (5.4.16) as

∆+φ
n+1
ja

= ∆+φ
n
ja

+ Cn
ja+3/2∆+φ

n
ja+1 −Dn

ja+1/2∆+φ
n
ja
−
(
φn+1

ja
− φn

ja

)
. (5.4.17)

Similarly, when j = jb, (5.4.16) takes the form

∆+φ
n+1
jb

= ∆+φ
n
jb
− Cn

jb+1/2∆+φ
n
jb

+Dn
jb−1/2∆−φ

n
jb

+
(
φn+1

jb+1 − φn
jb+1

)
. (5.4.18)

Taking absolute values and summing over j in (5.4.16), we use the properties

(5.4.15) to proceed as in the proof of Harten’s lemma (Lemma 2.2 of [88]). To deal
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with the boundary contributions, we use (5.4.17) and (5.4.18). This calculation yields

jb∑
j=ja

∣∣∆+φ
n+1
j

∣∣ ≤ (1−Dn
ja+1/2

) ∣∣∆+φ
n
ja

∣∣+ Cn
ja+3/2

∣∣∆+φ
n
ja+1

∣∣+ ∣∣φn+1
ja

− φn
ja

∣∣
+

jb−1∑
j=ja+1

(
1− Cn

j+1/2 −Dn
j+1/2

) ∣∣∆+φ
n
j

∣∣+ jb−1∑
j=ja+1

Cn
j+3/2

∣∣∆+φ
n
j+1

∣∣
+

jb−1∑
j=ja+1

Dn
j−1/2

∣∣∆−φ
n
j

∣∣+ (1− Cjb+1/2

) ∣∣∆+φ
n
jb

∣∣
+Dn

jb−1/2

∣∣∆−φ
n
jb

∣∣+ ∣∣φn+1
ja

− φn
ja

∣∣
≤

jb∑
j=ja

∣∣∆+φ
n
j

∣∣+ ∣∣φn+1
ja

− φn
ja

∣∣+ ∣∣φn+1
jb+1 − φn

jb+1

∣∣ .
Proceeding by induction, and then using (5.4.12), we find that for 1 ≤ n ≤ N

jb∑
j=ja

∣∣∆+φ
n
j

∣∣ ≤ jb∑
j=ja

∣∣∆+φ
0
j

∣∣+ n∑
ν=1

(∣∣φν
ja
− φν−1

ja

∣∣+ ∣∣φν
jb+1 − φν−1

jb+1

∣∣)
≤

jb∑
j=ja

∣∣∆+φ
0
j

∣∣+ 2K

r
.

(5.4.19)

The proof is completed with the observation that [a, b] ⊆ [xja , xjb+1
], along with the

assumption that u0 has bounded variation. 2

Remark 5.4.1 Note that the spatial variation bound provided by Lemma 5.4.2 is

only local, and due to the term 2K/r appearing in (5.4.19), it blows up if the dis-

tance from one of the endpoints of the interval [a, b] to one of the jump points ξm
or ξm+1 approaches zero. This is consistent with the fact that there is currently no

known global spatial variation bound for conservation laws of this type (i.e., with a

discontinuous coefficient). This has made it necessary to use alternative approaches

to prove compactness, including the singular mapping approach, and the compen-

sated compactness approach. The local variation bound established above provides

one more analytical tool for such problems.
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We state the following lemma without proof; it follows from the monotonicity

property (Lemma 5.4.1), and is based on a discrete entropy inequality due to Cran-

dall and Majda [45] which was later adapted to the situation where there are discon-

tinuous coefficients, see [104] or [105].

Lemma 5.4.3 For any c ∈ R, the following cell entropy inequality is satisfied by approxi-

mate solutions φn
j generated by the scheme (5.4.7) (Scheme 3):∣∣φn+1

j − c
∣∣ ≤ ∣∣φn

j − c
∣∣− λ∆−H

n
j+1/2 + λ |kj+1 − kj| f(c),

where the numerical entropy flux Hn
j+1/2 is defined by

Hn
j+1/2 = kj+1f̄

(
φn

j+1 ∨ c, φn
j ∨ c

)
− kj+1f̄

(
φn

j+1 ∧ c, φn
j ∧ c

)
,

and f̄ is defined in (5.4.13).

Theorem 5.4.3 Let the function φ∆ be defined by (5.4.7) (Scheme 3). Assume that ∆ :=

(∆x,∆t) → 0 with the ratio λ fixed and satisfying the CFL condition (5.4.8). Then φ∆ → φ

boundedly a.e. and in L1(ΠT ), where φ is the uniqueBVt entropy solution to the initial value

problem (5.4.1) in the sense of Definition 5.4.1.

Proof. For our approximate solutions φ∆, Lemma 5.4.1 gives us an L∞ bound and

a time continuity bound. Since our spatial domain [0, L] is compact, a uniform L1

bound follows immediately from ourL∞ bound. We also have a bound on the spatial

variation in any interval [a, b] not containing any of the points ξ1, . . . , ξM .

By standard compactness results, for any set S of the form

S =
P⋃

p=1

[ap, bp], S ∩ {ξ1, . . . , ξM} = ∅, (5.4.20)

there is a subsequence (which we do not bother to relabel) such that φ∆ converges

in L1(S × [0, T ]). Taking a countable sequence of intervals Sν satisfying (5.4.20) and

∞⋃
ν=1

Sν = [0, L] \ {ξ1, . . . , ξM},
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and employing a standard diagonal process we can extract a subsequence (which

we again do not relabel) such that φ∆ converges in L1(ΠT ) and also a.e. in ΠT to

some φ ∈ L1(ΠT ) ∩ L∞(ΠT ). That the limit φ is also in BVt(ΠT ) is a consequence of

the time continuity estimate (5.4.9). We have verified that the limit φ satisfies (5.4.5)

of Definition 5.4.1.

That the limit φ satisfies the entropy inequality is a consequence of a Lax-

Wendroff type calculation, which we omit since it is similar to the proof Lemma 4.1

of [104], see also the proof of of Theorem 3.1 of [31]. A proof of (5.4.6), i.e., that the

initial values are assumed in the strong L1 sense, can be found in [105], specifically,

the proofs of Theorem 5.1 and Lemma B.1.

Finally, by the uniqueness portion of Theorem 5.4.2, the entire computed se-

quence φ∆ (not just a subsequence) converges to φ in L1(ΠT ) and boundedly

a.e. in ΠT . 2

5.5 Numerical examples

5.5.1 Example 5.1: Scalar equation without spatially varying pa-

rameters

To study the scalar scheme in the simplest possible setting, we apply Scheme 1

and the Lax-Friedrichs (LxF) flux

hLxF
j+1/2 :=

1

2
(φj+1vj+1 + φjvj)−

q

2λ
(φj+1 − φj) (5.5.1)

to the initial value problem

φt +
(
φ(1− φ)ν

)
x

= 0, φ0(x) =

0.85 if |x| > 1,

0.1 if |x| < 1.
(5.5.2)

For the parameter q appearing in (5.5.1), we take q = 1/2 because this ensures that

the resulting scheme satisfies the maximum principle (5.3.13) and TVD property
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Figure 5.1: Example 5.1 (scalar case, problem (5.5.2)): Scheme 1 (×) (a, c), Scheme 10

(×) (b, d) and LxF flux (·). Plot (a): first-order schemes, ν = 1. Plot (b): second-order

schemes, ν = 1. Plot (c): first-order schemes, ν = 5. Plot (d): second-order schemes,

ν = 5. The solid line is the reference solution.

(5.3.14). Plots (a) and (b) of Figure 5.1 show that for ν = 1, both schemes give sim-

ilar results. Plots (c) and (d) illustrate that for ν = 5, the schemes based on (5.3.8)

(both first-order and second-order versions, Schemes 1 and 10) give better resolu-

tion than the schemes based on the LxF flux. The solid line in all plots of Figure 5.1

is a reference solution, computed using Scheme 10, and the discretization parame-
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ters reduced by a factor of 8.

5.5.2 Example 5.2: Scalar equation with spatially varying coeffi-

cients

We next apply the variant of Scheme 1 that applies to conservation laws with

discontinuous flux, namely Scheme 3, and Scheme 10 to scalar conservation laws

with discontinuous flux of the form (5.2.2). The equation considered is

φt +
(
vmax(x)φ(1− φ/φmax(x))

)
x

= 0.

In Figures 5.2 (a) and (b) we use

φmax = 1, φ0(x) =

0.8 for x < 0,

0.1 for x > 0,
, vmax(x) =

1.0 for x < 0,

0.5 for x > 0.
(5.5.3)

In Figures 5.2 (c) and (d) we set

φmax(x) =

1.0 for x < 0,

0.5 for x > 0,
φ0(x) =

0.3 for x < 0,

0.7 for x > 0,
, vmax = 1. (5.5.4)

The solid line visible in all plots is a reference solution, computed using Scheme 10,

and the discretization parameters reduced by a factor of 16.

In each case, the new scheme (Scheme 3 or 10) gives better resolution than the

corresponding scheme based on the LxF flux. Note that there is some overshoot

visible in plots (a) and (b). This overshoot originates at the location of the jump

in vmax, and then propagates as a traveling wave (a bump). As the mesh size ap-

proaches zero, the magnitude and width of the bump approaches zero. Clearly, this

non-physical feature is more pronounced for the LxF scheme.

5.5.3 Example 5.3: Clarifier-thickener model

We now adapt our scheme to the clarifier-thickener model with constant cross-

sectional area studied in [31], specifically Example 2 of that paper. In this case the
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Figure 5.2: Example 5.2 (scalar case with discontinuous flux, see (5.5.2)): Scheme 3

(×) (a, c), Scheme 10 (×) (b, d) and LxF flux (·). Plot (a): coefficients (5.5.3), first-

order schemes. Plot (b): coefficients (5.5.3), second-order schemes. Plot (c): coeffi-

cients (5.5.4), first-order schemes. Plot (d): coefficients (5.5.4), second-order schemes.

The solid line is the reference solution.

conservation law is of the form

φt +
(
φ[a(x)S(φ) + c(x)] + b(x)

)
x

= 0, x ∈ R, t > 0, (5.5.5)
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Figure 5.3: Example 5.3 (clarifier-thickener model (5.5.5)): (first-order) Scheme 2

(dashed line) and second-order Scheme 10 (solid line). Plot (a) shows t = 1, plot

(b) shows t = 3.

where S(φ) = φ∞(1− φ)2 and

a(x) =

1 for x ∈ (−1, 1),

0 for x /∈ (−1, 1),
b(x) =

−qLφF for x < 0,

−qRφF for x > 0,
c(x) =

qL for x < 0,

qR for x > 0.

Except for the term b(x) which we discretize separately, this problem fits into the

framework of (5.3.1) with N = 1, and the velocity v(φ, x) = a(x)S(φ) + c(x), which

may assume either sign. Consequently, and following (5.3.9), the appropriate first-

order scheme is Scheme 2, whose numerical flux is defined by

hj+1/2 = φj max{0, vj+1}+ φj+1 min{0, vj+1}+ bj+1, vj := ajS(φj) + cj. (5.5.6)

Note that we use bj+1, as opposed to bj (or some average of the two values) for the

first-order version of the scheme. Indeed, this biased discretization of the parameter

b can be motivated by the requirement that if S ≡ 0, then φ ≡ φF should be a

stationary solution of (5.5.5).
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For the second-order version of the scheme, we discretize γ(x) := (a(x), c(x)) as

in (5.3.40), and and continue to use bj+1 in (5.5.6); this discretization of b(x) preserves

the steady solution φ ≡ φF if S ≡ 0. We use the Van Leer limiter (5.3.42), so the

scheme in question is Scheme 10.

For our experiments, we used the same parameters as for Example 2 of [31],

namely qL = −1, qR = 0.6, φF = 0.8 and φ∞ = 27/4. For discretization parameters,

we used ∆x = 5 × 10−3, ∆t = 3.125 × 10−4, implying λ = 1/16; this value of λ was

chosen to agree with Example 2 of [31]. We started with initial data φ0 ≡ 0. Plot (a) of

Figure 5.3 shows the solution at t = 1, and plot (b) shows the solution at t = 3. These

approximations are in good agreement with the solutions obtained in Example 2 of

[31]. Scheme 2 provides a somewhat less accurate solution than the one provided by

the Engquist-Osher scheme proposed in [31]. However, Scheme 2 is much easier to

code, and at least with our implementation, runs significantly faster.

5.5.4 Example 5.4: Multi-species traffic model

Zhang et al. [176] present numerical simulations of a traffic flow model with

N = 9 species (classes) of vehicles with the maximum velocities vi
max = (52.5 +

i · 7.5) km/h, i = 1, . . . , 9. We consider here Case 2 simulated in [176], where the

function V (φ) = exp(−(φ/φ∗)
2/2) with the parameter φ∗ = 50 cars/km is used. This

case, which forms our Example 5.4, consists of the evolution of an isolated initial

traffic “platoon” given by Φ0(x) = p(x)0.04φ0(1, 2, 3, 4, 5, 4, 3, 2, 1)T, where

p(x) :=



10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise

is the platoon “shape function”, where x denotes distance measured in kilometers

and φ0 = 120 cars/km. We here use this example to compare the performance of

Scheme 4, which is the first-order version of the scheme that applies to systems with
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(a) (b)

(c) (d)

Figure 5.4: Example 5.4 (traffic model, N = 9): simulated total car density. Plots (a,

c): first-order schemes (LxF and Scheme 4). Plots (b, d): second-order schemes (LxF

MM/RK and Scheme 9). Plots (a, b) show t = 0.01 h, and plots (c, d) show t = 0.03 h.

non-negative velocities only, with the standard first-order LxF scheme; and that

of Scheme 9, which is the second-order version of Scheme 4 generated by spatial

MUSCL extrapolation in combination with a second-order RK type discretization,

with that of a second-order version of the LxF scheme generated by the analogous

MUSCL/RK “upgrades”. The reference solution was calculated using Scheme 9

with the discretization parameters ∆x = 1/480 km. The reference solution and all

numerical solutions of this example have been calculated with λ = 1/240 h/km.

In Examples 5.4 and 5.6, we record an approximate L1 error defined with respect
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(a) (b)

(c) (d)

Figure 5.5: Example 5.4 (traffic model, N = 9): approximate L1 errors (a, c) e1 and (b,

d) e2, measured at (a, b) t = 0.01 h and (c, d) t = 0.03 h.

to the reference solution, to evaluate the performance of some of the new schemes.

We introduce two types of L1 error, denoted e1 and e2, which are defined by

e1 := ∆̃x

MR∑
i=ML

m∑
j=1

N∑
k=1

∣∣φ̃n
k,m(i−1)+j − φn

k,i

∣∣, e2 := ∆̃x

MR∑
i=ML

m∑
j=1

∣∣∣∣∣
N∑

k=1

(
φ̃n

k,m(i−1)+j − φn
k,i

)∣∣∣∣∣ ,
where φ̃n

k,l̃
and φn

k,l are the reference solution at x = xl̃ and the approximate solution

at x = xl, respectively, both for species k at t = tn;m is the value of ∆x of the approx-

imate solution divided by that of the reference solution; ML and MR are the indices

of the positions between which we calculate the errors of the numerical approxima-
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Figure 5.6: Examples 5.5.1 (a, b) and 5.2 (c, d) (traffic model with spatially vary-

ing φmax,N = 3): plots (a, c) show φ1/φmax (solid line), φ2/φmax (dashed line), φ3/φmax

(dash-dotted line). Plots (b, d) show (φ1 + φ2 + φ3)/φmax. Solutions are obtained by

Scheme 9.

tion; and ∆̃x is the spatial discretization parameter of the reference solution.

For Example 5.4, Figure 5.4 shows the simulated total car density at two times

produced by the LxF scheme, Scheme 4, the second-order version of the LxF scheme

using the minmod limiter, and Scheme 9, while Figure 5.5 displays the approximate

L1 errors for this example, measured over the interval [−1 km, 6 km]. Both Figures 5.4
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and 5.5 indicate the superiority of Scheme 4 over the LxF scheme, and of Scheme 9

over the second-order MM/RK upgrade of the LxF scheme, respectively.

5.5.5 Example 5.5: Multiclass traffic model with spatially vary-

ing φmax

As an example where the flux has a spatially varying parameter, we also present

two simulations (Examples 5.5.1 and 5.5.2) that can be compared with numerical re-

sults by Zhang et al. [178]. The model is the multi-class traffic model of Section 5.2.1,

whose flux is given by (5.2.4). Both examples are Riemann problems, and N = 3.

The (normalized [178]) maximum velocities are constant: v1
max = 0.50, v2

max = 0.75

and v3
max = 1.00. We use the second-order scheme of Section 5.3.5 with the minmod

limiter (5.3.41) (Scheme 9). The mesh size for both problems is ∆x = 6.25 × 10−4,

∆t = 1.25 × 10−4. We march the solution forward in time for 8000 steps, arriving at

t = 1. The initial data Φ0 and maximum density φmax are constant except for a jump

at x0 ∈ (0, 1),

φmax(x) =

3 for x < x0,

1 for x > x0,
, Φ0(x) =

Φ0
L for x < x0,

Φ0
R for x > x0.

For Examples 5.5.1 and 5.5.2, we choose x0 = 0.5, Φ0
L = (0.6, 0.3, 0.9)T and Φ0

R =

(0.1, 0.0, 0.5)T, and x0 = 0.3, Φ0
L = (0.6, 0.45, 0.15)T and Φ0

R = (0.05, 0.15, 0.2)T, re-

spectively. As shown in Figure 5.6, for both problems, the various waves are well

resolved, and there is good agreement with the results obtained by Zhang et al. in

[178] (see Figures 4 and 7 of that paper).

5.5.6 Example 5.6: Settling of a bidisperse suspension of equal-

density spheres

In this example, the parameters are N = 2, %1 = %2 = %s = 2790 kg/m3, d1 =

4.96 × 10−4 m, d2 = 1.25 × 10−4 m, %f = 1208 kg/m3 and µf = 0.02416 Pa s. Here, we
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(a) (b)

(c) (d)

Figure 5.7: Example 5.6 (settling of a suspension of equal-density spheres, N = 2):

simulated total solids concentration. Plots (a, c): first-order schemes (LxF, Schemes 6

and 8). Plots (b, d): second-order schemes (LxF VL/RK, Scheme 8 VL/RK and

Scheme 9). Plots (a, b) show solutions at t = 60 s, and plots (c, d) show solutions

at t = 240 s.

have δ1 = 1 and δ2 = d2
2/d

2
1 = 0.06351213. For this mixture, we select the phase space

D0.68 [22] and the function V (φ) given by (5.2.6) with the exponent n = 4.7; all these

parameters correspond to experimental data by Schneider et al. [151]. As in [151],

we consider an initially homogeneous suspension with Φ0 = (φ0
1, φ

0
2)

T = (0.2, 0.05)

in a vessel of height L = 0.3 m.

The reference solution was calculated using the Scheme 10 with the discretization
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(a) (b)

(c) (d)

Figure 5.8: Example 5.6 (settling of a suspension of equal-density spheres, N = 2):

approximate L1 errors (a, c) e1 and (b, d) e2, measured at (a, b) t = 60 s and (c, d)

t = 240 s.

parameter ∆x = 1/8000 m. For the reference solution and all other computations of

this example, we use λ = 56.95 s/m. For Example 5.6, Figure 5.7 shows the numerical

solution of the total solids concentration for t = 60 s and t = 240 s, produced by the

first-order LxF scheme, Schemes 6 and 8, the second-order version of the LxF scheme

involving the Van Leer limiter function, Scheme 8 with the Van Leer limiter function,

and Scheme 10, while Figure 5.8 displays the approximateL1 errors for this example,

measured over the interval [0 m, 0.3 m]. (Again, all second-order schemes utilize RK

time stepping.)
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i di [10−5 m] δi φ0
i

1 8.769 1.0000 0.000435

2 8.345 0.9056 0.003747

3 7.921 0.8159 0.014420

4 7.497 0.7309 0.032603

5 7.073 0.6506 0.047912

6 6.649 0.5749 0.047762

7 6.225 0.5039 0.032663

8 5.801 0.4376 0.015104

9 5.377 0.3760 0.004511

10 4.953 0.3190 0.000783

11 4.529 0.2668 0.000060

Table 5.1: Example 5.7: Parameters for the settling of a suspension with N = 11

particle sizes.

It is clear from Figure 5.7 that Schemes 6 and 8 and their second order versions

are less dissipative than their counterparts based on the LxF flux. In plots (c) and (d),

there is a spurious “kink” and a small overshoot in the solution created by Schemes 6

and 10. These artifacts are diminished by using instead the more viscous Scheme 8,

and its second order version. In the reference solution, which is computed using

a very fine mesh, these features are not visible at all. Figure 5.8 corroborates what

we see in the plots, specifically, smaller errors and faster rates of convergence for

Schemes 6 and 8 and their second order versions than the LxF based schemes. It is

interesting that Scheme 6, which is formally first order accurate, has smaller errors

at t = 240 s than the formally second order accurate version of the LxF scheme.
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Figure 5.9: Example 5.7 (settling of a suspension with particles of N = 11 different

sizes): solids concentrations at t = 247.77 s simulated by Scheme 10.

5.5.7 Example 5.7: Settling of a suspension with particles of 11 dif-

ferent sizes

To illustrate that the new method handles systems with a large number of parti-

cle species, we consider a suspension of equal-density particles of N = 11 different

sizes. The parameters and initial concentrations of these size classes are displayed in

Table 5.1. This size distribution was determined by Tory et al. [158] as a discrete ap-

proximation for a suspension of closely-sized spherical particles with continuously,

roughly normally distributed particle sizes [152]. Following [152], we consider a

settling column of height L = 0.935 m. The hindered settling factor found suitable
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Figure 5.10: Example 5.7 (settling of a suspension with particles of N = 11 different

sizes): solids concentrations at t = 412.94 s simulated by Scheme 10.

is (5.2.6) with n = 4.65 and φmax = 0.641. According to [152], a single sphere with

diameter 6.694 × 10−5 m has a Stokes velocity of ṽ∞ = 0.00392 m/s, so we here use

(5.2.9) with v∞ = (8.769/6.694)2ṽ∞ = 0.00673 m/s. We calculate the numerical solu-

tion at the times t = t1 = 247.77 s, t = t2 = 412.94 s and t3 = 578.15 s, using Scheme

10 with the discretization parameters ∆x = 9.13× 10−4 m = L/1024 and ∆t = λ∆x,

where λ = 74.29 s/m. The values of ∆x and t1, t2 and t3 have been chosen such that

results can be compared with the numerical solution of the same example by the

multiresolution WENO scheme done by Bürger and Kozakevicius [36].

Figures 5.9, 5.10 and 5.11 show the numerical solutions of each species concentra-

tion and the total solids concentration for t = 247.77 s, t = 412.94 s, and t = 578.15 s,
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Figure 5.11: Example 5.7 (settling of a suspension with particles of N = 11 different

sizes): solids concentrations at t = 578.15 s simulated by Scheme 10.

respectively, over intervals where the solutions are different from zero. By compar-

ing these figures with Figures 18, 19, and 20 of [36], it is clear that Scheme 10 captures

the same solution as the multiresolution scheme of that paper.

In all figures we notice that larger species settle first and fill the lower layers of

the vessel. In Figure 5.10 we can see spurious tips in the solutions of the species 4 to

9, which do not appear in Figures 5.9 and 5.11. There are also peaks in the simulated

total concentration in Figures 5.10 and 5.11. It is clear that this does not have physical

sense and therefore is a numerical artefact.
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i Di [10−6 m] Vi[10−18 m3] θi φ0
i /φ

0 φ0
i

1 5 65.4 0.019 6.654×10−5 3.327×10−6

2 10 523.6 0.050 1.401×10−3 7.004×10−5

3 15 1767.1 0.047 4.444×10−3 2.222×10−4

4 20 4188.8 0.081 1.815×10−2 9.077×10−4

5 25 8181.2 0.148 6.479×10−2 3.239×10−3

6 30 14137.2 0.207 1.566×10−1 7.829×10−3

7 35 22449.3 0.202 2.426×10−1 1.213×10−2

8 40 33510.3 0.169 3.030×10−1 1.515×10−2

9 45 47712.9 0.064 1.634×10−1 8.169×10−3

10 50 65449.8 0.013 4.553×10−2 2.276×10−3

Table 5.2: Example 5.8: Droplet sizes and initial volume fractions for a dispersion of

diesel oil in water according to [50].

5.5.8 Example 5.8: Oil-in-water dispersion model: Creaming of a

dispersion with 10 different droplet sizes

We consider the settling of a dispersion of droplets of diesel oil in water. We

utilize the droplet size distribution withN = 10 given by Figure 2 of Das and Biswas

[50], a histogram of relative frequencies, which is converted into the initial vector Φ0

in Table 5.2. We use here the viscosity function µd(Φ) = µd(φ) = µf(1 − φ/φmax)
−2,

with φmax = 0.9, and consider the creaming of the mixture characterized by Table 5.2

in three different vessels of height L = 1 m and with the bottom located in x =

0: Vessel 1 (Example 5.8.1), a settling column of unit cross-sectional area, Vessel 2

(Example 5.8.2), which is defined by the cross-sectional area function

S2(x) =

0.0025 m2 for 0 m ≤ x ≤ 0.5 m,

0.01 m2 for 0.5 m < x ≤ 1.0 m,



182 CHAPTER 5. NUMERICAL SCHEMES FOR KINEMATIC FLOWS

and Vessel 3 (Example 5.8.3), which is just Vessel 2 turned “upside-down”, and is

characterized by the cross-sectional area function S3(x) := S2(1.0 m − x). Thus, in

Examples 5.8.2 and 5.8.3, we have a system of conservation laws whose flux depends

discontinuously on x. Namely, we have the initial value problem

S(x)∂tφi + ∂xfi(S(x),Φ) = 0, (x, t) ∈ (0, L)× (0, T ) =: ΠT , i = 1, . . . , N,

fi(S(x),Φ) = S(x)φivi(Φ), Φ(x, 0) = Φ0(x), x ∈ (0, L),

which is supplemented by the zero-flux boundary conditions fi(S(0),Φ) =

fi(S(L),Φ) = 0 for i = 1, . . . , N , where the cross-sectional area function S equals

S2 and S3 for Vessels 2 and 3, respectively.

For Examples 5.8.2 and 5.8.3, in the numerical scheme we multiply λ by 1/Sj

with Sj = S(x+
j ), and in the CFL conditions (5.3.31), multiply the Courant number

α by Smin/Smax, where Smin and Smax denote the minimum and the maximum cross-

sectional areas of the vessel, respectively.

For Example 5.8.1, we present the solution at three different times plus a plot of

the cumulate density φ, while for Examples 5.8.2 and 5.8.3 we consider plots of φ

only. In Example 5.8.1, we compare the performances of Schemes 4 and 9, while in

Examples 5.8.2 and 5.8.3, we use Scheme 9 only. We set ∆x = 1/512 m in all cases,

λ = 738.9 s/m for Example 5.8.1, and λ = 184.725 s/m for Examples 5.8.2 and 5.8.3.

Figure 5.12 shows the simulated total oil concentration φ of Example 5.8.1 for

t = 1000 s, t = 10000 s, and t = 150000 s, with a zoom into a zone where the solu-

tion exhibits strong variation. In Figures 5.13, 5.14 and 5.15 we show the numerical

solutions of the concentration of each species and the total oil concentration of the

Example 5.8.1 for t = 1000 s, t = 10000 s, and t = 150000 s, respectively, over intervals

where the solutions are different from zero. Clearly, the larger species settle first and

fill the upper layers of the vessel.

Figures 5.16 (a), (c) and (e) show the numerical solutions of the total oil con-

centration of Example 5.8.2 (creaming of a oil-in-water dispersion with 10 different

droplet sizes in Vessel 2) at three different times, with a zoom in a zone with many

changes in the solution, while Figures 5.16 (b), (d) and (f) display the corresponding
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Example 5.8.1 (creaming of a oil-in-water dispersion with N = 10

droplet sizes in Vessel 1): simulated total oil concentration with Schemes 4 and 9:

(a, b) at t = 1000 s, (c, d) at t = 10000 s, and (e, f) at t = 150000 s.
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Figure 5.13: Example 5.8.1 (creaming of an oil-in-water dispersion with N = 10

droplet sizes in Vessel 1): concentrations at t = 1000 s simulated by Scheme 9.

results of Example 5.8.3.

We notice the effect of the geometry of Vessels 2 and 3 on the concentration pro-

file. In the case of Vessel 2, for t = 1000 s, the expansion of the area produces an

instantaneous decrease of the total concentration at x = 0.5 m. In the case of Vessel

3, for t = 1000 s, due to the contraction of the area, the total concentration increases

instantaneously just below x = 0.5 m, decreases strongly in x = 0.5 m, and then

decreases smoothly. Moreover, near steady state, for example at t = 150000 s, the

thickness of the sediment in Vessel 2 is smaller than that in Vessel 3. We see that in

general that there is some oscillation in the solution using Scheme 9 at the location

of a large jump in φ; this does not seem to be present with the first order version of
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Figure 5.14: Example 5.8.1 (creaming of a oil-in-water dispersion with N = 10

droplet sizes in Vessel 1): concentrations at t = 10000 s simulated by Scheme 9.

the scheme (Scheme 4). This is left as a problem for future investigation.

5.6 Conclusions

In this paper, we have presented a family of working numerical schemes for

kinematic flows with discontinuous flux. The basic design principle of the schemes,

and the analysis of some of them, is based on the explicit “concentration times ve-

locity” structure of the flux of each species. Our Example 5.1 shows that the simple

Scheme 1 exhibits noticeably smaller numerical viscosity than the LxF scheme, but

has the same monotonicity property as the LxF scheme. This property is crucial for
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Figure 5.15: Example 5.8.1 (creaming of a oil-in-water dispersion with N = 10

droplet sizes in Vessel 1): concentrations at t = 150000 s simulated by Scheme 9.

the convergence analysis for Scheme 3 conducted in Section 5.4. The marching for-

mula (5.3.2) combined with the numerical flux of Scheme 1, (5.3.8), also forms the

core of a discrete traffic model proposed by Hilliges and Weidlich [93] (see also [91]).

Interestingly, they do not view their discrete model as a method to approximate so-

lutions of a first-order conservation law, and therefore do not discuss, for example,

whether the scheme satisfies a discrete entropy condition; rather, they focus on the

second-order, diffusive modified equation associated with a semi-discrete version of

their model, and show by a linear stability analysis that the model is always stable.

Consequently, our analysis complements that of [93].

The kinematic models studied herein are algebraically very similar, but belong
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Examples 5.8.2 and 5.8.3 (creaming of a oil-in-water dispersion with

N = 10 droplet sizes in Vessels 2 (a, c, e) and 3 (b, d, f)): total oil concentration

simulated by Scheme 9 at (a, b) t = 1000 s, (c, d) t = 10000 s and (e, f) t = 150000 s.
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to two groups, one formed by the traffic and the oil-in-water dispersion model, for

which all velocities are nonnegative, and another including the polydisperse sed-

imentation model, which for N ≥ 2 includes velocities of either sign. It has been

shown that although the basic scheme, Scheme 1, can be adapted to accomodate

multi-species models of both groups (Schemes 4–8), only in the case of non-negative

velocities it is possible to establish an invariant region principle (Theorems 5.3.1

and 5.3.2). This principle represents a very desirable property in multiphase and

traffic flow modeling. It is not clear whether this principle can also be possibly estab-

lished for the polydisperse sedimentation model. Furthermore, our Example 5.8.1,

for instance (see Figure 5.12), illustrates that for N ≥ 2 our second-order schemes

do not seem to obey an invariance principle. The oscillatory numerical behaviour

visible in Figures 5.12 (d) and (f) (and others) is, however, more distracting than it

questions the principal soundness of the second-order upgrade, since our Figures 5.5

and 5.8 illustrate that all second-order schemes converge with consistently smaller

errors in the L1 sense, and at slightly better rates than their first-order versions, even

in the systems case that is not backed up by a convergence analysis.

Let us now comment on a few aspects of our treatment that are more related to

the discontinuity of the numerical flux. Of course, the formulation of Scheme 3, for

example, and the first part of the analysis of Section 5.4 are strongly based on the

authors’ previous works on conservation laws with discontinuous flux, for example

[31, 104, 105]. However, the local variation bound established in Lemma 5.4.2 is gen-

uinely new. To put this result in the proper perspective, we mention that the local

variation bound is one more analytical tool that can be used for establishing com-

pactness of conservation laws with discontinuous coefficients. The main technical

challenge in establishing convergence of an approximating sequence for such prob-

lems is somehow controlling the spatial variation. Up until now this has been done

either via the singular mapping approach [3, 31, 113], or by compensated compact-

ness (using weak L2 bounds on the spatial derivatives) [106]. The singular mapping

approach quickly becomes unwieldy in the absence of convexity. The compensated

compactness approach is probably the most powerful in that it is applicable even for
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coefficients that are discontinuous both space and time, but has the drawback that

the flux is required to be genuinely nonlinear. The local variation bound developed

here only applies to spatial discontinuities, but does not become any more compli-

cated if the flux is nonconvex, and does not require any assumptions about genuine

nonlinearity.

Finally, the reader may have noted that our definition (5.3.25) and the invariance

principle for Scheme 5, Theorem 5.3.1, explicitly include the case of a spatially (pos-

sibly discontinuously) varying maximum density φmax = φmax(x), and that this case

also appears in Examples 5.2 and 5.5 of Section 5.5, but that the convergence anal-

ysis of Section 5.4 is limited to the case of constant φmax. As we state in Section 5.4,

this simplification is made so that problem (5.4.1) reduces to the well-studied case

of an initial value problem for a conservation law with a mutiplicative discontinu-

ous coefficient (in this case, k(x)). Meanwhile, in another paper [26] we have made

further advances in analyzing the problem (5.4.1), where we consider k(x) constant,

but allow φmax(x) to vary discontinuously, and prove uniqueness of properly de-

fined entropy solutions and convergence of a slightly modified version of Scheme 3,

as well as of variants of the Godunov and Engquist-Osher schemes. The solution

concept adopted in [26] is a novel one, which is based on the concept of so-called

adapted entropies [6].
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Chapter 6

A Difference Scheme and Entropy

Solutions for an Inhomogeneous

Kinematic Traffic Flow Model

The well-known Lighthill-Whitham-Richards kinematic traffic model is ex-

tended to a unidirectional road on which the maximum density a(x) represents

road inhomogeneities, such as variable numbers of lanes, and is allowed to vary

discontinuously. The evolution of the car density φ = φ(x, t) can then be de-

scribed by the initial value problem

φt +
(
φv(φ/a(x)

)
x

= 0, (x, t) ∈ R× (0, T ); φ(x, 0) = φ0(x), x ∈ R. (∗)

Here z 7→ v(z) is the velocity function, where it is assumed that v(z) ≥ 0, and

z 7→ v(z) is nonincreasing. Since a(x) is allowed to have a jump discontinuity,

(∗) is a scalar conservation law with a spatially discontinuous flux. Conserva-

tion laws having flux discontinuities have received a good deal of attention in

recent years. The authors of the present paper recently proposed a simple finite

difference scheme for conservation laws like (∗) [25]. In this contribution, the

design and analysis of that scheme is improved, while its simplicity is main-

tained. In particular, small spurious overshoots that can occur with the original

version are reduced. A novel version of the Engquist-Osher scheme that applies

191
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to the problem (∗) is also proposed. Furthermore, a solution concept involving

Kružkov-type entropy inequalities is proposed, and it is proved that these en-

tropy inequalities imply uniqueness. This concept includes an adapted entropy

similar to the type recently proposed by Audusse and Perthame [6]. It is proved

that both difference schemes and the improved Godunov scheme used by Da-

ganzo [49] converge to the unique entropy solution. To establish compactness of

the approximating sequence, a new local bound on the spatial variation is uti-

lized [25]. The solution concept necessarily agrees with the one that follows from

regarding the present problem as a resonant hyperbolic system. This follows

from the uniqueness theorem presented herein, along with the convergence the-

orem as it applies to their Godunov scheme. Results of numerical experiments

and an L1 error study are presented both for the first order schemes, and for the

MUSCL/Runge-Kutta versions that are formally second order accurate.

6.1 Introduction

6.1.1 Scope

The well-known LWR kinematic model (Lighthill & Whitham [125]; Richards

[146]) for traffic flow on a single-lane, uniform highway starts from the principle of

conservation of cars, φt + (φv)x = 0, where x ∈ R is position, t is time, φ = φ(x, t)

is the local density of cars at position x at time t, and v = v(x, t) is the velocity of

the car located at (x, t). It is then assumed that each driver immediately adjusts his

velocity to the local density, which means that v(x, t) = v(φ(x, t)). This leads to the

scalar conservation law

φt +
(
φv(φ)

)
x

= 0, x ∈ R, t > 0. (6.1.1)

We may assume that v(0) = vmax, where vmax is a maximum freeway velocity that

without loss of generality we assume to equal one, and v(a) = 0 if a denotes the

maximum car density, corresponding to a bumper-to-bumper situation. The sim-

plest relationship satisfying these assumptions is v(φ) = 1− φ/a. For the remainder
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of the paper, we assume that v depends on φ/a, so that (6.1.1) turns into

φt +
(
φv(φ/a)

)
x

= 0, x ∈ R, t > 0. (6.1.2)

In recent years, numerous extensions of the LWR model were proposed and ana-

lyzed, including traffic flow with heterogeneous road surface conditions [27, 101,

132], multi-species traffic models [10, 36, 168, 176], and traffic flow on networks

[49, 74, 75, 93, 95]. These extensions lead to conservation laws with a flux that de-

pends (possibly discontinuously) on x, strongly coupled systems of conservation

laws, and weakly coupled systems of conservation laws, respectively; combinations

of these ingredients have also been considered [25, 92, 178]. There are, of course, nu-

merous further extensions to second-order traffic models with diffusive terms and

velocity balance equations; however, we herein limit the discussion to first-order

kinematic models.

In this paper, we advance a well-posedness and numerical analysis for the initial

value problem

φt +
(
φv(φ/a(x))

)
x

= 0, x ∈ R, 0 < t ≤ T ; φ(x, 0) = φ0(x), x ∈ R, (6.1.3)

which is the variant of (6.1.2) that arises if the maximum density a is allowed to de-

pend on the position x. Here, a(x) is allowed to have discontinuities, which models

changes in the number of lanes. In particular, we present an entropy solution con-

cept, a new uniqueness result including jump conditions, a convergence result for

the adaptation of three known schemes for (6.1.1) to the conservation law (6.1.3),

and numerical experiments. For each scheme, this adaptation consists the definition

of a numerical interface flux that handles the flux discontinuities. For two of the

schemes, these interface versions are new. A further novelty of our approach is the

application of so-called connections between fluxes adjacent to a flux discontinuity,

see e.g. [2], in combination with the recent, related concept of adapted entropies for

discontinuous flux problems due to Audusse and Perthame [6].

To put this paper in the proper mathematical context, let us recall that solutions

of the conservation law

ut + f(u)x = 0, x ∈ R, t > 0; u(x, 0) = u0(x), x ∈ R (6.1.4)
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are in general discontinuous if f(u) is nonlinear, even if u0 is smooth. (This already

occurs with f(u) = uv(u) in (6.1.1) if the function v is linear.) This requires that a

solution of (6.1.4) be defined as an entropy solution, that is, as a weak solution that

satisfies an entropy condition to ensure uniqueness. Within the common framework

due to Kružkov [114], a function u is defined to be to an entropy solution of (6.1.4) if

∀c ∈ R : ∂t|u− c|+ ∂x

(
sgn(u− c)(f(u)− f(c))

)
≤ 0 (6.1.5)

in the sense of distributions. The entropy inequality (6.1.5) also decides which

jumps of a solution of (6.1.4) are admissible. Its justification is usually based on

the vanishing viscosity limit of the parabolic regularization of (6.1.4). The viscos-

ity approach considers (6.1.4) in an abstract sense and is based on interpreting this

equation as a model of continuum mechanics. The Kružkov entropy solution con-

cept is adopted in most analyses of traffic flow problems based on (6.1.1), see e.g.

[27, 42, 74, 121, 155], and also forms the basis of this work. However, in traffic mod-

eling the rationale for an admissible jump is occasionally based on a slightly differ-

ent criterion, namely the driver’s ride impulse of Ansorge [5]. As pointed out by

Gasser [76], in the case of a non-convex function f(u), this principle admits certain

discontinuous solutions that violate (6.1.5).

We will sometimes write the flux of (6.1.3) as f(a(x), φ) = φv(φ/a(x)) in order to

simplify notation. Thus, the problem under study is a special case of conservation

laws with discontinuous flux of the type

ut + f
(
a(x), u

)
x

= 0, (6.1.6)

where a(x) is a vector of discontinuous parameters. We briefly recall some known

results for (6.1.6). The basic difficulty is that its well-posedness does not emerge

as a straightforward limit case of the standard theory for conservation laws with a

flux that depends smoothly on x. In fact, several extensions of the entropy solution

concept of Kružkov [114] to conservation laws with a discontinuous flux have been

proposed [3, 6, 7, 80, 82, 103, 105, 106, 113, 130, 150, 159, 160]. Each of these concepts

is supported by a convergence analysis of a numerical scheme; the differences be-

tween them appear in the respective admissibility conditions for stationary jumps
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of the solution across the discontinuities of a. There has been particular interest in

(6.1.6) in the context of so-called clarifier-thickener models, see [31, 34, 59] and the

references cited in these papers. We may also write (6.1.3) as a non-strictly hyper-

bolic system

at = 0, ut + f(a, u)x = 0, x ∈ R, t > 0;

(a, u)(0, x) =
(
a0(x), u0(x)

)
, x ∈ R,

(6.1.7)

where we define a0(x) := a(x). This triangular hyperbolic system has been the start-

ing point of several analyses of the initial-value problem for (6.1.6) [28, 54, 61, 80,

82, 112, 113, 157]. Godunov-type numerical schemes for (6.1.7) were analyzed by

Lin et al. [126, 127]. Of particular importance for our study is the paper by Jin &

Zhang [101], who studied (6.1.3) in the traffic context as a resonant hyperbolic sys-

tem (6.1.7), resulting in an enumeration of the types of waves that are generated by

Riemann problems. Based on their solution of the Riemann problem, Jin & Zhang

[101] constructed a Godunov scheme for this problem.

Several authors including Daganzo [49] and Lebacque [123] proposed discrete

models for the traffic problem that are ultimately equivalent to the Godunov scheme

for a scalar conservation law. It is well known that the Godunov scheme converges

to the classical entropy solution as the discretization parameters converge to zero.

For our inhomogeneous problem (6.1.3), both Daganzo [49] and Lebacque [123] used

the behavioral principles from their discrete models and extended them to the in-

homogeneous case. On the other hand, the approach by Jin & Zhang [101] leads

to the same solution concept. Jin & Zhang [101] showed that, at least for Riemann

problems, all of those solution concepts are the same. In addition, the solution to the

Riemann problem given by Jin & Zhang [101] is essentially the one given by Gimse

[80], Gimse & Risebro [82] and Klingenberg & Risebro [113].

6.1.2 Outline of the paper

The remainder of this paper is organized as follows. In Section 6.2 we precisely

state the problem under consideration and introduce the entropy solution concept.
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In particular, we specify in Section 6.2.1 the discontinuous coefficient a(x), which

is assumed to be piecewise constant with just one discontinuity located at x = 0.

It will become clear that our numerical scheme and analysis are readily extended

to the case where a(x) is piecewise constant with finitely many jumps. Section 6.2.2

recalls the concept of connections between two fluxes adjacent to a flux discontinu-

ity, that is in our case, between the two fluxes adjacent to the jump of a(x). Roughly

speaking, a connection is a pair (A,B) of u-arguments for which equality of fluxes

to either side of a jump in a(x) holds, and which is subject to a characteristic condi-

tion that ensures that characteristics lead backward toward the x-axis on at least one

side of the jump. Obviously, valid connections (A,B) form a one-parameter fam-

ily, and each choice of (A,B) leads to a different solution concept. For the traffic

model, however, we limit ourselves to such connections where either A or B co-

incides with the maximum (with respect to φ) of the adjacent fluxes. If H denotes

the Heaviside function, then each connection (A,B) is associated with the function

ĉAB(x) := H(x)B+(1−H(x))A, which assumes the role of c in (6.1.5). This yields an

integral inequality with so-called adapted entropies that eventually defines which

jumps of the solution across x = 0 are admissible. The adapted entropy concept

is the core of our definition of entropy solutions of (6.1.3), which we introduce in

Section 6.2.3.

In Section 6.3, we prove uniqueness of entropy solutions. A result by Vasseur

[165] ensures the existence of strong traces of the solution from either sides at x =

0. We then establish the Rankine-Hugoniot condition and, exploiting our choice of

the connection, adapted entropy jump conditions across x = 0. Then, in light of

arguments similar to those of Bürger et al. [23] (Chapter 3 of this thesis), [31], we

prove L1 stability and uniqueness of entropy solutions. When compared with these

two papers, this analysis is simpler due to the adapted entropy.

In Section 6.4, we interpret our entropy theory (specifically, the jump require-

ments at the interface x = 0) in terms of traffic flow. We argue that the entropy con-

dition is consistent with the condition of driver’s ride impulse (Ansorge [5]), which

states that drivers speed up where possible, i.e., if they see that conditions ahead of
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them allow for a higher driving speed. The decisive point is that our “behavioristic”

approach for the condition that singles out admissible jumps across x = 0 does not

depend on a viscous regularization, in constrast e.g. to a model of flow in heteroge-

neous media and a clarifier-thickener model (see [29] for further discussion).

In Section 6.5, we introduce the numerical schemes for the approximation of

(6.1.3). The basic discretization is a simple explicit conservative marching formula

on a rectangular grid, where the numerical flux for all cells may be given by a known

scheme for conservation laws, with the exception for the cell interface that is asso-

ciated with the flux discontinuity, and for which an interface numerical flux f̄int has

to be devised. This flux must be monotone and preserve certain steady-state solu-

tions. In Section 6.5.1, we construct interface fluxes based on three different schemes,

namely those of Hilliges & Weidlich [93], Godunov (Jin & Zhang [101]), and En-

gquist & Osher [65]. The numerical schemes described in Section 6.5.1 are only first-

order accurate, meaning that a very fine mesh is required in order to accurately

resolve some features of the solution. To improve on this situation, we propose in

Section 6.5.2 a formally second order scheme, constructed by using MUSCL [124]

spatial differencing, and Runge-Kutta temporal differencing.

In Section 6.6, we show that all three schemes of Section 6.5.1 converge to en-

tropy solutions. By our uniqueness theorem (Theorem 6.3.1), all of these schemes

converge to the same solution, and moreover, for the Riemann problems consid-

ered by Daganzo [49], Lebacque [123] and Jin & Zhang [101], all of these solution

concepts are the same. Our solution concept is somewhat more general than that of

these authors, because it is valid for more general types of initial data φ0.

Finally, we present in Section 6.7 five numerical examples and compare the nu-

merical schemes. These examples in part been adapted from [101] and [75]. It turns

out that the version of the Hilliges-Weidlich scheme introduced in Section 6.5.1 pro-

duces less overshoots than the unmodified version introduced by Bürger et al. [25].

In general, the Hilliges-Weidlich scheme is more diffusive than the Godunov or

Enguist-Osher scheme, but easier to implement. An L1 error record confirms that

the second-order MUSCL/RK versions of the schemes produce consistently smaller
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errors than the first-order versions.

6.2 Preliminaries

6.2.1 Assumptions on the flux function

We assume that the parameter a is piecewise constant with a single jump located

at the origin x = 0, i.e.,

a(x) = aL for x < 0, a(x) = aR for x > 0, (6.2.1)

where we assume that 0 < min{aL, aR} =: a ≤ a(x) ≤ a := max{aL, aR}. We also

assume that the flux is genuinely nonlinear in the following sense, where L denotes

Lebesgue measure:

L
({
φ|∂2

φφf(a, φ) = 0
})

= 0 for a = aL, aR. (6.2.2)

We assume that the velocity v : [0, 1] → [0, vmax] is Lipschitz continuous, strictly

decreasing, and v(0) = vmax, v(1) = 0. This implies that the flux f(a, φ) is nonnega-

tive for φ ∈ [0, a], and f(a, 0) = f(a, a) = 0.

We assume that there is a unique φ∗L ∈ (0, aL) such that fφ(aL, φ
∗
L) = 0, and

the mapping φ 7→ f(aL, φ) is strictly increasing for φ ∈ (0, φ∗L) and strictly de-

creasing for φ ∈ (φ∗L, aL). Similarly, we assume that there is a unique φ∗R ∈ (0, aR)

such that fφ(aR, φ
∗
R) = 0, and the mapping φ 7→ f(aR, φ) is strictly increas-

ing for φ ∈ (0, φ∗R) and strictly decreasing for φ ∈ (φ∗R, aR). From the relation-

ship fφ(a, φ) = (φ/a)v′(φ/a) + v(φ/a), it is clear that φ∗L/aL = φ∗R/aR, and thus

sgn(φ∗R − φ∗L) = sgn(aR − aL). Another useful relationship is

sgn(f(aR, φ)− f(aL, φ)) = sgn(aR − aL) for φ ∈ (0, a). (6.2.3)

To verify this, suppose for example that 0 < φ ≤ aL < aR. Then v(φ/aL) < v(φ/aR),

and thus φv(φ/aL) < φv(φ/aR).
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Figure 6.1: The flux functions f(aL, φ) and f(aR, φ). The case aL < aR is shown in (a),

and the case aR < aL is shown in (b).

6.2.2 Connections

Referring to Figure 6.1, we distinguish two states A ∈ [0, aL] and B ∈ [0, aR],

which we define as follows:

Definition 6.2.1 (Definition of the states A and B) If aL < aR, then A = φ∗L, and B is

the solution of the equation f(aR, B) = f(aL, A) satisfyingB < φ∗R. In the reverse situation,

i.e., aL < aR, then B = φ∗R, and A is the solution of the equation f(aR, B) = f(aL, A)

satisfying A > φ∗L.

Note that we always have f(aR, B) = f(aL, A) and B < A. The first of these

relationships follows directly from Definition 6.2.1, and the second follows from the

same definition, sgn(φ∗R − φ∗L) = sgn(aR − aL) and (6.2.3).

Fixing a time t ∈ (0, T ), let φ± := φ(0±, t). Any weak solution will satisfy the

Rankine-Hugoniot condition

f(aL, φ−) = f(aR, φ+). (6.2.4)
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It is well known that this condition is not sufficient to guarantee uniqueness, and so

additional conditions are required. Karlsen et al. [105] and Karlsen & Towers [106]

required that, in addition, the following characteristic condition must hold:

Definition 6.2.2 (Strong characteristic condition) The flux pair of states (φ−, φ+) is

said to satisfy the strong characteristic condition if

min
{
0, fφ(aL, φ−)

}
·max

{
0, fφ(aR, φ+)

}
= 0. (6.2.5)

This says that the characteristics must lead backward toward the x-axis on at least

one side of the jump, unless φ− = φ+. The strong characteristic condition, when sup-

plemented by the classical characteristic conditions that hold away from the jump

in a, are sufficient for uniqueness, and result in a L1 contraction semigroup of solu-

tions.

The distinuished states A and B defined in Definition 6.2.1 comprise an example

of a so-called connection. The concept of connections goes back to Adimurthi et al.

[2].

Definition 6.2.3 (Connection (A,B), after Adimurthi et al. [2]) A pair of states

(A,B) ∈ [0, aL]× [0, aR] is called a connection if

f(aL, A) = f(aR, B), A ≥ φ∗L, B ≤ φ∗R. (6.2.6)

There is an entropy jump condition associated with such a connection, which

may be stated as follows.

Definition 6.2.4 (Characteristic condition) Assume that the pair (A,B) is a connection

in the sense of Definition 6.2.3. We say that (A,B) satisfies the characteristic condition if

min
{
0, fφ(aL, φ−)

}
·max

{
0, fφ(aR, φ+)

}
= 0 if (φ−, φ+) 6= (A,B). (6.2.7)

This says that the characteristics must lead backward toward the x-axis on at least

one side of the jump, unless φ− = A and φ+ = B, in which case there is no restriction

on the characteristics.
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It is clear that Definition 6.2.3 admits other (A,B) connections in addition to the

one given by Definition 6.2.1. Adimurthi et al. [2] show that each of these connec-

tions, when associated with its (A,B) characteristic condition, leads to a different

solution concept, and a different L1 contraction semigroup of solutions.

6.2.3 The entropy solution concept

We single out the particular connection (A,B) of Definition 6.2.1 because it leads

to solutions in agreement with those generally accepted as being relevant for traffic

modeling. In order to state our concept of entropy solution, we use ĉAB(x) to form

the function V AB(x, φ) := |φ − ĉAB(x)|, which is an example of what Audusse and

Perthame [6] call an adapted entropy.

Definition 6.2.5 (Entropy solution) A measurable function φ : ΠT → R is an entropy

solution of the initial value problem (6.1.3) if it satisfies the following conditions:

(D.1) φ ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(R)),

(D.2)

φ(x, t) ∈

[0, aL] for a.e. (x, t) ∈ (−∞, 0)× (0, T ),

[0, aR] for a.e. (x, t) ∈ (0,∞)× (0, T ).
(6.2.8)

(D.3) For all test functions ψ ∈ D(R× [0, T ))∫∫
ΠT

(
φψt + f

(
a(x), φ

)
ψx

)
dx dt+

∫
R
φ0(x)ψ(x, 0) dx = 0. (6.2.9)

(D.4) For all test functions 0 ≤ ψ ∈ D(ΠT ) which vanish for x ≥ 0∫∫
ΠT

(
|φ−c|ψt+sgn(φ−c)

(
f(aL, φ)−(f(aL, c)

)
ψx

)
dx dt ≥ 0 ∀c ∈ R, (6.2.10)

and for all test functions 0 ≤ ψ ∈ D(ΠT ) which vanish for x ≤ 0∫∫
ΠT

(
|φ−c|ψt+sgn(φ−c)

(
f(aR, φ)−f(aR, c)

)
ψx

)
dx dt ≥ 0 ∀c ∈ R, (6.2.11)
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(D.5) The following Kružkov-type entropy inequality holds for all test functions 0 ≤ ψ ∈
D(ΠT ): ∫∫

ΠT

{∣∣φ− ĉAB(x)
∣∣ψt + sgn

(
φ− ĉAB(x)

)
(
f
(
a(x), φ

)
− f

(
a(x), ĉAB(x)

))
ψx

}
dx dt ≥ 0.

(6.2.12)

A function u : ΠT → R satisfying (D.1)–(D.3) is called a weak solution of the initial

value problem (6.1.3).

6.3 Uniqueness

Lemma 6.3.1 Let φ be an entropy solution of (6.1.3). For a.e. t ∈ (0, T ), the function

φ(·, t) has strong traces from the left and right at x = 0, i.e., the following limits exist for

a.e. t ∈ (0, T ):

φ(0−, t) := ess lim
x↑0

φ(x, t), φ(0+, t) := ess lim
x↓0

φ(x, t),

Proof. Condition (6.2.10) guarantees that φ is an entropy solution of the conservation

law φt+f(aL, φ)x = 0 in the domain (−∞, 0)×(0, T ]. This fact, along with the genuine

nonlinearity assumption (6.2.2) ensures the existence of a strong trace from the left -

this is due to a result of Vasseur [165]. The existence of a strong trace from the right

follows from in a similar way from (6.2.11). 2

With the existence of strong traces guaranteed, it is possible to describe the be-

havior of solutions at x = 0 (where the interface is located), which is the subject of

the following lemma.

Lemma 6.3.2 Let φ± = φ±(t) = φ(0±, t).

J1. The following Rankine-Hugoniot condition holds for a.e. t ∈ (0, T ):

f
(
aR, φ+(t)

)
= f

(
aL, φ−(t)

)
. (6.3.1)
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J2. The following entropy jump condition holds for a.e. t ∈ (0, T ):

sgn
(
φ+(t)−B

)(
f(aR, φ+(t))− f(aR, B)

)
− sgn

(
φ−(t)− A

)(
f(aL, φ−(t))− f(aL, A)

)
≤ 0.

(6.3.2)

J3. For a.e. t ∈ (0, T ), the following characteristic condition is satisfied:

min
{
0, fφ(aL, φ−(t))

}
·max

{
0, fφ(aR, φ+(t))

}
= 0. (6.3.3)

Remark 6.3.1 The characteristic condition (6.3.3) says that the characteristics must

lead backward toward the x-axis on at least one side of the jump at the location of

the jump in the parameter a.

Proof. The Rankine-Hugoniot condition (6.3.1) is a consequence of the weak formu-

lation (6.2.9), while the entropy jump condition (6.3.2) follows from (6.2.12). We omit

the details of the proofs of these facts; they can be found (with slight modifications

where necessary) in Lemmas 2.4 and 2.6 of [105].

In what follows, we write φ± := φ±(t). wherever there is no danger of confusion.

To prove (6.3.3), it suffices to show that φ− > A while φ+ < B is impossible (see

Figure 6.1). By way of contradiction, assume that φ− > A while φ+ < B. Combining

this assumption with the entropy inequality (6.3.2), we have(
f(aR, B)− f(aR, φ+)

)
+
(
f(aL, A)− f(aL, φ−)

)
≤ 0. (6.3.4)

However, from φ− > A and φ+ < B, it is clear that f(aR, B) > f(aR, φ+) and

f(aL, A) > f(aL, φ−) (see Figure 6.1). Combining these inequalities with (6.3.4) gives

the desired contradiction. 2

Theorem 6.3.1 (L1 stability and uniqueness) Let φ and φ̂ be two entropy solutions in

the sense of Definition 6.2.5 of the initial value problem (6.1.3) with initial data φ0 and φ̂0,

respectively. Then∫
R

∣∣φ(x, t)− φ̂(x, t)
∣∣ dx ≤ ∫

R

∣∣φ0(x)− φ̂0(x)
∣∣ dx for a.e. t ∈ (0, T ).

In particular, there exists at most one entropy solution of the initial value problem (6.1.3).
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Proof. We only sketch the proof. Following [105], we can prove for any 0 ≤ φ ∈
D(ΠT )

−
∫∫

ΠT

(
|φ− φ̂|ψt + sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)
ψx

)
dt dx ≤ E, (6.3.5)

E :=

∫ T

0

[
sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)]x=0+

x=0−
ψ(0, t) dt, (6.3.6)

where the notation [·]x=0+
x=0− indicates the limit from the right minus the limit from the

left at x = 0. Recall that Lemma 6.3.1 ensures the existence of these limits.

For almost every t ∈ (0, T ), the contribution to E at the jump x = 0 is

S :=
[
sgn(φ− φ̂)

(
f(a(x), φ)− f(a(x), φ̂)

)]x=0+

x=0−
. (6.3.7)

Let us fix t ∈ (0, T ), and use the notation φ±(t) = φ±. Then

S = sgn(φ+ − φ̂+)
(
f(aR, φ+)− f(aR, φ̂+)

)
− sgn(φ− − φ̂−)

(
f(aL, φ−)− f(aL, φ̂−)

)
.

Our goal at this point is to show that S ≤ 0, which implies that E ≤ 0 holds since t

is arbitrary. It is then standard to conclude from (6.3.5) that the theorem holds, see

[105].

If f(aR, φ+)−f(aR, φ̂+) = 0, then by the Rankine-Hugoniot condition, f(aL, φ−)−
f(aL, φ̂−) also vanishes, yielding S = 0. So assume without loss of generality that

f(aR, φ+) > f(aR, φ̂+). (6.3.8)

By the Rankine-Hugoniot condition again, we also have

f(aL, φ−) > f(aL, φ̂−). (6.3.9)

By way of contradiction, assume that S > 0. Then due to (6.3.8) and (6.3.9), we must

have

sgn(φ+ − φ̂+) > 0, sgn(φ− − φ̂−) < 0. (6.3.10)

Combining the inequalities (6.3.8), (6.3.9), (6.3.10), we must have at least one of φ+ <

B, φ̂+ < B, and we must also have at least one of φ− > A, φ̂− > A. In fact, since
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sgn(φ+ − φ̂+) > 0, it must be that φ̂+ < B, and since sgn(φ− − φ̂−) < 0, it must be

that φ̂− > A. Combining these last two inequalities, we conclude that the pair of

states (φ̂−, φ̂+) violates the entropy jump condition (6.3.2), and we have the desired

contradiction. 2

Remark 6.3.2 With the large set of adapted entropies used by Audusse and

Perthame the quantity E in (6.3.6) vanishes. Note that since we are not using such

a large set of adapted entropies, we still must deal with this residue term, and thus

we still have an interface condition (entropy jump conditions) and must establish

the existence of traces.

6.4 Relationship between interface entropy conditions

and traffic flow

We make the following assumptions:

K1. Drivers approaching the interface will attempt to speed up if

v(φ0
L/aL) < v(φ0

R/aR), (6.4.1)

i.e., if they see that conditions immediately ahead of them allow for a higher driving

speed. Whether or not they are actually able to speed up is constrained by K2 and

K3 below.

K2. Any such speedup will create a decrease in density immediately to the left

of x = 0 and an increase in density immediately to the right of x = 0.

K3. Cars are conserved, i.e., the Rankine-Hugoniot condition must remain in

effect across the interface at x = 0.

Remark 6.4.1 Due to the Rankine-Hugoniot condition, the condition (6.4.1) express-

ing higher velocity directly ahead is equivalent to φL > φR, i.e., lower density di-

rectly ahead. We focus on the velocity comparison (as opposed to density compar-

ison) because it is perhaps more directly related to the behavior of a single driver,
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who easily detects the condition (6.4.1) when the distance between his car and the

one in front of him is increasing. It is not so clear how he would compare the two

densities appearing in the inequality φL > φR.

Referring to Lemma 6.3.2, particularly the entropy jump condition 6.3.3 and Re-

mark 6.3.1, we see that among two-state solutions (φL, φR) of the form

φ(x, t) = φL for x < 0, φ(x, t) = φR for x > 0, (6.4.2)

such that the Rankine-Hugoniot condition f(aL, φL) = f(aR, φR) is satisfied, the only

ones that are excluded by our entropy theory are ones where aL > A and aR < B.

In Figure 6.2 (a), the pair (φ0
L, φ

0
R) shows such an inadmissible two state solution

for the case when aL < aR, while Figure 6.2 (b) shows such a (φ0
L, φ

0
R) when aL > aR.

In either case, the state (φ0
L, φ

0
R) is unstable. Drivers immediately to the left of x = 0

will speed up (corresponding to the left-facing arrow on the f(aL, φ) graph) because

they see that the allowable velocity v(φ0
R/aR) immediately ahead of them exceeds

their current velocity v(φ0
L/aL). According to K2, this speedup has two effects - first

it decreases the density immediately to the left of x = 0, and second it increases

the density to the right of x = 0 (corresponding to the right-facing arrow on the

f(aR, φ) graph). This results in both forward and backward facing rarefaction waves.

This evolution will continue until the state (φ(x−, t), φ(x+, t)) = (φ1
L, φ

1
R) shown in

Figure 6.2 is achieved. That this is the terminal state makes sense if we think not of

individual cars (which would still like to speed up), but of a group of cars passing

through x = 0. The maximum allowable flux is f(aL, φ
∗
L) for (a) and f(aR, φ

∗
R) for

(b); this constraint keeps the cars immediately to the left of x = 0 from speeding up

beyond this point.

In contrast to Figure 6.2, Figure 6.3 shows a type of two state solution (φ0
L, φ

0
R)

that is admissible under our entropy theory. To see why these solutions are stable,

note that in spite of the fact that drivers immediately to the left of x = 0 might want

to speed up because v(φ0
R/aR) > v(φ0

L/aL) (such a speedup corresponds to the left-

facing arrow near the graph of f(aL, φ)), any such speedup will cause an increase of

density immediately to the right of x = 0, corresponding to the right-facing arrow
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Figure 6.2: Inadmissible two-state solutions (φ0
L, φ

0
R) for the cases (a) aL < aR and

(b) aL > aR.

on the graph of f(aR, φ). From the figure it is clear that this would lead to a violation

of the Rankine-Hugoniot condition (conservation of cars).

Figure 6.4 shows another type of admissible two-state solution (φ0
L, φ

0
R). In Fig-

ure 6.4 (a), we have the situation described in the previous paragaph. In Figure 6.4

(b), the solution is stable because cars immediately to the left of x = 0 do not attempt

to speed up since v(φ0
R/aR) < v(φ0

L/aL).

Figure 6.5 shows the final type of admissible two state solution (φ0
L, φ

0
R). In this

case, cars immediately to the left of x = 0 do not attempt to speed up because

v(φ0
R/aR) < v(φ0

L/aL).

Assuming that the mapping φ 7→ f(a, φ) is concave and that the parameter a

is constant, it is also possible to understand the classical Oleinik/Lax/Kružkov en-

tropy condition for an admissible jump in terms of traffic flow. Now we consider

two-state solutions of the form

φ(x, t) = φL for x < st, φ(x, t) = φR for x > st, (6.4.3)
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Figure 6.3: Admissible two-state solutions (φ0
L, φ

0
R) for the cases (a) aL < aR and (b)

aL > aR.

and in this situation the Rankine-Hugoniot condition is

f(a, φR)− f(a, φL)

φR − φL

= s. (6.4.4)

The speed s of the discontinuity can be written as

s = v(φL/a) + φR
v(φR/a)− v(φL/a)

φR − φL

= v(φR/a) + φL
v(φR/a)− v(φL/a)

φR − φL

,

from which it is clear that cars immediately to the left and right of the discontinu-

ity are traveling faster than the discontinuity. As a consequence, cars drive through

the discontinuity, instantaneously changing their velocities as they do so. Our as-

sumption in this setting is that drivers immediately to the left of such a discon-

tinuity will speed up if they detect that conditions ahead of them allow it, ie. if

v(φR/a) > v(φL/a).

Recall that according to the classical theory (we are still assuming that the flux is

strictly concave), a solution of the form (6.4.3) is admissible if φL < φR and inadmis-

sible if φL > φR. In Figure 6.6 (a), the two-state solution (φ0
L, φ

0
R) is inadmissible. To
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Figure 6.4: Admissible two-state solutions (φ0
L, φ

0
R) for the cases (a) aL < aR and (b)

aL > aR.

see why this solution is unstable, note that drivers on the left side of the jump will

see that v(φ0
L/a) < v(φ0

R/a), and thus will speed up, corresponding to the left facing

arrow in Figure 6.6 (a). As these higher velocity cars pass through the discontinuity

from the left, they create an increase in density on the right side of the discontinuity,

corresponding to the right facing arrow in (a) of Figure 6.6. This process will con-

tinue until the the two adjacent states meet at some point φ1
R = φ1

L. At that point,

a stable situation exists because there is no longer a discontinuity in the solution.

From the driver’s point of view, the opportunity to speed up afforded by a density

jump no longer exists.

Remark 6.4.2 In the case where a(x) is constant (no interface), our motivation for

admissible discontinuities gives the same jump conditions as the so-called driver’s

ride impulse of Ansorge [5], which states that drivers smooth a discontinuous solu-

tion to a continuous one if φL > φR, but not if φL < φR. In other words, the admissi-

ble discontinuities under the driver’s ride impulse are exactly those with φL < φR,
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Figure 6.5: Admissible two-state solutions (φ0
L, φ

0
R) for the cases (a) aL < aR and (b)

aL > aR.

which are also the admissible ones under our motivation, and also under the classi-

cal Lax/Oleinik/Kružkov theory if the flux f is strictly concave.

In the more general situation considered in this paper, the driver’s ride impulse

does not apply to the jump at the discontinuity in a. This is because it is not possi-

ble to smooth the discontinuity at x = 0 - there will always be a discontinuity there

unless φL = φR = 0. This is why we have introduced the rationale proposed here,

i.e., that drivers will try to speed up if they detect that the velocity directly ahead is

greater than their own velocity. This also seems more directly related to driver be-

havior than the driver’s ride impulse, since drivers can detect a difference in speed

much more easily than they can detect a difference in density. Moreover, in contrast

to the driver’s ride impulse, our concept of driver behavior does not require that

drivers try to smooth a jump in the density, or even that they have any awareness of

a such a jump.

Finally, still concentrating on the situation away from the interface (where a is
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Figure 6.6: (a) Inadmissible, (b) admissible two-state solution (Φ0
L,Φ

0
R) for a = const.

constant) both the driver’s ride impulse and our rationale give a jump condition

that is different from that dictated by the classical Lax/Oleinik/Kružkov theory if

the flux is not strictly concave. In the case of the driver’s ride impulse, this was pointed

out by Gasser [76]. Note that away from the jump in a, the entropy solutions of the

present paper satisfy the classical jump conditions, and so if the flux is not strictly

concave (we are allowing for this in our setup), our entropy theory will give jumps

that may not be completely in agreement with our motivation in terms of traffic

flow. The question of how to modify the definition of entropy solution, and also the

difference schemes described below, so that the entropy theory completely agrees

with our notion of driver behavior is an interesting open problem.

6.5 Definition of difference schemes

We discretize the spatial domain R into cells Ij := [xj−1/2, xj+1/2), j ∈ Z, where

xj±1/2 = (j ± 1/2)∆x. The centers of these cells are located at xj = j∆x. Similarly,
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the time interval (0, T ) is is discretized via tn = n∆t for n = 0, . . . , N , where N =

bT/∆tc + 1, which results in the time strips In := [tn, tn+1), n = 0, . . . , N − 1. Here

∆x > 0 and ∆t > 0 denote the spatial and temporal discretization parameters,

respectively. When sending ∆ ↓ 0 we will do so with the ratio λ := ∆t/∆x kept

constant. Let χj(x) and χn(t) be the characteristic functions for the intervals Ij and

In, respectively. Define χn
j (x, t) := χj(x)χ

n(t) to be the characteristic function for

the rectangle Rn
j := Ij × In. We denote by Φn

j the finite difference approximation of

φ(xj, t
n). We discretize the initial data in a pointwise manner:

Φ0
j := φ0(xj−), (6.5.1)

and the parameter a(x) according to

aj = aL for j ≤ 0, aj = aR for j > 0. (6.5.2)

We then define

φ∆(x, t) :=
N∑

n=0

∑
j∈Z

Φn
j χ

n
j (x, t). (6.5.3)

Our difference scheme is an explicit time-marching algorithm of the type

Φn+1
j = Φn

j − λ∆−h
n
j+1/2, (6.5.4)

where we define the difference operators ∆−Vj := Vj − Vj−1 and ∆+Vj := Vj+1 − Vj ,

and the numerical flux has the form

hn
j+1/2 := hj+1/2

(
Φn

j+1,Φ
n
j

)
=


f̄
(
aL,Φ

n
j+1,Φ

n
j

)
for j < 0,

f̄int

(
aR, aL,Φ

n
j+1,Φ

n
j

)
for j = 0,

f̄
(
aR,Φ

n
j+1,Φ

n
j

)
for j > 0.

(6.5.5)

Next, we study three variants of the scheme, based on the numerical flux

f̄(a, q, p), and an associated interface version f̄int(aR, aL, q, p). In each case the nu-

merical flux f̄(a, q, p) is a two-point monotone flux (the mapping p 7→ f̄(a, q, p) is

nondecreasing, and the mapping q 7→ f̄(a, q, p) is nonincreasing), Lipschitz continu-

ous, and consistent in the sense that f̄(a, p, p) = f(a, p). Similarly, the interface flux

f̄int(aR, aL, q, p) is monotone with respect to the variables p and q as described above,

and is designed to preserve certain discrete steady state solutions, see Lemma 6.5.1.
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6.5.1 Numerical fluxes and first-order schemes

We next specify the three numerical fluxes:

Flux I: Hilliges-Weidlich flux

Away from the interface, the numerical flux in this case is defined by

f̄HW(a, q, p) := pv(q/a). (6.5.6)

This flux was originally proposed by Hilliges & Weidlich [93] (see also [25] and [91])

for the purpose of constructing discrete traffic flow models. We define the interface

flux as

f̄HW
int (aR, aL, q, p) := min

{
pv(q/aR), f(aL, A)

}
= min

{
pv(q/aR), f(aR, B)

}
. (6.5.7)

That f̄HW is monotone and consistent is readily verified by inspection of (6.5.6),

keeping in mind our assumptions about the mapping z 7→ v(z). To verify mono-

tonicity of f̄HW
int , we start with the fact that the mapping (q, p) 7→ pv(q/aR) is mono-

tone in the sense defined above, and then observe that taking the min with f(aR, B)

preserves this property.

In [25] we proposed a scheme using this flux, but without special processing for

the interface. More specifically, we proposed using the flux

h̃n
j+1/2 = Φn

j v
(
Φn

j+1/aj+1

)
, (6.5.8)

which defines the same scheme as the one being proposed in this paper, except at

the interface. We will not analyze the scheme appearing in [25] in this paper. The ad-

vantages of the scheme proposed above over the simpler scheme of Bürger et al. [25]

are twofold. First, the special processing at the interface (the interface flux) greatly

diminishes, and many cases removes entirely, certain small spurious traveling over-

shoots that occur with the scheme of Bürger et al. [25]. Second, the fact that the

interface flux preserves the steady solution P 0
j defined below allows for a simpler

entropy theory.
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The scheme that results by combining (6.5.6) away from the interface and (6.5.7)

at the interface is easily combined into a simple modified version of (6.5.8) that can

be applied globally, i.e., without requiring logic to detect interface points:

hn
j+1/2 = min

{
Φn

j v
(
Φn

j+1/aj+1

)
, f∗j , f

∗
j+1

}
, f∗j := max

φ∈[0,aj ]
f(aj, φ). (6.5.9)

Although we will concentrate on the case where a(x) is piecewise constant with a

single jump, the scheme defined by (6.5.9) is readily applied to the case where the

coefficient is a piecewise continuous function.

From the expression (6.5.9), we see that for the HW numerical flux, the partial

derivatives satisfy

0 ≤
∂hn

j+1/2

∂Φn
j

≤ v(Φn
j+1/aj+1), (6.5.10)

0 ≥
∂hn

j+1/2

∂Φn
j+1

≥
Φn

j

aj+1

v′(Φn
j+1/aj+1) ≥ αv′

(
Φn

j+1/aj+1

)
, α := a/a. (6.5.11)

Flux II: Godunov flux

In this case f̄ is the well-known Godunov flux

f̄G(a, q, p) =

minr∈[p,q] f(a, r) for p ≤ q,

maxr∈[q,p] f(a, r) for q ≤ p,
(6.5.12)

and the interface flux is

f̄G
int = min

{
f
(
aL,min{p, φ∗L}

)
, f
(
aR,max{q, φ∗R}

)}
. (6.5.13)

This formula for f̄G
int is given by Jin & Zhang [101], see Eqns. (27)–(29) of their paper,

who observe that this interface flux was already used by Daganzo [49] and Lebacque

[123]. Adimurthi et al. [1] also proposed an interface flux of Godunov type. Although

they use slightly different assumptions about the fluxes at the endpoints, the inter-

face flux given above can also be found in at least one of their formulations, see Eq.

(3.3) of [1].
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Both numerical fluxes f̄G and f̄G
int are Lipschitz continuous. That f̄G(a, q, p) is

monotone is well known and readily verified, in fact

0 ≤ ∂pf̄
G(a, p, q) ≤ max

{
0, ∂pf(a, p)

}
,

0 ≥ ∂qf̄
G(a, q, p) ≥ min

{
0, ∂qf(a, q)

}
.

(6.5.14)

To see that the interface flux f̄G
int is monotone, note that the mapping p 7→

f(aL,min{p, φ∗L}) is nondecreasing and the mapping q 7→ f(aR,max{q, φ∗R}) is non-

increasing, and finally that these relationships remain true when we take the mini-

mum to form f̄G
int. The partial derivatives of the interface flux satisfy

0 ≤ ∂pf̄
G
int ≤ max

{
0, ∂pf(aL, p)

}
, 0 ≥ ∂qf̄

G
int ≥ min

{
0, ∂qf(aR, q)

}
. (6.5.15)

As we did for the HW flux, we can define a global version of the flux via

hn
j+1/2 = min

{
f
(
aj,min

{
Φn

j , φ
∗
j

})
, f
(
aj+1,max

{
Φn

j+1, φ
∗
j+1

})}
, (6.5.16)

and in this form the partial derivatives satisfy

0 ≤
∂hn

j+1/2

∂Φn
j

≤ max

{
0,
∂f(aj,Φ

n
j )

∂Φn
j

}
,

0 ≥
∂hn

j+1/2

∂Φn
j+1

≥ min

{
0,
∂f(aj+1,Φ

n
j+1)

∂Φn
j+1

}
.

(6.5.17)

Flux III: Engquist-Osher flux

For this scheme, we use the standard Engquist-Osher flux [65]

f̄EO(a, q, p) =
1

2

(
f(a, p) + f(a, q)

)
− 1

2

∫ q

p

∣∣fφ(a, φ)
∣∣ dφ (6.5.18)

away from the interface. For the interface flux, we use

f̄EO
int (aR, aL, q, p) =

1

2

(
f̃(aR, q) + f̃(aL, p)

)
− 1

2

[∫ q

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ p

A

∣∣f̃φ(aL, φ)
∣∣ dφ] ,

f̃(aL, p) := min
{
f(aL, p), f(aL, A)

}
,

f̃(aR, q) := min
{
f(aR, q), f(aR, B)

}
.

(6.5.19)
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The flux f̄EO is a standard monotone flux, with partial derivatives satisfying

0 ≤ ∂pf̄
EO(a, q, p) = max

{
0, ∂pf(a, p)

}
,

0 ≥ ∂qf̄
EO(a, q, p) = min

{
0, ∂qf(a, q)

}
.

(6.5.20)

To verify that the interface flux f̄EO
int is monotone, note that

∂pf̄
EO
int =

1

2
f̃φ(aL, p) +

1

2

∣∣f̃φ(aL, p)
∣∣ ≥ 0,

∂qf̄
EO
int =

1

2
f̃φ(aR, q)−

1

2

∣∣f̃φ(aR, q)
∣∣ ≤ 0.

(6.5.21)

It is clear from these relationships that the partial derivatives EO interface flux sat-

isfy the same type of inequalities (6.5.15) as for the Godunov interface flux:

0 ≤ ∂pf̄
EO
int ≤ max

{
0, ∂pf(aL, p)

}
, 0 ≥ ∂qf̄

EO
int ≥ min

{
0, ∂qf(aR, q)

}
. (6.5.22)

The EO version of the flux also has a global version hj+1/2 like (6.5.9) and (6.5.16),

which we will not explicitely display. We merely remark that relationship (6.5.17)

also holds for the partial derivatives of the EO flux.

When letting (∆x,∆t) → (0, 0), we will do so with the ratio λ := ∆t/∆x fixed

and satisfying the CFL condition for the HW version

λv(z) ≤ 1/2, αλ |v′(z)| ≤ 1/2, z ∈ [0, 1] (6.5.23)

or the CFL condition for the Godunov and EO version

λ |v(z) + zv′(z)| ≤ 1, z ∈ [0, 1], (6.5.24)

respectively. Note that in contrast to (6.5.23), the CFL condition for the Godunov

and EO schemes, (6.5.24), does not depend on a(x).

For a numerical approximation at time level n, {Φn
j }j∈Z, we denote the time ad-

vance operator that applies one timestep of our scheme by Γj , i.e. Γj(Φ
n) = Φn+1

j .

Lemma 6.5.1 Each of the interface fluxes f̄int = f̄HW
int , f̄

G
int, f̄

EO
int satisfies

f̄int(aR, aL, B,A) = f(aL, A) = f(aR, B),

f̄int(aR, aL, aR, aL) = 0, f̄int(aR, aL, 0, 0) = 0.
(6.5.25)



6.5 Definition of difference schemes 217

Moreover, if we define

P 0
j =

A for j ≤ 0,

B for j > 0,
Q0

j =

aL for j ≤ 0,

aR for j > 0,
R0

j = 0, j ∈ Z, (6.5.26)

then the scheme (6.5.4), (6.5.5) using any of the three variants leaves each of these grid

functions fixed, i.e,

Γj(P
0) = P 0

j , Γj(Q
0) = Q0

j , Γj(R
0) = R0

j , j ∈ Z. (6.5.27)

Proof. The proof of (6.5.25) in each case is a straightforward calculation starting from

the definition of the specific interface flux, and using the fact that A ≥ φ∗L, B ≤ φ∗R.

We omit the details.

For the proof of (6.5.27), the first condition in (6.5.25) implies that j ∈ Z, Γj(P
0) =

P 0
j , the second condition implies that Γj(Q

0) = Q0
j , and the third condition implies

that Γj(R
0) = R0

j . 2

Proposition 6.5.1 Each of the interface fluxes f̄int = f̄HW
int , f̄

G
int, f̄

EO
int satisfies

f̄int ≤ f(aL, A) = f(aR, B) = min
{
f(aL, φ

∗
L), f(aR, φ

∗
R)
}
. (6.5.28)

Proof. For f̄HW
int and f̄G

int this is readily verified from the respective definitions (6.5.7)

and (6.5.13). For the EO interface flux, starting from the monotonicity of the flux, the

maximum value of f̄EO
int over (q, p) ∈ [0, aR]× [0, aL] must occur at (q, p) = (0, aL), and

so from the definition (6.5.19) we have

f̄EO
int ≤ f̄int(aR, aL, 0, aL) =

1

2

(
f̃(aR, 0) + f̃(aL, aL)

)
− 1

2

[∫ 0

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ aL

A

∣∣f̃φ(aL, φ)
∣∣ dφ]

=− 1

2

[∫ 0

B

∣∣f̃φ(aR, φ)
∣∣ dφ− ∫ aL

A

∣∣f̃φ(aL, φ)
∣∣ dφ]

=
1

2

(
f(aR, B) + f(aL, A)

)
.
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2

Proposition 6.5.1 is not required for our subsequent analysis, but shows that each

interface flux simulates an important property of the continuous solution, namely

that the flux across the interface cannot exceed min{f(aL, φ
∗
L), f(aR, φ

∗
R)}; this is a

consequence of the Rankine-Hugoniot condition (6.2.4). In the case of the HW flux,

the version (6.5.8) that we used in [25] does not always satisfy this constraint. In-

deed, our interface flux f̄HW
int can be seen as simply a means of enforcing this con-

straint.

Figure 6.7 shows contour plots of the three interface fluxes (q, p) 7→
f̄int(aR, aL, q, p) for f(a, φ) = φ(1 − φ/a). The first row shows f̄HW

int with (aR, aL) =

(2, 1) on the left and (aR, aL) = (1, 2) on the right. The second and third rows are

f̄G
int and f̄EO

int . The 0.25 contour which is labelled in each plot is the maximum value

of the numerical flux, which agrees with Proposition 6.5.1, since for this example

max{f(aL, φ
∗
L), f(aR, φ

∗
R)} = 0.25. Both the HW and Godunov flux vanish along the

left boundary (p = 0) and the upper boundary (a = aR). The EO flux vanishes along

portions of those boundaries but actually takes on negative values (the minimum

value being 0.25) near the upper left corner (p, q) = (0, aR). Finally, it is clear from

the plots that in each case the mapping p 7→ f̄int(aR, aL, q, p) is nondecreasing, and

q 7→ f̄int(aR, aL, q, p) is nonincreasing.

6.5.2 A MUSCL/Runge-Kutta extension of the schemes

The MUSCL version of the flux hj+1/2 reads

hm
j+1/2(Φj+2,Φj+1,Φj,Φj−1) = hj+1/2

(
Φj+1 −

1

2
σj+1,Φj +

1

2
σj

)
, (6.5.29)

where h is the first order version of the flux, and we define the slope σj by the

VanLeer limiter

σj :=
|φj − φj−1|(φj+1 − φj) + |φj+1 − φj|(φj − φj−1)

|φj − φj−1|+ |φj+1 − φj|
. (6.5.30)
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Figure 6.7: The numerical flux f̄int(aR, aL, q, p) as a function of (q, p). In the left col-

umn (aR, aL) = (2, 1), and in the right column (aR, aL) = (1, 2). First row: f̄int = f̄HW
int ,

second row: f̄int = f̄G
int, third row: f̄int = f̄EO

int .

This MUSCL scheme is formally second-order accurate in space, but not in time.

To achieve formal second order accuracy in time also, we use second order Runge-

Kutta time stepping. More specifically, if we write our scheme with first order Euler

time differencing and second order spatial differencing abstractly as

Φn+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
, (6.5.31)

then the Runge-Kutta version takes the two-step form

Φ̃n+1
j = Φn

j − Γj

(
Φn

j+2,Φ
n
j+1,Φ

n
j ,Φ

n
j−1,Φ

n
j−2

)
,

Φn+1
j =

1

2
Φn

j +
1

2
Φ̃n+1

j − 1

2
Γj

(
Φ̃n+1

j+2 , Φ̃
n+1
j+1 , Φ̃

n+1
j , Φ̃n+1

j−1 , Φ̃
n+1
j−2

)
.

(6.5.32)
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For the Godunov and EO versions, we halve the timestep allowed by the CFL con-

dition (6.5.24). For the HW version, we can use the timestep allowed by the CFL

condition (6.5.23).

6.6 Convergence analysis

Recall that the difference scheme (6.5.4) is monotone [45, 87] if

Φn
j ≤ Ψn

j ∀j ∈ Z =⇒ Γj(Φ
n) ≤ Γj(Ψ

n) ∀j ∈ Z. (6.6.1)

Lemma 6.6.1 Assume that φ0(x) ∈ [0, aL] for x < 0 and φ0(x) ∈ [0, aR] for x > 0, and

that Φn
j is generated by any of the three variants of the difference scheme (6.5.4), (6.5.5).

Then for n ≥ 0

Φn
j ∈ [0, aL] for j ≤ 0, Φn

j ∈ [0, aR] for j > 0. (6.6.2)

Moreover, the difference scheme is monotone.

In addition, we have the following discrete time continuity estimate:∑
j∈Z

∣∣Φn+1
j − Φn

j

∣∣ ≤ C, n = 0, 1, . . . , N (6.6.3)

where the constant C is independent of the mesh size ∆ and the time level n.

Proof. To prove the monotonicity assertion, it suffices to show that

∂Φn+1
j

∂Φn
j+i

≥ 0, i = −1, 0, 1. (6.6.4)

From (6.5.4), it is clear that

∂Φn+1
j

∂Φn
j−1

= λ
∂hj−1/2

∂Φn
j−1

,
∂Φn+1

j

∂Φn
j+1

= −λ
∂hn

j+1/2

∂Φn
j+1

(6.6.5)

∂Φn+1
j

∂Φn
j

= 1− λ
∂hn

j+1/2

∂Φn
j

+ λ
∂hn

j−1/2

∂Φn
j

. (6.6.6)
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That the inequalities in (6.6.4) for i = −1, 1 hold for the HW version is clear

from (6.5.10) and (6.5.11), and for the Godunov and EO version, this is evident from

(6.5.17).

To prove (6.6.4) for i = 0 for the HW version, we use (6.6.6), along with (6.5.10)

and (6.5.11) to compute

∂Φn+1
j

∂Φn
j

≥ 1− λv(Φn
j+1/aj+1) + αλv′(Φn

j /aj), (6.6.7)

and this last quantity is nonnegative thanks to the CFL condition (6.5.23).

To prove (6.6.4) for i = 0 for the Godunov and EO versions, we use (6.6.6) and

(6.5.17) to compute

∂Φn+1
j

∂Φn
j

≥ 1− λmin

{
0,
∂f(aj,Φ

n
j )

∂Φn
j

}
+ λmax

{
0,
∂f(aj,Φ

n
j )

∂Φn
j

}
= 1− λ

∣∣∣∣∂f(aj,Φ
n
j )

∂Φn
j

∣∣∣∣,
and this last quantity is nonnegative thanks to the CFL condition (6.5.24).

Due to our method of discretizing the initial data, we will have

R0
j ≤ Φ0

j ≤ Q0
j , j ∈ Z. (6.6.8)

Since each of the three schemes is a monotone function of the data at the lower time

level, i.e., Φ1
j = Γj(Φ

0
j+1,Φ

0
j ,Φ

0
j−1) is a nondecreasing function of the arguments Φ0

j+1,

Φ0
j and Φ0

j−1, the ordering in (6.6.8) will be preserved when we apply Γj . Recalling

that Γj leaves Q0 and R0 fixed (Lemma 6.5.1), we see that R0
j ≤ Φ1

j ≤ Q0
j for j ∈ Z.

Continuing this way by induction, we may complete the proof of (6.6.2).

For the proof of (6.6.3), we combine the conservativity of the scheme,∑
j∈Z

Φn+1
j =

∑
j∈Z

Φn
j ,

the monotonicity of the time advance operator Φn 7→ Φn+1, and the boundedness of

the variation of the initial data. This allows us to apply the Crandall-Tartar lemma

[45]. The proof is very similar to that of Lemma 3.3 of [104], so we omit the details.

2
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Let V b
a (z) denote the total variation of the function x 7→ z(x) over the interval

[a, b]. The following lemma is essentially Lemma 4.2 of [25], where a proof can be

found.

Lemma 6.6.2 Let {ξ1, . . . , ξM} be a finite set of real numbers. Suppose that Φn
j is generated

by an algorithm which can be written in incremental form

Φn+1
j = Φn

j + Cn
j+1/2∆+Φn

j −Dn
j−1/2∆−Φn

j , (6.6.9)

except at finitely many indices j such that |xj − ξm| ≤ ρ∆x for some m = 1, . . . ,M , where

ρ > 0. Assume that the incremental coefficients satisfy

Cn
j+1/2 ≥ 0, Dn

j+1/2 ≥ 0, Cn
j+1/2 +Dn

j+1/2 ≤ 1. (6.6.10)

Finally, assume that the approximations Φn
j satisfy the time-continuity estimate (6.6.3).

Then for any interval [a, b] such that {ξ1, . . . , ξM} ∩ [a, b] = ∅, and any t ∈ [0, T ] we

have a spatial variation bound of the form

V b
a (φ∆(·, t)) ≤ C(a, b), (6.6.11)

where C(a, b) is independent of ∆ and t for t ∈ [0, T ].

The following lemma provides a spatial variation bound that holds in any inter-

val not containing the origin, where the jump in a(x) occurs.

Lemma 6.6.3 For any interval [a, b] such that 0 /∈ [a, b], and any t ∈ [0, T ] we have a

spatial variation bound of the form (6.6.11), where C(a, b) is independent of ∆ and t for

t ∈ [0, T ].

Proof. Lemma 6.6.2 is readily applicable here. We only need to verify that for j 6= 0, 1

it is possible to write the scheme in the incremental form (6.6.9), where the coeffi-

cients satisfy (6.6.10).

For j < 0, the incremental coefficients are given by Harten [88]:

Cn
j+1/2 = λ

f̄(aL,Φ
n
j ,Φ

n
j )− f̄(aL,Φ

n
j+1,Φ

n
j )

∆+Φn
j

,

Dn
j+1/2 = λ

f̄(aL,Φ
n
j+1,Φ

n
j+1)− f̄(aL,Φ

n
j+1,Φ

n
j )

∆+Φn
j

.

(6.6.12)
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The first two inequalities in (6.6.10) are immediate since the flux f̄(aL,Φ
n
j+1,Φ

n
j ) is

monotone, i.e., nondecreasing with respect to Φn
j and nonincreasing with respect to

Φn
j+1.

For f̄G and f̄EO, in order to verify the third inequality (6.6.10), we use (6.5.14),

(6.5.20) and (6.6.12) to find that

Cn
j+1/2 +Dn

j+1/2 ≤ λ

∫ 1

0

∣∣∣∂φf
(
aL,Φ

n
j + θ(Φn

j+1 − Φn
j )
)∣∣∣ dθ.

It is clear from this last inequality, along with the CFL condition (6.5.24), that the

desired inequality holds.

Still assuming that j < 0, the incremental coefficients for f̄HW are given by

Cn
j+1/2 = λΦn

j

v(Φn
j /aL)− v(Φn

j+1/aL)

Φn
j+1 − Φn

j

, Dn
j+1/2 = λv(Φn

j+1/aL). (6.6.13)

The first two inequalities in (6.6.10) follow from the fact that Φn
j ≥ 0, Φn

j+1 ≥ 0,

and the mapping z 7→ v(z) is nonincreasing. It is clear that the third inequality in

in (6.6.10) will hold if we force Cn
j+1/2 ≤ 1/2, Dn

j+1/2 ≤ 1/2. Note that for some θ

between Φn
j and Φn

j+1, Cn
j+1/2 = −λ(Φn

j /aL)v′(θ/aL), and that Φn
j /aL ∈ [0, 1]. Thus the

third inequality in (6.6.10) is verified due to (6.5.23).

We can then repeat these calculations for j > 1, replacing aL by aR. 2

The following lemma provides a discrete version of the adapted entropy inequal-

ity (6.2.12). Before stating it, we need to discretize the function ĉAB(x), and we do so

according to

cj = A for j ≤ 0, cj = B for j > 0. (6.6.14)

Lemma 6.6.4 With cj defined by (6.6.14), the following cell entropy inequality is satisfied

by approximate solutions Φn
j generated by the scheme (6.5.4):∣∣Φn+1
j − cj

∣∣ ≤ ∣∣Φn
j − cj

∣∣− λ∆−Hn
j+1/2, (6.6.15)

where the numerical entropy flux Hn
j−1/2 is defined by

Hn
j−1/2 = hj−1/2

(
Φn

j ∨ cj,Φn
j−1 ∨ cj−1

)
− hj−1/2

(
Φn

j ∧ cj,Φn
j−1 ∧ cj−1

)
. (6.6.16)
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Proof. We adapt the proof by Crandall & Majda [45] to the situation at hand. Recall-

ing that Φn+1
j depends on the values at the three neighboring cells at the lower time

level, we write (6.5.4) as Φn+1
j = Γj(Φ

n
j+1,Φ

n
j ,Φ

n
j−1). According to Lemma 6.6.1, Γj is

a nondecreasing function of each of its three arguments, implying that

Φn+1
j ∨ Γj(cj+1, cj, cj−1) ≤ Γj

(
Φn

j+1 ∨ cj+1,Φ
n
j ∨ cj,Φn

j−1 ∨ cj−1

)
, (6.6.17)

Φn+1
j ∧ Γj(cj+1, cj, cj−1) ≥ Γj

(
Φn

j+1 ∧ cj+1,Φ
n
j ∧ cj,Φn

j−1 ∧ cj−1

)
. (6.6.18)

Subtracting (6.6.18) from (6.6.17), and using the identity ρ∨σ−ρ∧σ = |ρ− σ|, yields∣∣Φn+1
j − Γj(cj+1, cj, cj−1)

∣∣ ≤Γj

(
Φn

j+1 ∨ cj+1,Φ
n
j ∨ cj,Φn

j−1 ∨ cj−1

)
− Γj

(
Φn

j+1 ∧ cj+1,Φ
n
j ∧ cj,Φn

j−1 ∧ cj−1

)
.

(6.6.19)

Now Γj(cj+1, cj, cj−1) = cj ; this follows from Lemma 6.5.1, once we identify cj = P 0
j .

Thus the left-hand side of (6.6.19) simplifies to |Φn+1
j − cj| for all j. It is easy to check

from the definitions that the right-hand side of (6.6.19) agrees with the right-hand

side of (6.6.15). 2

Theorem 6.6.1 Let the function φ∆ be defined by (6.5.1)–(6.5.5) and (6.5.6), (6.5.7) for

the HW version, or (6.5.12), (6.5.13) for the Godunov version, or (6.5.18), (6.5.19) for the

EO version. Assume that ∆ := (∆x,∆t) → 0 with the ratio λ fixed and satisfying the

appropriate CFL condition (6.5.23) or (6.5.24). Then φ∆ → φ boundedly a.e. and in L1(ΠT ),

where φ is the unique entropy solution to the initial value problem (6.1.3) in the sense of

Definition 6.2.5.

Proof. The portion of the proof concerning convergence to a limit function φ ∈
L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ;L1(R)) (i.e., satisfying (D.1)) is very similar to the cor-

responding portion of the proof of Theorem 4.2 of [25], and so we will omit it. It is

clear that any limit function φmust satisfy property 6.2.8; this is a direct consequence

of Lemma 6.6.1. That the limit solution φ satisfies the weak form of the conservation

law (D.3) follows from a standard Lax-Wendroff type of calculation that we omit,

see the proof of Lemma 4.2 [105]. To verify that the limit solution satisfies the en-

tropy inequalities (6.2.10) and (6.2.11), note that if the interface flux is not involved



6.6 Convergence analysis 225

each version of the scheme is a standard three-point monotone scheme, and thus

satisfies a discrete entropy inequality [45]. Thus two more (standard) Lax-Wendroff

calculations yield (6.2.10) and (6.2.11).

It only remains to prove that the limit solution φ satisfies (D.5), i.e. the entropy

inequality (6.2.12). Let 0 ≤ ψ ∈ D(ΠT ), and ψn
j = ψ(xj, t

n). Proceeding as in the proof

of the Lax-Wendroff theorem, we move all of the terms in (6.6.15) to the left side of

the inequality, multiply by ψn
j ∆x, and sum over j ∈ Z, n ≥ 0, and finally sum by

parts to get

∆x∆t
∑
j∈Z

∑
n≥0

∣∣Φn+1
j − cj

∣∣ ψn+1
j − ψn

j

∆t
+ ∆x∆t

∑
j∈Z

∑
n≥0

Hn
j+1/2

∆+ψ
n
j

∆x
≥ 0. (6.6.20)

By the bounded convergence theorem, the first sum converges to∫∫
ΠT

∣∣φ− ĉAB(x)
∣∣ψt dx dt.

For the second sum, note that the interface flux is only involved on a set whose mea-

sure will approach zero when we let ∆ ↓ 0. Thus we can ignore the interface con-

tribution, and consider separately the contribution for xj to the left of the interface

(where the discrete entropy flux will be f̄(aL,Φ
n
j∨A,Φn

j−1∨A)−f̄(aL,Φ
n
j∧A,Φn

j−1∧A))

and the contribution for xj to the right of the interface (where the discrete entropy

flux will be f̄(aR,Φ
n
j ∨ B,Φn

j−1 ∨ B) − f̄(aR,Φ
n
j ∧ B,Φn

j−1 ∧ B)) ). With this obser-

vation, and the bounded convergence theorem again, we find that the second sum

converges to ∫∫
ΠT∩{x<0}

sgn(φ− A)
(
f(aL, φ)− f(aL, A)

)
ψx dx dt

+

∫∫
ΠT∩{x>0}

sgn(φ−B)
(
f(aR, φ)− f(aR, B)

)
ψx dx dt,

(6.6.21)

and this quantity is equal to∫∫
ΠT

sgn
(
φ− ĉAB(x)

)(
f
(
a(x), u

)
− f

(
a(x), ĉAB(x)

))
ψx dx dt,

thus completing the verification of the entropy condition (D.5).
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Figure 6.8: Example 6.1 (Riemann problem: HW flux): (a) HW scheme without in-

terface fix, (b) HW scheme with interface fix.

Finally, by Theorem 6.3.1 the entire computed sequence φ∆ (not just a subse-

quence) converges to φ in L1(ΠT ) and boundedly a.e. in ΠT . 2
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6.7 Numerical Examples

6.7.1 Example 6.1 (Riemann problem: HW flux)

In Example 6.1, we apply the first-order HW flux to the Riemann problem

φ0(x) =

0.75 for x < 0,

0.15 for x > 0,
a(x) =

1 for x < 0,

2 for x > 0.
(6.7.1)

The velocity is linear, v(z) = 1− z, so the flux is f(a, φ) = φ(1− φ/a). We used ∆x =

0.005, ∆t = 0.0025, and ran both versions of the scheme for 1600 steps. Figure 6.8

(a) shows the numerical result of the unmodified version (6.5.8) of the HW interface

flux used in our previous paper [25], while Figure 6.8 (b) shows the result produced

by the new modified version (6.5.7). The unmodified version shows a small spurious

overshoot that occurs at the shock. Overshoots like these are observed on some (not

all) Riemann problems. With the modified version of the flux, the overshoot is not

present. The modified flux seems to fix most overshoots of this type, with a few

remaining cases where there are very small overshoots of the same type that occur

when the left and right states of the inital data φ0 are close to a steady state solution.

6.7.2 Example 6.2 (Riemann problem: comparison of schemes)

For Example 6.2, we again use the flux f(a, φ) = φ(1 − φ/a). This time the data

are defined by the Riemann problem

φ0(x) =

0.45 for x < 0,

0.15 for x > 0,
a(x) =

2 for x < 0,

1 for x > 0.
(6.7.2)

Figure 6.9 (a) shows both the fixed version of the HW scheme, and its formally sec-

ond order MUSCL/RK version. Figure 6.9 (b) shows the Godunov scheme and its

MUSCL/RK version, and plot (c) shows the EO and its MUSCL/RK version. The

HW scheme is somewhat more diffusive than the Godunov and EO schemes. Its

main advantage is that it is simpler to implement. We used ∆x = 0.16, ∆t = 0.08,
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Figure 6.9: Example 6.2 (Riemann problem: comparison of schemes): (a) HW

scheme, (b) Godunov scheme, (c) EO scheme. First-order schemes (◦) and second-

order MUSCL/RK versions (×). The solid line is the reference solution.

and ran the schemes for 50 steps. The thin solid line in Figures 6.9 (a)–(c) is the refer-

ence solution, which was calculated with the parameters ∆x = 0.0025, ∆t = 0.00125.

6.7.3 Example 6.3 (bottleneck problem, after Jin & Zhang [101])

Example 6.3 is the bottleneck problem studied by Jin & Zhang [101]. A circular

road of length L = 22.4 km is supposed to have two lanes for most of its length,

but reduces to one lane over a small interval. The so-called jam density (where the
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Figure 6.10: Example 6.3 (bottleneck problem, after Jin & Zhang [101]: (a) mesh plot

using MUSCL/RK version of HW scheme, (b) MUSCL/RK versions of Godunov

(dashed line) and HW (solid line) schemes after 50 time steps.

velocity is zero) is 180 vehicles per kilometer and lane. The flux is defined by

f(a, φ) = φv(φ/a),

v(φ/a) = 5.0461

[(
1 + exp

{
[φ/a− 0.25]

0.06

})−1

− 3.72× 10−6

]
.

(6.7.3)

Note that for a ≡ 1, this is the velocity function due to Kerner & Konhäuser [109]. In

our case, the parameter a(x) is given by

a(x) =

180 cars/km for x ∈ [320l, 400l],

360 cars/km otherwise.
(6.7.4)
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Figure 6.11: Example 6.4 (bottleneck problem, after Garavello & Piccoli [75]): simu-

lated car density using MUSCL/RK version of Godunov scheme for ∆x = 1/160.

The initial datum is

φ0(x) =
a(x)

180

(
28 + 3 sin

2πx

L

)
. (6.7.5)

Following [101], we take L = 800l = 22.4 km, l = 0.028 km, τ = 5 s, ∆x = 0.224 km

and ∆t = τ . We enforce periodic boundary conditions modeling a circular road of

length L. Figure 6.10 (a) shows a plot of the solution computed over 150 time steps,

using the MUSCL/RK version of the HW scheme, while Figure 6.10 (b) shows the

solution after 50 time steps. In Figure 6.10 (b), we see that the HW version is more

diffusive than the Godunov version. The advantage of the HW version is that it is

much easier to implement.

6.7.4 Example 6.4 (bottleneck problem: comparison of schemes, af-

ter Garavello & Piccoli [75])

Example 6.4 is a bottleneck problem studied by Garavello & Piccoli [75]. The

original example is tackled as an initial and boundary problem, but here we treat it
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as a Riemann problem. We use the flux f(a, φ) = φ(1− φ/a) and

φ0(x) =

0.25 for x < −1,

0.66 for x > −1,
a(x) =

1 for x < 0,

2/3 for x > 0.
(6.7.6)

In this example, we record approximate L1 errors defined with respect to a reference

solution, and convergence rates to study the performance of the numerical schemes.

The L1 error is defined by

e1 := ∆̃x

MR∑
j=ML

m∑
i=1

∣∣φ̃n
m(j−1)+i − φn

j

∣∣,
where φ̃n

l̃
and φn

l are the reference solution at x = xl̃ and the approximate solution

at x = xl, respectively, at t = tn; m is the value of ∆x of the approximate solution

divided by that of the reference solution; ML and MR are the indices of the positions

between which we calculate the errors of the numerical approximation; and ∆̃x is

the spatial discretization parameter of the reference solution.

Here and in Example 6.5, the reference solution was calculated using the

MUSCL/RK versions of the Godunov scheme with the discretization parameter

∆̃x = 1/960. For the reference solution and all other computations of this example,

we use λ = 1/3.

Figure 6.11 shows the plot of the reference solution computed until t = 4, using

the MUSCL/RK version of the Godunov scheme. Since for x ∈ [−1, 0], f(aL, φ0(x)) =

0.2244 > 1/6 = maxφ∈[0,2/3] f(aR, φ), a formation of traffic jam from t = 0 can be

observed.

Figures 6.12 and 6.13 show the numerical simulation of the car density at t = 0.1,

t = 0.5, and t = 1, t = 4, respectively, produced by the first-order HW, Godunov and

EO schemes, and the MUSCL/RK version of the HW, Godunov and EO schemes.

Tables 6.1 and 6.2 displays the approximate L1 errors for this example, measured

over the interval [−1, 1].

It is clear from Figures 6.12 and 6.13 that Godunov and EO schemes and their

second order versions are less dissipative than their counterparts based on the HW
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Figure 6.12: Example 6.4 (bottleneck problem, after Garavello & Piccoli [75]): simu-

lated car density. Plots (a, c): first-order schemes (HW, Godunov and EO). Plots (b,

d): second-order schemes (MUSCL/RK versions of HW, Godunov and EO). Plots (a,

b) show solutions at t = 0.1, and plots (c, d) show solutions at t = 0.5.

flux. Tables 6.1 and 6.2 corroborates what we see in the plots, specifically, smaller

errors and faster rates of convergence for Godunov and EO schemes and their sec-

ond order versions than the HW flux based schemes. Moreover, we observe that at

t = 4 Godunov and EO schemes give the same results, the same for their second or-

der versions. It is interesting that for t = 0.1 and t = 4 the Godunov scheme, which

is formally first order accurate, has smaller errors than the second order accurate

version of the HW scheme.
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Figure 6.13: Example 6.4 (bottleneck problem, after Garavello & Piccoli [75]): simu-

lated car density. Plots (a, c): first-order schemes (HW, Godunov and EO). Plots (b,

d): second-order schemes (MUSCL/RK versions of HW, Godunov and EO). Plots (a,

b) show solutions at t = 1, and plots (c, d) show solutions at t = 4.

6.7.5 Example 6.5 (bottleneck problem with zero initial condition,

after Garavello & Piccoli [75])

Example 6.5 is another bottleneck problem studied by Garavello & Piccoli [75].

As in Example 6.4, the original problem is considered as an initial and boundary

problem, but here we treat it as a Riemann problem. We use the flux f(a, φ) =

φ(1− φ/a) with the same parameter a(x) as in Example 4, but now our initial condi-

tion is φ0(x) = 0.4 for x < −1 and φ0(x) = 0 for x > −1. Figure 6.14 shows the plot of

the reference solution computed until t = 10, using the MUSCL/RK version of the
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Figure 6.14: Example 6.5 (bottleneck problem with zero initial condition, after Gar-

avello & Piccoli [75]): simulated car density using MUSCL/RK version of Godunov

scheme for ∆x = 1/160.

Godunov scheme. Since for x < −1, f(aL, φ0(x)) = 0.24 > 1/6 = maxφ∈[0,2/3] f(aR, φ),

also in this case there is a formation of traffic jam from t = 2 approximately. Fig-

ures 6.15 and 6.16 shows the numerical simulation of the car density at t = 0.1,

t = 2, and t = 4, t = 10, respectively, produced by the first-order HW, Godunov and

EO schemes, and the MUSCL/RK version of the HW, Godunov and EO schemes.

It is clear from Figures 6.15 and 6.16 that Godunov and EO schemes and their

second order versions are more accurate than those based on the HG flux.
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t = 0.1 t = 0.5 t = 1 t = 4

J e1 Conv. e1 Conv. e1 Conv. e1 Conv.

= L/∆x 10−3 rate 10−3 rate 10−3 rate 10−3 rate

HW

20 80.617 131.992 128.608 33.215

40 52.017 0.632 73.557 0.844 72.633 0.824 16.434 1.015

80 31.472 0.725 39.635 0.892 41.159 0.819 8.044 1.031

160 17.052 0.884 20.509 0.951 20.745 0.988 3.850 1.063

240 11.779 0.913 13.556 1.021 13.511 1.058 2.453 1.112

320 9.031 0.923 9.974 1.067 10.006 1.044 1.755 1.164

Godunov

20 79.916 113.196 115.266 32.989

40 49.387 0.694 57.937 0.966 57.914 0.993 16.321 1.015

80 27.255 0.858 28.418 1.028 28.628 1.016 7.988 1.031

160 13.412 1.023 13.770 1.045 13.878 1.045 3.822 1.063

240 8.805 1.038 8.850 1.090 8.901 1.095 2.434 1.113

320 6.367 1.127 6.394 1.130 6.446 1.122 1.741 1.165

EO

20 80.222 113.617 112.981 32.989

40 49.705 0.691 57.965 0.971 57.926 0.964 16.321 1.015

80 27.407 0.859 28.444 1.027 28.695 1.013 7.988 1.031

160 13.429 1.029 13.802 1.043 14.005 1.035 3.822 1.063

240 8.867 1.024 8.904 1.081 8.910 1.116 2.434 1.113

320 6.403 1.132 6.479 1.106 6.491 1.101 1.741 1.165

Table 6.1: Example 6.4 (bottleneck problem, after Garavello & Piccoli [75]): approxi-

mate L1 errors for first-order schemes.
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t = 0.1 t = 0.5 t = 1 t = 4

J e1 Conv. e1 Conv. e1 Conv. e1 Conv.

= L/∆x 10−3 rate 10−3 rate 10−3 rate 10−3 rate

HW MUSCL/RK

20 79.118 122.294 123.847 33.101

40 49.852 0.666 63.638 0.942 63.955 0.953 16.377 1.015

80 29.141 0.775 31.380 1.020 27.794 1.202 8.015 1.031

160 14.827 0.975 13.346 1.233 12.888 1.109 3.834 1.064

240 9.844 1.010 8.290 1.174 8.031 1.166 2.440 1.114

320 7.213 1.081 5.942 1.158 5.842 1.106 1.743 1.169

Godunov MUSCL/RK

20 78.168 107.400 108.829 32.988

40 47.304 0.725 53.818 0.997 53.107 1.035 16.321 1.015

80 26.029 0.862 25.989 1.050 26.019 1.029 7.987 1.031

160 12.483 1.060 12.444 1.062 12.492 1.059 3.820 1.064

240 8.067 1.077 7.931 1.111 7.979 1.105 2.431 1.115

320 5.732 1.188 5.677 1.162 5.722 1.156 1.736 1.170

EO MUSCL/RK

20 78.452 107.840 109.870 32.988

40 47.597 0.721 53.874 1.001 53.196 1.046 16.321 1.015

80 26.176 0.863 26.034 1.049 26.040 1.031 7.987 1.031

160 12.506 1.066 12.454 1.064 12.542 1.054 3.820 1.064

240 8.131 1.062 7.944 1.109 7.996 1.110 2.431 1.115

320 5.772 1.191 5.700 1.154 5.742 1.151 1.736 1.170

Table 6.2: Example 6.4 (bottleneck problem, after Garavello & Piccoli [75]): approxi-

mate L1 errors for second-order MUSCL/RK schemes.
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Figure 6.15: Example 6.5 (bottleneck problem with zero initial condition, after Gar-

avello & Piccoli [75]): simulated car density. Plots (a, c): first-order schemes (HW,

Godunov and EO). Plots (b, d): second-order schemes (MUSCL/RK versions of HW,

Godunov and EO). Plots (a, b) show solutions at t = 0.1, and plots (c, d) show solu-

tions at t = 2.
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Figure 6.16: Example 6.5 (bottleneck problem with zero initial condition, after Gar-

avello & Piccoli [75]): simulated car density. Plots (a, c): first-order schemes (HW,

Godunov and EO). Plots (b, d): second-order schemes (MUSCL/RK versions of HW,

Godunov and EO). Plots (a, b) show solutions at t = 4, and plots (c, d) show solu-

tions at t = 10.



Chapter 7

Sedimentation of Polydisperse

Suspensions with a Continuous

Particle Size Distribution

Polydisperse suspensions with particles of N distinct size classes have been

mainly utilized in laboratory experiments. However, in most real-world appli-

cations, for example in mineral processing, the sizes of particles are continu-

ously distributed. In this paper, the one-dimensional kinematic model for batch

sedimentation of polydisperse suspensions of small equal-density spheres is

extended to suspensions with a continuous particle size distribution. For this

purpose, the so-called phase density function Φ = Φ(t, x, ξ), where ξ ∈ [0, 1]

is the normalized squared size of the particles, is introduced, whose integral

with respect to ξ on a interval [ξ1, ξ2], is equivalent to the volume fraction at

(t, x) occupied by the particles in that size range. The resulting mathematical

model, obtained by combining the Masliyah-Lockett-Bassoon (MLB) model for

the solid-fluid relative velocity for each solids species with the concept of phase

density function, is a scalar first-order kinetic equation for Φ. Three numerical

schemes for the solution of this equation are introduced, and a numerical ex-

ample and an L1 error study show that one of these schemes introduces not

239
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much numerical diffusion and without spurious oscillations near discontinu-

ities. Several numerical examples illustrate the simulated behaviour of this kind

of suspensions.

7.1 Introduction

Numerous engineering applications involve the sedimentation of small solid

particles dispersed in a viscous fluid. In so-called polydisperse suspensions, the par-

ticles belong to several species that differ in size or density, and usually segregate

and create areas of different composition. This differential movement is frequently

described by spatially one-dimensional models. In most circumstances, the diameter

of the particles is small compared to that of the flow duct, which justifies identify-

ing each species with a continuous phase. In general, we distinguish between N

different species that give rise to N superimposed continuous phases, where par-

ticles of species i, associated with volume fraction φi, have size di and density ρi,

and di 6= dj or ρi 6= ρj for i 6= j. If vi is the phase velocity of species i, then the

continuity equations of the N species in differential form are ∂tφi + ∂x(φivi) = 0 for

i = 1, . . . , N , where t is time and x is depth. The velocities v1, . . . , vN are assumed

to be given functions of the vector Φ := Φ(x, t) := (φ1(x, t), . . . , φN(x, t))T of local

concentrations. This yields systems of conservation laws of the type

∂tΦ + ∂xf(Φ) = 0, f(Φ) =
(
f1(Φ), . . . , fN(Φ)

)T
,

fi(Φ) = φivi(Φ), i = 1, . . . , N.
(7.1.1)

One-dimensional multi-species flow models given by (7.1.1), which involve no

unknown flow variables other than the concentrations, are called kinematic. Similar

models describe multi-species traffic flow [10, 168, 176, 177, 178] and the settling of

oil-in-water emulsions [149], see [25, 36] for overviews. We recall that for a given

vector Φ, (7.1.1) is called hyperbolic if the Jacobian Jf (Φ) := (∂fi(Φ)/∂φj)i,j=1,...,N has

real eigenvalues only, and strictly hyperbolic if these are moreover pairwiese distinct.

The significance of hyperbolicity for polydisperse sedimentation models will be dis-
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cussed further below. Hyperbolicity ensures that concentration changes, and solu-

tion information in general, propagate at finite speed.

7.2 The mathematical model

7.2.1 Polydisperse suspensions with a discrete particle size distri-

bution

We consider a suspension of particles made of the same material, and therefore

having the same density %s, which are dispersed in a viscous fluid of density %f and

having the dynamic viscosity µf . We assume that the particles can be subdivided

into to N size classes or species, where particles of the i-th species have size di, and

we assume that d1 > d2 > · · · > dN . According to the Masliyah-Lockett-Bassoon

(MLB) model [32], the one-dimensional sedimentation of this mixture is modeled

by the first-order system of N conservation laws

∂tφi + ∂x

(
φi

[
q + ui −

N∑
m=1

φmum

])
= 0, i = 1, . . . , N, (7.2.1)

where t is time, x is depth, φi is the volume fraction of particle species i, ui is the

solid-fluid relative velocity (or slip velocity) of particle species i, and q is the volume

average velocity of the mixture, which can be controlled externally. We limit our-

selves to the simple case of a settling column that is closed at its bottom, for which

q = 0. For small equal-density spheres, the MLB model postulates the equation

ui =
%̄sg

18µf

d2
i Ṽ (φ)(1− φ), (7.2.2)

where %̄s = %s− %f , g is the acceleration of gravity, µf is the viscosity of the fluid, and

φ = φ1+· · ·+φN is the total solids volume fraction. The function V (φ) := Ṽ (φ)(1−φ)
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is the hindered settling factor. We choose the continuous function

Ṽ (φ) =


(1− φ)γ for φ ∈ [0, φq),

(1− φq)
γ φmax − φ

φmax − φq

for φ ∈ [φq, φmax],

0 otherwise,

(7.2.3)

with γ ≥ 1, φq ∈ (0, φmax), and the maximum solid concentration φmax ∈ (0, 1].

To further simplify the model, let v1 := %̄sgd
2
1/(18µf) be the settling velocity of the

largest species. We consider a settling column of height L and introduce the dimen-

sionless space variable x̃ = x/L, the time variable t̃ = (v1/L)t, and the parameters

δi := d2
i /d

2
1, i = 1, . . . , N . Inserting (7.2.2) into (7.2.1) for q = 0. Using the vector

φ = (φ1, . . . , φN)T, we obtain the governing system of conservation laws

∂tφ + ∂xf(φ) = 0, (7.2.4)

where the components f1(φ), . . . , fN(φ) of the flux vector f(φ) are defined by

fi(φ) = φi

(
δi −

N∑
m=1

δmφm

)
V (φ), i = 1, . . . , N. (7.2.5)

The zero-flux boundary conditions relevant to a closed column can then be stated as

fi|x=0 = fi|x=1 = 0, i = 1, . . . , N. (7.2.6)

Finally, one assumes that an initial concentration distribution φ0(x) =

(φ0
1(x), . . . , φ

0
N(x))T is given, i.e.

φi(t, x)|t=0 = φ0
i (x), x ∈ [0, 1], i = 1, . . . , N, (7.2.7)

such that

φ0(x) ∈ D :=
{
Φ = (φ1, . . . , φN)T ∈ RN |

φ1 ≥ 0, . . . , φN ≥ 0, φ1 + · · ·+ φN ≤ φmax

}
for x ∈ [0, 1].
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7.2.2 Properties of the model for a finite number of particle species

In [12] it was proved that the system (7.2.5) is strictly hyperbolic for arbitrary

N ∈ N, size distributions δ1 = 1 > δ2 > · · · > δN , hindered settling functions

Ṽ (φ) with Ṽ (φ) > 0 and Ṽ ′(φ) < 0 for φ ∈ [0, φmax), and vectors φ with φi > 0 for

i = 1, . . . , N and φ < φmax. More precisely, the following theorem was proved in

[12].

Theorem 7.2.1 ([12]) For any vector φ = (φ1, . . . , φN)T ∈ D we recall the abbreviation

φ = φ1 + · · ·+ φN and define the quantities

δ̄ :=
N∑

i=1

δiφi, λ∞ := −2δ̄V (φ) + V (φ)′(δ̄ + φ). (7.2.8)

If δ1 = 1 > δ2 > · · · > δN and the vector φ is chosen from the interior of D, then the

eigenvalues λN(φ) ≤ λN−1(φ) ≤ . . . ≤ λ1(φ) of the Jacobian Jf (φ) satisfy

λi(φ) ∈
(
V (φ)(δi+1 − δ̄), V (φ)(δi − δ̄)

)
, i = 1, . . . , N − 1, (7.2.9)

λN(φ) ∈
(
λ∞, V (φ)(δN − δ̄)

)
. (7.2.10)

Remark: Note that V (φ) > 0 is guaranteed in the previous theorem due to (7.2.3)

since we have assumed that φ ∈ D. Thus the first N − 1 eigenvalues λi(φ) in (7.2.9)

indicate a continuous distribution in the limit N → ∞, whereas the last eigenvalue

λN(φ) plays an extra role in the theory.

Simulations of the settling of polydisperse suspensions with a finite number of

size classes based on numerical solution of (7.2.5), (7.2.6), (7.2.7) are presented in

[12, 20, 22, 170].

7.2.3 Polydisperse suspensions with a continuous particle size dis-

tribution

Polydisperse suspensions with particles of N distinct size classes have been uti-

lized in many laboratory experiments. However, in most applications, for exam-

ple in mineral processing, the sizes of particles are continuously distributed. Since
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most real suspensions have passed through a sieve with a determined mesh-width,

we can assume that there exists a maximum particle size, which is normalized to

one as in the discrete case. Consequently, the local composition of the polydis-

perse suspension as a function of time t and depth x is no longer determined by

a vector φ = φ(t, x), but by a density function Φ = Φ(t, x, ξ), ξ ∈ [0, 1], where∫ ξ2
ξ1

Φ(t, x, ξ) dξ denotes the volume fraction at (t, x) occupied by all particles with

normalized squared size ξ1 < ξ < ξ2.

To derive a kinetic equation for the evolution of Φ, we may approximate the

continuous size distribution by a discrete one, multiply the i-th equation in (7.2.5)

by δi − δi−1, sum the equations from i1 to i2, and then require that the summed

equation holds for all choices 1 ≤ i1 ≤ i2 ≤ N . Passing to N →∞ and replacing the

sum in the flux in (7.2.5) by an integration, we obtain that the following equation

holds for all 0 ≤ ξ1 < ξ2 ≤ 1:∫ ξ2

ξ1

{
∂tΦ(t, x, ξ) + ∂x

(
Φ(t, x, ξ)V

(
Φ(t, x)

)
[ξ − ξ(t, x)]

)}
dξ = 0, (7.2.11)

where the total volume fraction Φ and the local average value ξ of ξ with respect to

Φ are given by the respective expressions

Φ(t, x) :=

∫ 1

0

Φ(t, x, ξ) dξ, ξ(t, x) :=

∫ 1

0

ξ Φ(t, x, ξ) dξ. (7.2.12)

Since (7.2.11) is assumed to hold for all suitable ξ1 < ξ2, the integrand should vanish,

which leads to the following kinetic equation, written down in a compact form by

dropping the arguments t, x and ξ of the functions Φ, Φ and ξ:

∂tΦ + ∂x

(
ΦV (Φ)(ξ − ξ)

)
= 0. (7.2.13)

7.2.4 Kinetic problem in final form

For easy reference, we collect here the ingredients of the kinetic model in final

form. For a given final time T > 0, we seek a function

Φ : [0, T ]× [0, 1]× [0, 1] → [0,∞)
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which satisfies the kinetic equation

∂tΦ(t, x, ξ) + ∂x

(
Φ(t, x, ξ)V (Φ(t, x))[ξ − ξ(t, x)]

)
= 0,

t ∈ (0, T ], x ∈ (0, 1)
(7.2.14)

subject to the initial condition

Φ(0, x, ξ) = Φ0(x, ξ), x ∈ [0, 1], Φ0 : [0, 1]× [0, 1] → [0,∞) (7.2.15)

and zero-flux boundary conditions, i.e.

F (t, 0, ξ) = F (t, 1, ξ) = 0 for all ξ ∈ [0, 1] and all t ∈ [0, T ] (7.2.16)

with the “kinetic flux function”

F (t, x, ξ) := Φ(t, x, ξ)V (Φ(t, x))[ξ − ξ(t, x)]. (7.2.17)

Recall that we have put L = 1 in the dimensionless form. However, this is not an

important restriction in the sequel.

7.2.5 Cumulative quantities for the conservation of mass

This subsection is presented for two purposes. First, we introduce a concept that

will be important for the eigenvalue analysis of the hyperbolic system (7.2.14) in the

asymptotic case N → ∞ of infinitely many species which will be presented next.

On the other hand, we provide a very simple numerical test for the conservation of

mass with respect to the continuum of all species. We first define the primitive Φ∗ of

the phase density Φ with respect to the kinetic parameter ξ by

Φ∗(t, x, ξ) :=

∫ ξ

0

Φ(t, x, ξ′) dξ′. (7.2.18)

Note that

Φ∗(t, x, ξ2)− Φ∗(t, x, ξ1) =

∫ ξ2

ξ1

Φ(t, x, ξ′) dξ′ (7.2.19)
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determines the volumetric concentration at (t, x) occupied by all particles with di-

mensionless size 0 ≤ ξ1 ≤ ξ2 ≤ 1. Then we can also rewrite the moments (7.2.12) of

Φ in terms of Φ∗ as

Φ(t, x) = Φ∗(t, x, 1), ξ(t, x) = Φ∗(t, x, 1)−
∫ 1

0

Φ∗(t, x, ξ) dξ, (7.2.20)

where we have applied integration by parts for ξ(t, x). We also obtain from (7.2.14)

by using integration by parts the conservation law of mass with respect to all species

for all t ∈ (0, T ] and x ∈ (0, L):

∂tΦ
∗(t, x, ξ)

+ ∂x

(
V (Φ∗(t, x, 1))

[
Φ∗(t, x, ξ)(ξ − ξ(t, x))−

∫ ξ

0

Φ∗(t, x, ξ) dξ

])
= 0.

(7.2.21)

This may be regarded as a separate kinetic equation for the so-called cumulative

phase density Φ∗, but we will not use (7.2.20) and (7.2.21) for numerical purposes.

Equation (7.2.21) contains exactly the same information as the original kinetic equa-

tion, but has two major advantages: The quantity Φ∗ is a standard volume fraction,

and thus has a direct physical meaning. The second advantage is important for the

eigenvalue analysis in the asymptotic caseN →∞, namely the fact that the cumula-

tive quantity Φ∗ has better regularity properties in the case that Φ is a distributional

or singular solution, which cannot be excluded a priori.

7.3 The eigenvalue problem for the kinetic equation

7.3.1 Introduction to the eigenvalue problem and formulation of

the basic integral equation

Next we will pass from the eigenvalue problems of the hyperbolic systems with

finitely many particle species to the eigenvalue problem corresponding to the cu-

mulative kinetic phase density Φ∗(t, x, ξ) describing the continuous distribution of

particle sizes with the kinetic variable ξ ∈ [0, 1]. For this analysis, the arguments t
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and x in Φ∗ are fixed parameters, which will be omitted in the sequel by writing

simply Φ∗ = Φ∗(ξ) instead of Φ∗(t, x, ξ).

We start with the hyperbolic system (7.2.5) corresponding to N different particle

species, but with a slight change of notation which is better adapted for the contin-

uum limit N →∞. We introduce for simplicity the N equidistant numbers

ξi := i/N, i = 1, . . . , N, (7.3.1)

where ξi = δN+1−i, since the finite sequence of the δi is starting with δ1 = ξN = 1 and

decreasing. Adapted to the definition of the quantities ξi, we will also reverse the

numbering of the basic variables φi in the hyperbolic system (7.2.5) by introducing

the new basic variables Φi := φN+1−i. Now we may rewrite (7.2.5) as

∂tΦi + ∂xFi = 0, i = 1, . . . , N, (7.3.2)

where the fluxes Fi are given functions of the new basic variables Φi according to

Fi := Φi

(
ξi −

N∑
n=1

Φnξn

)
V

(
N∑

n=1

Φn

)
, i = 1, . . . , N. (7.3.3)

Next, we pass to the cumulative volume fractions Φ∗
n and the corresponding cumu-

lative fluxes F ∗
n defined by

Φ∗
n :=

n∑
i=1

Φi, F ∗
n :=

n∑
i=1

Fi, n = 1, . . . , N. (7.3.4)

By using the identities

n∑
i=1

Φiξi = Φ∗
nξn −

n−1∑
i=1

Φ∗
i (ξi+1 − ξi), n = 1, . . . , N, (7.3.5)

we can also express the cumulative fluxes in terms of the cumulative volume frac-

tions as

F ∗
n = −

[
Φ∗

n

(
Φ∗

NξN −
N−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)

−

(
Φ∗

nξn −
n−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)]
V (Φ∗

N), n = 1, . . . , N.

(7.3.6)
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From these fluxes we form for n, k = 1, . . . , N the Jacobian N × N matrix with the

coefficients
∂F ∗

n

∂Φ∗
k

=
∂F ∗

n

∂Φ∗
k

(Φ∗
1, · · · ,Φ∗

N),

and obtain
∂F ∗

n

∂Φ∗
k

= −δnk

(
Φ∗

NξN −
N−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)
V (Φ∗

N)

−

(
δNkξN − (ξk+1 − ξk)

N∑
i=k

δi(N−1)

)
Φ∗

nV (Φ∗
N)

+

(
δnkξn − (ξk+1 − ξk)

N∑
i=k

δi(n−1)

)
V (Φ∗

N)

− δNk

[
Φ∗

n

(
Φ∗

NξN −
N−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)
−

(
Φ∗

nξn −
n−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)]
V ′(Φ∗

N).

(7.3.7)

Next we prescribe a vector with N real components Ψ∗
1,. . . ,Ψ∗

N and apply the Jaco-

bian matrix in (7.3.7) on it to obtain the resulting vector with components

N∑
k=1

∂F ∗
n

∂Φ∗
k

Ψ∗
k

= −Ψ∗
n

(
Φ∗

NξN −
N−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)
V (Φ∗

N)

−

(
Ψ∗

NξN −
N−1∑
k=1

(ξk+1 − ξk)Ψ
∗
k

)
Φ∗

nV (Φ∗
N) +

(
Ψ∗

nξn −
n−1∑
k=1

(ξk+1 − ξk)Ψ
∗
k

)
V (Φ∗

N)

−Ψ∗
N

[
Φ∗

n

(
Φ∗

NξN −
N−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)
−

(
Φ∗

nξn −
n−1∑
i=1

Φ∗
i (ξi+1 − ξi)

)]
V ′(Φ∗

N).

(7.3.8)

The eigenvalue problem for the cumulative N ×N hyperbolic system

∂tΦ
∗
n + ∂xF

∗
n = 0, n = 1, . . . , N, (7.3.9)
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with an eigenvalue λ and an eigenvector (Ψ∗
1, . . . ,Ψ

∗
N)T is

N∑
k=1

∂F ∗
n

∂Φ∗
k

Ψ∗
k = λΨ∗

n, n = 1, . . . , N, (7.3.10)

whereas the eigenvalue problem for the original system reads

N∑
k=1

∂Fn

∂Φk

Ψk = λΨn, n = 1, . . . , N. (7.3.11)

The relation between (7.3.10) and (7.3.11) is explained in the following lemma.

Lemma 7.3.1 For a given vector Φ = (Φ1,. . . ,ΦN)T ∈ RN , let Ψ = (Ψ1, . . . ,ΨN)T ∈
RN be an eigenvector for the real eigenvalue λ such that (7.3.11) is satisfied. Define the

cumulative quantitites

Ψ∗
n :=

n∑
i=1

Ψi, n = 1, . . . , N.

Then Ψ∗ = (Ψ∗
1, . . . ,Ψ

∗
N)T is eigenvector of (7.3.10) with the same eigenvalue λ.

Proof. We define for n, k = 1, . . . , N the Jacobian N ×N matrix ∇∗F
∗ with the coef-

ficients
∂F ∗

n

∂Φ∗
k

=
∂F ∗

n

∂Φ∗
k

(Φ∗
1, · · · ,Φ∗

N),

the Jacobian N ×N matrix ∇F with the coefficients

∂Fn

∂Φk

=
∂Fn

∂Φk

(Φ1, · · · ,ΦN),

and the regular N ×N matrix

T =


1 0 · · · 0

1 1
. . . ...

... . . . 0

1 · · · · · · 1


such that Ψ∗ = TΨ. Then we have

(∇F )Ψ = λΨ
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⇔ (∇F )T−1(TΨ) = T−1(λTΨ)

⇔ (∇F )T−1Ψ∗ = T−1(λΨ∗)

⇔ (T(∇F )T−1)Ψ∗ = λΨ∗,

⇔ (∇∗F
∗)Ψ∗ = λΨ∗,

which is the statement of the lemma. 2

Corollar 1 Consider a vector Φ∗ = (Φ∗
1, . . . ,Φ

∗
N)T ∈ D and define the quantities

ξ :=
N∑

i=1

ξiΦi, λ∞ := −2ξV (Φ∗
N) + V (Φ∗

N)′(ξ + Φ∗
N). (7.3.12)

Then the eigenvalues λ1(Φ
∗) ≥ λ2(Φ

∗) ≥ . . . ≥ λN(Φ∗) of the eigenvalue problem

(7.3.10) satisfy

ξ +
λi(Φ

∗)

V (Φ∗
N)

∈ (ξi−1, ξi), i = 2, . . . , N, (7.3.13)

ξ +
λ1(Φ

∗)

V (Φ∗
N)

∈
(
ξ +

λ∞
V (Φ∗

N)
, ξ1

)
=

(
V (Φ∗

N)′

V (Φ∗
N)

(ξ + Φ∗
N)− ξ, ξ1

)
(7.3.14)

Proof. The corollary is a direct consequence of Theorem 7.2.1 and Lemma 7.3.1. 2

Lemma 7.3.1 motivates why we consider the cumulative problem (7.3.10) instead

of the original problem (7.3.11), because in the limit N → ∞ the cumulative eigen-

vectors will be replaced by integrals.

Let Φ∗ : [0, 1] → [0, φmax] be any continuously differentiable and monotone func-

tion such that Φ∗(0) = 0 and Φ∗(1) ≤ φmax. As in (7.2.20), we put

Φ = Φ∗(1), ξ = Φ−
∫ 1

0

Φ∗(ξ) dξ, (7.3.15)

and require that

V (Φ) 6= 0 and Φ < φmax. (7.3.16)

The first condition in (7.3.16) implies the second one because of the constitutive

law for Ṽ given in (7.2.3). We define for the limit N → ∞ the integral operator



7.3 The eigenvalue problem for the kinetic equation 251

A∗ : C1[0, 1] → C1[0, 1] for any continuously differentiable function Ψ∗ : [0, 1] → R,

according to (7.3.8) by

(A∗Ψ∗)(ξ) := −Ψ∗(ξ)ξV (Φ)−
(

Ψ∗(1)−
∫ 1

0

Ψ∗(η) dη

)
Φ∗(ξ)V (Φ)

+

(
Ψ∗(ξ)ξ −

∫ ξ

0

Ψ∗(η) dη

)
V (Φ)

−Ψ∗(1)

[
Φ∗(ξ)ξ −

(
Φ∗(ξ)ξ −

∫ ξ

0

Φ∗(η)dη

)]
V ′(Φ).

(7.3.17)

The analogue of the discrete eigenvalue problem (7.3.10) will now be considered in

the limit N →∞ and reads A∗Ψ∗ = λΨ∗, where we put

ξλ = ξ +
λ

V (Φ)
(7.3.18)

and have to require for all ξ ∈ [0, 1] that

(ξ − ξλ)Ψ
∗(ξ) =

∫ ξ

0

Ψ∗(η) dη +

(
Ψ∗(1)−

∫ 1

0

Ψ∗(η) dη

)
Φ∗(ξ)

+ Ψ∗(1)
V ′(Φ)

V (Φ)

[
Φ∗(ξ)(ξ − ξ) +

∫ ξ

0

Φ∗(η) dη

]
.

(7.3.19)

7.3.2 Solution of the eigenvalue problem

For the solution we distinguish two cases.

Case A: Ψ∗(1) = 0.

This case is important for the discussion of the uniqueness problem of the eigen-

functions corresponding to a given eigenvalue λ. We put ξ := 1 in (7.3.19) to obtain

first with (7.3.16) ∫ 1

0

Ψ∗(η) dη = 0.

Here the eigenvalue problem reduces to

(ξ − ξλ)Ψ
∗(ξ) =

∫ ξ

0

Ψ∗(η) dη. (7.3.20)
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We first assume that ξλ /∈ [0, 1] and obtain from (7.3.20) that Ψ∗ is arbitrarily smooth

with zero-derivative, such that Ψ∗(ξ) = 0 for all ξ ∈ [0, 1]. Next we assume that

ξλ ∈ [0, 1] and obtain from (7.3.20) in the limit ξ → ξλ∫ ξλ

0

Ψ∗(η) dη = 0,

which implies

(ξ − ξλ)Ψ
∗(ξ) =

∫ ξ

ξλ

Ψ∗(η) dη.

Thus also in this subcase we have that Ψ∗ is arbitrarily smooth with zero-derivative

and hence zero for all ξ ∈ [0, 1]. We finally conclude that in the case A we have only

the zero- solution for Ψ∗, which is not an eigensolution.

Case B: Ψ∗(1) = 1.

This is a normalization condition for the eigenfunctions which can be assumed

without loss of generality if the first case does not hold. Assume first that we have

two eigenfunctions Ψ∗
1 and Ψ∗

2 with the same real eigenvalue λ, which both satisfy

the normalization condition Ψ∗
1(1) = Ψ∗

2(1) = 1. Then we conclude that Ψ∗ = Ψ∗
1−Ψ∗

2

satisfies equation (7.3.20) in case A with Ψ∗(1) = 0, such that Ψ∗ is identically zero

and hence Ψ∗
1 = Ψ∗

2. This means that in case B, the eigenvalue problem admits at

most one eigenfunction with respect to a fixed eigenvalue λ. If we put ξ := 1 in

(7.3.19), then we can calculate from (7.3.15) that

1−
∫ 1

0

Ψ∗(η) dη =
ξλ

1− Φ
− ξ

V ′(Φ)

V (Φ)
. (7.3.21)

Thus the eigenvalue problem may be rewritten in the form

(ξ − ξλ)Ψ
∗(ξ) =

∫ ξ

0

Ψ∗(η) dη + F (ξ) with

F (ξ) =
ξλ

1− Φ
Φ∗(ξ)− V ′(Φ)

V (Φ)

[
ξΦ∗(ξ)−

∫ ξ

0

Φ∗(η) dη

]
.

(7.3.22)



7.3 The eigenvalue problem for the kinetic equation 253

But F is continuously differentiable on ξ ∈ (0, 1) due to our assumptions, and there-

fore so is the expression Ψ∗(ξ) on the left-hand side of (7.3.22), except at most for

ξ = ξλ ∈ (0, 1). Thus we define at least for ξ ∈ (0, 1), ξ 6= ξλ, the quantities

Φ(ξ) :=
dΦ∗

dξ
(ξ), Ψ(ξ) :=

dΨ∗

dξ
(ξ), (7.3.23)

and obtain from the first equation in (7.3.22) for ξ ∈ (0, 1), ξ 6= ξλ, the necessary

condition

Ψ(ξ) =
Φ(ξ)

ξ − ξλ

[
ξλ

1− Φ
− V ′(Φ)

V (Φ)
ξ

]
. (7.3.24)

In order to obtain a solution of the eigenvalue problem, also the condition (7.3.21)

has to be satisfied. This requires that the right-hand side in (7.3.24) is continuous for

0 ≤ ξ ≤ 1 and hence integrable. We summarize our results and interpret equation

(7.3.24) as an eigensolution of the original eigenvalue problem (7.3.11) in the contin-

uum limit N →∞, provided that

a) in the case ξλ ∈ [0, 1] there exists for ξ ∈ [0, 1] \ {ξλ} the limit

Ψ(ξλ) := lim
ξ→ξλ

Φ(ξ)

ξ − ξλ

[
ξλ

1− Φ
− V ′(Φ)

V (Φ)
ξ

]
, (7.3.25)

b) the integration constant C ∈ R of the primitive function

Ψ∗(ξ) := C +

ξ∫
0

Φ(η)

η − ξλ

[
ξλ

1− Φ
− V ′(Φ)

V (Φ)
η

]
dη , ξ ∈ [0, 1] , (7.3.26)

is choosen such that the normalization condition Ψ∗(1) = 1 is satisfied.

If Ψ∗ is a normalized eigensolution of the eigenvalue problem (7.3.19) with eigen-

value ξλ, then it is necessarily given by (7.3.26).

In numerical tests it is very important to decide whether the values of ξλ in

(7.3.18) for the discrete eigenvalue problem are in the interval [0, 1] or not. For this

purpose we have done extensive numerical studies which show that the discrete

values for ξλ are in general in the interval [0, 1].



254 CHAPTER 7. CONTINUOUS PARTICLE SIZE DISTRIBUTION

7.4 Numerical scheme

7.4.1 Discretization parameters and boundary conditions

We discretize time by setting tm := mδt for m = 0, . . . ,M , where δt := T/M

with M ∈ N. The phase space is discretized by xk := kδx for k = 0, . . . ,K, where

δx := L/K and K ∈ N is given. We set ξn := nδξ for n = 0, . . . ,N , where N ∈ N and

δξ := 1/N . The numbers M , K and N are given discretization parameters. Finally,

we denote by φm
k,n the finite difference approximation of Φ(tm, xk−1/2, ξ) for ξn−1 ≤

ξ < ξn. At a fixed time t = tm, we discretize Φ = Φ(tm, x, ξ) in the x-ξ phase space by

the piecewise constant function ΦD(tm, x, ξ), where ΦD(tm, x, ξ) = φm
k,n on the phase

space cell

Ωk,n :=
{
(x, ξ) | xk−1 ≤ x < xk, ξn−1 ≤ ξ < ξn

}
, k = 1, . . . ,K, n = 1, . . . ,N .

Thus, ΦD(tm, ·, ·) is given by a K ×N matrix. However, for the numerical computa-

tion we only store the updated current initial data, starting at the current time step

with the initial matrix (Φ0
k,n) ∈ RK×N .

Formulating boundary conditions for a kinetic scheme is in general a subtle is-

sue. Below we will discuss two cases for numerical boundary conditions, which can

be sufficiently described in every time step tm by two given vectors

Φm
− :=

(
φm

0,1, φ
m
0,2, . . . , φ

m
0,N
)
, Φm

+ :=
(
φm
K+1,1, φ

m
K+1,2, . . . , φ

m
K+1,N

)
∈ RN .

They describe essentially initial value problems, but from the numerical point of

view they are still important, since the computation can only be performed on a

finite domain.

Case 1: Boundary data for Riemann initial data.

This is the simplest case, where we can choose the boundary data as

φm
0,n = φm

1,n, φm
K+1,n = φm

K,n, n = 1, . . . ,N . (7.4.1)
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This is sufficient for the numerical study of certain Riemann initial value problems

on the spatial computational domain [0, L], provided that up to the final time t = T ,

no signal coming from the interior of the spatial domain has reached the boundaries.

Case 2: Periodic boundary conditions.

If we have a periodic initial phase density which satisfies the condition

Φ(0, x, ξ) = Φ(0, x+ L, ξ) for all x ∈ R and all ξ ∈ [0, 1],

then we can just put boundary data

φm
0,n = φm

K,n, φm
K+1,n = φm

1,n, n = 1, . . . ,N . (7.4.2)

In these two cases described above, we define the boundary phase cells

Ω0,n :=
{
(x, ξ) | − δx ≤ x < 0, ξn−1 ≤ ξ < ξn

}
,

ΩK+1,n :=
{
(x, ξ) | L ≤ x < L+ δx, ξn−1 ≤ ξ < ξn

}
,

on which ΦD(tm, x, ξ) assumes the piecewise constant boundary values of (7.4.1) or

(7.4.2). Thus, ΦD(tm, x, ξ) is given on the extended domain −δx ≤ x ≤ L + δx, 0 ≤
ξ ≤ 1 in a piecewise constant manner by the extended matrix (φm

k,n)k=0,...,K+1,n=1,...,N .

Finally, we define for k = −1, . . . ,K the quantities xk+1/2 := (k + 1/2)δx. For

k = 0, . . . ,K and n = 1, . . . ,N , we define the intervals J̃k := [xk−1/2, xk+1/2] and the

rectangles, also-called dual phase space cells, Ω̃k,n := J̃k × [ξn−1, ξn]. The latter have

the area |Ω̃k,n| = δxδξ, as have the cells Ωk,n. However, for the sedimentation pro-

cess in a closed vessels we need the so-called zero-flux boundary condition, which

cannot be captured appropriate by this approach presented below. This boundary

condition has to supplement the discretization of the kinetic equation which will be

described now.
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7.4.2 Discretization of the kinetic equation

Using the kinetic equation (7.2.14), we can exactly calculate at time t = tm the

time derivative of the integral average

φ̃k,n(t) :=
1

δxδξ

∫∫
Ω̃k,n

ΦD(t, x, ξ) dx dξ, k = 0, . . . ,K, n = 1, . . . ,N . (7.4.3)

To this end, we consider for ξn−1 < ξ < ξn the relationships

ΦD(tm, xk−1/2, ξ) = φm
k,n, k = 0, . . . ,K + 1, n = 1, . . . ,N . (7.4.4)

Using the following definitions, which are valid for every x with xk−1 < x < xk,

Am
k :=

∫ 1

0

ΦD(tm, x, ξ) dξ = δξ

N∑
n=1

φm
k,n,

Bm
k :=

∫ 1

0

ξΦD(tm, x, ξ) dξ = δξ

N∑
n=1

φm
k,n

ξn + ξn−1

2
,

we obtain by taking the integral average of (7.2.14) with respect to the phase space

cell Ω̃k,n:

dφ̃k,n

dt
(tm)

+
1

δxδξ

∫ ξn

ξn−1

(
φm

k+1,nV (Am
k+1)(ξ −Bm

k+1)− φm
k,nV (Am

k )(ξ −Bm
k )
)
dξ = 0,

(7.4.5)

which implies

δx
dφ̃k,n

dt
(tm) = −φm

k+1,nV (Am
k+1)

(
ξn + ξn−1

2
−Bm

k+1

)
+ φm

k,nV (Am
k )

(
ξn + ξn−1

2
−Bm

k

)
,

k = 0, . . . ,K, n = 1, . . . ,N .

Note that for the integration with respect to x, we have used here the fundamen-

tal theorem of infintesimal calculus, and the integration with respect to ξ has been

performed exactly as well, so conservativity is ensured. Consequently, for the time

evolution, the first proposed numerical scheme (Scheme 1) is the following:

φm+1
k,n =

1

2
(φm

k+1,n + φm
k−1,n)− δt

2

(
dφ̃k,n

dt
+
dφ̃k−1,n

dt

)
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=
1

2
(φm

k+1,n + φm
k−1,n)− 1

2

δt
δx

[
φm

k+1,nV (Am
k+1)

(
ξn + ξn−1

2
−Bm

k+1

)
− φm

k−1,nV (Am
k−1)

(
ξn + ξn−1

2
−Bm

k−1

)]
, k = 1, . . . ,K, n = 1, . . . ,N .

If we use the following marching formula in conservation form:

φm+1
k,n = φm

k,n − λ
(
hm

k+1/2,n − hm
k−1/2,n

)
, λ :=

δt
δx
,

k = 1, . . . ,K, n = 1, . . . ,N ,

(7.4.6)

where hm
k+1/2,n represents the numerical flux, Scheme 1 is the well-known conserva-

tive first-order central difference scheme of Lax-Friedrichs with numerical fluxes

hm
k+1/2,n = hn(Φm

k ,Φ
m
k+1) =

1

2λ
(φm

k,n − φm
k+1,n) +

1

2

(
f̄n(Φm

k ) + f̄n(Φm
k+1)

)
,

k = 0, . . . ,K, n = 1, . . . ,N ,

with Φm
k := (φm

k,1, . . . , φ
m
k,N ) and f̄n(Φm

k ) := φm
k,nvn(Φm

k ), where vn(Φm
k ) is defined by

vn(Φm
k ) := V (Am

k )

(
1

2
(ξn + ξn−1)−Bm

k

)
. (7.4.7)

We also define the vector f̄(Φm
k ) := (f̄1(Φ

m
k ), . . . , f̄N (Φm

k ))T. This scheme is stable

provided the following CFL condition holds

λmax ρ(Jf̄ (Φ
m
k )) ≤ 1, (7.4.8)

where ρ(·) denotes the spectral radius, and Jf̄ (Φ
m
k ) the N ×N Jacobian of f̄(Φm

k ). We

approximate max ρ(Jf̄ (Φ
m
k )) by

α := max
k,m,n

∣∣vn(Φm
k )
∣∣.

The second proposed numerical scheme (Scheme 2), which is introduced in [25],

is given by (7.4.6) with the following numerical fluxes, where vn(Φm
k ) is defined by

(7.4.7):

hm
k+1/2,n = φm

k,nmax
{
0, vn(Φm

k+1)
}

+ φm
k+1,nmin

{
0, vn(Φm

k+1)
}
,

k = 0, . . . ,K, n = 1, . . . ,N .
(7.4.9)
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When negative velocities are present, which is possible in our model, numeri-

cal experiments with Scheme 2 produce sharply resolved interfaces, but with over-

shoot or oscillations in certain situations. To overcome this shortcoming we pro-

pose a more viscous version of Scheme 2 that provides a good compromise between

sharply resolved interfaces and suppression of overshoots. Scheme 3 is the conser-

vative formula (7.4.6) with numerical fluxes

hm
k+1/2,n =

1

2

{
φm

k+1,nvn(Φm
k+1) + φm

k,nvn(Φm
k )
}
−
Em

k+1

2
(φm

k+1,n − φm
k,n)

−
φm

k,n

2

∣∣vn(Φm
k )− vn(Φm

k+1)
∣∣ sgn(φm

k+1,n − φm
k,n),

k = 0, . . . ,K, n = 1, . . . ,N ,

whereEm
k+1 := max

{
|v1(Φ

m
k+1)|, . . . , |vN (Φm

k+1)|
}

, and which is also introduced in [25].

For Schemes 2 and 3, according to [25], there is not a proof of stability, but based

on an analysis of a model with non-negative velocities, the following CFL condition

is given

λmax
k,m,n

∣∣vn(Φm
k )
∣∣ =: λα ≤ 1

2
. (7.4.10)

It is easy to prove that for our model α = 1.

To compute φm
0,n and φm

K+1,n, we utilize (7.4.1) or (7.4.2) for the Riemann or the

periodic initial value problem, respectively. However, for the description of a sedi-

mentation process in a closed vessel, we have to formulate zero-flux boundary con-

ditions and to modify the scheme as described below.

Case 3: Zero-flux boundary conditions.

When dealing with zero-flux boundary conditions, we always set in the conser-

vative formula (7.4.6)

hm
1/2,n = hm

K+1/2,n = 0 , m = 0, . . . ,M, n = 1, . . . ,N . (7.4.11)
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7.4.3 Numerical test of mass conservation

From the numerical point of view, we compute the original phase density Φ in

terms of the matrix with coefficients φm
k,n according to the numerical scheme de-

scribed above. In order to justify the numerical mass conservation for a sedimenta-

tion process in a closed vessel, we only have to check that the ‘species vector’ with

components

Sm
n :=

K∑
k=1

φm
k,n, n = 1, . . . ,N , (7.4.12)

is approximatively conserved in time, i.e. independent on the time step tm. If we

define at the current time step tm the cumulative K × N phase density matrix with

coefficients

φ∗mk,n :=
n∑

ν=1

φm
k,ν , (7.4.13)

then we can also compute at each time step tm the cumulative N -vector with coeffi-

cients

S∗mn :=
K∑

k=1

φ∗mk,n =
K∑

k=1

n∑
ν=1

φm
k,ν (7.4.14)

for the indices n = 1, . . . ,N . Instead of using (7.4.12), we can also check numeri-

cally whether this cumulative vector is independent on the time step tm in order

to justify mass conservation for the batch sedimentation process. Of course, for the

implementation we need not calculate and store the cumulative matrix with the co-

efficients given in (7.4.13) because we can directly calculate the double sum on the

right hand side of (7.4.14). The conservation property of Sm
k may now be interpreted

as the fact that none of the species will exchange mass with other species or with the

fluid, so that the total mass of each species is conserved during the sedimentation

process.
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7.5 Numerical examples

Recall that the equi-distribution of particle size is represented by the distribution

function

Feq(ξ) := ξ, ξ ∈ [0, 1]. (7.5.1)

On the other hand, the Rosin-Rammler distribution function is given by

FRR(ξ) := 1− exp

(
−
[
d1

√
ξ

l

]m)
, ξ ∈ [0, 1], (7.5.2)

where l is a characteristic size, m is an uniformity coefficient, and d1 is the diameter

of the largest species. Since FRR(1) < 1, we use the normalized version

FRRn(ξ) := FRR(ξ)/FRR(1), ξ ∈ [0, 1]. (7.5.3)

If φtot(x) denotes the initial profile of total solids volume fraction, then the initial

condition of the solids phase density of a suspension with particle size distribution

F(ξ) is

Φ0(x, ξ) = φtot(x)F ′(ξ), x ∈ [0, L], ξ ∈ [0, 1], F ′(ξ) :=
d

dξ
F(ξ). (7.5.4)

In all examples, we employ Ṽ (φ) given by (7.2.3) with γ = 2.7, φmax = 0.8 and

φq = (γφmax−1)/(γ−1) = 0.6824, so the transition between the linear and non-linear

portions of Ṽ (φ) is smooth.

7.5.1 Examples with zero-flux boundary conditions

Example 7.1: Sedimentation of a suspension with equi-distribution of particle

size

As an example where the boundary conditions are of zero-flux type, we present

the simulation of a sedimentation of a suspension with equi-distributed particle

sizes in a closed vessel. The normalized material parameters are L = 1, v1 = 1, and
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(a) (b)

Figure 7.1: Example 7.1: Comparison of numerical schemes for the simulated total

solids volume fraction as a function of the spatial position. (a) t = 5, (b) t = 20.

the initial total solids volume fraction φtot(x) = 0.1, x ∈ [0, L]; and the discretization

parameters are δx = 1/3600, λ = 0.5 and δξ = 1/128. (Note that with these parame-

ters, we measure time in multiples of the time a particle of the largest species needs

to settle through the vessel in pure fluid.)

In this example, we record approximate L1 errors defined with respect to the

reference solution. We introduce two types of L1 error, denoted e1 and e2, which are

defined by

e1 := δ̃ξδx

N∑
n=1

µ∑
j=1

MR∑
k=ML

∣∣φ̃m
µ(n−1)+j,k − φm

n,k

∣∣, e2 := δ̃ξδx

N∑
n=1

µ∑
j=1

∣∣∣∣∣
MR∑

k=ML

(
φ̃m

µ(n−1)+j,k − φm
n,k

)∣∣∣∣∣ ,
where φ̃m

ñ,l and φm
n,l are the reference solution for ξ = ξñ and the approximate solution

for ξ = ξn, respectively, both at x = xl and t = tm; µ is the value ofN of the reference

solution divided by that of the approximate solution; ML and MR are the indices of

the positions between which we calculate the errors of the numerical approxima-

tion; and δ̃ξ is the size discretization parameter of the reference solution. The error

study of the numerical schemes is made using a reference solution calculated with

Scheme 3 with the size discretization parameter δ̃ξ = 1/128.

Figures 7.1 and 7.2 show the simulated total solids volume fraction as a function
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(a)

(b) (c)

Figure 7.2: Example 7.1: Comparison of numerical schemes for the simulated solids

phase density as a function of the normalized squared size at x = 1 for three different

times. (a) Scheme 1, (b) Scheme 2, (c) Scheme 3.

of the spatial position for t = 5 and t = 20, and the simulated solids phase density

in function of the normalized squared size for t = 1, t = 5 and t = 20, respectively,

produced by Schemes 1, 2 and 3, while Tables 7.1 and 7.2 display the approximate

L1 errors for, the solids phase density and the solids volume fraction, respectively,

measured over the domain [0, 1]× [0, 1].

Figure 7.1 shows that Scheme 2 introduces less numerical diffusion than

Scheme 1 and Scheme 3 do, but with spurious oscillations, while both tables indi-

cate that Scheme 3 yields solutions with less L1 error and greater convergence rate.

Moreover, Figure 7.2 shows the increasing numerical viscosity of the Scheme 1 as
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(a) (b)

(c)

Figure 7.3: Example 7.1: Simulated solids phase density at (a) t = 1, (b) t = 5, (c)

t = 20.

the time advances, while solutions at x = 1 generated by Scheme 2 and Scheme 3

do not change. Therefore, we choose the Scheme 3 for simulating all the examples

of this work.

Figure 7.3 shows the simulated solids phase density as a function of the normal-

ized squared size and the spatial position, at t = 1, t = 5 and t = 20, produced by

Scheme 3.

In Figures 7.3 (a) and (b) we observe that the larger particles settle faster than

the smaller ones, and therefore the larger ones fill the bottom of the vessel and form
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(a) (b)

(c) (d)

Figure 7.4: Example 7. 1: Simulated solids phase density as a function of the nor-

malized squared size for three different times. (a) x = 0.5, (b) x = 0.75, (c) x = 0.9,

(d) x = 1.0.

a thick sediment layer. We also see that the smaller particles are partially removed

from the bottom and with those in suspension form a very thin and concentrated

sediment layer above the larger ones.

The formation of the concentrated sediment upper layer is explained by the form

of the flux function (7.2.17). We observe, for fixed x, that if the normalized squared

size, ξ, of a particle is smaller than the average size ξ, then the particle will move

upwards due to the negative value of the flux, yielding an accumulation of particles

of the same size in the upper zone of the suspension.
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(a) (b)

(c) (d)

Figure 7.5: Example 7.1: Simulated solids phase density as a function of the spatial

position for three different times. (a) ξ = 0.0039602, (b) ξ = 0.33203, (c) ξ = 0.66797,

(d) ξ = 0.99609.

Figure 7.4 shows the simulated solids phase density as a function of the normal-

ized squared size at x = 0.5, x = 0.75, x = 0.9 and x = 1.0, for the times t = 1, t = 5

and t = 20, produced by Scheme 3.

In Figures 7.4 (a) and 7.4 (b) we observe that at x = 0.5 and x = 0.75 the total

volume fraction Φ, the average normalized squared size ξ and the width of the size

range wr decrease as the time advances. Moreover, ξ is on the right half of the size

range. In Figure 7.4 (c) we see that at x = 0.9 ξ and wr decrease as the time advances,

while the evolution of Φ is not evident, but from Figure 7.1 we can see that Φ in-
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(a) (b)
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Figure 7.6: Example 7.1: Simulated total solids volume fraction until (a) t = 20, (b) t

= 4.

crease. Likewise, ξ is on the right half of the size range. In Figure 7.4 (d) we observe

that at the bottom of the vessel Φ, ξ and wr do not change, and ξ is on the right half

of the size range.

Figure 7.5 shows the simulated solids phase density as a function of the spatial

position for ξ = 0.0039602, ξ = 0.33203, ξ = 0.66797, and ξ = 0.99609, for the times

t = 1, t = 5 and t = 20, produced by Scheme 3.

In Figure 7.5 (a) we see that for the smallest species the peak of concentration

moves upwards. In Figures 7.5 (b) and 7.5 (c) we observe that the peak of concentra-

tion for ξ = 0.33203 and ξ = 0.66797 moves downwards, and at t = 1 there is a peak

of concentration at the upper part of the suspension. In Figure 7.5 (d) we see that for

the largest species there is a peak of concentration at the bottom, and at t = 1 there

is a smooth change of concentration at the upper part of the suspension.

Figure 7.6 shows the simulated total solids volume fraction until t = 20, and a

zoom between t = 0 and t = 4 to see this zone in great detail.
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t = 1 t = 20

N e1 Conv. e2 Conv. e1 Conv. e2 Conv.

= 1/δξ 10−3 rate 10−6 rate 10−3 rate 10−6 rate

Scheme 1

2 24.020 0.1082 91.733 69.424

4 14.686 0.710 0.4834 -2.160 89.446 0.0364 69.513 -0.0018

8 9.922 0.566 0.1678 1.526 88.188 0.0204 69.189 0.0067

16 7.935 0.322 0.2264 -0.432 85.811 0.0394 67.669 0.0320

32 7.163 0.148 0.1965 0.204 84.528 0.0217 67.739 -0.0015

Scheme 2

2 20.946 0.1893 73.260 189.835

4 11.506 0.864 0.3310 -0.807 49.957 0.552 91.324 1.056

8 6.284 0.873 0.2335 0.503 31.725 0.655 65.466 0.480

16 3.461 0.861 0.1050 1.153 26.695 0.249 39.736 0.720

32 2.089 0.728 0.0795 0.402 24.806 1.059 21.648 0.876

Scheme 3

2 20.909 0.1907 73.140 186.852

4 11.506 0.862 0.3310 -0.796 49.957 0.550 91.324 1.033

8 6.037 0.930 0.0824 2.007 29.633 0.754 36.368 1.328

16 3.087 0.968 0.0358 1.204 16.386 0.855 14.537 1.323

32 1.554 0.990 0.0197 0.864 8.172 1.004 6.722 1.113

Table 7.1: Example 7.1: Approximate L1 errors for the solids phase density.

Example 7.2: Steady state of a sedimentation of a suspension with equi-

distribution of particle size

Here we present the simulation of the steady state of a sedimentation of a suspen-

sion with particle size equi-distribution in a closed vessel. The material parameters

are L = 1, v1 = 1, and the initial total solids volume fraction φtot(x) = 0.1, x ∈ [0, L].
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t = 1 t = 20

N e1 Conv. e2 Conv. e1 Conv. e2 Conv.

= 1/δξ 10−3 rate 10−3 rate 10−3 rate 10−3 rate

Scheme 1

2 49.281 49.232 49.265 49.231

4 24.240 1.0236 24.226 1.0231 24.259 1.0221 24.225 1.0230

8 11.723 1.0481 11.722 1.0473 11.754 1.0453 11.722 1.0472

16 5.470 1.0996 5.470 1.0995 5.491 1.0979 5.471 1.0995

32 2.344 1.2224 2.344 1.2224 2.492 1.1397 2.345 1.2223

Scheme 2

2 49.292 49.232 49.194 49.118

4 24.257 1.0230 24.225 1.0231 24.281 1.0187 24.194 1.0216

8 11.737 1.0474 11.722 1.0473 11.810 1.0398 11.709 1.0470

16 5.476 1.0998 5.470 1.0995 5.559 1.0872 5.466 1.0992

32 2.348 1.2219 2.344 1.2224 2.439 1.1886 2.343 1.2222

Scheme 3

2 49.290 49.232 49.189 49.119

4 24.257 1.0229 24.225 1.0231 24.281 1.0185 24.194 1.0217

8 11.730 1.0482 11.722 1.0473 11.757 1.0463 11.713 1.0465

16 5.471 1.1002 5.470 1.0995 5.479 1.1016 5.467 1.0992

32 2.344 1.2226 2.344 1.2224 2.347 1.2228 2.343 1.2223

Table 7.2: Example 7.1: Approximate L1 errors for the solids volume fraction.

For saving computing time we use the discretization parameters δx = 1/1800,

λ = 0.5 and δξ = 1/32.

Figure 7.7 shows the simulated solids phase density as a function of the normal-

ized squared size and the spatial position, at a long enough time (t = 200), which

represents the steady state. We observe that the steady state consists of a thick layer
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Figure 7.7: Example 7.2: Sediment composition near steady state (t = 200): simulated

solids phase density for all species.

of large particles with a little amount of small particles above the bottom of the ves-

sel, and a very thin and concentrated layer of small particles above the layer of large

ones.

Figures 7.8 (a) and (b) show the simulated solids phase density as a function of

the normalized squared size at x = 0.8, x = 0.9, and x = 1.0, and the simulated solids

phase density as a function of the spatial position for ξ = 0.015625, ξ = 0.49219, and

ξ = 0.98438, at steady state, respectively.

Figure 7.8 (c) shows the simulated total solids volume fraction as a function of

the spatial position at the steady state (t = 200). In Figure 7.8 (c) we clearly observe

that at steady state the total solids volume fraction is divided into two parts. Above

around x = 0.875, it has the value 0, and below this position, it has the value of φmax.

Also in Figure 7.8 (c) we can deduce that there is conservation of mass or volume

because the area between the graph and φ = 0 is approximately 0.8(1− 0.875) = 0.1,

which is the same value of the area under the graph at t = 0 (initial volume of the

solids). Figure 7.9 shows the simulated total solids volume fraction until the steady
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(a) (b)

(c)

Figure 7.8: Example 7.2: Sediment composition near steady state (t = 200): simulated

solids phase density (a) as a function of the normalized squared size for three differ-

ent positions, (b) as a function of the spatial position for three different normalized

squared sizes, (c) total solids volume fraction.

state (t = 200).

Example 7.3: Comparison between sedimentation of suspensions with equi-

distribution and Rosin-Rammler distribution of particle size

In this example we present the simulation of sedimentation of suspensions with

equi-distribution and Rosin-Rammler distribution of particle size in a closed vessel.

The material parameters are L = 1, v1 = 1, the initial total solids volume fraction
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Figure 7.9: Example 7.2: Simulated total solids volume fraction.

φtot(x) = 0.1, x ∈ [0, L]; the Rosin-Rammler distribution parameters are m = 2.0

and l = d1/2, with d1 = 1.0689 × 10−3 m ; and the discretization parameters are

δx = 1/3600, λ = 0.5 and δξ = 1/32.

Figure 7.10 shows the simulated solids phase density for suspensions with equi-

distribution and Rosin-Rammler distribution of particle size, at t = 1 and t = 20.

In Figure 7.10 we observe the effect of a greater ratio small particles to large par-

ticles of the Rosin-Rammler distribution with respect to the equi-distribution. Fig-

ure 7.11 shows the simulated total solids volume fraction for suspensions with equi-

distribution and Rosin-Rammler distribution of particle size, at t = 1 and t = 20.

In Figure 7.11 we observe that the suspension with Rosin-Rammler distribution of

particle size settles more slowly than the suspension with equi-distribution of par-

ticle size does, due to the greater ratio small particles to large particles of the Rosin-

Rammler distribution with respect to the equi-distribution. Figure 7.12 shows the

simulated total solids volume fraction of suspensions with equi-distribution and

Rosin-Rammler distribution of particle size.
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(a) (b)

(c) (d)
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Figure 7.10: Example 7.3: Simulated solids phase density at t = 1 and t = 20, of

suspensions with two particle size distributions. (a, c) equi-distribution, (b, d) Rosin-

Rammler distribution.

7.5.2 Example 7.4: Sedimentation of a suspension with periodic

boundary conditions

Here we present the simulation of a sedimentation with periodic boundary con-

ditions of a suspension with particle size equi-distribution. The material parameters
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(a) (b)

Figure 7.11: Example 7.3: Simulated total solids volume fraction of suspensions with

equi-distribution and Rosin-Rammler distribution of particle size. (a) t = 1, (b) t =

20.
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Figure 7.12: Example 7.3: Simulated total solids volume fraction of suspensions with

(a) equi-distribution, (b) Rosin-Rammler distribution.

are the period L = 1, v1 = 1, and the initial total solids volume fraction

φtot(x) =

0 for x ∈ [0, 1/2),

0.1 for x ∈ [1/2, 1].
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(a) (b)

Figure 7.13: Example 7.4: Simulated solids phase density at (a) t = 1, (b) t = 2.

The discretization parameters are δx = 1/1800, λ = 0.5, and δξ = 1/64.

Figure 7.13 shows the simulated solids phase density as a function of the nor-

malized squared size and the spatial position, at t = 1 and t = 2.

In Figure 7.13 we observe that the mean value of the phase density of larger

particles decrease in time but they cover greater spatial interval.

Figure 7.14 shows the simulated solids phase density as a function of the nor-

malized squared size at x = 0.25, x = 0.5, x = 0.75 and x = 0.9, for the times t = 1,

t = 2 and t = 100.

Figure 7.15 shows the simulated solids phase density as a function of the spatial

position for ξ = 0.0078125 and ξ = 0.32031, and, ξ = 0.64844 and ξ = 0.99219, respec-

tively, for the times t = 1, t = 2 and t = 100. In Figure 7.15 we see that the amplitude

of the solids concentration waves decreased with the time, especially for the largest

species (large ξ). Figure 7.16 shows the simulated total solids volume fraction as a

function of the spatial position at t = 2, t = 10 and t = 100. In Figure 7.16 we ob-

serve that the amplitude of the curve of the total solids volume fraction decreases

with time and the numerical solution tends to the constant value of φ = 0.05. Fig-

ure 7.17 shows the simulated total solids volume fraction until t = 100. We observe

that the graph has singular structures at approximately t = 27, t = 40 and t = 80.
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(a) (b)

(c) (d)

Figure 7.14: Example 7.4: Simulated solids phase density as a function of the nor-

malized squared size for three different times. (a) x = 0.25, (b) x = 0.5, (c) x = 0.75,

(d) x = 0.9.

We leave the explanation of this occurence as an open problem.

7.5.3 Examples 7.5 and 7.6: Sedimentation of a suspension with

Riemann initial data

In this pair of examples, we show the simulation of a sedimentation with Rie-

mann initial data of a suspension with particle size equi-distribution. The material
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(a) (b)

(c) (d)

Figure 7.15: Example 7.4: Simulated solids phase density as a function of the spatial

position for three different times. (a) ξ = 0.0078125, (b) ξ = 0.32031, (c) ξ = 0.64844,

(d) ξ = 0.99219.

parameters are v1 = 1, and for Example 7.5, the initial total solids volume fraction is

φtot(x) =

0 for x < 0,

0.1 for x ≥ 0,

while for Example 7.6, the iniial datum is

φtot(x) =

0.3 for x < 0,

0 for x ≥ 0,
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Figure 7.16: Example 7.4: Simulated total solids volume fraction for three different

times.
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Figure 7.17: Example 7.4: Simulated total solids volume fraction.

We use the discretization para δx = 1/3600, λ = 0.5 and δξ = 1/32.

Figure 7.18 shows the simulated solids phase density as a function of the normal-

ized squared size and the spatial position, at t = 2. We see, as in Figure 7.5 (b,c) of
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Figure 7.18: Example 7.5: Simulated solids phase density at t = 2.

the Example 7.1, that there is a considerable accumulation of medium size particles

on the back of the wave of solid particles. The explanation of this phenomenon is

given in the Example 7.1. Moreover, it is clear that the larger particles move faster

than the smaller ones. Figures 7.19 (a) and (b) show the simulated solids phase den-

sity as a function of the normalized squared size at x = 0.75 and x = 1.0, for the

times t = 1, t = 2 and t = 20. Figure 7.19 (c) and (d) show the simulated solids phase

density as a function of the spatial position for ξ = 0.015625 and ξ = 0.32812, for the

times t = 1, t = 2 and t = 20. Figure 7.20 shows the simulated total solids volume

fraction as a function of the spatial position, at t = 1, t = 2 and t = 20. Figure 7.21 (a)

shows the simulated total solids volume fraction until t = 20. The “steps” in the

graph are consequence of the discretization size of the ξ-axis. Figure 7.21 (b) shows

the corresponding result for Example 7.6.

In addition, we use this example, and Example 7.6, to analyze the behaviour of

the eigenvalues as the number of species N is increased. To this end, we recall first

that the exact solution of Example 7.5 depends on ω := x/t only, so it is sufficient

to calculate the solution for one fixed time. We chose the cases N = 2, 4, 8 and 32
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(a) (b)

(c) (d)

Figure 7.19: Example 7.5: Simulated solids phase density (a, b) as a function of the

normalized squared size for three different times: (a) x = 0.75, (b) x = 1; and (c,d) as

a function of the spatial position for three different times: (c) ξ = 0.015625, (d) ξ =

0.32812.

for close inspection, and plotted the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN of Corol-

lary 1 as a function of ω; according to Proposition 7.3.1, these eigenvalues coincide

with that of the Jacobian Jf (see Theorem 7.2.1) if both are evaluated at correspond-

ing vectors φ and Φ, respectively. For Example 7.5, Figures 7.22 and 7.23 display

the eigenvalues λ1, . . . , λN (solid lines) and corresponding transformed eigenvalues

ξλ1 , . . . , ξλN
(dashed lines) for (a, b)N = 2,N = 4 andN = 8 (Figure 7.22) andN = 32

(Figure 7.23). The dashed lines are the bounds established by (7.2.9) and (7.2.10) for
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Figure 7.20: Example 7.5: Simulated total solids volume fraction at t = 1, t = 2 and

t = 20.

(a) (b)

−0.5

0

0.5

1

0
5

10
15

20
0

0.02

0.04

0.06

0.08

0.1

x
t

φ

−0.5
0

0.5
1 0

0.5

1

1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

t

x

φ

Figure 7.21: Example 7.5 (a) and Example 7.6 (b): simulated total solids volume frac-

tion.

λ1, . . . , λN and (7.3.13) and (7.3.14) for ξλ1 , . . . , ξλN
, respectively. Figures 7.24 and 7.25

show the analogous results for Example 7.6.
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Figure 7.22: Example 7.5: (a, c, e) eigenvalues λ1, . . . , λN (solid lines) and (b, d, f)

corresponding transformed eigenvalues ξλ1 , . . . , ξλN
(solid lines) for (a, b) N = 2, (c,

d) N = 4 and (e, f) N = 8. The dotted lines are the bounds established by (a, c, e)

(7.2.9), (7.2.10) and (b, d, f) (7.3.13), (7.3.14).
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Figure 7.23: Example 7.5: (a) eigenvalues λ1, . . . , λ32 (solid lines) and (b) correspond-

ing transformed eigenvalues ξλ1 , . . . , ξλ32 (solid lines) for N = 32. The dotted lines

are the bounds established by (a) (7.2.9), (7.2.10) and (b) (7.3.13), (7.3.14).
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Figure 7.24: Example 7.6: (a, c, e) eigenvalues λ1, . . . , λN (solid lines) and (b, d, f)

corresponding transformed eigenvalues ξλ1 , . . . , ξλN
(solid lines) for (a, b) N = 2, (c,

d) N = 4 and (e, f) N = 8. The dotted lines are the bounds established by (a, c, e)

(7.2.9), (7.2.10) and (b, d, f) (7.3.13), (7.3.14).
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Figure 7.25: Example 7.6: (a) eigenvalues λ1, . . . , λ32 (solid lines) and (b) correspond-

ing transformed eigenvalues ξλ1 , . . . , ξλ32 (solid lines) for N = 32. The dotted lines

are the bounds established by (a) (7.2.9), (7.2.10) and (b) (7.3.13), (7.3.14).



Chapter 8

Conclusions

This thesis is concerned with the well-posedness analysis and numerical meth-

ods for kinematic models consisting of continuity (or balance) equations of different

species, which involve flux functions that are discontinuous with respect to the spa-

tial variable, that is, we consider systems of equations of the type Φt + f(γ(x),Φ)x =

η(x)Φx, where Φ = (φ1, . . . , φN)T is the vector of concentrations of species 1, . . . , N ,

γ is a vector of parameters, which is a discontinuous function of the spatial posi-

tion x, and the possibly discontinuous function η(x) is the transport coefficient of

the non-conservative term η(x)Φx.

In Chapter 3, the clarifier-thickener model studied in [31] is extended by a sin-

gular sink through which material is extracted from the unit.

The injection of material of given concentration at a fixed location leads to a

homogeneous conservation law with discontinuous flux. On the other hand, the

extraction of suspension at a fixed location leads to a balance equation with discon-

tinuous flux, and which has a new non-conservative transport term. This difference

justified studying the sink term problem in its own right.

Schemes 2 and 3 proposed for the full problem have the slight inconvenience that

to evaluate the Engquist-Osher numerical flux, one has to determine numerically the

extrema of the composite flux function, which for the Scheme 2 is q(u − uF) + b(u)
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for q ∈ {qL, q̃R}. This is a drawback to the development of methodologies of control.

The numerical examples illustrate that the sink term may give rise to a variety of

stationary discontinuities across the sink level x = xD (decreasing or increasing in

the direction of increasing x). The parameters can be chosen in such a way that either

the solid material flowing into the clarifier zone is fully absorbed by the singular

sink, or material is extracted through the sink without affecting the solution in the

clarifier zone. The existence of a discontinuity across the sink level in some cases

can be determined if we look at the jump condition (3.3.9) of the associated reduced

problem for the parameters given in those cases.

Because of the fact that the formation of a jump of concentration across the sink

level x = xD is possible, the value u(xD, t) becomes indeterminate, and therefore, it

is necessary to develop a method to calculate the solids concentration of the suspen-

sion extracted through the sink. We leave the devise and analysis of that method as

open problem.

In Chapter 4, a new model for continuous separation and classification of poly-

disperse suspensions is presented. To this end, the discontinuous-flux CT model for

the continuous solid-liquid separation of suspensions is extended to a generalized

clarifier-thickener model (GCT), in which an arbitrary number of discharge streams

is described by singular sink terms. This feature allows us to describe the continuous

extraction of products of different composition.

Some simplifications are made in the formulation of the flux functions with

the purpose of facilitating easy the calculation, and to be consistent with previous

works, in particular, with the stability analysis of Bürger et al. [32]. For example, an

explicit formula for the solid-fluid relative velocity of each species is derived from

the implicit formulation defined by Masliyah [129], and an average Richardson-Zaki

exponent for all species is used in the hindered settling factor V (φ).

In Chapter 3 [23] we prove that, for the case of a monodisperse suspension in a

vessel with constant cross-sectional area and one sink, the model is well-posed, and

show that a monotone numerical scheme converges to the entropy solution. These
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results along with those of [31] were a motivation to formulate our GCT model.

A numerical method to calculate the solids concentration in the sinks is pro-

posed, from mass balances of solids and based on the finite speed of propagation of

the concentration waves. We leave the analysis of this method as open problem.

In Examples 4.2 and 4.3 we adopt experimental data given by Chen et al. in [40],

and our simulations fit reasonably well the results of their experiments.

It is clear that the GCT model is subject to some limitations. First, the model ap-

plies only to units that are (at least approximately) one-dimensional, and where lat-

eral concentration or velocity gradients are negligible. This means, for example, that

particles should be reasonably small, so that wall effects are unimportant, and that

strong changes in the cross-sectional area must be excluded. It also presumed that

the parameters for the MLB model for the solid-fluid relative velocity are known,

for example from batch settling experiment. The MLB model actually presumes that

particles are small rigid spheres. While sphericality can be considered as a useful ap-

proximation for particles of slightly more general geometry, the rigidity of particles

is essential.

In Chapter 5, a family of numerical schemes for kinematic flows with discontin-

uous flux is presented. The basic design principle of the schemes, and the analysis

of some of them, is based on the explicit “concentration times velocity” structure of

the flux of each species.

One of the main advantages of these new schemes is that (other than an estimate

of the spectral radius for the CFL condition) they do not require any calculation

of eigenvalues, eigenvectors, field-by-field decomposition, flux vector splitting, etc.,

that are usually required for an upwind scheme. In this sense they are like a central

scheme.

The kinematic models studied are algebraically very similar, but belong to two

groups, one formed by the traffic and the oil-in-water dispersion model, for which

all velocities are nonnegative, and another including the polydisperse sedimenta-

tion model, which for N ≥ 2 includes velocities of either sign.
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Formally, almost every system of conservation laws ∂tφi + ∂x

(
fi(Φ)

)
= 0,

i = 1, . . . , N , can be written as a “kinematic system” ∂tφi + ∂x

(
φivi(Φ)

)
= 0,

i = 1, . . . , N , if we define vi(Φ) = fi(Φ)/φi (presuming that this quotient remains

bounded when φi → 0). Consequently, the schemes could be applied to nearly ar-

bitrary systems of conservation laws. However, the properties that are specific to

scalar kinematic models and essential for our analysis are that the velocity v(φ) is

given by a positive default coefficient multiplying a hindrance function, such that

v(φ) ≥ 0 and v′(φ) ≤ 0. On the other hand, some of the desirable properties, for ex-

ample, that Φ belongs to a bounded phase space Dφmax , are typical for multi-species

models, but of course, are not meaningful for systems that represent balances of

different physical quantities such as mass, linear momentum and energy.

Although the basic scheme, Scheme 1, can be adapted to accomodate multi-

species models of both groups (Schemes 4–8), only in the case of non-negative ve-

locities it was possible to establish a very desirable invariant region principle (The-

orems 5.3.1 and 5.3.2). It is not clear whether this principle can also be possibly

established for the polydisperse sedimentation model.

Furthermore, our Example 5.8.1, for instance (see Figure 5.12 (d) and (f)), illus-

trates that for N ≥ 2 our second-order schemes do not seem to obey an invariance

principle. However, our Figures 5.5 and 5.8 illustrate that all second-order schemes

converge with consistently smaller errors in the L1 sense, and at slightly better rates

than their first-order versions, even in the systems case that is not backed up by a

convergence analysis.

In regard to aspects that are more related to the discontinuity of the numerical

flux, the main technical challenge in establishing convergence of an approximating

sequence for conservation laws with discontinuous coefficients is somehow control-

ling the spatial variation of the solution. The local variation bound developed here

only applies to spatial discontinuities, does not become any more complicated if the

flux is nonconvex, and does not require any assumptions about genuine nonlinear-

ity.

Finally, our definition (5.3.25) and the invariance principle for Scheme 5, Theo-
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rem 5.3.1, explicitly include the case of a spatially (possibly discontinuously) vary-

ing maximum density φmax = φmax(x), which appears in Examples 5.2 and 5.5, but

the convergence analysis of Section 5.4 is limited to the case of constant φmax. Mean-

while, in Chapter 6 we have made further advances in analyzing the problem where

we allow φmax(x) to vary discontinuously.

In Chapter 6, the well-known Lighthill-Whitham-Richards (LWR) kinematic traf-

fic model was extended to a unidirectional road on which the maximum density a(x)

represents road inhomogeneities, such as variable numbers of lanes, and is allowed

to vary discontinuously.

In the case where a(x) is constant (no interface), our motivation for admissible

discontinuities gives the same jump conditions as the so-called driver’s ride im-

pulse of Ansorge [5], which states that drivers smooth a discontinuous solution if

φL > φR, but not if φL < φR. This point of view also coincides with the classical

Lax/Oleinik/Kružkov theory if the flux f is strictly concave. If the flux is not strictly

concave, both the driver’s ride impulse and our rationale give a jump condition that

is different from that dictated by the classical Lax/Oleinik/Kružkov theory. In the

case of the driver’s ride impulse, this was pointed out by Gasser [76].

In the more general situation considered in Chapter 6, the driver’s ride impulse

does not apply to the jump at the discontinuity in a. This is because it is not possible

to smooth the discontinuity at x = 0, i.e., there will always be a discontinuity there

unless φL = φR = 0. This is why we have introduced the rationale proposed here, i.e.,

that the driver will try to speed up if he/she detects that the velocity directly ahead

is greater than his/her own velocity (when the distance between his/her car and

the one in front of him/her is increasing). This also seems more directly related to

driver behavior than the driver’s ride impulse, since drivers can detect a difference

in speed much more easily than they can detect a difference in density.

In Chapter 7, the one-dimensional kinematic model for batch sedimentation
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of polydisperse suspensions of small equal-density spheres was extended to sus-

pensions with a continuous particle size distribution. The resulting mathematical

model, obtained by using the Masliyah-Lockett-Bassoon (MLB) model for the solid-

fluid relative velocity for each solids species and the concept of phase density func-

tion Φ, is a scalar first-order kinetic equation for Φ.

According to Chapter 5 [25], there is not a proof of stability for the numerical

scheme utilized (Scheme 3), but based on an analysis of a model with non-negative

velocities, a CFL condition is given. However, Figures 7.1 and 7.2, and Tables 5.1

and 5.2 indicate the superiority of Scheme 3 over Schemes 1 and 2. In particular,

Figure 7.1 shows that Scheme 2 introduces spurious oscillations near discontinuities,

and Figure 7.2 (a) illustrates the increasing numerical viscosity of the Scheme 1 as

the time advances.

Several numerical examples allow us to know more about the behaviour of this

kind of suspensions. In particular:

In Example 7.1 (sedimentation of a suspension with equi-distribution of particle

size), Figure 7.3 illustrates that the larger particles settle faster than the smaller ones,

and therefore the larger ones fill the lower layers of the vessel and form thick sed-

iment layers, and, the smaller particles are partially removed from the bottom and

with those in suspension form very thin sediment layers above the larger ones.

In Example 7.3 (comparison between sedimentation of suspensions with equi-

distribution and Rosin-Rammler distribution of particle size), Figure 7.12 indicates

that the suspension with Rosin-Rammler distribution of particle size settles more

slowly than the suspension with equi-distribution of particle size does, due to the

greater ratio small particles to large particles of the Rosin-Rammler distribution with

respect to the equi-distribution.

In Example 7.5 (sedimentation of a suspension with Riemann initial data), Fig-

ure 7.18 illustrates that there is a considerable accumulation of medium size particles

on the back of the wave of solid particles.



Appendix A

Additional numerical examples

A.1 Additional numerical examples of Chapter 4

Here, we show numerical examples that were part of earlier versions of the arti-

cle “A kinematic model of continuous separation and classification of polydisperse

suspensions” (Chapter 4 of this work). The choice of examples of the final version of

that paper is based on comments we received in the reviews of that. Nevertheless,

we decided to include the earlier examples in this thesis, since they represent other

interesting cases, such as classification in vessels with rectangular cross-sectional

area, classifier operated in clarifier-thickener mode, and classication with changes

in the control variables.

A.1.1 Preliminary remarks

We consider four units for separation or classification: three of them are oper-

ated in the FC mode and have constant (Vessel 1, see Figure A.1) or variable varying

interior cross-sectional area (Vessels 3 and 4, see Figures A.11 and A.16), while Ves-

sel 2 is operated in the CT mode and has variable interior cross-sectional area (see

Figure A.6). In all of them, the outer pipes are cylinders. Associated to Vessels 1,

2, 3, and 4 are Examples A.1, A.2, A.3, and A.4, respectively. The parameters used
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Figure A.1: Vessel 1: A fluidization column with constant interior area.

in each example are given in Table A.1. For all the examples, we use the equation

(4.6.1) with φq = 0.63 and φmax = 0.68, and use the first alternative of (4.3.8).

A.1.2 Example A.1: Continuous separation of a bidisperse suspen-

sion in a closed-bottom CT with sink

We simulate the continuous separation of a bidisperse suspension in Vessel 1, for

which

S(x) =

4.9× 10−4 m2 for x ≤ −1.3 m,

0.1 m2 for x > −1.3 m.

A suspension of ballotini spheres with the density and viscosity parameters given in

Table A.1 and a continuous particle size distribution centered in the range between

d1 and d2 was considered by Galvin and Nguyentranlam in [73].
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Example A.1 Example A.2 Example A.3 Example A.4

N 2 2 2 3

d1 [m] 9.00× 10−5 3.90× 10−4 9.00× 10−4 1.5× 10−3

d2 [m] 5.70× 10−5 1.37× 10−4 5.50× 10−4 9.0× 10−4

d3 [m] — — — 5.5× 10−4

δ2 0.4011 0.1234 0.3735 0.3600

δ3 — — — 0.1344

ρ1 [kg/m3] 2403 1050 2470 2470

ρ2 [kg/m3] 2403 2850 2470 2470

ρ3 [kg/m3] — — — 2470

ρf [kg/m3] 998.2 1120 998.2 998.2

µf [10−3Pas] 1.005 1.410 1.005 1.005

n 4.700 5.765 2.58 2.51

φF
1 0.05 0.065 0.0676 0.0728

φF
2 0.05 0.067 0.0624 0.0676

φF
3 — — — 0.0624

QF [m3/s] 6.40× 10−4 4.40× 10−6 5.773× 10−3 5.773× 10−3

QR [m3/s] 0 3.30× 10−6 See * −1.450× 10−3

Q1
L [m3/s] −3.84× 10−4 0 0 −1.834× 10−3

QL [m3/s] −6.40× 10−4 −1.10× 10−6 See * −7.223× 10−3

Q1
R [m3/s] 0 −1.32× 10−6 See * −3.668× 10−4

∆x [cm] 0.3167 0.1068 0.5 0.745

∆t [10−3 s] 14.01 0.2960 0.04883 0.1267

Table A.1: Parameters for the numerical simulations. * In Example A.3, the value

of QL is changed at t = 120 s from −7.223× 10−3 to −5.389× 10−3, and at t = 165 s

from this last value to −3.210× 10−3, while that of Q1
R is changed at t = 120 s from

−3.668× 10−4 to −2.201× 10−3. QR is calculated from the formula QR = QF +QL.
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Figure A.2: Example A.1: Simulated concentrations (a) φ1 (large particles), (b) φ2

(small particles). Startup phase (T = 1000 s).

We see in Figures A.2 and A.3 (a) that species 1 enters both the clarification and

settling zones. It accumulates at the bottom and forms a rising sediment, and ex-

hibits an increasing jump of concentration at feed source level. (Here and in the

sequel, spatially “increasing” and “decreasing” behaviour is always meant “down-

wards”, i.e. in the direction of increasing x). Species 2 also enters both zones, accu-
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Figure A.3: Example A.1: Simulated concentrations (a) φ1 (large particles), (b) φ2

(small particles). Long-time behaviour (T = 8000 s).

mulates on the bottom above species 1, and forms a rising sediment. Towards the

end of our simulation, it has a small increasing jump of concentration at feed source

level, a small decreasing jump at sink level, and a small increasing jump of con-

centration at overflow level. Furthermore, we observe in Figure A.5 that species 1

leaves the unit by the sink only, whereas species 2 leaves the unit by the sink and
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Figure A.4: Example A.1: Simulated total solids concentration φ.

(a) (b)

Figure A.5: Example A.1: (a) Overflow, (b) sink concentrations.

the overflow. Then, we can deduce that full separation is attained in the overflow,

but with a decrease of the concentration of species 1 in relation to feed concen-

tration, whereas in the sink, concentrations of both species increase in relation to

feed. In fact, Figure A.5 illustrates that according to our simulation, the system has

nearly attained steady state at t = 8000 s, since at steady state the entire influx of
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Figure A.6: Vessel 2: Classifier-type CT with varying interior area.

species 1 should leave the unit through the sink, causing a sink stream concentra-

tion of (QF/|Q1
L|)φF

1 = 0.0833. This value is practically attained by t = 8000 s.

In Figure A.4 we can observe the evolution of the total volume fraction of solids,

which seems to reach steady state before each species does.
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Figure A.7: Example A.2: Stability and instability regions.

A.1.3 Example A.2: Separation of a bidisperse suspension in a con-

tinuous CT with sink

Nasr-El-Din et al. in [136, 134, 135] consider bidisperse suspensions with buoy-

ant and heavy species, and we here take the parameters of the experimental data

indicated by Nasr-el-Din et al. in [135]. For this heavy-buoyant system, the model

equations are no longer uniformly hyperbolic (stable); rather, an appreciable ellip-

ticity (instability) region in phase space emerges, see Figure A.7. It can be shown

that in regions where S(x) > 0, the governing equation (4.4.7) is stable (hyperbolic)

for a given vector Φ ∈ Dφmax if and only if the equation for batch settling in (4.2.2) is.
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Figure A.8: Example A.2: Simulated concentrations (a) φ1 (buoyant particles), (b) φ2

(heavy particles).

We work here with Vessel 2, whose cross-sectional area function is given by

S(x) =



2.2× 10−5 m2 for x ≤ −0.14 m and x > 0.34 m,

S1(x) for −0.14 m < x ≤ −0.1 m,

4.24× 10−4 m2 for −0.1 m < x ≤ 0.3 m,

S2(x) for 0.3 m < x ≤ 0.34 m.
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Figure A.9: Example A.2: Simulated total solids concentration φ.

Following Nasr-el-Din et al. [135], we assume that Vessel 2 has a rectangular cross

section, and that one side of the rectangle (the “thickness”of the equipment) is con-

stant for −0.14 m ≤ x ≤ 0.34 m. In the zones [−0.14 m,−0.1 m] and [0.3 m, 0.34 m],

which appear in Figure A.6 as “roof-shaped” segments, the cross-sectional area

varies linearly with x, and is defined by

S1(x) := 9.898× 10−3 m× (x− 0.14 m) + 2.809× 10−5 m2,

S2(x) := −9.898× 10−3 m× (x− 0.3 m) + 4.24× 10−4 m2.

The material, model and flow parameters for this case given in Table A.1 are

based on experimental from Nasr-el-Din et al. [135]. The particle parameters cor-

respond to polystyrene particles (species 1) and glass beads (species 2), while the

fluid parameters come from a salt solution at 20 ◦C. For monodisperse suspensions

of each particle species, the suitable exponents of the Richardson and Zaki hindered

settling function are n = n1 = 5.705 and n = n2 = 5.826, respectively. For this

bidisperse suspension we utilize n = (n1 + n2)/2 = 5.765.

We observe in Figure A.8 that species 1 enters both the clarification and settling

zones. Near steady state, its concentration has a small increasing jump at feed source
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(a)

(b) (c)

Figure A.10: Example A.2: (a) Overflow, (b) lower sink, (c) underflow concentra-

tions.

level, gradually increases near the overflow level, and has a decreasing jump at sink

level. Species 2 only enters the settling zone. At steady state, the concentration of φ2

shows a small decreasing jump at sink level, and a big gradual increase of concentra-

tion near the underflow level. Moreover, we see in Figure A.10 that species 1 leaves

the clarification zone by the overflow and the settling zone by the sink, whereas

species 2 leaves the settling zone by the sink and underflow. Then we can conclude

that full separation is attained in the overflow and underflow, with a significant

increase of the concentration of species 1 and species 2 in relation to feed concen-

tration, respectively. In the sink, species 1 does not change much its concentration,
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Figure A.11: Vessel 3: Classifier-type liquid fluidized bed with varying interior area.

and species 2 has a drop in its concentration, both in relation to feed. Figure A.9

illustrates that for this particular example, the total solids concentration for this ex-

ample remains below 0.2. This indicates that here the numerical solution completely

sojourns in the region of stability shown in Figure A.7.
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Figure A.12: Example A.3: Simulated concentration φ1 (large particles; two views).

A.1.4 Example A.3: Continuous separation of a bidisperse suspen-

sion in a liquid fluidized bed classifier with variable control

functions

Chen et al. in [40] report a hydrodynamic model for a liquid-solid classifier ap-

plied to the steady state separation of monodisperse, bidisperse and multi-sized
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Figure A.13: Example A.3: Simulated concentration φ2 (small particles; two views).

suspensions in a liquid fluidized bed classifier, and we here take the parameters

of the experimental data described there. We consider Vessel 3, corresponding to
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Figure A.14: Example A.3: Simulated total solids concentration φ.

(a) (b)

Figure A.15: Example A.3: (a) Overflow, (b) Sink concentrations.

equipment “T-2” used by Chen et al. in [40], which is described by the function

S(x) =



4.54× 10−3 m2 for x ≤ −0.165 m,

0.0287 m2 for −0.165 m < x ≤ 0.915 m,

S3(x) for 0.915 m < x ≤ 1.709 m,

2.04× 10−3 m2 for x > 1.709 m,
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including a conical segment defined by

S3(x) := 0.7854(0.191m− 0.1763(x− 0.915 m))2.

The material parameters indicated in Table A.1 correspond to glass beads of two

different sizes and water at 20 ◦C. In this simulation, the values ofQL andQ1
R are cho-

sen as piecewise constant functions of t as indicated in Table A.1. For monodisperse

suspensions of spherical particles, we calculate the exponents of the Richardson and

Zaki hindered settling function for each species n = n1 and n = n2, respectively,

with the formulas given by Richardson and Zaki in [147]. Then, for this bidisperse

suspension we utilize n = (n1 + n2)/2 = 2.58.

We see in Figure A.12 that between t = 0 and t = 120 s, species 1 enters the

settling zone and forms a rising sediment. At steady state, the concentration of

species 1 increases continuously in the conical zone and has decreasing jumps across

the overflow and feed source levels. On the other hand, we observe in Figure A.13

that species 2 enters both zones and forms a rising sediment above the sediment of

species 1, but it does not reach the conical zone. At steady state, the concentration of

species 2 has small increasing jumps at the feed source and near the overflow level,

and a small decreasing jump at overflow level. Moreover, we observe in Figure A.15

that at steady state, species 1 leaves the vessel by the sink stream and overflow,

whereas species 2 leaves the vessel only by the overflow. Then we can deduce that

a full separation is attained in the sink, with an increase of the concentration of

species 1 in relation to feed concentration, whereas in the overflow, concentrations

of both species are smaller in relation to feed.

Between t = 120 s and t = 165 s, we observe that species 1 and 2 disappear from

the clarification zone, leaving the vessel only by the sink, and their concentrations

reach a new steady state with jumps at sink level. After t = 165 s, species 1 has a big

and rapid rise of its concentration in the settling zone rapidly and leaves the unit

only by the sink, meanwhile species 2 does not enter the settling zone, has a small

drop of its concentration and leaves the vessel by the sink. Note the jump of concen-

tration of species 2 at sink level. In Figure A.14 we show the total concentration of

solids for this simulation.
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Figure A.16: Vessel 4: Classifier-type liquid fluidized bed with varying interior area

and two sinks.

A.1.5 Example A.4: Continuous separation of a tridisperse suspen-

sion in a liquid fluidized bed classifier

We here take the parameters of the experimental data described by Chen et al. in

[40] with some few changes. We consider Vessel 4 with the function

S(x) =



0.01815 m2 for x ≤ −1.200 m,

0.0287 m2 for −1.200 m < x ≤ 0.915 m,

S4(x) for 0.915 m < x ≤ 1.709 m,

8.17× 10−3 m2 for x > 1.709 m,
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Figure A.17: Example A.4: Simulated concentrations (a) φ1 (large particles), (b) φ2

(medium particles).

where the conical segment is decribed by

S4(x) := 0.7854(0.191 m− 0.1121(x− 0.915 m))2.

The solid and fluid materials are, as in Example 3, glass beads and water at room

temperature.
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Figure A.18: Example A.4: Simulated concentrations (a) φ3 (small particles), (b) φ

(total solids).

We see in Figure A.17 that species 1 enters the settling zone and forms a ris-

ing sediment. At steady state, the concentration of species 1 has an increasing jump

at underflow level, increases continuously in the conical zone, and has decreasing

jumps across the feed source and upper sink levels. On the other hand, species 2 en-

ters the settling zone and forms a rising sediment above the sediment of species 1.
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(a)

(b) (c)

Figure A.19: Example A.4: (a) Overflow, (b) upper sink, (c) lower sink concentra-

tions.

At steady state, the concentration of species 2 has small increasing jumps across the

feed source and below the upper sink levels, and a decreasing jump at the upper

sink level. Finally, we see in Figure A.18 (a) that species 3 enters both zones and

forms a rising sediment above the sediment of species 2, but does not reach the

conical zone. At steady state, the concentration of species 3 has a small increasing

jump at feed source level, an increasing jump at upper sink level, and a decreasing

jump at overflow level. Moreover, we observe in Figure A.19 that species 1 leaves

the vessel by the lower and upper sinks, species 2 leaves the vessel by the upper

sink, and species 3 leaves the vessel by the upper sink and overflow. Then we can
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deduce that a full separation of species 1 is attained in the lower sink, with a big

increase of the concentration of species 1 in relation to feed; also a full separation

of species 3 is attained in the overflow, with a small decrease of the concentration

of species 3 in relation to feed. In the upper sink, the concentration of species 2 in-

creases much, but concentrations of species 1 and 3 almost do not change, in relation

to feed. Figure A.18 (b) shows the total volume fraction of solids for this example.
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[109] Kerner, B.S. & Konhäuser, P. (1993) Cluster effect in initially homogeneous

traffic flow. Phys. Rev. E, 48, R2335–R2338.

[110] Kim, B.H. & Klima, M.S. (2004) Development and application of a dynamic

model for hindered-settling column separations. Minerals Eng., 17, 403–410.

[111] Klar, A., Kühne, R.D. & Wegener, R. (1996) Mathematical models for vehicular

traffic. Surv. Math. Ind., 6, 215–239.



324 BIBLIOGRAPHY

[112] Klausen, R.A. & Risebro, N.H. (1999) Stability of conservation laws with dis-

continuous coefficients. J. Diff. Eqns., 157, 41–60.

[113] Klingenberg, C. & Risebro, N.H. (1995) Convex conservation laws with dis-

continuous coefficients. Comm. PDE, 20, 1959–1990.
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