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Universidad de Concepción, Chile.

Firma:
Dr. Gabriel Gatica

Universidad de Concepción, Chile.



Firma:
Dr. Oscar Link

Universidad de Concepción, Chile.

Firma:
Dr. Marko Rojas-Medar

Universidad del B́ıo-B́ıo, Sede Chillán.

Firma:
Dr. Mauricio Sepulveda

Universidad del Concepción, Chile.

Fecha Examen de Grado:

Calificación:

Concepción–Diciembre de 2010





vi



AGRADECIMIENTOS

Han sido años de muchas experiencia positivas en Chile, tanto en el plano académico,
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sores que orientaron los cursos y seminarios en el doctorado.

A la familia del CI2MA y a su director el profesor Gabriel Gatica. A los compañeros del
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René Quintrel (Don Rene).





Resumen

En éste trabajo de tesis se realiza un estudio de la hiperbolicidad estricta para algunos

modelos de sedimentación polidispersa que conducen a un sistema unidimensional de N leyes

de conservación no lineales y fuertemente acopladas. A partir del hecho de que la función de

flujo para los modelos considerados, se puede expresar en términos de un número pequeño

(con respecto al número de especies N) de funciones escalares que dependen sólo del vector

de concentraciones, se obtiene que la matriz Jacobiana del sistema posee una estructura

particular, que permite identificar sus valores propios con las ráıces de una función racional

R(λ) estudiada previamente en las referencias [1] y [26].

Además de obtener información cualitativa acerca de los valores propios, se obtiene una

manera de localizarlos y aproximarlos numéricamente. De hecho, se provee toda la infor-

mación caracteŕıstica necesaria para realizar las simulaciones numéricas con métodos robus-

tos de alta resolución, en particular, el popular método WENO (Weighted Essentially Non-

oscillatory) de quinto orden. La pertinencia y las ventajas de éste método, implementado

utilizando la información caracteŕıstica en forma intensiva, se ilustra con una considerable

cantidad de ejemplos numéricos.
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Chapter 1

Introducción

1.1 Versión en español.

En términos generales los modelos para la sedimentación de suspensiones polidisper-

sas contemplan pequeñas part́ıculas de forma esférica dispersas en un fluido viscoso, de

tal forma que cada part́ıcula pertenece a una de las N especies, las cuales difieren por su

tamaño o densidad. La sedimentación polidispersa aparece en múltiples aplicaciones tales

como: procesamiento de minerales, tratamiento de aguas residuales, diseño de espesadores y

clarificadores, la industria petrolera, ingenieŕıa qúımica y medicina. Muchos investigadores

[4, 5, 6, 12, 17, 23, 35, 36, 38, 42, 45, 46, 47, 49, 52, 58, 64, 68] han estudiado los procesos

de sedimentación tanto desde el punto de vista teórico como experimental, en particular, las

suspensiones polidispersas.

Bajo la hipótesis de que el diámetro de las part́ıculas es pequeño (en comparación con el

área de la sección tranversal del recipiente en el cual se encuentra la suspensión) se puede

identificar cada especie i ∈ {1, . . . , N} con una fase continua, donde la especie i tiene densidad

ρi y diámetro di. Supondremos también el siguiente orden de los tamaños de las part́ıculas:

d1 = 1 ≥ d2 ≥ · · · ,≥ dN , con di 6= dj o bien ρi 6= ρj para i 6= j.

Si denotamos por φi y vi la fracción de volumen y velocidad de asentamiento de la

especie i respectivamente, entonces, usando la ecuación de continuidad para cada una de

las N especies, se obtiene que, el proceso de sedimentación polidispersa se puede describir

mediante un sistema de primer orden, no-lineal y acoplado de N leyes de conservación, esto

es,

∂tΦ + ∂xf(Φ) = 0, (1.1.1)

donde Φ := Φ(x, t) := (φ1(x, t), . . . , φN(x, t))T es el vector de incógnitas (en este caso,

1
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concentraciones locales) y f(Φ) :=
(
f1(Φ), . . . , fN(Φ)

)T
es el vector función de flujo con

fi(Φ) := φivi(Φ), i = 1, . . . , N .

Para el sistema (1.1.1) se buscan soluciones Φ = Φ(x, t) que asumen valores en el conjunto

Φ ∈ D̄φmax
, donde D̄φmax

es la clausura del conjunto

Dφmax
:=
{
Φ ∈ R

N : φ1 > 0, . . . , φN > 0, φ := φ1 + · · · + φN < φmax

}
.

Aqúı 0 < φmax ≤ 1 es la máxima concentración de sólidos permitida.

Para una aplicación t́ıpica a la sedimentación batch de una suspensión en una columna

de altura L, el sistema (1.1.1) está definido en ΩT := {(x, t) ∈ R
2 | 0 ≤ x ≤ L, 0 ≤ t ≤ T}

para un tiempo final dado T > 0 junto con la condición inicial

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ
0
N(x)

)T
, Φ0(x) ∈ D̄φmax

, x ∈ [0, L] (1.1.2)

y condiciones de borde con flujo cero

f |x=0 = f |x=L = 0, (1.1.3)

las cuales indican que no hay flujo en las partes superior e inferior de la columna.

Recordemos que el sistema de leyes de conservación (1.1.1) es hiperbólico si para cualquier

Φ todos los valores propios de la matriz Jacobiana

Jf (Φ) = (fij) =

(
∂fi

∂φj

)
, i, j = 1 . . . , N (1.1.4)

de la función de flujo son reales; si además los valores propios son distintos se dice que el

sistema es estrictamente hiperbólico.

En la referencia [5] se dedujo el siguiente criterio para predecir la estabilidad de suspen-

siones bidispersas (N = 2)

I2(Φ) := (f11(Φ) − f22(Φ))2 − 4f12(Φ)f21(Φ) < 0. (1.1.5)

Si (1.1.5) se cumple, entonces el proceso de sedimentación es inestable lo cual, según se

menciona en [12], produce una disminución de la calidad de la separación. En el otro caso,

es decir, si I2(Φ) ≥ 0 entonces se predice un comportamiento estable de la sedimentación.

Por otra parte, en [17] se mostró que el criterio (1.1.5) está estrechamente relacionado con

la pérdida de hiperbolicidad del modelo (para el caso N = 2); más aun, en dicha referencia

se demostró que, en el caso general, es decir, para un número arbitrario de especies, la

hiperbolicidad puede considerarse como un criterio de estabilidad.
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Por lo tanto, el análisis de los valores propios, y en general de la información caracteŕıstica de

la matriz (1.1.4) es fundamental tanto en el estudio teórico de los modelos de sedimentación

polidispersa como también en la implementación numérica de los mismos. Infortunadamente,

para el caso general, la matriz Jacobiana Jf(Φ) no posee una estructura que permita inferir

a priori información acerca de la naturaleza de los valores propios.

Además, el uso directo del polinomio caracteŕıstico para extraer información relativa a los

valores propios puede resultar un procedimiento dispendioso (ver por ejemplo ref. [11] para un

modelo particular). Una alternativa factible propuesta en las referencias [26, 27] es explotar

el hecho de que para algunos de los modelos de sedimentación de amplio uso en la literatura,

la velocidad de asentamiento para cada especie puede escribirse en función de un numero

pequeño (con respecto al número de especies) m de variables auxiliares, esto es,

vi = vi(p1, . . . , pm), pl = pl(Φ), i = 1, . . . , N, l = 1, . . . , m.

En tal caso, la matriz Jacobiana de la función de flujo puede expresarse como una pertur-

bación de rango m de una matriz diagonal, a saber,

Jf(Φ) = D + BAT, (1.1.6)

donde D = D(Φ) es una matriz diagonal cuyas entradas son las velocidades de asentamiento

y A = A(Φ), B = B(Φ) son matrices de rango m. Esta estructura particular, permite

(usando un resultado del algebra lineal demostrado en las referencias [1], [26] conocido como

ecuación secular -Teorema 3.2.1 del caṕıtulo 3-) reducir el análisis del caracter hiperbólico

del sistema (1.1.1) al estudio de las ráıces de la ecuación

R(λ) := det
[
I + AT(D − λI)−1B

]
= 1 +

N∑

i=1

γi

vi − λ
= 0.

donde los coeficientes γi, i = 1, . . . , N , se pueden calcular a partir de determinantes de orden

s ≤ m. Por ende, la eficiencia computacional de esta estrategia está basada en el hecho de

que m sea pequeño y que las ráıces de R(λ) se puedan calcular con un esfuerzo moderado,

en este sentido, un resultado muy útil que se obtiene a partir de la ecuación secular (ver ref.

[26] o Corolario 3.2.1 del caṕıtulo 3 de este trabajo) afirma que si efectivamente la matriz

Jacobiana tiene la forma (1.1.6) y todos los coeficientes γ’s tienen el mismo signo, entonces

dicha matriz es diagonalizable con valores propios reales y además se cumple la siguiente

propiedad de entrelazamiento



vN +

∑N
i=1 γi < vN < λN−1 < · · · < λ1 < v1, si γ1, . . . , γN < 0,

vN < λN < vN−1 < λN−1 < · · · < v1 < λ1 < v1 +
∑N

i=1 γi, si γ1, . . . , γN > 0.
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Aparte de caracterizar los valores propios, la relevancia de la propiedad de entrelazamiento

radica en que permite localizarlos y calcularlos mediante un buscador de ráıces adecuado.

Este último aspecto es fundamental en la simulación numérica, puesto que usualmente los

esquemas numéricos precisan al menos de una buena aproximación de las velocidades carac-

teŕısticas.

Este trabajo de tesis está organizado de la siguiente manera. El caṕıtulo 2 describe

brevemente un marco general para poner en contexto ésta memoria.

En el caṕıtulo 3 se estudia la hiperbolicidad de algunos modelos para un número arbitrario

de especies y cuyas velocidades de asentamiento vi permiten aplicar la teoŕıa descrita breve-

mente arriba. Entre los modelos de este tipo se incluyen los desarrollados por Masliyah [46] y

Lockett y Bassoon [45] (“MLB model”), Batchelor [4] y Batchelor y Wen [6] (“BW model”),

Höfler y Schwarzer [15, 37, 38] (“HS model”). En el caso del modelo MLB (para el cual

m = 2) dicho análisis se realiza tanto para especies de igual densidad y diferentes tamaños,

como para especies de igual diámetro y distintas densidades. En la primera situación la

hiperbolicidad estricta se prueba en el conjunto de soluciones admisibles sin incluir ninguna

restricción adicional, mientras que en el segundo caso, se muestra que el modelo es estricta-

mente hiperbólico pero en un subconjunto de Dφmax
.

El análisis de hiperbolicidad para los modelos BW y HS se hace sólo para especies de igual

densidad y diferentes diámetros. En el caso del modelo BW se muestra la estabilidad para

suspensiones diluidas (concentraciones cercanas a cero). En cambio para el modelo HS, se

muestra que es estrictamente hiperbólico para situaciones mas realistas que permiten asumir

valores de φmax próximos a 1. Este caṕıtulo incluye en su parte final simulaciones numéricas

usando esquemas de bajo orden que ilustran la utilidad de la información caracteŕıstica

obtenida como subproducto del estudio teórico de la hiperbolicidad. El contenido de este

caṕıtulo corresponde al art́ıculo [14]:

• R. Bürger, R. Donat, P. Mulet, C.A. Vega, Hyperbolicity analysis of polydisperse sed-

imentation models via a secular equation for the flux Jacobian, SIAM J. Appl. Math.

70 (2010), 2186–2213.

El caṕıtulo 4 se refiere al uso intensivo de la información caracteŕıstica completa (valores

y vectores propios), en la implementación de esquemas de alta resolución tipo WENO

(Weighted essentially non-oscillatory) para la discretización espacial, los cuales combinados

con métodos de dicretización temporal que preservan fuertemente la estabilidad (o SSP por

sus siglas en inglés) resultan ser muy robustos. Se muestra a partir de experimentos numéricos
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la ventajas de utilizar la información espectral en el esquema WENO en vez de su contraparte

por componentes (component-wise). En particular, la propiedad de entrelazamiento permite

aproximar más convenientemente y en forma local los coeficientes de viscocidad numérica.

Las simulaciones, que incluyen también tablas de errores y tasas de convergencia, se desar-

rollan para el modelo MLB y una variación del modelo HS cuya hiperbolicidad estricta se

prueba a partir de la hiperbolicidad del modelo original.

El contenido de este caṕıtulo corresponde al siguiente trabajo el cual ha sido aceptado para

publicación en la revista Journal of Computational Physics

• R. Bürger, R. Donat, P. Mulet, C.A. Vega, On the implementation of WENO schemes

for a class of polydisperse sedimentation models.

En el caṕıtulo 5 se estudia primero el problema de la hiperbolicidad del modelo de Davis-

Gecol (DG). Se observará que, las hipótesis que garantizan la estabilidad de éste modelo

son muy restrictivas en el sentido de que, o bien las diferencias entre el diámetro de las

part́ıculas de las diferentes especies (y con la misma densidad) debe ser pequeño, o bien la

concentración máxima permitida debe ser pequeña, lo cual contrasta con los resultados más

generales obtenidos para el modelo HS. Se incluyen en este caṕıtulo algunas simulaciones con

dos especies, tanto con datos que satisfacen las hipótesis bajo las cuales se logra probar la

hiperbolicidad, como para datos que no satisfacen dichas hipótesis. Termina dicho caṕıtulo

con algunos resultados adicionales para los modelos BW y HS. Este material forma parte de

un trabajo en preparación.

Finalmente en el último breve caṕıtulo se presentan unas conclusiones generales, perspec-

tivas para trabajos futuros y algunas limitaciones del enfoque abordado en esta tesis.
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1.2 English version.

Polydisperse suspensions consist of small solid particles dispersed in a viscous fluid, where

the particles are assumed to belong to a number N of species that differ in size or den-

sity. Sedimentation processes are involved in several applications such as mineral processing,

wastewater treatment, petrology, chemical engineering and medicine. Sedimentation models

have been widely studied in the literature [4, 5, 6, 12, 17, 23, 35, 36, 38, 42, 45, 46, 47, 49,

52, 58, 64, 68] by considering theoretical and experimental aspects.

If the particles are small compared with the cross-sectional area of the settling vessel,

then the N species can be treated as superimposed continuous phases, where species i is

associated with the volume fraction φi, the phase velocity vi, size (diameter) di, and density

̺i, where we assume that d1 = 1 ≥ d2 ≥ · · · ≥ dN and di 6= dj or ̺i 6= ̺j for i 6= j.

The continuity equation applied to each species, leads to a strongly coupled, nonlinear sys-

tems of first-order, spatially one-dimensional conservation laws:

∂tΦ + ∂xf(Φ) = 0, (1.2.1)

where Φ := Φ(x, t) := (φ1(x, t), . . . , φN(x, t))T is the vector of unknown (in this case, local

concentrations) and f(Φ) :=
(
f1(Φ), . . . , fN(Φ)

)T
is the flux function vector with fi(Φ) :=

φivi(Φ), i = 1, . . . , N .

For the system (1.2.1), the solutions Φ = Φ(x, t) are assumed to take values in Φ ∈ D̄φmax
,

where D̄φmax
is the closure of the set

Dφmax
:=
{
Φ ∈ R

N : φ1 > 0, . . . , φN > 0, φ := φ1 + · · · + φN < φmax

}
.

Here 0 < φmax ≤ 1 is the maximum solid concentration. For a typical application to batch

sedimentation of a polydisperse suspension in a column of height L, the system (1.2.1) is

defined in ΩT := {(x, t) ∈ R
2 | 0 ≤ x ≤ L, 0 ≤ t ≤ T} for a given final time final T > 0

along with the initial condition

Φ(x, 0) = Φ0(x) =
(
φ0

1(x), . . . , φ
0
N(x)

)T
, Φ0(x) ∈ D̄φmax

, x ∈ [0, L]

and zero-flux boundary conditions corresponding to a closed column, that is,

f |x=0 = f |x=L = 0.

We recall that the system of conservation laws (1.2.1) is hyperbolic if for all Φ the Jacobian

matrix

Jf (Φ) = (fij) =

(
∂fi

∂φj

)
, i, j = 1 . . . , N (1.2.2)



1.2 English version. 7

has only real eigenvalues, and strictly hyperbolic if these are in addition pairwise distinct.

In the reference [5] was derived the following criterion for predicting the stability of

bidisperse suspensions (N = 2)

I2(Φ) := (f11(Φ) − f22(Φ))2 − 4f12(Φ)f21(Φ) < 0. (1.2.3)

If (1.2.3) holds, then the sedimentation process is unstable which could affect the quality of

the separation [12]. Otherwise, i.e., if I2(Φ) ≥ 0 then a stable behavior is predicted.

On the other hand, in [17] was shown (for N = 2) that the criterion (1.2.3) is closely

related with the loss of hyperbolicity; moreover they claimed that in general (N arbitrary),

the hyperbolicity can be considered as a stability criterion. Therefore, the analysis not only

of the eigenvalues but the full spectral information of the Jacobian (1.2.2) is a relevant issue

for the theoretical and numerical analysis of polydisperse sedimentation models.

Unfortunately, in the general case, the Jacobian Jf(Φ) has no a structure that allow us to

conclude a priori something about the nature of the eigenvalues.

In addition, the direct using of the eigenpolynomial in order to obtain information about

the eigenvalues can be a bulky procedure (e.g. see [11] for a particular model). A feasible

alternative proposed in references [26, 27] is to exploit the fact that for some sedimentation

models widely used in the literature, the settling velocity of each species can be expressed

as function of a small number (compare with the number of species) m of scalar auxiliary

variables, that is,

vi = vi(p1, . . . , pm), pl = pl(Φ), i = 1, . . . , N, l = 1, . . . , m.

In this case, the Jacobian matrix can be written as a rank-m perturbation of a diagonal

matrix, namely,

Jf(Φ) = D + BAT, (1.2.4)

where D = D(Φ) is a diagonal matrix which entries are the settling velocities and A = A(Φ),

B = B(Φ) are rank-m matrix. This interesting particular structure let us (by using a result

from linear algebra proved in [1] and [26] and so-called secular equation -Theorem 3.2.1 of

chapter 3-) to reduce the hyperbolicity analysis of the system (1.2.1) to the problem of finding

the roots of the equation

R(λ) := det
[
I + AT(D − λI)−1B

]
= 1 +

N∑

i=1

γi

vi − λ
= 0.
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where the coefficients γi, i = 1, . . . , N , can be computed by means of determinant of low

order s ≤ m. The computational efficiency of this strategy is based on the fact thatm is small

and the roots of R(λ) can be computed with a moderate efford, for this purpose a very useful

result obtained from the secular equation (see ref. [26] or Corollary 3.2.1 of Chapter 3 in this

work) which allow us to conclude that if the Jacobian matrix has the form given by (1.2.4)

and all coefficients γ’s are either positives or negative, then the Jacobian is diagonalizable

with real eigenvalues. Moreover the following interlacing property holds




vN +

∑N
i=1 γi < vN < λN−1 < · · · < λ1 < v1, si γ1, . . . , γN < 0,

vN < λN < vN−1 < λN−1 < · · · < v1 < λ1 < v1 +
∑N

i=1 γi, si γ1, . . . , γN > 0.

The interlacing property besides being important to characterize the eigenvalues, can also be

used to localize them by employing a convenient root finder. This last matter is relevant for

numerical simulations due to the numerical schemes usually require a good approximation

of the characteristic speeds.

This thesis is organized with the following structure. Chapter 2 contents a brief general

framework of this memoir.

In Chapter 3 an analysis of the hyperbolicity for some sedimentation models is provided

for an arbitrary number of species taking into account that the form of the settling velocities

permits to apply the arguments described above. We consider the models by Masliyah [46]

and Lockett and Bassoon [45] (“MLB model”), Batchelor [4] and Batchelor and Wen [6]

(“BW model”), Höfler and Schwarzer [15, 37, 38] (“HS model”).

In the case of the MLB model (where m = 2) the analysis is performed for the equal-

density and different diameters case and for equal-size and different densities ones. In the

former situation, strict hiperbolicity is established in the whole set of admissible solutions

and the second case, the hyperbolicity is shown but in a subset of Dφmax
. For the BW and

HS models the hyperbolicity analysis is only done in the case of particles with the same

density and different size. The stability for the BW model is restricted to dilute suspensions

(concentrations close to zero). However, the hyperbolicity (strict) for the HS model is showed

for values of φmax close to 1. This chapter also includes numerical simulations with low order

schemes that illustrate the usefulness of the information obtained as a by-product of the

theoretical analysis. The content of this chapter corresponds to the paper [14]:

• R. Bürger, R. Donat, P. Mulet, C.A. Vega, Hyperbolicity analysis of polydisperse sed-

imentation models via a secular equation for the flux Jacobian, SIAM J. Appl. Math.

70 (2010), 2186–2213.
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Chapter 4 deals with employing the full characteristic information (eigenvalues and eigen-

vectors) intensively in order to implement robust numerical schemes as WENO (Weighted

essentially non-oscillatory) for the spatial discretization which together with strong-stability

preserving methods (SSP) are very robust. Numerical experiments will show the advantages

of using a characteristic-wise WENO method instead of the the component-wise version.

In particular, the interlacing property is a convenient tool for approximating (locally) the

viscosity coefficients. The simulations also include tables of error and convergence rates.

The material of this chapter corresponds to the following paper which has been accepted for

publication in Journal of Computational Physics :

• R. Bürger, R. Donat, P. Mulet, C.A. Vega, On the implementation of WENO schemes

for a class of polydisperse sedimentation models.

Chapter 5 is devoted in the first part to the stability of the Davis-Gecol model. It will be

noticed that the hypothesis for concluding hyperbolicity are somewhat restrictive since the

species must not differ so much in size, which contrasts with results obtained for the HS

model. Some numerical experiments are included even for case where the hypothesis that

assure hyperbolicity does not hold. This chapter ends with additional results for BW and

HS models. These results are part of work in preparation.

Finally, the last short chapter is dedicated to some concluding remarks, limitation of this

approach and future work.
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Chapter 2

General framework

The theory of polydisperse sedimentation processes is part of a more general theory

of multi-species kinematic flow models, which also include multi-class traffic flow models.

These models are governed by nonlinear, strongly coupled systems of first-order, spatially

one-dimensional conservation laws of the form

∂tΦ + ∂xf(Φ) = 0, f(Φ) :=
(
f1(Φ), . . . , fN(Φ)

)T
, fi(Φ) := φivi(Φ), i = 1, . . . , N,

(2.0.1)

where Φ := Φ(x, t) := (φ1(x, t), . . . , φN(x, t))T is the vector of unknown (whose components

represent volume fractions in the case of polydisperse sedimentation models and densities

for traffic flow models) and vi is the phase velocity associated with the class or species i

which only depends on Φ. The hyperbolicity of multi-species kinematic flow models and

their numerical approximation were studied recently, see [7, 27, 66, 70, 71, 72, 73] for traffic

flow models and [11, 13, 15, 17, 19, 68] for polydisperse sedimentation models.

The multi-class traffic flow model, which is an extension of the well-known Lighthill-

Whitham-Richards scalar traffic model, was developed independently by Wong and Wong

[66], and Benzoni-Gavage and Colombo [7]. In the last reference, the hyperbolicity was shown

by exhibiting a symmetriser for the Jacobian matrix Jf(Φ) := (∂fi/∂φk)1≤i,k≤N in the par-

ticular case that the velocities vi, i = 1, . . . , N depend on the total density φ in a linear

fashion. Subsequently, Zhang et al. [70] analyzed the hyperbolicity for the general case by

deriving a concise expression of the characteristic polynomial

PN(λ) = det(Jf(Φ) − λI);

under the assumption that the velocities vi are pairwise distinct and φi 6= 0 for all i =

1, . . . , N , they could conclude that the aforementioned polynomial has N different bounded

11
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roots λi, i = 1, . . . , N , such that

vN +
N∑

i=1

ci < λ1 < v1 < λ2 < · · · < vN−1 < λN < vN , (2.0.2)

with ci = φiv
′
i(φ).

Since the eigenvalues λi cannot be expressed explicitly in closed algebraic form, the

property (2.0.2) has been used, for instance, in references [19, 73] with the purpose of ap-

proximating the parameter

α = max
0≤j≤M−1

max
1≤i≤N

|λi(Φj)|

where Φj ≈ Φ(xj , t) and xj , j = 0, . . . ,M − 1 is a grid point of the computational domain.

The parameter α is necessary in designing high resolution shock capturing (HRSC) schemes

(e.g. WENO schemes) that involve the Lax-Friedriechs flux splitting. In references [73] and

[19] (where adaptive multiresolution WENO technique is employed), the viscosity coefficient

α was approximated by

α = max
0≤j≤M−1

max
1≤i≤N

|vi(Φj)|.

However, as was pointed out by Zhang et al. [72], this choice of α can be inadequate and

therefore adds numerical viscosity. They chose instead

α = max
0≤j≤M−1

max

(∣∣∣∣∣vN(Φj) +
N∑

i=1

ci(Φj)

∣∣∣∣∣ , |v1(Φj)|

)
.

In either case, the WENO schemes implemented in the last references were applied in a

component-wise fashion, which can lead to oscillatory behavior. To overcome this drawback,

Donat and Mulet [26] provided the complete spectral decomposition for multi-class traffic

flow models, with the help of this information the authors could implement characteristic-

based version of HRSC schemes and compare it with the component-wise counterpart. In [26],

the strategy employed to obtain the eigenstructure and analyze previously the hyperbolicity

was based on viewing the Jacobian of the system as a rank-one perturbation of a diagonal

matrix. The same authors used a similar procedure for a model of polydisperse suspension

[27].

Most of polydisperse sedimentation models originate from chemical engineering literature

[4, 5, 23, 24, 35, 38, 49, 52, 58]. In particular, we mention the following models which can be

classified according to the form of the phase velocity: the Masliyah-Lockett-Bassoon (MLB

model), the models based on Batchelor’s approach such as the Batchelor-Wen (BW), Höfler-

Schwarzer (HS) and the Davis-Gecol (DG) models, and the Patwardhan-Tien model. Related
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to the hyperbolicity analysis of some of these models, we first recall here the criterion applied

in [17] to the case of two species. In this case is possible to obtain information from a

convenient writing of the characteristic polynomial:

P2(λ) = det(Jf (Φ) − λI) =

(
λ−

1

2

[
∂f1(Φ)

∂φ1
+
∂f2(Φ)

∂φ2

])2

−
1

4
I2, (2.0.3)

where

I2 =

(
∂f1(Φ)

∂φ1
−
∂f2(Φ)

∂φ2

)2

+ 4
∂f1(Φ)

∂φ2

∂f2(Φ)

∂φ1
. (2.0.4)

Hence, P2 has one pair of complex conjugate roots, that is, the system is elliptic, if and

only if I2 < 0, otherwise the corresponding system is hyperbolic. In [17] the hyperbolicity

of the MLB model with particles of the same densities and arbitrary diameters was proved,

as well for the HS model but only with N = 2, the hyperbolicity for N = 3 is conjectured

from numerical evidence. For the DG model (bidisperse case) the stability is provided under

the assumption that the particles do not differ too much in diameter, indeed, it was noticed

that the size of instability region increases as the size ratio D1/D2 also increases. Expression

(2.0.4) is essentially in agreement with the stability criterion for bidisperse sedimentation

derived in [12] which is evaluated for the MLB and PT models. We then recall that the hy-

perbolicity (strict) is closely related with stability of the models. Some consequences of lack of

stability include (see [12]), the formation of blobs and “fingers” in bidisperse sedimentation,

increased sedimentation rates, decreased separation quality, and nonhomogeneous sediments

in material manufacturing by suspension processing. On the other hand, strict hyperbol-

icity, and thus stability for equal-density spheres agrees with experimental evidence, since

instabilities have only been observed with particles of different densities [64]. In general, hy-

perbolicity is a desirable property that guarantees that the solution of the conservation law

(2.0.1) involves simple waves, where each eigenvalue represents a finite propagation speed of

solution information.

For N > 2 it seems to be difficult to obtain a simple expression like (2.0.3) that allow us

to conclude stability for a given model. However Berres et al. [11] proved the hyperbolicity

of the MLB model (with equal-density particles and different diameters) for arbitrary N an-

alyzing directly the characteristic polynomial. The same result was proved in [26] (without

considering others models as BW, HS or DG ), the authors did not use directly the char-

acteristic polynomial but the strategy performed in [27] for multi-class traffic models. On

the other hand, the possibility of studying the hyperbolicity of polydisperse sedimentation

models aforementioned, by means of a simmetriser seems to be a complicated task (even for

the simple case of N = 2) due to the form of the velocities functions vi.
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Numerical solutions of polydisperse sedimentation models is also important due to the

nonlinear character of the system (2.0.1) does not provide exact entropy weak solutions even

if N = 2 for an initially homogeneous suspension. Some schemes that have been applied

to these sedimentation models (as well for multi-species traffic flow models) include central

difference schemes (Riemman solver free) such as the Kurganov-Tadmor [41] implemented in

[15, 68], where it is necessary to provide a local speed of propagation from the (approximated)

eigenvalues of the Jacobian matrix of the flux function. Other simulations have been done

using the WENO approach see ref. [19] and [26]. In the former reference, the procedure was

performed without the whole spectral information, while in [26], simulations allow to compare

the component-wise and the characteristic-wise versions but only for the MLB model. In this

context, the current thesis work considers the analysis of the problem of hyperbolicity and

numerical simulations for some of the polydisperse sedimentation models mentioned above

and not considered in previous literature for an arbitrary number of species.



Chapter 3

Hyperbolicity analysis of polydisperse

sedimentation models via a secular

equation for the flux Jacobian

3.1 Introduction

3.1.1 Scope

Polydisperse suspensions consist of small solid particles dispersed in a viscous fluid, where

the particles are assumed to belong to a number N of species that differ in size or density.

The sedimentation of such mixtures is frequently described by spatially one-dimensional

models. If the particles are small compared with the cross-sectional area of the settling

vessel, then the N species can be treated as superimposed continuous phases, where species i

is associated with the volume fraction φi, the phase velocity vi, size (diameter) di, and density

̺i, where we assume that d1 = 1 ≥ d2 ≥ · · · ≥ dN and di 6= dj or ̺i 6= ̺j for i 6= j. The

continuity equations of the N species are then ∂tφi + ∂x(φivi) = 0, i = 1, . . . , N , where t

is time and x is depth. The velocities v1, . . . , vN are assumed to be given functions of the

vector Φ := Φ(x, t) := (φ1(x, t), . . . , φN(x, t))T of local concentrations. This yields systems

of conservation laws of the type

∂tΦ + ∂xf(Φ) = 0, f(Φ) :=
(
f1(Φ), . . . , fN(Φ)

)T
, fi(Φ) := φivi(Φ), i = 1, . . . , N. (3.1.1)

The one-dimensional model (3.1.1), where the concentrations are the only unknown flow

variables, is called kinematic. We are interested in the hyperbolicity analysis of (3.1.1) for

15
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arbitrary N under the assumption that the velocities v1, . . . , vN are functions of a small

number m (m≪ N) of scalar functions of Φ, i.e.,

vi = vi(p1, . . . , pm), pl = pl(Φ), i = 1, . . . , N, l = 1, . . . , m. (3.1.2)

Under the present assumptions, the entries fij(Φ) := ∂fi(Φ)/∂φj of the Jacobian Jf(Φ)

are given by

fij =
∂(φivi)

∂φj
= viδij +

m∑

l=1

φi
∂vi

∂pl

∂pl

∂φj
, i, j = 1, . . . , N, (3.1.3)

i.e., Jf (Φ) is a rank-m perturbation of a diagonal matrix. Models of this type include those

by Masliyah [46] and Lockett and Bassoon [45] (“MLB model”), Batchelor [4] and Batchelor

and Wen [6] (“BW model”), Davis and Gecol [23] (“DG model”), and Höfler and Schwarzer

[15, 37, 38] (“HS model”).

Hyperbolicity is an important property for polydisperse models, since it is often related

to the range of validity of the models. However, the analysis of the characteristic polynomial

of the Jacobian matrix of the system, in order to determine its eigenvalues, is rarely an easy

task. Strict hyperbolicity for any N has only been proven for the MLB model, under certain

restrictions (for equal-density particles, see [3, 11]).

In [26], the authors provide a proof of the hyperbolicity of the MLB model for equal-

density spheres that does not involve an explicit computation of det(Jf (Φ)−λI). It exploits

the algebraic structure of the Jacobian matrix, and makes use of the fact that the eigenvalues

of a rank-m perturbation of a diagonal matrix can be characterized as the roots of the so-

called secular equation [1]. The analysis is based on a rational function, R(λ), that satisfies

det
(
Jf (Φ) − λI

)
= R(λ)

N∏

i=1

(vi − λ) (3.1.4)

for a fixed vector Φ, under appropriate circumstances. For (3.1.1), R(λ) is of the form

R(λ) =

N∑

i=1

γi

vi − λ
,

and its coefficients γi, i = 1, . . . , N can be calculated with acceptable effort for moderate

values of m. The key result is that if these coefficients are of the same sign, then the existence

of N different eigenvalues of Jf(Φ) is ensured. Moreover, these eigenvalues can be localized

since they interlace with v1, . . . , vN . This is also an important property from the numerical
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point of view, since no explicit formulas for the eigenvalues are available, and its computation

must be always carried out by root finders.

This approach has proven to be more convenient than the explicit computation of det(Jf(Φ)−

λI) by successive row and column eliminations done for polydisperse models in e.g. in [11, 53]

(see [26] for the “secular” approach), or for kinematic traffic flow models in [70] (see [27] for

the “secular” approach).

It is the purpose of this chapter to employ this calculus to provide a new proof of hy-

perbolicity for variants of the MLB model, and to derive new hyperbolicity results for the

BW and HS models. In particular, we identify conditions on the smallest particle size, the

maximum solids concentration and certain model parameters under which these models are

strictly hyperbolic for arbitraryN . Numerical simulations illustrate the MLB and HS models,

and demonstrate how the hyperbolicity analysis provides characteristic information required

by numerical schemes.

3.1.2 Related work

For particles that have the same density, and after suitably rescaling the time variable,

the components fi(Φ), i = 1, . . . , N of the flux vector f(Φ) of the MLB model can be stated

as

fi(Φ) = φi(1 − φ)V (φ)
(
d2

i − (φ1d
2
1 + · · ·+ φNd

2
N)
)
, i = 1, . . . , N, (3.1.5)

where φ = φ1 + · · ·+φN and the so-called hindered settling factor V (φ) is assumed to satisfy

V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0 for φ ∈ [0, φmax], (3.1.6)

where φmax is the maximum total solids concentration. We consider vectors Φ ∈ D̄φmax
, where

D̄φmax
is the closure of the set

Dφmax
:= {Φ ∈ R

N : φ1 > 0, . . . , φN > 0, φ := φ1 + · · · + φN < φmax}.

In [17] it was shown that loss of hyperbolicity, that is, the occurrence of pairs of complex-

conjugate eigenvalues of Jf(Φ), is an instability criterion for polydisperse suspensions. For

N = 2 this criterion requires evaluating the discriminant I2(Φ) := (f11(Φ) − f22(Φ))2 −

4f12(Φ)f21(Φ); for vectors Φ with I2(Φ) < 0, the system (3.1.1) is unstable (elliptic) [5]. In

[2, 12, 17], instability regions for N = 2, 3 and different choices of f(Φ) are determined, while

in [11] it is proven that for equal-density particles (̺1 = · · · = ̺N ), arbitrary N and di 6= dj
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for i 6= j, (3.1.1) with the MLB flux vector (3.1.5) is strictly hyperbolic for all Φ ∈ D1.

The consequences of instability include the formation of blobs and “fingers” in bidisperse

sedimentation and the formation of nonhomogeneous sediments [12]. These phenomena have

been observed in experiments (e.g., in [64]) under the circumstances predicted by the instabil-

ity criterion. For one-dimensional kinematic models, loss of hyperbolicity sometimes predicts

anomalous numerical solutions, for example, heavy and buoyant particles block each other

within the vessel [10], and the steady-state sediment composition varies continuously [8].

On the other hand, strict hyperbolicity, and thus stability for equal-density spheres agrees

with experimental evidence, since instabilities have only been observed with particles of

different densities [64]. Consequently, a sound model should be strictly hyperbolic for equal-

density particles, at least if the parameter dN is sufficiently close to one. Thus, there is

interest in determining a region of guaranteed hyperbolicity of a given model in dependence

of dN and φmax. This region should be independent of N , since only dN can be controlled in

real applications, for example by sieving. This work outlines a calculus that provides such a

criterion for a number of models. While the results for the MLB model have been obtained

by other methods (but at considerably more effort, see [11]), the analysis of the BW and

HS models is new. In contrast to the MLB model, within the BW model the hindrance of

all species to a given species i is not described by a factor V = V (φ), but by a factor that

depends on 1 + sT
i Φ, where sT

i = (Si1, . . . , SiN) is a vector of non-positive coefficients and

Sij < 0 is a function of the size ratio dj/di. The BW model is valid for dilute suspensions

only (i.e., for suspensions of small concentration), and the HS and DG models were both

proposed as extensions of the BW model to the whole range of concentrations from the dilute

limit to packed sediments. The BW, HS and DG models are algebraically more complicated

than the MLB model, and the results of [11], based on deriving the characteristic polynomial

of Jf (Φ), are difficult to apply in this case. However, if one employs a cubic polynomial

dependence of Sij on dj/di, then the BW, HS and DG models become cases of (3.1.1) and

(3.1.2) for m = 4, and a hyperbolicity analysis becomes feasible via the secular equation.

Nevertheless, to make this chapter concise and to focus on the main ideas, we herein set the

coefficient of the cubic term to zero. This assumption is also made a priori in part of the

literature [15, 37, 38], and is otherwise justified by the observation that this coefficient is

usually very small. Consequently, in this chapter we limit the present analysis to the case

m = 3. In addition, we do not analyze herein the DG model, since previous work for N = 2

and N = 3 [17] showed that this model is hyperbolic for fairly narrow size distributions only.

In a later chapter, however, we will employ the secular equation to explicitly derive bounds
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of the hyperbolicity region for the DG model.

Although hyperbolicity in the equal-density case is a criterion that helps to decide whether

a given polydisperse sedimentation model is formally sound and generates characteristic

information important for the implementation of numerical schemes, we do not attempt to

judge which model is preferable or more accurate. Rather, we highlight the relevance of our

analysis by mentioning that recent works that employ either the MLB model or the BW,

DG or HS model include [34, 47, 51, 63, 68, 69] and [21, 24, 36], respectively.

Clearly, this analysis should be extended to additional sedimentation models (see Sec-

tion 3.6). Other multi-species kinematic flow models of the type (3.1.1), (3.1.2), which are

amenable to a similar hyperbolicity analysis, include multi-class vehicular traffic [7, 18, 19,

27, 66, 73, 70] and the creaming of emulsions [18, 53].

3.1.3 Outline of this chapter

In Section 3.2 we outline the secular equation and its application to (3.1.1), (3.1.2),

stating the basic hyperbolicity theorem, the “interlacing property” (i.e., the separation of

eigenvalues by the velocities), and the computation of eigenvectors. In Section 3.3 the MLB,

BW and HS models of polydisperse sedimentation are stated. In Section 3.4, which is at the

core of this chapter, the secular equation is applied to analyze the hyperbolicity of each of

these models. For the MLB model (where m = 2), we first present in Section 3.4.1 a more

compact proof of hyperbolicity for equal-density spheres than in [3, 11], and then estimate the

hyperbolicity region for particles that differ in density only. Then, in Section 3.4.3, we present

a new analysis of the BW model for equal-density spheres by means of the secular equation,

which results in a characterization of the parameter range within which the equations are

hyperbolic, and in an upper bound of the total concentration up to which this property

can be guaranteed. This bound is fairly small, in accordance with the limitation of the

BW model to dilute suspensions. Then, in Section 3.4.4, we analyze the HS model in a

similar manner. It turns out that the HS model is strictly hyperbolic if dN is not too small.

Section 3.5 presents some simulations of the MLB and HS models made by the Roe [43] and

Kurganov-Tadmor (KT) [41] schemes to illustrate the sedimentation processes and the use

of characteristic information provided by the calculus of the secular equation. Section 3.6

collects some conclusions of our analysis.
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3.2 The secular equation

For a general flux vector f(Φ) = (f1(Φ), . . . , fN(Φ))T with fi(Φ) = φivi(Φ) for i =

1, . . . , N , and where vi satisfies the functional dependence given by (3.1.2), and a fixed

vector Φ the Jacobian Jf = Jf(Φ) is a matrix of the form

Jf = D + BAT, D := diag(v1, . . . , vN),




B := (Bil) = (φi∂vi/∂pl),

A := (Ajl) = (∂pl/∂φj),
1 ≤ i, j ≤ N, 1 ≤ l ≤ m.

(3.2.1)

(This is a matrix representation of (3.1.3).)

As a motivation for the secular equation, we briefly summarize the analysis in [26]. To

this end, let us assume that λ is an eigenvalue of Jf (Φ), with eigenvector x 6= 0, i.e.,

(D + BAT)x = λx and such that

λ 6= vi for all i = 1, . . . , N . (3.2.2)

Since (D − λI) is invertible, we can also write

x + (D − λI)−1B(ATx) = 0, (3.2.3)

and multiplying this relation by AT, we get

ATx + AT(D − λI)−1B(ATx) = 0, (3.2.4)

i.e., the vector ξ := ATx ∈ R
m satisfies Mλξ = 0, where

Mλ := I + AT(D− λI)−1B. (3.2.5)

Clearly, we must have ξ 6= 0, since otherwise the second term in the left-hand side of (3.2.3)

would be zero, and we would have x = 0, in contradiction to our assumption that x is a

non-zero eigenvector. Hence, any eigenvalue λ 6= vi for all i must be a root of the equation

detMλ = 0, and we obtain a direct relation between the equation detMλ = 0 and the eigen-

values of Jf . The optimal situation is when R(λ) := detMλ has N different real roots, since

in this case these must be all the eigenvalues of Jf , which ensures strict hyperbolicity of the

system (3.1.1).

The secular equation

R(λ) = detMλ = 0 (3.2.6)
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provides, hence, relevant information on the eigenvalues of Jf . Rather than forming explicitly

the matrix Mλ and compute its determinant, we use a form of the function R(λ) that can

be traced back to Anderson [1], obtained after using certain algebraic results concerning

eigenvalues of rank-m perturbations of a diagonal matrix.

We introduce now the relevant notation. We denote by Sp
r the set of all (ordered) subsets

of r elements taken from a set of p elements. Assuming that X is an m × N matrix, and

given the index sets I := {i1 < · · · < ik} ∈ SN
k and J := {j1 < · · · < jl} ∈ Sm

l , we denote

by XI,J the k × l submatrix of X given by (XI,J)p,q = Xip,jq
. The following theorem can be

found in [1], but we give here the form in [26], which provides the explicit formulas to be

used in the applications.

Theorem 3.2.1 (The secular equation, [1, 26]) Assume that D is a diagonal matrix as

given by (3.2.1) with vi > vj for i < j, and that A and B have the formats specified in

(3.2.1). Let λ 6= vi for i = 1, . . . , N . Then λ is an eigenvalue of D + BAT if and only if

R(λ) := detMλ = 1 +
N∑

i=1

γi

vi − λ
= 0. (3.2.7)

The coefficients γi, i = 1, . . . , N , are given by the following expression:

γi =

min{N,m}∑

r=1

∑

i∈I∈SN
r ,J∈Sm

r

detAI,J detBI,J

∏
l∈I,l 6=i(vl − vi)

. (3.2.8)

The importance of the secular equation is elucidated by the following corollary, which is

an extended version of [26, Corollary 1].

Corollary 3.2.1 With the notation of Theorem 3.2.1, assume that γi · γj > 0 for i, j =

1, . . . , N . Then D + BAT is diagonalizable with real eigenvalues λ1, . . . , λN . If γ1, . . . , γN <

0, the interlacing property

M1 := vN + γ1 + · · ·+ γN < λN < vN < λN−1 < · · · < λ1 < v1 (3.2.9)

holds, while for γ1, . . . , γN > 0, the following analogous property holds:

vN < λN < vN−1 < λN−1 < · · · < v1 < λ1 < M2 := v1 + γ1 + · · · + γN . (3.2.10)

Proof. If vi 6= vj for i 6= j and γ1, . . . , γN have the same sign s, then R(λ) → (∓s)∞ as

λ→ v±i , hence R changes sign between two consecutive poles. Since R(λ) → 1 for λ→ ±∞,
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there is another change of sign to the left of vN if s = −1 or to the right of v1 if s = 1. Thus,

noting that M1 < vN and M2 > v1 in the respective cases γi < 0 and γi > 0, the property

of M1 being a lower bound and M2 being an upper bound for λ1, . . . , λN , respectively, is

established if we can show that R(M1) ≥ 0 and R(M2) ≥ 0, respectively. In the case γi < 0

we have that

M1 − vi = vN − vi + γ1 + · · · + γN ≤ γ1 + · · · + γN , for i = 1, . . . , N,

which implies that γi/(M1 − vi) ≤ γi/(γ1 + · · ·+ γN) for i = 1, . . . , N , and therefore

R(M1) = 1 +

N∑

i=1

γi

vi −M1
≥ 1 −

N∑

i=1

γi

γ1 + · · ·+ γN
= 0.

The proof of R(M2) ≥ 0 is analogous. 2

As a consequence of Corollary 3.2.1, strict hyperbolicity of (3.1.1) follows whenever the

coefficients γi of the associated secular equation of the system have a uniform sign. The

interlacing property is important for numerical schemes, since the actual eigenvalues may be

computed conveniently by a root finder. The bounds for the eigenvalues, i.e. the characteristic

speeds of the system, are also important for numerical purposes.

Remark 3.2.1 The conditions of Corollary 3.2.1 are sufficient for the strict hyperbolicity

of the models, but are far from necessary. A slightly weaker set of hypotheses leading to strict

hyperbolicity would be that the coefficients γi either have a definite sign or, if γi = 0, then

vi is not a root of the secular equation, for Theorem 3.2.1 would then anyway provide N

different roots of the characteristic polynomial. The condition R(vi) 6= 0 whenever γi = 0 is

hard to analyze in general, but there is a situation where it can be neatly ensured, given, for

instance, that v1 > · · · > vN and γj ≤ 0 for all j: γi = 0 implies γj = 0 for all j < i, which

yields

R(vi) = 1 +

N∑

j=i+1

γj

vj − vi
> 0. (3.2.11)

Remark 3.2.2 In the context of models of polydisperse sedimentation, the situation ad-

dressed in Remark 3.2.1 occurs if we choose Φ = (φ1, . . . , φN)T such that φi = 0 for 1 ≤ i ≤ i0

and φi ∈ (0, φmax) for i0 + 1 ≤ i ≤ N for an index i0 ∈ {1, . . . , N}. Consequently, suppose

that we are able to establish strict hyperbolicity on all of Dφmax
, then this property also holds

on certain parts of the boundary of Dφmax
; on the remaining parts of that boundary, the model

(3.1.1) is still hyperbolic, but not necessarily strictly hyperbolic.
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Remark 3.2.3 Anderson [1] mentions that for the case of a self-adjoint rank-1 perturba-

tion of a diagonal matrix, Theorem 3.2.1 was proved first by Golub [33], who also utilizes

the expression “secular equation” [33, p. 327] for the algebraic form of R(λ) in that case.

Nevertheless, this expression is in fact much older, and appeared at least as early as in the

work of Cauchy [20], where the adjective secular has the meaning of “existing or continuing

through the centuries”.

Finally, another important by-product of this derivation is the possibility of having an

explicit expression of the spectral decomposition of the Jacobian matrix of the system, which

is also a useful asset in numerical simulations. Assume that λ is a root of the secular equation,

i.e., λ is an eigenvalue of Jf that satisfies (3.2.2). Then ξ = ATx is a solution of Mλξ = 0. But

Mλ is anm×mmatrix that can easily be computed. Given two vectors g = (g1, . . . , gN)T,h =

(h1, . . . , hN)T ∈ R
N , if we use the notation

[g,h] := [g,h]λ := gT(D − λI)−1h =
N∑

k=1

gkhk

vk − λ
(3.2.12)

and denote by a1, . . . , am and b1, . . . ,bm the columns of A and B, respectively, then

Mλ = I + ([ai,bj ])1≤i,j≤m .

Assuming that we can compute a non-zero solution ξ of

Mλξ = 0, (3.2.13)

we can use the relation x + (D − λI)−1B(ATx) = 0 to compute a right eigenvector of Jf as

x = −(D − λI)−1Bξ. (3.2.14)

The same procedure may be employed to calculate the left eigenvectors of Jf , since they

are the right eigenvectors of J T
f

= D + ABT. In other words, the roles of A and B and

corresponding columns need to be interchanged. This will be further illustrated for the MLB

model.

For the case given by (3.2.1) and assuming that m < N , we note that with A and B

defined in (3.2.1) we can write

detAI,J = det

(
∂pJ

∂φI

)
, detBI,J = det

(
∂vI

∂pJ

)∏

l∈I

φl,
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where the notation above should be self-explanatory. Then, we can write

γi = φi

m∑

r=1

γr,i, γr,i =
∑

i∈I∈SN
r

∏

l∈I,l 6=i

φl

vl − vi

∑

J∈Sm
r

det

(
∂vI

∂pJ

)
det

(
∂pJ

∂φI

)
. (3.2.15)

When m = 1 or m = 2, these quantities can be easily computed and the hyperbolicity

analysis via the secular equation is much less involved than the study of det(Jf (Φ)−λI). For

m = 3 or m = 4, the computations in the secular equation are more involved, but they can

be useful in providing at least partial results concerning hyperbolicity, where the theoretical

analysis of det(Jf (Φ)) − λI) is essentially out of reach.

3.3 Kinematic models of polydisperse sedimentation

3.3.1 The Masliyah-Lockett-Bassoon (MLB) model

The MLB model is based on the following explicit equation for the solid-fluid relative

velocity ui := vi − vf of species i, also called slip velocity:

ui =
gd2

i (¯̺i − ¯̺TΦ)

18µf

Vi(Φ), (3.3.1)

where g is the acceleration of gravity, ¯̺i := ̺i−̺f is the reduced density of particle species i,

where ̺i and ̺f are the mass densities of particle species i and the fluid, respectively, µf is

the viscosity of the fluid, ¯̺ := (¯̺1, . . . , ¯̺N)T, and Vi(Φ) is the hindered settling factor for

species i. In most previous works, this factor is assumed to be the same for all species, and

is assumed to depend on φ := φ1 + · · · + φN only, i.e. Vi(Φ) = V (φ) for i = 1, . . . , N , and

may be given by the Richardson-Zaki [52] expression

V (φ) = (1 − φ)n−2 for φ ∈ D̄φmax
, V (φ) = 0 otherwise, n > 2. (3.3.2)

Expressing the velocities v1, . . . , vN and vf in terms of the volume average velocity q :=

(1− φ)vf + φ1v1 + · · ·+ vNφN and the slip velocities u1, . . . , uN we obtain the flux functions

fi(Φ) = φivi = qφi + φi

(
ui − (φ1u1 + · · ·+ φNuN)

)
, i = 1, . . . , N. (3.3.3)

while summing the continuity equations for the solids species and that of the fluid yields

∂xq = 0, i.e., q = 0 for batch settling in a closed vessel. Then, inserting (3.3.1) into (3.3.3),

assuming that (for example, after rescaling x) the constant g/(18µf) equals one and recalling

the ordering

d1 = 1 ≥ d2 ≥ · · · ≥ dN−1 ≥ dN , (3.3.4)
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we obtain

fi(Φ) = φivi(Φ), vi(Φ) =

[
(¯̺i − ¯̺TΦ)d2

iVi(Φ) −

N∑

m=1

φmd
2
m(¯̺m − ¯̺TΦ)Vm(Φ)

]
,

i = 1, . . . , N.

(3.3.5)

Under the assumption Vi(Φ) = V (φ) for i = 1, . . . , N , the equation for vi in (3.3.5) assumes

the form

vi(Φ) = V (φ)

[
(¯̺i − ¯̺TΦ)d2

i −
N∑

m=1

φmd
2
m(¯̺m − ¯̺TΦ)

]
, i = 1, . . . , N. (3.3.6)

On the other hand, for equal-density particles we have ¯̺i − ¯̺TΦ = (1 − φ)(̺s − ̺f), where

̺s is the uniform solids density. Hence, we assume that t has been rescaled so that (3.3.5)

becomes

vi(Φ) = (1 − φ)

[
d2

iVi(Φ) −

N∑

m=1

φmd
2
mVm(Φ)

]
, i = 1, . . . , N. (3.3.7)

Clearly, combining the assumption Vi(Φ) = V (φ) with that of equal particle densities leads

to the flux function (3.1.5).

Finally, we may also consider a suspension of particles of equal size d of species that differ

in density only. Assuming Vi(Φ) = V (φ) and that the factor gd2/(18µf) is set to one, we then

obtain

vi(Φ) = V (φ)
[
¯̺i + (φ− 2)¯̺TΦ

]
, i = 1, . . . , N. (3.3.8)

The secular equation can be employed for the hyperbolicity analysis of the MLB model

in various particular instances, as we shall see in Section 3.4.

3.3.2 Models based on Batchelor’s approach

The MLB model is derived from the mass and linear momentum balance equations of the

particle species and the fluid (see [11]). A different approach is due to Batchelor [4], which

is based on the following expression for the settling velocity vi of spheres of species i, having

diameter di, in a dilute suspension:

vi(Φ) = vi(0)(1 + sT
i Φ), i = 1, . . . , N. (3.3.9)

Here, vi(0) is the settling velocity of a single sphere of species i in pure fluid, that is, vi(0) is

the Stokes velocity vi(0) = d2
i ¯̺i/(18µf), and sT

i := (Si1, . . . , SiN) is the i-th row of the matrix
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S = (Sij)1≤i,j≤N . The dimensionless sedimentation coefficients Sij are in general negative

functions of λij := dj/di and ̺ij := ¯̺j/ ¯̺i, of the Péclet number

Pij :=
(di + dj)|vj(0) − vi(0)|

(4Dij)
,

and of interparticle attractive-repulsive forces. Here, Dij := (kT )(3πµf)
−1(d−1

i + d−1
j ) is the

so-called relative diffusivity, where T is temperature and k is the Boltzmann constant [4, 6].

The coefficients Sij can be calculated from the pair distribution function, which represents

the statistical structure of the suspension [4]. This was done numerically by Batchelor and

Wen [6] for a range of values of λ = λij and ̺ = ̺ij , considering the limits of either a large

(Pij ≫ 1) or a small (Pij ≪ 1) Péclet number, and neglecting Brownian diffusion.

The secular equation can be employed for the hyperbolicity analysis of several models

based on Batchelor’s approach with equal-density particles (̺ij = 1 for 1 ≤ i, j ≤ N). In this

case, after rescaling time, we may express (3.3.9) as

vi(Φ) = d2
i (1 + sT

i Φ), i = 1, . . . , N, (3.3.10)

and the coefficients Sij can be reasonably approximated by a formula of the type

Sij =

3∑

l=0

βl

(
dj

di

)l

, 1 ≤ i, j ≤ N. (3.3.11)

We will refer to (3.3.10), (3.3.11) as the Batchelor and Wen (BW) model.

Davis and Gecol [23] were the first to approximate the numerical values of Sij, tabulated

in [6] for ̺ij = 1 for eight different values of λij , by an expression of the type (3.3.11); they

obtained the coefficients

βT := (β0, . . . , β3)

=





(−3.5,−1.1,−1.02,−0.002) for large Péclet numbers (Pij ≫ 1),

(−3.42,−1.96,−1.21,−0.013) for small Péclet numbers (Pij ≪ 1).

(3.3.12)

We observe that in both cases, βi < 0 for i = 0, . . . , 3, and that |β3| is very small. In fact,

some authors utilize β3 = 0 a priori; for example, Höfler and Schwarzer [38] fit the data from

[6] for large Péclet numbers to a second-order polynomial correspondingto

βT = (β0, . . . , β3) = (−3.52,−1.04,−1.03, 0). (3.3.13)

That |β3| should be small while β0, β1, β2 ≤ 0 is also supported by theoretical asymptotical

result [4] stating that Sij + ̺ij(λ
2
ij + 3λij + 1) → 0 as λij → ∞, which is relevant here only
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for ̺ij = 1. For a detailed discussion of the coefficients Sij and further data we refer to

[4, 6, 54, 65]. Our further analysis will indeed rely on the negativity of the βi. As we shall

see shortly, setting β3 = 0 simplifies greatly the computations involved in the hyperbolicity

analysis via the secular equation.

To overcome the limitation of (3.3.10), and the BW approach, to dilute suspensions,

other models have been proposed. Davis and Gecol [23] replace (3.3.10) by

vi(Φ) = d2
i (1 + sT

i Φ − Siiφ)(1 − φ)−Sii, (3.3.14)

and claimed that (3.3.14) could be used for size ratios dN ≥ 1/8. However, in [17] it is shown

that for N = 2 and d2 ≈ 1/6, the system (3.1.1) based on using (3.3.14) exhibits unphysical

instability regions for equal-density spheres. Another velocity equation that formally extends

(3.3.10) to the whole range of concentrations was suggested by Höfler and Schwarzer [15, 37,

38]:

vi(Φ) = d2
i exp(sT

i Φ + nφ)(1 − φ)n, n ≥ 0. (3.3.15)

For Φ → 0, (3.3.14) and (3.3.15) have the same partial derivatives as (3.3.10), while for

φ → 1, the velocities vi given by (3.3.14) and (3.3.15) vanish. Moreover, for the HS model

it is straightforward to verify (see [17]) that I2 > 0 for arbitrary non-positive Batchelor

matrices S and N = 2. Furthermore, based on numerical tests, it was conjectured in [17]

that the model based on (3.3.15) would be stable also for N = 3. The present work confirms

this conjecture and shows that the model is stable for arbitrary N , provided that for a given

vector of coefficients β, the quantities dN and Φ satisfy some mild conditions.

3.4 Hyperbolicity analysis via the secular equation

Since our analysis should be general with respect to the number of species N and the

particle size classes d1, . . . , dN , we employ the smallest normalized particle size dN as the only

scalar parameter that characterizes the width of the particle size distribution. We always

assume the ordering of particle sizes (3.3.4). This means that for equal-density particles,

i > j for i, j ∈ {1, . . . , N} is equivalent to di < dj .

3.4.1 The Masliyah-Lockett-Bassoon (MLB) model

The MLB model for equal-density spheres (3.1.1), (3.1.5) is known to be strictly hyper-

bolic for all N and all Φ ∈ Dφmax
. A proof of this fact was obtained in [11], by deriving an
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explicit formula for the characteristic polynomial of the Jacobian matrix Jf (Φ). In [26], a

considerably shorter proof of this same fact was provided by using the secular equation.

To illustrate the use of the secular equation to show strict hyperbolicity, we consider the

MLB model for species of identical density in a more general case, considered in [3]. Basson

et al. [3] recently analyzed the variant of the MLB model for equal-density spheres based on

(3.3.7) with the following hindered settling factors:

Vi(φ) = (1 − φ)ni−2 for φ ∈ D̄φmax
, Vi(φ) = 0 otherwise,

ni > 2, ni ≤ nj for i < j.
(3.4.1)

In [3], an analysis of the characteristic polynomial of Jf (Φ) similar to that of [11] led to

the conclusion that the model is still strictly hyperbolic for all N and Φ ∈ Dφmax
. Here we

provide a much shorter proof of this fact using the secular equation.

Lemma 3.4.1 The MLB model for equal-density spheres (3.1.1), (3.3.7) and the hindered

settling factors (3.4.1) is strictly hyperbolic for all Φ ∈ Dφmax
. Its eigenvalues λi = λi(Φ)

satisfy the interlacing property

M1(Φ) < λN(Φ) < vN (Φ) < λN−1(Φ) < vN−1(Φ) < · · · < λ1(Φ) < v1(Φ),

M1(Φ) := d2
NVN(Φ) +

N∑

j=1

d2
jφj

(
(1 − φ)V ′

j (φ) − 2Vj(φ)
)
.

The right and left eigenvectors of Jf (Φ), denoted by x and y, respectively, that correspond

to a root λ of the secular equation are

xi =
1

vi − λ

[
bi,1

N∑

k=1

ak,1bk,2

vk − λ
− bi,2

(
1 +

N∑

k=1

ak,1bk,1

vk − λ

)]
, i = 1, . . . , N, (3.4.2)

yi =
1

vi − λ

[
ai,1

N∑

k=1

bk,1ak,2

vk − λ
− ai,2

(
1 +

N∑

k=1

bk,1ak,1

vk − λ

)]
, i = 1, . . . , N, (3.4.3)

where

bi,1 = φid
2
iV

′
i (φ), bi,2 = −φi, ai,1 = 1, ai,2 =

N∑

j=1

d2
jV

′
j (φ)φj + d2

iVi(φ). (3.4.4)

Proof. In this case, we have m = 2, and the velocities can be expressed by vi = Vi(p1)d
2
i −p2,

where p1 := φ = φ1 + · · · + φN and p2 = d2
1V1(φ)φ1 + · · ·+ d2

NVN(φ)φN . To compute the

expressions in (3.2.15), we need
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vl − vi = Vl(φ)d2
l − Vi(φ)d2

i ,
∂vi

∂p1
= d2

iV
′
i (φ),

∂vi

∂p2
= −1,

∂p1

∂φi
= 1,

∂p2

∂φi
=

N∑

j=1

d2
jV

′
j (φ)φj + d2

iVi(φ);

det

(
∂vi,l

∂p1,2

)
= d2

l V
′
l (φ) − d2

iV
′
i (φ), det

(
∂p1,2

∂φi,l

)
= d2

l Vl(φ) − d2
iVi(φ).

In this way, we obtain

γ1,i =
∂vi

∂p1

∂p1

∂φj
+
∂vi

∂p2

∂p2

∂φj
= d2

i

(
V ′

i (φ) − Vi(φ)
)
−

N∑

j=1

d2
jV

′
j (φ)φj,

γ2,i =
N∑

j=1

j 6=i

φj

vj − vi
det

(
∂vi,j

∂p1,2

)
det

(
∂p1,2

∂φi,j

)
=

N∑

j=1

j 6=i

φj

(
d2

jV
′
j (φ) − d2

iV
′
i (φ)

)
,

which finally leads to γi = (V ′
i (φ)(1 − φ) − Vi(φ))φid

2
i . Due to (3.1.6), we obtain γi < 0

for all i = 1, . . . , N and Φ ∈ Dφmax
. The interlacing property and the form of M1 follow

from Corollary 3.2.1. Therefore, we deduce (3.4.2) by considering λ = λj , and also tak-

ing ξ = (−[a1,b2], 1 + [a1,b1]) ∈ R
2 as solution of the first of the two (equivalent) equa-

tions in (3.2.13) and substituting into (3.2.14). Since the left eigenvectors of the matrix

Jf = D + BAT are the right eigenvectors of J T
f

= D + ABT, (3.4.3) can be deduced from

(3.4.2) by interchanging the roles of A and B. 2

For equal-sized particles, which differ in density only, Dφmax
has in general a sub-region

with lack of hyperbolicity [12, 17]. In this case, the quantities γi will in general not have

a definite sign, but we may still employ the secular equation to estimate the size of the

hyperbolicity region of Dφmax
.

Lemma 3.4.2 The MLB model for equal-sized heavy spheres (3.1.1), (3.3.8), where ¯̺1 >

¯̺2 > · · · > ¯̺N > 0 and the hindered settling factor V (φ) is given by (3.3.2), is strictly

hyperbolic for all Φ ∈ Dφ∗ ⊂ D1, where

φ∗ =
n ¯̺N

¯̺1 + ¯̺N(n− 1)
=

n

n+ γ − 1
, γ = ¯̺1/ ¯̺N > 1. (3.4.5)

Proof. In this case, we have vi = V (p1)(¯̺i + (p1 − 2)p2), where p1 = φ and p2 = ¯̺TΦ. This

implies

vj − vi = V (φ)(¯̺j − ¯̺i),
∂vi

∂p1

= V ′(φ)
(
¯̺i + (φ− 2)p2

)
+ V (φ)p2,
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∂vi

∂p2
= V (φ)(φ− 2),

∂p1

∂φi
= 1,

∂p2

∂φi
= ¯̺i;

det

(
∂vij

∂p12

)
= V (φ)V ′(φ)(φ− 2)(¯̺i − ¯̺j), det

(
∂p12

∂φij

)
= ¯̺j − ¯̺i.

In this way, we get

γ1,i = V ′(φ)
(
¯̺i + (φ− 2)p2

)
+ V (φ)

(
p2 + (φ− 2)¯̺i

)
, γ2,i = V ′(φ)(φ− 2)(φ ¯̺i − p2),

which for V (φ) given by (3.3.2) yields

γi = −φi(1 − φ)n−2
[
¯̺i

(
1 + (n− 1)(1 − φ)

)
− p2

]
.

Taking into account the ordering ¯̺1 > · · · > ¯̺N , we have γi < 0 if φ < 1 and

p2 < ¯̺i(1 + (n− 1)(1 − p1)), for all i = 1, . . . , N,

or equivalently,

0 < ψ(Φ) := −¯̺TΦ + ¯̺N (1 + (n− 1)(1 − φ)) for all Φ ∈ D̄φ∗ .

In order to find conditions on φ∗ for ensuring that ψ(φ) > 0 for all φ ∈ [0, φmax], we may

consider the linear optimization programme

min
φj≥0,φ≤φ∗

ψ(Φ). (3.4.6)

It is straightforward to see that the solution of (3.4.6) is attained at a vertex of Dφ∗ . We

then obtain

min
Φ∈Dφ∗

ψ(Φ) = min
{
ψ
(
(0, . . . , 0)T

)
,min{ψ(φ∗e1), . . . , ψ(φ∗eN )}

}

= min
1≤j≤N

{
− ¯̺jφ∗ + ¯̺N

(
1 + (n− 1)(1 − φ∗)

)}

= − ¯̺1φ∗ + ¯̺N(1 + (n− 1)(1 − φ∗)).

This directly gives the bound (3.4.5) that ensures strict hyperbolicity in Dφmax
. 2

3.4.2 Preliminaries for the BW and HS models

These two models can be expressed as

vi(Φ) = d2
iϕ(sT

i Φ + nφ)(1 − φ)n, i = 1, . . . , N, (3.4.7)
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where ϕ(z) = 1 + z, n = 0 for the BW model, and ϕ(z) = exp(z), n ≥ 0, arbitrary, for the

HS model. We define

aν := dT
ν−1 := (dν−1

1 , dν−1
2 , . . . , dν−1

N ), pν := aT
ν Φ, ν = 1, . . . , 4, (3.4.8)

and write

sT
i Φ =

N∑

j=1

(
3∑

ν=0

βν

(
dj

di

)ν
)
φj =

3∑

ν=0

βν

dν
i

aT
ν Φ =

3∑

ν=0

βν

dν
i

pν+1, i = 1, . . . , N.

In this chapter we shall analyze only the case β3 = 0, for which m = 3. We may then express

(3.4.7) as

vi(Φ) = vi(p1, . . . , p3)

= d2
iϕ
(
(β0 + n)p1 + β1d

−1
i p2 + β2d

−2
i p3

)
(1 − p1)

n, i = 1, . . . , N.
(3.4.9)

Let us write p1 = φ, and define

ηi := ϕ(sT
i Φ + nφ) and η′i := ϕ′(sT

i Φ + nφ) for i = 1, . . . , N,

where ϕ′(z) := dϕ(z)/dz. Taking into account that for the BW and HS models either n = 0

or η′i = ηi, we readily compute here that the quantities αk
i = ∂pk/∂φi and βk

i = φi∂vi/∂pk

are given by

αk
i = dk−1

i , βk
i = d3−k

i φi(1 − φ)nβ̃k−1η
′
i, β̃0 = β0 −

nφ

1 − φ
, β̃k = βk, k = 1, 2.

We now calculate the products αJ
I β

J
I of αJ

I := detAI,J and βJ
I := detBI,J in the formula

(3.2.15) for m = 3,

γi = α1
iβ

1
i + α2

iβ
2
i + α3

iβ
3
i n

+
N∑

j=1

j 6=i

α12
ij β

12
ij + α13

ij β
13
ij + α23

ij β
23
ij

vj − vi

+
N∑

j,k=1

i6=j<k 6=i

α123
ijkβ

123
ijk

(vk − vi)(vj − vi)
,

(3.4.10)

which is written out here in some detail for the ease of keeping track of the terms to be

evaluated. Moreover, we adopt the convention that sums over a void index range are zero,

and utilize the following notation:

πijk := (dj − di)(dk − di)(dk − dj). (3.4.11)

We then obtain

αk
i β

k
i = d2

iφi(1 − φ)nβ̃k−1η
′
i, k = 1, 2, 3,

αp,p+q
ij βp,p+q

ij = −(didj)
2−qφiφj(1 − φ)2nη′iη

′
jβ̃p−1β̃p+q−1(d

q
i − dq

j)
2, q = 1, 2,

α123
ijkβ

123
ijk = −φiφjφk(1 − φ)3nη′iη

′
jη

′
kβ̃0β1β2π

2
ijk.

(3.4.12)
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3.4.3 The Batchelor and Wen (BW) model

We first show that for a sufficiently dilute suspension (i.e., Φ is close to zero in a sense

made precise below), the BW model is stable by demonstrating that γi has a definite sign, at

least under certain mild restrictions on the parameters dN and β, and if the components of Φ

are sufficiently small. To this end, we rewrite (3.4.10) as γi = φi(S1,i + S2,i + S3,i). Inserting

the expressions (3.4.11) and (3.4.12), with n = 0, β̃k = βk, η
′
i = 1, into (3.4.10) and defining

η̂i := 1 + sT
i Φ, we obtain

S1,i := d2
i (β0 + β1 + β2),

S2,i :=
N∑

j=1

j 6=i

φj

d2
j η̂j − d2

i η̂i

(
−β0β1didj(dj − di)

2 − β0β2(d
2
j − d2

i )
2 − β1β2didj(dj − di)

2
)
,

S3,i := −β0β1β2

N∑

j,k=1

i6=j<k 6=i

φjφkπ
2
ijk

(d2
kη̂k − d2

i η̂i)(d2
j η̂j − d2

i η̂i)
.

(3.4.13)

Since βi ≤ 0 for i = 0, 1, 2 and at least one βi is negative, we see that S1,i < 0 for φi > 0;

moreover, here S1,i is independent of Φ or N . Consequently, we now show that γi < 0 for all

i = 1, . . . , N by possibly imposing further conditions on the parameters dN , β and Φ. Our

strategy is based on splitting the sums of (3.4.13) into positive and negative parts (produced

by summands of the corresponding sign), estimating the contributions of positive sign, and

then showing that these estimates ensure that γi < 0. To this end, suppose that there is a

constant θ ≥ 1 such that

−sT
i Φ ≤

1

1 + θ
for all i = 1, . . . , N . (3.4.14)

Clearly, this condition is satisfied if and only if the inequality for i = N is satisfied, i.e.,

−sT
NΦ =

N∑

j=1

(
−

2∑

ν=0

βνd
ν
j

dν
N

)
φj ≤

1

1 + θ
. (3.4.15)

(This is a combined condition on the choices of dN , β and Φ, which we will discuss after

stating the main result for this model.) This implies that 1 + sT
i Φ ≥ −θsT

i Φ for all i =

1, . . . , N , i.e., it is a positive lower bound for the velocities vi, and we then know that for

i < j, the following inequalities are valid:

0 <
(
d2

i η̂i − d2
j η̂j

)−1
≤
(
(1 + sT

j Φ)(d2
i − d2

j)
)−1

≤

(
−θ(d2

i − d2
j)

2∑

ν=0

βν

dν
j

dT
ν Φ

)−1

. (3.4.16)

Clearly, we may further estimate the last term in (3.4.16) by omitting some of the summands.
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Lemma 3.4.3 If ( 3.4.15) is satisfied then we have the following inequalities:

S2,i ≤ −d2
i θ

−1
(
2β0 + β2

)
, (3.4.17)

S3,i ≤ −d2
i θ

−2(2β0). (3.4.18)

Proof. Since η̂i > η̂j for i < j, the summands of S2,i with j < i and j > i are negative

and positive, respectively; let us denote the corresponding partial sums by S−
2,i ≤ 0 and

S+
2,i ≥0, with S2,i = S−

2,i + S+
2,i. Our aim is to bound S+

2,i in such a way that this quantity is

compensated by the (negative) terms of S1.

Let us now turn to S+
2,i. We here get

S+
2,i ≤ −

1

θ

N∑

j=i+1

{
β0β1di(di − dj)

2d2
jφj

(d2
i − d2

j)β1dT
1 Φ

+
β0β2(di + dj)

2(di − dj)
2d2

jφj

(d2
i − d2

j)β2dT
2 Φ

+
β1β2di(di − dj)

2d2
jφj

β1(d
2
i − d2

j )d
T
1 Φ

}
.

(3.4.19)

Consequently, since di > dj for j > i, we obtain from (3.4.19) the following inequality:

S+
2,i ≤ −

d2
i

θ

N∑

j=i+1

{
β0

(
djφj

dT
1 Φ

+
d2

jφj

dT
2 Φ

)
+ β2

djφj

dT
1 Φ

}
,

which implies (3.4.17), given that

dp
i+1φi+1 + · · ·+ dp

NφN

dp
1φ1 + · · ·+ dp

NφN

≤ 1, p = 1, 2.

Since only those summands of S3,i are positive for which either i < j and i < k or i > j

and i > k, we rewrite S3,i as S3,i = S−
3,i + S+,1

3,i + S+,2
3,i , where S−

3,i < 0, S+,1
3,i > 0 and S+,2

3,i > 0,

and S+,1
3,i and S+,2

3,i are the partial of S3,i for which j > i, k > i and k 6= j and j < i, k < i

and k 6= j, respectively.

Applying several versions of (3.4.16) to both factors in the denominator of the summands

of S+,1
3,i , we obtain

S+,1
3,i ≤ −

1

θ2

N∑

j,k=i+1

j<k

β0π
2
ijkdjφjd

2
kφk

(d2
k − d2

i )(d
2
j − d2

i )d
T
1 ΦdT

2 Φ
.

Noting that for j, k > i, we have that

π2
ijk

(d2
i − d2

j)(d
2
i − d2

k)
≤ d2

i ,
N∑

j,k=i+1

j<k

djφjd
2
kφk ≤ dT

1 ΦdT
2 Φ, (3.4.20)
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we finally obtain the inequality

S+,1
3,i ≤ −β0

d2
i

θ2
. (3.4.21)

Furthermore, the version of (3.4.16) with the roles of i and j interchanged shows that

S+,2
3,i ≤ −

1

θ2

i−1∑

j,k=1

k<j

β0π
2
ijkdiφjd

2
iφk

(d2
k − d2

i )(d
2
j − d2

i )d
T
1 ΦdT

2 Φ

≤ −
β0

θ2dT
1 ΦdT

2 Φ

i−1∑

j,k=1

k<j

(dk − dj)
2diφjd

2
iφk

≤ −
d2

iβ0

θ2dT
1 ΦdT

2 Φ

i−1∑

j,k=1

k<j

d2
kφkdjφj ≤ −β0

d2
i

θ2
.

Combining this with (3.4.21) we obtain (3.4.18). 2

Corollary 3.4.1 For the BW model, the following inequality is valid:

S1,i + S2,i + S3,i ≤ d2
iM(θ,β), (3.4.22)

where we define the function

M(θ,β) := (1 − 2θ−1 − 2θ−2)β0 + β1 + (1 − θ−1)β2. (3.4.23)

Proof. Combining the inequalities (3.4.17) and (3.4.18) we obtain (3.4.22) and (3.4.23).

Each of the inequalities (3.4.17) and (3.4.18) estimates a non-negative sum from above, and

therefore remains valid if the respective sum runs over a void index range, and is therefore

zero. Consequently, (3.4.22) and (3.4.23) hold for arbitrary numbers of species N . 2

We have proven the following theorem.

Theorem 3.4.4 Assume that θ is chosen such that the inequality

M(θ,β) < 0 (3.4.24)

is satisfied, where M(θ,β) is defined in (3.4.23). If the maximum solids concentration φmax

is chosen such that the inequality (3.4.15) is satisfied for all Φ ∈ Dφmax
for this value of θ,

then γi < 0 for i = 1, . . . , N and Φ ∈ Dφmax
, i.e., the model equations are strictly hyperbolic

on Dφmax
.
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The advantage of introducing the parameter θ becomes apparent now, and is related to

the fact that the BW model is valid for dilute suspensions only. Suppose that we choose

an admissible value of θ, then (3.4.15) can hold either for a dilute suspension, i.e. φ is

small, but for a large range of coefficients β, or we consider relatively small (in absolute

value) coefficients β and obtain a hyperbolicity (stability) result valid up to relatively large

concentrations. Our analysis also shows that for N = 2, we additionally have S3,i = 0 and

the terms in which we divide by θ2 are zero.

To illustrate the predictions of Theorem 3.4.4, let us first consider the coefficients β

(with β3 = 0) given by (3.3.13). Since M(θ,β) is a strictly decreasing function of θ, it

is sufficient to solve M(θ,β) = 0 for θ to conclude that in this case, M(θ,β) < 0 for

θ > θmin ≈ 2.259847, i.e., the set of admissible values of θ is (θmin,∞). In this case the

hyperbolicity of the BW model is ensured for those vectors Φ that satisfy (3.4.15) with a strict

inequality and θ = θmin. The sharp evaluation of this inequality requires specifying d2, . . . , dN .

However, if we only wish to determine the largest value φ∗ of the total concentration φ up

to which we can guarantee hyperbolicity, then we can rewrite the left-hand side of (3.4.15)

as σ1φ1 + · · · + σNφN , where we define σj := −β0 − β1djd
−1
N − β2d

2
jd

−2
N . Then the sought

concentration φ∗ solves the problem “minimize φ subject to σ1φ1+· · ·+σNφN = (1+θmin)
−1”.

Expressing φ1 in terms of φ2, . . . , φN and φ, we can rewrite this equation as

φ = (1 − σ−1
1 σ2)φ2 + · · · + (1 − σ−1

1 σN)φN + σ−1
1 (1 + θmin)

−1. (3.4.25)

Since σ1 > σ2 > · · · > σN , the coefficients of φ2, . . . , φN on the right-hand side are all positive,

and the minimum φ∗ of φ is attained for φ2 = · · · = φN = 0. Its value is φ∗ = σ−1
1 (1+θmin)

−1.

Figure 3.1 (a) shows a plot of φ∗ as a function of dN for this case.

Finally, for the purpose of illustration, let us consider the coefficients β given (3.3.12) for

large or small Péclet numbers, but where we replace the respective values of β3 by zero. In

these cases, we obtain the respective values θmin ≈ 2.252800 and θmin ≈ 2.135459, and we

show in Figures 3.1 (b) and (c) the corresponding plots of φ∗ as a function of dN .

3.4.4 The Höfler and Schwarzer (HS) model

Let us now analyze the HS model based on the velocity equation (3.3.15). This model is

the sub-case of (3.4.7) for ϕ(z) = exp z and n ≥ 0 arbitrary. For this model, ηi = η′i causes

considerable simplification, and the quantities γi given by (3.4.10) can be expressed as

γi = φi(1 − φ)nηi (S1,i + S2,i + S3,i) , (3.4.26)



36

(a)

ppppppppppppppppppppppppppp
pppppppppppp
pppppppppp
pppppppp
ppppppp
pppppp
ppppppp
ppppp
pppppp
ppppp
ppppp
ppppp
pppp
ppppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
pppp
ppp
pppp
ppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
pppp
pppp
pppp
ppppp
pppp
ppppp
ppppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppppp
ppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
pppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
pppppppp
ppppppp
ppppppp
pppppppp
ppppppp
pppppppp
ppppppp

0 0.25 0.5 0.75 1dN

0

0.01

0.02

0.03

0.04

0.05

φ∗

0.06

(b)

pppppppppppppppppppppppppp
ppppppppppppp
pppppppppp
ppppppp
pppppppp
pppppp
pppppp
pppppp
pppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
ppp
pppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pppp
ppp
ppp
ppp
pppp
ppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
ppp
pppp
pppp
ppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
pppp
pppp
ppppp
pppp
pppp
ppppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppppp
pppppp
ppppp
pppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
pppppp
ppppppp
pppppp
ppppppp
pppppp
ppppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppppppp
ppppppp
ppppppp
pppppppp
ppppppp
pppppppp
ppp

0 0.25 0.5 0.75 1dN

0

0.01

0.02

0.03

0.04

0.05

φ∗

0.06

(c)

ppppppppppppppppppppppppppppp
ppppppppppppp
ppppppppppp
pppppppp
pppppppp
pppppppp
ppppppp
pppppp
pppppp
pppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppp
ppppp
ppppp
pppp
ppppp
pppp
ppppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
pppp
ppppp
ppppp
pppp
pppp
ppppp
pppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
ppppp
ppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
ppppp
pppppp
ppppp
pppppp
pppppp
ppppp
pppppp
pppppp
ppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
pppppp
ppppppp
pppppp
pppppp
ppppppp
pppppp
pppppp
ppppppp
ppppppp
pppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppppp
ppppppp
pppppppp
ppppppp
ppppppp
ppppppp
ppp

0 0.25 0.5 0.75 1dN

0

0.01

0.02

0.03

0.04

0.05

φ∗

0.06

Figure 3.1: Maximum total concentrations φ∗ for which hyperbolicity of the BW model is

ensured (a) for the coefficients (3.3.13) (with β3 = 0), (b) for β0 = −3.5, β1 = −1.1, β2 =

−1.02 (according to (3.3.12) for large Péclet numbers) and β3 = 0, and (c) for β0 = −3.42,

β1 = −1.96, β2 = −1.21 (according to (3.3.12) for small Péclet numbers) and β3 = 0.

where in terms of η̃i := exp(sT
i Φ) we define for the HS model

S1,i := d2
i

(
β̃0 + β1 + β2

)
,

S2,i := −

N∑

j=1

j 6=i

φj η̃j

d2
j η̃j − d2

i η̃i

{
(di − dj)

2β̃0

(
β1didj + β2(di + dj)

2
)

+ β1β2didj(di − dj)
2
}
,

S3,i := −β̃0β1β2

N∑

j,k=1

j<k, j,k 6=i

φjφkη̃j η̃kπ
2
ijk

(d2
kη̃k − d2

i η̃i)(d2
j η̃j − d2

i η̃i)
.

Proceeding in a similar way as for the BW model, we now show that γi < 0 for all

vectors Φ ∈ Dφmax
, by possibly introducing further structural assumptions on the coefficients

β0, β1, β2. The decisive difference is, however, that the final result should be valid for the

whole range of concentrations from the dilute to the concentrated limit since the HS model

is supposed to cover this range, in contrast to the BW model.

The following lemma will be used in slight variants in several instances.
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Lemma 3.4.5 The following inequality holds for i < j:

η̃j

d2
i η̃i − d2

j η̃j
≤ −

(
e(d2

i − d2
j)

2∑

s=1

βs

(
1

ds
j

−
1

ds
i

)
dT

s Φ

)−1

= −
1

e(d2
i − d2

j)

[
2∑

s=1

βs

ds
i − ds

j

ds
id

s
j

dT
s Φ

]−1

.

(3.4.27)

Proof. We first calculate for i < j:

0 <
η̃j

d2
i η̃i − d2

j η̃j
=

1

d2
i exp((sT

i − sT
j )Φ) − d2

j

≤
1

exp((sT
i − sT

j )Φ)(d2
i − d2

j)

=
exp((sT

j − sT
i )Φ)

d2
i − d2

j

= exp

(
2∑

s=1

βs

(
1

ds
j

−
1

ds
i

)
dT

s Φ

)
1

d2
i − d2

j

.

Now, since di > dj for i < j, the argument of the exponential in the last expression is

negative. Inequality (3.4.27) is now a consequence of exp(−α) ≤ e−1α−1 for α > 0. 2

The expression (3.4.27) can be estimated further from above if we drop any of the three

summands in the expression in squared brackets. Moreover, we first note that also for this

model, S1,i < 0. Then we analyze the positive and negative parts of S2,i and S3,i separately,

and show that we eventually obtain γi < 0.

Lemma 3.4.6 Let us rewrite S2,i as S2,i = S+
2,i + S−

2,i, where S+
2,i and S−

2,i correspond to the

summands of S2,i with j > i and j < i, respectively. Then S−
2,i ≤ 0, and the following in-

equality holds:

S+
2,i ≤ −

d2
i

e
(β̃0 + β2). (3.4.28)

Proof. Since exp(sT
i Φ) > exp(sT

j Φ) for i < j and exp(sT
i Φ) < exp(sT

j Φ) for i > j, the factor

multiplying {. . .} in the summands of S−
2,i is always positive, while {. . . } < 0. This confirms

that S−
2,i ≤ 0 (note that for i = 1, the sum is void, i.e. S−

2,i = 0). To estimate S+
2,i, note first

that from Lemma 3.4.5 we may conclude that

S+
2,i ≤

β̃0

e

N∑

j=i+1

(β1didj + β2(di + dj)
2)(di − dj)

2φj

(d2
i − d2

j )

[
β1

di−dj

didj
dT

1 Φ + β2
d2

i −d2
j

d2
i d2

j

dT
2 Φ

]

−
β2

e

N∑

j=i+1

(di − dj)
2d2

id
2
jφj

(d2
i − d2

j)(di − dj)dT
1 Φ

≤ −
β̃0d

2
i

e

N∑

j=i+1

d2
j(β1didj + β2(di + dj)

2)φj

β1didj(di + dj)d
T
1 Φ + β2(di + dj)2dT

2 Φ
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−
d2

iβ2

e

N∑

j=i+1

d2
jφj

(di + dj)dT
1 Φ

≤ −
d2

i β̃0

e

N∑

j=i+1

(β1didj + β2(di + dj)
2)d2

jφj

(β1didj + β2(di + dj)2)
∑N

k=i+1d
2
kφk

−
d2

iβ2

e

N∑

j=i+1

djφj

dT
1 Φ

,

which implies (3.4.28). 2

Lemma 3.4.7 Assume that we rewrite S3,i as S3,i = S−
3,i + S+,1

3,i + S+,2
3,i , where S+,1

3,i and S+,2
3,i

are the sums over all summands for which j > i, k > i and k 6= j and j < i, k < i and

k 6= j, respectively. Then we have S−
3,i < 0, S+,1

3,i > 0 and S+,2
3,i > 0. Furthermore, the following

inequality holds:

S+,1
3,i ≤ −

d2
i β̃0

e2
. (3.4.29)

Finally, let us assume that the parameters β are related to the sizes d1 via the condition

∀1 ≤ j < i ≤ N : ∀φ ∈ [0, φmax] : H̃ij(φ,β) < 0, (3.4.30)

where we define the functions

H̃ij(φ,β) := −β̃0

(
β1didj + β2(di + dj)

2
)
− β2β1didj − φ(dj − di)

2β̃0β1β2. (3.4.31)

Then

S−
2,i + S+,2

3,i ≤ 0. (3.4.32)

Proof. The inequalities S−
3,i < 0, S+,1

3,i > 0 and S+,2
3,i > 0 are a simple consequence of the fact

that only those summands of S3,i are positive for which either i < j and i < k or i > j and

i > k, according to the ordering d1 > d2 > · · · > dN . To deal with

S+,1
3,i = −

N∑

j,k=i+1

j<k

φjφkη̃j η̃kπ
2
ijkβ̃0β1β2

(d2
kη̃k − d2

i η̃i)(d
2
j η̃k − d2

i η̃i)
, (3.4.33)

note first that, based on formulas similar to (3.4.27), we get

−

N∑

j,k=i+1

j<k

φjφkη̃j η̃kπ
2
ijkβ̃0β1β2

(d2
kη̃k − d2

i η̃i)(d2
j η̃j − d2

i η̃i)

≤ −
β̃0

e2

N∑

j,k=i+1

j 6=k

φjφkd
3
idjd

2
k(di − dj)

2(dj − dk)
2(dk − di)

2

(di + dj)(di − dj)2(di + dk)2(di − dk)2dT
2 ΦdT

1 Φ
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≤ −
d2

i β̃0

e2

N∑

j,k=i+1

j 6=k

φjφkdjd
2
k

dT
2 ΦdT

1 Φ
≤ −

d2
i β̃0

e2
.

Next, we see that the term

S+,2
3,i := −

i−1∑

j,k=1

j<k

φjφkη̃j η̃kπ
2
ijkβ̃0β1β2

(d2
kη̃k − d2

i η̃i)(d2
j η̃j − d2

i η̃i)

cannot be estimated easily. However, we may “compensate” this term with S−
2,i, as expressed

in (3.4.32). (To ensure that our hyperbolicity result is also valid for N = 3, S+,1
3,i should be

compensated by one of the terms that have arisen earlier in our analysis.) Observe now that

S−
2,i + S+,2

3,i =

i−1∑

j=1

φj η̃j(di − dj)
2

d2
j η̃j − d2

i η̃i
Rij , (3.4.34)

where we define

Rij := −β̃0

(
β1didj + β2(di + dj)

2
)
− β2β1didj + R̃ij,

R̃ij := −β̃0β1β2

i−1∑

k=j+1

φk(dk − di)
2(dk − dj)

2η̃k

d2
kη̃k − d2

i η̃i
.

(3.4.35)

Since di < dj and di < dk in these summands, and the factor multiplying Rij in (3.4.34) is

positive, we will satisfy (3.4.32) by achieving that Rij < 0. Noting that for j < k < i

(dk − di)
2(dk − dj)

2η̃k

d2
kη̃k − d2

i η̃i
=

(dk − di)
2(dk − dj)

2

d2
k − d2

i exp((sT
i − sT

k )Φ)

≤
(dk − dj)

2(dk − di)

dk + di
≤ (dj − di)

2,

we conclude that R̃ij ≤ −β̃0β1β2(dj − di)
2(φj+1 + φj+2 + · · · + φi−1). Thus, (3.4.32) holds if

the parameters β are related to d1, . . . , dN by (3.4.30), where H̃ij := H̃ij(φ; β) is defined in

(3.4.31). 2

Summarizing, and collecting the inequalities for the various terms, we see that if (3.4.30)

is met then

S1,i + S2,i + S3,i = S1,i + S−
2,i + S+

2,i + S−
3,i + S+,1

3,i + S+,2
3,i

< S1,i + S+
2,i + S+,1

3,i ≤ d2
iM(φ,β) < 0,

(3.4.36)

where we define the function

M(φ,β) := (1 − e−1 − e−2)β̃0 + β1 + (1 − e−1)β2. (3.4.37)
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Furthermore, for the discussion of models with a large number of species N , the criterion

(3.4.30) with H̃ij defined by (3.4.31) is inconvenient, since it requires inspection of a large

number of size pairs di and dj . Thus, we propose a sufficient condition for (3.4.30) to be

satisfied for all pairs j < i. To this end, we fix a pair i > j, define δ := δij = di/dj, and

divide (3.4.31) by d2
j to obtain

H̃ij = −β̃0

(
β1δ + β2(1 + δ)2

)
−
(
β2β1δ

)
− φ(1 − δ)2β̃0β1β2. (3.4.38)

Since δ varies between dN and one, a sufficient condition for (3.4.30) to be satisfied is given

by

∀φ ∈ [0, φmax] : H(φ,β, dN) < 0, (3.4.39)

where the following definition of H(φ,β, dN) is derived from the observation that the two

terms in the first line of (3.4.38) are non-positive, while the term in the second line is non-

negative:

H(φ,β, dN) := −β̃0

(
β1dN + β2(1 + dN)2

)
− β2β1dN − φ(1 − dN)2β̃0β1β2. (3.4.40)

Theorem 3.4.8 Assume that the vector of parameters β, the maximum solids concentration

φmax and the width of the particle size distribution, characterized by the value of dN ∈ (0, 1],

are chosen such that the inequality (3.4.39) is satisfied, where the expression H(φ,β, dN)

is defined by (3.4.40). Then γi < 0 for i = 1, . . . , N , i.e., the model equations are strictly

hyperbolic for Φ ∈ Dφmax
.

For the coefficients β (with β3 = 0) given by (3.3.13) and n = 2, the curveH(φ,β, dN) = 0

is plotted in Figure 3.2 (a) in a φ versus dN plot. It turns out that for dN > d∗N := 0.0078595

(this number is a solution of H(1,β, dN) = 0), the HS model equations are strictly hyperbolic

in Dφmax
without any restrictions on φmax. Note that for 0 < dN < d∗N , condition (3.4.39) is

violated only for values of φmax very close to one. In fact, Figure 3.2 (a) indicates that the HS

model with the parameters (3.3.13) is strictly hyperbolic for arbitrarily small values of dN if

we set φmax ≤ 0.96. Given that d∗N is already a small number, we can say that hyperbolicity

holds for almost all cases of practical interest for this model. Figures 3.2 (b) and (c) show

the corresponding result for the two sets of parameters given by (3.3.12) (but with β3 = 0).

In these two cases we obtain larger values of d∗N than in Figure 3.2 (a), but hyperbolicity is

still ensured for a large range of cases of practical interest.

Finally, we remark here that the value n = 2 in (3.3.15) was utilized in the examples of

Figure 3.2, and that very similar curves are obtained for alternative values 1 ≤ n ≤ 5.
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Figure 3.2: Region of hyperbolicity (H(φ,β, dN) < 0) for the HS model (a) for the coefficients

(3.3.13) (with β3 = 0), (b) for β0 = −3.5, β1 = −1.1, β2 = −1.02 (according to (3.3.12) for

large Péclet numbers) and β3 = 0, and (c) for β0 = −3.42, β1 = −1.96, β2 = −1.21 (according

to (3.3.12) for small Péclet numbers) and β3 = 0.

3.5 Numerical examples

We apply the Roe scheme and KT schemes to the MLB and HS models to simulate batch

settling of a suspension with equal-density particles in a vessel of normalized depth one. We

first briefly describe both schemes, and refer to [43] and [41] for the Roe and KT scheme,

respectively. We discretize the spatial domain [0, 1] into M cells of size ∆x = 1/M. The time

step is denoted by ∆t, and we define xj := j∆x and tn := n∆t. Furthermore, we assume

that λ := ∆t/∆x is fixed by an appropriate CFL condition.

3.5.1 The Roe and KT schemes

The conservative form of the Roe scheme for (3.1.1) is given by

Φn+1
j = Φn

j − λ
(
F

n
j+1/2 − F

n
j−1/2

)
, j = 1, . . . ,M, n = 0, 1, 2, . . . , (3.5.1)

where Φn
j = (φn

1,j , . . . , φ
n
N,j)

T and the numerical flux vector is defined as

F
n
j+1/2 =

1

2

[
f
(
Φn

j+1

)
+ f
(
Φn

j

)]
−

1

2

(
α1|λ1|r1 + · · ·+ αN |λN |rN

)
. (3.5.2)

Here, λ1, . . . , λN are the eigenvalues of the Jacobian Jf evaluated at

Φn
j+1/2 =

1

2
(Φn

j+1 + Φn
j ),
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Figure 3.3: Example 1 (MLB and HS models with N = 2): numerical solution at t = 50 s

(top), t = 300 s (middle) and t = 1000 s (bottom). The horizontal axis in each plot denotes

concentration, and the vertical axis denotes normalized depth. Here and in Figure 3.4 the

left and middle column correspond to the Roe and KT scheme, respectively, applied to the

MLB model and the right column corresponds to the KT scheme applied to the HS model.

which are calculated by a root finder starting from the velocities

v1(Φ
n
j+1/2), . . . , vN (Φn

j+1/2).

The components of α = (α1, . . . , αN)T are given by Φn
j+1 − Φn

j = α1r1 + · · ·+ αNrN , or

equivalently, α = R−1(Φn
j+1 − Φn

j ). Here, r1, . . . , rN are the normalized right eigenvectors of

Jf(Φ
n
j+1/2), which form the columns of R. The characteristic information is given by the
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Figure 3.4: Example 2 (MLB and HS models, N = 4): numerical solution at t = 50 s (top

row), t = 200 s (second row), t = 300 s (third row) and t = 1000 s (bottom row) with

∆x = 0.0005.
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secular equation and (3.4.2) and (3.4.3) for the MLB model. For a given CFL number CFL,

we employ ∆t = CFL∆x/ρ, where ρ the biggest characteristic velocity, i.e.,

ρ = max
j=1,...,M

max
i=1,...,N

∣∣λi

(
Φj+1/2

)∣∣

In contrast to the just-described Roe scheme, the second-order central KT scheme [41]

does not require knowledge of the complete eigenstructure of the problem. However, this

method does rely on the local speed of wave propagation. The semi-discrete conservative

form of the KT scheme is

dΦj

dt
= −

1

∆x

(
Hj+1/2 − Hj−1/2

)
, (3.5.3)

with the numerical flux vector

Hj+1/2 :=
1

2

[
f
(
Φ+

j+1/2

)
− f
(
Φ−

j+1/2

)]
−
aj+1/2

2

(
Φ+

j+1/2 − Φ−
j+1/2

)
.

The extrapolated values Φ±
j+1/2 are

Φ+
j+1/2 = Φj+1 − (∆x/2)(Φx)j+1 and Φ−

j+1/2 = Φj + (∆x/2)(Φx)j,

where aj+1/2 is the maximal local speed, which we take as

aj+1/2 := max
{
ρ
(
Jf

(
Φ+

j+1/2

))
, ρ
(
Jf

(
Φ−

j+1/2

))}
,

where ρ(Jf(·)) denotes the spectral radius of the matrix Jf(·). The approximate spatial

derivative of Φ(x, t) is computed using a θ-minmod limiter for each component of Φ. In our

implementations, we use θ = 1.3.

For time discretization we use the optimal third-order TVD Runge-Kutta methods (see

e.g. [61]) with CFL = 0.5. Then we take ∆t = CFL∆x/Sn
max, where Sn

max denotes the biggest

local propagation speed throughout the domain at time tn. For both the Roe and KT schemes

we utilize zero-flux boundary conditions, i.e. f|x=0 = fx=L = 0, which in the numerical ap-

proach corresponds to take numerical fluxes equal to zero at both ends of the spatial domain.

3.5.2 Numerical examples

The numerical experiments are similar to those of [19]; Examples 1, 2 and 3 (see Figs. 3.3,

3.4 and 3.5 respectively) correspond to the cases N = 2, N = 4 and N = 11, respectively.

All examples are based on the physical parameters g = 9.81 m/s2, µf = 0.02416 Pa s, ̺f =



3.6 Conclusions of Chapter 3 45

i 1 2 3 4 5 6

φ0
i [10

−3] 0.435 3.747 14.420 32.603 47.912 47.762

Di[10
−5m] 8.769 8.345 7.921 7.497 7.073 6.649

di 1.000 0.952 0.903 0.855 0.807 0.758

i 7 8 9 10 11

φ0
i [10

−3] 32.663 15.104 4.511 0.783 0.060

Di[10
−5m] 6.225 5.801 5.377 4.953 4.529

di 0.710 0.662 0.613 0.565 0.516

Table 3.1: MLB and HS models, N = 11: initial concentrations φ0
i , real particle sizes Di, and

normalized particle sizes di.

1208 kg/m3, ̺1 = · · · = ̺N = ̺s = 2790 kg/m3 that correspond to a standard published

experiment [57]. The function V (φ) in the MLB model has the exponent n = 4.7, except for

N = 11 in which case we choose n = 4.65, while the parameters β0, . . . , β3 for the HS models

are those given by (3.3.13) (with β3 = 0).

In Example 1, the original depth of the vessel is L = 0.3 m; this is also true for N = 4,

and the unnormalized particle diameters are D1 = 4.96 × 10−4 m and D2 = 1.25 × 10−4 m,

corresponding to d1 = 1 and d2 = D2/D1 = 0.25202. The maximum total concentration is

φmax = 0.68, along with the initial concentrations Φ0 = (φ0
1, φ

0
2) = (0.2, 0.05)T. For Exam-

ple 2, we choose d1 = 1, d2 = 0.8, d3 = 0.6 and d4 = 0.4, φmax = 0.6, and φ0
i = 0.05 for

i = 1, . . . , 4. Finally, in Example 3 for N = 11, which is based on experimental data from

[59], we consider L = 0.935 m and φmax = 0.641. The initial concentrations φ0
i , diameters Di

and normalized diameters di = Di/D1 are given in Table 3.1.

3.6 Conclusions of Chapter 3

Our analysis illustrates the use of the secular equation as a tool for the hyperbolicity

analysis for polydisperse sedimentation models, and leads to estimates of hyperbolicity re-

gions that qualitatively agree with the ranges of validity of the MLB, BW and HS models;

recall that the BW model is valid for dilute suspensions only, which is consistent with the

limitations visible in Figure 3.1. For the BW and HS models, only the sign of the coefficients

β0, . . . , β2, but not the values, enter our analysis; results will only change quantitatively for

other sets of parameters. In addition, a similar analysis could be advanced for the case that β3
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Figure 3.5: Example 3 (MLB and HS models, N = 11): numerical solution at t = 600 s

(first column) and t = 1000 s (second column) with ∆x = 0.0005. The top and middle

rows corresponds to MLB model using Roe and KT schemes respectively. The bottom row

corresponds to HS model with KT scheme.
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is a small, but positive parameter. Previous works [26, 27, 70] already illustrated applications

of the secular equation [1] for perturbations of diagonal matrices of ranks m = 1 and m = 2

(for the multi-class Lighthill-Whitham-Richards traffic and the MLB sedimentation model,

respectively), but it is here for the first time (to our knowledge) that this result is led to

practical use for m = 3.

Clearly, our analysis is subject to limitations in terms of the accuracy of the estimates

of the hyperbolicity region. Theorems 3.4.4 and 3.4.8 state in which regions hyperbolicity is

ensured, that is, where we can guarantee that γi ·γj > 0. However, this property is a sufficient,

but not a necessary condition to ensure hyperbolicity; the models may well be hyperbolic in

other sub-regions of parameter space, but with γi · γj ≤ 0 for some choices of i and j. While

this is an intrinsic limitation of the secular equation, our analysis of the HS model shows

that slightly larger hyperbolicity regions may be obtained for a given set of particle sizes

d1, . . . , dN if the functions H̃ij given by (3.4.38) (rather than the single function H(φ,β, dN))

are evaluated. Also, further realism can be added to polydisperse sedimentation models if the

phase space is not simply limited by a hyperplane φ = φmax, but by a curved surface in D̄1

which takes into account that mixtures of small and large particles permit denser packings

than monodisperse sediments of any of the species involved.

Despite these limitations, the present calculus can be extended in several possible ways.

First of all, we selected the MLB, BW and HS models because the computations are slightly

different in each of these cases. In particular, our interest in the HS model is motivated

by a result from [17] stating that the HS model is, unlike the DG model, hyperbolic for

N = 2 without further restrictions. More advanced models that should be analyzed include

the models presented in [36, 49, 58]. The model by Patwardhan and Tien [49] generalizes the

MLB model, and utilizes a more involved expression for vi. The models in [36] are further

modifications of the BW model; they consider Sij to be a rational (rather than polynomial)

function of dj/di. Finally, the difficulty associated with the model by Selim et al. [58], which

is otherwise similar to the MLB model, consists in the postulated dependence of vi on partial

sums like φ1 + · · ·+φi−1; it is unclear at the moment whether this model can be transformed

so that (3.1.2) is satisfied.

Let us also mention that although we focus here on spatially one-dimensional models,

the present hyperbolicity calculus remains valid for the two- or three-dimensional version of

(3.1.1). In fact, in that case the model equation (3.1.1) is replaced by ∂tφi+∇·(qφi+fi(Φ)k) =

0 for i = 1, . . . , N , where q is the volume-averaged mixture flow velocity (for which additional

equations, e.g. a version of the Navier-Stokes equations have to be solved), and k is the
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downwards-pointing unit vector. This equation is hyperbolic if and only if (3.1.1) with the

same vector f(Φ) = (f1(Φ), . . . , fN(Φ))T is so (see [11] for details).

Concerning the numerical examples, observe that in all examples the model parameters

have been chosen such that both the MLB and HS models are strictly hyperbolic on Dφmax

according to the analysis of Section 3.4. Our results illustrate that for both the MLB and HS

models, solutions for equal-density spheres with a constant initial composition Φ0 typically

evolve as follows: if Φ0 ∈ Dφmax
, i.e., φ0

i > 0 for i = 1, . . . , N , then the bottommost zone will

contain particles of all species, the next zone will contain species 2 to N (i.e., φ1 = 0), the

next only species 3 to N (i.e., φ1 = φ2 = 0), and so on, until a zone is reached in which

only (the smallest) species N is present, followed by a zone void of particles (Φ = 0). The

composition of each of these zones corresponds to the situation addressed in Remark 3.2.2,

i.e., strict hyperbolicity is ensured, and is also obtained from a method of solution based on

the construction of kinematic shocks that separate areas of constant composition [35, 57].

Having said this, we mention that the construction of exact solutions to the system of

conservation laws (3.1.1) that satisfy an entropy condition is complicated since most choices

of f(Φ) will lead to a system of conservation laws that, in the best case, can be proven to

be strictly hyperbolic on Dφmax
(as a consequence of our analysis), but whose characteristic

fields in general are neither linearly degenerate nor genuinely nonlinear, which rules out,

for example, the use of Lax’s shock admissibility criterion. A suitable shock admissibility

criterion is Liu’s entropy condition (see e.g. [22] for details on these criteria). The construction

of solutions that satisfy this condition has been undertaken so far only for N = 2 [9].

Moreover, in our numerical simulations, we have chosen fairly simple schemes, which

nevertheless utilize characteristic information that we do now have access to thanks to the

secular equation. However, the true strength of the availability of characteristic information

lies in the possibility to utilize high-resolution “spectral” schemes, such as the one intro-

duced in [27] for the multiclass LWR traffic model. In terms of resolution these schemes

are a possible alternative to component-wise discretizations such as WENO [73] or WENO-

multiresolution [19] schemes, which are the standard at present since the effort needed to

obtain this information has hitherto been considered excessive. We will come back to spectral

schemes for the present models in the next chapter.



Chapter 4

On the implementation of WENO

schemes for a class of polydisperse

sedimentation models

4.1 Introduction

4.1.1 Scope

This chapter deals with high-resolution numerical schemes for systems of conservation

laws that arise as one-dimensional kinematic models for the sedimentation of polydisperse

suspensions which were considered in Chapter 3.

The purpose is to demonstrate that very efficient high-order accurate weighted essentially

non-oscillatory (WENO) schemes for the numerical solution of (1.1.1)–(1.1.3) can indeed be

constructed by incorporating characteristic information. This information is available due

to the recent hyperbolicity analysis made in Chapter 3 [14], and can be incorporated in

various ways. Specifically, we use these results in order to provide a good estimation of the

viscosity coefficient in a Lax-Friedrichs-type flux splitting. This allows to construct high

resolution component-wise WENO schemes, akin to those proposed in [72] for the Multiclass

Lighthill-Whitham-Richards (MCLWR) models in traffic flow. In addition, the full spectral

decomposition of Jf(Φ), which can be numerically computed at each cell interface thanks to

the analysis in [14], can be used in order to obtain characteristic-based WENO schemes, for

which the WENO reconstruction procedure is applied to the local characteristic variables

and fluxes at each cell-interface. When combined with a a strong stability preserving (SSP)

49
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Runge-Kutta-type time discretization, the resulting SSP-WENO-SPEC schemes are shown

to be extremely robust in a number of numerical experiments concerning the MLB and HS

models, including several properties specific to the present application such as non-negativity

of the solution, almost avoidance of overshoots of the numerical total density φ beyond

φmax, and accurate rendering of stationary kinematic shocks that separate sediment layers

of different composition.

4.1.2 Related work

WENO-type spatial flux reconstructions, which emerged from earlier essentially non-

oscillatory (ENO) schemes, have become a well-established, versatile tool for the construction

of high-resolution conservative schemes in numerous applications. The first WENO scheme,

of third-order accuracy, was introduced by Liu, Osher and Chan in [44], while a general

framework to construct WENO schemes of arbitrary order of accuracy was provided by

Jiang and Shu [39]. We refer to Shu [61, 60] for further details, applications, and references.

If applied to a system of conservation laws, the WENO procedure will produce a spatially

semi-discrete system of ODE, for which a discretization in time can be chosen separately

[62]. A suitable choice are total variation diminishing Runge-Kutta schemes [31, 61], also

known as strong stability preserving (SSP) methods [32], because of their favorable stability

properties.

While WENO-based high-resolution shock-capturing schemes have been applied success-

fully to a wide range of convection-dominated problems [60], the polydisperse sedimentation

models considered herein present some specific challenges for numerical simulation. These

models belong to the wider class of multi-species kinematic flow models [19], which are

characterized by a governing system of equations of the type (1.1.1) with explicit velocity

functions v1, . . . , vN for a number N of species. Models of this type include, besides the sed-

imentation model, a model of settling of oil-in-water dispersion [53] and, most notably, the

multi-class Lighthill-Whitham-Richards (MCLWR) kinematic traffic model, which extends

the well-known LWR model to vehicles with drivers having different preferential velocities,

and which was proposed by Benzoni-Gavage and Colombo [7] and Wong and Wong [66].

Meanwhile, the MCLWR model has been studied thoroughly in a series of papers including

[19, 71, 70, 72, 73]. All these models can be formulated for an arbitrary number N of species,

that is, of scalar equations. The basic phenomenon of interest is the segregation of species,

i.e. the formation of areas of different composition from an initially homogeneous “mixture”
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(e.g., suspension or traffic platoon). Segregation is usually associated with the formation of

discontinuities in Φ, so-called kinematic shocks. For the sedimentation model considered for

batch settling in a column, stationary kinematic shocks separate sediment layers of different

composition. The accurate numerical simulation of the model is therefore of importance for

the prediction of the composition of the sediment as a final “product” or deposit e.g. in

medicine, the manufacturing of functionally graded materials, volcanology, and petrology

(see e.g. [3] for references to these applications).

It is well known that high-resolution shock capturing schemes can be applied to systems

of conservation laws either in a component-wise or in a characteristic-wise (spectral) fash-

ion. The latter requires a detailed knowledge of the spectral decomposition of the Jacobian

matrix of the system, since the eigenstructure is used in a fundamental way in the design

principles of the scheme [27]. For multi-species kinematic flow models, however, eigenvalues

are not available in closed form, nevertheless it has been possible to prove strict hyperbol-

icity of some of these models by an explicit representation of the characteristic polynomial

[11, 53, 71], as well as to obtain an interlacing property of the (unknown) eigenvalues of the

Jacobian λ1, . . . , λN with the (known) velocities v1, . . . , vN , which provide excellent starting

values for a root finder. For the MCLWR model, the corresponding hyperbolicity and char-

acteristic analysis was first done by Zhang et al. [70]. In [73], solutions to this model, with

the additional complication of a discontinuously varying coefficient modeling variable road

surface conditions, were compared with solutions generated by a component-wise WENO

scheme which provides good overall accuracy. The first implementation of a component-wise

WENO scheme for that model had been done by Zhang in [71], and pre-dates the hyperbol-

icity analysis in [70]. An improvement of the component-wise scheme in [70] is presented in

[72], and used in subsequent papers. It amounts to using a more appropriate choice of the

viscosity coefficient in a Lax-Friedrichs flux splitting, and is based on sharper bound for the

smallest eigenvalue obtained from the hyperbolicity analysis of the MCLWR model carried

out in [70]. We shall see that the results in [14] easily lead to an analogous estimation of the

viscosity coefficient for the polydisperse sedimentation models considered in this chapter.

The hyperbolicity analysis for the MCLWR model is, in fact, fairly straightforward since

that model gives rise to a Jacobian which is a rank-1 perturbation of a diagonal (see Sec-

tion 3.1.1). In [27], this feature was exploited in order to give a much simpler proof of the

hyperbolicity of the MCLWR model. The full spectral decomposition of the Jacobian matrix

was then used to construct a characteristic-based version of the schemes utilized in [71],

and it was demonstrated that the resolution of the characteristic-wise WENO schemes is
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superior to that of their component-wise counterpart. Most notably, solutions are much less

oscillatory.

In a later paper [26], Donat and Mulet showed that the hyperbolicity calculus of multi-

species kinematic flow models can be greatly simplified if one employs the so-called secular

equation due to Anderson [1]. Roughly speaking, the secular equation provides a systematic

algebraic framework to determine the eigenvalues, and eventually the eigenvectors if the

Jacobian is a rank-m, m ≪ N , perturbation of the diagonal, and most importantly avoids

the explicit representation of the characteristic polynomial. Donat and Mulet [26] showed

that via the secular approach, hyperbolicity of the MLB model for equal-density spheres (a

case ofm = 2) can be proved in a few lines, which contrasts with several pages of computation

necessary to exhibit the characteristic polynomial in [11]. In [14] we showed that the secular

approach can also be used to estimate the region of hyperbolicity of the HS model, which

corresponds to m = 3 or m = 4. In this chapter, we use the results of Chapter 3 [14] to

provide a counterpart of [27] for the MLB and HS models, namely we show that the results

in [14] permit to implement characteristic-wise WENO schemes, and that these are robust

and have favorable properties analogous to those in [27].

This chapter is organized as follow. In Sections 4.2 present a variation of the HS model

from the original version discused in the last chapter. We shall prove the hyperbolicity

(strictly) of this variation from the theorem 3.4.8 and derive the expresions for computing

the eigenvectors. The numerical schemes are described in Section 4.3, starting with a spatially

semi-discrete formulation and the implementation of the boundary conditions (Sects. 4.3.1

and 4.3.2), which is converted into a fully discrete scheme by a strong stability preserving

Runge-Kutta scheme (SSPRK; Sect. 4.3.3). We then proceed with a general discussion of

flux vector splitting (Sect. 4.3.4). Then, in Sections 4.3.4, and 4.3.5, which are at the core of

this chapter, we describe how the explicit algebraic form of the velocities v1, . . . , vN in con-

junction with the characteristic information, namely the interlacing property of eigenvalues

with phase velocities and the left eigenvectors, can be used to define viscosity coefficients for

the characteristic-wise computation of the flux vectors. The resulting scheme is addressed

by SPEC-INT scheme; its counterpart based on less involved component-wise flux vector

splitting is referred to as COMP-GLF scheme. In Section 4.4 we present a series of numerical

examples for the MLB model with N = 2, 4 and 11, along with error histories, that illustrate

the superiority of SPEC-INT (compared with COMP-GLF) in terms of accuracy. Additional

examples suggest that the scheme is equally suitable for the HS model. Finally, in Section 4.5

we list some conclusions, address limitations of the applicability of the scheme and point out
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possible extensions.

4.2 Hyperbolicity analysis for a variation of the HS

model

In order to ensure that vi → 0 continuously for the HS model when φ→ φmax we consider

the following variant (see [38]) of the HS model:

vi(Φ) = d2
i exp

(
sT
i Φ + n

φ

φmax

)(
1 −

φ

φmax

)n

, n ≥ 0, (4.2.1)

which is defined for Φ ∈ Dφmax
. We will refer to this variation as the “modified HS model”.

Introducing the variable Φ̂ := (φ−1
max)Φ we can write (4.2.1) as follows:

vi(Φ̂) = d2
i exp

(
ŝT
i Φ̂ + nφ̂

)(
1 − φ̂

)n
= d2

i exp
(
(β̂0 + n)p̂1 + β̂1d

−1
i p̂2 + β̂2d

−2
i p̂3

)
(1 − p̂1)

n

where ŝT
i = (Ŝi1, . . . , ŜiN)T = φmaxs

T
i , i = 1, . . . , N . The available hyperbolicity analysis for

the HS model can be applied to analyze the hyperbolicity of the modified HS model if we

define the coefficients β̂k := φmaxβk for k = 0, 1, 2 and the quantities p̂ν = aT
ν Φ̂, ν = 1, 2, 3.

We can now apply Theorem 3.4.8 of chapter 3 to deduce that the modified HS model is

strictly hyperbolic if

H(φ̂, β̂, dN) := −
˜̂
β0

(
β̂1dN + β̂2(1 + dN)2

)
− β̂2β̂1dN − φ̂(1 − dN)2 ˜̂

β0β̂1β̂2 < 0, (4.2.2)

where we define

˜̂
β0 = β̂0 −

nφ̂

1 − φ̂
.

Then a simple algebraic computation shows (using the coefficients β given by (3.3.13)) that

(4.2.2) holds if dN > 0.0078595, that is, with the same mild restriction of the original HS

model. This is the matter of the next lemma.

Lemma 4.2.1 Assume that the coefficients β are given by (3.3.13). Then the modified HS

model specified by phase velocities vi given by (4.2.1) is strictly hyperbolic on Dφmax
if dN >

0.0078595.

Proof. To make the basic idea transparent, let us write φ̂(φ) = φ/φmax and β̂(β) = φmaxβ.

Then it is sufficient to notice that we can write

H
(
φ̂(φ), β̂(β), dN

)
= φ2

max

(
H(φ,β, dN) − CH̃(φ,β, dN)

)
, (4.2.3)
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where

H̃(φ,β, dN) :=
(
β1dN + β2(1 + dN)2 + φ(1 − dN)2β1β2

)
,

and

C := nφ

(
1

1 − φ
−

1

φmax(φmax − φ)

)
< 0.

Since the variant of the model is strictly hyperbolic if H(φ̂(φ), β̂(β), dN) < 0, it is suffi-

cient to show that H̃(φ,β, dN) < 0, but this statement is true if dN > 0.0078595. 2

The spectral decomposition of Jf (Φ) is not provided in chapter 3 [14] in a form similar to

that in Lemma 3.4.1, but it is easy to obtain from Theorem 3.2.1. According to Theorem 3.2.1,

if λ 6= vi is an eigenvalue of Jf (Φ), then detMλ = 0 and therefore ξ = (ξ1, ξ2, ξ3) is a non-

trivial solution of Mλξ = 0 for

ξ1 = (1 + [a2,b2])(1 + [a3,b3]) − [a2,b3][a3,b2],

ξ2 = [a2,b3][a3,b1] − [a2,b1](1 + [a3,b3]),

ξ3 = [a2,b1][a3,b2] − (1 + [a2,b2])[a3,b1].

Hence, by using 3.2.14 we obtain the following right eigenvector x = (x1, . . . , xN)T for the

HS model:

xi = −
1

vi − λ
(bi,1ξ1 + bi,2ξ2 + bi,3ξ3) , i = 1, . . . , N. (4.2.4)

The left eigenvectors can be obtained by interchanging the roles of A and B.

4.3 Numerical schemes

4.3.1 Semi-discrete schemes

The schemes considered herein are based on the finite difference paradigm due to Shu

and Osher [62] of first setting up a conservative spatial semi-discretization of the term ∂xf(Φ)

and then to apply an SSP ODE solver to get a fully discrete conservative scheme with a high

order of accuracy. Specifically, if we discretize the spatial domain [0, 1] (after normalization)

into M cells of size ∆x = 1/M and define the cell centers xj := (j+1/2)∆x, j = 0, . . . ,M−1

and the cell interfaces xj+1/2 = (j + 1)∆x, then the approximation to ∂xf(xj , t) is obtained

by an essentially non-oscillatory reconstruction operator R, applied to the fluxes f(Φ) so

that:

∂xf(xj , t) =
1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+ O(∆xr),



4.3 Numerical schemes 55

where r is the order of accuracy of the reconstruction and the numerical fluxes f̂j+1/2 are

given by

f̂j+1/2 = R

(
f
(
Φ(xj−s, t)

)
, . . . , f

(
Φ(xj+s+1, t)

)
; xj+1/2

)

= f̂j+1/2

(
Φ(xj−s, t), . . . ,Φ(xj+s+1, t)

)
.

(4.3.1)

If we define the vector Φ := (Φ−s,Φ−s+1, . . . ,ΦM+s−2,ΦM+s−1)
T, this procedure yields the

semi-discrete scheme (method of lines)

dΦj

dt
= Lj(Φ) := −

1

∆x

(
f̂j+1/2(Φj−s, . . . ,Φj+s+1) − f̂j−1/2(Φj−s−1, . . . ,Φj+s)

)
, (4.3.2)

for approximations Φj(t) ≈ Φ(xj , t), j = 0, . . . ,M − 1. Therefore, if we define the vector

L := (L0, . . . ,LM−1)
T, then (4.3.2) can be compactly written as

dΦ(t)

dt
= L

(
Φ(t)

)
. (4.3.3)

For well-known stability reasons, the reconstruction operator should be “upwind-biased”.

In the scalar case, this means that R should not depend on its last argument if f ′ > 0 and

should not depend on its first argument if f ′ < 0. For nonlinear fluxes (mandatorily near

sonic points, where f ′ = 0) a flux splitting approach, where

f = f− + f+, f+
u > 0, f−

u < 0,

is used in order to define the numerical flux, so that

f̂j+1/2 = R+
(
f+(Φj−s), . . . , f

+(Φj+s); xj+1/2

)

+ R−
(
f−(Φj−s+1), . . . , f

−(Φj+s+1); xj+1/2

)
,

(4.3.4)

for upwind-biased reconstructions R±. In this work, R± is chosen as the mapped WENO5

(WENO5M) reconstruction, proposed in [40], to avoid a possible loss of accuracy around

extrema. This technique can be extended to vectors of fluxes by its application either to each

component of the system (“component-wise” schemes) or by local characteristic projections

(“characteristic-wise” schemes).

4.3.2 Boundary conditions

The zero-flux boundary conditions are implemented by setting

f̂−1/2 = f̂M−1/2 = 0. (4.3.5)
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We recall that a WENO5 scheme requires to consider two additional ghost cells on each

boundary of the computational domain. In order to guarantee that all the interpolatory

stencils remain inside of the computational domain we employ a suggestion given in [61]: we

set large values for the concentrations in the ghost cells, which produce large variations, so

that the WENO procedure avoids the use of any stencil involving the ghost cells.

4.3.3 Time discretization

Among the variety of explicit SSP (strong-stability preserving) time discretization meth-

ods for the approximate solution of (4.3.3) we use the well known optimal third-order, three-

stage Runge-Kutta method referred to as SSPRK(3,3), which for (4.3.3) is given by

Φ(1) = Φν + ∆tL
(
Φν
)
,

Φ(2) =
3

4
Φν +

1

4
Φ(1) +

1

4
∆tL

(
Φ(1)

)
,

Φν+1 =
1

3
Φν +

2

3
Φ(2) +

2

3
∆tL

(
Φ(2)

)
.

(4.3.6)

SSP time discretization methods are widely used for hyperbolic PDE because they preserve

the nonlinear stability properties which are necessary for problems with non-smooth solu-

tions. On the other hand, due to convexity, the intermediate stages of the SSPRK methods

have SSP properties (i.e., ‖Φ(i)‖ ≤ ‖Φ(i−1)‖ for the internal stages). This feature is espe-

cially important for some applications [29]. For sedimentation problems it avoids unphysical

negative concentrations in the internal stages. Notice that it is necessary to evaluate three

times the operator L(·) in order to move forward one time step, in fact, the effective SSP

coefficient for SSPRK(3,3) (which is defined as [29, 55, 56] the SSP coefficient of the method

divided by the number of stages) is equal to 1/3.

To satisfy the CFL condition the value of ∆t is computed adaptively for each step ν.

More exactly, the solution Φν+1 at tν+1 = tν + ∆t is calculated from Φν by using the time

step ∆t = CFL ∗ ∆x/ρν
max, where ρν

max is an estimate of the maximal characteristic velocity

for Φν .

4.3.4 Flux vector splittings and viscosity coefficients

As mentioned before, a flux splitting of the type f = f+ + f− with f+
u > 0 and f−

u < 0

is required when the flux function is nonlinear. A standard recipe is provided by the Lax-
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Friedrichs flux vector splitting,

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u) − αu) (4.3.7)

where the viscosity coefficient α has to verify that all eigenvalues of fu + αI are ≥ 0 and all

eigenvalues of fu − αI are ≤ 0. Obviously, a choice such as

α = max
j=0,...,M−1

max
1≤k≤N

∣∣λk
j

∣∣, (4.3.8)

guarantees these inequalities, and we remark that α above can be easily computed for the

polydisperse models being studied, since the necessary eigenvalues can be computed in an

efficient manner by applying a root finder. However, we can readily apply the results in

Lemmas 3.4.1 and 3.4.8 (or 4.2.1) in order to provide an estimate for (4.3.8) which does not

require the computation of the eigenvalues, and is ’optimal’, in the sense specified in [73],

α = max
j=0,...,M−1

max

{∣∣∣∣∣v1

(
Φj

)
+

N∑

k=1

γk

(
Φj

)
∣∣∣∣∣ ,
∣∣vN

(
Φj

)∣∣
}
. (4.3.9)

The choice of the viscosity coefficients (4.3.8) and (4.3.9) is global, hence it can be used

at each cell interface, however, the resulting schemes tend to be too dissipative, even when

using a characteristic-wise high resolution shock capturing scheme (see the results in [26]). In

order to reduce the dissipation effects associated to the global choice of viscosity coefficient

described above, a Local Lax Friedrichs (LLF) approach was proposed in [62]. The original

viscosity coefficient for the computation of the numerical flux at the i+ 1/2 interface by the

LLF flux splitting approach is given in [62] by

αk
j+1/2 = max

Φ∈Γ

∣∣λk(Φ)
∣∣, k = 1, . . . , N, (4.3.10)

where Γ := Γ(Φj ,Φj+1) ⊂ R
N is a path in phase space connecting Φj and Φj+1, for example

a straight line. Since the characteristic fields are neither genuinely nonlinear nor linearly

degenerate, the standard choice

αk
j+1/2 = max

{∣∣λk(Φj)
∣∣,
∣∣λk(Φj+1)

∣∣}. (4.3.11)

will not be appropriate. Indeed, in the numerical experiments section we shall see that (4.3.11)

produces numerical oscillations which do not disappear upon mesh refinement. Hence, the

extrema of λk(Φ) over Γ in (4.3.10) needs to be computed. Since there is no closed form for

the eigenvalues, this is not an easy task. However, we notice that the interlacing property

(3.2.9) showed in Corollary 3.2.1 implies that

max
Φ∈Γ

∣∣λk(Φ)
∣∣ ≤ max

Φ∈Γ

{∣∣vk−1(Φ)
∣∣,
∣∣vk(Φ)

∣∣}, k = 1, . . . , N, (4.3.12)
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where we set v0 := M1. Let us consider Γ as the straight line joining Φj and Φj+1, the

minimum and the maximum of

gk(a) := vk

(
aΦj + (1 − a)Φj+1

)
, a ∈ [0, 1],

for each value of k ∈ {1, . . . , N} can be computed as the minimum or maximum of the

extremal set

Ek(Φj ,Φj+1) :=
{
gk(0), gk(1)

}
∪
{
gk(a) : g′k(a) = 0, a ∈ (0, 1)

}
. (4.3.13)

For the MLB model, we obtain

a = ak =
(n− 1)(d2

k − dT
2 (Φj+1))(pj − pj+1) + (1 − pj+1)d

T
2 (Φj − Φj+1)

n(pj − pj+1)d
T
2 (Φj − Φj+1)

, (4.3.14)

where pj is the value of p = φ associated with node j.

For the modified HS model we have

a = ak =
φmax − pj+1

pj − pj+1

−
n(

β0 + n
φmax

)
(pj − pj+1) + β1d

−1
k dT(Φj − Φj+1) + β2d

−2
k dT

2 (Φj − Φj+1)
.

(4.3.15)

Hence, the viscosity coefficient

αk
j+1/2 = max

Φ∈[Φj ,Φj+1]

{∣∣vk−1(Φ)
∣∣,
∣∣vk(Φ)

∣∣} (4.3.16)

where [Φj ,Φj+1] denotes the straight line joining Φj and Φj+1 can be readily computed at

each cell interface. As we shall see in the numerical experiments section, (4.3.16) provides an

adequate recipe for the local viscosity coefficient required by the LLF approach.

4.3.5 The SPEC and COMP schemes

A component-wise WENO5 scheme is defined by the numerical flux

f̂j+1/2,k = R+
(
f+

j−2,k, . . . , f
+
j+2,k; xj+1/2

)
+ R−

(
f−

j−1,k, . . . , f
−
j+3,k; xj+1/2

)
, (4.3.17)

where R is the mapped WENO5 reconstruction operator [40] and f±
j,k are given by the global

Lax-Friedrichs flux splitting

(
f±

j,1, . . . , f
±
j,N

)T
= f(Φj) ± αΦj , j ∈ Z,
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with α as defined in (4.3.9). Notice that this globally defined viscosity coefficient does not

require the spectral information of the Jacobian matrix. We remark that the viscosity coef-

ficient relies on the computation of the γk coefficients provided in Lemmas 3.4.1 and 4.2.1

which is consistent with the observations in [72], about the need to have a proper estimate

of the minimal viscosity coefficient given by (4.3.8).

We use

ρν
max = max

j=0,...,M−1
max

{∣∣∣∣∣v1

(
Φν

j

)
+

N∑

k=1

γk

(
Φν

j

)
∣∣∣∣∣ ,
∣∣vN

(
Φν

j

)∣∣
}

to estimate the maximal characteristic velocity for Φν . The resulting scheme will be referred

to as “COMP-GLF”.

In order to implement a characteristic-wise scheme, we need the complete eigenstructure

of Jf(Φ), which is provided by the results of the hyperbolicity analysis performed in Subsec-

tion 3.4.1 of Chapter 3 and Section 4.2 of current Chapter. The normalized left eigenvectors

(lkj+1/2)
T and right eigenvectors rk

j+1/2, k = 1, . . . , N , of

Jf(Φj+1/2), Φj+1/2 :=
1

2
(Φj + Φj+1),

are computed using (3.4.2) and (3.4.3) for the MLB model and (4.2.4) for the HS model.

The matrices

Rj+1/2 =
[
r1

j+1/2, . . . , r
N
j+1/2

]
, R−1

j+1/2 =
[
l1j+1/2, . . . , l

N
j+1/2

]T
,

are needed in order to compute the local characteristic variables and fluxes around the j+1/2

interface as follows:

gj+1/2,i,k :=
(
lkj+1/2

)T
f(Φj+i), g±j+1/2,i,k :=

1

2

(
lkj+1/2

)T(
f(Φj+i) ± αk

j+1/2Φj+i

)
,

i = −2, . . . , 3, j ∈ Z, k = 1, . . . , N,

with αk
j+1/2 given by (4.3.16). For the spectral scheme we compute the numerical fluxes as

f̂j+1/2 =
(
f̂j+1/2,1, . . . , f̂j+1/2,N

)T
= Rj+1/2ĝj+1/2, j ∈ Z, (4.3.18)

where ĝj+1/2 = (ĝj+1/2,1, . . . , ĝj+1/2,N)T is defined as follows. If λk
j · λ

k
j+1 ≤ 0 (Case 1), we set

ĝj+1/2,k = R+
(
g+

j+1/2,−2,k, . . . , g
+
j+1/2,2,k; xj+1/2

)

+ R−
(
g−j+1/2,−1,k, . . . , g

−
j+1/2,3,k; xj+1/2

)
,

(4.3.19)
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Figure 4.1: Example 4: numerical solution for φ1, φ2 (a, c) and φ (b, d) at t = 50 s computed

by SPEC-INT with M = 6400 (a, b) and COMP-GLF with M = 25600 (c, d).

while for λk
j · λ

k
j+1 > 0 (Case 2), we set for k = 1, . . . , N.

ĝj+1/2,k =




R+(gj+1/2,−2,k, . . . , gj+1/2,2,k; xj+1/2) if λk

j > 0 and λk
j+1 > 0,

R−(gj+1/2,−1,k, . . . , gj+1/2,3,k; xj+1/2) if λk
j < 0 and λk

j+1 < 0.
(4.3.20)

We estimate the maximal characteristic velocity for Φν by:

ρν
max = max

j=0,...,M−1
max

k=1,...,N

∣∣λk

(
Φν

j+1/2

)∣∣.

In what follows, we will address by “SPEC-INT” the characteristic-wise mapped fifth-order

WENO scheme whose numerical fluxes are calculated by (4.3.18)–(4.3.20), and where the

viscosity coefficient is calculated by (4.3.16) based on the interlacing property. Alternatively,

for comparison purposes we will in one case employ the same scheme with the viscosity

coefficient given by the usual choice (4.3.11) (instead of (4.3.16)). This scheme will be referred

to as “SPEC-LLF”.
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Figure 4.2: Example 4: numerical solution for φ1, φ2 (a, c) and φ (b, d) at t = 300 s computed

by SPEC-INT with M = 6400 (a, b) and COMP-GLF with M = 25600 (c, d).

4.4 Numerical results

In this section we perform a series of numerical experiments to highlight the numerical

issues brought up earlier in the chapter. In particular, we shall see that characteristic based

WENO schemes are indeed more robust that their component-wise counterparts, and that

the choice of viscosity is important in the overall performance of the scheme: an incorrect

choice of the viscosity coefficient in the splitting strategy can lead to an oscillatory behavior

that remains under mesh refinement. In this section, we take CFL = 0.5 for all examples

with two species and CFL = 0.2 for N = 4, 11. The data and physical parameters are the

same as those used in Chapter 3 (Subsection 3.5.2), however, for the sake of readability we

will re-write them for each case.
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M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 300 s

100 126.04 - 22.41 - 131.10 - 121.20 - 204.41 - 113.24 -

200 63.37 0.992 10.62 1.077 64.72 1.018 65.40 0.890 107.38 0.929 56.80 0.995

400 30.54 1.053 5.42 0.970 31.60 1.035 33.76 0.954 55.53 0.951 30.07 0.918

800 16.03 0.930 2.62 1.051 16.35 0.950 14.94 1.177 26.79 1.052 15.75 0.932

1600 6.94 1.207 1.21 1.113 7.19 1.185 7.71 0.953 12.99 1.045 7.10 1.149

COMP-GLF, t = 50 s COMP-GLF, t = 300 s

100 169.64 - 43.37 - 187.63 - 175.79 - 530.19 - 423.23 -

200 87.06 0.962 20.52 1.080 94.26 0.993 86.40 1.025 255.21 1.055 219.27 0.949

400 44.76 0.960 9.69 1.082 47.56 0.987 45.40 0.928 186.98 0.449 174.58 0.329

800 23.94 0.903 4.82 1.009 25.10 0.923 33.31 0.447 64.09 1.545 54.82 1.671

1600 13.18 0.860 2.41 0.998 13.60 0.884 25.05 0.411 53.33 0.265 43.67 0.328

Table 4.1: Example 4: approximate L1 errors (×10−5) and convergence rates (cr). The refer-

ence solution is computed by SPEC-INT with M = 6400.

4.4.1 Example 4 (MLB model, N = 2)

The first example [19, 57] corresponds to two species with density ̺s = 2790 kg/m3

and different diameters D1 = 4.96 × 10−4 m and D2 = 1.25 × 10−4 m, corresponding to

d1 = 1 and d2 = D2/D1 = 0.25202. The (unnormalized) depth of the vessel in the original

experiment [57] is L = 0.3 m. The maximum total concentration is φmax = 0.68, and the

initial concentrations are Φ0 = (φ0
1, φ

0
2) = (0.2, 0.05)T. The hindered settling factor V (φ)

is chosen according to (3.3.2) with the exponent n = 4.7. The remaining parameters are

g = 9.81 m/s2, µf = 0.02416 Pa s and ̺f = 1208 kg/m3. Moreover, here and in the following

examples, the spatial coordinate x refers to normalized depth, and varies between x = 0

(meniscus of the suspension) and x = 1 (bottom of the settling column). The solution of

Example 4 is well known, and has been used as a test case for a variety of methods (see, e.g.,

[9, 14, 15, 19]).

To compare the performance of SPEC-INT with that of COMP-GLF, we calculate numer-

ical solutions for a sequence of spatial discretizations ∆x = 1/M , and compare the solutions

with two alternative reference solutions that have been computed with M = Mref = 6400

and M = Mref = 25600 by SPEC-INT and COMP-GLF, respectively. These solutions
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Figure 4.3: Example 4: numerical solution at t = 50 s with M = 400 (a) and enlarged views

(b–f). The reference solution is computed by SPEC-INT with M = 6400.

are shown in Figures 4.1 and 4.2 for the simulated times t = 50 s and t = 300 s, re-

spectively. In Table 4.1 we show approximate L1 errors for both schemes at two selected

times. These approximate errors are computed as follows. Let us denote by φM
i (·, t) and

φref
i (·, t) denote the numerical solution for the i-th component at time t calculated for the dis-

cretization M ∈ {100, 200, 400, 800, 1600} and the reference discretization Mref , respectively

(Mref = 6400 and Mref = 25600 for the SPEC-INT and COMP-GLF schemes, respectively).

Assume that φM
i (x, t) = φM

j,i(t) = const. for x ∈ [(j − 1/2)∆x, (j + 1/2)∆x); assume, more-

over, that φref
i (·, t) is piecewise constant on the mesh with meshwidth 1/Mref . For a given

time t and r := Mref/M ∈ N we then calculate the approximate L1 error in species i by

ei = ei(t) =
∥∥φref

i (·, t) − φM
i (·, t)

∥∥
1

=
1

Mref

Mref−1∑

j=0

∣∣φref
j,i(t) − φM

⌊j/r⌋,i(t)
∣∣, i = 1, . . . , N.

If we define φM
j (t) := φM

j,1(t) + · · · + φM
j,N(t) (and analogously, φref

j (t)), then the total approx-
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Figure 4.4: Example 4: numerical solution at t = 300 s with M = 400 (a) and enlarged views

(b–f). The reference solution is computed by SPEC-INT with M = 6400.

imate L1 error at that time is given by

etot = etot(t) =
1

Mref

Mref−1∑

j=0

∣∣φref
j (t) − φM

⌊j/r⌋(t)
∣∣.

Note that etot(t) ≤ e1(t) + · · · + eN(t).

Table 4.1 shows that SPEC-INT produces smaller values of the error than COMP-GLF,

with respect to its ’converged’ solution. The difference is significant in the case of species

2 at t = 50 s. In the plot of the complete solutions in Figure 4.3 (a), no difference between

both solutions becomes apparent, so we present enlarged views of portions of the numerical

simulation (Figures 4.3 (b–f)) in which the greater accuracy of the solutions generated by

SPEC-INT is appreciable. Plot (a) of Figure 4.4, which corresponds to t = 300 s, shows the

difference of behaviour of both solutions even without the necessity to enlarge the view;

nevertheless we present in Figure 4.4 (b–d) enlarged views to make local differences clearly

visible. In Table 4.1 the reference solution is computed by SPEC-INT with Mref = 6400.

To exclude that our conclusion of superiority of SPEC-INT is based on a bias due to the
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M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 300 s

100 125.15 - 22.40 - 131.11 - 115.13 - 195.99 - 110.08 -

200 64.58 0.954 10.77 1.056 66.36 0.982 66.21 0.798 102.20 0.939 58.07 0.923

400 33.81 0.934 5.76 0.902 34.94 0.926 33.87 0.967 48.62 1.072 33.25 0.804

800 20.63 0.713 3.03 0.927 20.74 0.752 21.04 0.687 25.26 0.945 21.64 0.620

1600 13.98 0.561 1.82 0.737 13.85 0.582 15.34 0.456 13.64 0.889 15.97 0.439

COMP-GLF, t = 50 s COMP-GLF, t = 300 s

100 167.08 - 43.21 - 188.63 - 166.51 - 519.44 - 416.07 -

200 87.17 0.939 20.62 1.067 96.30 0.970 78.01 1.094 243.39 1.094 211.38 0.977

400 47.05 0.890 9.96 1.051 50.80 0.923 33.50 1.220 178.31 0.449 169.73 0.317

800 28.93 0.702 5.25 0.922 30.39 0.741 22.18 0.594 56.16 1.667 49.53 1.777

1600 21.40 0.435 3.10 0.761 21.65 0.489 12.30 0.851 43.48 0.369 36.55 0.439

Table 4.2: Example 4: approximate L1 errors (×10−5) and convergence rates (cr). The refer-

ence solution is computed by COMP-GLF with M = 25600.

choice of this scheme for the reference solution, we present a second table of errors for this

example, Table 4.2, in which the numerical solutions for M = 100, . . . , 1600 are the same as

in Table 4.1, but we utilize a reference solution obtained by COMP-GLF with Mref = 25600.

As a general observation, throughout a rather extense testing process, we may say that a

numerical solution obtained by COMP-GLF agrees in quality and resolution power with the

solution obtained by SPEC-INT if the meshwidth for COMP-GLF is roughly a fourth of the

one used for SPEC-INT.

Of course, for a given value of M the COMP-GLF scheme is faster than the SPEC-INT

scheme, since COMP-GLF does not require the complete spectral information, which avoids

many computations. Nevertheless, if we seek a fixed level of resolution in the numerical

simulation, then SPEC-INT turns out to be computationally more efficient. For instance, in

Example 4 the CPU time is 21.01 s and 87.15 s for providing the solutions at the respective

simulated times t = 50 s and t = 300 s, respectively, with SPEC-INT and M = 400, while to

obtain a numerical solution of comparable quality (smallness of errors) by COMP-GLF we

need to use M = 1600 points, and the corresponding CPU times are 29.15 s for t = 50 s and

160.80 s for t = 300 s.
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Figure 4.5: Example 5: reference solution for φ1, . . . , φ4 and φ computed by SPEC-INT with

Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 50 s.

SPEC-INT, t = 50 s SPEC-INT, t = 300 s COMP-GLF, t = 50 s COMP-GLF, t = 300 s

M etot cr etot cr etot cr etot cr

100 103.45 - 158.14 - 200.42 - 212.03 -

200 53.68 0.946 72.64 1.122 104.16 0.944 122.90 0.787

400 23.81 1.173 33.95 1.097 50.07 1.057 79.54 0.628

800 11.95 0.995 12.08 1.491 25.02 1.001 40.90 0.959

1600 5.29 1.174 7.08 0.771 12.13 1.044 23.54 0.797

Table 4.3: Example 5: approximate L1-errors (×10−5) and convergence rates (cr).

4.4.2 Example 5 (MLB model, N = 4)

We consider d1 = 1, d2 = 0.8, d3 = 0.6 and d4 = 0.4, φmax = 0.6, and φ0
i = 0.05 for

i = 1, . . . , 4. The other parameters are the same as in Example 4. This example goes back to

Greenspan and Ungarish [35], and was solved numerically in [13] with the slightly different
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Figure 4.6: Example 5: reference solution for φ1, . . . , φ4 and φ computed by SPEC-INT with

Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 300 s.

hindered settling factor V (φ) = (1 − (5/3)φ)2.7 in [13]. Figures 4.5 (a, b) and 4.6 (a, b)

display the reference solution obtained with SPEC-INT and Mref = 6400 for t = 50 s and

t = 300 s respectively, while plots (c–f) of both figures are enlarged views of the corresponding

numerical solutions obtained with SPEC-INT and COMP-GLF with M = 400. Both series

of plots show that at M = 400 the quality of approximation of piecewise constant portions

of the solution and the resolution of kinematic shocks by SPEC-INT is superior to that of

COMP-GLF. Table 4.3 displays the approximate total L1 error and convergence rates for this

case. For the times considered the average convergence rate using the SPEC-INT method is

close to one. On the other hand, as time increases, the errors increase considerably.

We select this case to compare the performance of SPEC-INT with that of SPEC-LLF,

the method based on the simpler viscosity coefficient (4.3.11). Both choices approximate

the same solution globally (not shown here), and a few enlarged views of relevant parts of

the numerical solution shown in Figure 4.7 indicate that the resolution of kinematic shocks

by SPEC-LLF is even slightly better than by SPEC-INT. However, we observe spurious

oscillations produced by SPEC-LLF in the piecewise constant parts of the solution. These
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Figure 4.7: Example 5: details of numerical solutions obtained by SPEC-INT and SPEC-LLF

with M = 400 at t = 300 s.

oscillations do not disappear upon mesh refinement, and indicate that the amount of viscosity

introduced by (4.3.11) is not appropriate and possibly insufficient.

4.4.3 Example 6 (MLB model, N = 11)

This example is based on experimental data from [59], where the settling of a suspen-

sion in a column of height L = 0.935 m was considered. The initial concentrations φ0
i , di-

ameters Di and normalized diameters di = Di/D1 are given in Table 3.1; the maximum

total concentration is φmax = 0.641 [59]. Figures 4.8 (a) and (b) show the concentration

profiles of the reference solution, obtained by SPEC-INT with Mref = 6400 at t = 300 s.

Figures 4.8 (c–f) display enlarged views of portions of the SPEC-INT and COMP-GLF solu-

tions with M = 400 at the same time. Again, the superiority of the quality of approximation

by SPEC-INT becomes apparent. This observation is also confirmed by the errors displayed

in Table 4.4.
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SPEC-INT, t = 50 s SPEC-INT, t = 300 s COMP-GLF, t = 50 s COMP-GLF, t = 300 s

M etot cr etot cr etot cr etot cr

100 291.87 - 351.60 - 617.68 - 733.96 -

200 135.51 1.107 182.85 0.943 304.39 1.021 393.88 0.898

400 66.22 1.033 96.86 0.917 164.93 0.884 212.10 0.893

800 36.48 0.860 44.93 1.108 89.51 0.882 112.20 0.919

1600 17.74 1.040 21.07 1.093 46.61 0.941 63.38 0.824

Table 4.4: Example 6: approximate L1 errors (×10−5) and convergence rates (cr).

4.4.4 Example 7 (MLB model, N = 2)

We consider the MLB model with N = 2 and the same parameters as Example 4, but

now start from the initial datum

Φ(x, 0) =





0.15 if x ≤ 0.5,,

0 if x > 0.5,
(4.4.1)
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Figure 4.8: Example 6: reference solution for φ1, . . . , φ11 and φ computed by SPEC-INT with

Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 300 s.
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Figure 4.9: Example 7: reference solution for φ1, φ2 and φ computed by SPEC-INT with

Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 50 s.

corresponding to a settling column whose upper half is initially filled with a suspension,

which is separated from the lower half by a “membrane”, that is removed at t = 0. The

suspension pouring into the lower half will then gradually dilute, and usually a transient

rarefaction wave centered at x = 0.5 will form. (The rarefaction wave will, however, soon

start to interact with concentration information traveling downwards and upwards from the

suspension meniscus and column bottom, respectively.) As was shown in [25], this configu-

ration can be realized experimentally (with some effort), and the expanding concentration

gradient reveals properties of the function V (φ) which at least for N = 1 can be used for

flux identification. A similar configuration, but on an unbounded domain, was solved for

N = 2, 4, 8 and 32 in [16].

Figures 4.9 and 4.10, which correspond to the respective simulated times t = 50 s and

t = 250 s, show the reference solution obtained by SPEC-INT with Mref = 6400 and details

illustrating the difference in solutions obtained by SPEC-INT and COMP-GLF with M =

400. Table 4.5 displays the errors observed for this example.
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Figure 4.10: Example 7: reference solution for φ1, φ2 and φ computed by SPEC-INT with

Mref = 6400 (a, b), and details of numerical solutions with M = 400 (c–f), at t = 250 s.

4.4.5 Example 8: HS model with N = 2 and N = 4

For these examples we implement the variant of HS model described in Section 4.2.

Numerical simulations are shown in Figs. 4.11 and 4.12 for N = 2, and Figs. 4.13 and

4.14 for N = 4. A noticeable difference with the MLB model (where the flux function is

cut abruptly for φ ≥ φmax) is the profile at the rightmost part of the solution. We claim

that the fact of cutting the flux function for values greater than φmax could be produce

small oscillations in zones where the concentrations must be constant, this effect cannot be

observed from the global figure in the whole computational domain showed in Fig. 4.14 (a,

b) but can be seen from enlarging views which are showed in subplots (c, d, e, f), compare

it with Figs. 4.6 and 4.13.

Table 4.6 displays the errors observed for Example 8 for the case of the variant of the HS

model with two species.
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M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 250 s

100 210.30 - 83.10 - 282.82 - 124.22 - 70.15 - 194.19 -

200 107.67 0.966 34.57 1.265 136.26 1.054 64.25 0.951 29.39 1.255 93.64 1.052

400 66.79 0.689 9.42 1.875 73.25 0.895 55.27 0.217 10.08 1.544 65.35 0.519

800 37.37 0.838 4.53 1.057 40.74 0.846 32.97 0.745 5.55 0.860 38.53 0.762

1600 19.11 0.967 4.29 0.075 22.78 0.838 14.02 1.233 4.04 0.456 18.07 1.092

COMP-GLF, t = 50 s COMP-GLF, t = 250 s

100 281.79 - 125.25 - 392.34 - 236.18 - 160.41 - 394.76 -

200 161.65 0.802 73.05 0.778 226.85 0.790 121.40 0.960 77.05 1.058 198.27 0.994

400 88.24 0.873 35.53 1.040 119.74 0.922 73.96 0.715 35.46 1.120 109.42 0.858

800 47.80 0.884 18.30 0.957 64.29 0.897 41.71 0.826 18.30 0.954 60.01 0.866

1600 24.91 0.940 10.47 0.806 34.50 0.898 20.56 1.020 9.84 0.894 30.41 0.980

Table 4.5: Example 7: approximate L1 errors (×10−5) and convergence rates (cr) for Riemann

problem. The reference solution is computed by SPEC-INT with Mref = 6400.

4.5 Conclusions of Chapter 4

In this chapter we have shown that the implementation of efficient WENO schemes for

polydisperse sedimentation models can be accomplished by using the recent hyperbolicity

analysis carried out in [14]. In addition, we have been able to characterize the viscosity

coefficients to be used in Global-Lax-Friedrichs flux-splitting procedures, as well as in the

Local-Lax-Friedrichs flux-splitting procedure. The particular algebraic structure of the veloc-

ities of the MLB and HS models permits to exactly determine the extremal set Ek(Φj ,Φj+1)

defined in (4.3.13), and hence the specific viscosity coefficient to be used at each cell interface.

We have constructed component-wise and characteristic-based WENO5 schemes for two

polydisperse sedimentation models, and have compared their performance. As in the case of

the MCLWR kinematic traffic models, the characteristic-based schemes, which use the full

spectral decomposition of the Jacobian matrix at each cell-interface, are more robust and lead

to numerical solutions which are essentially oscillation free. We remark that this situation

is absolutely similar to what is observed in the better known case of the Euler equations

for gas dynamics simulations, where the superiority of characteristic-based schemes is a well
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M e1 cr e2 cr etot cr e1 cr e2 cr etot cr

SPEC-INT, t = 50 s SPEC-INT, t = 250 s

100 135.94 - 18.45 - 144.90 - 113.12 - 105.16 - 108.60 -

200 70.57 0.946 7.86 1.231 73.50 0.979 59.41 0.929 53.30 0.980 56.05 0.954

400 34.34 1.039 3.76 1.063 35.80 1.038 29.82 0.994 29.01 0.877 27.37 1.034

800 16.49 1.058 1.78 1.073 17.21 1.057 11.26 1.404 12.05 1.267 14.29 0.937

1600 6.71 1.297 0.76 1.226 7.05 1.286 4.86 1.212 5.74 1.068 6.77 1.077

COMP-GLF, t = 50 s COMP-GLF, t = 250 s

100 138.48 - 26.99 - 160.72 - 171.39 - 245.80 - 194.93 -

200 70.17 0.981 11.93 1.177 79.71 1.012 86.78 0.982 138.36 0.829 114.99 0.761

400 35.96 0.964 5.31 1.166 40.08 0.992 45.29 0.938 70.90 0.964 56.92 1.014

800 17.02 1.079 2.52 1.072 19.06 1.072 22.87 0.986 39.53 0.843 32.69 0.800

1600 8.39 1.020 1.20 1.073 9.35 1.028 11.40 1.004 22.39 0.820 19.68 0.732

Table 4.6: Example 8: approximate L1 errors (×10−5) and convergence rates (cr) for HS

model. The reference solution is computed by SPEC-INT with Mref = 6400.

known fact. For gas dynamics, the spectral decomposition of the Jacobian matrix is given

in closed form, hence the use of a characteristic-based scheme poses no special difficulties.

For polydisperse models, the spectral decomposition can only be computed numerically. In

addition, the characteristic fields are neither genuinely nonlinear nor linearly degenerate,

hence the determination of the viscosity coefficients in flux-vector splitting schemes becomes

a non-trivial task.

According to the numerical tests shown in this chapter, our proposed characteristic-

based scheme (SPEC-INT) is very robust, although it is certainly very costly in terms of

computational resources, since it involves an intensive usage of the characteristic information.

The interlacing property allows other simplifications to be implemented. For example, in

Section 4.3.5, the discrimination between Cases 1 and 2 corresponding to the use of either

(4.3.19) or (4.3.20) is made in dependence of the sign of the product of eigenvalues λk
j · λ

k
j+1.

The interlacing property (3.2.9) or (3.2.10) can be used to compute this sign in terms of

velocities rather than eigenvalues.

Nevertheless, we have shown that the SPEC-INT gives a good resolution on the numerical

approximation with a relative small number of mesh points, hence it is competitive with
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Figure 4.11: Example 8: numerical solution for φ1, φ2 with M = 400 (a) and φ (b) at t = 50 s

and enlarged views (c–f) of zones indicated by rectangles in plot (a). The reference solution

is computed using SPEC-INT with Mref = 6400.

respect to the simpler component-wise schemes. We expect the SPEC-INT scheme to be

even more competitive than cheaper component-wise schemes, such as COMP-GLF, in an

Adaptive Mesh Refinement (AMR) framework, since its non-oscillatory properties will help

to avoid unnecessary refinement in regions of constant concentration.
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Figure 4.12: Example 8 (HS variant with N = 2): numerical solution for φ1, φ2 with M = 400

(a) at t = 250 s and enlarged views (b–d). The reference solution is computed using SPEC-

INT with Mref = 6400.
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Figure 4.13: Example 8 (HS variant with N = 4): numerical solution for φ1, . . . , φ4 with

M = 400 (a) and φ (b) at t = 250 s and enlarged views (c–f), where the reference solution is

computed using SPEC-INT with Mref = 6400.
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Figure 4.14: Example 8 (HS with N = 4): numerical solution for φ1, . . . , φ4 with M = 400

(a) and φ (b) at t = 250 s and enlarged views (c–f), where the reference solution is computed

using SPEC-INT with Mref = 6400.
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Chapter 5

Additional results of Hyperbolicity

5.1 Introduction

In the first part of this chapter we perform the analysis of hyperbolicity for the Davis-

Gecol model under the assumption that β3 = 0. For this model, it is still possible to obtain

conditions that guarantee strictly hyperbolicity on Dφmax
for dN (the smallest diameter) close

to one. A result in this sense was got for the particular case of N = 2 in the reference [17], by

using directly the characteristic polynomial, in that paper was showed that DG model with

N = 2 is stable if the solid particles differ only moderately in size, more exactly, if the size

ratio is not larger than about 5.5. They also pointed out that the size of region of instability

increases when the ratio D1/D2 increases too. Unlike previous work, the remarkable point is

that the result obtained here does not depend on the number of species.

The remaining of this chapter is devoted to the analysis of hyperbolicity considering

β3 < 0 for the BW and HS model. Most of the computations imply algebraic procedures

similar to the calculations performed in Chapter 3.

5.2 The Davis and Gecol (DG) model

We first recall (see equation (3.3.14)) that the settling velocity for DG model [23] is given

by

vi(Φ) = d2
i (1 + sT

i Φ − Siiφ)(1 − φ)−Sii, (5.2.1)

where sT
i Φ and Sii = (β0 + β1 + β2), for i = 1, . . . , N were considered in Subsection 3.3.2.

Notice that DG and BW models agree in the dilute limit.
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Similarly to the analysis of the BW and HS model, we will conduct the analysis of

the DG model under the a priori assumption that β3 = 0. For i = 1, . . . , N we consider

ηi = 1+sT
i Φ+nφ, with n = −Sii. For this model the auxiliary scalar variables pk, k = 1, 2, 3,

are given by equation (3.4.8), on the other hand, the entries of matrix A and B are given by

αk
i = dk−1

i ,

βk
i =





d2

iφi(1 − φ)n−1
(
(1 − φ)(β0 + n) − nηi

)
for k = 1,

d3−k
i φi(1 − φ)nβk−1, for k = 2, 3

(5.2.2)

Now, taking into account that

vj − vi = (1 − φ)n
(
d2

jηj − d2
i ηi

)

= (1 − φ)n
(
d2

j − d2
i

)(
1 − (β1 + β2)φ+

β1d
T
1 Φ

di + dj

)
,

we obtain the following coefficients for the secular equation

γi = α1
iβ

1
i + α2

iβ
2
i + α3

iβ
3
i n

+
N∑

j=1

j 6=i

α12
ij β

12
ij + α13

ij β
13
ij + α23

ij β
23
ij

vj − vi
+

N∑

j,k=1

i6=j<k 6=i

α123
ijkβ

123
ijk

(vk − vi)(vj − vi)

= φi(1 − φ)n−1(S1,i + S2,i + S3,i), i = 1, . . . , N,

(5.2.3)

where

S1,i = −nd2
i ηi = d2

i (β0 + β1 + β2)

(
1 − (β1 + β2)φ+

β1

di

dT
1 Φ +

β2

d2
i

dT
2 Φ

)
,

S2,i =
N∑

j=1

j 6=i

φj(di − dj)

(di + dj)

[
1 − (β1 + β2)φ+

β1d
T
1 Φ

di + dj

]S2,i,j ,

S2,i,j :=
(
β1didj + β2(di + dj)

2
)[

(1 − φ)(β0 + n) − n
(
1 − (β1 + β2)φ

)]
(5.2.4)

+ β1β2

[
n
(
dT

2 Φ − (di + dj)d
T
1 Φ
)

+ (1 − φ)didj

]
,

S3,i =
N∑

j,k=1

i6=j<k 6=i

−
φjφkπ

2
ijkβ1β2 [β0(1 − φ) − nφ(1 − (β1 + β2))]

(d2
k − d2

i )(d
2
j − d2

i )

[
1 − (β1 + β2)φ+

β1d
T
1 Φ

di + dk

] [
1 − (β1 + β2)φ+

β1d
T
1 Φ

di + dj

] .

Unfortunately, this model does not allow for term cancellations as for the BW and HS

models. However, it is still possible to deduce that the model is strictly hyperbolic on Dφmax
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for realistically large values of φmax provided that dN is sufficiently close to one. Our analysis

leads here to a narrow size distribution only. The salient point is, however, that our bounds

for dN < 1 are independent of N . Here, we can prove the following result.

Lemma 5.2.1 Consider the DG model, where the parameters dN , φmax and β = (β0, β1, β2)
T

are assumed to satisfy

dN > 1/2, (5.2.5)

1 +
[
β1(d

−1
N − 1) + β2(d

−2
N − 1)

]
φmax > 0. (5.2.6)

Then the model is strictly hyperbolic for all φ ∈ Dφmax
provided that

S(φ, dN ; β) < 0 for all φ ∈ (0, φmax], (5.2.7)

where we define

S(φ, dN ; β) := −n
(
1 +

[
β1(d

−1
N − 1) + β2(d

−2
N − 1)

]
φ
)

+
1 − dN

dN
·
C1φ

2
+

(1 − dN)4

d4
N

·
C2φ

2

4
.

(5.2.8)

The constants are given by

C1 :=(β1 + 4β2)
(
β0 + (β1 + β2)φmax

)
+ nφmax

[
β1(β1 + β2) + 4β2

2

]

+ β1β2

(
φmax(n(4 + d−2

N ) − 1) + 1
)
,

C2 :=β1β2

(
β0 − nφmax(1 − (β1 + β2))

)
.

Proof. We first note that for all i = 1, . . . , N and all Φ ∈ Dφmax
the following inequality

holds:

ηi = 1 + sT
i Φ + nφ = 1 +

N∑

j=1

2∑

k=1

βk

(
dk

j

dk
i

− 1

)
φj ≥ 1 +

[
β1(d

−1
N − 1) + β2(d

−2
N − 1)

]
φmax,

(5.2.9)

so (5.2.6) ensures that always ηi > 0, and therefore S1,i < 0. Observe that (5.2.6) holds if

dN is chosen sufficiently close to one, or φmax is sufficiently small. Next, a straightfoward

calculation, and utilizing that

(1 − φ)(β0 + n) − n
(
1 − (β1 + β2)φ

)
= β0(1 − φ) − nφ(1 − (β1 + β2)),
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yields S2,i,j = d2
i S̃2,i,j = d2

i S̃2,i,j(β,d,Φ), where

S̃2,i,j =

(
β1
dj

di

+ β2

(
1 +

dj

di

)2)(
β0(1 − φ) − nφ

)
+ nφ

[
β1(β1 + β2)

dj

di

+ β2
2

(
1 +

dj

di

)2]

+ β1β2

[
n

(
1 +

dj

di

){
φ

(
1 +

dj

di

)
−

dT
1 Φ

di

}
+ n

dT
2 Φ

d2
i

+ (1 − φ)
dj

di

]
.

(5.2.10)

Note that a sufficient condition for S̃2,i,j to be positive for all Φ, and without further restric-

tions on β0, β1 and β2, is that the expression in the curled bracket is positive, i.e.,

φ

(
1 +

dj

di

)
−

dT
1 Φ

di

=
N∑

l=1

(
1 +

dj − dl

di

)
φl > 0. (5.2.11)

A sufficient condition for (5.2.11) to hold for all vectors Φ is that the coefficients of φl for all

i, j, l ∈ {1, . . . , N} are positive. This occurs if and only if 1−(1−dN)/dN > 0, or equivalently,

(5.2.5) is satisfied.

Assume now that S2,i,j > 0, and note that for dN > 1/2, we have that

1 − (β1 + β2)φ+
β1d

T
1 Φ

di + dj
> 1 +

[
β1

(
1

2dN
− 1

)
− β2

]
φ > 1 for φ ∈ [0, φmax].

Then we need to estimate S+
2,i, which (as in the BW and HS models) is the partial sum of

all positive summands of S2,i, that is,

S+
2,i = d2

i

N∑

j=i+1

φj(di − dj)S̃2,i,j

(di + dj)

(
1 − (β1 + β2)φ+

β1d
T
1 Φ

di + dj

) .

In light of our previous assumptions and considerations, we obtain

S+
2,i ≤

d2
i (1 − dN)φ

2dN

max
i<j≤N

S̃2,i,j.

However, from (5.2.10) and (5.2.5) we get that

max
i<j≤N

S̃2,i,j ≤ (β1 + 4β2)
(
β0 + (β1 + β2)φ

)
+ nφ

[
β1(β1 + β2) + 4β2

2

]

+ β1β2

[
nφ(4 + d−2

N ) + (1 − φ)
]

≤ C1.

Finally, similar considerations for S3,i and noting that

π2
ijk

(d2
j − d2

i )(d
2
k − d2

i )
= d2

i

(dj − di)(dk − di)(dk − dj)
2

d2
i (di + dj)(di + dk)

≤ d2
i

(1 − dN)4

4d4
N
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Figure 5.1: Region of hyperbolicity (S(φ,β, dN) < 0) for the DG model (left) and the diagram

with the region where the condition (5.2.6) holds (right). The components of β used in the

calculations are given by (3.3.13).

lead to

S+
3,i ≤ −

d2
i (1 − dN)4φ2

maxC2

4d4
N

.

Summarizing, we see that S1,i + S2,i + S3,i ≤ d2
iS(φ, dN ; β), where S(φ, dN ; β) is defined in

(5.2.8). Thus, we conclude that for given parameters dN , φmax and β we have γi < 0 for

all i = 1, . . . , N on Dφmax
, and therefore hyperbolicity, provided that S(φ, dN ; β) < 0 for all

φ ∈ (0, φmax]. 2

As an example we consider the DG model with the coefficients (3.3.13) (with β3 = 0).

Figure 5.1 (left) shows the hyperbolicity region defined by condition (5.2.7) for this model.

We limit the discussion here to dN > 1/2, and it can be verified straightfowardly that for all

pairs (dN , φmax) that lie in the displayed region S(φ,β, dN) < 0, also (5.2.6) is satisfied as

can be noticed in Fig. 5.1 (right). We observe that the larger φ = φmax is chosen, the closer

dN needs to be chosen near one, i.e., the narrower the size distribution must be to ensure

hyperbolicity. In the most extreme case, for φmax = 1, hyperbolicity can be observed only

for dN > d∗N = 0.914022, this value is the revelant root of S(1,β, dN) = 0. Consequently,

hyperbolicity, and therefore stability, can be ensured for the DG model only if the suspension

is nearly monodisperse, a result that sharply contrasts with the HS model. The decisive

observation is, however, that our result is independent of the number of species N .

We now present some numerical examples for two species using the method SPEC-INT
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described in Chapter 4 (the Section 4.3). Since m = 3 (the rank of matrix A and B), the

expressions for calculating the right and left eigenvalues of the Jacobian matrix in this model

are similar to that of HS model (see equation (4.2.4)), then for each eigenvalue λ, which is

approximated by a root finder that uses the interlacing property, we obtain the following

right eigenvector x = (x1, . . . , xN )T where:

xi = −
1

vi − λ
(bi,1ξ1 + bi,2ξ2 + bi,3ξ3) , i = 1, . . . , N,

with

ξ1 = (1 + [a2,b2])(1 + [a3,b3]) − [a2,b3][a3,b2],

ξ2 = [a2,b3][a3,b1] − [a2,b1](1 + [a3,b3]),

ξ3 = [a2,b1][a3,b2] − (1 + [a2,b2])[a3,b1],

where

al = (αl
1, α

l
2, . . . , α

l
N), bl = (βl

1, β
l
2, . . . , β

l
N), l = 1, 2, 3,

with αl
i, β

l
i are given by (5.2.2)

Figure 5.2 shows the approximate solutions at t = 50 s and t = 300 s for two species

with the respective total concentration. The parameters are the same of Subsection 4.4.1,

except that in this case we take D2 = 4.54 × 10−4 and φmax = 0.9, with this new data the

hypothesis of the Lemma 5.2.1 are satisfied which guarantee hyperbolicity. We also show in

Fig. 5.3 the numerical results obtained with the DG model with four species using the data

of Example 4.4.2 which do not satisfy the sufficient conditions of Lemma 5.2.1. It can be

observed overshoots for some species, which differ of results obtained along this work with

other models.
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Figure 5.2: Davis-Gecol model with N = 2: numerical solution for φ1, φ2 and φ at t = 50 s

(a, b), and the corresponding solutions at t = 300 s (c, d).
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Figure 5.3: Numerical solutions for DG model with N = 2 (top row) at t = 50 s (a) and

t = 300 s (b). Bottom row corresponds to approximate solutions for N = 4 at t = 50 s (c)

and t = 300 s (d).
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5.3 BW and HS models for β3 < 0

In Chapter 3 we studied the hyperbolicity for the BW and HS under the assumption

β3 = 0. This mild consideration let us to hand roughly expressions in order to simplify

many computations and put the main results into perspective. In this section we remove

that assumption and we will see that it is still possible to obtain some sufficient conditions

for hyperbolicity in this general case, but this is not free due to the algebraic expressions

being more involved. However, some parts of lemma of Chapter 3 are valid with β3 < 0 and

most of the computations can be done in a straightforward manner.

Then using the notation of Subsection 3.4.2, we can write the settling velocity (3.4.7) as

vi(Φ) = vi(p1, . . . , p4) (5.3.1)

= d2
iϕ
(
(β0 + n)p1 + β1d

−1
i p2 + β2d

−2
i p3 + β3d

−3
i p4

)
(1 − p1)

n, i = 1, . . . , N,

where ϕ(z) = 1 + z, n = 0 for the BW model and ϕ(z) = exp(z), n ≥ 0, arbitrary for the

HS model.

By taking ηi := ϕ(sT
i Φ + nφ) and η′i := ϕ′(sT

i Φ + nφ) for i = 1, . . . , N , where ϕ′(z) :=

dϕ(z)/dz. The entries of matrix A are αk
i = dk−1

i , k = 1, 2, 3, 4, i = 1, . . . , N and for the

matrix B are given by

β1
i = d2

iφi(1 − φ)n−1
(
(1 − φ)(β0 + n)η′i − nηi

)
,

βk
i = d3−k

i φi(1 − φ)nβk−1η
′
i, k = 2, 3, 4; i = 1, . . . , N.

We now calculate the determinants αJ
I := detAI,J and βJ

I := detBI,J in the formula (3.2.15)

for m = 4,

γi = α1
iβ

1
i + α2

iβ
2
i + α3

iβ
3
i + α4

iβ
4
i

+
N∑

j=1

j 6=i

α12
ij β

12
ij + α13

ij β
13
ij + α23

ij β
23
ij + α14

ij β
14
ij + α24

ij β
24
ij + α34

ij β
34
ij

vj − vi

(5.3.2)

+

N∑

j,k=1

i6=j<k 6=i

α123
ijkβ

123
ijk + α234

ijk β
234
ijk + α134

ijk β
134
ijk + α124

ijk β
124
ijk

(vk − vi)(vj − vi)
+

N∑

j,k,l=1

j<k<l
j,k,l6=i

α1234
ijkl β

1234
ijkl

(vk − vi)(vj − vi)(vl − vi)
,

As always we adopt the convention that sums over a void index range are zero, and utilize

the following auxiliary notation:

σijk := di + dj + dk,

σ̃ijk := didj + didk + djdk,

πijk := (dj − di)(dk − di)(dk − dj),

πijkl := (dj − di)(dk − di)(dl − di)(dl − dj)(dl − dk)(dk − dj).

(5.3.3)
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We then obtain

α1
i = 1,

α2
i = di,

α3
i = d2

i ,

α4
i = d3

i ,

α12
ij = dj − di,

α13
ij = d2

j − d2
i ,

α23
ij = didj(dj − di),

α14
ij = d3

j − d3
i ,

α24
ij = didj

(
d2

j − d2
i

)
,

α34
ij = d2

id
2
j (dj − di),

α123
ijk = πijk,

α234
ijk = didjdkπijk,

α134
ijk = σ̃ijkπijk,

α124
ijk = σijkπijk,

α1234
ijkl = πijkl,

(5.3.4a)

β12
ij = φiφj(1 − φ)2n−1didjβ1

[
(1 − φ)(β0 + n)η′iη

′
j(di − dj) − n

(
ηiη

′
jdi − η′iηjdj

)]
,

β13
ij = φiφj(1 − φ)2n−1β2

(
(1 − φ)(β0 + n)η′iη

′
j(d

2
i − d2

j) − n(ηiη
′
jd

2
i − η′iηjd

2
j)
)
,

β14
ij = φiφj(1 − φ)2n−1d−1

i d−1
j β3

(
(1 − φ)(β0 + n)η′iη

′
j(d

3
i − d3

j) − n(ηiη
′
jd

3
i − η′iηjd

3
j)
)
,

β23
ij = φiφj(1 − φ)2nβ1β2η

′
iη

′
j(di − dj),

β24
ij = φiφj(1 − φ)2nβ1β3η

′
iη

′
jd

−1
i d−1

j

(
d2

i − d2
j

)
,

β34
ij = φiφj(1 − φ)2nβ2β3η

′
iη

′
jd

−1
i d−1

j

(
di − dj

)
,

(5.3.4b)

β123
ijk = −(1 − φ)3n−1φiφjφkβ1β2

{
(1 − φ)(β0 + n)πijkη

′
iη

′
jη

′
k

+ n
[
d2

i (dj − dk)ηiη
′
jη

′
k − d2

j(di − dk)η
′
iηjη

′
k + d2

k(di − dj)η
′
iη

′
jηk

]}
,

β124
ijk = −(1 − φ)3n−1φiφjφkβ1β3

{
(1 − φ)(β0 + n)d−1

i d−1
j d−1

k σ̃ijkπijkη
′
iη

′
jη

′
k

+ n
[
d2

id
−1
j d−1

k

(
d2

j − d2
k

)
ηiη

′
jη

′
k − d2

jd
−1
i d−1

k

(
d2

i − d2
k

)
η′iηjη

′
k

+ d2
kd

−1
i d−1

j

(
d2

i − d2
j

)
η′iη

′
jηk

]}
,

β134
ijk = −(1 − φ)3n−1φiφjφkβ2β3

{
(1 − φ)(β0 + n)d−1

i d−1
j d−1

k σijkπijkη
′
iη

′
jη

′
k

+ n
[
d2

id
−1
j d−1

k (dj − dk)ηiη
′
jη

′
k − d2

jd
−1
i d−1

k (di − dk)η
′
iηjη

′
k

+ d2
kd

−1
i d−1

j (di − dj)η
′
iη

′
jηk

]}
,

β234
ijk = −(1 − φ)3nφiφjφkβ1β2β3d

−1
i d−1

j d−1
k πijkη

′
iη

′
jη

′
k,

(5.3.4c)

β1234
ijkl = (1 − φ)4n−1φiφjφkφlβ1β2β3

{
(1 − φ)(β0 + n)

πijkl

didjdkdl
η′iη

′
jη

′
kη

′
l

+ n

[
d2

iπjkl

djdkdl
ηiη

′
jη

′
kη

′
l −

d2
jπikl

didkdl
η′iηjη

′
kη

′
l +

d2
kπijl

didjdl
η′iη

′
jηkη

′
l −

d2
l πijk

didjdk
η′iη

′
jη

′
kηl

]}
.

(5.3.4d)

Substantial simplifications in the expressions βJ
I occur for the BW model, η′i = 1 and n = 0,

and for the HS model, where ηi = η′i.
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5.3.1 The Batchelor and Wen (BW) model

The coefficients γi, i = 1, . . . , N can be rewritten now as γi = φi(S1,i + S2,i + S3,i + S4,i).

Inserting the expressions (5.3.3) and (5.3.4) into (5.3.2) and defining η̂i := 1+sT
i Φ, we obtain

S1,i := d2
i (β0 + β1 + β2 + β3),

S2,i :=

N∑

j=1

j 6=i

φj

d2
j η̂j − d2

i η̂i

{
−β0β1didj(dj − di)

2 − β0β2(d
2
j − d2

i )
2 − β1β2didj(dj − di)

2

− β1β3(d
2
j − d2

i )
2 − β0β3

(d3
j − d3

i )
2

didj
− β2β3didj(dj − di)

2

}
,

S3,i :=

N∑

j,k=1

i6=j<k 6=i

φjφkπ
2
ijk

(d2
kη̂k − d2

i η̂i)(d
2
j η̂j − d2

i η̂i)

{
−β0

(
β1β2 + (β1β3 + β2β3)

σijkσ̃ijk

didjdk

)
− β1β2β3

}
,

S4,i :=
N∑

j,k,l=1

j<k<l
j,k,l6=i

φjφkφlπ
2
ijklβ0β1β2β3

(d2
j η̂j − d2

i η̂i)(d
2
kη̂k − d2

i η̂i)(d
2
l η̂l − d2

i η̂i)didjdkdl

.

(5.3.5)

Clearly, we have S1,i < 0 for φi > 0; in addition, S1,i is independent of Φ or N .

Related to the other terms, we suppose (see Subsection 3.4.3) that there is a constant

θ ≥ 1 such that

−sT
NΦ =

N∑

j=1

(
−

3∑

ν=0

βνd
ν
j

dν
N

)
φj ≤

1

1 + θ
. (5.3.6)

This last inequality implies that for i < j, the following inequalities (which is a simple

generalization of (3.4.16)) hold:

0 <
(
d2

i η̂i − d2
j η̂j

)−1
≤
(
(1 + sT

j Φ)(d2
i − d2

j)
)−1

≤

(
−θ(d2

i − d2
j )

3∑

ν=0

βν

dν
j

dT
ν Φ

)−1

. (5.3.7)

Of course, we can estimate the last term in (5.3.7) by omitting some of the summands. This

result is the main tool for the next lemma.

Lemma 5.3.1 The quantities Sp,i, p = 1, . . . , 4 defined in (5.3.5) satisfy the following in-

equalities:

S2,i ≤ −d2
i θ

−1
(
2β0 + β1 + β2 + (7 + 3d−1

N )β3

)
, (5.3.8)

S3,i ≤ −d2
i θ

−2

[
2β0 + β3

(
2 +

9

2dN
+

6

d3
N

)]
, (5.3.9)
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S4,i ≤ −2d2
iβ1θ

−3. (5.3.10)

Proof. Since η̂i > η̂j for i < j, the summands of S2,i with j < i and j > i are negative and

positive, respectively; let us denote the corresponding partial sums by S−
2,i ≤ 0 and S+

2,i ≥0,

with S2,i = S−
2,i + S+

2,i. We start finding a bound S+
2,i in such a way that this quantity is

compensated by the terms of S1.

Let us now turn to S+
2,i. We here get

S+
2,i ≤−

d2
i

θ
(2β0 + β2)

−
1

θ

N∑

j=i+1

{
β1β3(d

2
j − d2

i )
2d3

jφj

β3(d
2
i − d2

j )d
T
3 Φ

+
β0β3(d

3
j − d3

i )
2φj

β0didj(d
2
i − d2

j)φ
+
β2β3di(di − dj)

2d3
jφj

β2(d
2
i − d2

j)d
T
2 Φ

}
,

(5.3.11)

where the first term arises by repeating exactly the procedure performed to obtain the bound

(3.4.17) in lemma 3.4.3. To deal with the second term in the summands of (5.3.11), we note

that

(d3
j − d3

i )
2

(d2
i − d2

j)didj

=
(di − dj)

2(d2
i + didj + d2

j)
2

(d2
i − d2

j)didj

≤ (d2
i + didj + d2

j)

(
1 +

di

dj
+
dj

di

)

≤ 3d2
i (2 + d−1

N ).

Consequently, we obtain from (5.3.11) the following inequality, which implies (5.3.8):

S+
2,i ≤ −

d2
i

θ
(2β0 + β2) −

d2
i

θ

N∑

j=i+1

{
β1

d3
jφj

dT
3 Φ

+ 3
(
2 + d−1

N

)
β3
φj

φ
+ β3

d2
jφj

dT
2 Φ

}
.

Since only those summands of S3,i are positive for which either i < j and i < k or i > j

and i > k, we rewrite S3,i as S3,i = S−
3,i + S+,1

3,i + S+,2
3,i , where S−

3,i < 0, S+,1
3,i > 0 and S+,2

3,i > 0,

and S+,1
3,i and S+,2

3,i are the partial of S3,i for which j > i, k > i and k 6= j and j < i, k < i

and k 6= j, respectively.

Applying several versions of (5.3.7) to both factors in the denominator of the summands

of S+,1
3,i , we obtain

S+,1
3,i ≤ −

1

θ2

N∑

j,k=i+1

j<k

(β0 + β3)π
2
ijkdjφjd

2
kφk

(d2
k − d2

i )(d
2
j − d2

i )d
T
1 ΦdT

2 Φ

−
β3

θ2

N∑

j,k=i+1

j<k

φkσijkσ̃ijkπ
2
ijk

(d2
k − d2

i )(d
2
j − d2

i )didjdkφ

(
djφj

dT
1 Φ

+
d2

jφj

dT
2 Φ

)
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≤ −(β0 + β3)
d2

i

θ2
−
β3

θ2

N∑

j,k=i+1

j<k

φkσijkσ̃ijk(di − dj)(di − dk)(dj − dk)
2

(di + dk)(di + dj)didjdkφ

(
djφj

dT
1 Φ

+
d2

jφj

dT
2 Φ

)
.

Noting that for j, k > i, we have that σijk ≤ 3di and

σ̃ijk

(di + dj)(di + dk)
≤

3

4
, (di − dj)(di − dk) ≤ d2

i ,
(dj − dk)

2

didjdk

≤ d−1
N , (5.3.12)

we finally obtain the inequality

S+,1
3,i ≤ −

d2
i

θ2

[
β0 + β3

(
1 +

9di

2dN

)]
≤ −

d2
i

θ2

[
β0 + β3

(
1 +

9

2dN

)]
. (5.3.13)

Furthermore, using the order dj > dk > di, and the fact that σijk ≤ 3dj for j < k < i and

the version of (5.3.7) with the roles of i and j interchanged we have that

S+,2
3,i ≤ −

1

θ2

i−1∑

j,k=1

j<k

(β0 + β3)π
2
ijkdiφjd

2
iφk

(d2
k − d2

i )(d
2
j − d2

i )d
T
1 ΦdT

2 Φ

−
β3

θ2

i−1∑

j,k=1

j<k

σijkσ̃ijkπ
2
ijkφj

(d2
k − d2

i )(d
2
j − d2

i )didjdkφ

(
diφk

dT
1 Φ

+
d2

iφk

dT
2 Φ

)

≤ −
β0 + β3

θ2dT
1 ΦdT

2 Φ

i−1∑

j,k=1

j<k

(dk − dj)
2diφjd

2
iφk

−
β3

θ2

i−1∑

j,k=1

j<k

σijk(dj − di)(dj − dk)φj

diφ

(
diφk

dT
1 Φ

+
d2

iφk

dT
2 Φ

)

≤ −
d2

i (β0 + β3)

θ2dT
1 ΦdT

2 Φ

i−1∑

j,k=1

j<k

d2
jφjdkφk −

3β3

θ2

i−1∑

j,k=1

j<k

d2
jdjφj

diφ

(
diφk

dT
1 Φ

+
d2

iφk

dT
2 Φ

)

≤ −
d2

i

θ2

[
β0 + β3

(
1 +

6

d3
N

)]
.

Combining this with (5.3.13) we obtain (5.3.9).

Finally, we rewrite S4,i as S4,i = S−
4,i + S+,1

4,i + S+,2
4,i , where S+,1

4,i is the sum of all summands

of S4,i for which exactly one factor in the denominator is positive, i.e., i is the second

largest species, and S+,2
4.i is the sum of all summands of S4,i for which all three factors in the

denominator are positive, i.e., i > j, i > k and i > l, that is, i is the smallest species. To

estimate S+,1
4,i , we first note that

S+,1
4,i =

N∑

j,k,l=1

j<i<k<l

φjφkφlπ
2
ijklβ0β1β2β3

(d2
j η̂j − d2

i η̂i)(d
2
kη̂k − d2

i η̂i)(d
2
l η̂l − d2

i η̂i)didjdkdl
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≤ −
β1

θ3φdT
2 ΦdT

3 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφl(dk − dj)
2(dl − dj)

2(dl − dk)
2d2

kd
3
l

didjdkdl

≤ −
β1

θ3φdT
2 ΦdT

3 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφld
4
jd

2
kd

2
kd

3
l

didjdkdl

≤ −
β1

θ3φdT
2 ΦdT

3 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφld
3
jd

3
kd

2
l

di

≤ −
β1d

2
i

θ3φdT
2 ΦdT

3 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφld
3
jd

2
k ≤ −

β1d
2
i

θ3
. (5.3.14)

By similar arguments we obtain the following estimate for S+,2
4,i :

S+,2
4,i =

i−1∑

j,k,l=1

j<k<l

φjφkφlπ
2
ijklβ0β1β2β3

(d2
j η̂j − d2

i η̂i)(d
2
kη̂k − d2

i η̂i)(d
2
l η̂l − d2

i η̂i)didjdkdl

≤ −
β1d

2
i

θ3φdT
2 ΦdT

3 Φ

i−1∑

j,k,l=1

j<k<l

φjφkφld
2
id

3
jdk

dl

≤ −
β1d

2
i

θ3φdT
2 ΦdT

3 Φ

i−1∑

j,k,l=1

j<k<l

φjφkφld
3
jd

2
k ≤ −

β1d
2
i

θ3
.

(5.3.15)

Inequality (5.3.10) is now a consequence of (5.3.14) and (5.3.15). 2

Corollary 5.3.1 For the BW model, the following inequality is valid:

S1,i + S2,i + S3,i + S4,i ≤ d2
iM(θ,β, dN), (5.3.16)

where we define the function

M(θ,β, dN) := (1 − 2θ−1 − 2θ−2)β0 + (1 − θ−1 − 2θ−3)β1 + (1 − θ−1)β2

+
[
1 − θ−1(7 + 3d−1

N ) − θ−2(2 + (9/2)d−1
N + 6d−3

N )
]
β3.

(5.3.17)

Proof. Combining the inequalities (5.3.8), (5.3.9) and (5.3.10) we obtain (5.3.16) and (5.3.17).

Each of the inequalities (5.3.8), (5.3.9) and (5.3.10) estimates a non-negative sum from above,

and therefore remains valid if the respective sum runs over a void index range, and is therefore

zero. Consequently, (5.3.16) and (5.3.17) hold for arbitrary numbers of species N . 2

We have proved the following theorem.

Theorem 5.3.2 Assume that θ is chosen such that for the smallest given particle size dN >

0, the inequality

M(θ,β, dN) < 0 (5.3.18)
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is satisfied, where M(θ,β, dN) is defined in (5.3.17). If the maximum solids concentra-

tion φmax is chosen such that the inequality (5.3.6) is satisfied for all Φ ∈ Dφmax
for this

value of θ, then γi < 0 for i = 1, . . . , 4 and Φ ∈ Dφmax
, i.e., the model equations are strictly

hyperbolic on Dφmax
.

We remark first that for a given value of dN , it is always possible to make all coefficients

of beta’s in (5.3.17) positive, and thereby to ensure that (5.3.18) holds, by choosing θ > 1

large enough. On the other hand, the particular way in which d−1
N appears in the coefficient

of β3 in (5.3.17) implies that in the case β3 < 0, as we increase the particle size ratio, i.e.

consider dN → 0 (that is, d−1
N → ∞), the smaller the set of admissible values of θ (that is,

values of θ for which (5.3.18) holds) will become. Suppose that we choose an admissible value

of θ, then (5.3.6) can hold either for a dilute suspension, i.e. φ is small, but for a large range

of coefficients β, or we consider relatively small (in absolute value) coefficients β and obtain

a hyperbolicity (stability) result valid up to relatively large concentrations.

Furthermore, the strategy that has led to (5.3.17) has been motivated by the observation

that β3 ≤ 0, but |β3| ≪ 1 (see our discussion in Section 3.3.2). For these reasons, we have

performed the term cancellations and estimations in such a way that 1/dN , a potentially

large number, appears only as a coefficient of β3. We stress that in case β3 = 0 (Subsection

3.4.3), the set of admissible values of θ is independent of (the smallness of) dN .

This analysis also shows that for N = 3 species, S4,i = 0 and the terms in which we divide

by θ3 in (5.3.17) do not appear; for N = 2, we additionally have S3,i = 0 and the terms in

which we divide by θ2 are zero.

Now, due to M(θ,β, dN) is a strictly decreasing function of θ, it is sufficient to solve

M(θ,β, dN) = 0 for θ to conclude that in this case, M(θ,β, dN) < 0 for θ > θmin, but

unlike the case β3 = 0, M(θ,β, dN), and therefore θmin do depend on dN , which we denote

by θmin = θmin(dN). Therefore, we repeat the procedure of Subsection 3.4.3, page 35 for the

purpose of determining the largest value φ∗ of the total concentration φ up to which we can

guarantee hyperbolicity, then we can rewrite the left-hand side of (5.3.6) as σ1φ1+· · ·+σNφN ,

where we define σj := −β0 − β1djd
−1
N − β2d

2
jd

−2
N − β3d

3
jd

−3
N . Then the sought concentration φ∗

solves the problem “minimize φ subject to σ1φ1+ · · ·+σNφN = (1+θmin(dN))−1”. Expressing

φ1 in terms of φ2, . . . , φN and φ, we can rewrite this equation as

φ = (1 − σ−1
1 σ2)φ2 + · · ·+ (1 − σ−1

1 σN)φN + σ−1
1 (1 + θmin(dN))−1.

Since σ1 > σ2 > · · · > σN , the coefficients of φ2, . . . , φN on the right-hand side are all

positive, and the minimum φ∗ of φ is attained for φ2 = · · · = φN = 0.
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Consequently, the value φ∗ is given here by

φ∗ = (σ1(β, dN)(1 + θmin(dN)))−1, where M
(
θmin(dN),β, dN

)
= 0.

As a numerical example, we consider the parameter vectors β given by (3.3.12). Figures 5.4

show plots of φ∗ as a function of dN for the cases of large and small Péclet numbers.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

dN

φ∗

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

dN

φ∗

Figure 5.4: Maximum total concentrations φ∗ for which hyperbolicity of the BW model is

ensured with the coefficients (3.3.12): for large Péclet numbers (left) and for small Péclet

numbers (right).

5.3.2 The Höfler and Schwarzer (HS) model

For this model we know that ηi = η′i, therefore the coefficients γi of the secular equation

given by (5.3.2) can be expressed as

γi = φi(1 − φ)nηi (S1,i + S2,i + S3,i + S4,i) ,

where in terms of η̃i := exp(sT
i Φ) we define for the HS model

S1,i := d2
i (β̃0 + β1 + β2 + β3),

S2,i :=

N∑

j=1

j 6=i

φj η̃j

d2
j η̃j − d2

i η̃i

{
−(di − dj)

2β̃0

(
β1didj + β2(di + dj)

2
)
− β̃0β3

(d3
i − d3

j)
2

didj
(5.3.19)

−
(
β1β2didj(di − dj)

2 + β1β3(d
2
i − d2

j)
2 + β2β3didj(di − dj)

2
)
}
,
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S3,i :=
N∑

j,k=1

j<k, j,k 6=i

φjφkη̃j η̃kπ
2
ijk

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)

{
−β̃0

(
β1β2 + (β1β3 + β2β3)

σijkσ̃ijk

didjdk

)

− β1β2β3

}
,

S4,i :=
∑

j,k,l=1

j<k<l, j,k,l6=i

φjφkφlη̃j η̃kη̃lπ
2
ijklβ̃0β1β2β3

(d2
j η̃j − d2

i η̃i)(d
2
kη̃k − d2

i η̃i)(d
2
l η̃l − d2

i η̃i)didjdkdl

,

with β̃0 = β0 −
nφ

1−φ
.

Next, we will prove some algebraic results that correspond to extensions of Lemma 3.4.6

and 3.4.7. In addition, the lemma 3.4.5 (or slight variants) will be used repeatedly, taking

into account that this result holds by considering one more term in the sum, that is, for i < j

the following inequality holds

η̃j

d2
i η̃i − d2

j η̃j

≤ −
1

e(d2
i − d2

j)

[
3∑

s=0

βm

ds
i − ds

j

ds
id

s
j

dT
s Φ

]−1

. (5.3.20)

We first note that S1,i < 0. Then we analyze the positive and negative parts of S2,i, S3,i

and S4,i separately, and show that we eventually obtain γi < 0.

Lemma 5.3.3 Let us rewrite S2,i as S2,i = S+
2,i + S−

2,i, where S+
2,i and S−

2,i correspond to the

summands of S2,i with j > i and j < i, respectively. Then S−
2,i ≤ 0, and the following in-

equality holds:

S+
2,i ≤ −

d2
i

e

[(
1 + 3

β3

dNβ2

)
β̃0 + (β1 + β2 + β3)

]
. (5.3.21)

Proof. Since exp(sT
i Φ) > exp(sT

j Φ) for i < j and exp(sT
i Φ) < exp(sT

j Φ) for i > j, the factor

multiplying {. . .} in the summands of S−
2,i is always positive, while {. . . } < 0. This confirms

that S−
2,i ≤ 0 (note that for i = 1, the sum is void, i.e. S−

2,i = 0). To estimate S+
2,i, note first

that from (5.3.20) we may conclude that

S+
2,i ≤ −

β̃0

e

N∑

j=i+1

(β1didj + β2(di + dj)
2)(di − dj)

2φj

(d2
i − d2

j)

[
β1
di − dj

didj

dT
1 Φ + β2

d2
i − d2

j

d2
id

2
j

dT
2 Φ

] −
β̃0β3

β2e

N∑

j=i+1

(d3
i − d3

j)
2d2

id
2
jφj

didj(d
2
i − d2

j )
2dT

2 Φ

−
1

e

N∑

j=i+1

{
β2(di − dj)

2d2
id

2
jφj

(d2
i − d2

j )(di − dj)d
T
1 Φ

+
β1(d

2
i − d2

j)
2d3

id
3
jφj

(d2
i − d2

j)(d
3
i − d3

j)d
T
3 Φ

+
β3didj(di − dj)

2d2
i d

2
jφj

(d2
i − d2

j)
2dT

2 Φ

}
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≤ −
β̃0

e

(
d2

i

N∑

j=i+1

d2
j (β1didj + β2(di + dj)

2)φj

β1didj(di + dj)d
T
1 Φ + β2(di + dj)

2dT
2 Φ

+
β3

β2

N∑

j=i+1

didj(d
2
i + didj + d2

j)
2φj

(di + dj)
2dT

2 Φ

)

−
d2

i

e

(
N∑

j=i+1

β2d
2
jφj

(di + dj)d
T
1 Φ

+

N∑

j=i+1

β1(di + dj)did
3
jφj

(d2
i + didj + d2

j)d
T
3 Φ

+

N∑

j=i+1

β3did
3
jφj

(di + dj)
2dT

2 Φ

)

We may then continue estimating S+
2,i as follows.

S+
2,i ≤ −

d2
i β̃0

e

(
N∑

j=i+1

(β1didj + β2(di + dj)
2)d2

jφj

(β1didj + β2(di + dj)
2)
∑N

k=i+1d
2
kφk

+
3β3

dNβ2

N∑

j=i+1

d2
jφj

dT
2 Φ

)

−
d2

i

e
(β1 + β2 + β3),

which implies (5.3.21). 2

Lemma 5.3.4 Assume that we rewrite S3,i as S3,i = S−
3,i + S+,1

3,i + S+,2
3,i , where S+,1

3,i and S+,2
3,i

are the sums over all summands for which j > i, k > i and k 6= j and j < i, k < i and

k 6= j, respectively. Then we have S−
3,i < 0, S+,1

3,i > 0 and S+,2
3,i > 0. Furthermore, the following

inequality holds:

S+,1
3,i ≤ −

d2
i

e2

[(
1 +

3β3

2β1
+

3β3

2β2

)
β̃0 + β3

]
. (5.3.22)

Finally, let us assume that the parameters β are related to the sizes d1 via the condition

∀1 ≤ j < i ≤ N : ∀φ ∈ [0, φmax] : H̃ij(φ,β) < 0, (5.3.23)

where we define the functions

H̃ij(φ; β) := −β̃0

(
β1didj + β2(di + dj)

2 + β3

(d2
i + didj + d2

j)
2

didj

)
(5.3.24)

−
(
β2(β1 + β3)didj + β1β3(di + dj)

2
)
− φGij(φ,β),

Gij(φ,β) := (dj − di)
2
{
β̃0

[
β1β2 + (β1β3 + β2β3)(1 + 2d−1

i dj)
2
]
+ β1β2β3

}
. (5.3.25)

Then

S−
2,i + S+,2

3,i ≤ 0. (5.3.26)
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Proof. The inequalities S−
3,i < 0, S+,1

3,i > 0 and S+,2
3,i > 0 are a simple consequence of the fact

that only those summands of S3,i are positive for which either i < j and i < k or i > j and

i > k, according to the ordering d1 > d2 > · · · > dN . To deal with

S+,1
3,i =

N∑

j,k=i+1

j<k

φjφkη̃j η̃kπ
2
ijk

(d2
kη̃k − d2

i η̃i)(d
2
j η̃k − d2

i η̃i)

{
−β̃0

(
β1β2 + (β1β3 + β2β3)

σijkσ̃ijk

didjdk

)
− β1β2β3

}
,

By proceeding as in the proof of Lemma 3.4.7 (see right hand side of equation (3.4.33)), we

get

−
N∑

j,k=i+1

j<k

φjφkη̃j η̃kπ
2
ijkβ̃0β1β2

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)
≤ −

d2
i β̃0

e2
.

We may estimate the other terms in S+,1
3,i as follows:

S+,1,1
3,i := −

N∑

j,k=i+1

j<k

φjφkη̃j η̃kβ̃0π
2
ijk(β1 + β2)β3σijkσ̃ijk

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)didjdk

≤ −
β̃0(β1 + β2)β3

e2β1β2d
T
2 ΦdT

1 Φ

N∑

j,k=i+1

j<k

d3
id

2
kdjσijkσ̃ijkπ

2
ijkφjφk

(d2
i − d2

j)(d
2
i − d2

k)didjdk(d
2
i − d2

k)(di − dj)

= −

(
β3

β1

+
β3

β2

)
d2

i β̃0

e2dT
2 ΦdT

1 Φ

N∑

j,k=i+1

j<k

dkσijkσ̃ijk(dk − dj)
2φjφk

(di + dj)(di + dk)
2 .

Now, taking into account (5.3.12) and that σijk/(di + dk) ≤ 2 for i < j, k, we get

S+,1,1
3,i ≤ −

3

2e2

(
β3

β1

+
β3

β2

)
d2

i β̃0

dT
2 ΦdT

1 Φ

N∑

j,k=i+1

j<k

dkd
2
jφjφk ≤ −

3d2
i β̃0

2e2

(
β3

β1

+
β3

β2

)
. (5.3.27)

Inequality (5.3.22) now follows from (5.3.27) and

S+,1,2
3,i ≤ −

β3

e2

N∑

j,k=i+1

j 6=k

φjφkπ
2
ijkd

3
idkd

2
j

(d2
i − d2

j)(d
2
i − d2

k)(di − dk)(d
2
i − d2

j)d
T
1 ΦdT

2 Φ

≤ −
β3d

2
i

e2 ,

where

S+,1,2
3,i = −

N∑

j,k=i+1

j<k

φjφkη̃j η̃kπ
2
ijkβ1β2β3

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)
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Next, we analyze

S+,2
3,i :=

i−1∑

j,k=1

j<k

φjφkη̃j η̃kπ
2
ijk

(d2
kη̃k − d2

i η̃i)(d
2
j η̃j − d2

i η̃i)

{
−β̃0

(
β1β2 + (β1β3 + β2β3)

σijkσ̃ijk

didjdk

)
− β1β2β3

}
.

As in the case of β3 = 0, this term cannot be estimated easily and therefore will compensate

it with S−
2,i, as expressed in (5.3.26). Notice that in order to ensure that our hyperbolicity

result is also valid for N = 3, S+,1
3,i should be compensated by one of the terms that have

arisen earlier in our analysis. Observe now that

S−
2,i + S+,2

3,i =

i−1∑

j=1

φj η̃j(di − dj)
2

d2
j η̃j − d2

i η̃i

Rij , (5.3.28)

where we define

Rij := −β̃0

(
β1didj + β2(di + dj)

2 + β3

(d2
i + didj + d2

j)
2

didj

)

−
(
β2(β1 + β3)didj + β1β3(di + dj)

2
)

+ R̃ij , (5.3.29)

R̃ij := −

i−1∑

k=j+1

φk(dk − di)
2(dk − dj)

2η̃k

d2
kη̃k − d2

i η̃i

[
β̃0

(
β1β2 + (β1β3 + β2β3)

σijkσ̃ijk

didjdk

)
+ β1β2β3

]
.

Since di < dj and di < dk in these summands, and the factor multiplying Rij in (5.3.28) is

positive, we will satisfy (5.3.26) by achieving that Rij < 0. Noting that for j < k < i

(dk − di)
2(dk − dj)

2η̃k

d2
kη̃k − d2

i η̃i

=
(dk − di)

2(dk − dj)
2

d2
k − d2

i exp((sT
i − sT

k )Φ)
≤

(dk − dj)
2(dk − di)

dk + di

≤ (dj − di)
2,

σijkσ̃ijk

didjdk

≤
(di + 2dj)(didj + 2d2

j)

d2
idj

= (1 + 2d−1
i dj)

2,

and using the function Gij(φ,β) we have that R̃ij ≤ −Gij(φ,β)(φj+1 + φj+2 + · · · + φi−1).

Thus, (5.3.26) holds if the parameters β are related to d1, . . . , dN by (5.3.23), where H̃ij :=

H̃ij(φ; β) is defined in (5.3.24). 2

Lemma 5.3.5 Assume that we rewrite S4,i as S4,i = S−
4,i + S+,1

4,i + S+,2
4,i , where S+,1

4,i is the

sum of all summands of S4,i for which j < i < k < l, and S+,2
4,i is the sum of all summands

of S4,i for which i > j, i > k and i > l. Then we have S−
4,i ≤ 0, S+,1

4,i ≥ 0 and S+,2
4,i ≥ 0, and

the following inequalities hold:

S+,1
4,i ≤

d2
i β̃0β3φ

e2dN

, S+,2
4,i ≤

4β̃0β1β2β3d
2
i

27d4
N

φ3. (5.3.30)
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Proof. Utilizing the inequality (5.3.20) and performing cancellations and using the ordering

dj > di > dl > dk in the summands, we get

S+,1
4,i ≤

β̃0β3

e2dT
1 ΦdT

2 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφlπ
2
ijkldidkd

2
id

2
l

(d2
j − d2

i )(d
2
k − d2

i )(d
2
l − d2

i )didjdkdl(dk − di)(d
2
l − d2

i )

≤
β̃0β3d

2
i

e2dT
1 ΦdT

2 Φ

N∑

j,k,l=1

j<i<k<l

φjφkφldl(dj − di)(dl − dj)
2(dl − dk)

2(dk − dj)
2

dj(dj + di)(dk + di)(dl + di)2

≤
β̃0β3d

2
i

e2dNdT
1 ΦdT

2 Φ

N∑

j,k,l=1

j<i<k<l

φjd
2
jφkφldl,

which implies the first inequality in (5.3.30). Next, we employ the fact that η̃j/(d
2
j η̃j−d

2
i η̃i) ≤

(d2
j − d2

i )
−1 when i > j for calculating that

S+,2
4,i =

i−1∑

j,k,l=1

j<k<l

φjφkφlη̃j η̃kη̃lπ
2
ijklβ̃0β1β2β3

(d2
j η̃j − d2

i η̃i)(d
2
kη̃k − d2

i η̃i)(d
2
l η̃l − d2

i η̃i)didjdkdl

≤
i−1∑

j,k,l=1

j<k<l

φjφkφlπ
2
ijklβ̃0β1β2β3

(d2
j − d2

i )(d
2
k − d2

i )(d
2
l − d2

i )didjdkdl

≤
i−1∑

j,k,l=1

j<k<l

φjφkφl(dj − dk)
2(dj − dl)(dk − dl)β̃0β1β2β3

didl

≤
4

27

β̃0β1β2β3d
2
i

d4
N

i−1∑

j,k,l=1

j<k<l

φjφkφl,

where the factor 4/27 comes from a discussion of the maximum of the function (dj, dj, dl) 7→

(dj − dk)
2(dj − dl)(dk − dl) for 1 ≥ dj > dk > dl > 0. This proves the second inequality in

(5.3.30). 2

Summarizing, and collecting the inequalities for the various terms, we see that

S1,i + S2,i + S3,i + S4,i = S1,i + S−
2,i + S+

2,i + S−
3,i + S+,1

3,i + S+,2
3,i + S−

4,i + S+,1
4,i + S+,2

4,i

< S1,i + S+
2,i + S−

2,i + S+,2
3,i + S+,1

3,i + S+,1
4,i + S+,2

4,i

≤ d2
iM(φ,β, dN),

(5.3.31)

where we define the function

M(φ,β, dN) :=

[
1 +

4β1β2β3φ
3

27d4
N

− e−1

(
1 +

3β3

dNβ2

)
− e−2

(
1 +

3β3

2β1
+

3β3

2β2
−
φβ3

dN

)]
β̃0

+ (1 − e−1)β1 + (1 − e−1)β2 + (1 − e−1 − e−2)β3.

(5.3.32)
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Instead of employing the criterion (5.3.23) which is not practical (for a large number of

species N) as we analyzed in Chapter 3 we give a sufficient condition for (5.3.23) holds for

all pairs j < i. Fix a pair i > j, define δ := δij = di/dj, and divide (5.3.24) by d2
j to obtain

H̃ij = −β̃0

(
β1δ + β2(1 + δ)2 + β3(1 + δ + δ2)(1 + δ + δ−1)

)
−
(
β2(β1 + β3)δ + β1β3(1 + δ)2

)

− φ(1 − δ)2
{
β̃0

[
β1β2 + (β1 + β2)β3(1 + 2δ−1)

]
+ β1β2β3

}
. (5.3.33)

Since δ ∈ (dN , 1] a sufficient condition for (5.3.23) to be satisfied is given by

∀φ ∈ [0, φmax] : H(φ,β, dN) < 0, (5.3.34)

where the following definition of H(φ,β, dN) is derived from the observation that the two

terms in the first line of (5.3.33) are non-positive, while the term in the second line is non-

negative:

H(φ,β, dN) := −β̃0

(
β1dN + β2(1 + dN)2 + β3(1 + dN + d2

N)(2 + dN)
)

−
(
β2(β1 + β3)dN + β1β3(1 + dN)2

)
(5.3.35)

− φ(1 − dN)2
{
β̃0

[
β1β2 + (β1 + β2)β3(1 + 2d−1

N )
]
+ β1β2β3

}
.

Theorem 5.3.6 Assume that the vector of parameters β, the maximum solids concentration

φmax and the width of the particle size distribution, characterized by the value of dN ∈ (0, 1],

are chosen such that the inequality (5.3.34) is satisfied, where the expression H(φ,β, dN) is

defined by (5.3.35), and that

∀φ ∈ [0, φmax] : M(φ,β, dN) < 0, (5.3.36)

where the function M(φ,β, dN) is defined in (5.3.32). Then γi < 0 for i = 1, . . . , N , i.e., the

model equations are strictly hyperbolic for Φ ∈ Dφmax
.

As an example of the case β3 < 0, consider the parameter vectors β given by (3.3.12); let

us focus first on the case of large Péclet numbers. Figure 5.5 (left) shows in a φ versus dN

plot the curves H(φ,β, dN) = 0 and M(φ,β, dN) = 0. The region H(. . .) < 0,M(. . .) < 0,

where the model is strictly hyperbolic, is located to the right of the curve M(φ,β, dN) = 0.

Here we employ a logarithmic scale since the term d−1
N in (5.3.35) becomes singular. Solving

M(1,β, dN) = 0 for dN yields here that M(1,β, dN) < 0 for dN > d∗N := 0.164092, which

means that for these values of dN , the HS model is strictly hyperbolic on Dφmax
for all

φmax ∈ (0, 1]. The behaviour of the curve M(φ,β, dN) = 0 indicates that this property

remains valid for slightly smaller values of dN provided that φmax is chosen sufficiently small.
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For the parameters given by (3.3.12) for the case of small Péclet numbers, the behaviour

is similar, as can be seen from Figure 5.5 (right), but the hyperbolicity region is smaller. We

obtain unconditional hyperbolicity for dN > d∗N := 0.328981; this number is the solution of

M(1,β, dN) = 0.
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Figure 5.5: Regions of hyperbolicity (H(φ,β, dN) < 0 and M(φ,β, dN) < 0) for the HS

model: with the coefficients (3.3.12) for large Péclet numbers (left), and with the coefficients

(3.3.12) for small Péclet numbers(right).
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Chapter 6

Conclusiones generales y trabajo

futuro

6.1 Conclusiones

En los caṕıtulos precedentes de este trabajo se ha utilizado un resultado del álgebra

lineal (la ecuación secular) como una herramienta para estudiar la hiperbolicidad estricta

de algunos modelos de sedimentación de suspensiones polidispersas, mas concretamente se

dan condiciones suficientes que permiten determinar el tamaño de la subregión del conjunto

de soluciones admisibles que garantizan estabilidad de los modelos independientemente del

número de especies y considerando sólo parámetros que se pueden controlar en situaciones

prácticas. Estos resultados teóricos están en concordancia con resultados obtenidos previa-

mente en la literatura, los cuales están en muchos casos limitados a un número pequeño de

especies. Los resultados teóricos obtenidos relativos a la hiperbolicidad han sido empleados

en el diseño e implementación de esquemas numéricos conocidos que precisan la utilización

intensiva de la información caracteŕıtisca del sistema de leyes de conservación. Dado que para

los modelos de sedimentación, tal información no está disponible en término de expresiones

cerradas (como usualmente se tiene para problemas de dinámica de gases) cabe resaltar que

en este trabajo se obtiene una muy buena aproximación numérica de dicha información a

un costo razonable a partir de la muy útil propiedad de entrelazamiento. La calidad de la

información caracteŕıstica se ve reflejada al comparar el comportamiento no oscilatorio y no

difusivo de los esquemas numéricos que la incorporan, con aquellos esquemas que sólo usan

parcialmente tal información espectral.
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6.2 Limitaciones del enfoque de este trabajo

• El desarrollo teórico del análisis de hiperbolicidad mediante el uso de la ecuación sec-

ular, depende fuertemente del hecho de que las velocidades vi puedan escribirse en la

forma (3.1.2), esto implica, que el análisis expuesto no es universalmente aplicable. De

hecho, como se comenta en las conclusiones del Caṕıtulo 3 no parece claro en principio

como aplicar este procedimiento a modelos como el presentado por Salim et al. [58]

donde la velocidades dependen de sumas parciales de las concentraciones, en vez de la

concentración total.

• Desde el punto de vista computacional, si bien es cierto que el uso de información car-

acteŕıstica redunda en esquemas robustos y eficientes, debe notarse que aqúı también se

tiene en cuenta la forma particular de la función velocidad (para aproximar máximos de

dichas funciones), mas concretamente, en el cálculo del coeficiente de viscosidad (local)

para el esquema SPEC-INT (ver ecuación (4.3.16)). Sin embargo, esto no constituye

un obstáculo insoslayable, pues el cálculo del coeficiente de viscosidad evaluando el

máximo de vi en los extremos de la celda correspondiente produce también buenos

resultados numéricos.

6.3 Trabajo futuro

• Estudiar la hiperbolicidad para los modelos involucran los coeficientes de Batchelor,

para el caso en que el coeficientes β3 es positivo y relativamente pequeño, situación que

se considera en la literatura.

• Analizar el modelo de Parwardhan-Tien (PT) [49], el cual constituye una generalización

y es más elaborado que el modelo MLB. El modelo PT incorpora otras cantidades en

la funciones de velocidad, por ejemplo, la concentración local de part́ıculas. La forma

de las velocidades vi para dicho modelo eventualmente permite aplicar las técnicas

consideradas en este trabajo.

• Considerar en los trabajos preliminares mencionados en cada ı́tem anterior, métodos

de discretización temporal de orden mayor que tres y a la vez eficientes desde el punto

de vista computacional, descritos por ejemplo en las referencias [29, 30, 55].
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