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Chapter 1

Introducción

Los cursos de agua, además de ser un recurso esencial para la vida del hombre, son

utilizados para eliminar desechos. Con la creciente población y número de fábricas que

arrojan hoy en d́ıa sus desechos en ellos, una gran cantidad de ŕıos han sido contaminados.

Al arrojar residuos, éstos son transportados, obedeciendo este fenómeno principalmente

a tres factores: difusión, advección y reacción.

Debido a que la capacidad de los ŕıos está siendo agotada, es necesario tener herra-

mientas de predicción ante eventuales escenarios de caudales y descarga de contaminantes.

Entre estas herramientas se encuentran los modelos matemáticos, y en la medida que

seamos capaces de resolver de forma adecuada las ecuaciones provenientes del modelo, las

predicciones serán mejores.

En el modelo considerado, donde denotaremos por u la concentración de contaminantes

en el ŕıo, la difusión o dilución se modela con el término de segundo orden −ε∆u. La

advección, que es el transporte del contaminante debido a la velocidad, se modela por

a · ∇u y para la reacción (degradación) del polutante, se considera el término bu.

Los parámetros f́ısicos de difusión y reacción (ε y b), se determinan experimentalmente,

mientras que el campo de velocidades a se obtiene al resolver las ecuaciones de Navier-

Stokes.

Finalmente, denotaremos al ŕıo por Ω. Para la descarga puntual de contaminantes

consideraremos una fuente tipo delta soportada en el punto x0 en el interior de Ω, que es

donde se vierte la substancia.

Para modelar lo que ocurre en la frontera Γ del dominio Ω, dividiremos ésta en dos

partes disjuntas, que denominaremos ΓD, que es donde la concentración es conocida (que

supondremos nula) y generalmente se ubica aguas arriba del ŕıo, y ΓN , que corresponde a

la orilla y aguas abajo, donde supondremos una condición sobre la derivada normal para
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tener en cuenta, por ejemplo, que la concentración no vaŕıa en dirección perpendicular a

la frontera.

En esta tesis estudiaremos solamente el problema estacionario, en el cual la solución

no depende del tiempo. Consideraremos tanto términos fuente suaves como tipo delta de

Dirac, las que genéricamente denotaremos por f . De esta forma, la ecuación que describe

el fenómeno de transporte es la siguiente:

−ε∆u+ a · ∇u+ bu = f en Ω,

u = 0 en ΓD,
∂u

∂n
= 0 en ΓN ,

(1.1)

donde n es el vector unitario normal exterior a Γ.

Considerando espacios adecuados W1 para la solución u y W2 para las funciones test,

escribimos (1.1) en forma distribucional, por lo que ahora el problema es: Hallar u ∈ W1

tal que satisface

B(u, v) = 〈f, v〉, ∀v ∈W2, (1.2)

con 1
p

+ 1
q

= 1 y la forma bilineal B(u, v) :=

∫

Ω

(∇u · ∇v + a · ∇uv + buv).

Ahora consideremos una triangulación Th de Ω, y sea Vh ⊂ W2 ⊂ W1 un espacio de

elementos finitos asociado a la triangulación. Una aproximación uh de u está dada por

B(uh, vh) = 〈f, vh〉, ∀vh ∈ Vh. (1.3)

Incluso en el caso de términos fuente regulares, cuando la advección es dominante y

dependiendo de las condiciones de frontera, la solución de (1.1) frecuentemente presenta

capas ĺımite tanto interiores como de borde.

Es sabido que el esquema numérico (1.3) en estas circuntancias introduce oscilaciones

no f́ısicas en la solución cuando el orden de los polinomios de Vh usado en la aproximación

es bajo y la malla no es lo suficientemente fina como para resolver la capa ĺımite. Para

ejemplificar este comportamiento, en la figura (1.1) se muestra la solución exacta de un

problema de este tipo que presenta una capa ĺımite de frontera y su aproximación numérica

dada por (1.3).
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Figure 1.1: Oscilaciones de la solución numérica. Solución exacta y aproximada.

Para mejorar la calidad de la solución, en esta tesis utilizaremos dos técnicas: estabi-

lización del método numérico y adaptividad de la malla.

Por una parte, la técnica de estabilización consiste en sumar a la formulación varia-

cional (1.3) algo de difusión numérica para reducir las oscilaciones de la aproximación.

La estabilización utilizada en este trabajo es la propuesta en [19]. Debido a la cantidad

de difusión numérica adicionada, la capa ĺımite de la solución no queda bien resuelta. La

Figura (1.2) muestra la solución numérica obtenida en este caso, y en ĺınea punteada la

solución exacta. Se aprecia que incluso con mallas tan finas como la tercera la capa ĺımite

no es resuelta de manera adecuada.
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Figure 1.2: Mallas y solución numérica estabilizada.

Otra alternativa para mejorar la solución numérica, es calcular la aproximación en una

malla capaz de resolver la capa ĺımite. Los métodos adaptivos se basan en estimadores

a posteriori, que dan información cuantitativa del error que se comete en cada elemento
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de la triangulación, la que permite hacer modificaciones en la malla tendientes a corregir

la solución numérica. La figura (1.3) muestra algunas soluciones y mallas obtenidas por

medio de un proceso adaptivo aplicado a la solución de (1.3) sin estabilización.
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Figure 1.3: Mallas adaptadas y solución numérica.

De la Figura 1.3 se aprecia que en mallas tan finas y adaptadas como la última, todav́ıa

existen oscilaciones en la solución numérica.

Dado que ambos métodos permiten mejorar la aproximación, es natural usar ambas

técnicas a la vez para calcular la solución numérica.

Uno de los temas de esta tesis consiste en desarrollar un estimador a posteriori del

error de tipo residual para el método numérico estabilizado propuesto por [19], similar

al desarrollado en [32], donde se considera términos fuente suaves. Los resultados de esta

investigación dieron origen a la publicación [4]. Los resultados que se obtienen basados

en este esquema adaptivo se muestran en la Figura (1.4), de donde se aprecia que la capa

ĺımite está bien resuelta y sin oscilaciones.
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Figure 1.4: Mallas adaptadas y solución numérica estabilizada.

Cabe repetir que el comportamiento numérico anteriormente descrito es independien-

te del término fuente presente en el modelo. Resuelto el problema para fuentes suaves,

corresponde analizar la ecuación en presencia de fuentes delta.

Comenzaremos con un caso simplificado, en el que no existe velocidad ni reacción, y

la difusión es unitaria, es decir la ecuación

−∆u = δx0
en Ω,

u = 0 en Γ,
(1.4)

donde se ha considerado toda la frontera de tipo Dirichlet.

Estimadores a priori para esta clase de problemas han sido demostrados en [29] y [12].

Sin embargo, análisis de error a posteriori no se ha realizado todav́ıa.

Es fácil darse cuenta que para obtener una buena aproximación de la solución debemos

utilizar mallas correctamente refinadas alrededor de x0. En esta tesis se introducen y

analizan estimadores a posteriori de tipo residual para esta ecuación. Los resultados aqúı

obtenidos se encuentran descritos en el reporte técnico [5].

Estos indicadores se usan para guiar un procedimiento adaptivo, con buenos resultados,

como se muestra en la figura (1.5).
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Figure 1.5: Mallas y solución aproximada del problema (1.4).

Por último abordamos la ecuación de transporte (1.1) con fuentes delta de Dirac, que

corresponde a modelar la descarga puntual de contaminantes. Debido a que la advección

es dominante, la solución de esta ecuación tiene una fuerte capa ĺımite interior en x0

alineada con la velocidad del fluido. Por esto la solución numérica debe ser calculada en

una malla bien adaptada. Para esto se introduce un esquema de elementos finitos adaptivo

basado en el método estabilizado de [19], combinado con un estimador a posteriori, el cual

es una variante del desarrollado en [4] en el caso de fuentes en L2(Ω). Los resultados aqúı

obtenidos están detallados en el reporte técnico [3].

La figura (1.6) muestra una malla y la solución obtenida al utilizar dicho esquema

adaptivo.

iter=60      d.o.f.=37657
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Figure 1.6: Ecuación de transporte con fuente delta. Malla adaptada y corte.

Como se aprecia, la capa ĺımite interior está bien resuelta y no presenta oscilaciones.



Caṕıtulo 1. Introducción 7

Esta tesis está organizada en 5 caṕıtulos.

Después de la presente introducción, en el segundo caṕıtulo introducimos un esquema

de elementos finitos adaptivo para la ecuación de transporte, considerando fuentes en

L2(Ω). Este esquema se basa en un método estabilizado de elementos finitos combinado

con un estimador de error de tipo residual similar al presentado en [32]. En este caṕıtulo

se demuestra la equivalencia del error y este estimador. Los resultados obtenidos están

detallados en el art́ıculo [4].

En el caṕıtulo 3 se trata nuevamente la ecuación de advección-reacción-difusión con

fuentes en L2(Ω). Se presentan estimadores a posteriori del error basados en la solución

de problemas locales y se demuestra la equivalencia entre estos estimadores y el de tipo

residual anteriormente analizado. Las constantes de equivalencia, dependiendo del pro-

blema local elegido, eventualmente involucran el parámetro ε. Los resultados obtenidos

están descritos en el reporte técnico [6].

El caṕıtulo 4 estudia la ecuación de Laplace con una fuente delta soportada en un punto

interior x0. Se muestra que la solución de este problema pertenece a W 1,p(Ω), 1 ≤ p < 2,

y por lo tanto a Lr(Ω), r < ∞. Por esta razón, se introducen algunos estimadores a

posteriori del error de tipo residual equivalentes al error tanto en norma W 1,p(Ω) como

Lr(Ω). Estos resultados están detallados en el reporte técnico [5].

Por último, en el caṕıtulo 5 se resuelve la ecuación de transporte con fuentes delta, me-

diante un esquema adaptivo estabilizado, en el que se desarrollan estimadores a posteriori

equivalentes al error, aunque con constantes eventualmente dependientes del parámetro

ε. Estos estimadores permiten obtener mallas correctamente refinadas. Los resultados acá

obtenidos están detallados en el reporte técnico [3].

En todos los caṕıtulos se incluyen ejemplos numéricos, que muestran el buen compor-

tamiento de los estimadores desarrollados.
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Chapter 2

An adaptive stabilized finite element

scheme for the

advection-reaction-diffusion equation

An adaptive finite element scheme for the advection-reaction-diffusion equation is in-

troduced and analyzed in this chapter. This scheme is based on a stabilized finite element

method combined with a residual error estimator. The estimator is proved to be reliable

and efficient. More precisely, global upper and local lower error estimates with constants

depending at most on the local mesh Peclet number are proved. The effectiveness of this

approach is illustrated by several numerical experiments.

2.1 Introduction

This chapter deals with the advection-diffusion-reaction equation. This kind of prob-

lems arise in many applications, for instance, when linearizing the Navier-Stokes problem,

to model pollutant transport and degradation in aquatic media, etc. In particular, our

work is motivated by the need of an efficient scheme to be used in a water quality model

for the B́ıo B́ıo River in Chile.

Specially interesting is the case when advective or reactive terms are dominant. In

this case, the solution of the equation frequently has exponential or parabolic boundary

layers (for details see [24]). The standard Galerkin approximation usually fails in this

situation because this method introduces nonphysical oscillations. A possible remedy is

to add to the variational formulation some numerical diffusion terms to stabilize the finite

element solution. Some examples of this approach are the streamline upwind Petrov-

9
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Galerkin method (SUPG) (see [11]), the Galerkin least squares approximation (GLS) (see

[18]), the Douglas-Wang method (see [16]), the ‘unusual’ stabilized finite element method

(USFEM) (see [19]), and the residual-free bubbles approximation (RFB) (see [10]). The

drawback with most of these methods is that the solution layers are not very well resolved,

because of the numerical diffusion added to the discretization.

In spite of the abundant literature on adaptivity (see, for instance [31]), there are not so

many references dealing with a posteriori techniques for this equation. The reason of this

is that most of the standard error estimators involve equivalence constants depending

on negative powers of the diffusion parameter, which lead to very poor results in the

advective or reactive dominated cases. An error estimator which is robust in the sense

of leading to global upper and local lower bounds depending at most on the local mesh

Peclet number has been developed by Verfürth (see [33] and [32]). Using these results

Sangalli has analyzed a residual a posteriori error estimate for the residual-free bubbles

scheme (see [25]). On the other hand, Knopp et al. have developed some a posteriori error

estimates using a stabilized scheme combined with a shock-capturing technique to control

the local oscillations in the crosswind direction (see [22]). Finally, Wang has introduced an

error estimate for the advection-diffusion equation based on the solution of local problems

on each element of the triangulation (see [35]).

In this paper we introduce and analyze from theoretical and experimental points of

view an adaptive scheme to efficiently solve the advection-reaction-diffusion equation.

This scheme is based on the stabilized finite element method introduced in [19] combined

with an error estimator similar to the one developed in [32]. We prove global upper and

local lower error estimates in the energy norm, with constants which only depend on the

shape-regularity of the mesh, the polynomial degree of the finite element approximating

space and the local mesh Peclet number. We perform several numerical experiments to

show the effectiveness of our approach to capture boundary and inner layers very sharply

and without significant oscillations. The experiments also show that the scheme attains

optimal order of convergence.

The paper is organized as follows. In Section 2.2 we recall the advection-diffusion-

reaction problem under consideration and the stabilized scheme. In Section 2.3 we define

an a posteriori error estimator and prove its equivalence with the energy norm of the finite

element approximation error. Finally, in Section 2.4, we introduce the adaptive scheme

and report the results of the numerical tests.
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2.2 A stabilized method for a model problem

Our model problem is the advection-reaction-diffusion equation





−ε∆u+ a · ∇u+ bu = f in Ω,

u = 0 on Γ
D
,

ε
∂u

∂n
= g on Γ

N
,

(2.1)

where Ω ⊂ R2 is a bounded polygonal domain with a Lipschitz boundary Γ = Γ̄
D
∪ Γ̄

N
,

with Γ
D
∩ Γ

N
= ∅. We denote by n the outer unit normal vector to Γ.

We are interested in the advection-reaction dominated case and assume that:

(A1) ε ∈ R : 0 < ε≪ 1;

(A2) a ∈ W1,∞(Ω)2, b ∈ L∞(Ω), ‖a‖∞,Ω + ‖b‖∞,Ω = O(1);

(A3) div a = 0, b ≥ 1;

(A4) Γ
D
⊃ {x ∈ Γ : a(x) · n(x) < 0};

(A5) f ∈ L2(Ω), g ∈ L2(Γ
N
).

We use standard notation for Sobolev and Lebesgue spaces and norms. Moreover, let

H1
Γ
D

(Ω) :=
{
ϕ ∈ H1(Ω) : ϕ|Γ

D

= 0
}

and B be the bilinear form defined on H1(Ω) by

B(v, w) :=

∫

Ω

(ε∇v · ∇w + a · ∇v w + bvw) . (2.2)

Then, the standard variational formulation of problem (2.1) is the following: Find

u ∈ H1
Γ
D

(Ω) such that

B(u, v) =

∫

Ω

fv +

∫

Γ
N

gv ∀v ∈ H1
Γ
D

(Ω). (2.3)

We consider the (energy) norm ‖|u‖| :=
(
ε ‖∇u‖2

0,Ω + ‖u‖2
0,Ω

) 1

2

defined on H1(Ω).

Assumptions (A1)–(A4) and integration by parts imply that

B(v, v) ≥ ‖|v‖|2 ∀v ∈ H1
Γ
D

(Ω) (2.4)

and

B(v, w) ≤
(
1 + ‖b‖∞,Ω + ε−

1

2 ‖a‖∞,Ω

)
‖|v‖| ‖|w‖| .
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Hence, as a consequence of Lax-Milgram’s Lemma, problem (2.3) has a unique solution.

Let {Th}h>0, be a family of shape-regular partitions of Ω into triangles. Let Vh :={
ϕ ∈ H1

Γ
D

(Ω) : ϕ|T ∈ Pk ∀T ∈ Th
}

, where, for k ∈ N, Pk denotes the space of polynomials

of degree at most k. It is well known that the standard Galerkin method with this finite

element space yields poor approximation when ε ≪ |a| or ε ≪ b. For this reason we

consider the following stabilized formulation introduced in [19]: Find uh ∈ Vh such that

Bτ (uh, vh) = Fτ (vh) ∀vh ∈ Vh, (2.5)

where, for vh, wh ∈ Vh,

Bτ (vh, wh) := B(vh, wh)

−
∑

T∈Th

∫

T

τT (−ε∆vh + a · ∇vh + bvh) (−ε∆wh − a · ∇wh + bwh) (2.6)

and

Fτ (vh) :=

∫

Ω

fvh +

∫

Γ
N

gvh −
∑

T∈Th

∫

T

τTf(−ε∆vh − a · ∇vh + bvh). (2.7)

In the expressions above we use a stabilization parameter τT defined as follows:

τT (x) :=
h2

T

b(x)h2
T

max{1,PeR

T
(x)} + (2ε/mk) max{1,PeA

T
(x)}

, (2.8)

where PeR

T
(x) and PeA

T
(x) are respectively defined by

PeR

T
(x) :=

2ε

mkb(x)h2
T

and PeA

T
(x) :=

mk |a(x)|hT

ε
, (2.9)

where

mk := min{1/3, Ck},

with Ck being a positive constant satisfying

Ck
∑

T∈Th

h2
T
‖∆vh‖

2
0,T ≤ ‖∇vh‖

2
0,Ω ∀vh ∈ Vh,

which only depends on the polynomial degree k and the shape-regularity of the mesh.

Finally hT is a measure of the element size. Under the presence of advection (a 6= 0), it

is reported in [19] that an element parameter hT which yields very good numerical results

is the largest streamline distance in the element, as shown in Fig. 2.1. As can be seen in

this figure, to compute hT , we take the velocity constant on the element: aT := a(xT ),

with xT being the barycenter of T . If aT = 0, we take hT equal to the diameter of T .
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hT

a
xT

T

Figure 2.1: Element parameter hT .

The following lemma shows that the bilinear form Bτ is positive definite and, con-

sequently, the stabilized discrete problem (2.5) is well posed. This has been proved in

Lemma 1 of [19] under the assumptions that the coefficients of the advection-diffusion-

reaction equation (2.1) are constant and the boundary conditions are purely Dirichlet. It

is straightforward to extend the same arguments to our case to prove the following result.

Lemma 2.2.1 Under assumptions (A1)–(A4),

Bτ (vh, vh) ≥
∑

T∈Th

[∫

T

εβT |∇vh|
2 +

∫

T

τT (a · ∇vh)
2 +

∫

T

bβT |vh|
2

]
,

for all vh ∈ Vh, with βT :=
ε

mkbh2
T

+ 2ε
> 0, T ∈ Th.

The convergence and stabilization properties of this scheme have also been investigated

in [19], where numerical experiments proving the effectiveness of this approach have been

reported. However, these experiments also show that the method does not allow a sharp

resolution of inner layers when quasi-uniform meshes are used. In the following section we

introduce an error indicator which will allow us to create in an automatic fashion meshes

correctly refined around inner and boundary layers of the solution.

2.3 A posteriori error estimator.

In this section we define a residual error estimator, similar to one analyzed in [32] in

the context of advection-reaction-diffusion.

Let Eh denote the set of all edges in Th and, for E ∈ Eh, let hE be the length of

E. For each mesh Th, let fh ∈ Vh and gh ∈ {vh|Γ
N

: vh ∈ Vh} be arbitrary but fixed

approximations of f and g, respectively. We define the approximate volumetric and edge

residuals by

Rh
T
(uh) := fh + ε∆uh − a · ∇uh − buh, T ∈ Th, (2.10)
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Rh
E
(uh) :=





−

[[
ε
∂uh
∂nE

]]

E

, if E ∈ Eh : E * Γ,

gh − ε
∂uh
∂n

, if E ∈ Eh : E ⊂ Γ
N
,

0, if E ∈ Eh : E ⊂ Γ
D
.

(2.11)

These residuals are used to define an estimator of the local error in energy norm,

‖|u− uh‖|
2
T := ε ‖∇(u− uh)‖

2
0,T + ‖u− uh‖

2
0,T , as follows

η2
T := α2

T

∥∥Rh
T
(uh)

∥∥2

0,T
+

1

2

∑

E⊂∂T∩Ω

ε−
1

2αE

∥∥Rh
E
(uh)

∥∥2

0,E
+
∑

E⊂∂T∩Γ
N

ε−
1

2αE

∥∥Rh
E
(uh)

∥∥2

0,E
, (2.12)

with

αS := min
{
hSε

− 1

2 , 1
}
, S ∈ Th ∪ Eh. (2.13)

Let us recall that hT is not the diameter of T , but the largest streamline distance in

the element (see Fig. 2.1). However, hT is equivalent to the diameter of T with equivalence

constants only depending on the element shape ratio.

The efficiency and reliability of a similar estimator applied to a standard SUPG method

has been proved in [32]. In what follows we show that analogous results hold for our

estimator applied to the stabilized method described in the previous section. To this aim

we first prove the following technical lemmas.

Lemma 2.3.1 Given T ∈ Th, let τT be defined by (2.8). Then the following bounds hold

∀x ∈ T :

ετT (x) ≤
1

6
h2

T
, |a(x)| τT (x) ≤

1

2
hT , b(x)τT (x) ≤ 1.

Furthermore,

b(x)τT (x) ≤ CαT , with C := max

{
1,
(
‖b‖∞,Ω /6

) 1

2

}
.

Proof. For the first estimate, we use (2.8) and (2.9) to obtain

ετT (x) ≤
εh2

T

b(x)h2
T

max{1,PeR

T
(x)}

≤
εh2

T

b(x)h2
T
PeR

T
(x)

≤
mk

2
h2

T
≤

1

6
h2

T
.

For the second one, if a(x) = 0 there is nothing to prove; otherwise, by using (2.8)

and (2.9) we have

|a(x)| τT (x) ≤
|a(x)|mkh

2
T

2εmax{1,PeA

T
(x)}

≤
|a(x)|mkh

2
T

2εPeA

T
(x)

≤
1

2
hT .
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For the third bound, from (2.8),

b(x)τT (x) ≤
1

max{1,PeR

T
(x)}

≤ 1.

Moreover, from the first estimate of this lemma, b(x)τT (x) ≤ b(x)h2
T
/(6ε), too. Hence,

taking the geometric mean of this and the third estimate we have

b(x)τT (x) ≤

(
‖b‖∞,Ω

6

) 1

2

hTε
− 1

2 .

From this and the third estimate again, we conclude the last inequality. 2

Here and thereafter, C denotes a generic positive constant, not necessarily the same

at each occurrence, but always independent of the mesh-size and the small parameter ε.

Lemma 2.3.2 The following estimates hold for all wh ∈ Vh:

‖∇wh‖0,T ≤ Ch−1
T
αT ‖|wh‖|T and ‖∆wh‖0,T ≤ Ch−2

T
αT ‖|wh‖|T .

Proof. The definition of the energy norm ‖| · ‖| implies

‖∇wh‖0,T ≤ ε−
1

2 ‖|wh‖|T , (2.14)

whereas, from a standard scaling argument,

‖∇wh‖0,T ≤ Ch−1
T

‖wh‖0,T ≤ Ch−1
T

‖|wh‖|T ,

with the constant C only depending on the shape ratio of the element T and the poly-

nomial degree k in the definition of the finite element space Vh. Then, from these two

inequalities, we obtain the first estimate.

On the other hand, another scaling argument and (2.14) yield

‖∆wh‖0,T ≤ Ch−1
T

‖∇wh‖0,T ≤ Ch−1
T
ε−

1

2 ‖|wh‖|T ,

whereas, using scaling arguments again, we have

‖∆wh‖0,T ≤ Ch−2
T

‖|wh‖|T .

Finally, we obtain the second estimate from these last two inequalities. 2

In what follows we will show that the energy norm of the error can be bounded by

means of the estimators ηT . To do this, first we write from (2.4)

‖|u− uh‖| ≤ sup
v∈H1

Γ
D

(Ω)\{0}

B(u− uh, v)

‖|v‖|
.
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Second, let Ih : L2(Ω) −→ Vh be the Clément interpolation operator (see [14]).

Several estimates in energy norm for this operator have been proved in Lemma 3.2 of [32].

In particular, it has been shown that for all T ∈ Th and v ∈ H1(ω̃T ), with ω̃T :=
⋃
{T̄ ′ ∈

Th : T̄ ′ ∩ T̄ 6= ∅}, there holds

‖|Ihv‖|T ≤ C ‖|v‖|
eωT
. (2.15)

Now, consider an arbitrary v ∈ H1
Γ
D

(Ω) with ‖|v‖| = 1. Obviously, we have

B(u− uh, v) = B(u− uh, v − Ihv) +B(u− uh, Ihv). (2.16)

To estimate this terms we introduce the exact volumetric and edge residuals RT (uh)

and RE(uh), which are defined as in (2.10) and (2.11), but with fh and gh substituted by f

and g, respectively. For the first term in the right hand side above, we have the following

estimate,

B(u− uh, v − Ihv) ≤ C

[
∑

T∈Th

α2
T
‖RT (uh)‖

2
0,T +

∑

E∈Eh

ε−
1

2αE ‖RE(uh)‖
2
0,E

] 1

2

, (2.17)

which has been proved in [32] (see equation (4.5)) with hT being the diameter of T .

However the same arguments are valid in our case.

For the second term in the right hand side of (2.16) we have the following estimate.

Lemma 2.3.3 For all v ∈ H1
Γ
D

(Ω) with ‖|v‖| = 1,

B(u− uh, Ihv) ≤ C

[
∑

T∈Th

α2
T
‖RT (uh)‖

2
0,T

] 1

2

.

Proof. For all wh ∈ Vh, from (2.2), (2.3), (2.5), (2.6), and (2.7), we have

B(u− uh, wh) = −
∑

T∈Th

∫

T

τTRT (uh)(−ε∆wh − a · ∇wh + bwh).

Next, from Lemmas 2.3.1 and 2.3.2, straightforward computations lead to
∫

T

τTRT (uh)(−ε∆wh − a · ∇wh + bwh) ≤ CαT ‖RT (uh)‖0,T ‖|wh‖|T .

Finally, we replace wh by Ihv and use (2.15) to obtain

B(u− uh, Ihv) ≤ C
∑

T∈Th

αT ‖RT (uh)‖0,T ‖|v‖|eωT
.

Thus, the lemma follows from the regularity of the mesh. 2

Now we are able to state the main theoretical result of this paper.
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Theorem 2.3.1 Let u and uh be the solutions of problems (2.3) and (2.5), respectively.

Let fh and gh be arbitrary approximations of f and g by elements of Vh and traces on Γ
N

of elements of Vh, respectively. Let ηT be defined by (2.10)–(2.13). Then, there holds

‖|u− uh‖| ≤ C



(
∑

T∈Th

η2
T

) 1

2

+



∑

T∈Th

α2
T
‖f − fh‖

2
0,T +

∑

E⊂Γ
N

ε−
1

2αE ‖g − gh‖
2
0,E




1

2




and

ηT ≤ C
(
1 + ‖b‖∞,ωT

+ ε−
1

2 ‖a‖∞,ωT
αT

)
‖|u− uh‖|ωT

+αT ‖f − fh‖0,ωT
+




∑

E⊂∂T∩Γ
N

ε−
1

2αE ‖g − gh‖
2
0,E




1

2

∀T ∈ Th,

where ωT :=
⋃
{T̄ ′ ∈ Th : T̄ ′ ∩ T̄ ⊃ E ∈ Eh}.

Proof. The first estimate is a consequence of (2.16), (2.17), Lemma 2.3.3, and the defini-

tion of the estimator ηT . The second estimate can be proved by following similar techniques

to those used in Proposition 4.1 of [32]. 2

2.4 Numerical experiments

In this section we report three series of numerical experiments with the unusual stabi-

lized method described in Section 2.2 and an h-adaptive mesh-refinement strategy based

on the error estimator analyzed in Section 2.3. In all the experiments we have used piece-

wise linear finite elements (i.e., polynomial degree k = 1) and we have taken as geometric

domain the unit square Ω := (0, 1) × (0, 1), although with different boundary conditions.

We have considered varying values of the coefficients ε, a, and b of the advection-reaction-

diffusion equation (2.1).

The adaptive procedure consists in solving problem (2.5) on a sequence of meshes up

to finally attain a solution with an estimated error within a prescribed tolerance. To attain

this purpose, we initiate the process with a quasi-uniform mesh and, at each step, a new

mesh better adapted to the solution of problem (2.3) must be created. This is done by

computing the local error estimators ηT for all T in the “old” mesh Th, and refining those
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elements T with ηT ≥ µmax{ηT : T ∈ Th}, where µ ∈ (0, 1) is a prescribed parameter.

In all our experiments we have chosen µ = 1
2
.

We have used a Matlab code adapted by us from [2] and the mesh generator Triangle.

This generator allows us to create successively refined meshes based on a hybrid Delaunay

refinement algorithm (see [30]).

2.4.1 A reaction-diffusion problem

The first test consists in solving a purely reaction-diffusion problem. We have chosen

the following data: a = 0, b = 1, f = 1, the boundary conditions shown in Fig. 2.2,

and various values of the parameter ε. We report the results obtained for ε = 10−2 and

ε = 10−4.

u∂
∂n

=0

u∂
∂n

=00 1

1

y

x

u=0u=1

Figure 2.2: Boundary conditions for the reaction-diffusion problem.

The exact solution of this problem is analytically known:

u(x, y) = 1 −
sinh(ε−1/2x)

sinh(ε−1/2)
;

thus, we have been able to compute the exact errors of our finite element approximations.

Fig. 2.3 shows some of the successively refined meshes created in the adaptive process

for ε = 10−2. This figure also shows the level sets and the horizontal cuts at y = 0.5 of

the corresponding computed solution. The iteration number and the number of degrees

of freedom (d.o.f.) of each mesh are also reported in this figure.

Fig. 2.4 shows the error curves of the whole process for the exact and estimated errors.

This figure also includes a line with slope −1
2
, which corresponds to the theoretically

optimal order of convergence for piecewise linear elements.

Fig. 2.5 and 2.6 show analogous results for the same problem with the parameter

ε = 10−4.
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Figure 2.3: Reaction-diffusion problem: ε = 10−2. Meshes, level sets, and horizontal cuts

of the approximate solutions.
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Figure 2.4: Reaction-diffusion problem: ε = 10−2. Estimated and exact error curves.
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Figure 2.5: Reaction-diffusion problem: ε = 10−4. Meshes, level sets, and horizontal cuts

of the approximate solutions.
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Figure 2.6: Reaction-diffusion problem: ε = 10−4. Estimated and exact error curves.
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It can be seen from Fig. 2.3 and 2.5 that the adaptive process leads to meshes correctly

refined in the boundary layer zone. Notice that in the second case (ε = 10−4) in which

the boundary layer is much narrower, the adaptive scheme detects this and creates much

more concentrated meshes. In both cases we are able to capture the boundary layers very

sharply and without any significant oscillation.

On the other hand, the error curves show that, independently of how small the pa-

rameter ε is, the adaptive process yields optimal order convergence. This happens in spite

of the fact that the effectivity indices are very poor. Indeed, it can be observed in Fig. 2.4

and 2.6 that the exact error is severely overestimated. Anyway, the exact and estimated

error curves have approximately the same optimal slope −1
2
.

2.4.2 An advection-diffusion problem

The second test consists in solving a purely advection-diffusion problem. We have

chosen the following data: a = (1, 0), b = 0, f = 1, the boundary conditions shown in

Fig. 2.7, and various values of the parameter ε. Let us remark that this problem is not

covered by our theoretical results, since the chosen value of b violates assumption (A3).

We report again the results obtained for ε = 10−2 and ε = 10−4.

u∂
∂n

u=0

0 1

1

y

xu∂
∂n

u=0

=0

=0

Figure 2.7: Boundary conditions for the advection-diffusion problem.

The exact solution of this problem is also analytically known:

u(x, y) = x−
e−

1−x
ε − e−

1

ε

1 − e−
1

ε

; (2.18)

thus, we have been able to compute the exact errors, too.

Fig. 2.8 shows some of the successively refined meshes created in the adaptive process

for ε = 10−2, as well as the level sets and the horizontal cuts at y = 0.5 of the corresponding

computed solution. Fig. 2.9 shows the error curves for the exact and estimated errors.

Fig. 2.10 and 2.11 show analogous results for the same problem with the parameter ε =

10−4.
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Figure 2.8: Advection-diffusion problem: ε = 10−2. Meshes, level sets, and horizontal cuts

of the approximate solutions.
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Figure 2.9: Advection-diffusion problem: ε = 10−2. Estimated and exact error curves.
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Figure 2.10: Advection-diffusion problem: ε = 10−4. Meshes, level sets, and horizontal

cuts of the approximate solutions.
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Figure 2.11: Advection-diffusion problem: ε = 10−4. Estimated and exact error curves.
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Essentially the same conclusions as in the previous test can be drawn from Fig. 2.8

and 2.10. In spite of the fact that this problem is out of the theory of Sections 2.2 and

2.3, the boundary layers are very sharply captured without any significant oscillation.

On the other hand, the error curves in Fig. 2.9 and 2.11 attain almost optimal slopes

−1
2
, once the meshes are sufficiently refined around the singular zone of the solutions.

2.4.3 An advection-diffusion-reaction problem with an inner layer

The last reported test consists in solving an advection-diffusion-reaction problem

whose solution presents an inner layer. We have chosen the same example considered

in [32] (Problem N in this reference). The corresponding data are: a = (2, 1), b = 1,

f = 0, the boundary conditions shown in Fig. 2.12, and various values of the parameter

ε. Let us remark that this problem is not covered by our theoretical results either, since

the chosen Dirichlet boundary condition have a jump at the origin; hence, the problem

cannot have a solution in H1(Ω). Once more, we report the results obtained for ε = 10−2

and ε = 10−4. We do not include error curves because no analytical solution is known in

this case.

n
u∂

∂ =0

n
u∂

∂ =0u=0

0 1

1

y

xu=1

Figure 2.12: Boundary conditions for the advection-reaction-diffusion problem.

Fig. 2.13 and 2.14 show some of the successively refined meshes created in the adaptive

process for ε = 10−2 and ε = 10−4, as well as the level sets of the corresponding computed

solution.
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Figure 2.13: Advection-diffusion-reaction problem: ε = 10−2. Meshes and level sets.

These figures show clearly that the adaptive process leads once more to correctly

refined meshes. In both cases the adaptive scheme detects both, the corner singularity

of the solution and the inner layer, and creates meshes much more concentrated around

these zones.

In the first case (ε = 10−2), the inner layer is very mild and the corner singularity

of the solution prevails. Hence most of the elements are located in its vicinity (see in

particular the mesh corresponding to the iteration number 9 in Fig. 2.13).

In the second case (ε = 10−4), once the corner singularity is resolved, the adaptive

scheme detects the inner layer and advance through it refining the mesh (see in particular

the meshes corresponding to the iteration numbers 10, 20, and 30, in Fig. 2.14). Finally,

the method allows us to capture the inner layer very sharply and without any significant

oscillation.

The same problem has been solved in [32] with a very similar adaptive scheme based

on an SUPG method. A comparison of the meshes reported in this reference (Fig. 1,

top right and bottom left) with Fig. 2.13 and 2.14 of the present paper show clearly the

advantage of our approach.
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Iteration 1      d.o.f.=25

Iteration 1      d.o.f.=25

Iteration 10      d.o.f.=212

Iteration 10      d.o.f.=212

Iteration 20      d.o.f.=649

Iteration 20      d.o.f.=649

Iteration 30      d.o.f.=1278

Iteration 30      d.o.f.=1278

Iteration 40      d.o.f.=2214

Iteration 40      d.o.f.=2214

Iteration 50      d.o.f.=3932

Iteration 50      d.o.f.=3932

Figure 2.14: Advection-diffusion-reaction problem: ε = 10−4. Meshes and level sets.
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2.5 Conclusions

An adaptive finite element scheme for the advection-reaction-diffusion equation has

been introduced and analyzed. This scheme is based on a stabilized finite element method

combined with a residual error estimator. The estimator is shown to be reliable and

efficient in that global upper and local lower error estimates are rigorously proved.

Several numerical experiments are reported. All of them show the effectiveness of

this scheme to capture boundary and inner layers very sharply and without significant

oscillations. Furthermore, the experiments show that the scheme attains optimal order of

convergence.
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Chapter 3

Error estimators for

advection-reaction-diffusion

equations based on the solution of

local problems

This chapter deals with a posteriori error estimates for advection-reaction-diffusion

equations. In particular, error estimators based on the solution of local problems are

derived for a stabilized finite element method. These estimators are proved to be equivalent

to the error, with equivalence constants eventually depending on the physical parameters.

Numerical experiments illustrating the performance of this approach are reported.

3.1 Introduction

This chapter deals with the advection-diffusion-reaction equations. This kind of prob-

lems arise in many application, for instance, to model pollutant transport and degradation

in aquatic media, which was the motivation of the present work.

In applications, typically the advective or reactive terms are dominant. In this case,

inner or boundary layers arise and stabilization techniques has to be used to avoid spurious

oscillations (see [24] and references therein, which include numerical methods). When

finite element methods are used, adequately refined meshes are useful to improve the

quality of the numerical solution with minimal computational effort. These schemes are

typically based on a posteriori error indicators. We refer to [21] for a survey of this kind

of techniques applied to advection dominated problems. See also [27, 26] and [34] for error

29
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estimates in alternative norms adequately suited to this kind of equations.

In a recent article [4], we have introduced and analyzed from theoretical and exper-

imental points of view an adaptive scheme to efficiently solve the advection-reaction-

diffusion equation. This scheme is based on a stabilized finite element method introduced

in [19] combined with a residual error estimator, similar to another one introduced by Ver-

furth in [32]. We have proved global upper and local lower error estimates in the energy

norm, with constants which depend on the shape-regularity of the mesh, the polynomial

degree of the finite element approximating space, and the local mesh Peclet number.

Following this line, we introduce in this paper a framework to derive error estimators

based on the solution of local problems. We prove the equivalence of the resulting estima-

tors with the residual based estimator analyzed in [4] and, hence, with the energy norm

of the error.

We report several numerical experiments which allow us to asses the effectiveness of

this approach to capture boundary and inner layers very sharply and without signifi-

cant oscillations. The experiments also show that the schemes lead to optimal orders of

convergence.

The paper is organized as follows. In Section 3.2 we recall the advection-diffusion-

reaction problem under consideration and the stabilized scheme. In Section 3.3 we recall

the main result of [4] and derive a posteriori error estimators based on the solution of local

problems. Then, we prove their equivalence with the residual error estimator analyzed in

[4]. Finally, in Section 3.4, we report the results of some numerical tests, to asses the

performance of the estimators.

3.2 A stabilized method for a model problem

Our model problem is the advection-reaction-diffusion problem





−ε∆u+ a · ∇u+ bu = f in Ω,

u = 0 on Γ
D
,

ε
∂u

∂n
= g on Γ

N
,

(3.1)

where Ω ⊂ R2, is a bounded polygonal domain with a Lipschitz boundary Γ = Γ̄
D
∪ Γ̄

N
,

with Γ
D
∩ Γ

N
= ∅. We denote by n the outer unit normal vector to Γ.

We are interested in the advection-reaction dominated case and assume that:

(A1) ε ∈ R : 0 < ε≪ 1;
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(A2) a ∈ W1,∞(Ω)2 : div a = 0 in Ω;

(A3) b ≥ 1 in Ω;

(A4) Γ
D
⊃ {x ∈ Γ : a(x) · n(x) < 0};

(A5) f ∈ L2(Ω), g ∈ L2(Γ
N
).

We use standard notation for Sobolev and Lebesgue spaces, norms, and inner products.

Moreover, we introduce the following notation: Let

H1
Γ
D

(Ω) :=
{
ϕ ∈ H1(Ω) : ϕ = 0 on Γ

D

}

and B be the bilinear form defined on H1(Ω) by

B(v, w) :=

∫

Ω

(ε∇v · ∇w + a · ∇v w + bvw) .

Then, the standard variational formulation of problem (3.1) is the following: Find u ∈

H1
Γ
D

(Ω) such that

B(u, v) =

∫

Ω

fv +

∫

Γ
N

gv ∀v ∈ H1
Γ
D

(Ω). (3.2)

We consider the following (energy) norm on H1(Ω):

‖|u‖| :=
(
ε ‖∇u‖2

0,Ω + ‖u‖2
0,Ω

) 1

2

.

Assumptions (A1)–(A4) and integration by parts imply that

B(v, v) ≥ ‖|v‖|2 ∀v ∈ H1
Γ
D

(Ω)

and

B(v, w) ≤
(
1 + ‖b‖∞,Ω + ε−

1

2 ‖a‖∞,Ω

)
‖|v‖| ‖|w‖| .

Hence, as a consequence of Lax-Milgram’s Lemma, problem (3.2) has a unique solution.

Let us remark that the same conclusion holds if the assumption (A3) is substituted

by the following one, which is slightly weaker: −1
2
div a + b ≥ 1. Anyway, the difference is

meaningless in practice, since typically div a = 0.

Let {Th}h>0, be a family of shape-regular partitions of Ω into triangles. As usual, h

denotes the mesh size: h = maxhT , with hT being the diameter of T .

For k ∈ N, let

Vh :=
{
ϕ ∈ H1

Γ
D

(Ω) : ϕ|T ∈ Pk ∀T ∈ Th
}
,
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where Pk denotes the space of polynomials of degree at most k.

It is well known that the standard Galerkin method with this finite element space

yields poor approximation when ε ≪ |a| or ε ≪ b. For this reason we consider the

following stabilized formulation introduced in [19]: Find uh ∈ Vh such that

Bτ (uh, vh) = Fτ (vh) ∀vh ∈ Vh, (3.3)

where, for vh, wh ∈ Vh,

Bτ (vh, wh) := B(vh, wh)

−
∑

T∈Th

∫

T

τT (−ε∆vh + a · ∇vh + bvh) (−ε∆wh − a · ∇wh + bwh)

and

Fτ (vh) :=

∫

Ω

fvh +

∫

Γ
N

gvh −
∑

T∈Th

∫

T

τTf(−ε∆vh − a · ∇vh + bvh).

In the expressions above, the stabilization parameter τT is defined as follows:

τT (x) :=
h2

T

bh2
T

max{1,PeR

T
(x)} + (2ε/mk) max{1,PeA

T
(x)}

,

with PeR

T
(x) and PeA

T
(x) being the Peclet numbers respectively defined by

PeR

T
(x) :=

2ε

mkb(x)h2
T

and PeA

T
(x) :=

mk |a(x)|hT

ε
,

where mk := min{1/3, Ck}, with Ck being a positive constant satisfying

Ck
∑

T∈Th

h2
T
‖∆vh‖

2
0,T ≤ ‖∇vh‖

2
0,Ω , ∀vh ∈ Vh,

which only depends on the polynomial degree k and the shape-regularity of the mesh.

The convergence and stabilization properties of this scheme have been investigated in

[19], where numerical experiments proving the effectiveness of this approach have been

reported. In particular, the method has been shown to be advantageous in comparison

with other more standard stabilization techniques.

However, the experiments reported in [19] also show that the method does not allow

a sharp resolution of inner layers when quasi-uniform meshes are used. In the following

section we introduce error indicators which will allow us to create in an automatic fashion

meshes correctly refined around inner and boundary layers of the solution.
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3.3 A posteriori error estimator.

In this section we define error estimators based on the solution of auxiliary local

problems. To prove their efficiency and reliability, we will compare it with a residual based

estimator analyzed in [4]. In what follows, we recall the definition and main properties of

the latter.

Let Eh denote the set of all edges in Th and, for E ∈ Eh, let hE be the length of E. We

define the respective volumetric and edge residuals by

Rh
T
(uh) := fh + ε∆uh − a · ∇uh − buh, in T ∈ Th,

Rh
E
(uh) :=





−

[[
ε
∂uh
∂nE

]]

E

, on E ∈ Eh : E 6⊂ Γ,

gh − ε
∂uh
∂n

, on E ∈ Eh : E ⊂ Γ
N
,

0, on E ∈ Eh : E ⊂ Γ
D
,

where [[·]]E denotes the jump across E, and nE is a unit normal vector to E (see for

instance [31]). The functions fh and gh denote arbitrary but fixed approximations of f

and g such that fh|T ∈ Pk ∀T ∈ Th and gh|E ∈ Pk−1 ∀E ∈ Eh such that E ⊂ Γ
N
.

For each T ∈ Th, let ET denote the set of edges of T . The following residual based

local error estimate ηT was introduced in [4]:

η2
T

:= α2
T

∥∥Rh
T
(uh)

∥∥2

0,T

+
1

2

∑

E∈ET : E 6⊂Γ

ε−
1

2αE

∥∥Rh
E
(uh)

∥∥2

0,E
+

∑

E∈ET : E⊂Γ
N

ε−
1

2αE

∥∥Rh
E
(uh)

∥∥2

0,E
, (3.4)

with

αS := min
{
hSε

− 1

2 , 1
}
, S = E or S = T. (3.5)

The equivalence between this estimator and the energy norm of the exact error has been

proved in [4], under similar conditions to those of the next theorem:

Theorem 3.3.1 Let u and uh be the solutions of problems (3.2) and (3.3), respectively.

Let fh, gh, and ηT be defined as above. Then, there holds

‖|u− uh‖| ≤ C



(
∑

T∈Th

η2
T

) 1

2

+



∑

T∈Th

α2
T
‖f − fh‖

2
0,T +

∑

E∈Eh: E⊂Γ
N

ε−
1

2αE ‖g − gh‖
2
0,E




1

2



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and

ηT ≤ C
(
1 + ‖b‖∞,ωT

+ ε−
1

2 ‖a‖∞,ωT
αT

)
‖|u− uh‖|ωT

+ αT ‖f − fh‖0,ωT
+




∑

E∈ET : E⊂Γ
N

ε−
1

2αE ‖g − gh‖
2
0,E




1

2

∀T ∈ Th,

where ωT :=
⋃
{T ′ ∈ Th : T ′ and T share an edge}.

Here and thereafter, C denotes a generic positive constant, not necessarily the same

at each occurrence but always independent of the mesh-size and the small parameter ε.

In what follows we introduce some bubble functions and lifting operators which will

be used in the sequel. Let ψT be the classical cubic bubble function supported in T . Let

ψE,θ, 0 < θ ≤ 1, be the piecewise quadratic bubble function introduced in [32]. Let us

recall that, for inner edges, the support of ψE,θ is the shadowed quadrilateral in Fig. 3.1.

E

θhE′

θhE′′

E ′′

E ′

Figure 3.1: Support of ψE,θ.

Let ψE := ψE,θE
, with θE := min{ε

1

2h−1
E
, 1}. Let PE be the lifting operator introduced

in [32], which associates to each σ ∈ Pk−1(E), a piecewise polynomial function of degree

k − 1 defined on ωE :=
⋃
{T ∈ Th : E ⊂ T}.

From now on we further assume that the coefficients a and b are piecewise polynomial;

more precisely,

(A6) a|T ∈ P1(T )2 ∀T ∈ Th, b|T ∈ P0(T ) ∀T ∈ Th.

Notice that, because of assumption (A6), Rh
T
(uh) ∈ Pk(T ) ∀T ∈ Th. Moreover, Rh

E
(uh) ∈

Pk−1(E) ∀E ∈ Eh and then the following estimates follow from Lemma 3.3 in [32]:
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Lemma 3.3.1 For all T ∈ Th, there hold:

∥∥Rh
T
(uh)

∥∥2

0,T
≤ C

(
Rh

T
(uh), R

h
T
(uh)ψT

)
T
, (3.6)

∥∥∣∣Rh
T
(uh)ψT

∥∥∣∣ ≤ Cα−1
T

∥∥Rh
T
(uh)

∥∥
0,T
. (3.7)

Lemma 3.3.2 For all E ∈ Eh, there hold:

∥∥Rh
E
(uh)

∥∥2

0,E
≤ C

(
Rh

E
(uh), R

h
E
(uh)ψE

)
E
, (3.8)

∥∥PE

(
Rh

E
(uh)

)
ψE

∥∥
0,ωE

≤ Cε
1

4α
1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

, (3.9)
∥∥∣∣PE

(
Rh

E
(uh)

)
ψE

∥∥∣∣ ≤ Cε
1

4α
− 1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

. (3.10)

Now we are in position to introduce the local problems that will be used to define the

error estimators. Given T ∈ Th, let VT be the finite dimensional space defined by

VT := span ({ψTv : v ∈ Pk(T )} ∪ {ψEPEσ : σ ∈ Pk−1(E), E ∈ ET : E 6⊂ Γ
D
}) .

Let βT be a bilinear form defined on VT such that there exist positive constants γ and β,

eventually depending on ε, such that

|βT (v, w)| ≤ β ‖|v‖| ‖|w‖| ∀v, w ∈ VT , (3.11)

βT (v, v) ≥ γ ‖|v‖|2 ∀v ∈ VT . (3.12)

Two different particular bilinear forms βT will be tested in the following section. The first

one is the same bilinear form B of the original problem:

β
(1)
T (v, w) :=

∫

ωT

(ε∇v · ∇w + a · ∇v w + bvw) , (3.13)

which satisfies (3.11) with β = 1 + ‖b‖∞,ωT
+ ε−

1

2 ‖a‖∞,ωT
. The second one is the bilinear

form B without the advective term:

β
(2)
T (v, w) :=

∫

ωT

(ε∇v · ∇w + bvw) , (3.14)

which satisfies (3.11) with β = 1 + ‖b‖∞,ωT
. Notice that in this case β does not depend

on ε. Both, β
(1)
T and β

(2)
T , clearly satisfy (3.12), with γ = 1 independently of ε, too.

Given T ∈ Th, consider the following finite dimensional problem: Find vT ∈ VT :

βT (vT , w) = (Rh
T
(uh), w)T +

∑

E∈ET

(Rh
E
(uh), w)E ∀w ∈ VT . (3.15)



36

From (3.11) and (3.12), problem (3.15) is well posed on VT , as a consequence of Lax-

Milgram Lemma.

Finally, we define the local error estimate η̃T by

η̃T := ‖|vT‖| . (3.16)

The following is the main theoretical result of this paper:

Theorem 3.3.2 Given T in Th, let ηT and η̃T be the estimators defined by (3.4) and

(3.16), respectively. Then, there exist positive constants C and C ′ such that

C ′γη̃T ≤ ηT ≤ Cβη̃T ,

where β and γ are the continuity and ellipticity constants in (3.11) and (3.12), respectively.

Proof. For the lower bound of the theorem, we take w = vT in (3.15) and we use (3.12)

and Cauchy-Schwartz inequality to obtain

γ ‖|vT‖|
2 ≤ βT (vT , vT )

= (Rh
T
(uh), vT )T +

∑

E∈ET

(Rh
E
(uh), vT )E

≤
∥∥Rh

T
(uh)

∥∥
0,T

‖vT‖0,T +
∑

E∈ET

∥∥Rh
E
(uh)

∥∥
0,E

‖vT‖0,E .

Next we use the following inverse inequalities which can be proved by following some

arguments in [32] (see (5.6) and the proof of (5.4) in this reference):

‖vT‖0,T ≤ CαT ‖|vT‖| ,

‖vT‖0,E ≤ Cε−
1

4α
1

2

E ‖|vT‖| ∀E ∈ ET .

Thus, from (3.4), we obtain

γ ‖|vT‖|
2 ≤ C

[
αT

∥∥Rh
T
(uh)

∥∥
0,T

+
∑

E∈ET

ε−
1

4α
1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

]
‖|vT‖| ≤ CηT ‖|vT‖| ,

and we conclude the lower bound of the theorem.

To prove the upper bound, first let wT := Rh
T
(uh)ψT ∈ VT . Using (3.6), (3.15) with

w = wT , (3.11), and (3.7), we have

∥∥Rh
T
(uh)

∥∥2

0,T
≤ C(Rh

T
(uh), wT )

= CβT (vT , wT )

≤ Cβ ‖|vT‖| ‖|wT‖|

≤ Cβ ‖|vT‖|α
−1
T

∥∥Rh
T
(uh)

∥∥
0,T

.
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Consequently,

αT

∥∥Rh
T
(uh)

∥∥
0,T

≤ Cβ ‖|vT‖| . (3.17)

Next, given E ∈ ET , such that E 6⊂ Γ
D
, let wE := PE

(
Rh

E
(uh)

)
ψE ∈ VT . Taking w = wE in

(3.15) we have

βT (vT , wE) = (Rh
T
(uh), wE)T + (Rh

E
(uh), wE)E.

Hence, using (3.8), (3.11), Cauchy-Schwartz inequality, (3.9), (3.17), and (3.10), we have

∥∥Rh
E
(uh)

∥∥2

0,E
≤ C(Rh

E
(uh), R

h
E
(uh)ψE)E = C(Rh

E
(uh), wE)E

= C
[
βT

(
vT , PE

(
Rh

E
(uh)

)
ψE

)
−
(
Rh

T
(uh), PE

(
Rh

E
(uh)

)
ψE

)
T

]

≤ C
[
β ‖|vT‖|

∥∥∣∣PE

(
Rh

E
(uh)

)
ψE

∥∥∣∣+
∥∥Rh

T
(uh)

∥∥
0,T

∥∥PE

(
Rh

E
(uh)

)
ψE

∥∥
0,T

]

≤ C
[
β ‖|vT‖| ε

1

4α
− 1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

+ βα−1
T

‖|vT‖| ε
1

4α
1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

]

Now, because of the regularity of the mesh, αE ≤ CαT , and, consequently,

ε−
1

4α
1

2

E

∥∥Rh
E
(uh)

∥∥
0,E

≤ Cβ ‖|vT‖| .

Finally, from (3.17) and the last inequality we conclude the proof. 2

As a consequence of Theorems 3.3.1 and 3.3.2, we obtain error estimates similar to

those of Theorem 3.3.1, with η̃T instead of ηT , although with the constants of the estimates

depending on ε, whenever β or γ do it.

3.4 Numerical experiments

In this section we report three series of numerical experiments with the stabilized

method described in Section 3.2 and an h-adaptive mesh-refinement strategy based on the

error estimators analyzed in Section 3.3. In all the experiments we have used piecewise

linear finite elements (i.e., polynomial degree k = 1) and we have taken as geometric

domain the unit square Ω := (0, 1) × (0, 1), although with different boundary conditions.

We have considered different values of the coefficients ε, a, and b of the advection-reaction-

diffusion equation (3.1), too.

The adaptive procedure consists in solving problem (3.3) on a sequence of meshes

up to finally attain a solution with an estimated error within a prescribed tolerance. To

attain this purpose, the process is initiated with a quasi-uniform mesh and, at each step,

a new mesh better adapted to the solution of problem (3.2) is created. This is done by

computing the local error estimators η̃T for all T in the “old” mesh Th, and refining those
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elements T with η̃T ≥ µmax{η̃T : T ∈ Th}, where µ ∈ (0, 1) is a prescribed parameter.

In all our experiments we have chosen µ = 1
2
. To refine the meshes we have used the

red-green-blue strategy described in [31].

We have considered two estimators: η̃
(1)
T , associated with the local bilinear form β

(1)
T

as defined in (3.13), and η̃
(2)
T , associated with β

(2)
T as defined in (3.14). Let us remark that

the constants β and γ in Theorem 3.3.2 do not depend on ε for β
(1)
T and, consequently,

η̃
(1)
T is equivalent to the estimator ηT with constants independent of ε.

3.4.1 A reaction-diffusion problem

The first test consists in solving a purely reaction-diffusion problem. We have chosen

the following data: a = 0, b = 1, f = 1, and ε = 10−4. We have used the boundary

conditions shown in Fig. 3.2.

1

y

x0 1

u = 1 u = 0

∂u

∂n

= 0

∂u

∂n

= 0

Figure 3.2: Reaction-diffusion problem: Boundary conditions.

The exact solution of this problem is analytically known:

u(x, y) = 1 −
sinh(ε−1/2x)

sinh(ε−1/2)
;

thus, we have been able to compute the exact errors of our finite element approximations.

Notice that for this problem, η̃
(1)
T = η̃

(2)
T because the advective term is not present.

Fig. 3.3 shows some of the successively refined meshes created in the adaptive process.

This figure also shows the level sets and the vertical sections at y = 0.5 of the corre-

sponding computed solution. The iteration number and the number of degrees of freedom

(d.o.f.) of each mesh are also reported in this figure.

Fig. 3.4 shows the error curves of the whole process for the estimated errors η̃ =(∑
T∈Th

η̃2
T

)1/2
and η =

(∑
T∈Th

η2
T

)1/2
. We also include in this figure the exact errors of the

adaptive schemes guided by η̃T and ηT , which are labelled “Error (η̃T)” and “Error (ηT)”,

respectively. The figure also includes a line with slope −1
2
, which corresponds to the

theoretically optimal order of convergence for piecewise linear elements.
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Figure 3.3: Reaction-diffusion problem: Meshes, level sets, and vertical sections of the

approximate solutions.
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Figure 3.4: Reaction-diffusion problem: Estimated and exact error curves.
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It can be seen from Fig. 3.3 that the adaptive process leads to meshes correctly refined

in the boundary layer zone. In fact, both estimators lead almost to the same meshes.

On the other hand, the error curves show that the adaptive process yields optimal order

convergence: the exact and estimated error curves have approximately the same optimal

slope −1
2
. Furthermore, Fig. 3.4 shows that the error estimator η̃ have a significantly

better effectivity index than the residual error estimator η.

3.4.2 An advection-diffusion problem

The second test consists in solving a purely advection-diffusion problem. We have

chosen the following data: a = (1, 0), b = 0, f = 1, ε = 10−4, and the boundary conditions

shown in Fig. 3.5. Let us remark that this problem is not covered by our theoretical results,

since the chosen value of b violates assumption (A3).

1

y

x0 1

u = 0

∂u

∂n

= 0

∂u

∂n

= 0

u = 0

Figure 3.5: Advection-diffusion problem: Boundary conditions.

The exact solution of this problem is also analytically known:

u(x, y) = x−
e−

1−x
ε − e−

1

ε

1 − e−
1

ε

;

thus, we have been able to compute the exact errors, too.

Both estimators, η̃
(1)
T and η̃

(2)
T , lead to similar adapted meshes. Fig. 3.6 shows some

of the successively refined meshes created in the adaptive process guided by the error

indicators η̃
(1)
T . This figure also includes the level sets and the vertical sections at y = 0.5

of the corresponding computed solution.

Fig. 3.7 shows the error curves for the exact and the estimated errors. Once more,

“Error (η̃
(k)
T )” denotes the exact error of the adaptive scheme guided by η̃

(k)
T , k = 1, 2, and

η̃(k) :=
(∑

T∈Th
η̃

(k)
T

)1/2

, the corresponding estimated errors.
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Figure 3.6: Advection-diffusion problem: Meshes, level sets, and vertical sections of the

approximate solutions.
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Figure 3.7: Advection-diffusion problem: Estimated and exact error curves.
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Essentially the same conclusions as in the previous test can be drawn from Fig. 3.6.

In spite of the fact that this problem is out of the theory of Sections 3.2 and 3.3, the

boundary layers are very sharply captured without any significant oscillation.

Fig. 3.7 shows that the error estimators η̃(1) and η̃(2) have a very different behavior in

the first steps of the adaptive process. However, once the meshes are sufficiently refined

around the boundary layer, both error curves attain almost optimal slopes −1
2
, which

shows that optimal orders of convergence are again attained in both cases.

Fig. 3.7 also shows that η̃
(1)
T leads to slightly better adapted meshes than η̃

(2)
T , despite

the fact that the theoretical results are poorer for η̃
(1)
T , because the constant β in Theorem

3.3.2 for this estimator actually depends on ε; namely, β = 1 + ‖b‖∞,ωT
+ ε−

1

2 ‖a‖∞,ωT
.

3.4.3 An advection-diffusion-reaction problem with an inner layer

The last reported test consists in solving an advection-diffusion-reaction problem

whose solution presents an inner layer. The corresponding data are: a = (2, 1), b = 1,

f = 0, ε = 10−4, and the boundary conditions shown in Fig. 3.8.

1

∂u

∂n

= 0y

x0 1u = 0

u = u0

∂u

∂n

= 0 u0(y) =

{
ε−1/2y, 0 ≤ y < ε1/2,

1, ε1/2 ≤ y ≤ 1.

Figure 3.8: Advection-reaction-diffusion problem: Boundary conditions.

Fig. 3.9 shows some of the successively refined meshes created in the adaptive process,

as well as the level sets of the corresponding computed solution. This figure clearly shows

that the adaptive process leads once more to correctly refined meshes. The adaptive

scheme detects both, the corner singularity of the solution and the inner layer, and leads

to meshes much more concentrated around these zones. Once the corner singularity is

resolved, the adaptive scheme detects the inner layer and advances through it refining the

mesh (see in particular the meshes corresponding to the iteration numbers 10, 15, and

20). At the last iteration, the method captures the inner layer very sharply and without

any significant oscillation.
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Figure 3.9: Advection-diffusion-reaction problem: Meshes and level sets.
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Figure 3.10: Advection-reaction-diffusion problem: Estimated and exact error curves.

Fig. 3.10 shows the error curves for the exact and the estimated errors. Here, the ‘exact’

errors, “Error (η̃
(1)
T )” and “Error (η̃

(2)
T )”, have been computed by considering as ‘exact’ the

numerical solution obtained with the last mesh of the adaptive process. Because of this,

we do not include the ‘exact’ error for the finer meshes which should be heavily affected

by the error of the ‘exact’ solution. No significant difference between “Error (η̃
(1)
T )” and

“Error (η̃
(2)
T )” can be appreciated, because both estimators lead to almost to the same

meshes. However, Fig. 3.10 shows that in spite of the fact that the theoretical results are

poorer for η̃
(1)
T , its effectivity indices are better than those of η̃

(2)
T .

3.5 Conclusions

A framework to derive error estimators based on the solution of local problems has been

introduced for advection-reaction-diffusion equations. The equivalence of the resulting

estimators depend on the continuity and coercivity constants of the bilinear forms used

for the local problems.

In particular, two bilinear forms have been analyzed from theoretical and experimental

viewpoints. Although the theoretical results are better for one of the estimators, the

numerical experiments show similar performances. In both cases, the effectivity indices

of the estimators are significantly better than those of a previously known residual based

estimator.



Chapter 4

A posteriori error estimates for

elliptic problems with Dirac delta

source terms

In this chapter are introduced residual type a posteriori error estimators for a Poisson

problem with a Dirac delta source term, in Lp norm and W1,p seminorm. The estimators

are proved to yield global upper and local lower bounds for the corresponding norms of

the error. They are used to guide adaptive procedures, which are experimentally shown

to lead to optimal orders of convergence.

4.1 Introduction

In this chapter are derived an a posteriori error estimator for elliptic problems with

Dirac delta source terms. This kind of problems arise in different applications as, for

instance, the electric field generated by a point charge, modeling of acoustic monopoles,

transport equations for effluent discharge in aquatic media, etc.

In spite of the fact that the solution of one such problem typically does not belong to

H1, it can be numerically approximated by standard finite elements. A priori estimates in

L2 can be found in [29, 12], whereas interior maximum norm error estimates have been

proved in [28].

The singular character of the solution of such problems suggests that meshes ade-

quately refined around the delta support should be used to improve the quality of the

approximation. Adaptive schemes based on some a posteriori error indicators should be

used with this purpose. However, to the best of the authors knowledge, no a posteriori

45
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error analysis has been performed for such problem.

In this paper we consider the simplest minded model example: the approximation by

piecewise linear continuous elements of the Laplace equation on a polygonal domain with

a homogeneous Dirichlet boundary condition and a Dirac delta source term.

The solution of this problem belongs to Lp for p < ∞ and to W1,p for p < 2. We

introduce error estimators for the norms of each one of these spaces. When the Dirac

delta support is a vertex of the triangulation, the estimators depend only on the edge

residuals, conveniently scaled. Otherwise, an additional term depending on the size of the

element containing the delta support must be added. We prove reliability and efficiency

estimates, for p ranging on some intervals which depend on the geometry of the domain.

We have used these error indicators to guide adaptive schemes, which experimentally

show optimal orders of convergence. This happens even for the L2 norm of the error on

non-convex domains, which is not covered by the theory. Moreover, we have shown that

the estimator is not equivalent to the error in this case on quasiuniform meshes, even for

smooth source terms. This is a well-know fact, however, the adaptive process allows us to

attain an optimal order of convergence in this case, too.

The paper is organized as follows. We introduce the model problem in Section 4.2.

In Section 4.3, we introduce some generalized bubble functions and prove some technical

lemmas, which will be used in the sequel. The main results are presented in Sections 4.4

and 4.5, where we prove the equivalence between our error estimates and the error in Lp

norm and W1,p seminorm, respectively. Finally, in Section 4.6, we report some numerical

results, which allow assessing the performance of the adaptive scheme.

4.2 Model problem

Our model problem will be the Laplace equation with the Dirac delta measure as

source term and homogeneous Dirichlet boundary condition:
{

−∆u = δx0
in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω ⊂ R2 is a bounded polygonal domain and x0 is an inner point of Ω.

Throughout the paper we will use standard notation for Sobolev spaces, norms, and

seminorms.

Let us remark that problem (4.1) has a unique solution. In fact, consider the funda-

mental solution of the problem G(x) := 1
2π

log |x− x0|; i. e.,

−∆G = δx0
in Ω.
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Straightforward calculations show that G ∈ W1,p(Ω) ∀p ∈ [1, 2). Hence, u is a solution

of problem (4.1) if and only if u = w +G, with w being a solution of
{

−∆w = 0 in Ω,

w = −G on ∂Ω.
(4.2)

Since x0 /∈ ∂Ω, G is smooth on ∂Ω and, thus, problem (4.2) has a unique solution

w ∈ H1(Ω). Therefore, problem (4.1) has a unique solution u ∈ W1,p
0 (Ω), 1 ≤ p < 2.

Problem (4.1) can be written in a weak form as follows:

Find u ∈ W1,p
0 (Ω) :

∫

Ω

∇u · ∇v = 〈δx0
, v〉 ∀v ∈ W1,q

0 (Ω), (4.3)

with 1
p

+ 1
q

= 1. The right-hand side is well defined because, for q > 2, W1,q(Ω) ⊂ C(Ω).

We consider a regular family {Th} of meshes of Ω (see for instance [13]). As usual, h

denotes the mesh size: h := maxT∈Th
hT , with hT being the diameter of T .

Let Sh := {vh ∈ C(Ω) : vh|T ∈ P1 ∀T ∈ Th} and S0
h := {vh ∈ Sh : vh|∂Ω = 0} be

the spaces of standard piecewise linear continuous elements. Notice that S0
h ⊂ W1,q

0 (Ω) ⊂

W1,p
0 (Ω). So, the following discrete version of (4.3) is well defined:

Find uh ∈ S0
h :

∫

Ω

∇uh · ∇vh = 〈δx0
, vh〉 ∀vh ∈ S0

h. (4.4)

Clearly, the approximation error satisfies the orthogonality relation
∫

Ω

∇(u− uh) · ∇vh = 0 ∀vh ∈ S0
h. (4.5)

The following a priori error estimate in L2 norm has been proved in [29] and [12]:

‖u− uh‖0,2,Ω ≤ Ch.

Here and thereafter C, as well as C ′, denote strictly positive generic constants, not nec-

essarily the same at each occurrence, but always independent of the mesh size h.

The goals of this paper are to define a posteriori estimators of the error (u − uh) in

adequate Sobolev norms, to prove their equivalence with the corresponding norm of the

error, and to use them to guide adaptive procedures, in order to attain optimal orders of

convergence in terms of the number of degrees of freedom.

4.3 Preliminary results

To prove the equivalence of the estimators, we will have to deal with two kind of

bubble functions, one associated with inner edges and the other with the point x0. In this
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section we define these bubble functions and prove some properties that will be used in

the sequel.

Let Eh be the set of all the inner edges of the triangulation Th. Given ℓ ∈ Eh, let bℓ be

the bubble function defined in Ω, with support

ωℓ :=
⋃

{T : ∂T ⊃ ℓ}

(see Fig. 4.1), defined for x ∈ ωℓ by

bℓ(x) :=





[
λT1

P2
λT1

P3
λT2

P2
λT2

P3

]2 |x− x0|
2

|ℓ|2
, if ω◦

ℓ ∋ x0,

[
λT1

P2
λT1

P3
λT2

P2
λT2

P3

]2
, otherwise.

(4.6)

In this definition, we have used the notation given in Fig. 4.1. Moreover, ω◦
ℓ is the

interior of ωℓ and λ
Tj

Pi
is the barycentric coordinate of x associated with the triangle Tj

and the point Pi, extended to the whole ωℓ.

1

2

T

T
2

1

P

P

P3

n

P4

ℓ

Figure 4.1: Support ωℓ of bℓ

In what follows we will prove several properties involving conjugate numbers p, q ∈

(1,∞) such that 1
p

+ 1
q

= 1.

Lemma 4.3.1 Given ℓ ∈ Eh, let bℓ and ωℓ be defined as above. Then

∂bℓ
∂n

= 0 on ∂ωℓ, (4.7)

C ′ |ℓ| ≤

∫

ℓ

bℓ ≤ C |ℓ| , (4.8)

|bℓ|m,q,ωℓ
≤ C |ℓ|2−m−2/p , m = 1, 2. (4.9)

Proof. Equation (4.7) is an immediate consequence of the definition of bℓ. Estimate (4.8)

is obtained by straightforward computations. Estimate (4.9) follows from standard scaling

arguments and the regularity of the mesh; in fact, for m = 1, 2, we have

|bℓ|m,q,ωℓ
≤ C |ℓ|−m |bℓ|0,q,ωℓ

≤ C |ℓ|−m |ωℓ|
1/q ≤ C |ℓ|2−m−2/p .
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2

Although in practice the meshes are usually constructed in such a way that x0 is a

vertex of all the triangulations, we do not need to assume this for our analysis. However,

when x0 is not a vertex, the definition of the estimator will include an additional term. In

this case, we will use another bubble function. Let T be a triangle of Th containing x0 (if

x0 lies on an inner edge, any of the two triangles sharing the edge can be chosen as T ).

Let

wT :=
⋃

{T ′ ∈ Th : T ′ ∩ T 6= ∅}

and d := dist(x0, ∂wT ) (see Fig. 4.2). Notice that, because of the regularity of the mesh,

hT ≤ Cd. Let bx0
be a smooth bubble function defined in Ω, with support in wT and

satisfying

0 ≤ bx0
(x) ≤ 1 ∀x ∈ Ω, (4.10)

bx0
(x) = 1 ∀x ∈ Ω : |x− x0| ≤

d

4
, (4.11)

bx0
(x) = 0 ∀x ∈ Ω : |x− x0| ≥

3d

4
, (4.12)

|bx0
|m,∞,wT

≤ Cd−m, m = 1, 2. (4.13)

Such a function can be easily obtained by convolution of the characteristic function of

the set {x ∈ Ω : |x− x0| < d/4} with a mollifier.

x0

d

T

d

T
x0

x0

T d

∂Ω

Figure 4.2: Domains wT for different locations of x0. Circles |x− x0| = d
4

(solid line) and

|x− x0| = 3d
4

(dashed line).

Lemma 4.3.2 Let T ∋ x0. Let bx0
and wT be defined as above. Then

|bx0
|m,q,wT

≤ Ch
2−m−2/p
T , m = 1, 2.
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Proof. Using (4.13) and the fact that hT ≤ Cd, the definition of | · |m,q,wT
yields

|bx0
|m,q,wT

≤ Cd−mh
2/q
T ≤ Ch

2−m−2/p
T .

2

To define the error estimators in the next sections, we will use the jumps of the normal

derivative of the finite element solution across the inner edges ℓ, which we denote by

Jℓ :=

[[
∂uh
∂n

]]

ℓ

, ℓ ∈ Eh.

The following bounds will be used to prove the efficiency of the estimators.

Lemma 4.3.3 Let T ∋ x0 and wT be defined as above. Let FT
h be the set of edges ℓ of

triangles T ⊂ wT , such that ℓ 6⊂ ∂wT . Then

h
2/p
T ≤ C


‖u− uh‖0,p,wT

+
∑

ℓ∈FT
h

|Jℓ| |ℓ|
1+2/p


 ,

h
2/p−1
T ≤ C


|u− uh|1,p,wT

+
∑

ℓ∈FT
h

|Jℓ| |ℓ|
2/p


 .

Proof. Let bx0
be the above defined bubble function. By using (4.3), integration by parts,

(4.7), Hölder inequality, (4.10), Lemma 4.3.2, and the regularity of the mesh, we have

1 = 〈δx0
, bx0

〉 =

∫

Ω

∇(u− uh) · ∇bx0
+

∫

Ω

∇uh · ∇bx0

= −

∫

wT

(u− uh)∆bx0
−
∑

ℓ∈FT
h

∫

ℓ

Jℓbx0

≤ ‖u− uh‖0,p,wT
|bx0

|2,q,wT
+
∑

ℓ∈FT
h

|Jℓ| |ℓ|

≤ C


‖u− uh‖0,p,wT

h
−2/p
T +

∑

ℓ∈FT
h

|Jℓ| |ℓ|
1+2/p h

−2/p
T


 ,

which leads to the first estimate.

The same arguments give

1 = 〈δx0
, bx0

〉 =

∫

Ω

∇(u− uh) · ∇bx0
+

∫

Ω

∇uh · ∇bx0

≤ |u− uh|1,p,wT
|bx0

|1,q,wT
−
∑

ℓ∈FT
h

∫

ℓ

Jℓbx0

≤ C


|u− uh|1,p,wT

h
1−2/p
T +

∑

ℓ∈FT
h

|Jℓ| |ℓ|
2/p h

1−2/p
T


 ,
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which allow us to prove the second estimate. 2

To end this section, we settle some error estimates for the Lagrange interpolant vI ∈ Sh

of a function v ∈ C(Ω), which will be also used in the sequel.

Lemma 4.3.4 Given ℓ ∈ Eh, let ωℓ be defined as above. Then

∥∥v − vI
∥∥

0,q,ℓ
≤ C |ℓ|1+1/p |v|2,q,ωℓ

∀v ∈ W2,q(ωℓ), 1 < q <∞,
∥∥v − vI

∥∥
0,q,ℓ

≤ C |ℓ|1/p |v|1,q,ωℓ
∀v ∈ W1,q(ωℓ), 2 < q <∞.

Proof. Scaling arguments lead to

∥∥v − vI
∥∥

0,q,ℓ
≤ C

(
|ℓ|−1/q

∥∥v − vI
∥∥

0,q,ωℓ
+ |ℓ|1−1/q

∣∣v − vI
∣∣
1,q,ωℓ

)
. (4.14)

Next, we use the standard error estimate for the Lagrange interpolant (see for instance

[13]) ∣∣v − vI
∣∣
k,q,ωℓ

≤ C |ℓ|2−k |v|2,q,ωℓ
, k = 0, 1,

to estimate both terms in the right-hand side of (4.14). Thus we obtain the first estimate

of the lemma.

On the other hand, for q > 2, the following estimate also holds true (see again [13]):

∣∣v − vI
∣∣
k,q,ωℓ

≤ C |ℓ|1−k |v|1,q,ωℓ
, k = 0, 1.

Finally, from this and (4.14), we conclude the second estimate of the lemma. 2

4.4 An a posteriori error estimator equivalent to

‖u− uh‖0,p,Ω

Notice that the solution u of (4.1) belongs to Lp(Ω) for all p < ∞. In this section,

we will define an estimator for the Lp(Ω) norm of the finite element approximation error

(u − uh) and will prove the equivalence of exact and estimated errors for all p ∈ (1, pΩ),

with pΩ > 1 as shown below.

In the proof of Theorem 4.4.1 below we will use a duality argument. With this purpose

we consider the following problem:

{
−∆v = ψ in Ω,

v = 0 on ∂Ω,
(4.15)
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where ψ ∈ Lq(Ω) and 1
p

+ 1
q

= 1. According to [20], if

(
2 −

π

θ

)
p < 2, (4.16)

with θ being the largest inner angle of Ω, then the solution of (4.15) satisfies v ∈ W2,q(Ω)

and

|v|2,q,Ω ≤ C ‖ψ‖0,q,Ω . (4.17)

If Ω were either a triangle with three acute angles or a rectangle, then θ ≤ π
2

and

(4.16) would hold true for all p < ∞. Exception made of these very particular cases, the

largest angle of Ω satisfies θ > π
2

and, consequently, (4.16) holds true only if p < 2/(2− π
θ
).

Hence, let

pΩ :=





2

2 −
π

θ

, if θ > π
2
,

∞, otherwise.

(4.18)

For all T ∈ Th, let ETh be the set of inner edges ℓ ∈ Eh such that ℓ ⊂ ∂T . If x0 is a

vertex of the triangulation, we define the local a posteriori error indicator by

ηT,p :=



∑

ℓ∈ET
h

|Jℓ|
p |ℓ|p+2




1/p

,

for all the triangles T ∈ Th. Instead, if x0 is not a vertex of the triangulation, the indicators

corresponding to the triangles T ∋ x0 include an additional term. In this case, we define

ηT,p :=






h2

T +
∑

ℓ∈ET
h

|Jℓ|
p |ℓ|p+2




1/p

, if T ∋ x0,



∑

ℓ∈ET
h

|Jℓ|
p |ℓ|p+2




1/p

, otherwise.

In both cases, we define the global error estimator with these indicators as follows:

ηp :=

(
∑

T∈Th

ηpT,p

)1/p

.

Theorem 4.4.1 For p ∈ (1, pΩ), let ηT,p and ηp be defined as above. Then the following

estimates hold true:

‖u− uh‖0,p,Ω ≤ Cηp,

ηT,p ≤ C ‖u− uh‖0,p,wT
∀T ∈ Th.
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Proof. Let T ∈ Th be such that T ∋ x0. (If x0 is a vertex of the triangulation, see

Remark 4.4.1 below).

Given ψ ∈ Lq(Ω), let v ∈ W2,q(Ω) be the solution of (4.15). By using integration

by parts, (4.5), (4.3), Hölder inequality, standard interpolation error estimates (see for

instance [13]), Lemma 4.3.4, and (4.17), we have
∫

Ω

(u− uh)ψ = −

∫

Ω

(u− uh)∆v

=

∫

Ω

∇(u− uh) · ∇v

=

∫

Ω

∇(u− uh) · ∇(v − vI)

= 〈δx0
, v − vI〉 +

∑

ℓ∈Eh

∫

ℓ

Jℓ(v − vI)

≤
∥∥v − vI

∥∥
0,∞,T

+
∑

ℓ∈Eh

‖Jℓ‖0,p,ℓ

∥∥v − vI
∥∥

0,q,ℓ

≤ C

(
h

2−2/q
T |v|2,q,T +

∑

ℓ∈Eh

‖Jℓ‖0,p,ℓ |ℓ|
1+1/p |v|2,q,ωℓ

)

≤ C

(
h2
T +

∑

ℓ∈Eh

‖Jℓ‖
p
0,p,ℓ |ℓ|

p+1

)1/p(∑

ℓ∈Eh

|v|q2,q,ωℓ

)1/q

≤ C

(
h2
T +

∑

ℓ∈Eh

|Jℓ|
p |ℓ|p+2

)1/p

‖ψ‖0,q,Ω . (4.19)

Therefore,

‖u− uh‖0,p,Ω = sup
ψ∈Lq(Ω)

∫

Ω

(u− uh)ψ

‖ψ‖0,q,Ω

≤ C

(
h2
T +

∑

ℓ∈Eh

|Jℓ|
p |ℓ|p+2

)1/p

,

which together with the definition of ηp yield the first estimate.

To prove the second estimate, we test (4.3) with the bubble function bℓ and use that

bℓ(x0) = 0 and integration by parts to obtain
∫

Ω

∇(u− uh) · ∇bℓ = 〈δx0
, bℓ〉 −

∫

Ω

∇uh · ∇bℓ =

∫

ℓ

Jℓbℓ. (4.20)

Therefore, integration by parts, (4.7), Hölder inequality, and (4.9) yield
∫

ℓ

Jℓbℓ =

∫

Ω

∇(u− uh) · ∇bℓ =

∫

ωℓ

(u− uh)∆bℓ

≤ ‖u− uh‖0,p,ωℓ
|bℓ|2,q,ωℓ

≤ ‖u− uh‖0,p,ωℓ
|ℓ|−2/p .
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On the other hand, from (4.8) we have

∣∣∣∣
∫

ℓ

Jℓbℓ

∣∣∣∣ = |Jℓ|

∫

ℓ

bℓ ≥ C ′ |ℓ| |Jℓ| . (4.21)

The two last inequalities yield

|Jℓ| |ℓ|
(p+2)/p ≤ C ‖u− uh‖0,p,ωℓ

and, consequently, 

∑

ℓ∈ET
h

|Jℓ|
p |ℓ|p+2




1/p

≤ C ‖u− uh‖0,p,wT
, (4.22)

which together with Lemma 4.3.3 allow us to conclude the theorem. 2

Remark 4.4.1 The proof is still valid when x0 is a vertex of the triangulation. Indeed,

in this case, the term 〈δx0
, v − vI〉 vanishes and (4.19) reduces to

∫

Ω

(u− uh)ψ ≤ C

(
∑

ℓ∈Eh

|Jℓ|
p |ℓ|p+2

)1/p

‖ψ‖0,q,Ω .

This allows us to conclude the first estimate of the theorem, whereas the second estimate

is given directly by (4.22).

Remark 4.4.2 When Ω is convex, according to (4.18), pΩ > 2. Hence, in this case, the

estimator η2 turns out to be equivalent to the L2(Ω) norm of the error.

4.5 An a posteriori error estimator equivalent to

|u− uh|1,p,Ω

Since the solution of (4.1) also belongs to W1,p
0 (Ω) for all p < 2, it makes sense to

estimate the W1,p(Ω) seminorm of the finite element approximation error (u − uh), as

well. In this section, we will define one such estimator and will prove that it is equivalent

to the error for any p ∈ (pΩ, 2), with pΩ > 1 as shown below.

Given Ψ ∈ Lq(Ω)2, with 1
p

+ 1
q

= 1, consider now the following problem:

Find v ∈ W1,q
0 (Ω) :

∫

Ω

∇v · ∇w =

∫

Ω

Ψ · ∇w ∀w ∈ W1,p
0 (Ω). (4.23)



4.5 An a posteriori error estimator equivalent to |u− uh|1,p,Ω 55

According to [15], for any polygonal domain Ω, there exists a neighborhood of 2 such

that, for all p in this neighborhood, problem (4.23) has a unique solution v. Furthermore,

in such case, the following estimate holds true:

|v|1,q,Ω ≤ C ‖Ψ‖0,q,Ω . (4.24)

This happens for all p ∈ (1,∞) when Ω is convex. In general, let pΩ ∈ [1, 2) be the

smallest number such that, if pΩ < p < 2, then (4.23) has a unique solution satisfying

(4.24).

If x0 is a vertex of the triangulation, the local a posteriori error indicator is given by

εT,p :=



∑

ℓ∈ET
h

|Jℓ|
p |ℓ|2




1/p

,

for all triangles T ∈ Th. (We recall that ETh is the set of inner edges ℓ ∈ Eh such that

ℓ ⊂ ∂T .) As in the previous section, if x0 is not a vertex of the triangulation, an additional

term appears in the indicators corresponding to the triangles T ∋ x0:

εT,p :=






h2−p

T +
∑

ℓ∈ET
h

|Jℓ|
p |ℓ|2




1/p

, if T ∋ x0,



∑

ℓ∈ET
h

|Jℓ|
p |ℓ|2




1/p

, otherwise.

In both cases, the corresponding global error estimator is given by

εp :=

(
∑

T∈Th

εpT,p

)1/p

.

Theorem 4.5.1 For p ∈ (pΩ, 2), let εT,p and εp be defined as above. Then the following

estimates hold true:

|u− uh|1,p,Ω ≤ Cεp,

εT,p ≤ C |u− uh|1,p,wT
∀T ∈ Th.

Proof. Let T ∈ Th be such that T ∋ x0. (As in the proof of previous theorem, we

postpone the case of x0 being a vertex of the triangulation to Remark 4.5.1 below).

Given Ψ ∈ Lq(Ω)2, with 1
p

+ 1
q

= 1, let v ∈ W1,q
0 (Ω) be the solution of (4.23). Since

u − uh ∈ W1,p
0 (Ω), it can be used as a test function w in (4.23). Hence, (4.5), (4.3),
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integration by parts, Hölder inequality, standard interpolation error estimates (see for

instance [13]), Lemma 4.3.4, and (4.24) lead to
∫

Ω

∇(u− uh) · Ψ =

∫

Ω

∇(u− uh) · ∇v

=

∫

Ω

∇(u− uh) · ∇(v − vI)

= 〈δx0
, v − vI〉 +

∑

ℓ∈Eh

∫

ℓ

Jℓ(v − vI)

≤
∥∥v − vI

∥∥
0,∞,T

+
∑

ℓ∈Eh

‖Jℓ‖0,p,ℓ

∥∥v − vI
∥∥

0,q,ℓ

≤ C

(
h

1−2/q
T |v|1,q,T +

∑

ℓ∈Eh

‖Jℓ‖0,p,ℓ |ℓ|
1/p |v|1,q,ωℓ

)

≤ C

(
h2−p
T +

∑

ℓ∈Eh

‖Jℓ‖
p
0,p,ℓ |ℓ|

)1/p(∑

ℓ∈Eh

|v|q1,q,ωℓ

)1/q

≤ C

(
h2−p
T +

∑

ℓ∈Eh

|Jℓ|
p |ℓ|2

)1/p

‖Ψ‖0,q,Ω . (4.25)

Therefore

|u− uh|1,p,Ω = sup
Ψ∈Lq(Ω)2

∫

Ω

∇(u− uh) · Ψ

‖Ψ‖0,q,Ω

≤ C

(
h2−p
T +

∑

ℓ∈Eh

|Jℓ|
p |ℓ|2

)1/p

,

which together with the definition of εp yield the first estimate.

To prove the second estimate, we proceed as in the proof of Theorem 4.4.1; thus, from

(4.20) and (4.21) we have

C ′ |ℓ| |Jℓ| ≤

∫

Ω

∇(u− uh) · ∇bℓ.

Hence, from Hölder inequality and (4.9) we obtain

|Jℓ| |ℓ| ≤ C |u− uh|1,p,ωℓ
|bℓ|1,q,ωℓ

≤ C |u− uh|1,p,ωℓ
|ℓ|1−2/p .

Therefore, we have



∑

ℓ∈ET
h

|Jℓ|
p |ℓ|2




1/p

≤ C |u− uh|1,p,wT
,

which together with Lemma 4.3.3 allow us to conclude the theorem. 2
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Remark 4.5.1 The proof of this theorem also remains valid if x0 is a vertex of the tri-

angulation. Indeed, the only difference is that the term 〈δx0
, v − vI〉 vanishes in this case,

and thus the term h2−p
T does not appear in (4.25).

Remark 4.5.2 When Ω is convex, according to [15], pΩ = 1. Hence, in this case, the

estimator εp turns out to be equivalent to the error in W1,p(Ω) norm for all p ∈ (1, 2).

4.6 Numerical experiments

In this section we report several numerical experiments to assess the performance of an

h-adaptive mesh-refinement strategy based on the error indicators ηT,p and εT,p analyzed

in Sections 4.4 and 4.5.

The adaptive procedure consists in solving problem (4.4) on a sequence of meshes up

to finally attain a solution with an estimated error within a prescribed tolerance. With

this purpose, we initiate the process with a quasiuniform mesh and create, at each step,

a new mesh better adapted to the solution of problem (4.4). This is done by computing

the local error estimators ηT,p or εT,p for all T in the ‘old’ mesh Th, and refining those

elements T with ηT,p ≥ θmax{ηT,p : T ∈ Th}, (resp. εT,p ≥ θmax{εT,p : T ∈ Th}) where

θ ∈ (0, 1) is a prescribed parameter. In all our experiments we have chosen θ = 1
2
.

We have used a Matlab code adapted by us from [2] and the mesh generator Triangle.

This generator allows creating successively refined meshes based on a hybrid Delaunay

refinement algorithm (see [30]).

4.6.1 Test 1: A convex domain

The first set of tests consists of solving the problem −∆u = δx0
in the unit square

Ω := (0, 1) × (0, 1), with x0 = (0.5, 0.5). We choose Dirichlet boundary conditions such

that the exact solution is given by u(x, y) = 1
2π

log |x− x0|.

We show first the results obtained for the adaptive process guided by the error esti-

mator ηT,p.

Fig. 4.3 shows some of the successively refined meshes created in the process guided

by ηT,p, with p = 2, and under the constraint that x0 be a vertex of all the triangulations.

This figure also shows the computed solution, the iteration number, and the number of

degrees of freedom (d.o.f.) of each mesh. Fig. 4.4 shows the error curves of the whole

process for the exact and estimated errors. This figure also includes a line with slope −1,

which corresponds to the theoretically optimal order of convergence for piecewise linear

elements.
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iter=1      d.o.f.=25 iter=8      d.o.f.=257 iter=14      d.o.f.=3754

Figure 4.3: Convex domain with x0 being a vertex of the triangulations. Meshes and

approximate solutions obtained with ηT,p; p = 2.

It can be seen from Fig. 4.3 that the adaptive process leads to meshes correctly refined

around x0. On the other hand, the error curves show that the process yields optimal order

convergence. This happens in spite of the fact that the effectivity indices are very poor.

Indeed, it can be observed in Fig. 4.4 that the exact error is severely overestimated.

Anyway, the exact and estimated error curves have approximately the same optimal slope

−1.

Fig. 4.5 shows some of the successively refined meshes created with the adaptive pro-

cess guided again by ηT,p, with p = 2, but without the constraint that x0 be a vertex

of the triangulations. The same conclusions as in the previous test can be drawn from

Fig. 4.5 and 4.6.

It can be seen that the constraint of x0 being a vertex of the triangulations does not

make any significant difference.

Next, we report the results obtained with the adaptive process guided by εT,p as error

estimator. Fig. 4.7 shows some of the successively refined meshes created with the adaptive

process guided by εT,p, with p = 1.5, and x0 being a vertex of the triangulations, as well

as the computed solution. Fig. 4.8 shows successive zooms of the last final adapted mesh

around x0. The second square corresponds to a zoom of the white inner square in the

first one, amplified 10 times around x0, and so on. Fig. 4.9 shows the error curves for the

exact and estimated errors. It also includes a line with slope −1
2
, which corresponds to

the theoretically optimal order of convergence for piecewise linear elements in problems

with a smooth solution.
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Figure 4.4: Convex domain with x0 being a vertex of the triangulations. Estimator ηp and

exact Lp norm error curves; p = 2.

Figure 4.8: Convex domain. Successive zooms of the final adapted mesh obtained with

εT,p; p = 1.5.

These figures clearly show that the adaptive process leads again to correctly refined

meshes around x0. On the other hand, the error curves in Fig. 4.9 have almost the optimal

slope −1
2
.

Once more, essentially identical results were obtained for the same estimator εp, when
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iter=1      d.o.f.=24 iter=10      d.o.f.=483 iter=16      d.o.f.=3764

Figure 4.5: Convex domain with x0 not being a vertex of the triangulations. Meshes and

approximate solutions obtained with ηT,p; p = 2.

x0 is not a vertex of the triangulations.

4.6.2 Test 2: A non convex domain

We will solve the problem −∆u = δx0
in the L-shape domain shown in Fig. 4.10.

We choose Dirichlet boundary conditions such that the exact solution be u(x, y) =

u1(x, y) + u2(x, y) where

u1(x, y) =
1

2π
log |x− x0| and u2(x, y) = r2/3 sin

(
2

3
θ

)
. (4.26)

Here (r, θ) are the polar coordinates corresponding to (x, y) with θ ∈ [0, 2π).

Fig. 4.11 shows some of the successively refined meshes created in the adaptive process

guided by εT,p, with p = 1.5. It can be seen that the adaptive process leads to meshes

refined around both, x0 and the corner singularity.

On the other hand, Fig.4.12 shows the corresponding exact and estimated error curves.

Once more, it can be seen that the adaptive process yields optimal order convergence: the

exact and estimated error curves have both again approximately the same optimal slope

−1
2
.

Next, we report results obtained with the adaptive procedure guided by ηT,2 as error

estimator for the same problem. Notice that this example is not covered by Theorem 4.4.1.

Indeed, according to (4.18), for a non convex polygonal domain, pΩ < 2. Moreover, as

shown below, the estimator η2 is not expected to be equivalent to the L2(Ω) error for non
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Figure 4.6: Convex domain with x0 not being a vertex of the triangulations. Estimator ηp

and exact Lp norm error curves; p = 2.

convex domains. In spite of this fact, the adaptive process succeeds in yielding well refined

meshes and an optimal order of convergence, as shown in Fig 4.13 and 4.14, respectively.
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Figure 4.14: Non convex domain. Estimator ηp and exact Lp norm error curves; p = 2.

Let us remark that the non equivalence of η2 and ‖u− uh‖0,2,Ω is not related with the

singular character of the right-hand side of problem (4.1), but with the non convexity of
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iter=1      d.o.f.=25 iter=10      d.o.f.=705 iter=18      d.o.f.=5061

Figure 4.7: Convex domain. Meshes and approximate solutions obtained with εT,p; p = 1.5.

the domain. Indeed, consider the following problem with a piecewise constant f :

{
−∆v = f in Ω,

v = 0 on ∂Ω.

Let vh be the corresponding finite element approximate solution. The estimator anal-

ogous to ηT,2 for this problem is (see [31])

η̂ 2
T,2 := h4

T ‖f‖
2
0,2,T +

∑

ℓ∈ET
h

|Jℓ|
2|ℓ|4,

whereas the analogous to εT,2 is

ε̂ 2
T,2 := h2

T ‖f‖
2
0,2,T +

∑

ℓ∈ET
h

|Jℓ|
2|ℓ|2,

which defines a global estimator equivalent to |v − vh|1,2,Ω (see for instance [31] again).

Hence, from the standard theory of finite element approximation on fractional Sobolev

spaces (see for instance [9]), we have

η̂2 :=

(
∑

T∈Th

η̂ 2
T,2

)1/2

≤ Ch

(
∑

T∈Th

ε̂ 2
T,2

)1/2

≤ Ch |v − vh|1,2,Ω ≤ C ‖v‖1+α,2,Ω h
1+α (4.27)

∀α < π
θ
, where θ is the largest reentrant corner of Ω.
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Figure 4.9: Convex domain. Estimator εp and exact W1,p seminorm error curves; p = 1.5.
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Figure 4.10: L-shape non convex domain.

On the other hand, using the orthogonality of the error, integration by parts, and

Cauchy-Schwarz inequality, we have
∫

Ω

|∇(v − vh)|
2 =

∫

Ω

∇(v − vh) · ∇v =

∫

Ω

(v − vh)∆v ≤ ‖v − vh‖0,2,Ω ‖f‖0,2,Ω ,

which yields

‖v − vh‖0,2,Ω ≥ C |v − vh|
2
1,2,Ω .

In general, for quasiuniform meshes, ∃C > 0 such that |v − vh|1,2,Ω ≥ Chπ/θ (see [7]);

hence,

‖v − vh‖0,2,Ω ≥ Ch2π/θ. (4.28)

Therefore, from (4.27) and (4.28), we have that in general, for quasiuniform meshes,

η̂2 � C ‖v − vh‖0,2,Ω ,
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iter=1      d.o.f.=33 iter=10      d.o.f.=771 iter=15      d.o.f.=2789

Figure 4.11: Non convex domain. Meshes obtained with εT,p; p = 1.5.
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Figure 4.12: Non convex domain. Estimator εp and exact W1,p seminorm error curves;

p=1.5.

with a constant C independent of h. This lack of equivalence was somehow circumvented

in [23], where other estimator depending on the distance of the element to the singular

points of the solution and on the strength of the singularity was proposed.

Despite this lack of equivalence, if we use η̂T,2 as an indicator to refine the meshes,

we recover an optimal order of convergence in L2(Ω) norm. This can be seen in Fig. 4.15,

which shows the error curves for this approach applied to ∆v = 0 with Dirichlet boundary

conditions such that the solution be v = u2 as in (4.26).
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iter=1      d.o.f.=33 iter=7      d.o.f.=630 iter=10      d.o.f.=2015

Figure 4.13: Non convex domain. Meshes obtained with ηT,p; p = 2.
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Figure 4.15: Non convex domain; source term f = 0. Estimator η̂2 and exact L2 norm

error curves.

4.7 Conclusions

We have introduced residual type a posteriori error estimators for the standard finite

element approximation of the Poisson problem with a Dirac delta source term. We have

proved that these estimators are equivalent to the Lp norm or the W 1,p seminorm of the

error, for particular ranges of p. In particular, for convex domains, this includes L2 and

W1,p norms for all p ∈ (1, 2).

The estimators provide global upper and local lower bounds of the error norms. Be-

cause of this, we have used them to guide adaptive refinement schemes. We have shown

experimentally that these schemes yield optimal orders of convergence in terms of the
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number of degrees of freedom. This happens even for the L2 norm of the error on non-

convex domains, which is not covered by the theory because error and estimator are not

equivalent in such case.

The extension of this approach to advection dominated advection-diffusion-reaction

equations modeling pollutant transport and degradation in aquatic media is currently

under investigation.



Chapter 5

An adaptive stabilized finite element

scheme for a water quality model

Residual type a posteriori error estimators are introduced in this chapter for an

advection-diffusion-reaction problem with a Dirac delta source term. The error is mea-

sured in an adequately weighted W1,p-norm. These estimators are proved to yield global

upper and local lower bounds for the corresponding norms of the error. They are used to

guide adaptive procedures, which are experimentally shown to lead to optimal orders of

convergence.

5.1 Introduction

This chapter deals with the advection-diffusion-reaction equation with a Dirac delta

source term. This kind of problems arise, for example, when modeling pollutant transport

and degradation in an aquatic media if the pollution source is a single point. In particular,

our work is motivated by the need of an efficient scheme to be used in a water quality

model for the river B́ıo-B́ıo in Chile.

It is simple to show that the solution of this problem belongs to Lp for p <∞ and to

W 1,p for p < 2. In spite of the fact that the solution does not belong to H1, this problem

can be numerically approximated by standard finite elements.

Specially interesting is the case when the advective term is dominant, as typically

happens in real problems. In this case, the solution of the equation has a strong inner layer

arising from the source point aligned with the velocity direction. The standard Galerkin

approximation usually fails in this situation because this method introduces non-physical

oscillations.

67
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A possible remedy for this situation is to add to the variational formulation some nu-

merical diffusion terms to stabilize the finite element solution. Some examples of this ap-

proach are the streamline upwind Petrov-Galerkin method (SUPG) (see [11]), the Galerkin

least squares approximation (GLS) (see [18]), the Douglas-Wang method (see [16]), the

unusual stabilized finite element method (USFEM) (see [19]) and the residual-free bubbles

approximation (RFB) (see [10]). The drawback with most of these methods is that the

amount of numerical diffusion added to the discretization tends to be large. This means

that the solution layers are not always very well resolved because the layer zone is ar-

tificially wide. Furthermore, all this stabilization techniques do not consider non regular

right hand sides as, for example, a Dirac delta measure.

Due to the nature of the solution, when a strong inner layer is present, it is convenient

to compute the numerical solution in a well adapted mesh, which should be obtained by

means of an adaptive scheme.

There are not many references in the literature dealing with a posteriori techniques

for this equation. The reason of this is that most of the standard error estimators involve

equivalence constants depending on negative powers of the diffusion parameter, which

leads to very poor results in the advection or reaction dominated cases. An error estimator

which is robust in the sense of leading to global upper and local lower bounds depending

at most on the local mesh Peclet number has been developed by Verfürth (see [33] and

[32]). Using these results, Sangalli has analyzed a residual a posteriori error estimate

for the residual-free bubbles scheme (see [25]). On the other hand, Knop et al. have

developed some a posteriori error estimates using a stabilized scheme combined with a

shock capture technique to control the local oscillations in the crosswind direction (see

[22]). Finally, Wang has introduced an error estimate for the advection-diffusion equation

based on the solution of local problems on each element of the triangulation (see [35]). In

all these works smooth source terms are considered. On the other hand, an a posteriori

error analysis has been recently developed in [5] for the Laplace equation with a delta

source term. To the best of the authors knowledge, no a posteriori error analysis has been

performed for the advection-diffusion-reaction equation with a non regular right hand

side.

In this paper we introduce and analyze from theoretical and experimental points of

view an adaptive scheme to efficiently solve the advection-reaction-diffusion equation with

a Dirac delta source term. This scheme is based on the stabilized finite element method

introduced in [19], combined with an error estimator similar to that developed in [32] and

[4]. Although the stabilization technique [19] has been analyzed only for regular right hand

sides, our experiments show that the numerical scheme is convergent also in our case.
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Under appropriate assumptions, we prove global upper and local lower error estimates

in a weighted W1,p-norm, with constants which depend on the shape-regularity of the

mesh, the polynomial degree of the finite element approximating space, and, eventually,

on the diffusion parameter. Because of this last dependence, our theoretical results are

not optimal. However, we perform several numerical experiments in order to show the

effectiveness of our approach to capture the layers very sharply and without significant

oscillations.

The paper is organized as follows. In Section 5.2 we recall the advection-diffusion-

reaction problem under consideration and the stabilized scheme. In Section 5.3 we define

an a posteriori error estimator, prove some technical lemmas and show its equivalence with

the norm of the finite element approximation error. Finally, in Section 5.4, we introduce

the adaptive scheme and report the results of some numerical tests which allow us to asses

the performance of our approach.

5.2 A stabilized method for a model problem

Let Ω ⊂ R2 be a bounded polygonal domain with a Lipschitz boundary Γ = Γ̄
D
∪ Γ̄

N
,

with Γ
D
∩Γ

N
= ∅. We denote by n the outer unit normal vector to Γ. Let δx0

be the Dirac

delta measure supported at an inner point x0 ∈ Ω.

Our model problem is the advection-reaction-diffusion equation





−ε∆u+ a · ∇u+ bu = δx0
in Ω,

u = 0 on Γ
D
,

ε
∂u

∂n
= g on Γ

N
,

(5.1)

where:

(A1) ε ∈ R : ε > 0;

(A2) a ∈ W1,∞(Ω)2, div a = 0;

(A3) b ∈ R, b ≥ 0;

(A4) Γ
D
⊃ {x ∈ Γ : a(x) · n(x) < 0};

(A5) g ∈ L2(Γ
N
);

(A6) either b > 0 or |Γ
D
| > 0.
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We are interested in the advection-reaction dominated case in which ε≪ ‖a‖0,∞,Ω + b.

Here and thereafter we use standard notation for Sobolev and Lebesgue spaces and

norms. Moreover, let W 1,r
D (Ω) :=

{
ϕ ∈W 1,r(Ω) : ϕ|Γ

D

= 0
}

, 1 < r <∞.

Let us remark that problem (5.1) does not have a solution in H1(Ω). However, it has

a solution in W 1,p(Ω) ∀p < 2. In fact, let G(x) := 1
2π

log |x− x0| be such that

−∆G = δx0
in Ω;

i.e., −G is a fundamental solution of the Laplace operator. Straightforward calculations

show that G ∈W 1,p(Ω) ∀p ∈ [1, 2). Hence, substituting u = w+ε−1G in (5.1), we observe

that problem (5.1) has a unique solution if and only if the following problem does it:





−ε∆w + a · ∇w + bw = −ε−1
a · ∇G− ε−1bG in Ω,

w = −ε−1G on Γ
D
,

ε
∂w

∂n
= g −

∂G

∂n
on Γ

N
.

(5.2)

Since x0 /∈ ∂Ω, G and its normal derivative are smooth on ∂Ω. Hence, standard

arguments show that problem (5.2) has a unique solution w ∈ H1(Ω)(see for instance

[24]). Moreover, according to the results of [20], problem (5.2) has a unique solution

w ∈ W 1,p
D (Ω) for p ∈ (p∗, 2), where p∗ := 2

1+π/(2ω)
, with ω being the largest reentrant

corner on the domain Ω.

Consequently, problem (5.1) has a solution u ∈ W 1,p(Ω) ∀p < 2, and this solution is

unique if p∗ ≤ p < 2. Let us remark that for any polygonal domain Ω, p∗ ≤ 8/5. Moreover,

if Ω is convex, then p∗ < 4/3. From now on we restrict our analysis to a fixed p ∈ (p∗, 2).

Moreover, let q ∈ (2,∞) be such that 1
p

+ 1
q

= 1.

Let B be the bilinear form defined on W 1,p
D (Ω) ×W 1,q

D (Ω) by

B(v, w) :=

∫

Ω

(ε∇v · ∇w + a · ∇v w + bvw) . (5.3)

The following is a variational formulation of problem (5.1): Find u ∈ W 1,p
D (Ω) such

that

B(u, v) = 〈δx0
, v〉 +

∫

Γ
N

gv ∀v ∈W 1,q
D (Ω). (5.4)

(In the expression above 〈δx0
, v〉 = v(x0)).

It is clear that a solution of (5.1) in W 1,p
D (Ω) is also solution of (5.4). Straightforward

calculations show that the solution of (5.4) satisfies (5.1). Then (5.4) has a unique solution,

too.
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We consider the following norms on W 1,p
D (Ω) and W 1,q

D (Ω):

‖|u‖|p :=
(
ε

p

q ‖∇u‖p0,p,Ω + b
p

q ‖u‖p0,p,Ω

) 1

p

, ‖|v‖|q :=
(
ε

q

p ‖∇v‖q0,q,Ω + b
q

p ‖v‖q0,q,Ω

) 1

q

.

Assumptions (A1)–(A3) imply that

B(v, w) ≤
(
1 + ε−

1

q ‖a‖0,∞,Ω

)
‖|v‖|p ‖|w‖|q . (5.5)

On the other hand we also assume an inf-sup condition for B; namely, that there exists

β > 0 such that

sup
v∈W 1,q

D
(Ω)

B(u, v)

‖|v‖|q
≥ β ‖|u‖|p ∀u ∈ W 1,p

D (Ω). (5.6)

Remark 5.2.1 The condition above holds true (with β eventually depending on ε) if and

only if, for all f ∈ [W 1,q
D (Ω)]′ the problem

Find u ∈W 1,p
D (Ω) : B(u, v) = 〈f, v〉 ∀v ∈W 1,q

D (Ω),

has a unique solution (see for instance [17]). In its turn, the latter holds true for all p in

a neighborhood of 2. The length of this neighborhood depends on the geometry of Ω and

the boundary conditions (see [15]).

Let {Th}h>0, be a family of shape-regular partitions of Ω into triangles. Let Vh :={
ϕ ∈ C(Ω) : ϕ|T ∈ Pk ∀T ∈ Th and ϕ|Γ

D
= 0
}
⊂ W 1,q

D (Ω) ⊂ W 1,p
D (Ω), where, for k ∈ N,

Pk denotes the space of polynomials of degree at most k. It is well known that the

standard Galerkin method based on this finite element space yields poor approximation

when ε ≪ ‖a‖0,∞,Ω + b. For this reason, we consider the following stabilized formulation

introduced in [19]: Find uh ∈ Vh such that

Bτ (uh, vh) = Fτ (vh) ∀vh ∈ Vh, (5.7)

where, for vh, wh ∈ Vh,

Bτ (vh, wh) := B(vh, wh)

−
∑

T∈Th

∫

T

τT (−ε∆vh + a · ∇vh + bvh) (−ε∆wh − a · ∇wh + bwh) (5.8)

and

Fτ (vh) := 〈δx0
, vh〉 +

∫

Γ
N

gvh − τT 〈δx0
,−ε∆vh − a · ∇vh + bvh〉. (5.9)
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In the expressions above, the stabilization parameter τT is defined as follows:

τT (x) :=
h2

T

bh2
T

max{1,PeR

T
(x)} + (2ε/mk) max{1,PeA

T
(x)}

, (5.10)

with PeR

T
(x) and PeA

T
(x) being the Peclet numbers respectively defined by

PeR

T
(x) :=

2ε

mkbh2
T

and PeA

T
(x) :=

mk |a(x)|hT

ε
, (5.11)

where

mk := min{1/3, Ck},

with Ck being a positive constant satisfying

Ck
∑

T∈Th

h2
T
‖∆vh‖

2
0,T ≤ ‖∇vh‖

2
0,Ω ∀vh ∈ Vh,

which only depends on the polynomial degree k and the shape-regularity of the mesh.

The convergence and stabilization properties of this scheme have been investigated in

[19] for a smooth source term. However, for a non regular right hand side, no a priori

error estimates are known for this stabilized scheme.

In the following section we introduce a posteriori error estimators which will allow us

to create meshes correctly refined to solve the problem. We demonstrate numerically the

effectiveness of this approach in the last section.

From now on, C denotes a generic positive constant, not necessarily the same at each

occurrence, but always independent of the mesh-size and the small parameter ε.

5.3 A posteriori error estimator.

In this section we define a residual error estimator by combining ideas from [32] and

[4] for advection-reaction-diffusion problems with those in [5] for problems with a delta

source term.

For simplicity, we assume that the support x0 of the Dirac delta measure is a vertex

of the triangulation and that g is piecewise polynomial.

Let Eh denote the set of all edges in Th and, for E ∈ Eh, let hE be the length of E. We

define the volumetric and edge residuals by

RT := ε∆uh − a · ∇uh − buh, T ∈ Th, (5.12)
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RE :=





−

[[
ε
∂uh
∂nE

]]

E

, if E ∈ Eh : E * Γ,

g − ε
∂uh
∂n

, if E ∈ Eh : E ⊂ Γ
N
,

0, if E ∈ Eh : E ⊂ Γ
D
,

(5.13)

where [[·]]E denotes the jump across the edge E.

These residuals are used to define an estimator of the local error as follows:

ηT,p :=





(
αp

T
h
− 2p

q

T + αp
T
‖RT‖

p
0,p,T +

∑

E⊂∂T

ε−
1

qαE ‖RE‖
p
0,p,E

) 1

p

, T ∋ x0,

(
αp

T
‖RT‖

p
0,p,T +

∑

E⊂∂T

ε−
1

qαE ‖RE‖
p
0,p,E

) 1

p

, T 6∋ x0,

(5.14)

where, for S = T ∈ Th or S = E ∈ Eh,

αS :=

{
min

{
hSε

− 1

p , b−
1

p

}
, b > 0;

hSε
− 1

p , b = 0.
(5.15)

In what follows we prove some technical lemmas.

Let ω0 :=
⋃
{T ∈ Th : x0 ∈ T} and d := dist(x0, ∂ω0) (see Fig. 5.1). Notice that,

because of the regularity of the mesh, hT ≤ Cd. Let ψx0
be a smooth bubble function

defined in Ω with support in ω0 and satisfying:

0 ≤ ψx0
(x) ≤ 1 ∀x ∈ Ω, (5.16)

ψx0
(x) = 1 ∀x ∈ Ω : |x− x0| ≤

d

4
, (5.17)

ψx0
(x) = 0 ∀x ∈ Ω : |x− x0| ≥

3d

4
, (5.18)

|ψx0
|m,∞,ω0

≤ Cd−m, m = 1, 2. (5.19)

Such function can be easily obtained by convolution of the characteristic function of

the set {x ∈ Ω : |x− x0| < d/4} with a mollifier.
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d
x0

3d
4

Figure 5.1: Domain ω0 and support of ψx0
.

Lemma 5.3.1 Let T ∋ x0. Let ψx0
and ω0 be defined as above. Then

‖ψx0
‖0,q,E ≤ Ch

1/q
T ,

‖ψx0
‖0,q,T ≤ Ch

2/q
T ,

‖|ψx0
‖|q,T ≤ Cα−1

T
h

2/q
T .

Proof. Using (5.19) and the fact that hT ≤ Cd, the definition of | · |m,q yields

|ψx0
|m,q,E =

[∫

E

|Dmψx0
(x)|q

]1/q

≤ Cd−mh
1/q
T ≤ Ch

−m+1/q
T .

The same arguments give

|ψx0
|m,q,T =

[∫

T

|Dmψx0
(x)|q

]1/q

≤ Cd−mh
2/q
T ≤ Ch

−m+2/q
T .

This inequality and the definition of ‖|·‖|q allow us to complete the proof. 2

Lemma 5.3.2 Given T ∈ Th, let τT be defined by (5.10). Then the following bounds hold

∀x ∈ T :

ετT (x) ≤
1

6
h2

T
, |a(x)| τT (x) ≤

1

2
hT , bτT (x) ≤ 1.

Furthermore,

bτT (x) ≤ Cb
1

pαT .

Proof.

For the first estimate, we use (5.10) and (5.11) to obtain

ετT (x) ≤
εh2

T

bh2
T

max{1,PeR

T
(x)}

≤
εh2

T

bh2
T
PeR

T
(x)

≤
mk

2
h2

T
≤

1

6
h2

T
.
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For the second one, if a(x) = 0 there is nothing to prove; otherwise, by using (5.10)

and (5.11) we have

|a(x)| τT (x) ≤
|a(x)|mkh

2
T

2εmax{1,PeA

T
(x)}

≤
|a(x)|mkh

2
T

2εPeA

T
(x)

≤
1

2
hT .

For the third bound, (5.10) yields

bτT (x) ≤
1

max{1,PeR

T
(x)}

≤ 1.

Moreover, from the first estimate of this lemma, bτT (x) ≤ Cbh2
T
ε−1, too. Hence, taking

a weighted geometric mean of this and the third estimate, we have

bτT (x) ≤ Cb
1

ph
2

p

T ε
− 1

p ≤ C |Ω|
2

p b
1

p

(
hT
|Ω|

) 2

p

ε−
1

p ≤ Cb
1

phTε
− 1

p .

2

Lemma 5.3.3 The following estimates hold for all wh ∈ Vh:

|wh|m,q,T ≤ Ch−m
T
αT ‖|wh‖|T , m = 1, 2.

Proof. The definition of the norm ‖| · ‖|q,T implies that

|wh|1,q,T ≤ ε−
1

p ‖|wh‖|q,T , (5.20)

whereas, because of a standard scaling argument,

|wh|1,q,T ≤ Ch−1
T

‖wh‖0,q,T ≤ Ch−1
T
b−

1

p ‖|wh‖|q,T .

From these two inequalities we obtain

|wh|1,q,T ≤ Ch−1
T
αT ‖|wh‖|q,T . (5.21)

On the other hand, another scaling argument and (5.21) yield

|wh|2,q,T ≤ Ch−1
T
|wh|1,q,T ≤ Ch−2

T
αT ‖|wh‖|q,T ,

which completes the proof. 2

Lemma 5.3.4 The following estimates hold for all wh ∈ Vh:

|wh|m,∞,T ≤ Ch
−m− 2

q

T αT ‖|wh‖|T , m = 1, 2.
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Proof. Standard scaling arguments yield

|wh|m,∞,T ≤ Ch
− 2

q

T |wh|m,q,T , m = 0, 1, 2.

Finally, this estimate in addition to Lemma 5.3.3 complete the proof. 2

Denote by I
C

: L2(Ω) −→ Vh the Clément-like interpolation operator introduced in

[8]. Given T ∈ Th, let

ω̃T :=
⋃

{T ′ ∈ Th : T ′ ∩ T 6= ∅}. (5.22)

We prove several error estimates analogous to those in Lemma 3.2 of [32] .

Lemma 5.3.5 For all T ∈ Th, E ∈ ∂T and v ∈ W1,q(ω̃T ), the following error estimates

hold:
‖v − I

C
v‖0,q,T ≤ CαT ‖|v‖|q,eωT

,

‖v − I
C
v‖0,q,E ≤ Cε−1/(pq)α

1/p
E ‖|v‖|q,eωT

,

‖|I
C
v‖|q,T ≤ C ‖|v‖|q,eωT

.

Proof. The following error estimate for I
C

has been proved in [8]:

|v − I
C
v|l,q,T ≤ Chk−lT |v|k,q,eωT

, ∀k, l : 0 ≤ l ≤ k ≤ 1. (5.23)

The first inequality of this lemma follows from this estimate with l = 0 and k = 0, 1.

The following trace inequality can be proved by standard scaling arguments:

‖v − I
C
v‖0,q,E ≤ C

(
h
−1/q
E ‖v − I

C
v‖0,q,T + ‖v − I

C
v‖1/p

0,q,T |v − I
C
v|1/q1,q,T

)
.

Therefore, this inequality and the first inequality of this lemma yields

‖v − I
C
v‖0,q,E ≤ C

(
h
−1/q
E αT ‖|v‖|q,eωT

+ α
1/p
T ‖|v‖|1/pq,eωT

|v|1/q1,q,eωT

)

≤ C
(
h
−1/q
E α

1/p
T α

1/q
T ‖|v‖|q,eωT

+ α
1/p
T ε−1/(pq) ‖|v‖|q,eωT

)

≤ Cε−1/(pq)α
1/p
E ‖|v‖|q,eωT

.

Finally the third estimate of the lemma is also a consequence of (5.23) and the defini-

tion of ‖·‖0,q,E. 2

Lemma 5.3.6 For all v ∈W 1,q(ω̃T ), there holds

‖v − I
C
v‖0,∞,T ≤ Ch

1− 2

q

T ε−
1

p ‖|v‖|q,eωT
.
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Proof. Let I
L
v denote the Lagrange interpolant of v, which is well defined since v ∈

W 1,q(ω̃T ) ⊂ C(ω̃T ). The lemma follows from interpolation error estimates and standard

scaling arguments:

‖v − I
C
v‖0,∞,T ≤ ‖v − I

L
v‖0,∞,T + ‖I

L
v − I

C
v‖0,∞,T ,

≤ C

[
h

1− 2

q

T |v|1,q,eωT
+ h

− 2

q

T ‖I
L
v − I

C
v‖0,q,T

]
,

≤ C

[
h

1− 2

q

T |v|1,q,eωT
+ h

− 2

q

T

(
‖v − I

L
v‖0,q,eωT

+ ‖v − I
C
v‖0,q,eωT

)]
,

≤ Ch
1− 2

q

T ε−
1

p ‖|v‖|q,eωT
.

2

For each element T ∈ Th we define the element bubble function ψ
T

by

ψ
T

:= 27
∏

x∈N (T )

λx,

where N (T ) is the set of vertices of the element T and λx denote the corresponding

barycentric coordinates.

In the sequel we will also use certain special bubble functions associated to edges

E ∈ Eh and lifting operators, introduced by Verfürth in [32]. In what follows we remind

their definitions. Let T̂ be the standard reference element, of vertices (1, 0), (0, 1) and

(0,0). Given any number θ ∈ (0, 1], denote by Φθ : R2 → R2 the transformation which

maps (x, y) onto (x, θy). Let

T̂θ := Φθ(T̂ ),

and denote by λ̂1,θ, λ̂2,θ, and λ̂3,θ the barycentric coordinates corresponding to the points

P1, P2, and P3, as shown in Figure 5.2.

Φθ(T̂ )

(1, 0)(0, 0) P3 = (0, 0)

P2 = (0, θ)

P1 = (1, 0)

(0, 1)

Figure 5.2: Triangles T̂ and T̂θ.
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Let

ψ bE,θ :=

{
4 λ̂3,θλ̂1,θ on T̂θ,

0 on T̂ \ T̂θ,

where Ê := {(t, 0) ∈ R2 : 0 ≤ t ≤ 1}.

Let E ∈ Eh be an inner edge and denote by T1, T2 the two triangles sharing E. Let

ωE := T1 ∪ T2.

Denote by GE,i, i = 1, 2, the orientation preserving affine transformation which maps T̂

onto Ti and Ê onto E (see Figure 5.3).

(0, 0)

(0, 1)

(1, 0)

T̂

Ê

T1

E

T2GE,2

GE,1

Figure 5.3: Domain ωE and affine transformations GE,i, i = 1, 2.

For E ∈ Eh, let

θE :=

{
min{ε1/pb−1/ph−1

E , 1}, b > 0,

1, b = 0,

and

ψ
E

:=

{
ψ bE,θE

◦G−1
E,i in Ti, i = 1, 2,

0 in Ω \ ωE .

Let Π̂ := {(x, 0) : x ∈ R} and Q̂ : R2 → Π̂ be the orthogonal projection from R2 onto

Π̂. We introduce the lifting operator P̂Ê : Pk(Ê) → Pk(T̂ ) by

P̂Ê(σ̂) = σ̂ ◦ Q̂.

Let PE,Ti
: Pk(E) → Pk(Ti) defined by

PE,Ti
(σ) = P̂Ê(σ ◦GE,i) ◦G

−1
E,i, i = 1, 2.
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Finally, we define a lifting operator for σ ∈ Pk(E) by

PE(σ) :=

{
PE,T1

(σ) in T1,

PE,T2
(σ) in T2.

For E ∈ Eh such that E ⊂ Γ
N
, the function ψ

E
and the lifting operator PE are similarly

defined with the obvious modifications.

Lemma 5.3.7 The following estimates hold for all v ∈ Pk and T ∈ Th:

‖v‖0,p,T ‖v‖0,q,T ≤ C(v, ψ
T
v)T ,

‖|ψ
T
v‖|q,T ≤ Cα−1

T
‖v‖0,q,T .

Furthermore, for all E ∈ Eh and σ ∈ Pk(E), the following estimates hold:

‖σ‖0,p,E ‖σ‖0,q,E ≤ C(σ, ψ
E
σ)E ,

‖ψ
E
PE(σ)‖0,q,ωE

≤ Cε1/(pq)α
1/q
E ‖σ‖0,q,E ,

‖|ψ
E
PE(σ)‖|q,ωE

≤ Cε1/(pq)α
−1/p
E ‖σ‖0,q,E .

Proof. Scaling arguments show that

‖v‖0,r,T ≤ Ch
2

r
−1(v, ψ

T
v)

1/2
T with r = p, q,

which yield the first inequality. The third inequality follows from a similar argument.

For the second one, using the fact that |∇ψ
T
| ≤ Ch−1

T and standard scaling arguments,

we have

‖|vψ
T
‖|q,T ≤ C

[
ε

1

p ‖∇(vψ
T
)‖0,q,T + b

1

p ‖vψ
T
‖0,q,T

]

≤ C
[
ε

1

p

(
‖v∇ψ

T
‖0,q,T + ‖ψ

T
∇v‖0,q,T

)
+ b

1

p ‖vψ
T
‖0,q,T

]

≤ C
[
ε

1

ph−1
T ‖v‖0,q,T + b

1

p ‖v‖0,q,T

]

≤ Cmax{ε
1

ph−1
T , b

1

p} ‖v‖0,q,T

= Cα−1
T

‖v‖0,q,T .

The fourth inequality of the lemma follows from the definition of ‖·‖0,q,ωE
and the fact

that the size of the support of ψ
E

in the orthogonal direction to E is bounded by CθEhE,

with C only depending on the shape ratio of T . (see Fig. 5.4):

‖ψ
E
PE(σ)‖0,q,ωE

=

[∫

ωE

ψ
E
PE(σ)

]1/q

≤ C

[
θEhE

∫

E

ψ
E
σ

]1/q

≤ Cε
1

pqα
1

q

E ‖σ‖0,q,E .
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Tθ
CθEhE

hE

Figure 5.4: Domain Tθ

The last inequality of the lemma follows from the fact that |∇ψ
E
| ≤ C(θEhE)−1 and

standard scaling arguments:

‖|ψ
E
PE(σ)‖|q,ωE

≤ C
[
ε

1

p ‖∇(ψ
E
PE(σ))‖0,q,ωE

+ b
1

p ‖ψ
E
PE(σ)‖0,q,ωE

]

≤ C
[
ε

1

p

(
‖∇ψ

E
PE(σ)‖0,q,ωE

+ ‖ψ
E
∇PE(σ)‖0,q,ωE

)

+b
1

p ‖ψ
E
PE(σ)‖0,q,ωE

]

≤ C
[
ε

1

p (θEhT )−1 ‖PE(σ)‖0,q,ωE
+ b

1

p ‖PE(σ)‖0,q,ωE

]

≤ C max{ε
1

ph−1
T , b

1

p} ‖PE(σ)‖0,q,ωE

≤ Cε
1

pqα
− 1

p

E ‖σ‖0,q,E ,

where we have also used the fourth inequality of this lemma. 2

Now we are in position to state the main theoretical result of the paper.

Theorem 5.3.1 Let B be defined by (5.3). Let p < 2 be such that B satisfies (5.6) with

a constant β > 0. Let u and uh be the solutions of problems (5.4) and (5.7), respectively.

Let ηT,p be defined by (5.12)–(5.15) and, ∀T ∋ x0, let η0,T be defined by

η0,T :=

{
h

2−p

p

T ε−
1

p , if bhpT > ε,

0, if bhpT ≤ ε.
(5.24)

Then, there exist constants C and C ′, only depending on the regularity of the mesh

and the polynomial degree of the finite elements, such that

‖|u− uh‖|p ≤
C

β

(
∑

T∈Th

ηpT,p +
∑

T∋x0

ηp0,T

) 1

p

and

ηT,p ≤ C ′
(
1 + ε−

1

q ‖a‖0,∞,eωT

)
‖|u− uh‖|p,eωT

∀T ∈ Th,
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where ω̃T is defined by (5.22).

Proof. First, we write from (5.6),

β ‖|u− uh‖|p ≤ sup
v∈W 1,q

D
(Ω)

B(u− uh, v)

‖|v‖|q
. (5.25)

Now, consider an arbitrary v ∈W 1,q
D (Ω) with ‖|v‖|q = 1. Obviously, we have

B(u− uh, v) = B(u− uh, v − I
C
v) +B(u− uh, IC

v). (5.26)

Element-wise integration by parts yields

B(u− uh, w) = 〈δx0
, w〉 +

∑

T∈Th

(RT , w)T +
∑

E∈Eh

(RE, w)E ∀w ∈ W 1,q
D (Ω). (5.27)

Taking w = v − I
C
v, invoking Hölder’s inequality and Lemmas 5.3.5 and 5.3.6, we have

B(u− uh, v − I
C
v) ≤ C

[
∑

T∋x0

ηp0,T +
∑

T∈Th

αp
T
‖RT‖

p
0,p,T

+
∑

E∈Eh

ε−1/qαE ‖RE‖
p
0,p,E

] 1

p

≤ C

[
∑

T∋x0

ηp0,T +
∑

T∈Th

ηpT,p

] 1

p

. (5.28)

For the second term in the right hand side of (5.26), from (5.3), (5.4), (5.7), (5.8), and

(5.9), we have

B(u− uh, wh) = τT0
〈δx0

,−ε∆wh − a · ∇wh + bwh〉

−
∑

T∈Th

∫

T

τT (RT ,−ε∆wh − a · ∇wh + bwh).

Next, from Lemmas 5.3.2 and 5.3.3, straightforward computations lead to

∫

T

τT (RT ,−ε∆wh − a · ∇wh + bwh) ≤ CαT ‖RT‖0,p,T ‖|wh‖|q,T ,

whereas from Lemmas 5.3.2 and 5.3.4 we have

τT0
〈δx0

,−ε∆wh − a · ∇wh + bwh〉 ≤ CαT0
h
− 2

q

T0
‖|wh‖|q,T0

.
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Finally, we replace wh by I
C
v and use Lemma 5.3.5 to obtain

B(u− uh, IC
v) ≤ C

(
αT0

h
− 2

q

T0
‖|v‖|q,eωT0

+
∑

T∈Th

αT ‖RT‖0,p,T ‖|v‖|q,eωT

)
.

From the regularity of the mesh and the fact that ‖|v‖|q = 1, hold

B(u− uh, IC
v) ≤ C

[
∑

T∋x0

αp
T
h
− 2p

q

T +
∑

T∈Th

αp
T
‖RT‖

p
0,T

] 1

p

≤ C

[
∑

T∈Th

ηpT,p

] 1

p

. (5.29)

Thus, the first estimate of the theorem is a consequence of (5.25), (5.26), (5.28), and

(5.29).

To derive the other estimate of the theorem, we consider an arbitrary T ∈ Th. First,

we take w = ψ
T
RT in (5.27), and we have

B(u− uh, ψT
RT ) = (RT , ψT

RT )T . (5.30)

Using Lemma 5.3.7, (5.30), and Lemma 5.3.7 again, we have

‖RT‖0,p,T ‖RT‖0,q,T ≤ C(RT , ψT
RT )T

= CB(u− uh, ψT
RT )

≤ C
(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|p,T ‖|ψT

RT‖|q,T

≤ C
(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|p,T α

−1
T

‖RT‖0,q,T .

Hence,

αT ‖RT‖0,p,T ≤ C
(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|p,T . (5.31)

On the other hand, taking w = ψ
E
PE(RE) in (5.27) we obtain

(RE, w)E = B(u− uh, w) −
∑

T∈ωE

(RT , w)T

≤
(
1 + ε−

1

q ‖a‖0,∞,ωE

)
‖|u− uh‖|p,ωE

‖|w‖|q,ωE

+
∑

T∈ωE

‖RT‖0,p,T ‖w‖0,q,T .

Now, from Lemma 5.3.7,

‖RE‖0,p,E ‖RE‖0,q,E ≤ C

[(
1 + ε

1

q ‖a‖0,∞,ωE

)
‖|u− uh‖|p,ωE

ε
1

pqα
− 1

p

E ‖RE‖0,q,E

+
∑

T∈ωE

‖RT‖0,p,T ε
1/(pq)α

1/q
E ‖RE‖0,q,E

]
,



5.3 A posteriori error estimator. 83

and, multiplying by ε−1/(pq)α
1/p
E , we obtain

ε−1/(pq)α
1/p
E ‖RE‖0,p,E ≤ C

[(
1 + ε

1

q ‖a‖0,∞,ωE

)
‖|u− uh‖|p,T

+
∑

T∈ωE

αT ‖RT‖0,p,T

]
. (5.32)

Finally, taking w = ψx0
in (5.27), we have

〈δx0
, ψx0

〉 = B(u− uh, ψx0
) −

∑

T∈Th

(RT , ψx0
)T −

∑

E∈Eh

(RE, ψx0
)E.

Using the properties of ψx0
from Lemma 5.3.1, (5.5), and Hölder’s inequality, we obtain

1 ≤
(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|p,T ‖|ψx0

‖|0,q,T

+
∑

T∈wT

‖RT‖0,p,T ‖ψx0
‖0,q,T +

∑

E∈Eh

‖RE‖0,p,E ‖ψx0
‖0,q,E

≤ C

[(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|p,T h

2/q
T α−1

T

+
∑

T∈wT

‖RT‖0,p,T h
2/q
T +

∑

E∈Eh

‖RE‖0,p,E h
1/q
T

]
.

Thus,

h
−2/q
T0

αT0
≤ C

[(
1 + ε−

1

q ‖a‖0,∞,T

)
‖|u− uh‖|0,p,T

+
∑

T∈wT

αT ‖RT‖0,p,T +
∑

E∈Eh

ε−
1

pqα
1

p

E ‖RE‖0,p,E

]
, (5.33)

where we have used the fact that h
− 1

q

T αE ≤ ε−
1

pqα
1

p

E and the regularity of the mesh.

Thus, the second estimate of the theorem follows from (5.31), (5.32), (5.33), and the

definition of the estimator ηT,p, and we conclude the proof . 2

Remark 5.3.1 In absence of reaction, b = 0 and, according to (5.24), η0,T = 0, too. Con-

sequently, the estimator
(∑

T∈Th
ηpT,p
) 1

p is actually equivalent to the error for the advection-

diffusion problem.
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5.4 Numerical experiments

In this section we report several numerical experiments which allow us to assess the

performance of an h-adaptive mesh-refinement strategy based on the error estimator ηT,p.

The adaptive procedure consists in solving problem (5.7) on a sequence of meshes up

to finally attain a solution with an estimated error within a prescribed tolerance. With

this purpose, we initiate the process with a quasi-uniform mesh and, at each step, a new

mesh better adapted to the solution of problem (5.4) must be created. This is done by

computing the local error estimators ηT,p for all T in the ‘old’ mesh Th, and refining those

elements T with ηT,p ≥ µmax{ηT,p : T ∈ Th}, where µ ∈ (0, 1) is a prescribed parameter.

In all our experiments we have chosen µ = 1
2

and p = 1.5. The last choice guarantees

that (5.6) holds true. Indeed, according to [15], (5.6) is valid for p ∈ (1,∞) in the first

two cases and for p ∈
(

4
3
, 4
)

in the third one. To refine the meshes we have used the

red-green-blue strategy described in [31].

5.4.1 Test 1: A diffusion-reaction problem

For the first test we consider the problem

−ε∆u+ bu = δx0
. (5.34)

A fundamental solution of (5.34) is given by

u(x) :=
1

4iε
H

(1)
0

(√
b

ε
i |x− x0|

)
, (5.35)

where H
(1)
0 denotes the Hankel function of order zero (see [1]). The test consists of solving

problem (5.34) with x0 = (0, 0) on the square Ω := (−1, 1)× (−1, 1), ε = 10−4 and b = 1.

We choose a Dirichlet boundary condition such that the exact solution is given by the

real part of (5.35).

We report the results obtained for the adaptive process with ηT,p as estimator of

the error. Fig. 5.5 shows some of the successively refined meshes created in the adaptive

process and the corresponding computed solutions. The iteration number and the number

of degrees of freedom (d.o.f.) of each mesh are also reported in this figure.
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iter=0      d.o.f.=21 iter=20      d.o.f.=377 iter=40      d.o.f.=17417

Figure 5.5: Test 1. Meshes and computed solutions.

Fig. 5.6 shows successive zooms of the final adapted mesh around x0. The second

square corresponds to the white inner square in the first one amplified 10 times around

x0, and so on.

Figure 5.6: Test 1. Successive zooms of the final adapted mesh.

It can be seen from Fig. 5.5 and 5.6 that the adaptive process leads to meshes densely
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refined around x0.

Fig. 5.7 shows the error curves of the whole process for the exact error and for the error

estimators η :=
(∑

T∈Th
ηpT,p
) 1

p and η∗ :=
(∑

T∈Th
ηpT,p +

∑
T∋x0

ηp0,T
) 1

p , which, according

to Theorem 5.3.1, are lower and upper error estimators, respectively. This figure also

includes a line with slope −1/2, which corresponds to the theoretically optimal order of

convergence for piecewise linear elements.

Both estimators η and η∗ are significantly different during the first steps of the adaptive

process. In fact, although they only differ in the triangles T ∋ x0, the error concentrates on

these elements. This is the reason why the difference between η and η∗ is so pronounced.

However both estimators are equally good to guide the adaptive process. Indeed,

exactly the same meshes appear if η∗ is used instead of η in this test. Once the elements

T around x0 are sufficiently refined so that bhpT ≤ ε, according to the definition of η0,T ,

both estimators coincide. It can be seen from Fig. 5.7 that this happens in this test after

around 10 steps.
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Figure 5.7: Test 1. Estimators η and η∗, and exact W 1,p
D (Ω)-norm error curves.

The error curves show that, at the final stage, the adaptive process yields an optimal

order of convergence: the exact and estimated error curves have both approximately the

same optimal slope −1/2.
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5.4.2 Test 2: An advection-diffusion problem

The second test consists of solving the problem

−ε∆u+ a · ∇u = δx0
,

with x0 = (0.5, 0.5), Ω := (0, 3) × (0, 1), ε = 10−4, and a = (1, 0). We choose boundary

conditions as shown in Fig. 5.8.

∂u

∂n

= 0

1

y

x0

0 3

∂u

∂n

= 0

u = 0

∂u

∂n

= 0
x

Figure 5.8: Test 2. Boundary conditions.

Let us recall that in this case (b = 0), both estimators η and η∗, coincide.

Fig. 5.9 shows some of the successively refined meshes created in the adaptive process

for ηT,p, with p = 1.5.

iter=0      d.o.f.=39

iter=20      d.o.f.=520

iter=50      d.o.f.=13183

iter=10      d.o.f.=201

iter=40      d.o.f.=5172

iter=60      d.o.f.=37657

Figure 5.9: Test 2. Meshes obtained by the adaptive process.
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Fig. 5.10 shows successive zooms around x0 of the final adapted mesh. It can be seen

from Fig. 5.9 and Fig. 5.10 that the adaptive process leads to meshes refined around both,

x0 and the inner layer.

Figure 5.10: Test 2. Successive zooms of the final adapted mesh.

Fig. 5.11 shows the error curves of the whole process for the estimated errors. A

computed order of convergence of approximately −0.4 was obtained by means of a least

squares fitting.
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Figure 5.11: Test 2. Error curves for the estimator η.
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Fig. 5.12 shows several cross sections with vertical planes x = constant. It can be seen

that the numerical results present no spurious oscillations in the layer zone.
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Figure 5.12: Test 2. Cross sections of the computed solution.
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5.4.3 Test 3: Application to the B́ıo-B́ıo river

Our last test consists of an application of the described methodology to a realistic

scenario: a water quality model for B́ıo-B́ıo river in Chile. With this purpose we have solved

the advection-diffusion-reaction equation (5.1) which describes transport and degradation

of pollutants arising from a point source. Fig. 5.13 shows the geometry of the domain,

which correspond to a section of B́ıo-B́ıo river and two tributaries. It also shows the initial

used mesh (773 nodes) and the source point at one of the tributaries.

source point

Pollutant
1 Km

Figure 5.13: Test 3. Initial mesh and location of the source point.

Fig. 5.14 shows the velocity field a; the average speed is 0.02 Km/s. We have used

ε = 10−6 Km2/s and b = 10−3 s−1. We have taken the following boundary conditions:

u = 0 on the three inflow parts of the boundary and ∂u/∂n = 0 on the banks and the

outflow boundary.
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Figure 5.14: Test 3. Velocity field a.

Fig. 5.15 shows the final mesh (19884 nodes) after 60 steps of the adaptive process. It

can be seen that the mesh is well aligned with the inner layer.

Figure 5.15: Test 3. Final mesh.
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Fig. 5.16 shows the isovalues of the computed solution in the range 10−1–103 on the

final adapted mesh. It can be clearly seen that the combined effect of the stabilization

and the adaptive process allow us to identify the inner layer and get rid of any spurious

oscillation.

Figure 5.16: Test 3. Isovalues of the computed solution.

5.5 Conclusions

An adaptive finite element scheme for the advection-reaction-diffusion equation with

a Dirac delta source term has been introduced. This scheme is based on a stabilized finite

element method combined with a residual error estimator. In spite of the fact that the

used stabilization technique was originally introduced only for regular right hand sides,

our numerical experiments show that the scheme is convergent in our case, too. On the

other hand, the estimator is shown to be reliable and efficient in that global upper and

local lower error estimates are proved, although with constants eventually depending on

the diffusion parameter.

Several numerical experiments are reported. All of them show the effectiveness of this

scheme to capture the layers very sharply and without significant oscillations.
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