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RESUMEN

El objetivo de esta tesis es desarrollar y analizar, teérica y com-
putacionalmente, métodos numéricos para el calculo de los modos
naturales de vibracién de baja frecuencia de un sistema acoplado,
con interaccion acustica entre un fluido compresible y una estruc-
tura delgada.

Se demuestra convergencia y se obtienen estimaciones de error
optimas en orden y regularidad para el problema actstico espectral
sobre dominios curvos no convexos. Se estudian dos formulaciones
del problema, usando elementos lineales a trozos y continuos para
una formulacién en presiones y elementos de Raviart-Thomas para
una formulacién en desplazamientos.

Para la estructura se usa el modelo clasico de Naghdi sobre un
dominio de referencia. Para evitar el bloqueo numérico (locking),
se consideran métodos de bajo orden de la familia de los MITC
(Mixed Interpolation of Tensorial Component) sobre cuadrildteros.
Para una placa, bajo ciertas hipotesis, se prueba convergencia y esti-
maciones de error validas con constantes independientes del espesor
de la misma.

Finalmente, se considera el problema acoplado utilizando ele-
mentos de Raviart-Thomas hexaédricos en el fluido e imponiendo
de manera débil la condicién de interfaz entre ambos medios. Se
obtienen estimaciones de error 6ptimas para las autofunciones cal-
culadas asi como un doble orden para los autovalores.

Se presentan experimentos numeéricos que corroboran el buen
comportamiento de los métodos, incluso en algunos casos no cu-
biertos por la teoria desarrollada.

1X






ABSTRACT

The goal of this thesis is to develop and analyze, theoretically
and computationally, numerical methods for the computation of
the free vibration modes of coupled systems. We consider an elasto-
acoustic problem involving interaction between a compressible fluid
and a thin structure.

Convergence and optimal in order and regularity error estimates
are proved for the spectral acoustic problem on a curved non-convex
domain. We study two different formulations of the problem. The
first one is a pressure formulation which is approximated using stan-
dard piecewise linear continuous elements, and the other oner is a
displacement formulation approximated using Raviart-Thomas ele-
ments.

For the thin structure, we use the classical Naghdi model over
a reference domain. To avoid numerical locking, we consider a low-
order method of the so called MITC (Mixed Interpolation of Ten-
sorial Component) family on quadrilateral meshes. In the case of
a plate, under mild assumptions, we obtain convergence and error
estimates involving constants independent of the thickness.

Finally, we consider the coupled problem using hexahedal
Raviart-Thomas elements in the fluid and a non conforming cou-
pling on the fluid-solid interface. We obtain optimal order error es-
timates for the computed eigenfunctions, as well as a double order
for the eigenvalues.

We report several numerical experiments to assess the perfor-
mance of the methods, even in some cases not covered by the de-
veloped theory.
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Introduccion

Un problema importante que ocurre en aplicaciones en ingenieria proviene de las
numerosas situaciones en que una estructura soélida esta en contacto con un fluido.
Ejemplos de esta interacciéon son las vibraciones de un tanque de combustible, el
sonido de instrumentos musicales, propagacién de ruidos en vehiculos, el efecto del
aire en las alas de un avién, etc.

Dependiendo del acotamiento del dominio, diferente sera la naturaleza de estos
problemas: en la mayoria de las situaciones el sélido es un dominio acotado, aquellos
problemas en que el dominio del fluido también es acotado se llaman problemas
interiores (por ejemplo, un tanque lleno de liquido) y cuando el dominio del fluido
no es acotado se llaman problemas exteriores (por ejemplo, una barco flotando en el
mar).

Puede observarse que el conjunto de problemas que engloba la denominacién in-
teraccion fluido-estructura es muy diversa, sin embargo presentan dos caracterizticas
comunes, esto es, por una parte involucran el estudio tanto del fluidos como de es-
tructuras soélidas y, por otro lado, requieren establecer modelos adecuados para una
resolucion eficaz del problema acoplado.

En este trabajo nos enfocaremos al estudio de la resolucién numérica de un
problema interior de interaccion fluido-estructura: el problema elastoacustico. Un
problema modelo, de este tipo, consiste en determinar la respuesta dindmica de un
fluido, compresible e ideal, que ocupa un dominio acotado, en contacto con una
estructura eldstica, ambos en pequenos desplazamientos, sujeto a fuerzas externas
periddicas.

Nuestro interés radica en el calculo de los primeros modos de vibraciéon de un
sistema elastoactstico. Principalmente, el conocimiento de estas frecuencias de vi-
bracién es necesario para evitar efectos de resonancia. Cuando una fuerza externa
periddica actia sobre un sistema dinamico, la intensidad de la respuesta dependera
de la frecuencia de la fuerza externa y serd maxima cuando ésta sea igual a una
de las frecuencias naturales del sistema, esto es, la raiz cuadrada de alguno de los
primeros valores propios del sistema. Es decir, si la fuerza periédica externa tiene
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un periodo cercano a los de resonancia se producird un efecto importante sobre el
sistema, lo cual podria corresponder a tensiones maximas, posibles rupturas o ruido
excesivo dentro de la cavidad.

Para los problemas en que la estructura es un sélido elastico que interactia
con fluido, existe un fuerte desarrollo tedérico y numérico, mucho del cual se puede
encontrar en las monografias de Morand y Ohayon[68], Conca et al.[39] y Ohayon
y Soize[69], donde también se dan métodos numéricos para la resolucién de este
problema, y més referencias sobre el tema.

En las aplicaciones es usual que la estructura sea delgada en cuyo caso, ademas,
la interaccion entre el fluido y la estructura suele ser méas fuerte. Un ejemplo tipico
de aplicacion es la transmisién de ruidos al interior de vehiculos. En nuestro tra-
bajo consideramos estas estructuras delgadas; esto es, en general, cdscaras si son
superficies curvas o placas si son superficies planas.

En lo que sigue presentamos los modelos que utilizaremos para describir el fluido
y la céscara.

Fluido.

Consideramos un fluido actstico, es decir, no viscoso, irrotacional y compresible.
Estas hip6tesis son plausibles cuando se trata de modelar la interaccién acustica
de un gas en contacto con un sélido (por ejemplo, transmisién de ruidos). Distin-
tas formulaciones han sido propuestas para el analisis de problemas de interaccién
fluido—estructura considerando este modelo. Mas atin, como las cdscaras en gene-
ral son curvas, estas formulaciones se establecen en dominios curvos, los cuales no
necesariamente son convexos.

Las ecuaciones dinamicas que describen los pequenos desplazamientos de un flu-
ido, respecto de una posicién de equilibrio, al suponerlo viscoso y barotrépico, pueden
obtenerse utilizando las fluctuaciones Eulerianas y Lagrangianas de éste, tanto para
el problema como para las condiciones de frontera (una descripcién detallada puede
encontrarse en el libro de Morand y Ohayon[68]).

Si U(x,7) y P(x,7) representan los desplazamientos y las presiones de una
particula en la posicién z en el tiempo 7, la segunda Ley de Newton se traduce
en una vinculacion entre estas pequenas variaciones de presion y los pequenos des-
plazamientos del fluido en la forma:

VP = —ppU,

donde pg denota la densidad del fluido. Por otro lado, una especie de ley constitutiva,
obtenida a partir de la conservacién de masas, despreciando el efecto de la gravedad,

se expresa como
P=- ppczdivU
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donde c es la velocidad acustica o velocidad del sonido. Notemos que esta ley es-
tablece que cuando menos compresible es el fluido mas alta debe ser la velocidad del
sonido en él.

Con esto, las ecuaciones dinamicas del fluido son

VP = —ppU
P = —ppcdivl,

para x en el dominio del fluido y el tiempo 7 > 0, méas condiciones iniciales en 7 = 0.
Una solucién estacionaria del problema se obtiene buscando soluciones armoénicas
en el tiempo de la forma

Ulz,7) = i(r)coswr

P(z,7) = p(z)coswr,

donde @ y p denotan los desplazamientos y las presiones como variables que sélo
dependen de la posicién, y w es la frecuencia angular de vibracion. Notemos que de
la paridad de coseno, el caso de interés se reduce a w > 0. Teniendo en cuenta las
expresiones anteriores, las ecuaciones que gobiernan las vibraciones libres (modos
propios) de pequenia amplitud del fluido, en el dominio de las frecuencias, son:

e Ecuacién de movimiento: Vp = w?prpi,
e Conservacién de masa: p = —prcidivil.

Es claro que éstas ecuaciones pueden reducirse, utilizando la presiéon como variable
o bien el desplazamiento, obteniendo una tnica ecuacién en derivadas parciales.

El problema de determinar las vibraciones del fluido solo usualmente se trata
eligiendo la presién como variable primaria, lo cual parece razonable considerando
que p es una variable escalar. En este caso resulta:

—prAp = w? p—fp-
c

Tipicamente, el fluido solo se encuentra en una cavidad rigida, lo que conduce a
imponer una condicién homogénea sobre la derivada normal de la presiéon en la
frontera. En cuyo caso, el problema que resulta es estudiar el calculo de autovalores
del Laplaciano con condicién de Neumann homogenea en un dominio no convexo.

En el Capitulo 1 de este trabajo consideramos la aproximacién por elementos
finitos de este problema en un dominio no convexo. El contenido de este capitulo
corresponde al articulo [56]:
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e E. HERNANDEZ AND R. RODRIGUEZ, Finite element approximation of spectral
problems with Neumann boundary conditions on curved domains. Mathemat-
ics of Computation (En prensa).

Haciendo uso de la teoria abstracta de convergencia espectral expuesta en Babus-
ka y Osborn|[7], para operadores compactos, en este articulo se ha probado conver-
gencia y estimaciones de error 6ptimas para la aproximacion del problema de auto-
valores del Laplaciano en 2D, con condiciones de Neumann, usando elementos finitos
lineales a trozos y continuos en un dominio poligonal discreto €2, que aproxima el do-
minio original {2 no convexo, es decir, se tiene €2, ¢ €). Resultados similares habian
sido probados por Vanmaele y Zenisek[82, 83] (usando la caracterizacién min-maz
de autovalores expuesta en Strang y Fix[80]) y por Lebaud[64], en ambos casos solo
para condiciones de frontera de Dirichlet.

Para problemas acoplados, la eleccién de la presion para describir el fluido tiene
un inconveniente, lleva a problemas de autovalores no-simétricos, cuya solucién com-
putacional involucra complicaciones a la hora de calcular los autovalores en los sis-
temas resultantes.

Alternativamente, el fluido ha sido descrito por diferentes variables, Everstine[47]
y Olson y Bathe[70] han usado el potencial de velocidad (es decir, una funcién ¢ tal
que 0u/0T = V) obteniendo una formulacién anédloga a la anterior que involucra
problemas de autovalores cuadrdticos, mientras Morand y Ohayon[68] han usado
la presion y el potencial de desplazamiento, conjuntamente, obteniendo problemas
simétricos, pero de gran tamano.

Otra posibilidad consiste en eliminar la presién para llegar a una ecuacién en
funcion del desplazamiento:

—prcV (divi) = w?ppil,

lo que lleva a problemas de autovalores tambien simétricos. Sin embargo, con dos
importantes dificultades.

Por un lado, la variable es vectorial lo cual requiere una aproximacion por ele-
mentos finitos, en principio, més costosa.

Por otro lado, la segunda dificultad es aiin mas compleja. En la formulacién en
desplazamientos el cero es un autovalor del sistema con autoespacio propio de di-
mension infinita, cuyos elementos son nulos en el sélido y en el fluido corresponden a
movimientos rotacionales que no inducen variacién de la presiéon. Una discretizacién
estandar de esta formulacién involucra la presencia de frecuencias no nulas corres-
pondientes a modos espureos que no poseen sentido fisico.
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Una discretizacién alternativa ha sido introducida por Bermidez y Rodriguez[19],
la cual consiste en usar los elementos de Raviart—-Thomas|[75, 81] (llamados “edge
elements’” o “face elements”, en 2D o 3D, respectivamente) para el fluido. Para
problemas bidimensionales se ha probado en [12] y [74] la no existencia de modos
espureos y estimaciones de error con orden éptimo. Para ello se ha extendido la
teoria espectral de operadores no compactos en [40] a métodos no conformes.

En el Capitulo 2, extendemos los resultados de [12] a un dominio curvo no nece-
sariamente convexo. Este capitulo corresponde, principalmente, al articulo [56]:

e E. HERNANDEZ AND R. RODRIGUEZ, Finite element approximation of spectral
acoustic problems on curved domains. (Enviado a Numerische Mathematik).

En él hemos considerado la formulacién en desplazamientos del problema espec-
tral de la acustica en un dominio curvo y no convexo. Hemos probado convergencia
y estimaciones de error 6ptimas para la aproximacion usando elementos de Raviart-
Thomas. Tales resultados se conocen sélo para dominios poligonales ([12]).

Céscara.

Una cascara es un medio continuo tridimensional del cual una dimensién, el
grosor, es pequeno comparado con las otras dos. Bajo la accion de pequenos movimien-
tos la cascara se deforma de acuerdo a las leyes normales de la elasticidad tridimen-
sional.

El conocimiento de las vibraciones libres de una cascara elastica es importante
para el entendimiento general de los principios basicos de su comportamiento. Bajo
la hipotesis de pequenos desplazamientos, son validas las ecuaciones clasicas de la
elasticidad lineal escrita en término de los desplazamientos. Sin embargo, al intentar
simular computacionalmente una estructura delgada como un sélido tridimensional
los resultados que se obtienen son de muy mala calidad (como lo ilustra el segundo
ejemplo en [17]).

De hecho, si bien la literatura sobre cdscaras es muy amplia, es comun admitir
que los métodos computacionales utilizados no son completamente confiables (ver
por ejemplo [30]). Desde el punto de vista del andlisis numérico, hay serias difi-
cultades para tratar cdscaras. En efecto, el concepto general de “céscaras” cubre
varias familias de problemas con muy marcadas diferencias en su comportamiento,
dependiendo, por ejemplo, de la geometria de la superficie media, las condiciones de
frontera y las cargas o fuerzas externas.

Durante los dltimos anos, una gran cantidad de trabajo se ha desarrollado en
el tema, principalmente por las dos comunidades interesadas en resolver numeri-
camente el problema: matemdticos numéricos e ingenieros. Pese al interés comun ,
existe un grado de confusion entre ambas corrientes.
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Como ha mencionado Chapelle en [31], en un marco general, se puede clasificar
los elementos finitos para cdscaras en dos grandes familias: métodos que resultan de
la discretizacién de los modelos matemaéticos clésicos de cdscaras (métodos bidimen-
sionales), donde el dominio de las incdgnitas es la superficie media de la céscaras
(mas precisamente, necesitan una aplicacién, llamada carta, que transforma un do-
minio bidimensional en la superficie media de la cdscara, ver por ejemplo [21, 33]),
y métodos basados en “degenerar” un elemento finito sélido 3D en un “elemento de
cascara” usando algunas hipdtesis cinematicas para describir la variacion del des-
plazamiento a largo del grosor de la estructura (elementos generales de céscaras, ver
8, 11, 23]).

Los métodos cléasicos son usualmente los elegidos por los matematicos. Principal-
mente, porque se puede mostrar que las soluciones se aproximan con cierta precision
y, de hecho, se pueden obtener estimaciones de error a priori (ver [21]). Sin embargo,
estos métodos requieren un abundante uso de la carta y, mas aun, las constantes
que aparecen en las estimaciones dependen del grosor de la cascara. Esto ltimo,
provoca lo que se conoce como blogueo numérico (“locking”), al disminuir el grosor
de la céscara. Por otro lado, al no necesitar el uso de una carta y emplear leyes cons-
titutivas generales 3D, los “elementos de cascaras” entregan una mayor versatilidad
al momento de usarlos. Sin embargo, debido a su construccién especifica, es dificil
obtener un analisis matemdtico general para ellos.

Recientemente, se ha obtenido una relacion asintética entre las dos familias de
métodos (ver [31, 34]), lo que pone de manifiesto la necesidad de avanzar en el
estudio de los métodos clasicos.

Los modelos de cascaras clasicos mas utilizados en la practica son los de Naghd:
y de Koiter (ver Bernadou[21]). Ambos toman en cuenta las deformaciones tanto
de tipo membrana como de flexion. Se diferencian en que el segundo desprecia el
esfuerzo de corte tranversal de la cascara, al suponer que los puntos situados sobre
una normal a la superficie media antes de la deformacion permanecen en ésta des-
pués de la misma. Esta hipétesis es razonable para las cascaras delgadas pero no
para las moderadamente gruesas, en cuyo caso se considera el esfuerzo de corte,
lo que se conoce como hipétesis de Reissner-Mindlin. Es importante hacer notar
que estos modelos, se enmarcan en las hipétesis clasicas de operadores simétricos y
compactos en un espacio de Hilbert. Asi, el problema admite una sucesién creciente
de autovalores reales, estrictamente positivos y de multiplicidad finita (ver [21]).

En lo que sigue introducimos las herramientas necesarias para describir estos
modelos.

Las inc6gnitas, para estos modelos matematicos, se definen en la superficie media
de la cascara, es decir sobre un dominio de referencia bidimensional que denotamos
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por Q C R2, con frontera 0N desde el cual la superficie media S se obtiene via una
carta ¢ (también denominada mapeo),

(l_;! (&1,&) € QCR — 5(51,52) €eSc R?’;

donde S = SUAS con IS = 5(89) Asumimos que tanto ¢ como 9< son suficien-
temente regulares. En particular, asumimos que todos los puntos de la superficie
media S = ¢(Q) son regulares.

Con el propésito de introducir el modelo y el problema de vibraciones corres-
pondiente, necesitamos algunas definiciones y notaciones clésicas de la geometria
diferencial (ver Bernadou[21]).

Denotemos por d,, o = 1,2, la base covariante del plano tangente a la superficie

-

media en el punto ¢(&1, &) (ver Figura 1), esto es

. 06
d’a:gb,a:—q5 =12

66-&5 o 7=

y la base contravariante @®, dada por

1 a=p4
7@ = — )
o = o {Oaw,

donde «a, 8 € {1,2}. El vector normal unitario a la superficie media en el punto

-

B(£1,62) es

5 &’1 X C—I:Q
a3 = 1> =
|(11 X ag‘
donde | - | denota la norma euclideana en el espacio R3.

Entonces podemos definir la cdscara sin deformar C, de grosor constante t, como
el subconjunto cerrado de R* formado por todos los puntos situados a una distancia
& € [—%, L] desde el punto B(£1, &), en la direccién de @, para todo punto (&1, &) €
ﬁ, esto es

c:{MeRﬁJw=&&£g+&@(&@yg1_f<&<f}

27 772
En lo que sigue, las letras griegas «, 3, ... denotan indices que toman valores
en el conjunto {1,2}, las letras latinas 4, j, ... para indices en el conjunto {1,2,3}.

Usamos también la cldsica convencién sobre los indices repetidos (conocida como
notacién de Einstein), es decir indices repetidos indican sumatoria sobre ellos.
Denotamos por aqg la primera forma fundamental de la superficie, que estd dada
por
Qo = d'a . 6/5,
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Figure 1: Definicién de la superficie media.

o bien, alternativamente, en su forma contravariante

a® =a*-a.
La sequnda y tercera forma fundamental estdn dadas por

bop = 3 - G p y Cap = DAbAS,

con b} = a’*by,. Como todos los puntos son regulares, el nimero a = det(aqg) =
a11092 — a34 es no nulo, luego la medida de superficie estara dada por

ds = |C_1,'1 X C_L‘2|d€1d€2 = \/Edfld€2

Por otro lado, las derivadas covariantes de un vector tridimensional v se definen
por
— .
Iva‘ﬂ = Vo, a,ﬂv/\’

donde Fé,ﬂ representa los simbolos de Christoffel , que estan dados por

—

A A —\ S\ o
Fa,/j = Fﬂ,a =a" -0gq =0 *lag

Como hemos mencionado, los modelos clasicos de cascaras estan basados en
hipétesis cinemadticas, las cuales se usan para describir el desplazamiento de los
puntos localizados sobre una fibra del material que es ortogonal a la superficie en la
configuracién original (antes de la deformacién), como en la Figura 2.

El modelo de Naghdi estd basado en las hipdtesis cinemaéaticas de Reissner-
Mindlin, esto es que cualquier fibra normal a la superficie media permanece rigida
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-

Antesdela def. Despues de la def.

Figure 2: Aspectos geométricos de la deformacién de una céscara (seccién tranver-
sal).

durante la deformacion. Los desplazamientos en cualquier punto en C estan dados
por

U= ﬂ:(é-la 62) + 53 Q(gl, 52)5 (1)

donde 6, es un vector que representa las rotaciones de la fibra normal, la cual es
tangente a la superficie media en el punto de coordenadas (£1, &2), es decir 8 = 6,a*
(como un vector en R?), y & = (u,us) es el desplazamiento en la superficie media
(como un vector en R?).

El problema de autovalores consiste en considerar las vibraciones que pueden
ocurrir en una cascara que se encuentra libre de cargas externas en todo tiempo y
que esta sujeta a condiciones de frontera que son independientes del tiempo. Estas
son las que se conocen como vibraciones libres y pueden ser representadas por una
expresién del tipo:

Uj(£1,£2a£3a 8) = Uj(é-la£2a£3) COsSWs, .7 = 15 2: 35

donde U = (Uy, U, Us) y U = (Uy, U, Us) son funciones (campos de desplazamien-

tos) definidas en cualquier punto de la céscara C, con U independente del tiempo s

y definida de acuerdo a (1). La constante w corresponde a la frecuencia de vibracion.
En general, al considerar modelos bidimensionales, la formulacién variacional de

este problema puede escribirse de la siguiente manera:

Hallar A > 0 y (4,0), tal que

£A((@0), (7,m)) +tD((@.0), (7,0) = AB((@.9), B.m)) V@n) €U, ()
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donde U es el espacio en el que buscamos la solucién y que contiene condiciones
de frontera apropiadas, de tal manera que el problema este bien planteado. Por
otro lado, A = pw?, donde p es la densidad del material. La definicién de las formas
bilineales A, D y B dependen del modelo que se considere, Ay D son independientes
del grosor t.

En la formulaciéon de Naghdi, la forma bilineal A, corresponde al término de
flexién de la cédscara (bending term), que esta dado por

Lo EoP a .
A(@0.0.0) = [ S5 xn(@ (70 dS,

donde el operador de deformacién de flexion, o tensor de curvatura de flexién y, esta
dado por

4 1 (0% (6%
Xou(U; 1) == 2 [77/\\/1 + Nux — OxVaju — b,ﬂ)ap\] + Cauls-

El tensor de cuarto orden, presente en la definicion anterior, contiene las propiedades
del material y esta definido por

EoBM . — a®aP* + a™" P + —2V a”‘ﬂa)‘“] ,

m[ 1+v

donde F y v, denotan el médulo de Young y el coeficiente de Poisson, respecti-
vamente. La forma bilineal D puede escribirse como la suma de un término de
membrana D™ (membrane term) y un término debido al corte transversal D?® (shear
term), y estan definidas por

D™, §) = / BBy (i) ona(7) dS
Q

D ((@0).(5.1) = [ 6"1(@0)(51) 05

donde, el tensor de deformacién de membrana ¢, el tensor de deformacion de corte
v vy el factor G’ se definen mediante

oa(V) = §(UAIM + Uu|)\) — bauvs,
v8(T,m) = vz + bzus+ 1,
G .= Laﬁ_
2(1+v)

La forma bilineal en el lado derecho de (2), correspondiente a los términos de masa,
esta definida por

3

(o o) i [aaas « 2o
B ((u,ﬁ),(v,g))— /Qu 7dS + 15 QH n dsS.
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El modelo de Koiter esta basado en las hipétesis de Kirchhoff-Love que cualquier
fibra normal a la superficie media permanece rigida (como en el caso de Naghdi) y
normal a la superficie deformada. Los desplazamientos pueden escribirse como:

U =i(&1,8) — &(tsn + bhuy)a®, (3)

donde, como antes, 4(&1,&s) estd definida en €. Si comparamos las ecuaciones (1)
y (3), se puede notar que la hipGtesis sobre los desplazamientos es equivalente a
imponer que las rotaciones estén dadas por

Oa = —(’L_Irg,a + bQU,)‘).

En este caso el término de corte no aparece en la formulacién, y las formas bilineales
Ay D estdn dadas por

Ko Eaﬂ/\u_ N
AN(@,7) 1= | = Pas(@pru() dS,

donde el tensor de flexion es
ﬁ)‘u(’l_f) = ’Ug‘)\u — C,\Iﬂ)g —+ bfmva + bfuaw + bfjvau,
la parte de membrana es identica al caso anterior,
DX (i, 5) == D™(i, ),
y, el término de masa,
K(= = 10 o op

BX(#,5) = t Q{[H (b1 —b1b2)] [a Uas —|—u31)3]
t2
Ea
+  (uaV3)p + U3jaVs + Qb;\u,\vg)bﬂ } ds.

af [(u;),‘a + bgu)\)(vgm + bgux)

Una diferencia importante entre ambos modelos es la respectiva regularidad de
los espacios en que se busca la soluciéon. Para el modelo de Naghdi, éste es de la
forma

U= {(1?, n) € H' QP : dlr, =0, nlr, = g},

UK .= {ae H(Q)]? x H2(Q) : 7|, = 6}.

para el modelo de Koiter. En ambos espacios, se ha puesto una condicién de frontera
suficiente para prevenir los movimientos de cuerpo rigido sobre una parte I'y C I'.
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Una importante propiedad de estos modelos aparece en el libro de Bernadou[21].
Alli se muestra que se tiene una estimacién del tipo

VG <AV V)+tD(V, V) < Ct|V|3, VYV eUu (4)

donde || - ||z denota la norma usada por U de acuerdo a la naturaleza del problema,
V' denota simbdlicamente el campo de desplazamientos para cada modelo.

Nuestro interés es estudiar ciscaras tanto delgadas como moderadamente grue-
sas, por ello en este trabajo nos restringimos al modelo de Naghdi. Es decir, estamos
interesados en resolver el problema (2), en el que las formas bilineales son A, D™,
D?y BV,

Notemos que, las constantes de elipticidad y acotamiento presentes en la esti-
macién (4) (¢; y Cy, respectivamente) dependen del pardmetro de grosor ¢. Més atin,
la constante ¢; degenera cuando el grosor disminuye (¢; — 0 cuando ¢ — 0. Este es
el principal inconveniente a la hora de implementar métodos usuales de elementos
finitos para solucionar el problema, pues por ello apararece el fenémeno de bloqueo
numérico.

Para evitar el fenémeno de bloqueo, se han introducido algunos métodos espe-
ciales basados en integracion reducida o interpolacién mixta. De ellos, los llamados
MITC (Mixed Interpolation of Tensorial Component), introducidos por Bathe y
Dvorkin en [10], o variantes de ellos, corresponden a la familia de métodos més
utilizados en la practica.

El modelo de Reissner-Mindlin para flexiéon de placas, que es el més utilizado
en casos de cascaras planas moderadamente gruesas, puede ser entendido como un
caso especial del modelo clasico de Naghdi, en el que el desplazamiento transversal
aparece separado de los desplazamientos en el plano. Estos pueden ser escritos en
término de las rotaciones de una fibra normal a la superficie media de la placa.
Mas precisamente, esto puede entenderse al considerar una placa cuya superficie
media se genera por un mapeo del tipo ¢(z,y) = (z,y,0) para (z,y) en una regién
2 bidimensional, en tal caso, las expresiones resultan facilmente calculables y la
independencia mencionada se nota claramente. De ésta forma, el problema de la
deformaci6n en el plano puede tratarse de manera independiente (ver [87]).

Para problemas de cargas, se han publicado un gran ntimero de trabajos que
contienen analisis matematicos del método MITC o variantes de él, aplicado a la
flexi6én de placas (ver, por ejemplo, [5, 9, 44], e incluso para versiones hp del método
[79]).

En ellos se ha establecido convergencia y estimaciones de error que no dependen
del grosor de la placa, lo que descarta la aparicion del fenémeno de bloqueo. Sin em-
bargo, resultados de este tipo para elementos finitos cuadrilaterales isoparamétricos,
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como el original propuesto por Bathe y Dvorkin[10], no habian sido obtenidos pese
a ser éstos los elementos mas comunmente utilizados en aplicaciones en ingenieria.

En el Capitulo 3, consideramos dos métodos de méas bajo orden pertenecientes
a la familia de MITC, sobre mallas cuadrilaterales. Este capitulo corresponde al
articulo [43]:

e R. DURAN, E. HERNANDEZ, L. HERVELLA-NIETO, E. LIBERMAN, R. RODRIGUEZ,
Error estimates for low-order isoparametric quadrilateral finite elements for
plates. (enviado a SIAM Journal on Numerical Analysis).

Asumiendo algunas hipétesis sobre las mallas, hemos probado estimaciones de
error 6ptimas en orden y regularidad de la aproximacién del problema de flexién
de placas, usando el método original MITC4 y una variante de él, que enriquece
el espacio de aproximacién de las rotaciones, llamado DL4 (el nimero, en ambos
casos, hace referencia a que se basan en cuadrilateros con 4 nodos). Haciendo uso
de la teoria abstracta de convergencia en [7], también se obtienen estimaciones de
error para la aproximacién del problema de vibracién de placas. Incluimos también
resultados numeéricos que muestran el buen comportamiento de los métodos, incluso
en casos no cubiertos por la teoria presentada en el capitulo.

Al momento de experimentar numéricamente el problema de vibracién de cascaras
usando MITC4, se debe destacar dos puntos.

Por un lado, recientemente en [5] se muestra que la extensién de los resultados de
convergencia validos para mallas rectangulares al caso de cuadrilateros generales no
es muy simple y, de hecho, en algunos casos puede deteriorarse (por ejemplo cuando
se usan elementos finitos no estandar en cuadrilateros generales, ver [6]), incluso
cuando las mallas satifacen la hipdtesis de regularidad.

Por otro lado, al aplicar estos métodos al problema de vibracion de una céscara
general, se hace necesario un uso intensivo de la carta, lo cual, en principio, limita
la gama de problemas a ser abordados.

En el Capitulo 4 estudiamos numéricamente el problema de vibraciones de una
céscara. Este capitulo corresponde principalmente al articulo [58]:

e E. HERNANDEZ, L. HERVELLA-NIETO, AND R. RODRIGUEZ, Computation of the
vibration modes of plates and shells by low order MITC quadrilateral finite
elements. (aceptado Computers and Structures).

Hemos testeado la eficiencia del método MITC4 para calcular las correspon-
dientes frecuencias de vibraciéon de una cascara modelada por las ecuaciones de
Naghdi, sobre el dominio de referencia. Para el caso de placas, extendemos los resul-
tados numéricos presentados en el Capitulo 3 a otras condiciones de frontera usando
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mallas generales, mostrando, en todos los casos, que el orden de convergencia del
método es 6ptimo. Aplicamos tambien el método para calcular las vibraciones li-
bres de algunos problemas tipo (“benchmark problem”) de céscaras, sugeridos en
[33], comparando los resultados obtenidos al utilizar discretizaciones estdndar por
elementos finitos cuadrilaterales de mas bajo orden.

Interaccién.

Como hemos mencionado, cuando la estructura considerada es un sélido, el pro-
blema de interaccién entre ambos medios ha sido fuertemente estudiado. No ocurre
lo mismo en los casos en que la estructura es una cascara.

Recientemente, Le Tallec y Mani en [65] han analizado un problema similar de
interaccion en que el fluido es considerado muy viscoso y la cdscara modelada por
las ecuaciones de Koiter. El fluido, en este caso, es aproximado por métodos de
elementos finitos mixtos estandar y la estructura es discretizada usando elementos
finitos DKT, de los cuales no se conoce demostraciones independientes del grosor de
la estructura (ver [21]).

Para el caso de interaccion entre placas y fluidos, existen algunos trabajos. En
Durén et al. [45] se ha considerado elementos triangulares DL3 para aproximar la
flexién de placas y elementos tetraédricos de Raviart-Thomas para el fluido. Se
ha probado, como en el caso de problemas de acoplamiento sélido—fluido, que los
métodos convergen con orden 6ptimo y que no se presentan fenémenos de bloqueo
cuando el grosor es pequeno. En Bermudez et al [18] se ha estudiado computacional-
mente este modelo en el caso de interaccién amortiguada por capas de aislante entre
el fluido y la placa.

En el Capitulo 5, se extienden los resultados de [45] a los métodos que hemos
estudiado en los capitulos 3 y 4. El capitulo corresponde al trabajo [55]:

e E. HERNANDEZ, Approximation of the vibration modes of a plate coupled with
a fluid by low-order isoparametric finite elements. En redaccién.

Hemos considerado una discretizacién del problema acoplado por medio de ele-
mentos finitos cuadrilaterales MITC4 para la flexion de placas y elementos hexaé-
dricos de mas bajo orden de Raviart-Thomas para el fluido.

Remarcamos que los elementos finitos isoparamétricos, como los que estamos
considerando, son los més utilizados en las aplicaciones en ingenieria. Mas aun,
para problemas estructurales, los elementos hexaédricos aproximan mejor la solucion
exacta que los tetraédricos (ver [16]).

Como el fluido y la estructura estan en contacto, la condicién sobre la interfaz
de ambos medios corresponde a la igualdad de los desplazamientos normales. Sin
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embargo, como tales desplazamientos en la estructura no dependen de la coordenada
en la direccién normal a la superficie media, se puede considerar que es la superfi-
cie media la que esta en contacto con el fluido. Mas aun, en la discretizacion, tal
condicion se impone de manera débil. Esto es, en cada cara F de la malla del fluido
que cae sobre la superficie media de la cédscara

/ﬁF'n:/aC'na
F F

donde los deplazamientos en el fluido y en la cdscara se denotan por up y ic,
respectivamente.

Esta manera de imponer la condicién de acoplamiento de ambos medios, se orig-
ina en el hecho que hacerlo de forma fuerte es muy restrictivo (ver [19]). Notemos que
debido a esta imposicion el espacio discreto no es subespacio del espacio continuo,
lo cual hace que el método sea no conforme. Igualmente, probamos estimaciones de
error Optimas para el problema de vibraciones placa-fluido.

Finalmente, en el Capitulo 6, se extiende los resultados de [59]:

e E. HERNANDEZ, L. HERVELLA-NIETO, AND R. RODRIGUEZ, Computation of the
vibration modes of plates and shells coupled with a fluid. MECOM 2002. Pro-
cedings of the First South-American Congress on Computational Mechanics,
Santa Fe - Parand, Argentina, 2002.

Testeando la eficiencia del método para calcular las correspondientes frecuencias
de vibracién de una céscara cilindrica que contiene en su interior un fluido.

Comparamos los resultados de nuestros cédigos con aquellos en [63], obtenidos
analiticamente por medio de expansiones en series de Fourier finitas. Ademas, por
medio de otro ejemplo mostramos la eficiencia, en problema de interaccién entre
fluidos y céscaras, del uso de modelos 2D con respecto a los modelos de elasticidad
clasica 3D.






Chapter 1

Finite element approximation of
spectral problems with Neumann
boundary conditions on curved
domains

This chapter deals with the finite element approximation of the spectral problem
for the Laplace equation with Neumann boundary conditions on a curved non convex
domain 2. Convergence and optimal order error estimates are proved for standard
piecewise linear continuous elements on a discrete polygonal domain ), ¢ €2, in the
framework of the abstract spectral approximation theory.

1.1 Introduction

In this chapter we analyze an elementary problem: the piecewise linear finite
element approximation of eigenvalues and eigenfunctions of the Laplace operator
with a Neumann boundary condition on a curved domain (2.

Since Neumann condition is a natural condition, in principle, a conforming finite
element space could be theoretically defined on a curved triangulation fitting exactly
the boundary of Q (see, for instance, Chapter 8 of [26]). Then, to effectively solve the
problem, the integrals for the entries of the stiffness and mass matrices on the curved
triangles should be computed by means of a quadrature rule. Thus, the method turns
out to be actually non conforming.

However, for piecewise linear elements, the most usual procedure in practice is to
consider a mesh 7, formed by straight triangles. Then, the integrals of the entries of
both matrices, are actually computed on a discrete domain Q, := | J{T € T} which

1
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do not coincide with €2, thus yielding also a non conforming method. As we show in
this chapter, this coarser procedure leads anyway to optimal order approximation
results.

When €, C €, the standard theory applies almost directly. In fact, for Dirichlet
boundary conditions the method turns out to be conforming since the discrete space
is a subset of H}(2) (see for instance the book by Raviart and Thomas[76]). For
Neumann boundary conditions the method is not conforming, but convergence and
optimal error estimates can be proved as rather straightforward consequences of
standard Strang’s Lemma, estimates like Lemma 5.2-3 in Raviart and Thomas’
book[76] and the classical abstract spectral approximation theory by Osborn[71]
(see also the monograph by Babuska and Osborn[7]).

The situation is quite different when €2, ¢ €). The finite element approxima-
tion of the linear boundary value problem associated to the Laplace operator was
extensively studied since long time ago. Different approaches have been considered
for instance by Ciarlet and Raviart[38], Z1dmal[88], and Scott[77] (see also [80], [22],
and [86]).

However, these results do not lead to a similar analysis for the corresponding
eigenvalue problem. Indeed, convergence results for a linear boundary value prob-
lem do not necessarily imply similar results for its associated spectral one. This is
particularly true for non-conforming and mixed methods (see, for instance, [24, 25]
for examples of methods working out for the linear boundary value problem but
failing for the associated eigenvalue problem).

In fact, to apply the spectral approximation theory stated in [7], one needs
convergence in L2 norm for the involved discrete operators, as well as optimal order
L% and H! convergence results for the associated linear boundary value problem
with homogeneous boundary conditions. For instance, for the Dirichlet problem on
a curved domain with a smooth boundary, such results have been only recently
proved by Bramble and King in Proposition 1 of [27], where the transfer of non-
homogeneous boundary data is analyzed.

For the eigenvalue problem, the first proof of convergence valid in the case €2, Z €2
was given by Vanmaele and Zenisek[82] just a few years ago. They prove it for sim-
ple eigenvalues and Dirichlet boundary conditions by using the min-maz character-
ization. These results have been further extended by the same authors to include
multiple eigenvalues [83] and numerical integration effects [84] (thus allowing to
considering non constant coefficients).

Around the same time, Lebaud analyzed in [64] a similar problem also for sim-
ple eigenvalues and Dirichlet boundary conditions. She allowed for non constant
coefficients in the differential operator but assuming exact integration. She used
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the spectral approximation theory stated in [7] and optimal convergence results like
those in [27]. She proved that, when isoparametric elements of degree & are used and
the eigenfunctions are sufficiently smooth, the approximation of the eigenvalues is
of order O(h?*) instead of O(h*+1).

In the case of Neumann boundary conditions, to the best of the authors’ knowl-
edge, no approximation result has been proved yet for the eigenvalue problem. More-
over, it is not apparent that neither the theory in [82] nor that in [64] could be
extended to provide optimal error estimates in this case. In fact, both theories rely
on estimates like (4.8) in [82], which are valid for functions vanishing on 92, or on
09 like the eigenfunctions of a Dirichlet problem, but not for those of a Neumann
one.

For instance, for piecewise linear elements, the techniques in [64] clearly do not
apply to the Neumann problem. To see this, notice that these results depend on the
estimate (4.4) of that paper:

(T — Th)ullo s = O(R?), (1.1)

where T'u is the solution of the Laplace equations on €2 with right hand side u, and
Thu is its piecewise linear finite element approximation on €2, obtained by using as
right hand side the extension of u by zero outside of Q (T'u and Tju also extended
by zero outside of their domains). Estimate (1.1) is proved in [64] as a consequence
of the following three inequalities:

T = Th)ullmzgone, < Ch* ™| Tullapq, form=0,1, (1.2)
| Tul|o2,0\ @000, < Ch?||Tul|2.2.0,
I Thullogon@nen < CRThulli2.0n0,-

To the best of the authors’ knowledge estimate (1.2) has not been proved for m = 0
and Neumann boundary conditions. Furthermore, estimate (1.4) is clearly not valid
in this case.

This shows the necessity of considering a more subtle extension of the data u
outside of €2. One such extension, which preserves the eigenvalues of the Neumann
problem, is introduced and analyzed in the following section.

The goal of this chapter is to analyze the piecewise linear finite element approx-
imation of the spectral problem for the Laplace equation with Neumann boundary
conditions on curved non convex domains. We prove optimal order L? and H' error
estimates for the eigenfunctions, and a double order for the eigenvalues. These esti-
mates are proved to be valid for any piecewise smooth Lipschitz domain, for which
the eigenfunctions do not necessarily belong to H?((2).
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The outline of the chapter is as follows. In §1.2 we present the model problem, the
meshes to be used, the finite element approximation and some basic results. Then,
in §1.3, we prove optimal order error estimates for the approximate eigenfunctions
and eigenvalues in the framework of the spectral approximation theory stated in [7].

1.2 Statement of the problem

Let 2 C R? be a bounded open domain, in general non convex, with a piecewise
smooth (v.g., C?) Lipschitz boundary T' := 9. Consider the eigenvalue problem for
the shifted Laplace operator in €2 with Neumann boundary conditions:

To find A € R and v € HY(Q), u # 0, such that:
a(u,v) = Ab(u, v) Vv € HY(Q). (1.5)
The bilinear forms a : H'(Q) x H}(2) — R and b : L?(Q2) x L?(2) — R in the
equation above are defined by:
a(v,w) := /Q(Vv -Vw+vw) de Yv,w € H(Q), (1.6)

b(f,g) = /Qfgda: Vf,g € L2(Q). (1.7)

It is well known that problem (1.5) attains a sequence of finite multiplicity eigen-
values satisfying

I=Xp <A< S A< ey e 2 4o,

with corresponding L?(Q)-orthonormal eigenfunctions {u}$, providing a Hilbert
basis of H'(Q).

Remark 1.2.1 We consider the bilinear form given by (1.6) instead of the standard
one for the Laplace equations (i.e., a(u,v) = [, Vu-Vuv dz), because the eigenvalues
of both problems only differ by one and the corresponding eigenfunctions coincide.
Since the same is true for the discrete problem (1.8) below, thus we avoid dealing
with the standard constraints for pure Neumann problems.

We consider a family {7,} of standard finite element triangulations (see for
instance [36]) of polygonal domains €2, approximating €2, such that if I'y, := 09, and
N}, is the set of vertices of all the triangles in Ty, then there holds (see Figure 1.1):

o N, CQpand M,NT, C T
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Figure 1.1: Triangulation of €, ~ ). The shaded triangles are the boundary ones
T eTP.

e for all T € T}, at most two vertices of T lie on I'y;

the second assumption is only made for the sake of simplicity.

As usual, h stands for the mesh-size, namely, the maximum diameter hp of all
the triangles 7' € T,. We also assume that the family {7} is regular in the sense of
a minimum angle condition; i.e., there exists f, > 0 such that, if 67 is the smallest
angle of T, then 61 > 6, for all T € 7, and for all the triangulations 7} in the family.

In what follows we will use the notation and definition introduced in [49] (see
also [86]). For a given triangulation 7Ty, we denote by 7,2 the subset of the so called
boundary triangles; namely, those having an edge on T', (see Figure 1.1). For one
such triangle T, let P, P and PJ be its three vertices, with Sy := P P§ C [y,
and let X7 be the piece of I' approximated by St (see Figure 1.2).

We denote by T the curved triangle of edges PTPY, Sr, and PYPL, and we
call it the ideal triangle associated to T'. For inner triangles T € T, \ 7,2 we simply
define T = T as its associated ideal triangle. We denote by '771 = {f : T e ﬁ}, the
partition of € provided by the ideal triangles and we call it the ideal triangulation
of Q2. We also denote ﬁa = {T T e 7;;9}, the family of ideal triangles associated
to the boundary ones.

For the sake of simplicity we assume that the triangulations 7, are such that,
for each boundary triangles T € 7,2, either T C T or T D T. Let wr be the domain
bounded by X and St (see Figure 1.2). Therefore Urero wr = (2 Qn) U (2:\ Q).
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T
P; P1
27
T T W
Pl
Sy ; -
P2 s T
.
. pr ~ P
Case: TOT T Case: TCT °

Figure 1.2: Ideal triangles T.

We introduce in each domain wr local coordinates (v, 7), the first one along St
and the second one normal to Sy. Let or(y), 0 < v < sp := length (Sr), be a
parameterization of Xr. We choose the orientation of 1 in such a way that o > 0.
Then X7 = {(v,n) : n=or(7), v € [0,s7]} and wr = {(,7m) : 0 < n < ¢, n €
(0,s7)} (see Figure 1.3).

n n
N =0.(Y)
wr
S Y ~
Sr g T
T Zrin=0.(v)
wr
S St Y
Case: TOT Case: T C T

Figure 1.3: Local coordinates (v, 7).

As a consequence of the assumed smoothness of T', oy € C%([0, s7]) and the
following estimate holds:

Lemma 1.2.1 There exists a constant C' > 0, independent of T', such that

0 < or(y) < Cs2 < Ch% Vv € [0, st
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Proof. It is a direct consequence of standard interpolation results. O

Here and thereafter, C' denotes a positive constant not necessarily the same at
each occurrence, but always independent of the mesh-size h.

Consider the discretization of the spectral problem (1.5) obtained by using stan-
dard piecewise linear continuous finite elements on 7p,:

To find A, € R and uy € L,(24), up # 0, such that:
ap(un, vp) = Apbp (Up, vp) Yop € Li()- (1.8)
In the equation above
Ln(Q) := {vp € HY(Q) : vplr € PL(T) VT € Ty},

with P;(T’) being the space of linear functions defined on 7', and the bilinear forms
ap : HY(Qp) x HY(Q4) — R and by, : L?(Q) x L%(Q2,) — R are defined by:

ap(v,w) = / (Vo -Vw+ow) dv Yo,w € H'(Qy), (1.9)
Qp

bu(f,g) = fgdz  Vf,g€L*Qy). (1.10)

Qp,
Problem (1.8) reduces to a finite dimensional generalized eigenvalue problem
with symmetric positive definite matrices. It attains a finite number of eigenvalues

1:/\h1<)\h2§"'§)\hma

with corresponding L?(Q)-orthonormal eigenfunctions {ups }7,.
The following three basic lemmas will be used in the sequel:

Lemma 1.2.2 There exist positive constants ¢ and C' (not depending on T ) such
that, if v, € P1(R?) and hy is small enough, then

cllvalloz < llonllor < Cllvnllo 7

clonly 7 < [onlir < Clonly 7.

Proof. Similar results have been proved in several papers (see for instance [49]).

For the sake of completeness, we include an elementary proof in the case T C T;
the case T O T can be dealt with almost identically.

We use the notation in Figure 1.4. In particular 7" is the triangle of vertices PT,

7, and Q3 , with Q1 being the midpoint of the edge ]JlTIDkT, for k = 2, 3. B

Because of Lemma 1.2.1, for hy small enough, the triangle 7" is contained in T

as shown in Figure 1.4. Then, straightforward computations show that [lvs|l,, <

C'llvello 7 and |vn|; 7 = 2 |vn|, 7 Hence, the lemma is a consequence of the fact that

T'cTcCT. O
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T
Ps
T
Q,
Tl
T T
Py T P,
Q,

Figure 1.4: Auxiliary triangle 7" (case: T C T).

Lemma 1.2.3 There exist a positive constant C such that, if h is small enough,
then:

[v]l0,0702, Chvllse Yo e H(Q2) (0<

0

<
< Che||vlls,0, VveH) () (

||U||0,Qh\(z

Proof. The two inequalities have been essentially proved in the proof of Lemma
5.2-3 in [76] for s = 1. Since the inequalities are clearly true for s = 0, they follow
for 0 < s < 1 from standard results on interpolation in Sobolev spaces (see, for
instance, Theorem 1.4 in [52]). O

Lemma 1.2.4 There exist a positive constant C' such that, if hy is small enough,
then, for all T € Ty,

oive < C (Iolor + bl z)  voeB(T) (0<s<1), HTCT,

o]

lolloang < C (Ivloz + B lvllsr) Yo e B(T) (0<s<1), #TCT.
Proof. We only include the proof of the first inequality. The second one can be
obtained by applying similar arguments. We use the notation shown in Figure 1.5
for T C T.

Consider polar coordinates centered at the vertex P. We assume that Sy and
Y1 are parameterized by r = r1(f) and r = r5(0), respectively, with 0 < 6 < 6.
Then wy := T\ T = {(r,0) : 7(0) <r <ry(0), 0 <0 < 6} Let d denote the
distance of each point on X1 to St, as shown in Figure 1.5.
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r2( 6)-r 1(91 N

Figure 1.5: Polar coordinates on T>T.

Assume that #' < % as in Figure 1.5 (a similar argument is valid for 6’ > 7).

Since #' = 0" + 60, then sin @ > sin#” > sin Ay, with 1 being the smallest angle of
T. Hence,
d d

<

7“2(9) — 7‘1(0) =

sinf — sinfr

Then, because of Lemma 1.2.1 and the minimum angle condition,

§:= max [r2(0) — ri(6)] < Ch2,

0<6<6;

and, consequently, for hr small enough,

ro = min 7r1(0) —0 > chr >0,
0 min 1(0) > chr
o = max 7r9(0) < Chyp.

2 0<6<6, 2(0) < Chr

Hence, for hy small enough, wd := {(r — 6,0) : (r,0) € wr} C T (see Figure 1.5).
Let v(r,0) :== v(r — 6,8), for (r,0) € wr. We will prove that

lv = v’ llowr < CRZ|I0ll, 7- (1.11)

Then the lemma follows from this inequality and the fact that, for Ay small enough,
l8loaor < Cllollos, < Cllollo-

Inequality (1.11) is clear for s = 0. We prove it for s = 1; then, for 0 < s < 1, it
follows by interpolation between Sobolev spaces.
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Let v € C(T) (we prove (1.11) for such smooth v; for any v € H'(T) it follows
by the standard density argument). For any (r,6) € wy we may write

T ov

_ -
o 0) =o'y = [

9%(¢,0) dt.

Hence, applying Cauchy-Schwarz inequality and integrating on wr, we obtain:

01
o =03, < // / 2 (t,0) dtrdrd@
7"1(0 r—4
7'2(0) 2 t 7‘2(0)
< 5/ / A / rdr| do
0 | /o 8T To r1(6)

2T2

01 r2(0)
< 5/0 /0 Vo(t, 0)? tdt] 22 [ra(6) = r(0) b

< 062||Vv||§,f

Thus, for s = 1, (1.11) is a consequence of the fact that § < Ch%. O
Consider the operator T defined by

T: L*Q) — L23(Q)
f — weHY(Q): alu,v) =b(f,v) VveH(Q),
where a(-,-) and b(-, -) are the bilinear forms defined in (1.6) and (1.7), respectively.

By virtue of Lax-Milgram Lemma, it is clear that T is a well defined bounded
operator and

(1.12)

Furthermore, because of the compact inclusion H'(Q) — L2(2), T is compact.
Clearly, the eigenvalues of T are given by ux = 1/\g, with Az being the eigenvalues
of problem (1.5), and the corresponding eigenfunctions uy coincide.

As a consequence of the classical a priori estimates (see [53]), for any f € L?(Q),
u = Tf is known to satisfy some further regularity. In fact, v € H*"(Q) for some
r > 0 depending on the geometry of €2, and there holds

ulli4r0 < Cllfllo0- (1.13)

For a pure Neumann problem, if 2 has no reentrant corners, then r = 1; otherwise
r < —, with @ being the largest interior angle of §2. From now on let r € (0, 1] be
fixed such that (1.13) holds. Notice that, as a consequence, the eigenfunctions uy of
T belong to H*"(Q) and satisfy

lurll14r0 < Cllugllo.o- (1.14)
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Let T}, be defined by

Th : Lz(Qh) — L2(Qh)
g — v € Ln() © an(vn, wh) = bu(g, wn) Vwy € L4y(2h),

with ap(-,-) and by(-,-) as defined in (1.9) and (1.10), respectively. Clearly

lvr |, < Cllglloa,- (1.15)

The positive non-zero eigenvalues of T}, are given by jip, = 1/Ank, with Apg being
those of the discrete problem (1.8) and coinciding associated eigenfunctions wupy.

The spectral approximation theory stated in [7] cannot be directly applied to the
operators T}, since their domains L2(€2,) do not coincide with that of T. So, we are
going to introduce other discrete operators T} defined on L?(Q2) and with spectrum
also related to that of problem (1.8).

From now on, we assume that A is sufficiently small in order to Lemmas 1.2.2,
1.2.3, and 1.2.4 hold. Let

Lr(Q) := {v, € H'(Q) : vyl € Pu(T) VT € T}

We consider two restriction-extension operators, one from L£,(€;) to £;(92) and the
other from L£;(2) to L,(€2). Let

EZ ,Ch(Qh) — [,h(Q)
Uh — Up,

with L
Uh‘f VI €Ty: T CQy,

1V)h|f = _ _ _
(Uh‘T)v VT € 771 : T ¢ Qh,

where (vp|r)” € P1(T) denotes the natural extension of the linear function vp|r €
P1(T) to the larger set T (notice that, if T ¢ Qp, then T C T).
Let E := E-!: namely,

E: [,h(Q) — ﬁh(Qh)

Wh, — Wh

with
wh|T VTEEITCQ,

A~

Wh|T =

(wil7) VT €Th: T ¢ Q,
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where, (wp|7)"€ Pi(T) denotes the natural extension of the linear function wy |z €
Py (T) to the larger set T' (notice that, now, if 7 ¢ €, then T C T).

As a consequence of Lemma 1.2.2, the operators E and E are uniformly bounded
in L2 and H! norms. More precisely,

[ Evs|lk,0 < Cloal
[ Ewn k.0, < C|lwsl

kS, Yoy, € ﬁh(Qh), k= 0,1, (1.16)
ko Vw € Ly(92), k=0,1. (1.17)

We will also use the L?(Q)-projection onto £;(12). Let

P: L2(Q) — ,Ch(Q)
/ —  fh

with
fh € ,Ch(Q) : /(fh — f)wh dxr =0 th € Lh(Q) (118)
Q
Clearly
I fallog < I flloe Vf € L*(Q). (1.19)
Furthermore, the standard error estimate for this projection yields
1fo = fllog < Chllflle  Vf € H(Q). (1.20)

Now we are able to define the discrete operator that we will use in the sequel:

Th: L2(Q) — L2(9)
f — ’thZEThEPf

As a consequence of the estimates (1.19), (1.17), (1.15), and (1.16), the operators
T}, are uniformly bounded. Moreover, they satisfy

| Thf

1,2 < Ol fllo,e- (1.21)

The following lemma shows that the eigenvalues of T}, and T}, coincide and the
eigenfunctions of one operator are the restriction-extension of those of the other:

Lemma 1.2.5 The non-zero eigenvalues of T, and T}, coincide and the respective
associated eigenfunctions uy and Uy, are related by @y, = Buy, and uy, = Edy,.

Proof. Let u, € £,(), up # 0, such that Tyup = A\yuy. Then

ThE’U,h = EThEPEUh = EThEEuh = EThuh = )\hEuh.
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Conversely, let 14, € L,(Q), 1y # 0, such that Ty, = Aptiy. Then
ThE’ELh = EET]—LEPQ}Z = ETh’ELh = )\hEah.

O

The aim of this chapter is to study how the eigenvalues and eigenfunctions of
T}, approximate those of T, and hence to analyze how the eigenvalue problem (1.8)
allows approximating the solutions of the spectral problem (1.5).

1.3 Spectral approximation

In order to use the spectral approximation theory stated in [7], we are going to
prove that the operators T} converge to T in norm as h goes to zero. From now
on and throughout the rest of the section, we use the following notation: given f €
L2(Q), we denote u := Tf, f, :=Pf, fu := Bfy, up, := Tpfn, and @, := Eu, = T f.

We will also use in the proofs, extensions to 22U, of functions originally defined
in Q. For v € H*(2) (s > 0), let v¢ denote an extension of v to R? satisfying (see,
for instance, Theorem 1.4.3.1 in [53])

[0°]ls 2 < Cllv]

5.0 (1.22)

In particular, since according to the estimate (1.13) u € H'*"(Q), then let u® be an
extension of u satisfying
[t ]l14r e < Cllulliiro- (1.23)

The following lemma splits ||(T —T}4) f||1,0 = ||[u — /1,0 into three terms which
can be dealt with separately:

Lemma 1.3.1 There exists a positive constant C, not depending on f, such that

||U_?1h||1,Q S C inf ||Ue—1)h

1.24
L |1, (1.24)

|bh(fh; wh) - ah(ue, ’u)h)| 5
+  sup + |lu—1u q, -
wh€LH () lwall1,0, I nllLove,

Proof. It is enough to notice that

lu—inl}e = Ilu—unll}ang, + llu =il o,

<t —unlli g, + llu =l g\,
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and to use the standard techniques to deal with non conforming methods to estimate
the first term (see Strang’s Lemma, for instance, in [36]):

b f,w — ap(u®, w
s ) o wm)

’u}heﬁh(Qh) ||wh||1:Qh

. (1.25)

e <2 inf |jut—
|u® —un |10, < vhegi(nh)|hL VUn|

|

In what follows we give estimates of the three terms in the right hand side of
(1.24). For the first one we have:

Lemma 1.3.2 There exists a positive constant C, not depending on f, and v, €
Ly () such that
[ = vll0, < CB7[|fllog:

Proof. Let v, € L£;(Q) be the Lagrange interpolant, of u® € H'™(Q). Proceeding
as in Example 3 of [41] we have

[[u® = vall0, < CH[[u14r0,-

(See also, Theorem 2.27 in [48] for an alternative proof). So, the lemma follows from
this inequality and estimates (1.23) and (1.13). O
Now we estimate the second term in the right hand side of (1.24):

Lemma 1.3.3 There exists a positive constant C, not depending on f, such that

sup \bh(fh,wh) - ah(ue,wh)|

’whEEh(Qh) ||wh||lth

< CW' (| fllo.o-

Proof. Let wy, € £4(Q) and @y, = Ewy,. Since wy, € HY(R), then a(u, W) = b(f, 1),
and hence

bn(fn, wn) — an(u®,wp) = [by(fa, wn) — b(f, 0n)] + [a(u, wh) — an(us, wy)]-

Because of (1.18) and the fact that wy, € £,(2), we have

On(fuywn) — b(fyn) = [ frwn dz — / fuop dx = fhwh dr— [ fpp dx.
Qh Q Qh\Q Q\Qh

Analogously,

(Vu - Vo, + uy,) dx — / (Vu® - Vwy, + uwy) dx.
Y

a(u, wy) — ap(u®, wy) = /

o\
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Now, by using Cauchy-Schwarz inequality and Lemma 1.2.3, we obtain:

frwp dz| < || fa

lo.ena Chllwnll1on

Q0

fown dz| < || fullogya, Chllwnlle

o\
/ (VU . V?Z)h + U?Z)h) dx < ChT”u”l_Hn,Q
Q\Qp

/ (Ve - Vy + uwy) dz| < CR|[ulfsr0, lwn
Q\Q

Finally, we conclude the lemma bounding the four right hand sides above by
Ch||f

To do this, we use (1.17) and (1.19) for the first one, (1.16) for the second one, (1.13)
and (1.16) for the third one, and (1.23) and (1.13) for the last one. O

|Wnl]1,0\0,

lLon0

lo,allwall1,0,-

Remark 1.3.1 Combining estimate (1.25) in the proof of Lemma 1.8.1, with Lem-
mas 1.3.2 and 1.3.3, we also have

|1th S Ch,T”f”O,Q-

Now we are able to estimate the third term in (1.24):

[|u® — un

Lemma 1.3.4 There exists a positive constant C, not depending on f, such that

Proof. For the L? norm, we use Lemma 1.2.3 and estimates (1.12) and (1.21) to
obtain

[ = in]

lu — tnllo,o\0, < Chllullie + Chllin]le < Ch|flloa-
For the H' seminorm we use Lemma 1.2.4:
w—inlf e, = D, IV(- in)llo 77
TeTR: TCT
2
< > C|Iv@=@lloa+ AV (=), 5]
TeT?: TCT

< Clllwf —unllig, + 5% ([lullf 0 + NIl

o)l

where we have used that ||V, 7 = || Vially 7, since is|7 € Py (T).
Therefore the lemma follows from Remark 1.3.1, and estimates (1.13) and (1.21).
O
Now we may conclude the convergence in norm of T to T:
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Lemma 1.3.5 There exists a positive constant C' such that, for all f € L2(Q),

(T = Th) flloe < CR"[|f

lo,0-

Proof. It is an immediate consequence of the four previous lemmas. O

Therefore, we are able to apply the spectral approximation theory for compact
operators (see [7]) to obtain optimal order error estimates for the eigenfunctions.
For simplicity we state the result for a simple eigenvalue; see [7] for the general
statement.

Theorem 1.3.1 Let py be the k-th (simple) eigenvalue of T and ppy the k-th eigen-
value of Tp. Then, the corresponding eigenfunctions u, and tp, can be chosen such
that ||ug|

0,0 = ||tnklloo =1 and

luk — Gnil|1,0 < CRT,
with C' a strictly positive constant.

Proof. It is a direct consequence of the convergence in norm of T}, to T and the
error estimate in the previous lemma, and Lemma 7.1 in [7]. O

In the remainder of the chapter we will prove optimal order error estimates for
the L2 norm of the eigenfunctions and for the eigenvalues. To this goal, we will use
a double order error estimate for ||u —ip|o,o. To the best of the author’s knowledge,
estimates of this type have not been proved for Neumann boundary conditions on
curved domains. The proofs given below for the estimate of ||u—y||o,o are valid only
for smooth right-hand sides f (namely, f € H'(2)). However, the obtained results
suffice to yield optimal error estimates for the spectral problem without assuming
any regularity.

The following two lemmas are valid for f € H*(€2). For such functions, we denote
by f¢ their bounded extensions to R? satisfying (1.22) for s = 1; namely:

[ féllre < Cllf]10- (1.26)
First we prove the following technical result:
Lemma 1.3.6 There exists a positive constant C such that, for all f € H'(Q),
1fn = Flogna < ChlIfllro-

Proof. According to Lemma 1.2.4, we have VI' € 7,2 such that T > T,

1 fn = £°]

i < C (I = Flloz+ Bllfu = Fllr)
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From a standard local inverse inequality (see for instance [36]), we obtain

| fn

C .
1,7 < h_”fh lo,1
T

Hence, since || fa|lo.r < C||frll, 7 because of Lemma 1.2.2, we have

W2l fn — f©

o < B3 (Iallur + 1 Nr) < C (Bl falloz + B3N llr)

Therefore,

1 = Felloane < C (1fa = Fllog + Pl falloq + 1< llan) »

and the lemma follows from (1.20), (1.19), and (1.26). O
Now we can prove an double order L?(Q)-estimate:

Lemma 1.3.7 There ezists a positive constant C such that, for all f € HY(Q),
(T = Th) fllog < CR*| fll10-

Proof. Let f € H!(2). Since

(T = Th) flloe = sup b((T —Th)f, 9)
ez lg

lo,0

then it only remains to prove that

b((T —Th)f, 9)| < CH||f

lellglloe Vg € L*().

Let g € L%(Q) and v = Tg. We denote as above v, = T,EPg and v, = Ev,, =
T}g. Since according to (1.13) v € H'*"(Q), there exists a bounded extension v¢ of
v satisfying (1.22) for s =1+ .

Since a and b are symmetric and u — %, = (T — T4)f € H'(Q2), then we have

b((T—=Th)f,9) = alu — tp,v) = a(u — Uy, v — Vp) + a(u — p, Vp).

Thus, from the continuity of a(-,-) and Lemma 1.3.5, we only have to estimate the
second term in the right hand side. Since v, € £,(Q2) C H'(Q) and vy, € L£4(Q),
then

a(u — tp,p) = b(f,0n) — alin, Op)

= |b(f,0n) — bu(frs vn) | + [an(un, va) — alin, )] -
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By using (1.18) and repeating the arguments in the proof of Lemma 1.3.3, we obtain

a(u - ﬂh, ’Eh) = fhf)h dr — fhvh dx
Q\Qp Q0

+ / (Vuh -V, + uhvh) dr — / (Vﬂh -V, + ah{)h) dx.
Qp\Q 2N\

Thus, to conclude the lemma, we estimate each term in the right hand side above.
From Lemma 1.2.3 applied to 9, and f,, (1.20), and (1.21),

[ fnds| < Iillogna, linlosma,

o\
< (Ifn—rf lo,ova, + I |0,Q\Qh) Ch||9||1,0
< ChH|f] 1,2ll9]lo,0-

By using Lemma 1.2.3 applied to v, and f¢, Lemma 1.3.6, (1.16), (1.26), and (1.21),

o foon dz| < | falloanallvalloana
< (1w = Folonaa + 1/ loana) Chllvallie,
< CR (Iflla + 1F<.0,) 15l
< CRIIf Ihallglloo

By using Remark 1.3.1, Lemma 1.2.3, (1.23), and (1.13),

< ”uh”LQh\Q”Uh“l,Qh\Q

/ (Vup - Vup, + upvp) dx
Qp\Q

< (llun — vl ona + lucllong) (lon = v°llona + 10%]lLena)
< (CH || flloe + CR||[ull4r,0,) (CR(|gllo0 + CA[[0°[|147,04)
< CR*" || fllo2llgllo.o-

Finally, from Lemmas 1.3.5 and 1.2.3, and (1.13),

‘I

/ (V’EL}, . V?V)h + ’D,hf)h) dx

< ||tn

l1,ov0, [19ellL,000,

< (||71h —ullo\p, + ||u||1n\fzh) (||?7h — vl o\, T ||U||1,Q\§‘zh)
< (CH || fllog + Ch||ull14r0) (CR[|gllo0 + Ch[[v]|14r,0)
< Ch|| fllo,ellgllo.o-

|

As a consequence of this lemma we may prove a double order error estimate for
the eigenfunctions in L? norm:
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Theorem 1.3.2 Let py, be the k-th (simple) eigenvalue of T and ppy the k-th eigen-
value of Tp. Then, the corresponding eigenfunctions ux and tp, can be chosen such
that ||ug| 00 =1 and

0,0 = || Tnkl
|lug, — tnglloo < CH*,

with C a strictly positive constant.

Proof. Because of the previous lemma and the estimate (1.14), the theorem is also
a direct consequence of Lemma 7.1 in [7]. O
Finally, a double order of convergence for the eigenvalues can also be proved:

Theorem 1.3.3 Let py, be the k-th (simple) eigenvalue of T and pyy the k-th eigen-
value of Ty. Then, there exists a strictly positive constant C' such that

|k — pnk| < CR”".

Proof. Since T is self-adjoint with respect to b(-, ), then Theorem 7.3 of [7] applied
to our case yields

b((T = Th)f,
p—ml<C|  sup 16 (( n)f:9)l
rocec2@ 1 flloallgl

(T = T}) el

+[[(T = Th)lello,0 0,2

0,Q

where £ is the eigenspace associated to p, and T} is the adjoint operator of T,
with respect to b(-,-).

Now
b((T—-T T-T
sup b (( nhHol sup II( ) fllog
[,9€ECL2(Q) ||f||0,9 ||9||0,Q fee ||f|0,9
and
b(T — T3/, b(f, (T — T
T~ Tiflog = swp NE_TND gy, HALL T
geL2(Q) l9llo.2 geL2(Q) l9llo.2
T-T
< Wl sup W= Twloe oy gy
9eL2(9) 19llo,0

the last inequality because of (1.12) and (1.21).
Thus, the theorem is a consequence of Lemma 1.3.7 and estimate (1.14). O
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1.4 Conclusions

We have analyzed the finite element approximation of eigenvalues and eigenfunc-
tions of the Laplace equations with Neumann boundary conditions on curved (non
convex) domains 2. Convergence and optimal order error estimates have been proved
for standard piecewise linear elements on a discrete polygonal domain €2, ¢ €2, in the
framework of the abstract spectral approximation theory as stated in [7]. Similar
results had been previously proved by Vanmaele and Zenisek[82] (based on min-
maz techniques), and Lebaud [64], but in both cases only for Dirichlet boundary
conditions.



Chapter 2

Finite element approximation of
spectral acoustic problems on
curved domains

This chapter deals with the finite element approximation of the displacement
formulation of the spectral acoustic problem on a curved non convex two-dimensional
domain 2. Convergence and error estimates are proved for Raviart- Thomas elements
on a discrete polygonal domain €2, ¢ Q in the framework of the abstract spectral
approximation theory. Similar results have been previously proved only for polygonal
domains. Numerical tests confirming the theoretical results are reported.

2.1 Introduction

A considerable amount of work has been devoted during the last years to device
and analyze efficient numerical tools to deal with structural-acoustic interaction
problems. See for instance the monographs by Morand and Ohayon [68], Conca et al.
[39], and Ohayon and Soize [69], where different mechanical problems involving fluid-
structure interaction are treated. These references also include numerical techniques
and extensive bibliographic lists.

Although the typical variable to describe an acoustic fluid is its pressure, since
long time ago (see for instance [62]) practitioners recognize several advantages of
using fluid displacement formulations in spectral problems involving interaction with
a solid. However, this approach has also a severe drawback: the presence of spurious
vibration modes when standard finite elements are used for the fluid displacements.

Several alternatives have been proposed to avoid these spurious modes (see for
instance [54, 35, 85, 51]). One of them was introduced in [19] and analyzed in

21
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[12, 74] for the structural-acoustic vibration problem. It is based on using Raviart-
Thomas elements to discretize the fluid displacement field—a natural choice since the
variational formulation is posed on H(div). Since then, this approach was succesfully
extended to deal with other spectral problems involving, for instance, incompressible
fluids [13, 14], dissipative acoustics [15, 20], interaction with slender structures [45,
18], etc.

In all these cases, optimal order error estimates have been proved for eigenvalues
and eigenfunctions. However, in all the proofs, the domain has been assumed to
be polygonal (or polyhedral in 3D). The main reason for this assumption was to
avoid some intrinsic difficulties in the application of the standard spectral approx-
imation theory ([7]). These difficulties arise from the variational crime committed
by approximating the curved domain with a polygonal one.

Even in much simpler cases like the finite element approximation of the spectral
problem for the Laplacian on a general curved domain, the number of papers with
theoretical results is remarkably small. Indeed, the first rigorous proofs for this
problem valid for non-convex domains have been given just a few years ago by
Vanmaele and Zenfsek ([82, 83, 84]) (using the min-maz characterization; see [80, 76])
and Lebaud ([64]) (using the abstract approximation theory; see [7]). These papers
deal only with Dirichlet boundary conditions. For Neumann boundary conditions
the first results have been obtained even more recently ([56]).

In the present chapter we consider the vibration problem for an acoustic fluid
contained within a rigid curved cavity. In spite of the fact that this problem can
be efficiently solved by using pressure variables, we consider a displacement formu-
lation of the fluid. The reason for this is the interest of applying this approach to
fluid-structure vibration problems, where this formulation is convenient as remarked
above. We prove spectral convergence and error estimates for eigenfunctions and
eigenvalues, the latter of double-order as usual in this kind of problems.

From the mathematical point of view, the displacement formulation of the fluid
acoustic vibration problem and its discretization with Raviart-Thomas elements is
completely equivalent to the discretization with these elements of the mixed for-
mulation of the spectral problem for the Laplacian (see [2, 42]). Thus, our analysis
also covers this more standard problem. Let us recall that although error estimates
for this spectral problem on polygonal domains have been given in [7], some recent
papers ([24, 25]) show that, even in this case, it is not immediate to extend standard
results on mixed methods to spectral problems.

The outline of the chapter is as follows: in the following section we introduce the
displacement, formulation of the acoustic vibration problem and its discretization
by Raviart-Thomas elements. In section 3, corresponding continuous and discrete
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operators are defined on a same Hilbert space, which allows us to fit this problem
in the framework of the abstract spectral approximation theory ([7]). Let us remark
that the correct definition of these operators is a key point for curved boundaries,
because the continuous and discrete problems are posed on different domains. In
section 4 we prove convergence in H(div)-norm of the discrete operators to the
continuous one and apply this to obtain error estimates for the eigenfunctions. Since
in this case an improved order of convergence in L2-norm cannot be expected, an
additional approximation property has to be proved to obtain a double-order error
estimate for the eigenvalues. Finally, in section 5, we report some numerical tests
which confirm the theoretical results and exhibit the performance of the method.

Throughout the chapter C' will denote a positive constant not necessarily the
same at each occurrence but always independent of the mesh-size h.

2.2 Statement of the problem

We consider the problem of determining the vibrations modes of an ideal in-
viscid barotropic fluid contained in a rigid cavity, described by means of the fluid
displacement field.

Let 2 C R? be the domain occupied by the fluid. We assume that € is a bounded
open domain, in general non convex, with a Lipschitz boundary 02. We denote by
v the outward unit normal to 0€2. We also assume 0f) is piecewise smooth; more
precisely, 9Q = (J{_, I'; with I'; being C? curves.

Consider the spectral problem which consists in finding A € R and u # 0 satis-
fying

—V(pctdivu) = Apu  in Q,
{ u-v=0  on 0.

The solution of this problem are the free vibration modes of the fluid contained in
Q: u is the amplitude of the displacement oscillation and v/ the natural vibration
frequency. On the other hand p denotes the fluid density and ¢ the acoustic speed.
Without loosing generality we assume p =1 and ¢ = 1.

Let H(div, Q) := {v € L?(Q)? : divv € L?(Q)}, which endowed with the norm
defined by [|[v||3,.q = |v]l§ o + || dive|l§ o is a Hilbert space. We denote

V := Hy(div, Q) := {v € H(div,Q) : v-v =0 on 00},

which is a closed subspace of H(div,{2). Then, the variational formulation of the
spectral problem above reads:
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Find A € R and u € V, u # 0, such that

/divudivv da:z)\/u-vdx Vv e V. (2.1)
Q Q

The above problem has exactly two types of solutions (see [12]):
1. Ao = 0, with corresponding eigenspace
K := {u € Hy(div,Q) : divu =01in Q};
2. a sequence of finite multiplicity eigenvalues A\, > 0, n € N, diverging to 400,

with corresponding eigenfunctions u, € V satistying u,, = V,, for some ¢, €
HY(Q).

The eigenfunctions of the second type form a complete orthogonal system of the
closed subspace G of ¥V, which consists of the conservative displacement fields of this
space; namely,

G :={u € Hy(div,Q): u=Vep, p € H(Q)}.

Notice that G and K are orthogonal in L?*(Q)? and H(div, Q).

Figure 2.1: Triangulation of €, ~ ). The shaded triangles are the boundary ones
T eTP.

We consider a family {7,} of standard finite element triangulations of polygonal
domains €2, approximating € (see for instance [36]) such that, if NV}, is the set of
vertexes of all the triangles in 7, then there holds (see Fig. 2.1):

o Nh CQh anthﬂth C@Q,
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e M, contains all the points where the boundary 0S is not C?;
e for all T € T, at most two vertexes of T lie on 0€2p,;

the third assumption is made only for the sake of simplicity.

As usual, h stands for the mesh-size, namely, the maximum diameter hr of all
the triangles T' € T;,. We also assume that the family {7,} is regular in the sense of
a minimum angle condition; i.e., there exists , > 0 such that, if 6 is the smallest
angle of T, then 6 > 6, for all T' € 7T, and for all the triangulations 7} in the family.

In what follows we will use some notation and definitions introduced in [49] (see
also [86]). For a given triangulation 75, we denote by 7,2 the subset of the so called
boundary triangles; namely, those having an edge on 00, (see Fig. 2.1). For one such
triangle T, let PI', P, and P} be its three vertexes, with sy := P Pf C 0, and
let o be the piece of 002 approximated by sr (see Fig. 2.2).

Case: T OT Case: T cT

Py

PT

v=b P!
P ‘:Q
PT

\)h: gh 3

Figure 2.2: Ideal triangles T.

We denote by T the curved triangle of edges W, or, and W, and we call
it the ideal triangle associated to T'. For the sake of simplicity we assume that the
triangulations 75, are such that, for each boundary triangle T' € 7,2, either T C T
or THOT.

We consider the finite dimensional space V,, defined by

Vh = {Uh € Rh(Qh) DU Vh‘@ﬂh = 0},

where v, is the outward unit normal to 09, and R,(92;) is the Raviart-Thomas
space (see [75])

Rh(Qh) = {Uh € H(le, Qh) : 'Uh|T € R%(T) VT € 7;1},
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with
RTo(T) := {vh e Pi(T)?: wp(z,y) = (a+ bz, c+ by),
a,b,ceR, (z,y) €T}.

Then, the discretization of the spectral problem (2.1) obtained by using these ele-

ments reads:
Find A\, € R and up, € Vi, up # 0, such that

/ divuy, divoy, doe = )\h/ up, * vy, dx Yo € V. (2.2)
Qp,

Qp,

Proceeding as in [12], it is simple to prove that problem (2.2) has also two kind
of solutions:

1. Apo = 0, with corresponding eigenspace

Kp:={up € Vy: divuy =01in Qp};

2. afinite set of positive eigenvalues Ay, with corresponding eigenfunctions uy,, €
Gn, where G, is the orthogonal complement of £Cp, in V.

Notice that G, and K, are also orthogonal in L?(Q,)?; i.e.,

gh={uhEVh: / up, - v dz =0 VthICh}.
Qp,

The goal of this chapter is to prove that the solutions of the eigenvalue problem
(2.2) approximate those of problem (2.1) and to establish error estimates.

2.3 Linear operators associated with the spectral
problems

To study the convergence properties of problem (2.2), we will use the abstract
spectral approximation theory stated in [7]. To do this we need to define, on a same
fixed domain, operators A and A, with spectra related to those of problems (2.1)
and (2.2), respectively.

For each mesh 7; we denote

Qh = QUQh
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We also denote by v, the outward unit normal to Qh. Notice that either v, = v, or
vy, = v (see Fig. 2.2).
We consider the operator A defined by
A: L2(R?)?2 — H(div, R?) — L?(R?)?2
f — u: g =u,

where u € G is the solution of

/divudivv da::/f-vda: Yv € g, (2.3)
Q Q

and, from now on, ¥ denotes the extension of a function v by zero from its original
domain to R?.

This problem is well posed because the bilinear form fQ divu div o dx is V-elliptic
on G. Indeed, given v € G, let p» € H'(Q2) be such that v = V; then ¢ is solution
of the compatible Neumann problem

Ap =divw in €,

0 2.4
2 0 on 0f2. (2.4)
ov
Hence, because of Lax Milgram Lemma, there exist C' > 0 such that
[olloe = IVelloe < Clldivollgq Vveg. (2.5)
Consequently there exist o > 0 such that
/ (divo) dz > ofjoln Vo €G. (2.6)
Q

Therefore, by virtue of Lax Milgram Lemma again, it is clear that A is a well
defined bounded operator and, if w = Af, then

[l ez < CllFllo e - (2.7)

Furthermore, as a consequence of classical a priori estimates for (2.4) (see [53])
¢ attains additional regularity. Indeed, Vi € H"(Q2)? and

IVl

ra<C ||diVU||o,Qa (2.8)

with 7 € (1/2,1] (in fact, 7 = 1 if Q has no reentrant corner, and r < 7, with ¢

being the largest interior angle of €, otherwise). In particular, for 7 = Af, we have
that u = u|q € H"(Q)? and

[ullro < Clldivullyq < Cflloge - (2.9)

Regarding further regularity of divu we have the following lemma:
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Lemma 2.3.1 Given f € L2(R?)2, let u € G be the solution of problem (2.3). Then,
/ V(divu)+ f]-VEdz =0 Vé € H(Q). (2.10)
Q

Furthermore, divu € H'(Q) and
[divull, o < Cllflloge, (2.11)
with C' a positive constant independent of f.

Proof. For f € L?(Q2)? the following decomposition holds (see [52]): f = Vi + 7,
with ¢ € HY(Q)/R and 5 € K; furthermore, | V¢)||o.0 < C||f]lo,o with C independent
of f. Then, because of (2.3) and the L?(2)-orthogonality of K and G, we have

/divudivvdx:/f-vdx:/Vw-vdx Yv € G,
Q Q Q

and consequently,

—/V(divu)-vdx:/v¢-vd$ Vv € G.

Q Q

The above equality is valid for v € K too. Hence, since C§°(€2) C G @ K, there holds
V(divu+1¢) =0 in (,

which together with (2.7) yield (2.11). On the other hand,

/[V(divu)+f]-V§dx:/V(divu—Hﬁ)-V&dm—k/n-Vfdaz:O,
0 0 0

and we conclude the proof. O

It is simple to show that A, is a positive eigenvalue of (2.1) if and only if
tn = 1/, is a positive eigenvalue of the operator A; moreover, the correspond-
ing associated eigenfunctions are related by u, = Un|q. As a consequence of the
previous lemma, the eigenfunctions u,, n € N, satisfy divu,, € H'*"(Q2) and

||divun||1+r,ﬂ < C”U’n”O,Q’ (2.12)

with 7 € (1/2,1] being the constant in (2.9).

To define the discrete analogue of the operator A, we are going to prove that the
bilinear form th div uy, div vy, dz is also V-elliptic on Gj. To this goal, we first recall
the following two lemmas stated in [56]:
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Lemma 2.3.2 Given T € T2, let wr be the domain bounded by o7 and st (see Fig.
2.2). Then, there exists a constant C > 0, independent of T, such that

\wT| S Chgjp

Consequently,
1\ Q| + |20\ Q] < OB

Proof. The first estimate is a direct consequence of the assumed smoothness of OS2
and standard interpolation results (see for instance [49]). Since (2\ Q) U (2,\Q) =
U{wr : T € T,%}, we obtain the second estimate by adding |wr| for all T € 7,2. O

Lemma 2.3.3 There exists a positive constant C such that:

[vlloova, < CR|vllse Yo €H) ()  (0<s<1),
0,2\ < Chs“’l)”s,gh Yv € Hs(Qh) (O <s< 1)

o]

Proof. The two inequalities have been essentially proved in the proof of Lemma
5.2-3 in [76] for s = 1. Since the inequalities are clearly true for s = 0, they follow
for 0 < s < 1 from standard results on interpolation in Sobolev spaces (see, for
instance, Theorem 1.4 in [52]). O

We also recall the definition and some properties of the Raviart-Thomas inter-
polant (see for example [75]). For s > 1/2, let,

R Hs(Qh)2 N H(le, Qh) — Rh(Qh),

where for each v € H*(2;,)?, Ro is the unique vector field in R () satisfying

/Rv-w dSZ/’U'Ve ds, (2.13)
¢ ¢

for every edge £ of T (v, being a unit normal to £). The operator R satisfies for all
TeT,

/ div(v — Rv)dz =0 Vv € H*(Q4)* N H(div, Q). (2.14)
T

Moreover, it is well known (see for example [75]) that for v € H*(2;)? such that
divv € H¥ ()

lo— Rollog, < Chlollsan, (215)
| div(v — Rv)ljo,0, < CR’||divo|lsq,- (2.16)
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In what follows, we will use a Helmholtz decomposition of functions in G; ex-
tended by zero outside (2. Consider the following spaces defined in 2:

K(Q) = {U € Ho(div, Q) : dive =0 in Qh} ,
g(ﬁh) = {’U € Ho(div,ﬁh) LU= VQD, @Y € Hl(ﬁh)} .

These two spaces are orthogonal in H(div, €,) and 12(€,)2. Notice that the inclu-
sions K — () and K, — K(€2,) obtained by extending by zero the functions
defined in € or €2, respectively, are continuous.

Lemma 2.3.4 For any v, € Gy,
v, = VE+ x inﬁh,

with VE € G() and x € K(Qn). Moreover, there eist constants C > 0 and
rn € (1/2,1], both independent of vy, such that VE € H™ (),

V€L, &, < Clldivenllygq, ; (2.17)

Th {2

and
Ixllo.g, <CR™[|divonllq, - (2.18)

Proof. Let £ € H'(Q;)/R be the solution of the compatible Neumann problem

Af == divﬁh in Qh,
o€ ~
A~ — Q.
al/h 0 on 0 h
Then, because of the a priori estimate for this problem (see [53]), V& € H"(€2,) and
(2.17) holds with r, € (1/2,1] (in fact, r, = 1 if Q, has no reentrant corner, and
T < &, with 6, being the largest interior angle of €, otherwise).
Let x := v, — V& in Qp,. Then X € K(ﬁh), since divy = 0 in Qp, and XUy =
Eh';h—Vé-';h:OOH th

On the other hand, since Eh\Q\Qh = 0, we have

- \X\de = /Qx-(vh—Vf)da:—/ x - V& dx

Qn Q\Qp,

— /X-(vh—Rvg)d:H—/ X+ (RVE = V&) dx
Qp,

Qp
— / x - V& dx.
O\
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Thus, to prove the lemma, we estimate the three terms in the right hand side of this

equality.
For the first one, we note that for T € 7,2 such that T C T (see Fig. 2.2), we
have
/ —d +/ —d —/ Af,dxz/ divo, dz = 0.
ayh wr f\T

Hence,

8§ o€ ¢

— | =ds=-— ds =0,
az/h op OV ° 61/h

because 0€/0v), vanishes on the whole aﬁh D or. On the other hand, for T € T2
such that 7' > T, we directly have 9¢ JOvp, = 0§/0vy, = 0 on st C 0. Then, by the
definition of R, (RVE) - vy, vanishes on sy for all T € T,2. Hence (v, — RVE) v, =0
on 09y,. In addition we have divuy|r € Po(T) and divVE|r = divup|r. Then it
follows that div VE&|7 € Po(T) and, from (2.14),

div(RVE)|r = div VE&|r = div v, 7.

Hence (v, — RV¢) € K), — K(Qh) and then, since v, € G, and V& € Q(Qh), we
have

/ X - (vp — RVE) dx = / vp - (v, — RVE) dx
Qp, Qp,
—/~ V¢ - (on — RVE) da =
2
For the second term, we use (2.15) and (2.17) to obtain

< ChM[VE ]l 0,

Ch™[|xllo @, || div vnlo,0,-

/Q X - (RVE — V¢) dx

N

Finally, the last term is bounded by using Lemma 2.3.3 and (2.17) as follows,

/ x - V& dx
0\

< ||X||0,Q\s‘zh0hrh||Vf||rh,§h

< O™ Ixllog, I divonllog,. O

As an immediate consequence of the previous lemma, we have the following
result:
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Corollary 2.3.1 There exists a positive constant C such that
/ (divuy)? dz > af|valldiv.q, Yoy, € Gy (2.19)
Qp,

Proof. Let v, € G,. According to the previous lemma, we have v, = V& + x and

[vallo.s, = [onllog, < 1VEllog, +lIxllog, < C(L+ ™)l div v,

|O,Qh’

which allows us to conclude the proof. O
Now, we define the discrete analogue of the operator A as follows:

Ay 12(R%)?2 — L%(R?)?
[ — W Unlg, = un,

where u, € G, is the solution of

/ div uy, div oy, doe = f vy dx Yoy, € G, (2.20)
Qp

Qp,

(recall that u;, denotes the extension by zero of u; to R?).
Problem (2.20) is well posed because of Corollary 2.3.1. Then, as a consequence
of Lax Milgram Lemma, A, is well defined and we have

lunllaiv,0, < C|If

o2 (2.21)

As in the continuous case, it is simple to show that A, is a positive eigenvalue of
problem (2.2) if and only if pp, = 1/\s, is a positive eigenvalue of the operator A,
and the corresponding associated eigenfunctions are related by up, = Upn|q. In the
following section we study how the eigenvalues and eigenfunctions of A, approximate
those of A.

Remark 2.3.1 Under the assumption that 0N is piecewise smooth, the constant
Ty in Lemma 2.8.4 satisfies r, — 1 as h goes to zero, with r € (1/2,1] being the
constant of estimates (2.9) and (2.12). Therefore, if we denote r; = min{r,ry},
then 1y, is asymptotically equal to r. Because of this, we will use r}, instead of r or
Ty, several times in the following section, just to simplify the notation.

2.4 Spectral approximation

Our first step is to prove that the operators A; converge to A in norm as h goes
to zero.
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From now on and throughout the rest of the chapter, let f € L?(R?)2 be a fixed
function and let

ﬁZAf, UZE‘Q, Eh:Ahf, uhzﬂh‘gh.

Furthermore, C' will denote a generic constant independent of the mesh-size as above,
but also independent on the particular f € L?(R?)2.

We will use in the proofs smooth extensions of functions originally defined in 2.
For ¢ € H*(Q) (s > 0), let 1/¢ denote an extension of 1 to R? satisfying ¢¢ € H*(R?)
and

[°]ls,p2 < Cll¥lls 0 (2.22)

(see, for instance, Theorem 1.4.3.1 in [53]). In particular, since according to estimate

(2.11) divu € H(Q), (divu)® denotes an extension of divu satisfying the estimate
above for s = 1; namely,

(dive)], g < C [dival, . (2.23)

In addition, we introduce a gradient field defined in Qh, closely related to u
(as will be shown in Lemma 2.4.1 below). Let ¢ € H'(£2;,) be the solution of the
following Neumann problem:

A¢ = (divu)e+¢é  in Qp,
— =0 on aﬁh, (224)

where the constant ¢ is taken for the problem to be compatible, i.e.,

1 1
¢i=——=— [ (divu)*dr = ——— (divu)® dx. (2.25)
|Qh| Qp |Qh| Q\Q

Then, using Lemmas 2.3.2 and 2.3.3, and estimates (2.23) and (2.11), we have

~1(1/2
< \Qh\~9|

€] I(div u)llo,ona < CH?[[(divu)l1 0, < CR?||flloge-  (2:26)

€21
Because of the a priori estimate for the Neumann problem (see [53]), ¢ € H*™% ()

and
12ll14r, 3, < Cll(divu)®+ellyg, < Cllflloges (2.27)

the latter because of (2.23), (2.11), and (2.26). Thus, we define 4 := V¢. Then
4 € H™(§2,) and

lall,, &, < Cllflloge- (2.28)
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On the other hand, diva = (divu)® +¢é € H'(€,) and, because of (2.23), (2.11), and
(2.26) again,
[divall, g, < Cllflloxe- (2.29)

The following lemma shows that 4 is indeed an accurate approximation of u in
Qn Qh:

Lemma 2.4.1 There exists a positive constant C such that

lu — il|giv,0ne, < CHVE|| f]loge-

Proof. Let ¢ € H!(Q) be the solution of the Neumann problem (2.4) for v = u,
which satisfies [, = 0. Then, according to (2.8) and (2.7), ¢ € H''"(Q) and
6l im0 < C ldivallyg < C 1l

Let ¢ denote an extension to R? of ¢ € H'*"(Q) satisfying (2.22) with s = 1+7.
Then

16°N 42 < Cllolliirn < Cllflloge - (2.30)

Recalling the weak formulation of problems (2.4) and (2.24), we have

||U_ﬁ||g,nrmh = V(ie—¢)-V(p—¢)dx
Ny,

< V(p®=¢)-V(p® - ¢) da

(08
< [VeVe-pdit [ VeV -g i
Q Qp\Q
[ VeVt -9 do
Qp,
< —/divu(go—gf)) d:r:+/~ (divu)®(p® — @) dz
Q Qp

—|—/~ é(goe—gb)d$+/ V¢ V(e® — @) dx
a Q0

Q

= / (divu)®(¢® — @) dz +/ ¢(p® — @) dx
Q0

+ V- V(e — ) dz.

Now, we estimate the three terms in the previous inequality. For the first one,
we use Cauchy-Schwarz inequality, Lemma 2.3.3, (2.23), (2.11), (2.30), and (2.27)
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to obtain

| @vuyer - 9) ds

IN

Chl(divu)lly 5, Chll¢® = ¢l g,

< on*divul g (Ielho+ 160, )
< ORI g

For the second one, we use (2.26), (2.30), and (2.27), to obtain

/~ (¢ — @) dx

Q

< CB| fllo (Il

v+ 19llg, ) < CRIFIR g

For the last term we use Cauchy-Schwarz inequality, Lemma 2.3.3, (2.30) and
(2.27) to obtain

/ Vet V(¢ — @) da
Q0
< O Vel q, CHHIV (6 = @)l

< R || flloge (lellisrg + 191l14r, &2)
< Ch'™*"h ||f||§,R2.

Finally, we note that div(u — @)|gng, = ¢. Then, using (2.26) and combining the
above three inequalities, we have

~ A~ A !
l|lu — u||(2iiv,QﬁQh = |lu - u”%,ﬂﬁﬂh + ¢ Q2N < ChHEHf”?),R?a

which allows us to conclude the proof. O

We have now the tools to prove the convergence in norm of A, to A. As a first
step, the following lemma splits a bound of ||[(A — A,)f|lirz = || @ — Tsl|1 g2 into
several terms which can be dealt with separately:

Lemma 2.4.2 There exists a positive constant C such that

@ = Tllaze < C |llu=dllavono, + if 13— v,
v EGH

‘ Jo, div(@ = up) div w, dz

+ sup
wi,€G l|wh | aiv, 0,

+ [[ullgiv,one, + 18ldiv,000
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Proof. For all v, € G,

[ = TnllGge = v — unlldivono, + lullivoa, + 1ualli oo
2 (”U - Uh”ﬁiv,QﬂQh + [Jvn — uh”giv,ﬂﬂﬂh)

+||u||§iv,ﬂ\§_2h + ||uh||<2ﬁv,nh\ﬁ'

IN

Then, using that [[usllaiv0na < [lvn — tsllaiv,ona + [vallaiv,0na, We have

Iz —p||lgivre: < C (||u — Up||div,one, + |[Vh — Unlldiv,0,

+ullgiv, 00, + ||Uh||div,nh\s‘z) :

Because of the ellipticity estimate (2.19), we have
allv, — uh||(2ﬁv’ﬂh < / div(vp, — a) div(vy — up) dz
Qp,

+/ div(a — up) div(vy, — up) dx
Qp,

N

< low = @flaiv.0, [lvn — unllaiv.0,

+/ div(a — up) div(vy, — up) dz,
Qp
then

1 .
lvn — unllaive, < = | llvn — dllaiv,0,
(0%

‘th div(@ — up) div wy, dx

+ sup
—— 1w | aiv, 0,

We conclude the proof by combining the above inequalities and the relations
|u = vallaiv.ona, < v = @|dgiv,one, + 1% — Valldiv,onas,
and

e laiv,one < i — v llaiv,e, + [|@]av,one- O

The first term in the right hand side of the inequality in the previous lemma
is directly bounded by Lemma 2.4.1. In what follows we give estimates for the
remaining four terms. We begin with the density term in the following lemma:
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Lemma 2.4.3 There exists a positive constant C such that

inf |4 — vallaiv,0, < Ch™ | floge-
v, E€EGR

Proof. Let Riu € Ry (€2) be the Raviart-Thomas interpolant of Uq,, with its de-
grees of freedom defined by (2.13). Since @ € H'(€2,), then Ra is well defined.
However, in general, Ri ¢ V), because - v, does not necessarily vanish on the edges
sy corresponding to those boundary triangles T € 7,° with T C T (see Fig. 2.2).

Then, to define an “interpolant” Ri € Vi, we modify the degrees of freedom of
R by explicitly imposing Ri - v, = 0 on these edges. Namely, let Ri be the unique
vector field in R, (§2y,) satisfying

Rit- vyl = 0, if 6=s forTE'ELa:TCT,
Y7 Ra- Vele, otherwise,

where v, denotes a unit normal to £. Then, Ri € V.
In what follows, we bound the difference between this modified Raviart-Thomas
interpolant and the standard one:

IRe — Rill3iq, = Y IRi— Rillg,r= Y [IRd— Rillfr-
TET, TeT?: TCT

Let T € 7,2 such that T C T; by definition we have

(Ru—Ru |T—( |/ - Vhd3>¢sT7

where ¢, is the standard basis function of R7,(7’) associated to the edge s7. Hence,

/ U vy ds|.

On the other hand, since fo_T 4 v ds = 0, by using Lemma 2.3.2 we have

straightforward computations yield

C

|Ri — Ra|givr = “ ‘/ Vh d5| || fsy llaiv,r < o]

/ - vy ds = / divas de < lwr["2||divall,,,, < CHY? |divall,,,
ST wT

and since |sp| > Chr,

IRa — Ritflgse,r < Chi? [|div ally 7.1



Capitulo 2. Finite element approximation of spectral acoustic problems on curved
38 domains

Hence,

IRe— Ritll 0, < Y, Chrlldivillg s, < Chlldival) g, -

TeTP: TCT
Then, because of (2.29), Lemma 2.3.3 yields
IRd — Rillgiv.0, < CR?||divall, 5 < Ch*?||f]lyge-

Hence, we use (2.15), (2.16), (2.28), and (2.29), to obtain

i — Rillave, < 6— Rillave, + |Ri — Rilldv.e,
et (lal, g, + Idivall, g, ) + ChY2 | fllyz
< Ch || flloge-

Now, let P : V;, — K}, be the H(div Qp)-orthogonal projection and let vy, :=
Rt — P(Ra) € Gy. Then v, and P(Ra) € K, are H(div, Q)-orthogonal. On the
other hand, since @ € G(€), then g, and P(Ra) are also H(div, Q,)-orthogonal.
Hence

IN

( )”dlv K973 + ||P( )||d1V K973
(4 — vp) — P(Ru)“div,ﬂh
U —

u”dlv Qh

||?1_Uh||zﬁv,nh < |

= |
Therefore, we conclude the proof by combining the two previous inequalities. O
Now we deal with the consistency term in Lemma 2.4.2:

Lemma 2.4.4 There exists a positive constant C such that
/ div(d — up) divew, de < CH | fllogllwnlave,  Veon € Ga.
Qp,

Proof. Let w, € Gp,. Consider the Helmholtz decomposition w, = V& + x with
VE € G(Q) and x € K(£2p,) as in Lemma 2.3.4. Then, using (2.20) and (2.24), and
integrating by parts, we have

/ div(a — up) divwy, dz
Qp

= /~ divadivwy, dr — / div uy, div wy, dx
Qp Qp

/~ div 4 div(V¢) dx — frwpdo
Qp

Qp

= [ [(divu)®+¢div(VE)de— [ f-VEde— [ f-xda

Qp Qp, Qp,

:—/~ V [(divu)?] - VE dx — f-V&dx — f-xdz.
Qp,

Qp Qp
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Hence, using (2.10) we obtain

/ div(a — up)divwy, dz = — V(divu)® - VE dx (2.31)
(o 2\
+/ f-V&dx
o\Q,
— f-Védr — fxdx.
Qp\Q Qp,

In what follows, we estimate the four terms in the right side above. For the first one
we use Lemma 2.3.3, (2.23), (2.11), and (2.17) to obtain

[ T Ve < v aCnt Vel
Qp\Q2

< Ch||divull g || divwllo,

< ChE||f

|o,r2 [|wh | div,0, -

Analogously, for the next two terms, by using Lemma 2.3.3 and (2.17) we have

f-Védx

L9AN 7%

+ f+VEdz| < Ch| flloge||wldiv,on-

R\

For the last term, we use Cauchy-Schwarz inequality and (2.18) to obtain

fxdz lo,on, < CEE|| fllo e ||wldiv,on-

Qp

< (1 llo.0nllx

Thus, we conclude the proof. O
It only remains to estimate the last two terms in Lemma 2.4.2. We do it in the
following two lemmas:

Lemma 2.4.5 There exists a positive constant C such that
1wl giv,ov0, < Ch7|| fllog2-

Proof. Because u € H"(Q)? and divu € H'(2), we use Lemma 2.3.3 and estimates
(2.9) and (2.11) to obtain:

[ulloova, < Ch |lullra < Ch|[flloge;
1div ully g\q, < Chlldivulio < Chlfllog. O
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Lemma 2.4.6 There exists a positive constant C' such that
lllaivona < CRE| flloge.
Proof. Because ﬁ(éhBP: we use Lemma 2.3.3 and (2.28) to obtain
lilloage < CHHlal, 5, < CH™Fllose

On the other hand, because of (2.24), ||div g ona = [|(divu)® + ¢|lo.ona- Then, we
use Lemma 2.3.3, (2.26), Lemma 2.3.2, (2.23), and (2.11) to obtain

1/2

1(div u)®llg g0 + €] |2\ Q]
Ch|(divu)®ll, g, + Ch* | flloge
Ch|fllog:- O

||d1V a”(),ﬂh\ﬁ

ININ A

Now we may conclude the convergence in norm of A, to A:

Lemma 2.4.7 There exists a positive constant C such that
1A = A)fllasviee < | flloge VS € LX),

Proof. It is an immediate consequence of the previous six lemmas. O

By virtue of the previous lemma, we are able to apply the spectral approximation
theory for compact operators (see [7]) to obtain error estimates for the eigenfunc-
tions.

Let 4 > 0 be a fixed eigenvalue of A with algebraic multiplicity m. Let £ be
the corresponding associated eigenspace. Since Lemma 2.4.7 implies that |4 —
Ap|luaiv,r2y — 0 as b — 0, then there exist exactly m eigenvalues of Ay, ,u,g), e ,,ugm)
(repeated accordingly to their respective multiplicities) converging to p (see [61]).
Let &, be the direct sum of the corresponding associated eigenspaces.

We recall the definition of the gap 8 between two closed subspaces, YV and Z, of
H(div, R?):

5(), 2) :=max {6(Y, Z),6(Z, )},
with
5V, 2):= sup (inf ||v — w||diV7R2) .
vey weZ
]l iy, r2=1

Then, the following error estimate holds:
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Theorem 2.4.1 There exist a positive constant C such that
3\(5}“5) < Chr;L:
with 1}, as defined in Remark 2.3.1.

Proof. It is an immediate consequence of Theorem 7.1 in [7] and Lemma 2.4.7. O
In order to prove a double-order error estimate for the approximate eigenvalues,
we will use the following lemma:

Lemma 2.4.8 There exist a positive constant C' such that

/~ (A= Ap)f-gde| <CHm||fllyge 9l VFrg €&

Qp

Proof. Let f,g € £. We denote

lo,  Up=Anf,  up =Upla,,
2, U = Apg, U, = Upla,-

SIS
I

Af, u=1u
Ag, V=71

We have

(2.32)
/(~2 (A—Ah)f-gda::/ﬁh(ﬂ—ﬂh)-gdac

:/divudivv dm—/ div uy, div vy, dx
Q

Qp,

= / div(u — ap) div(v — vp,) dz + / div(u — up) divo, dz
0

QNQy,

+ / div uy div(v — vy) dz — / div up, div vy, dz.
QN Qh\(z

In what follows we estimate the terms in the right side of the above equation. Because
of Cauchy-Schwarz inequality and Lemma 2.4.7, we have

/ div(u — ) div(v — v3,) dz < Ch’ |||
Q

0,R2 ||9||0,R2-

The next two terms are similar (changing the role of the functions u, uy, and vy,
by v, vp, and uy, respectively). Then we write down the estimate only for the first
one.

Sinceuw = Af € £, because of (2.12), divu € H*"(Q). Then, there is an extension
(divu)® € HY"(R?) satisfying (2.22) for s = 1 + r; namely,

1(diva) sz < C ldivall g < €l flloge (2.33)
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Let & = V@ € G(€). with @ being the solution of (2.24)(2.25). Then we have
/ div(u — up) divo, dz
QN

= / [(div u)® — div uy] divvy, do — / (divu)®div v, dz
o QR0

+ / div uy, div vy, dx
Q0

[(divu)® — div 4] div vy, dz + / (diva — div uy) div vy, dx

Qp

h
— / (divw)®div vy, dx + / div uy, div vy, dz

IRy

= é/ div vy, dx +/ div(d — uy) div vy, dz
Qp,

Qp,

— / (divu)®divv, dr + / divuy divey, do
Q\0 Q0
Now, let 7, = V& + x as in Lemma 2.3.4. The second term in the right hand side of
this equation can be dealt with by repeating the argument in the proof of Lemma
2.4.4 (see (2.31)). Then we obtain

/ div(u — up) div oy, dz
onQ,

= é/ div oy, dx — V(divu)® - V¢ dx

+ f-Vfda:—/ f-xdx

Q\Qp, QnQy,

— / (div )¢ div v, dx + / div uy, div vy, dz,
Qr\Q2 Q\Q
where we have used that f|g, .o = 0. Notice that the last integral also appears in
(2.32). Thus, to conclude the lemma, it is enough to estimate each term in the right
hand side of the above equation.

Because of (2.26) and (2.21), we have

é/ div vy, dx
Qp

For the second term we use Lemma 2.3.3, (2.33), (2.17), and (2.21) to obtain

< Ch? ||f||0,R2 ||Uh||div,nh < COh* | ] 0,R2 ||9||0,R2 .

V(diva)*- VEdz| < CW||(divu)|l,,,q Ch™ V€], 5,

Q\Q
< Chr+r;‘ ”f

|0,R2 gl 0,R2
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To estimate the third and forth terms, we use that w = Af = uf because f € £.
Then f = %u in Q. Hence, by using Lemma 2.3.3, (2.9), (2.17), and (2.21) we have

Ch" !
pevea] < Sy o, s,
O\ H '
< C’hrﬂ’”f or2||gllorz-

Regarding the forth term we have

1
/ foxdr = —[/ (u—d)-xd:c—k/ ﬁ-xdm]
QN H1LJanq, QNQy,

1
K LJanay, o\, Qn\Q

the latter because fﬁh u-x =0, from the orthogonality of g(?zh) and K(ﬁh). Then,
by using Cauchy-Schwarz inequality, Lemmas 2.4.1 and 2.3.3, (2.18), (2.21), and
(2.28) we obtain

/ foxds| < O fllome CF onllano,
Qﬁﬂh

420N il 5, O onl,
< Ch*™||f]

o2 191

Finally, to estimate the last two terms notice that, because of Lemma 2.4.7,

0,R2 .

108 llaiv,on0 = v = Vllav.one < 10k — Vllaivre < ChT;L”Q“O,R?

and, analogously, |lualaiv,0ne < Chr3||f||0’R2. Then, by using Lemma 2.3.3 and
(2.33) we have

/Q v, de| < ORI, Il
h

< Ch|f

lo,r2]19 1|02

and

IN

[|un ”div,Qh\Q l|lvn ||div,Qh\Q

/ div uy, div vy, dz
Q\Q

< OB fllogelg]

0,R2-

Thus, we conclude the proof. O

Now we are able to establish a double-order error estimate for the approximate
eigenvalues. We know that A = 1/u is a positive eigenvalue of problem (2.1) with
multiplicity m, and /\Ef) = l/ugf), i=1,...,m, are the eigenvalues of problem (2.2)
converging to A. Then, the following error estimate holds:



Capitulo 2. Finite element approximation of spectral acoustic problems on curved
44 domains

Theorem 2.4.2 There exist a positive constant C' such that

‘A—Aﬁf) <Chh,  i=1,...m.

Proof. It is an immediate consequence of the previous lemma, Lemma 2.4.7 and
Remark 7.5 in [7]. O

2.5 Numerical Examples

In this section we report the results obtained on two numerical tests which con-
firm our theoretical statements. One of the tests corresponds to a domain with a
smooth boundary and the other to a domain with reentrant corners.

In both tests, we have computed a few eigenvalues on several differently refined
meshes in order to estimate the respective orders of convergence. Fig. 2.3 shows the
domains and corresponding coarse meshes for each test.

Test 1: Domain with a C*°-boundary Test 2: Domain with reentrant corners

V%VAVAVAVAVAVAVA

VAVAVAVAVAVAVAVAN

AVAVAVAVAVAVAVAVAN

Figure 2.3: Domains and meshes.

The results obtained for the annular domain of the first test are reported in
Table 2.1. In this case, all the eigenvalues have multiplicity 2. This table shows
the approximations of the smallest three double eigenvalues computed on some of
the used meshes. Each mesh is identified by its total number of degrees of freedom
(d.o.f.). We also include for each eigenvalue the estimated order of convergence and
an extrapolated more accurate approximation, both obtained by means of a least
square fitting of the computed values. The rate of convergence (in powers of h) is
clearly 2, which agrees with the fact that, in this case, r = 1.

Figure 2.4 show the pressure corresponding to the first two eigenvalues in Table
2.1.

Table 2.2 shows the corresponding results obtained for the curved L-shaped do-
main of the second test. In this case, the domain has two reentrant corners of sizes
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Table 2.1: Test 1: Numerical results for a domain with a C*°-boundary.

d.o.f. 2480 9760 21840 38720 Order  Extrapolated
A 1835302 1.835177  1.835154 1.835146  2.03 1.835136
A2 1835302 1.835177 1.835154 1.835146  2.03 1.835136
A 7189809 7189092  7.188958  7.188915  2.02 7.188856
AZ 7191344 7189473 7.189132 7.189011  2.02 7.188861
A 15.674033 15.666375 15.664954 15.664458  2.00  15.663820
A2 15.674033 15.666375 15.664954 15.664458  2.00  15.663820

.

A

>

-

\'jf’

<

Figure 2.4: Fluid pressure associated to the eigenvalues )\5111) and )\5112)

57 /4 and 3m/2. Because of this, some of the eigenvalues are computed with an order
clearly smaller than 2 (in powers of h). Indeed, in this case r = 2/3 and then the
error estimates proved in the previous section is |\, — Ap;| < Ch*3. Tt can be seen
that this order of convergence is practically attained for the two first eigenvalues.

Figure 2.5 and 2.6 show the pressure corresponding to the eigenvalues in Table

2.2.
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Table 2.2: Test 2: Numerical results for a domain with a reentrant corner

d.o.f. 3680 14560 32640 57920 Order  Extrapolated
Ah1 1.359828 1.362873 1.363690 1.364048  1.37 1.364792
Ah2 3.349844 3.351317 3.351717 3.351892  1.36 3.352258
Ah3 9.558594 9.562825 9.563608 9.563884  2.00 9.564235
Aha 9.568797 9.571612 9.572166 9.572368  1.90 9.572643
Ahs 11.035413 11.038415 11.039169 11.039485 1.49 11.040076

Figure 2.6: Fluid pressure associated to the eigenvalues A\p3 and Ap4.



Chapter 3

Error estimates for low-order
isoparametric quadrilateral finite
elements for plates

This chapter deals with the numerical approximation of the deflection of a plate
modeled by Reissner-Mindlin equations. It is well known that, in order to avoid
locking, some kind of reduced integration or mixed interpolation has to be used
when solving these equations by finite element methods. In particular, one of the
most widely used procedures is based on the family of elements called MITC (mixed
interpolation of tensorial components). We consider two lowest-order methods of
this family on quadrilateral meshes.

Under mild assumptions we obtain optimal H' and L2-error estimates for both
methods. These estimates are valid with constants independent of the plate thick-
ness. We also obtain error estimates for the approximation of the plate vibration
problem. Finally, we report several numerical experiments showing the very good
behavior of the methods, even in some cases not covered by our theory.

3.1 Introduction

The Reissner-Mindlin model is the most widely used for the analysis of thin
or moderately thick elastic plates. It is now very well understood that standard
finite element methods applied to this problem produce very unsatisfactory results
due to the so called locking phenomenon. Therefore, some special method based on
reduced integration or mixed interpolation has to be used. Among these methods,
the so called MITC ones, introduced by Bathe and Dvorkin in [10], or variants of
them are very likely the most used in practice.

47
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A great number of papers dealing with the mathematical analysis of these kind of
methods have been published (see for example [4, 9, 29, 46, 44, 72, 73, 79]). In those
papers optimal order error estimates, valid uniformly in the plate thickness, have
been obtained for several methods. However, although one of the most commonly
used elements in engineering applications are the isoparametric quadrilaterals (in-
deed, the original Bathe and Dvorkin paper deals with these elements), no available
result seems to exist for this case.

On the other hand, it has been recently noted that the extension to general
quadrilaterals of convergence results valid for rectangular elements is not straight-
forward and, even more, the order of convergence can deteriorate when non-standard
finite elements are used in distorted quadrilateral, even if they satisfy the usual shape
regularity assumption (see [5, 6]).

The aim of this chapter is to analyze two low-order methods based on quadri-
lateral meshes. One is the original MITC4 introduced in [10] while the other one is
an extension to the quadrilateral case of a method introduced in [46] for triangular
elements (from now on the latter method will be called DL4). We are interested not
only in load problems but also in the approximation of the vibration modes of the
plate.

For nested uniform meshes of rectangles, an optimal order error estimate in H!
for the MITC4 has been proved in [9]. However the regularity assumptions on the
exact solution required in that paper are not optimal. These assumptions has been
weakened in [46] but they are still not optimal. Let us remark that, in order to
obtain results for the spectral approximation, it is important to remove this extra
regularity assumptions.

On the other hand, for low-order elements as those considered here, an optimal
error estimate in L? is difficult to obtain because of the consistency term arising in the
error equation. For triangular elements this estimate has been proved only recently
in [44]. However, the proof given in that paper can not be extended straightforwardly
even for the case of rectangular elements. Let us mention also that this L? estimate
is very important if one wants to prove optimal order convergence for the eigenvalue
approximation (see [44]).

In this chapter we prove optimal, both in order and regularity, H* and L2-error
estimates for both MIT'C4 and DL4 methods under appropriate assumptions on the
family of meshes. As a consequence, following the arguments in [44] we obtain also
optimal error estimates for the spectral approximation.

In order to prove the H! estimate for the MITC4 we require an additional as-
sumption on the meshes (which is satisfied, for instance, by uniform refinements of
any starting mesh). Instead, for the DL4 no assumption other than the usual shape
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regularity one is needed.

On the other hand, a further assumption on the meshes is made to prove the L2
estimates and, consequently, the higher order estimate for eigenvalues: the meshes
must be formed by higher order perturbations of parallelograms. This restriction is
related with approximation properties of the Raviart-Thomas elements which are
used in our arguments and do not hold for general quadrilateral elements. However,
this assumption is only needed for extremely refined meshes. Indeed, the L? estimate
holds for any regular mesh as long as the meshsize is comparable with the thickness.
Moreover, we believe that this quasi parallelogram assumption is of technical char-
acter. In fact, the numerical experiments reported here seem to show that it is not
necessary.

The rest of the chapter is organized as follows. In Section 2 we recall Reissner-
Mindlin equations for plate vibrations and introduce the two discrete methods. We
prove error estimates for both methods in H! and L? norms in Sections 3 and 4,
respectively. In Section 5, prove optimal order convergence for the spectral plate
problem. Finally, in Section 6 we report some numerical experiments.

Throughout the chapter we denote by C' a positive constant not necessarily the
same at each occurrence, but always independent of the mesh-size and the thickness.

3.2 Statement of the problem

3.2.1 Reissner-Mindlin model

Let Q2 x (—%, %) be the region occupied by an undeformed elastic plate of thickness
t, where Q) C R? is a convex polygonal domain. In order to describe the deformation
of the plate, we consider the Reissner-Mindlin model, which is written in terms of
the rotations 8 = (8!, 5%) of the fibers initially normal to the plate midsurface and
the transverse displacement w (see [28, 46]). The following equations describe the

plate response to conveniently scaled tranversal and shear loads f € L*(f) and
0 € L2(Q)2

Find (8, w) € H(Q)? x HY(Q) such that:

2

a(Bon) + (Vo —n) = (f,0) + 5(0.0)  V(n,0) € HYQ)? x HY(),

K (3.1)
Y= t—Q(V’w - B),

where k := Fk/2(1 4 v) is the shear modulus, in this expression E is the Young
modulus, v stands for the Poisson ratio and k is a correction factor of the shear
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stress. We have also introduced the shear stress v and denoted by (-, -) the standard
L?-inner product. The bilinear form a is Hj(2)2-elliptic and is defined by

2
E . .
a(B,n) = m/ﬂ L_Zﬂ(l — v)eij(B)es(n) + v div B div 77] :
with ¢;;(/5) being the linear strain tensor.

Let us remark that we have included in our formulation the shear load term
%(9, n) since it arises naturally when considering the free vibration modes of the
plate. In fact, it is simple to see that the plate vibration frequencies and amplitudes

are solutions of the following spectral problem:

3

t3a(ﬁ,n)+ﬁt/ﬂ(Vw—5)-(Vv—n)=w2 [t/prUJrf—Q Qpﬁ-n]

¥(n,v) € Hy(Q)* x Hy(€),

where w denotes the angular vibration frequency and p the density. Thus, rescaling
the problem with \ := pw?/t?, we rewrite it as follows:
Find w > 0 and 0 # (8, w) € HY(Q)? x HY(Q) such that:

(o) + (n =) = A (wo) + ()| Vo) € BYQP x HY(@)

7= 5(Vw - ),
(3.2)
which is the spectral problem associated to (3.1).
This chapter deals with the finite element approximation of both problems, (3.1)
and (3.2). It is well known that both are well-posed (see [28] and [44]). Furthermore,
we will use the following regularity result for the solution of (3.1) (see [4]):

Lo < C(%))0

| Bll2.0 + llwll2,0+ [7llo,0 + 1 [|7] o + Iflloe) < CIO, )l (3:3)

where C' denotes a constant independent of ¢, || - ||x,0 denotes the standard norm of
H*(O) or H*(0)?, as corresponds, for any open subset O of {2 and any integer k,
and (-, -)|; is the norm in 1.2(Q)? x L2(Q) induced by the weighted inner product in
the right hand side of the first equation in (3.1) (see [44]).

3.2.2 Discrete problems

In what follows, we consider two lowest-degree methods on isoparametric quadri-
lateral meshes for the approximation of the load problem (3.1): the so-called MITC4
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method (see [10]) and an extension to quadrilaterals of a method introduced in [46]
that we call DL4. Both methods are based on relaxing the second term in equation
(3.1) by introducing an interpolation operator, called reduction operator.

Let {7} be a family of decompositions of {2 into convex quadrilaterals, satisfying
the usual condition of regularity (see for instance [73]); i.e., there exist constants
o >1and 0 < p < 1 independent of A such that

hg < OpPK, |COS 01K| <o, 1=1,2,3,4, VKeT, (34)

where hg is the diameter of K, px the diameter of the largest circle contained in
K, and 6;x, 1 =1,2,3,4, the four angles of K.

>
>

i
g -
=)

2

X

22>
—>

1

Figure 3.1: Bilinear mapping onto an element K € Tp.

Let K := [0,1]% be the reference element. We denote by Q;;(K ) the space of
polynomials of degree less than or equal to ¢ in the first variable and to j in the
second one. Also, we set Q4 (K) = Qk,k(l?).

Let K € T,. We denote by Fi a bilinear mapping of K onto K , with Jacobian
matrix and determinant denoted by DFg and Jp,, respectively. The assumption
(3.4) leads to

chi < Jp < Chi, (3.5)

with ¢ and C' only depending on o and ¢ (see [75]). Let £; C OK,i=1,...,4, be the
edges of K; then ¢; = Fk (f ), with E being the edges of K. Let 7; be a unit tangent

vector to the edge ¢; of K; then 7; : ”gﬁi"?” with 7; being a unit vector tangent to

the edge /; on the reference element (see Fig. 3.1).
Let

N(K) = {p P € Qoi(K )XQlo( )}
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and, from this space, we define through covariant transformation:
N(K) = {p: poFx = DF'p, pe N'(I?)}

Let us remark that the mapping between AV(K) and A/ (K) is a kind of “Piola trans-
formation” for the “rot” operator, rot p := dp/dy—0p/0x, (the Piola transformation
is defined for the “div” operator in, for example, [28]; see also [79, 81| for further
details). Then we have the following results which are easily established

£; G

and
(rotp) o Fx = J;;r/o\t;b\. (3.7)

Then, we define the space (which will be used to approximate the shear stress 7)
Ty = {¢ € Ho(rot, Q) : ¥|x € N(K) VK € 7;}

that corresponds to the lowest-order rotated Raviart-Thomas space ([75, 81]). We
remark that, for I';, C Hg(rot, €2), the tangential component of a function in I';, must
be continuous along interelement boundaries and vanish on 0f2. In fact, the integrals
(3.6) of these tangential components are the degrees of freedom defining an element
of I'y,.

We consider the following “interpolation” operator

R :H'Y(Q)? N Hy(rot, Q) — Ty,

locally defined for each v € H'(Q)? by (see [75])

/RU)-Tg:/U)-Tg V edge £ of Ty, (3.8)
¢ ¢

where, from now on, 7, denotes a unit vector tangent to ¢. Clearly, the operator R
satisfies

/K rot(th— R) =0 Vb € HU(Q), (3.9)

for any quadrilateral K € 7,. Taking into account the rotation mentioned above, it
is proved ([52], Chapter III, Theorem XXX) that

|| rot Rljo0 < C|[Y]|1,0 (3.10)

and

[ — Ry

0.0 < Chl[¥]l10- (3.11)
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To approximate the tranverse displacements we will use the space of standard
bilinear isoparametric elements

Wy == {v € Hy(Q) : v|x € Q(K) VK € T},

where Q(K) := {p € L}(K) : po Fx € Q1(K)}, for all K € Ty,
The following lemma establishes some relations between the space I'j, and Wj:

Lemma 3.2.1 The following properties hold:
VW, ={u el rotp =0} CTLy.
and
vYw € H*(Q), R(Vw) = V(w!),
where w! is the Lagrange interpolant of w on Wj,.
Proof.
For p € T'y,, it follows that VK € T,
1

/L|K0FK:DFI}Tﬁ,ﬁ€N(I?) and rotu|KoFK:J—/()\tﬁ.
Fg

Hence, since Jg, > 0 because of (3.5), rot x = 0 if and only if rot/i = 0.
On the other hand, note that if 7 € N(K) then i = (a + by, c + dT), with
a,b, ¢,d € R, and rotfi = d—b. Therefore, rot/i = 0 if and only if Jj, e-HdB)d=

V%, for © = aZ + ¢ + dzy € Q1(K).
Thus, rot u|x = 0 if and only if p|x = (DFx i) o F' = Vo with v = 50 F' €

To prove the second property, since we have already proved that Vw! € Iy,
is enough to show that the degree of freedom defining R(Vw) and Vw! coincide.
Indeed, for all edge ¢ of T,

JREw) 7= [Fwem = w(B) = wld) = vl (B) = w!(4) = [ n,

L

where A and B denote the end point of ¢ as in Figure 3.2. O
Let us now specify the methods that we are going to analyze. The two methods

that we analyze only differ in the space H) used to approximate the rotations:
MITC4: We use W), and I'j, defined above, whereas for the rotations we use
standard isoparametric bilinear functions:

HY = {n € HY(Q)? : nlx € Q(K)? VK € Th}.
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A R

Figure 3.2: Geometry of K.

DL4: While for this method W), and I'j, are the same as for MITC4, we enrich
the space Hj by introducing a rotation of a space used for the approximation of the
Stokes problem in [52].

For each edge E C I?, i=1,...,4,let g; be the functions vanishing on E\] for j # 1.

Namely, §i #(V); ¢ = 7Y(1-7), G = (1 —2)(Y)-end @ (T 7)(1 - )
(see Fig. 3.1). Then we define p; := (¢; o Fx')7; and we set

le = {77 € H:(l)(Q)2 : 77‘1{ € Q(K)2 S <pla P2, Ps, P4> VK € 7;1,}

From now on we use Hj, to denote any of the two spaces H; or H?. In both
methods we use R defined by (3.8) as reduction operator. Then, the discretization
of the load problem (3.1) can be writen in both cases as follows:

Find (B, wp) € Hp X Wy, such that:

2
(B ) + (o, Vo — Ba) = (f,0) + ' S(O)  V(,v) € Hy x W,

K (3.12)
Yo = t_z(vwh — RpBy).

Existence and uniqueness of this solution follow easily (see [46]).
On the other hand, the discretization of the spectral problem (3.2) is as follows:

Find M\, € R and 0 # (B, wn) € Hp x Wy, such that:

t2
a(Br,n) + (vn, Vv — Rn) = A | (wn,v) + E(ﬁhﬂ?) V(n,v) € Hyp x W,

T = g(vwh — RBy).
(3.13)
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3.3 H!'-error estimates

To prove optimal error estimates in H'-norm we use a result from [46]. Let
(B,w,7) and (B, ws,yr) be the solutions of the problems (3.1) and (3.12), respec-
tively. By virtue of Lemma 3.2.1, Theorem 3.1 in [46] reads in our case:

Theorem 3.3.1 Let H,, Wy, 'y, and the operator R be defined as above. If there
exist B € Hy, and an operator 11 : Hy(rot, Q) NHY(Q)? — T, satisfaying

18-85 1,0 < Chl|B|l20, (3.14)
12 ~
rot (—H7 + Rﬁ) =0, (3.15)
K
and
|7 — Tnllo.o < Chllnll1o ¥n € H(Q)? N H(rot, ), (3.16)
then, the following error estimates hold:
18— Bullva + by — mllon < CR(I8la + tlilha + Inlon) (317
and
lw = willio < Ch(11lon + thlle + I1llos). (3.18)

Our next step is to prove that the theorem above can be applied to both methods.

3.3.1 MITC4

Several studies have been carried out for this method in, for example, [9], [46],
and [66]. Since the variational equations for plates have a certain similitude with
those of the Stokes problem, the main results are based on the properties already
known for the latter. An order h of convergence is obtained in those references only
for uniform meshes of square elements. Moreover, more regularity of the solutions is
also required. Although these results can be adapted for parallelogram meshes, they
cannot be extended to general quadrilateral meshes.

In what follows we obtain error estimates for this method on somewhat more gen-
eral meshes, optimal in order and regularity. We assume on the meshes specifically
the following condition:

Assumption 3.3.1 The mesh Ty, is a refinement of a coarser partition 7oy, obtained
by joining the midpoints of each opposite side in each M € To (called macro-
element). In addition, Toy is a similar refinement of a still coarser reqular partition
Tan, whose elements are also called macro-elements.
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Let
Qn = {an € Lj(Q) : qulxk = ck, ck €R, VK € Ty},

where L3(Q) := {q € L*(Q0) : [, ¢ = 0}. Note that, for parallelogram meshes, we
have @), = rot ['y, but this does not hold for general quadrilateral meshes.

For each macro-element M € 7Ty, we introduce four functions ¢;, 1 < i < 4,
taking the values 1 and —1, according to the pattern of Figure 3.3.

Let

Qna = {qn € Qn : qulm = cms, ey €R, VM € Top}
and Qj, be its L2(Q)-orthogonal complement on Qy; i.e.,

Qn={an € Qn: qulur € (a1, @2, G3) YM € Top}.

We associate to these spaces the subspace of H} defined by

I:Th = {nh € H; : / rotn,qg, =0 Vg € Qh4}. (3.19)
Q

[/ 1 1\ [ 1 1\ /[ -1 1\ [/ 1 -1\
q, q, a, d,

Figure 3.3: Bases for the macro-elements.

The following lemma provides the approximant 5 required by Theorem 3.3.1.
Moreover, this § € Hp, and this fact will be used below to define the operator II.

Lemma 3.3.1 Let 8 € HL(Q) NH2(Q). There exists 3 € Hy, such that

/ r0t(F — B)an =0 Van € O (3.20)
Q
and the estimate (8.14) holds true.

Proof. It follows from the results in section VI.5.4 of [28] by changing “div” by
“rot” and rotating 90° the fields, which in its turn are based on the results for
isoparametric element in [78] (see also [73]). O
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Our next step is to define the operator II satisfying the requirements of Theorem
3.3.1. To do this, we will use a particular projector P onto rot [y.

We have already mentioned that, in general, @), # rot I'y. In fact, it is simple to
show that

KeT, “ K

where Y is the characteristic function of K.
For a macro-element M € 7Ty, we consider the bilinear mapping F},, as shown
in Fig. 3.4. Therefore, for any n, € I'y,
4

1
rotmn | = —— ) CiXk;»

Jr

M =1

where K; are the four elements in M (see Fig. 3.4). We can write Y7 | cixx, =
221:1 d;q;, with d; related to ¢; by an orthogonal matrix, i.e.,

dq 11 1 1 c
do _ 1 1 1 -1 -1 Co ’ (3.21)
ds 1 -1 -1 1 c3
dy 1 -1 1 -1 4
and hence
|d;| < 21%1]2%1 lejl, 1=1,2,3,4. (3.22)

Given p € L2(), we define P : L(Q) —» rot T, as follows:

C;

4
VM = JKi € Ton, Pplu=)_

4

/ﬁpqzz/pqu 7::112’3:
M M

/13]7%:0-

M

Straightforward computations show that P is well defined by the equation above.
As a consequence, we have VM € Ty,

/ﬁpqh=/pqh Vg, € Qn, and /ﬁPQhZO Van € Qna-
M M M

XK;»
Jry,

with ¢; chosen such that

The following properties of the operator will be used in the sequel:
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Figure 3.4: Bilinear mapping on macro-elements.

Lemma 3.3.2 The following estimates hold:

Q) (3.23)

<
< Chlpllon Vp € L*(Q). (3.24)

lp — Ppll-1,0

Proof. In order to verify (3.23) it is enough to prove that ||ﬁp||0,
the definition of P we have

- L ($5) < ()

On the other hand, for dy, ..., d4 given by (3.21), from the definition of P and (3.22)
we have

() - [{E)-Se(L

3
IPllo (Z il il ) < CIMI"*|pllor (mlw)

i=1

IN

<

where we have use that

K;
/ Pp = C; / 5 > ‘ ‘ c2.
It maXJF
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and that |M| < C|Kj|, j = 1,2, 3,4, with C only depending on ¢ and p. Then, using
the inequalities above and noting that, for a quadrilateral regular mesh, max Jry, <
ijvi[n Jr,, with a constant C' independent of h, we obtain (3.23).

To verify (3.24), let P : L2(Q) — Qy be the orthogonal projection onto Qy,. Let

v € Hy(Q) be such that ||v]|;,o = 1. By the definition of P, (3.23), and the fact that
(@1, contains the piecewise constants over 7Ty,, we have

(p— Pp,v) = (p— Pp,v—Pv) <|p— Pplloallv— Pl
< Cllpllo,ellv = Pvlloo < Chl|plloallv

|1,Q-

Thus we conclude (3.24). O
Now we are in order to define an operator II as required in Theorem 3.3.1:

Lemma 3.3.3 There exists an operator I1 : Hy(rot, Q) N HY(Q)?> — T\, such that
(8.15) and (8.16) hold.

Proof. To define the operator II we need some previous calculations. The condition
(3.9) together with (3.20) yield

[ xotlr(s - Bla=0 var € (3.25)
Q
Also, since 3 € H,, from (3.9) and (3.19) we obtain

/rotRth:/rotthzo Yqn € Qpa.
Q

Q

Then, since rot R € rot T, by virtue of (3.25) we conclude that

rot R = P(rot RB) = —%ﬁ(rot RY), (3.26)

where we have used that rot Ry = & rot R(Vw — ) = rot R because of Lemma
3.2.1.

On the other hand, let n € Hy(rot, Q) N HY(Q)% We take x(n) = curl¢ :=
(—0¢/0xq,0¢/0x1), where ¢ is the solution of the problem

—A¢ =rot Ry — P(rot Ry) in €,
with homogeneous Neumann boundary conditions. Then

rot x(n) = rot Ry — P(rot Rn), (3.27)
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and

Ix(Mllo.o. < [[rot Ry — P(rot Rn)|[-1,0, (3.28)

Ix(m)ll1a < [ xot R — P(rot Ry)llo,0- (3.29)

For all K € Ty, rot Rx(n)|xk = SFL; and rot x(n)|x = g—’;, the latter because

rot x(n) € rotT,. From (3.9) we have that [, rot(Rx(n) — x(n)) = 0 and, then,
Cry = Cy. Hence,
rot Rx(n) = rot x(n). (3.30)

Now, we set
IIn = Rn — Rx(n).

Therefore, for n = v and using (3.30), (3.27), and (3.26), we have

rotIIy = rot Ry —rot Rx(y) = rot Ry — rot x(y) = P(rot Ry) = —g rot R,

which shows that rot(%ﬂv + RpB) = 0, and hence (3.15) holds true.
Finally, let us verify (3.16). We have

In — Onllo,e < |In — Ralloa + |RX(1)]l0,0-

The first term in the right hand side is bounded by (3.11) while for the second term
we use (3.11), (3.28), (3.29), Lemma 3.3.2, and (3.10) to obtain

lo.0

1 Rx(n)

loo = [Ix(n) = Rx(n)log + lIx(n)
< Chllx(Mll1a + lIx()lloe
< Ch||rot Ry — ﬁ(rot Rn)|lo,o + C|| rot Rny — ]B(rot Rn)||-1,0
< Ch|lrot Ryllo,0 < Chlinll0-

Thus, we conclude the proof of the lemma. O

3.3.2 DIL4

The convergence of this method follows immediately from the convergence of
MITC4. But in this case we have an alternative proof, valid for any regular mesh
without any further assumption.

In order to prove the hypotheses of Theorem 3.3.1 in this case, we use some
known results for the Stokes problem (see Girault & Raviart [52]).

Lemma 3.3.4 There exists B € H} such that (3.14) holds. Furthermore, RE = Rp.
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Proof. By using the results of Section 3.1, chapter IT in [52], and taking into account
a rotation of the space H(div, 2), it follows that for 8 € H{(€2)? there exists 8 € H}
such that

/(5—5)-T=o Ve e Th, (3.31)
£l

and
|ﬁ - ﬂ‘m,ﬂ S Chk_m|ﬂ‘k,ﬂa m = 07 17 k= 1a2 (332)

In particular, for £ = 2 and m = 1, (3.14) holds. By (3.31) and the definition of R
in (3.8), it follows that R(5 — ) =0. O

Lemma 3.3.5 There exists an operator I1 : Hy(rot, Q) N HY(Q)?> — T}, such that
(3.15) and (3.16) hold.

Proof. Because of the previous lemma we have R(E — ) = 0. On the other hand,
rot R(Vw) = 0, because of Lemma 3.2.1. Then, it is enough to take II = R to obtain
(3.15), whereas (3.16) follows from (3.11). O

3.3.3 Main result in H'-norm

Now we are in position to establish the error estimates. As above, in the case of
MITC4, we consider meshes satisfying Assumption 3.3.1.

Theorem 3.3.2 Given (0, f) € L2(Q)? x L%(Q), let (B, w) be the solution of (3.1)
and (B, wy) the solution of (3.12). Then, there exists a constant C, independent of
t and h, such that

(8, w) — (Bh, wa) |l )2 xmr ) < Ch|(O, f)ls-

Proof. It is a direct consequence of Lemmas 3.3.1, 3.3.3, 3.3.4, 3.3.5, Theorem 3.3.1,
and the apriori estimate (3.3). O

3.4 L2%-error estimates

Our next goal is to prove L2-error estimates optimal in order and regularity. To
do this we follow the techniques in [44] where a triangular element similar to D14 is
analized. However the arguments therein cannot be directly applied to our case as
shown below. Let us remark that, in the case of MITC4, this result completes the
analysis carried out in [29, 72| for higher order methods.
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First we introduce the dual problem of (3.1). Let (o, u) € Hj(2)? x Hj(Q2) be the
solution of

a(ﬂ, QO) + (VU - 77,6) = (an - wh) + (77, ﬁ - ﬁh) V(n; ’U) € H(IJ(Q)2 X H(IJ(Q)a
K
(3.33)
By taking = 0 in (3.33), we have

divd = w — wy,. (3.34)

The a priori estimate analogous to (3.3) yields for this problem:

2,0 + |0

lell2,0 + (lu lo,o + ¢ [d]]1,0 < C(Hﬁ — Bulloo + |lw — wh||o,n)- (3.35)

The arguments in the proof of Lemma 3.4 in [44] can be used in our case yielding
the following result:

Lemma 3.4.1 Given (0, f) € L%(Q)? x L%(), let (B,w) be the solution of (3.1)
and (Br, wy) the solution of (3.12). Let (p,u) be the solution of problem (3.33) and
§ = 5(Vu — ) the corresponding shear strain term. Let ¢ € Hy be the vector field
associated to ¢ by Lemma 3.3.1 or 3.3.4 for MITCJ or DL/, respectively. Then,
there exists a constant C, independent of t and h, such that

|(Br — BB, 0)| + [ (7, © — R)|

18 = Brllo,o + [lw — whlo,e
(3.36)

18 = Ballog + lw — walloe < CR?|(8, f): +

where 7y is the shear strain defined in (3.1).

To estimate the consistency terms in (3.36) we cannot proceed as in Lemma 3.3
of [44]. Instead, we have the following lemma:

Lemma 3.4.2 Given ¢ € H(div,Q) and ¢ € H{(Q)?, there holds

1/2
(¢,% = Ry)| < O (Z | Rep — o) ?,K> | div Cllo,o +Chl| rot(Rep — )00 [ICllo.0-

K

Proof. Let K € T,. We consider the Neumann problem:

—Asg = rot(RY —1) in K,

3.37
Osk _ on OK. (3:37)

8nK
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By virtue of (3.9) we know that the above problem is compatible. Hence, it admits
a solution sx € H'(K)/R which satisfies

| curl sg||m+1,8 < C||rot(Ryp — )|

mk, m=—1,0. (3.38)
From (3.37) we obtain
rot (curl sk — (Ry — ¢)> =0,
and hence, there exists 7 € H'(K) (unique up to an additive constant) such that
Vrk = curl s — (R — ). (3.39)

Moreover, Vrg - 7o = —RY - 7 + 9 - 74, for each side £ of K. Thus if we define
G € L?(Q)? such that G|g = Vrg, then G € Hy(rot, Q) and rot G = 0.

Hence, there exists 7 € H'(Q)/R, such that G = Vr on Q. Furthermore, since
G € Hy(rot, Q), then r can be chosen in H}(€) and the additive constant defining
ri can be fixed as to satisfy r|x = rg.

Let A and B be as in Figure 3.2. Then because of (3.8) we have

r(B) =r(A) + /EVTK ‘T =1(A)+ /e(_Rw + ) -1 =1r(A).

Thus, since r|9q = 0, then r vanishes at all nodes of 7,,. Hence, a standard scaling
lox < Ch?|rgle,x and, then, by

1,K>

o, + | Ry — 1/1‘1,1() < Ch’|Ry — Y1, k-

argument on each element K (see [36]) yields ||r
using (3.39) and (3.38), we have

ox < 0h2|VTK|1,Kg0h2(|cuﬂsK|1,K+|R¢—w

7]

< Oh? (C|| rot(Ry — 1)

On the other hand, let (-,-)x be the usual inner product in L?(K) and P the
orthogonal projection onto the constant functions. Because of (3.9), we have Vn €
H5(Q),

(rot(Rw—¢),n)K B (rot(Rf/}—w), n-— P77>K < IIrot(Ry — )
lIm |1,K B I B

lo,x||m = Pnllo,x
lIml1,x

l1,x

Hence,

[[rot(Rep — ¥)||l-1,x < Chl|rot(Ry — )

0,K-
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Now let S € L2(Q)? such that S|gx = curl sx. Therefore, because of (3.38),
IS5 = D leurlsgll§x < > lIvot(Ry — 4)|1% 1k

KeTy, KeTy,

< Ch* ) |Irot(Ry — )5 x < Ch?[|rot(Re — 9)[[5 - (3.40)

KETh

Finally, from (3.39) we have

[cwrs | c-s\ < Ildiv Clloalirllon + I<ToallSToa,
Q 0

and using (3.40) and (3.40), the lemma follows. O
On the other hand, the analogous to Theorem 4.3 in [81] applied to our situation
in the space H(rot, ) gives

o = Roliie < O (Il + hucl ot el ) < Il (3.41)

and
I r0t(p — Ro)llo.c < C(Sxchi[xotlose + hucl ot glic),  (3.42)
where g is a measure of the deviation of the quadrilateral K from a parallelogram

0
defined in Fig. 3.5. For regular meshes clearly h—K < C, VK € T,. A mesh is said
K

o
asympotically parallelogram when max K < ch.
KeTy, N

Figure 3.5: Geometric definition of ik

Now we are able to estimate the consistency term in (3.36).

Lemma 3.4.3 Let By, 0, v and ¢ be as in Lemma 3.4.1. Then, there holds

|(Br — RBn,0)| + (7, ¢ — RY)| ( (51()
< Ch { h+tmax-— ) [(0, f)le 3.43
18 = Bulloo + llw — whllog = max o ) (0, F)le (3.43)
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Proof. First, we have
(B = B8, 0)| = |((n = B) = (8w = 5),0)| + (8- BB.0).
By using (3.11), Theorem 3.3.2, and (3.35), we obtain
(8= 8) = BB = 8).0)| < ChIIBy = Bllialldllon < C 16, £l
< 0, N8~ Bullos + 1w = wnllog).

On the other hand, by definition of 7 in (3.2) and (3.3), we have
|rot Blo.x = t*| Tt |0 < Ct(0, ). (3.44)

Then, by using Lemma 3.4.2, (3.41), (3.42), (3.44), (3.3), (3.34), and (3.35), we have

1/2
(8- RB,0)| < Ch? (Z |RB - 6\?,1() | div 6llo.o +Chl| rot(RE = B)llo.c [16]]o
K

m) 16

lo,0

)%
2 : e
< Ch7||Bll20 ||d1V5||o,Q+Ch<II}1€aTXh hK|f0t5\0,n + h|rot B

lo.0

5
2 : K
< COR7|(O, Flell divéllon +Ch <h+t;<nea,rxh hK)|(0, Pleld

o+ llw = whllog).

d
< on(ne ey 7<) 0.0 (15 - i

The term |(,$ — RP)| can be bounded almost identically, by using (3.14) to
estimate ||¢ — ¢||1,o and the fact that

—divy=f in

which follows by taking n = 0 in (3.1). By so doing, we obtain

|0,Q>7

. P
|(v, % — Rp)| < Ch (h +¢max ﬁ) I(H,f)\t(llﬁ — Bulloo + [Jw — wy

which concludes the proof of the lemma. O
Now we can prove an optimal L?(2) error estimate:

Theorem 3.4.1 Given (0, f) € L2(Q2)? x L3(Q), let (B, w) be the solution of (3.1)
and (Bp, wy) the solution of (3.12). Then there ezists a constant C, independent of
t and h, such that

Ok
|(8,w) = (Bh, wa) |22 x12(0) < Ch <h + t}(ng% E) (0, f)]:-
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Proof. It is a direct consequence of Lemmas 3.4.1 and 3.4.3. O

Corollary 3.4.1 For asymptotically parallelogram meshes the following error esti-
mate holds:

108, w) = (Bn, wa)llL2(@p2xr20) < CH?((0, £)l:-
Proof. In this case (3.42) reduces to

|| rot(¢ — Ro)llo,x < Chillg

|2,Ka

wich yields the estimate. O

Remark 3.4.1 The asymptotically parallelogram assumption on the meshes is not
necessary as long as h > at, for a fized. Indeed, according to Theorem 3.4.1, for
general reqular meshes we have

(8, w) = (B, w)llL2@2x12) < Cah?|(0, f)l:-

Notice that h > at is fulfilled in practice, with a reasonably large value of c.

3.5 The spectral problem

The aim of this section is to study how the eigenvalues and eigenfunctions of
problem (3.13) approximate those of problem (3.2). We do this in the framework of
the abstract spectral approximation theory as stated, for instance, in the monograph
by Babuska and Osborn[7]. In order to use this theory, we define operators 7" and
T}, associated to continuous and discrete spectral problems, respectively, and prove
that the operator T}, converge to 7' in norm as h goes to zero. Let us remark that
the results that follow are valid for both methods, MITC4 and DL4, although under
the same Assumption 3.3.1 on the meshes as in the previous section for the former.

We consider the operator

T : L3(Q)? x L2(Q) — L2(Q)? x L2(Q),

defined by T'(0, f) := (B, w), where (8, w) € H}(Q)? x H}(Q) is the solution of the
continuous load problem (3.1). Clearly T is compact and self-adjoint with respect
to (+,+)¢. Then, apart from p = 0, its spectrum consists of a sequence of finite
multiplicity real eigenvalues converging to zero. Note that A is an eigenvalue of
(3.2) if and only if p := 1/ is an eigenvalue of T with the same multiplicity and
corresponding eigenfunctions.
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As shown in [44], as the thickness ¢ — 0, each eigenvalue p of problem (3.1)
converge to some limit . Indeed, 1y are the eigenvalues of the operator associated
with the Kirchhoff model of the same plate (see Lemma 2.1 in [44]). From now on,
for simplicity, we assume that p is an eigenvalue of 7" which converges to a simple
eigenvalue pg as t goes to zero (see Section 2 in [44] for further discussions).

Now, analogously to the continuous case, we introduce the following operators:

T, : L(2)* x L3(Q) — L*(Q)* x L*(9),

defined by T}, (0, f) := (Bn, ws), where (B4, ws) € Hp X W), is the solution of discrete
problem (3.12). In this case T}, is also self-adjoint with respect to (-,-);. Clearly,
the eigenvalues of T}, are given by pp := 1/\,, with A, being the strictly positive
eigenvalue of problem (3.13), and the corresponding eigenfunctions coincide.

As a consequence of Theorem 3.3.2, for each simple eigenvalue p of 7', there is
exactly one aigenvalue py of T}, converging to u as h goes to zero (see for instance
[61]). The following theorem shows optimal t-independent error estimates:

Theorem 3.5.1 Let T be defined by (3.1) and T, by (3.12) with H, = Hj} or
Hy, = H}. In the case H, = H; we suppose that the meshes satisfy Assumption
3.3.1. Let i and py, be simple eigenvalues of T' and Ty, respectively, such that p, — 1
as h — 0. Let (B,w) and (Bp,wy) be the corresponding eigenfunctions normalized

in the same manner. Then, there exists C > 0 such that, for t and h small enough,
there holds

(8, w) = (B, wa) l|lur (@2 xmr @) < Ch.

Furthermore, for asymptotically parallelogram meshes, there holds
1= pn| < CR?

and
1(8,w) = (Br, wn)llL2 ()2 xr2(0) < Ch®.

Proof. The proof, which relies on Theorem 3.3.2 and Corrolary 3.4.1, are essentially
the same as those of Theorem 2.1, 2.2, and 2.3 in [44]. O

3.6 Numerical experiments

In this section we summarize the numerical experiments carried out with both
methods for the spectral problems.
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First, we have tested both methods by reproducing all experiments in [44]. The
obtained result in both cases are essentially the same as those in that paper. There-

fore we do not include them here.

Second, we have tested the two methods by using different meshes, not necessarily
satisfying the assumptions made to prove the theorems above. We have considered a
square clamped moderately thick plate of side-length L and thickness-to-span ratio
t/L = 0.1. We present, the results for both types of elements using three families of

meshes:

TV

The first one consists of uniform subdivisions of the domain into N x N sub-
squares, for N = 4,816, . .., (see Figure 3.6). Clearly, these are asymptotically
parallelogram meshes and they satisfy Assumption 3.3.1.

: The second one consists of “uniform” refinements of a non-uniform mesh ob-

tained by splitting the square into four quadrilateral. Each refinement step is
obtained by subdividing each quadrilateral into other four, by connecting the
midpoints of the opposite edges. Thus we obtain a family of N x N asymp-
totically parallelogram, shape regular meshes, as in Figure 3.7. These meshes
satisfy Assumption 3.3.1.

: The last family consist of a partitions of the domain into N x N congruent

trapezoids, all similar to the trapezoid with vertices (0, 0), (1/2,0), (1/2,2/3)
and (0,1/3), as in Figure 3.8. Clearly, these are not asymptotically parallelo-
gram meshes and they do not satisfy Assumption 3.3.1.

Let us remark that the third family of meshes was used in [5, 6], to show that
the order of convergence of some finite elements deteriorate on this meshes in spite
of the fact that they are shape regular.

N=/4 N=8 N=16

Figure 3.6: Uniform square meshes (7,7).

We have computed approximations of the free vibration angular frequencies w =
ty/ A/ p corresponding to the lowest-frequency vibration modes of the plate. In order



3.6 Numerical experiments 69
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N=/ N=8
Figure 3.7: Asymptotically parallelogram meshes (7,%).

N=/4 N=8 N=16
Figure 3.8: Trapezoidal meshes (7,7).

to compare the obtained results with those in [3] we present the computed frequencies

h

. in the following non-dimensional form:

W

21 +v)p 12
E )

A~ o h
W 1= Wy L [

m and n being the numbers of half-waves occurring in the modes shapes in the z
and y directions, respectively.

Tables 1 and 2 show the four lowest vibration frequencies computed by our
method with three different meshes of each type, 7.V, 7,4, and 7,F. Each table
includes also the values of the vibration frequencies obtained by extrapolating the
computed ones as well as the estimated order of convergence. Finally, it also includes
in the last column the results reported in [3]. In every case we have used a Poisson
ratio v = 0.3 and a correction factor £ = 0.8601. The reported non-dimensional
frequencies are independent of the remaining geometrical and physical parameters,
except for the thickness-to-span ratio.

It can be clearly seen that none of the two particular assumptions on the meshes
(Assumption 3.3.1 and to be asymptotically parallelogram) are actually necessary.
Indeed, both methods converge for the three types of meshes with an optimal order

O(h?).
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Table 3.1: MITCA4.

Mesh | Mode | N =16 | N =32 | N =64 | extrap | ORD || [3]

TY w11 1.6055 | 1.5946 | 1.5919 | 1.5910 | 2.01 | 1.591
a1 3.1042 | 3.0550 | 3.0429 | 3.0389 | 2.03 || 3.039
W19 3.1042 | 3.0550 | 3.0429 | 3.0389 | 2.03 | 3.039
W99 4.3534 | 4.2850 | 4.2681 | 4.2625 | 2.02 | 4.263

TA w11 1.6073 | 1.5951 | 1.5921 | 1.5911 | 2.01 | 1.591
Wa1 3.1094 | 3.0563 | 3.0433 | 3.0390 | 2.02 || 3.039
W19 3.1190 | 3.0586 | 3.0438 | 3.0390 | 2.03 || 3.039
W99 43711 | 4.2894 | 4.2692 | 4.2626 | 2.02 | 4.263

Tr w11 1.6112 | 1.5961 | 1.5923 | 1.5910 | 1.99 | 1.591
a1 3.1129 | 3.0575 | 3.0436 | 3.0388 | 1.99 || 3.039
W12 3.1306 | 3.0618 | 3.0446 | 3.0388 | 2.00 || 3.039
W99 4.3916 | 4.2955 | 4.2708 | 4.2622 | 1.96 | 4.263

Table 3.2: DL4.

Mesh || Mode || N=16 | N=32 | N =64 | extrap | ORD | [3]

TV w11 1.5956 | 1.5922 | 1.5913 | 1.5909 | 1.97 | 1.591
Wa1 3.0711 | 3.0470 | 3.0409 | 3.0388 | 1.99 || 3.039
W12 3.0711 | 3.0470 | 3.0409 | 3.0388 | 1.99 || 3.039
Wao 4.3136 | 4.2754 | 4.2657 | 4.2624 | 1.98 | 4.263

TA w11 1.5929 | 1.5915 | 1.5912 | 1.5911 | 1.94 | 1.591
Wa1 3.0592 | 3.0441 | 3.0402 | 3.0388 | 1.96 | 3.039
W12 3.0732 | 3.0476 | 3.0411 | 3.0389 | 1.98 | 3.039
Wag 4.3136 | 4.2756 | 4.2658 | 4.2624 | 1.96 | 4.263

T.r w11 1.5927 | 1.5914 | 1.5911 | 1.5910 | 2.21 || 1.591
Wa1 3.0606 | 3.0445 | 3.0403 | 3.0388 | 1.94 || 3.039
Wig 3.0654 | 3.0453 | 3.0405 | 3.0390 | 2.05 || 3.039
Wag 4.3131 | 4.2754 | 4.2657 | 4.2623 | 1.96 | 4.263




Chapter 4

Computation of the vibration
modes of plates and shells by
low-order MITC quadrilateral

finite element

This chapter deals with the approximation of the vibration modes of plates
and shells using the MITC4 finite element method. We use the classical Naghdi
model over a reference domain. We assess the performance of this approach for both
structures by means of numerical experiments.

4.1 Introduction.

There is a consensus that there are still many difficulties in analyzing general
shell structures. Together with the importance of such structures, this has led to a
big amount of work on this subject, during the last years. This work has been made
by different communities under different points of view.

In a general framework, following [31], we can classify the shell finite elements
in two big families: finite element methods that result from the discretization of
shell mathematical models (namely two-dimensional methods or classical methods),
where the unknowns are given on the mid-surface of the shell (see [21, 33, 36]),
and methods based on “degenerating” a 3D solid finite element into a shell element
by using some kinematic assumptions for describing the variation of displacements
across the thickness of the shell structure, namely general shell elements (see [8, 11,
23]). Such distinction has caused a significant degree of confusion between the two
main communities interested in solving the problem: numerical mathematicians and

71
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engineers.

Indeed, finite element methods derived from a shell model are easier to analyze
mathematically. Their solutions can be shown to approximate, with a certain accu-
racy, the continuous solution of the shell model and, in fact, a priori error estimates
can be given (see [21]). However, the constants in these estimates depend on the
thickness of the shell. This kind of methods are usually chosen by mathematicians.
Its main drawback is that it is necessary an explicit knowledge of the chart, since
the computation requires an extensive use of it. General shell elements provide more
versatility, because they do not require the exact chart and can employ general 3D
constitutive laws. However, due precisely to its specific construction, which does not
rely on any shell theory, a mathematical analysis of such a procedure is difficult to
achieve.

Classical models are not very often encountered in practice. Recently the rela-
tionship between these two families of methods has been put into account in [34, 31],
where, assuming Reissner-Mindlin hypotheses (i.e., any normal fiber is supposed to
remain straight and unstretched during the deformation), it is shown that both mod-
els are asymptotically equivalent as regards to their asymptotic solutions when the
thickness parameter tends to zero. This result shows the convenience of advancing in
the study of classical methods, to find theoretical results that could later be useful
for general shell methods. In this context, for the present work, we consider one of
the most important classical models: Naghdi, which is based on Reissner-Mindlin
hypotheses.

Regarding to the discretization of the problem, MITC finite element methods
(introduced by Bathe and Dvorkin in [10]), or variants of them, are very likely the
most used in practice. A great number of papers dealing with the mathematical
analysis of these methods when applied to discretize Reissner-Mindlin plate equa-
tions (what can be understood as a particular simpler case of Naghdi shell model)
have been published; see [9, 29, 46, 44, 73|, for example. In these papers, optimal
order error estimates, valid uniformly on the plate thickness, have been obtained for
several methods.

The most commonly used elements in engineering applications are the isopara-
metric quadrilaterals, which are the basis of the low-order MITC4(indeed, the origi-
nal Bathe-Dvorkin paper deals with these elements). For plate problems, this element
have been mathematically analyzed (see [9, 43]) and optimal error estimates have
been provided. Nevertheless, mathematical results when these methods apply to a
non-trivial shell are not known.

In this chapter we consider the problem of computing the free vibration modes
of a shell. This is a problem of great practical interest, but relatively understud-
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ied in the bibliography. We test the efficiency of the MITC4 methods to compute
the corresponding vibration frequencies. Since these frequencies are single numbers
which depend on the behavior of the whole shell, we believe that the quality of its
computation provides an overall assessment of the method.

The outline of the rest of the chapter is as follows. In Section 4.2 we state the
vibration problem for the Naghdi shell model and introduce the MITC4 method
to discretize it. In Section 4.3 we treat the particular case of plate vibrations. We
extend the numerical results in [43] to general boundary conditions and show that, in
all cases and for general meshes, the order of convergence is optimal independently
of the thickness. Finally, in Section 4.4, we assess the performance of the method by
calculating the free vibrations of some benchmark shell cases, suggested in [33].

4.2 Statement of the problem.

Let us briefly recall the classical definitions and notation of differential geometry
that we need, see [21, 33| for more details. We employ Greek indexes ranging over 1
and 2. We also use the convention of summation over the repeated indexes up and
down.

Let Q C R? be the reference domain. We assume that there exists a single chart
¢, an one-to-one mapping from € into R?, which transforms € on the mid-surface
of the shell, S = ¢(Q) (see Figure 4.1). We denote by ¢ the (constant) thickness of
the shell.

Figure 4.1: middle surface of the shell.

We denote (aqs) the first fundamental form of the mid-surface, (a*) := (a.5) !
its contravariant form, and (b,s) the second fundamental form. We denote b2 :=
a®*byo. Then, the third fundamental form is given by c,s := blbys. Let a be the
determinant of the matrix (a®?).
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We need to provide an appropriate functional framework to define the variational
formulation. Then we define

U:={(d,0): @€ H(Q)? 0ecH(Q)?*}NBC,

where BC symbolically denotes the essential boundary conditions prescribed, 4 :=
(u1,us,u3) denotes a three dimensional vector field that corresponds to the dis-
placement of the mid-surface, and 6 := (6;,65) denotes a two dimensional vector
field associated to the rotation of the vector orthogonal to the mid-surface.

The free vibration modes for the Naghdi model of the shell are the solutions of
the following spectral problem (see [21]):

SP: Find w € R" and 0 # (4,0) € U such that

o((@0), @0) =w*b((@.0), @) V(@ eU.

The bilinear form b(-,-) is given by

b((ﬁ, 9), (7, 77)) = ,0/Q (taaﬁuavﬂ + tuzvs + f—;aaﬂﬁanﬂ) ds,

where p is the density of the shell and dS := \/a d&; d&; the surface measure.
The bilinear form a(-,-) can be written as the sum of a bending term A, mem-
brane term D™, and shear term D?; i.e.,

a((@.0), @m) = A((@0), (7)) +tD"(@7) + tkD* ((7,0), (7,1)),

with £ being a correction factor for the shear term and

. . Ea,@)\u . .
A((U,,Q), (U’ﬂ)> = / TXOC/B(U’Q)X)‘N(U’Q) dS’
Q
D@, 7) = / BBy () () dS,

D((@0).(5m) = [ 6ul@0)¢s(7.0) .

The bending strain operator x, the membrane strain operator vy, and the shear strain
operator ¢, are expressed as

Xap(@,0) = = [Bajp + Opja — Vaw, — bu,] + capus,

N

’Yaﬂ(ﬁ) = 5 [UGW + Uﬂ\a] + bapus,

\)

(pa(/a': Q) = U3,a — bguu + ea-
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In the definition above, the vertical bar denotes the covariant differentiation. The
tensors present in the stiffness term correspond to the material properties and are

given by
EoBA . — 7E aaP* + a®*aPr + —21/ a®? M ,
2(1+v) 1—v
G = _B a®?
214+v)

where F and v denote, respectively, Young’s modulus and Poisson’s ratio for the
material.

We use the MITC4 method, introduced in [10], to approximate the solutions of
problem SP. This method is based on discretizing the bending and membrane terms
using the usual isoparametric quadratic finite elements and relaxing the shear term
by introducing a reduction operator.

Let us now specify this method in our context. Let 7, be a family of decompo-
sitions of () into convex quadrilaterals. Let K be the unit square reference element.
We denote by Qi’j(.[? ) the space of polynomials of degree less than or equal to ¢ in
the first variable and to j in the second one. We set Q(K) = Qk,k(l?).

Let K € 7T,. We denote by Fi the bilinear mapping of K onto K , its Jacobian
matrix by DFy and the determinant of DFy by Jp,.. We set Q(K) :={p: poFx €
Ql(l? )} and define the finite element space

Un = {(Tn,03) : Gnlx € Qi(K)?, byl € Qi(K)* VK € Ty} NBC.

Then, the discretized variational problem is
SPy: Find wy, € RT and 0 # (i, 8,,) € Uy, such that

Gp, ((ﬁhagh)a (ﬁhaﬂh)> = wib<(ﬁh,gh): (ﬁhaﬂh)> v (Uhaﬂh) € Z/{h,-

The bilinear form a(-, -) is a perturbed form of a(-, -). It comes from introducing in
the shear term a reduction operator ¢ — Ry, with Rp|x € Qo1(K) X Q1,0(K),
VK € Tp:

an((@,0,), (@) 1= 1 A((@n,0,), (Fan,) )
D™ (i, T) + thD ((a’h, 9,), (G, gh)) ,
with
D; (@63, (5 m,) ) = /Q G (Re(in,t)) (Re(dinn,)) ds.

Let us emphasize that, since this finite element procedure is based on meshes that
are constructed in the reference domain 2, the numerical computations require an
extensive use of the chart ¢.
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4.3 Plates.

The Reissner-Mindlin formulation for plates can be seen as a special case of
the general shell formulation. We consider only the plate transversal displacements
which, in this case, can be dealt with separately from the in-plane terms. The dis-
placement components u; and uy of the mid-surface can be written in terms of the
rotation of the transverse fiber to the mid-surface of the plate. Then, if we define
the finite element space

Uy = {(v.0,) : vnlx € Qi(K), 0,k € Q1(K)* VK € T} N BC,

the computed free vibration modes for the plate are the solutions of the following
problem (see [43]):
PPy: Find w, € RT and 0 # (usp, 8,) € UL such that:

tsa(Qhth) + /it/ R(Vusp — 8)) - R(Von —1,)
Q

t3
= w,%p <t/ UspVp + E/ Qh . ﬂh) V(’l}h,Qh) € U}ILD
Q Q

Here k := Ek/2(1 4 v) is the shear modulus (with & a correction factor), mean-
while the bilinear form a is given by

E 2 o
a(Qh,Qh) = m/n LJZZI(l - y)e,-j(Qh)sij(ﬂh) +vdive, leﬂh] ,

where ¢;; denote the components of the linear strain tensor.

MITC plate elements have a sound mathematical basis and they are reliable and
efficient. In particular, for the MITC4 element, a mathematical analysis of conver-
gence is provided in [9], where uniform meshes of square elements are used. This
assumption has been weakened in [43], where, by using macro-element techniques,
optimal H! and L? error estimates are proved. However, the L2-estimates are ob-
tained by assuming that the meshes are formed by higher order perturbations of
parallelograms (i.e., asymptotically parallelogram meshes). All these estimates are
independent of the mesh size h and of the plate thickness ¢. Moreover, in the same
reference and under the same assumptions on the meshes, it is also proved that the
order of convergence for the vibration frequencies of the corresponding vibration
problem is optimal when the MITC4 method is used.

On the other hand, it has been recently put into account that error estimates valid
for meshes of rectangles cannot be directly extended to meshes of general quadrilat-
erals. Even more, the order of convergence can deteriorate when non-standard finite
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elements are used in distorted quadrilaterals, even if they fulfill the usual shape
regularity assumption (see [5, 6]). Then, it is important to verify if the hypotheses
on the meshes in [43] are essential or if they are just a technicality.

Numerical experiments for clamped plates have been reported in [43]. They show
that the order of convergence for the method is optimal, even in some cases not
covered by the theory. In the rest of this section we report numerical experiments
with more general boundary conditions and different meshes, not all satisfying the
assumptions in [43].

We consider square plates of side-length L and thickness-to-span ratio ranging
from moderately thick to very thin. We report the results for boundary conditions
S-C-S-F (S stands for hard simply supported, C for clamped and F for free). We use
four different families of meshes:

T.V: Uniform subdivisions of the domain into N x N sub-squares, for N = 4,8, 16, . . .
(see Figure 4.2).

T,A: Asymptotic parallelogram meshes given by “uniform” refinements of a non-
uniform mesh obtained by splitting the original square into four quadrilaterals.
Each refinement step is obtained by subdividing each quadrilateral into other
four by connecting the midpoints of the opposite edges (see Figure 4.3).

T.I: Partitions of the domain into N X N congruent trapezoids, all similar to the
trapezoid with vertexes (0,0), (1/2,0), (1/2,2/3) and (0,1/3), as in Figure 4.4
(see [5]). These meshes do not satisfy the assumptions in [43].

T,k: Random partitions of the domain with N element edges in each side of the
plate, as in Figure 4.5. These meshes do not satisfy the assumptions in [43].

Note that in all cases h ~ C/N, with C' a positive constant.

Let us remark that the third family of meshes was used in [5, 6] to show that
the order of convergence of some finite elements deteriorate on this meshes, in spite
of the fact that they are shape regular.

We have computed approximations of the free vibration angular frequencies cor-
responding to the lowest-frequency vibration modes of the plate. In order to compare
the obtained results with those in [3], we present the computed frequencies, w”,, in

the following non-dimensional form:

2(1 + V)p] &

- h
mn ‘= L

m and n being the number of half-waves occurring in the modes shapes in the x and
y directions, respectively.
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Figure 4.2: Uniform square meshes 7,U.

Figure 4.3: Asymptotically parallelogram meshes 7,7

Figure 4.4: Trapezoidal meshes 7,”.

N=4 N=8

Figure 4.5: Random meshes T,~.

We consider first the case of a plate with thickness-to-span ratio ¢/L=0.1. This
choice was made to allow for comparison with the result of [3]. Table 4.1 shows
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the four lowest vibration frequencies, w1, W19, Wo1, and @ee, computed with our
code with four different meshes of each type T,Y, 7,4, T,F, and T,X. The table also
includes more accurate values of the vibration frequencies obtained by extrapolating
the frequencies computed with highly refined meshes. Finally, it includes in the last
column the corresponding results reported in [3], too. We have used a Poisson ratio
v = 0.3 and a correction factor £ = 0.822. The reported non-dimensional frequencies
are independent of the remaining geometrical and physical parameters, except for
the thickness-to-span ratio.

It can be clearly seen from Table 4.1 that the method converges to the correct
solution even for arbitrary isoparametric quadrilateral meshes like those of Figures
4.4 and 4.5, and for arbitrary boundary conditions. Let us remark that the available
mathematical analysis for this method is valid only for clamped plates and does not
cover this kind of meshes (see [9, 43]).

Table 4.1: Vibration frequencies for the moderately thick plate (¢/L = 0.1).
Mesh | Mode || N=16 | N =32 | N =64 || Extrap. | [3]
TY W11 0.6004 | 0.5983 | 0.5977 | 0.5975 | 0.598
Wa1 1.4955 | 1.4860 | 1.4835 1.4826 | 1.483
W19 1.9172 | 1.8922 | 1.8859 | 1.8838 | 1.884
Wao 2.7596 | 2.7300 | 2.7224 | 2.7198 | 2.721

TA w11 0.6009 | 0.5984 | 0.5977 | 0.5975 | 0.598
Wa1 1.4975 | 1.4866 | 1.4836 | 1.4826 | 1.483
W19 1.9212 | 1.8932 | 1.8862 | 1.8838 | 1.884
W9 2.7669 | 2.7320 | 2.7229 || 2.7198 | 2.721

T.F w11 0.6017 | 0.5986 | 0.5978 | 0.5975 | 0.598
Wa1 1.4996 | 1.4871 | 1.4838 | 1.4829 | 1.483
W12 1.9281 | 1.8950 | 1.8866 || 1.8838 || 1.884
Wao 2.7803 | 2.7356 | 2.7239 || 2.7196 | 2.721

TR w11 0.6009 | 0.5983 | 0.5977 | 0.5975 | 0.598
Wa1 1.4978 | 1.4865 | 1.4837 | 1.4827 | 1.483
W12 1.9183 | 1.8918 | 1.8859 | 1.8842 | 1.884
Wao 2.7699 | 2.7317 | 2.7229 || 2.7203 | 2.721

Figures 4.6-4.9 show the vibration shapes and the error curves for each vibration
mode computed with the four families of meshes. Notice that in all cases the method
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converges with an optimal quadratic order.

— 2
) + Uniform
' = . * Quasi-affine
O- Trapezoidal
107 o Random
3
\.1:
7
-
10°
-1l
t 1
0.8
06 06 08
0.4 0.4
02 S 02 10 10° 10°
0
Y X Number of elements

Figure 4.6: First mode of the moderately thick plate. Deformed plate and error

curve.
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Figure 4.7: Second mode of the moderately thick plate. Deformed plate and error
curve.

In order to assess the quality of the method for very thin plates, we consider
a thickness-to-span ratio t/L = 0.0001. Table 4.2 shows the four lowest computed
vibration frequencies. As in the previous case, extrapolated more accurate values are
included. Note that the discrepancy between these extrapolated values and those
obtained with the coarsest meshes are less than 5% in all cases.

Figures 4.10-4.13 show the vibration shapes and the error curves for the four
lowest-frequency vibration modes in this case. For this very thin plate, the uniform
and quasi-affine meshes produce slightly better approximations than the other two
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Figure 4.9: Fourth mode of the moderately thick plate. Deformed plate and error

curve.

general quadrilateral meshes. Moreover, the order of convergence for uniform and
quasi-affine meshes is exactly 2, whereas for the other two meshes it ranges between

1.8 and 1.9.

4.4 Shells.

In this section we report numerical results corresponding to the solution of prob-
lem SPy,. We consider two different numerical examples: a free cylindrical shell and
a clamped hemispherical one. Both are suggested and analyzed in [33], where load

problems are considered.
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Table 4.2: Vibration frequencies for the thin plate (t/L = 0.0001).

Mesh | Mode N =16 N =32 N =64 Extrap.

TV | @ | 0.6213 x 1073 | 0.6196 x 102 | 0.6192 x 10~% | 0.6190 x 103

Qo1 | 1.6255 x 1073 | 1.6164 x 1072 | 1.6141 x 1072 | 1.6134 x 1073

Wia | 2.0721 x 1073 | 2.0440 x 1072 | 2.0371 x 1072 || 2.0350 x 1073

Qe || 3.1200 x 1073 | 3.0860 x 103 | 3.0776 x 1073 || 3.0749 x 103

TA | @ || 0.6217 x 1073 | 0.6197 x 1073 | 0.6192 x 1073 || 0.6190 x 1073

(o1 | 1.6274 x 1073 | 1.6169 x 1072 | 1.6142 x 1073 | 1.6134 x 1073

@1z || 2.0765 x 1073 | 2.0451 x 1073 | 2.0374 x 1073 || 2.0350 x 1073

Qe || 3.1282 x 1073 | 3.0880 x 1073 | 3.0781 x 1073 || 3.0749 x 1073

Tr | @ | 0.6233 x 1073 | 0.6203 x 103 | 0.6194 x 103 | 0.6190 x 1073

(o1 || 1.6313 x 103 | 1.6181 x 103 | 1.6146 x 1072 || 1.6133 x 103

Gre || 2.0926 x 1073 | 2.0518 x 1073 | 2.0396 x 1073 || 2.0351 x 103

Weo || 3.1499 x 1073 | 3.0948 x 1072 | 3.0800 x 1073 || 3.0745 x 1073

TE | @n | 0.6218 x 1073 | 0.6197 x 103 | 0.6192 x 10~3 || 0.6190 x 1073

(o1 || 1.6283 x 1073 | 1.6171 x 1073 | 1.6143 x 1073 || 1.6131 x 1073

@1z || 2.0734 x 1073 | 2.0437 x 1073 | 2.0371 x 1073 || 2.0340 x 103

Qe || 3.1333 x 1073 | 3.0882 x 102 | 3.0782 x 102 || 3.0741 x 103
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Figure 4.10: First mode of the thin plate. Deformed plate and error curve.

The first example consists of a cylinder of length 10 m and radius 1.8 m with
free ends. We take the following values for the physical parameters of the cylinder,
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Figure 4.11: Second mode of the thin plate. Deformed plate and error curve.
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Figure 4.12: Third mode of the thin plate. Deformed plate and error curve.

which correspond to a type of steel:
e density: p = 8000 Kg/m?,
e Young modulus: E = 200 x 10° Pa,
e Poisson coefficient: v = 0.3.

By using cylindrical coordinates we are led to a reference domain Q = [0, 1] x
[0,1]. We take uniform meshes of squares with NV elements on each side. The cor-
rection factor in the shear term is taken as k = %.

First, we validate our code by comparing the results that we obtain with those
in [32] for a moderately thick cylinder of thickness ¢ = 0.4 m. The values in this
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Figure 4.13: Fourth mode of the thin plate. Deformed plate and error curve.

reference have been obtained by using Q2 3D-elements with a single layer of elements
across the thickness, which is equivalent to a general shell model.

Table 4.3 shows some of the lowest vibration frequencies of the cylinder that we
have computed. They are ordered according to their circumferential and axial mode
numbers n and m, respectively. This table also includes more accurate values of
the vibration frequencies obtained by extrapolating the frequencies computed with
highly refined meshes. Finally, it includes the results in [32], too.

Second, we evaluate the behavior of MITC4 with respect to the thickness of the
shell, by considering a similar cylinder but with thickness ¢ = 0.0004 m. Table 4.4
shows some of the lowest vibration frequencies of this thin cylinder. We also include
more accurate extrapolated values.

It can be seen from Tables 4.3 and 4.4 that the method is locking-free for the
computation of the vibration modes with low circumferential number (n=0 and n=1)
as well as for torsional modes. Instead, for larger circumferential numbers (n=2,
n=3, etc) the computed values of the vibration frequencies are close to the exact
ones only for highly refined meshes and for not very thin shells. Indeed, for these
modes, the discrepancy between the computed frequencies becomes more remarkable
as the thickness diminishes. This shows that the method locks for circumferential
numbers greater than 1 in the case of free cylindrical shells.

Figures 4.14 and 4.15 show the deformed shells and the displacement vector fields
associated to the first torsional mode and to the mode n=0, m=0, respectively.

As a second numerical example, we consider a fully clamped hemisphere of radius
R = 10 m. The physical parameters of the material are the same as in the previous
example and we take k = 2 as correction factor for the shear term.

6
We describe the hemisphere by means of a stereographic projection onto the
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Table 4.3: Vibration frequencies for the free cylindrical shell with thickness ¢ = 0.4
m.

Mode N=10 | N=20 | N=40 | Extrap. [32]

torsion 156.6354 | 156.1536 | 156.0333 || 155.9930 || 155.05
n=0, m=0 || 246.3435 | 245.5347 | 245.3311 || 245.2629 || 243.50
torsion 317.1372 | 313.2679 | 312.3042 || 311.9879 | 310.17
n=0, m=1 || 412.2772 | 409.9354 | 409.3174 || 409.0949 || 377.46
n=0, m=2 || 437.4810 | 436.6099 | 436.3766 || 436.2912 || 394.29

n=1, m=0 || 157.4533 | 147.3331 | 144.8173 || 143.9885 || 150.58
n=1, m=1 || 242.0222 | 234.4688 | 232.5655 || 231.9264 | 223.17
n=1, m=2 || 322.4530 | 314.9537 | 313.0779 || 312.4533 || 296.79

n=2, m=0 || 192.0059 | 111.8841 | 85.9812 || 73.6300 | 63.26
n=2, m=1 || 195.1902 | 115.0604 | 89.3939 || 77.2358 | 67.16
n=2, m=2 || 216.3747 | 142.1747 | 120.7520 || 112.0132 || 107.63
n=2, m=3 || 267.0965 | 206.3499 | 190.7752 || 185.3610 | 185.23
n=3, m=0 || 445.6543 | 264.8193 | 221.1085 || 207.2203 || 173.99
n=3, m=1 || 449.5729 | 269.2100 | 225.4787 || 211.3448 || 179.06
n=3, m=2 || 466.4737 | 287.7182 | 232.5564 || 208.1327 || 200.99

unit circle, which is the reference domain of our problem (see Figure 4.16). We use
differently refined meshes as those shown in Figure 4.16. In all cases, the refinement
parameter N ~ C/h.

First we compare again our results with those in [32] for a shell of thickness
t = 0.4 m; in this case, the values in [32] have been obtained with eight @Qs-Fourier-
axisymmetric elements.

Table 4.5 shows some of the lowest vibration frequencies of the hemisphere,
ordered according to their circumferential and axial mode numbers n and m, re-
spectively. This table includes also extrapolated values of the vibration frequencies,
as well as the results in [32] in the last column.

In this case the performance of the method is very good for all circumferential
numbers. Indeed, even for rather coarse meshes like those in the first column of
Table 4.5 the computed vibration frequencies are reasonably close to the exact ones.

Figures 4.17-4.20 show the vibration shapes corresponding to the lowest frequen-
cies in each circumferential mode n=0,1,2,3.
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Table 4.4: Vibration frequencies for the free cylindrical shell with thickness ¢ =
0.0004 m.

Mode N=10 | N=20 | N=40 Extrap.

torsion 155.6818 | 155.2029 | 155.0833 || 155.0433186
n=0, m=0 || 246.2266 | 245.4206 | 245.2177 || 245.1494377
torsion 315.2095 | 311.3635 | 310.4057 || 310.0913697

n=1, m=0 || 156.7888 | 146.7250 | 144.2246 || 143.3999878
n=1, m=1 || 239.7767 | 232.3576 | 230.4811 || 229.8411165

n=2, m=0 || 163.5245 | 76.8020 | 37.7935 5.7321978
n=2, m=1 || 164.6616 | 77.3584 | 38.0643 9.7905892
n=2, m=2 || 179.4784 | 100.9416 | 73.9391 || 59.7825430
n=3, m=0 || 278.7239 | 124.6618 | 60.4295 || 14.3015611
n=3, m=1 || 279.1710 | 125.2854 | 60.7556 || 13.7934255
n=3, m=2 || 285.2548 | 131.6391 | 69.7290 || 27.8425332
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Figure 4.14: Free cylindrical shell. First torsional mode.
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Figure 4.16: Meshes on the reference domain for the hemispherical shell.

For this numerical test, we have also compared the results obtained using the
MITC4 method with a purely displacement method (denoted @;). The last one con-
sists in solving the spectral problem SP by using the same isoparametric quadratic
finite elements without relaxing the shear term (i.e., no reduction operator is used);
see [33].

Figures 4.21-4.24 show error curves in terms of the refinement parameter N
for both methods, MITC4 and (),. Now, for each vibration mode, we consider two
different thicknesses of the shell: ¢ = 0.4 m and ¢ = 0.004 m. Once more, it can be
observed that the order of convergence for MITC4 is almost quadratic.
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Table 4.5: Vibration modes for the clamped hemispherical shell with thickness ¢t =
0.4 m.

Mode N=4 | N=8 | N=12| N =18 | Extrap. | [32] |
n=0, m=1 | 68.5975 | 64.8487 | 64.2319 | 63.9871 | 63.8196 | 62.3596
n=0, m=2 | 90.4970 | 83.4000 | 81.9532 | 81.3665 | 80.9562 | 78.6232
n=1, m=1| 49.9516 | 47.6657 | 47.2893 | 47.1397 | 47.0373 | 59.2177
n=1, m=2 | 81.8682 | 76.5863 | 75.6759 | 75.3123 | 75.0616 | 75.2207
n=2, m=1 | 76.3073 | 74.3285 | 73.9148 | 73.7484 | 73.6329 | 71.5254
n=2, m=2 | 92.0576 | 85.5341 | 84.4929 | 84.0813 | 83.7994 | 81.1326
n=3, m=1| 86.1210 | 81.1263 | 80.2976 | 79.9660 | 79.7358 | 77.1851
n=3, m=2 | 101.8573 | 94.4224 | 92.4195 | 91.6757 | 91.1933 | 88.1218

Figure 4.17: Deformed hemispherical shell. Mode: n=0, m=1.

The locking phenomenon arising from the displacement method @); can be clearly
appreciated in these figures. Instead, MITC4 is quite free of locking for clamped
hemispherical shells.

4.5 Conclusions.

We have assessed the efficiency of MITC4 finite element method applied to the
classical Naghdi shell model for the vibration modes of slender structures. First we
have tested the method for plates with arbitrary isoparametric meshes and bound-
ary condition. We have considered moderately thick as well as very thin plates. The
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Figure 4.18: Deformed hemispherical shell. Mode: n=1, m=1.

Figure 4.19: Deformed hemispherical shell. Mode n=2, m = 1.

Figure 4.20: Deformed hemispherical shell. Mode n=3, m = 1.
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Figure 4.21: Clamped hemispherical shell. Mode n=0, m=1.
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Figure 4.22: Clamped hemispherical shell. Mode n=1, m=1.

obtained results show that the method is completely locking-free in all cases. Sec-
ond, we have applied the method to two particular shells: the free cylinder and the
clamped hemisphere. Each shell has been tested with different thicknesses. In the
first case we have found that the method is locking free only for low circumferential
numbers. In the second one, the method is always locking-free.
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Figure 4.23: Clamped hemispherical shell. Mode n=2, m=1.
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Figure 4.24: Clamped hemispherical shell. Mode n=3, m=1.






Chapter 5

Approximation of the vibration
modes of a plate coupled with a
fluid by low-order isoparametric
finite elements

We analyze an isoparametric finite element method to compute the vibration
modes of a plate, modeled by Reissner-Mindlin equations, in contact with a com-
pressible fluid, described in terms of displacement variables. To avoid locking in
the plate, we consider a low-order method of the so called MITC (Mixed Interpo-
lation of Tensorial Component) family on quadrilateral meshes. To avoid spurious
modes in the fluid, we use a low-order hexahedral Raviart-Thomas element and a
non conforming coupling is used on the fluid-structure interface.

Applying a general approximation theory for spectral problems, under mild as-
sumptions, we obtain optimal order error estimates for the computed eigenfunctions,
as well as a double order for the eigenvalues. These estimates are valid with constants
independent of the plate thickness. Finally, we report several numerical experiments
showing the behavior of the methods.

5.1 Introduction

This chapter deals with the numerical computation of the vibration modes of a
fluid-structure interaction problem in a 3D-domain. This is a very important engi-
neering problem (e.g. for treatment of noise in cars or planes). It is well known that
a large amount of work has been devoted to this subject (see for example [68]).

93
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We are interested in one of problems of this kind: to compute elastoacoustic vi-
brations when the structure is an elastic plate and the fluid is ideal and compressible,
both with small displacements.

In the framework of plate theory, we consider the most commonly used model
to describe small as well as moderately thin plates: Reissner-Mindlin equations. It
is well known that standard finite element methods produce unsatisfactory result
when applied to this model, even for the plate alone; this phenomenon is due to
numerical locking. To avoid this drawback, some special method based on reduced
integration or mixed interpolation has to be used. One of the most used methods
of this type is the MITC (Mixed Interpolation of Tensorial Component) methods
introduced by Bathe and Dvorkin in [10]. A great number of papers dealing with
the mathematical analysis of this method have been published in the context of
load problem (see for example [4, 9, 29, 46, 79]) and for the plate vibration spectral
problem (see [44, 43]).

To determining the vibration modes of the fluid, usually the pressure is chosen
as primary variable; however, for coupled systems, the use of displacement vector
fields present some advantageous properties like, for example, that compatibility and
equilibrium through the fluid-structure interface are satisfied automatically. Though,
it is well known that the displacement formulation suffers from the presence of zero-
frequency spurious modes with no physical meaning. An alternative approach has
been introduced and analyzed in [12] to avoid the spurious modes; it consists in
the use of lowest-order Raviart-Thomas element. Non-existence of spurious modes
and optimal error estimates for two dimensional fluid-structure problem have been
proved in [12] and [74].

The problem of a plate coupled with a fluid has been mathematically analyzed
in [45], by using DL3 triangular finite element for the plate and tetrahedral Raviart-
Thomas element for the fluid. Optimal order error estimates for the eigenvalues and
eigenvectors valid uniformly on the thickness parameter have been obtained in that
reference and no spurious modes are present with this discretization.

In this chapter we have extended the results in [45] by considering a discretization
of the coupled problem involving the lowest-order quadrilateral MITC4 finite element
for the bending of the plate (the original Bathe and Dvorkin’s paper deals with
this element) and lowest-order hexahedral Raviart-Thomas element (see [81]) for
the fluid. On the fluid-plate interface a non-conforming coupling is used; i.e., equal
normal displacement for the fluid and plate is imposed in a weak sense. Let us
remark that although the isoparametrical finite element are the most used element
in engineering applications (quadrilateral in 2D and hexahedral in 3D), no available
result seems to exist for this case.
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The rest of the chapter is organized as follow. In Section 2 we introduce the
spectral problem to describe the free vibration modes for the coupled system. In
Section 3, we describe the finite element method to solve the problem. We prove
optimal order error estimates for the approximation . In Section 4 and 5 we prove
error estimates for the spectral plate-fluid vibration problem. Finally, in Section 6,
we report some numerical experiments.

Throughout the chapter we denote by C' a positive constant not necessarily the
same at each occurrence, but always independent of the mesh-size and the plate
thickness.

5.2 Statement of the problem

We consider the problem of determining the free vibration modes of a three-
dimensional cavity enclosing and ideal inviscid barotropic fluid. The walls of this
cavity are considered to be all rigid, except for one of them which is an elastic plate.
Let Q be the domain occupied by the fluid and I' x (—£, L), that of the plate, where
I is its middle surface of the plate of constant thickness ¢ > 0.

We consider that 2 is a polyhedral convex three-dimensional domain. Its bound-
ary 02 is the union of the convex surfaces I'g, I'1, ... , I';. We assume that I’y is in
contact with the plate, whereas the remaining surfaces are assumed to be perfectly
rigid walls. We denote by n the unit outward normal vector to 0f2.

Throughout this chapter we make use of the standard notation for Sobolev spaces
HY(Q), HY(T), H(div,Q), Hy(rot,T'), etc. and their respective norms (see for in-
stance [52]). We also denote H := L?(T") x L*(T')? x L*(Q)?, X := H;(T') x Hy(T)?* x
H(div,Q) and || - || the product norm of the latter.

In that follows, we introduce the coupled problem. For more details see [45].

In order to describe the deformation of the plate, we consider the Reissner-
Mindlin model, which is written in terms of the rotations 8 = (3, 3?) of the fibers
initially normal to the plate midsurface and the transverse displacement w (see
[28, 46]). The following equations describe the dynamic response of the plate to a
pressure load ¢ exerted on one of its faces with (w, 8) € H; (') x H(T')? being such
that

Cal,n) + wt [ (Vw =) (Vo1 (5.1
r
3 ..
st [ [pdon = [o Vo) e B x HYTY
r 12 Jr r
(see for instance [60]). In the previous equation, the double dot means second deriva-

tives with respect to time, p, is the density of the plate, k := %, where E is the
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Young modulus, v the Poisson ratio of the plate and k a correction factor which is
usually taken as 5/6 (see [1] for a justification of the use of this coefficient); finally,
a is the bilinear form H; (I")?-elliptic defined by

a’(ﬂa 77) = ﬁ/; [Z(l - V)Sij(ﬁ)&‘ij(n) +1/divﬁdiv 7]] .

2,j=1

On the other hand, to describe the governing equations for the free small am-
plitude motions of an inviscid compressible fluid contained in {2, we consider the
displacement formulation

/Qppil-(zﬁ-l—/QpFCQdivudiwﬁ:—/Fpgb-n. (5.2)

where p is the pressure, u the displacement field, p,. the density and c the acoustic
speed of the fluid.

Since the fluid is considered inviscid, only the normal component of the displace-
ment vanishes on the rigid part of the cavity boundary I'y =Ty U---UL;:

u-n=0 onl,. (5.3)

Since the transverse displacement of the plate does not depend on the z-coordinate,
it can be considered that I" (instead of T'y) is one of the components of 9€2. Then,
the interface condition reads

u-n=w onl. (5.4)

Finally, in our coupled problem, the unique load g exerted on the plate is the pressure
p of the fluid.
Then, the space of kinematically admissible displacements of the coupled system
is
V:={(v,n,¢) e X: ¢-n=0onl, and ¢-n=vonl},
and, by adding (5.1) to (5.2), for all (v,n,®) € V we have

t3a(B,m) + mt/(Vw —B)-(Vv—n)+ / ppc” divudiv ¢ (5.5)
r Q

.. t3 = .
= - PpWV — —— ppﬁ'n_ pFu¢
r 12 Jp Q

The free vibration modes of this coupled problem are obtained by seeking har-
monic in time solutions of (5.5). By so doing we obtain the following spectral problem
(see for instance [68]):
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Find A € R and 0 # (w, 8,u) € V such that

t3a(B,m) + mf/

r

3
=A(t/rppwv+f—2/rppﬁ-n+/ﬂppu-¢) V(v,m,6) €V,

where A is the square of the angular vibration frequency.

(Vw —8)- (Vv —n)+ / ppc” divudiv ¢ (5.6)
0

As usual, when a displacement formulation is used for the fluid, A = 0 is a
solution of this problem with eigenspace given by

/c::{(o,o,¢)ev: divg=0in Q and ¢-n:00naQ}. (5.7)

The eigenfunctions corresponding to non-zero eigenvalues belong to the orthog-
onal complement of JC in V with respect to the symmetric bilinear form in the right
hand side of (5.6). This orthogonal complement consist of the conservative displace-
ment fields in the fluid, namely

gzz{(v,n,¢)€V: ¢ = Vq for somquHl(Q)}, (5.8)

with
¢l < C ([[v]lijzr + || divélloe) - (5.9)

We observe that IC and G are also orthogonal with respect to the bilinear form
in the left hand side from (5.6). Hence, to obtain the eigenpairs corresponding to

non-zero eigenvalues we can seek the solution of problem (5.6) restricted to G (i.e.,
with V substituted by G).
For the theoretical analysis we consider

)1/2

1w, m,d)ll, = (Illir + lInllir + 1 divellge) (5.10)

which is a norm on G equivalent to || - || (see [45]).

On the other hand, in static problems, the loads are typically assumed to depend
adequately on the thickness in order to obtain a family of problems with uniformly
bounded solutions: volumetric forces are supposed to be proportional to t* and
surface loads to #* (see for instance [28]). For this reason, we assume that the densities
for both, fluid and solid, are related with the thickness of the plate as follows:

Pe = laFt?’ﬂ Pe = ﬁPtQ'

Hence, we consider the following rescaled problem, for the non-zero eigenvalues of
(5.6):
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Find A € R and 0 # (w, B,u) € G such that

st((w, B,u), (v,mn, (;5)) = )\rt((w,ﬁ, u), (v,m, gzﬁ)) V(v,n,¢) € G. (5.11)

with
st<(w,5,u), (v,m, (/5)) =a(B,n) + g /F(Vw —pB)-(Vv—n) +/Q,5F02 divudive

and

(w80, 0. 9) = [+ 35 [5.8-0+ [

We consider the operator 7; defined by

T; : H — g
(f.0,9) — (w,B,u)

with (w, 8, u) € G being the solution of

si((w8.), (0,m.0) =ri((£.0,9), (0,n.0))  Vlome)eg.  (5.12)

This problem is well posed and the operator turns out to be uniformly bounded on
t (see [45]). Furthermore, as a consequence of (5.9), G is compactly included in H
and, therefore, T; : H — H is a compact operator. Moreover, since s; and r; are
symmetric and semipositive definite, the spectrum of 7}, apart from p = 0, consists
of a sequence of positive finite multiplicity eigenvalues converging to zero. Note that
A is an eigenvalue of (5.11) if and only if 4 = % is an eigenvalue of T; with the same
multiplicity and corresponding eigenfunctions.

We will use the following regularity result for the solution of (5.12) (see [45]):

Theorem 5.2.1 Let (f,0,9) € H, (w,B,u) = Ti(f,0,9) and v = g(Vw—B).

Then, (w, 8,u) € H*(T)x H*(T')?x H'(div,Q), v € L*(T") and the following estimate
holds

|lw||2,r + 1| 5]

a0 + ||ullgr@iv,0) + 17llor < CI(f,0,9)]:,

with C > 0 independent of t.
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5.3 Discretization

Let {7,} be a family of partitions in hexahedra of Q and {7,/ } be a family of
decomposition of I' into convex quadrilaterals. Note that, although each 7, induces
a decomposition on I', we do not assume that 7, is this induced mesh. That is
each pair of meshes 7, and 7,/ do not need to be compatible. Here h stands for the
maximum diameter of the elements in K € 7,/ or K € 7y, respectively.

Let K := [0,1]* be the reference element for the partition 7,. We denote by
Q”k(ﬁ) the space of polynomials of degree less than or equal to 7 in the first
variable, to j in the second one, and to k in the third one. Also, we set Qk(ﬁ) =
Qk,k’k(ﬁ). Similarly, for K = [0, 1]* the reference element for the partition 7;", we
define Q; ;(K) and Q(K).

Let K € 7,. We denote by Fg a trilinear mapping of K onto K, with Jaco-
bian matrix and determinant denoted by DF g and Jg, respectively (see Fig. 5.1).
Analogously, let K € 7,1, we denote by Fx the bilinear mapping of K onto K , with
Jacobian DF) and determinant of the Jacobian Jp, (see Fig. 5.2).

Figure 5.1: Trilinear mapping onto an element K € 7j,.

We consider regular meshes in the sense that there exist constants ¢ and C
independent of the elements K or K such that

ch3 < Jp, <Ch% VKeT,

and
chy < Jp, <Ch¥k VKET,

respectively.



Capitulo 5. Approximation of the vibration modes of a plate coupled with a fluid
100 by low-order isoparametric finite elements

o
K

K

Figure 5.2: Bilinear mapping onto an element K € 7, .

Furthermore, according to [43] and [50], we assume that the meshes are asymp-
totically paralelogramic, i.e. the above mapping verify

IV Je |

Fg

S Ch'Ka

IV (Jg DF Y| < CR,,

and
IV(DFY)| < Chk,

for all K € T, and K € T,', respectively. Here, | - | denote the standard euclidean
norm and the corresponding matrix norm. Moreover, in the plate we assume that the
mesh 7,l' is a refinement of a coarser partition 7, obtained by joining the midpoints
of each opposite side in each M € Ty, (called macro-element). In addition, T, is a
similar refinement of a still coarser regular partition 7y, (see [28]).

To approximate the fluid displacements, we use lowest order Raviart-Thomas

elements (see [81]). Let

RT(R) = {21\5 qe Ql,o,o(ﬁ) X Qo,l,o(ﬁ) X Q0,01 (ﬁ)}

and, from this space, we define through the contravariant transformation known as
the Piola’s transformation,

RT(K) = {q .qoFy = Jp DFxG, Ge RT(f{)}

Note that the Piola transform associated with Fy allows to transforming vector
fields from the current element to the reference one (see the definition of the space
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RT(I? )), leaving invariant its flux through any surface; i.e., for each face S of K =

Fx(K) we have
[an= |77 (5.1)
S 5

where n is the normal unit vector to S.
Then, we define the lowest-order Raviart-Thomas space (see [81, 75])

Ry = {¢h € H(div,Q) : ép|x € RT(K) VK € n}. (5.2)

We remark that, for R, C H(div,{2), the normal component of a function in Ry,
must be continuous along interelement boundaries and vanish on 0€). In fact, the
integrals (5.1) of these normal components are the degrees of freedom defining an
element of Ry,

For the plate we consider a method MITC4, introduced by Bathe and Dvorkin
(see [10]) and analyzed in [9, 46, 43]. It is based on different finite element spaces
for the rotations, the transverse displacement and the shear strain.

Let

N(I?) = {1/5 pe QO,I(I?) X QI,O(I?)}a

and, from this space, we define through covariant transformation:
N(K)={p: po Fx = DF"5, pe N(B)}.

Let us remark that the mapping between NV (K) and N'(K) is a kind of Piola trans-
form for the “rot” operator, rot p := dp/dy — Op/Ox and, in this case, there holds

/Zp-m/é;a-?, (5.3)

~

for all edge £ of the element K = F(K), where 7 is the unit vector tangential to £.
Then, we define the space (which will be used to approximate the shear stress 7)

Ty = {¢ € Ho(rot,T) : 9|k € N(K) VK € Thf},

that corresponds to the lowest-order rotated Raviart-Thomas space ([75, 81]). We
remark that, for Z, C Hy(rot, '), the tangential component of a function in Z, must
be continuous along interelement boundaries and vanish on OI'. In fact, the integrals
(5.3) of these tangential components are the degrees of freedom defining an element
of Zj.

We consider the reduction operator

I1: HY(I')? N Hy(rot, T) — Zp,
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locally defined for each ¢p € H'(T')? by (see [28, 75])

/enw-T:/ew-r, (5.4)

for every edge ¢ of the triangulation (7 being a unit tangent vector along ¢). It can
be shown that this operator satisfies ([28, 75])

I — ep|lor < Ch|9]1r. (5.5)

For the transverse displacements we take standard bilinear isoparametric ele-
ments, namely,

W), == {vh € Hy(T) : wvplx € Q(K) VK € 77?}:

where Q(K) := {p € LX(K) : po Fx € Q,(K)}, for all K € Ty,
Finally, the finite element spaces for the rotations are defined by

Hy = {n € H(T)?: nlx € QK)? VK € T,f}.

The approximation of the plate problem by using the spaces W, Hy, Z5, and
the reduction operator II, corresponds to the method MITCA4.

We impose weakly the interface condition (5.4), because doing it strongly (i.e.,
up - m = wy, on I') is too stringent (see [19]). Let C;, := {F : F is a face of the fluid
meshes lying on I'}. Then, we take as discrete space for the coupled problem

Vh;:{(uh,nh,qﬁh) EWhXHhXRh: th-n:OonPR and L¢h'n=LUhVFECh}.

The corresponding discrete eigenvalue problem is:

Find A\, € R and 0 # (wp, Bh,up) € Vy such that

H ~ . .
a(Bh, nn) + 2 /(th —T1086) - (Vo, —TInp) + / p.c? div uy, div ¢,
r Q

. t? . .
= A /ppwhvh +— | PpBhmn+ / Pelh * Op Y (Vh, Mh, On) € V,
r 12 Jr 0
(5.6)

Note that the fact that V, ¢ V and the use of the reduction operator II lead to two
variational crimes for our method.
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Analogously to the continuous case, A\, = 0 is an eigenvalue of this problem, with
corresponding eigenspace

Kn:={(0,0,¢5) € V,: divg, =01in Q and ¢, -n =0 on 00Q}.

Hence, for the theoretical analysis, we may restrict the discrete eigenvalue problem
to the space G, given by the orthogonal complement of IC; in V), with respect to r;.
We write

Find A\, € IR and 0 7é (wh, Bh, uh) € Gy, such that

st ((wns By wn), (01,7, 80)) (5.7
= X7 (wn, Buy wn)s (vns s 60)) VY (ony s 60) € G,
with
st ( (s B ), (vhs s 61)) 2= @B, me)

+g (Vwp, —II1By) - (Vo — IIny) + / ppc div uy div ¢y,.
r 0

Because ¢, is not necessarily a gradient, for (vy, n, ¢n) € Gp, we have that G, ¢ G,
and then a third variational crime for our methods.

To define the arises discrete analogue of the operator 7', we need the following
lemma which provides a Helmholtz decomposition for the discrete fluid displace-
ments.

Lemma 5.3.1 For any (vp, Mh, ¢n) € Gn, ¢n can be written as

¢h:v£+Xa

with & and x satisfying (v, nn, VE) € G and divy = 0. Moreover, there exists a
constant C, independent of h, such that

V€

o < C(lldivénllog + lonllir). (5.8)

oa < Ch(Ildivéulon + lonllr)- (59)

l|x

PRrROOF. We do not include it here since it is essentially identical to those of Theorem
1.6.1 in [50] O

As a consequence of the previous lemma, || - ||, and || - || are equivalent on G,

(with equivalence constants not depending on h). On the other hand, a(f8h, nn)+
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K
2 Jr
(see [46]). Then, clearly, the bilinear form s;, are coercive on G, with coerciveness

(Vwy, — T16) - (Vo — IIny) is known to be uniformly coercive on Hj x W)

constant independent of ¢ and h.
We introduce the following operator 7}, by

Tin - H — Gn
(faeag) — (whaﬁhauh)

with (wp, By, un) € Gy being the solution of

Sth((whaﬁh,uh)a (Vhs T, ¢h)> = Tt((fae,g)a (Vhs M, ¢h)> Y (Vh; Mhs Dn) € G-
(5.10)
These operators are uniformly bounded in ¢ and h. Moreover, the non-zero eigen-
values py, of Ty, are related with the eigenvalues A, of Problem (5.7) by p, = ﬁ

5.4 Convergence of the discrete operators

We are going to prove that the operator 73, converge to 7; in norm as h goes to
zero, in both || - || and the norm induced by r(-, ). This fact will be used in the next
section to prove the spectral convergence.

From now on and throughout this section, we consider (f,,g) € H fixed and
denote

(waﬂvu) = E(faeag)a (whaﬁhauh) = Eh(faeag)a
7= 5(Vw - B), = 35 (V= T15y).

From (5.10) and the definition of s; we have

(v =) - (Vo — Iy + / ﬁFCQ div (v — up) div @y (5.1)
Q

o8 = ) + [

r

= /7' (. — ng) + My (v, 74, &) Y (Vh, M, On) € G,
r
where

Mh(vha Ths (bh) =St ((wa 137 U’)a (Uha Mh, ¢h)) - T ((f7 0) g)a (Uh: Mh ¢h)) .

Note that, two consistency terms appear in the error equation. The first one due
of the use of the reduction operator Il in s;, and the last one because the space

Gn ¢ G).
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The argument to prove that the consistency terms are bounded and the corre-
sponding convergence of the operators, have been used in [45] for similar methods
on triangular and tetrahedral meshes. The proof are essentially identical to those of
that reference. However, for the sake of completeness, we include some of these.

By using (5.5), we can easily estimate the term /7 - (np — ) in the equation
r
above. For the second consistency term we have:

Lemma 5.4.1 There holds

|Mh(vha Tk, ¢h)| S Ch ||g|

O,Q”(Uh’nh’¢h)”o v(vhanha¢h) € gh-
PROOF. See Lemma 5.1 in [45]. O

Now, we prove that the spaces G, provide suitable approximations for (w, 8, u):
Lemma 5.4.2 There exists (@,B,ﬂ) € Gy, such that

(@, B,3) — (w, B,u)|| < ChI(f,0, g)|:.

Moreover, if 4 := s Vuw — HB , the following estimate also holds
t2

t1y = llor < ChI(f,0, 9)l:-

PROOF. According with Theorems 3.7 and 3.1 in [43], there exist B € Hy and an
operator II : Hy(rot,I') U H'(I')> — Z}, such that

16 — Bllir < Chl|Bll2r
and

. 12~
rot (Hﬁ — —Hf)/) =0.
K
By virtue of the last equality and Lemma 2.1 in that paper, there exist w € W,
such that Vi = 11y —II3. Then for 4 = Iy = £(Vi —I13) we have |5 —7|lor <
Chll[1,r-
On the other hand, because

2 t2

Viw—b) = (=) + T~ = (7~ 4) +11(5 - §) + (18 - )

by using (5.5) and the previous estimates we have || —w||1r < Ch (||v|l1,0+|8]l2r)-
Arguing as in Theorem 5.2 of [12] we can find u! € Ry, such that (w0, 3,u’) € V},
and [lu’ — ullmaiv,0) < Ch [[lwllar + llull i aive)] -
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Now, let (0,0, ux,) be the r, projection of (1@,5, u') onto K. Hence, for 4 :=
ul —ug,, (0, B,4) € Gn. Moreover, since ux, and (4—u) are orthogonal in H (div, ),
we have

it~ ull ey < 1108 — ) + v, ey = ' — ull v )

Therefore, by applying the a priori estimate in Theorem 5.2.1 we conclude the proof.
O

The following lemma establishes convergence for the discrete operators in || - ||,.

As a byproduct we obtain convergence for the shear strains, which will be used in
the next section.

Lemma 5.4.3 There holds

l,r + 18 = Bullir + {1y — Wallor + | div (w — un)|lo,0 < Ch|(f, 0, 9)l:-

|lw — wy,
PROOF. See Lemma 5.3 in [45]. O

Now, we may prove the claimed convergence:

Theorem 5.4.1 There exists a constant C such that, for any (f,0,9) € H, there
holds

(T2 = Tin)(f, 0, 9)|| < CR(F,0, )l (5.2)

PROOF. The theorem is an immediate consequence of Lemma 5.4.3 and Lemma 5.4
in [45]. O

Finally, we obtain the following estimate:

Theorem 5.4.2 There exists a constant C such that, for any (f,0,9) € H, there
holds

(T = Tu) (£.0,9), (£,0,9)) | < CR|(£,0, )11 (5.3)

Proor. We consider a decomposition of u;, according to the lemma 5.3.1; i.e., up =
V& + x. Recalling the equation (6.2) in [45] we have

(T = Tw) (£,6,9), (1,6, ) (5.4
2
=a(B — Bn, B — Bn) + %/F Y — ml? + /QﬁFCQ(diVU — divuy)?
—2 [ pog-x— (B — T1By).
Q/Qngx 2/F7 (Br — T15)
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Because of continuity of a(-,-) and lemmas 5.4.3, only remains to estimate the two
last terms in the right hand side of the equation above.

The proof in the lemmas 4.2 and 4.3 in [43] can be easily adapted to prove the
estimate for the last term. In fact, this term has been analyzed in that paper in
order to obtain optimal L? error estimate for the MITC4 methods for a clamped
plate.

On the other hand, since (f,0,9) € G, then ¢ = Vg and, because of (5.9),
q € H?(2)? with

lallz < C (Ifll12r + | divglloe) < CII(f,0,9)ll-

Now, since divx = 0 and x = up — V&, we have

/ﬁFg-x=/ ﬁFq(uh—Vf)-n=/ﬁFq(uh-n—wh),
Q N r

the latter because of (wp, By, VE) € G. Since (wp, By, urn) € Gp, then P(uy - n) =
P(wy), with P being the L?(T")-projection onto the piecewise constant functions on
Cy. Hence,

Q

‘/F pula — P(@)] [un-n — Plun - n) + Plwy) — wp]

llg — P(q)llo,r(|lun - n — P(up - n)|lor + || P(wn) — whllor)
Chllglli,r(|[un - = P(up - n)|lo,r + || P(wp) — wh|

<
<

OaF)’

and ||g|l.r < Cllgll2.0 < C||(f,0, g)||- Then, we estimates the remainder two terms.
The proof of Lemma 1.6.8 in [50] can be easily adapted to prove that

[un - n = P(un - n)lor < Ch|(f,6, 9)]|-
For the last term, we have

|1 P(wh — w)llo,r + [[Pw — wllor + |lw — whllor
|Pw — wllor + Cllw — wy
Chllwlir + ChI|(f, 6, 9)|
Ch||(f,8,9)ll,

||P(wh) - wh”O,F

o,r

VAN VAR VAR VAN

where we have used Lemmas 5.2.1 and 5.4.3. Thus, we conclude proof. O

Remark 5.4.1 According to [43], the macroelement assumption on the mesh T,
for the MITCY method is only used to prove an optimal order estimate for the last
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terms in the right hand side of the equation (5.4) in the proof of the theorem above.
However, a modification of this method is introduced in this reference.lt consists
of enriching the discrete space Hp by means of a rotation of a space used for the
approximation of the Stokes problem. For these methods, which is called DLJ, the
macroelement assumption is not necessary.

5.5 Spectral approximation

It is shown in [45], that as the thickness t — 0, each eigenvalue u of problem (5.6)
converge to some limit ug. Indeed, pg are the eigenvalues of the operator associated
with the classical Kirchhoff model of the same plate coupled with the fluid (see
Theorem 3.2 in [45]). From now on, for simplicity, we assume that p is an eigenvalue
of T; which converges to a simple eigenvalue pg as t goes to zero (see Section 3 in
[45] for further discussions).

As a consequence of Theorem 5.4.1, for each simple eigenvalue p of T3, there is
exactly one eigenvalue yy, of Ty, converging to u as h goes to zero (see for instance
[45]). The following theorem shows optimal ¢-independent error estimates:

Theorem 5.5.1 Let p and pp be simple eigenvalues of Ty and Ty, respectively,
such that pup, — p as h — 0. Let (w,8,u) and (wy, By, us) be the eigenfunctions
corresponding to p and uy, respectively, both normalized in the same manner. Then,
there exists C > 0 such that, for t and h small enough, there holds

”(wa 5,11,) - (wha ﬁha uh)” S Ch, (51)

and
e — pan] < CR?. (5.2)

ProOF. The proofs, which rely on Theorems 5.4.1 and 5.4.2, are essentially the
same as those of Theorem 6.2 and 6.3 in [45]. O

5.6 Numerical experiments

In this section we present numerical results obtained with a implementation of
the method.

We have tested the methods by reproducing the experiments in [45]. In that
paper, the problem is approximated by using triangular and tetrahedral finite ele-
ments; more precisely, using DL3 for plate and hexahedral Raviart-Thomas elements
for the fluid.
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We remark that it is well know that, from the point of view of efficiency, for the
same number of degrees of freedom, hexahedral element approach the exact solution
better than tetrahedral ones for structural problems (see for instance [16]). In fact,
using Raviart-Thomas elements, the number of faces (degree of freedom for this
element) for hexahedral approximation is about one quarter that for tetrahedral
ones, on meshes with same vertices (see [16]).

We have considered a steel 3D cavity completely filled with water with all of
its walls being perfectly rigid, except for one of them which is an elastic plate. The
geometric data are given in Figure 5.3. The physical parameters of plate and fluid
are the following ones:

e density of the plate: p, = 7700 kg/m?,
Young modulus: £ = 1.44 x 10! Pa,

Poisson coefficient: v = 0.35,

density of the fluid: p, = 1000 kg/m?,

sound speed: ¢ = 1430m/s,

- éem -
= t=0.5m
4m Plate

A

Rigid walls

Figure 5.3: Cavity filled with fluid.

The method have been used on several successively refinements of the initial
mesh (see Figure 5.4). The refinement parameter N stand for the number of layer of
element for the fluid domain in the vertical direction. The number of layers in the
other two direction being 2N and 3N, as show the Figure 5.4.

We have computed approximations of the free vibration angular frequencies cor-
responding to the lowest-frequency vibration modes of the coupled system.

Table T show the five lowest vibration frequencies computed by our method for
the plate coupled with water. The table includes also the value of the vibration fre-

") as well as the estimated

quencies obtained by extrapolating the computed ones (w,},
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pu

Figure 5.4: Fluid mesh with N=2.

order of convergence «. Such values have been obtained by means of a least square
fitting of the model

wh & W (1 4+ Cph®)

m

for the frequencies calculated on three different meshes (V = 4, 5, 6).

The obtained result compare perfectly well with those in [45, 16].

Table I: Angular vibration frequencies of a steel plate in contact with water.

Mode N=14 N=5 N=6 o Wi
wh 703.4418 | 701.3463 | 700.1963 | 1.95 | 697.5025809
Wi 11046.7326 | 1035.0140 | 1028.7364 | 2.07 || 1015.0498050
w1 1096.3214 | 1091.2521 | 1088.4428 || 1.90 || 1081.6537906
wh | 1329.5584 | 1325.0901 | 1322.6234 | 1.92 || 1316.7369551
wh | 1513.5155 | 1492.4589 | 1481.2156 | 2.08 || 1456.8201771

Figures 5.5 to 5.8 show the deformed plate and the fluid pressure for some of
these vibration modes.

According to [45], we also check the stability of the method as the thickness
becomes small. Table II and III show the results obtained for the first and second
frequency vibration modes, for plates with different thicknesses. To allow for com-
parison we scale the frequencies by using the assumption made in Section 2 on the
densities of the plate and fluid (namely, p, = p.t* and p, = p,t?). Note that the
convergence behavior does not depend on the thickness.
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Table IT: First vibration wf for plates of different thickness coupled with fluid.

t

N =4

N =5

N=6

«

W1

0.5
0.05
0.005
0.0005

703.4418
747.5121
747.5326
747.5328

701.3463
746.6361
746.6569
746.6571

700.1963
746.1595
746.1806
746.1808

1.95
1.99
1.99
1.99

697.5025809
745.0693080
745.0908998
745.0911159

Table III: Second vibration w! for plates of different thickness coupled with fluid.
t N =14 N=5 N=6 o
0.5 1046.7326 | 1035.0140 | 1028.7364 || 2.07
0.05 | 1128.5113 | 1125.7410 | 1124.2345 || 1.99
0.005 | 1128.5296 | 1125.7600 | 1124.2539 || 1.99
0.0005 | 1128.5298 | 1125.7602 | 1124.2541 || 1.99

w1
1015.0498050
1120.7874465
1120.8077413
1120.8079442

Figure 5.5: Deformed plate and fluid pressure for the mode w;.
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0.5

0.4

Figure 5.6: Deformed plate and fluid pressure for the mode ws.

0.5

0.4

Figure 5.7: Deformed plate and fluid pressure for the mode wjs.
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Figure 5.8: Deformed plate and fluid pressure for the mode wy.

0.5

0.4

Figure 5.9: Deformed plate and fluid pressure for the mode ws.






Chapter 6

Computation of the vibration
modes of plates and shells coupled
with a fluid

We consider a method to compute the vibration modes of an elastic thin structure
(shell or plate) in contact with a compressible fluid. We use the classical Naghdi
model over a reference domain and its approximation using the MITC4 finite element
method for the structure. The equations for the fluid are discretized with Raviart-
Thomas elements, and a non conforming coupling is used on the fluid-solid interface.
We report numerical experiments assessing the efficiency of this coupled scheme.

6.1 Introduction

This chapter deals with the numerical computation of the vibration modes of a
fluid-structure interaction problem in a 3D-domain. This is a very important engi-
neering problem (e.g., for treatment of noise in cars or planes) and a large amount
of work has been devoted to this subject (see for example [68]).

We are interested in one problem of this kind: to compute elastoacoustic vibra-
tions when the structure is an elastic shell and the fluid is ideal and compressible,
both subject to small displacements.

In the framework of thin structures, a big amount of work has been developed
during the last years by different communities under different points of view. There
exist two main ways of approximating shell problems: finite element methods result-
ing from the discretization of classical shell models (namely, two dimensional meth-
ods) (see [21, 33]) and methods based on “degenerating” a 3D solid finite element
into a shell element using some kinematical assumption in the thickness direction

115
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(see [8, 11])

For the present work, we consider one of the most important classical two-
dimensional shell models: Naghdi equations, which are based on Reissner-Mindlin
hypotheses. To discretize them we use the MITC (Mixed Interpolation of Tenso-
rial Component) finite element methods, introduced by Bathe and Dvorkin in [10],
which are very likely the most used in practice.

Some mathematical analysis can be found for these elements applied to Reissner-
Mindlin plate equations (see, for example, [45, 43, 46]). In particular, we use the
low-order MITC4 method, which is the most common isoparametric quadrilateral
element of this family. The performance of this approach has been recently tested
for both, plates and shells vibration problems [58].

To determining the vibration modes of a fluid, usually the pressure is chosen
as primary variable. However, for coupled systems, the displacement vector field
presents some important properties like, for example, the fact that compatibility
and equilibrium through the fluid-structure interface satisfy automatically. Though,
it is well known that the displacement formulation suffers from the presence of zero-
frequency spurious modes with no physical meaning. An alternative approach has
been introduced and analyzed in [12, 19] to avoid such spurious modes; it consists in
the use of lowest-order Raviart-Thomas elements. The degrees of freedom of these
elements are located at the element faces and represent the normal component of
the field through them.

On the fluid-solid interface a non conforming coupling is used: the kinematic
constraint (i.e., equal normal displacement for fluid and shell) is imposed in a weak
sense. In fact, because of this, the fluid and shell meshes do not need to be compatible
on the common interface.

In this chapter we consider the problem of computing the vibration modes of a
shell in contact with a fluid. In Section 2 we state the vibration coupled problem. In
Section 3 we treat the particular case when the shell is plane (i.e., a plate). Finally,
in Section 4, we apply the method to calculate the vibrations of a thin cylinder full
of fluid.

6.2 Statement of the problem.

We consider the problem of determining the free vibration modes of a three-
dimensional cavity enclosing and ideal inviscid barotropic fluid. The walls of this
cavity are either rigid or linearly elastic shells.

Let 2 be the three-dimensional domain occupied by the fluid. We consider that
0f) is the union of the 2D surfaces I'y, I'y,...,I'; and we assume that I’y is in
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contact with the shell, whereas the remaining surfaces are in contact with perfectly
rigid walls.

To describe the free small amplitude motions of the fluid, we consider the dis-
placement formulation; we denote by W = (Wi, Wy, W3) the displacement fluid
field.

For the shell, we assume that there exists a single chart ¢ that is a one-to-one
mapping, which applies a 2D domain I' onto the midsurface of the shell. Then,
we consider the Naghdi shell model, which is written in terms of the rotations
© = (01,0,) of the fibers initially normal to the shell midsurface and the three
dimensional vector field U = (U, Us, Us) which corresponds to the displacement
of the midsurface. Note that these vectors are function defined on the reference
domain I'. Moreover, by simplicity we suppose that the fluid is in contact with the
midsurface .

The space of kinematically admissible virtual displacements is denoted by &/ and
defined by

U= {(U, O,W): U, ©, W sufficiently smooth and (U3 0 ¢~ ') =W - n} N BC,

where BC symbolically denotes the prescribed essential boundary conditions. The
expression (Uz o ¢~') = W - n, denotes the equality of the normal displacements of
both medium.

The governing formulation for the free small amplitude motions of the coupled
system in the frequency domain is the following:

SP: Findw > 0 and 0 # (U,©,W) € U such that

a<(U, o,W),(V,T, Z)) - wa((U, o,W),(V,T, Z)) V(V,T,Z) el

The bilinear form b(-,-) is given by
t3
b((U,e,W), (V,T,Z))::/ps (taaﬂUan—i-tUg%—i-Eaaﬂ@aTﬂ) det(a)+/ peW-Z
r Q

where ps and pp are the density of the shell and the fluid, respectively. Here, the
matrix (a®?) is the contravariant form of the first fundamental form of the midsurface
of the shell (see [21, 33] for further details); Greek indices range over 1 and 2, the
convention of summation over indices repeated up and down is used.

The bilinear form a(-,-) can be written as the sum of one term for the fluid
stiffness and other for the shell stiffness; the latter also splits into a bending term
D®, a membrane term D™, and a shear term D?; i.e.,

a((U, o,W), (V,T, Z)) — AW, Z)+ t3Db((U, ), (V, T))
+tD™U,V) + thD® ((U, 0), (v, T)) ,



Capitulo 6. Computation of the vibration modes of plates and shells coupled with
118 a fluid

with k£ being a correction factor for the shear term and

AW, Z) := /ppc2didein
Q

afAu
D (0.0, (1, 7)) = /F E12 Xes (U, ©)xan (V, T)/det (a),
DUUY) = [ BP0 m,(V) Vet (a),
p'((0.6).(.1)) = /F G o (U, ©)p5(V, T)/dot(a).

Here, c is the sound speed in the fluid, the tensors y, v, and ¢ are the well-known
bending, membrane, and shear strain operators, respectively (see Chapter 4, section
2, of this thesis). The tensors present in the stiffness term, E**** and G* correspond
to the material properties and depend on Young’s modulus and Poisson’s ratio for
the structure, £ and v, respectively.

The spectrum of SP consists of the frequency w = 0 and a sequence of finite
multiplicity positive frequencies converging to infinity. In the first case, the associ-
ated eigenfunctions belong to an infinite-dimensional subspace that consists of pure
rotational fluid motions inducing neither variations of the pressure in the fluid nor
vibrations in the shell. In fact, they do not correspond to free vibrations modes
of the fluid-shell system, but arise because no irrotational constraint is imposed
to fluid displacements. The rest of the spectrum are strictly positive frequencies
which correspond to actual vibration modes of the fluid-solid system. Moreover, the
corresponding fluid displacements are irootational.

According to [12, 19], to avoid typical spurious modes in the fluid-solid coupled
system, the approximation of the fluid displacement vector field is made by using
Raviart-Thomas element. This element discretize the whole vector field instead of
each of its components separately (see [16], for further details).

On the other hand, we use MITC4 elements for the shell structure. This method is
based on discretizing the bending and membrane terms using the usual isoparametric
quadratic finite elements and relaxing the shear term by using reduced integration.

Let us now specify this method in our context. Let {7} be a family of parti-
tions in hexahedra of 2 and {7,'} be a family of decompositions of I into convex
quadrilaterals. Note that, although each mesh 7, induces a decomposition on I', a
non compatible new mesh {7,1'} can also be used. Here h stands for the maximum
diameter of the elements in K € T, or K € Ty, respectively.

Let K be the unit square reference element. We denote by Qi,j(I/(\' ) the space of
polynomials of degree less than or equal to ¢ in the first variable and to j in the
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second one. We set Qk(l?) = Qk,k(l?). We denote by Fi the bilinear mapping of
K onto K, and we set Q(K) := {p: po Fx € Q1(K)}.

For the definition of admissible discrete variables, we impose weakly the kine-
matic interface constraint because to do it strongly would be too stringent (see [19]).
The integrals to do this are imposed on the fluid mesh faces in contact with the shell.
More precisely, let C, := {F : F is a face of the fluid meshes lying on I'}, we consider

Uh::{(Uh,@h,Wh) : Unlk € Qu(K)?, Onlk € Qi(K)* VK € T,

Wh,‘K € RT(K) VK € T, and /(Ugh O¢_1):/Wh -n VF € Ch} N BC,
F F

where RT(K) denotes the lowest-order Raviart-Thomas hexahedron, whose degrees
of freedom are the fluxes through each of the six faces of K. Recall that BC denotes
the prescribed essential boundary conditions.

Then, the discrete variational problem reads:

SPy: Find wy, > 0 and 0 # (Up, Op, Wh) € Uy, such that

ah((Uh, On, Wh), (Va, Th, Zh)) Zwib((Uh,@h, Wh), (Vh,Th,Zh)> V (Vi, T, Z1) €Up,.

The bilinear form ay(+, -) is a perturbed form of a(-, -); more precisely, it comes from
introducing in the shear term D?® an appropiated reduction operator ¢ — Rp. In
this particular case, the operator R is defined such that Ry|x € Qo1 (K) X Q1,0(K)
VK € T, (For details in the case of plate see, for example, [43], and for cylindrical
shell see [67]). Thus we obtain

an((Un, O Wa), (Vs Y, Z0)) i= A(Wi, Z3) + D ((Un, On), (Vi 1))
+ D™ (Up, Vi) + thDj (U, ©4), (Vi Th)).
with
D; (U, On), (Vi Tw) ) = /QGaﬂ (Re(.0n) (Re(Vh Tw) | V/dei(a).

Let us emphasize that, for the shell structure, this MITC4 finite element procedure
is based on meshes that are constructed in a reference 2D domain, and the numerical
computations require an extensive use of the chart ¢.

6.3 Plates

In this section, we consider that the shell is plane (i.e. a plate). The Reissner-
Mindlin formulation for plates can be seen as a special case of the Naghdi shell model,
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where the plate transversal displacement terms appear separately from the in-plane
terms. Moreover, the in-plane motions do not interact with the fluid. Therefore
they can be solved separately. Thus the fluid-solid interaction can be expressed in
terms only of the plate transversal displacement, the fiber rotations and the fluid
displacements. If we choose a coordinate system in which the plate lies in the z,y
plane, then the finite element space is

ur = {(Ugh, O Wa) : Usnlic € Ov(K), Oplic € Ov(K)? VK € T,
Wh'K € RT(K) VK € 77,,, and / Usp, = / Wy, - Il} N BC,
F F

Then to compute the free vibration modes we must solve the following problem
(see [45, 55]):
PPy: Find wy, > 0 and 0 # (Usy, On, Wy) € UF such that:

(@h, Th + Ht/ R VUgh - @h) R(V‘/E;h - Th) + / pFC2 div Wh div Zh
Q

=w,%p( / UV + / O - n) / oW~ Zu (Vi T Za) € UL
Q

Here k := Fk/2(1 + v) is the shear modulus (we recall that E is the Young
modulus, v the Poisson ratio, and k a correction factor), meanwhile the bilinear
form a is defined by

2

. E . .
a(Op, Tp) := 12(17_#)/9 L]Z:l(l —v)gij(On)€ij(Th) + vdivO, div Ty |,

where ¢;; denotes the components of the linear strain tensor.

This coupled problem have been mathematically analyzed in [45], where tetra-
hedral Raviart-Thomas elements for the fluid and MITC3 elements for the plate
have been used. These results have been extended to MITC4 and Raviart-Thomas
hexahedra in [55]. In both papers, optimal order error estimates have been obtained
for the solution of PPy, which are valid uniformly on the plate thickness t.

As a test of the performance of this method, we have considered a steel 3D cavity
completely filled with water with all of its walls being perfectly rigid, except for one
of them which is a plate. The geometric parameters are given in Figure 6.1. The
physical parameters of plate and fluid are the following ones:

e density of the plate: p, = 7700 kg/m?,
e Young modulus: E = 1.44 x 10! Pa,
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e Poisson coefficient: v = 0.35,
e density of the fluid: p, = 1000 kg/m3,
e sound speed: ¢ = 1430m/s.

e correction factor: £ = 5/6.

6m

= t=0.5m
4m Plate

A

Rigid walls

Figure 6.1: 3D cavity filled with fluid.

Table 6.1 shows the frequencies of the three lowest-frequency vibration modes
computed on different meshes. Here, N stands for the number of layers of elements
for the fluid domain in the vertical direction. The number of layers in the other
two direction being 2N and 3N (see Fig. 6.2). The plate meshes are induced by the
fluid meshes. We also include more accurate values computed by extrapolating those
obtained with the most refined meshes. The obtained results compare perfectly well
with those in [16, 45, 55].

Figure 6.2: Mesh on the fluid for N=4.
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Table 6.1: Lowest vibration frequencies of a steel plate in contact with water.

Mode N =14 N=5 N =6 N=T7 “exact”
w1 745.5411  744.6309  744.1355  743.8364  743.002848
Wo 1126.6920 1123.8563 1122.3137 1121.3828 1118.786303
ws  1354.1576 1351.3917 1349.8881 1348.9811 1346.471972

Table 6.2 shows the results obtained for the lowest-frequency vibration mode for
plates of different thickness. To allow for comparison we scale the frequencies, like
in Chapter 5 section 3. Note that the convergence behavior does not depend on the
plate thickness.

Table 6.2: Scaled lowest vibration frequency for plates of different thickness coupled
with fluid.

Thickness N=4 N=5 N=6 N=T7 ‘“exact”
0.5 745.54 744.63 T744.13 743.83 743.0028
0.05 747.51 746.63 T746.15 745.87 745.0697

0.005 747.53 746.65 746.18 745.89 745.0913
0.0005  747.53 746.65 746.18 745.89 745.0915

Figures 6.3 and 6.4 show the deformed plate and the fluid pressure field for the
two first modes in Table 6.1.

6.4 Shells

In this section we present numerical results corresponding to the solution of
problem SPy, in the case of circular cylindrical shells filled with fluid. First, to
validate our code, we compare the results with those in [63]. As a second test, to
show the clear advantage of using a 2D model for the structure, we apply our method
to a problem considered in [17].

By using cylindrical coordinates, we are led to a reference domain 2 = [0, 27| x
[0, H], with H being the height of the cylindrical shell. We have used uniform meshes
of rectangles with 2V72 and 2¥*! element edges on each side of ), respectively (see
Fig. 6.7). For a given mesh (i.e., a fixed N), we denote by d.o.f. its total number
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Figure 6.3: Vibration mode of frequency w;. Deformed plate and fluid pressure.

05

0.4

Figure 6.4: Vibration mode of frequency wy. Deformed plate and fluid pressure.

of degrees of freedom. We have used three meshes in both experiments, those corre-
sponding to N = 3 (4956 d.o.f.), N =4 (11168 d.o.f.), and N =5 (21100 d.o.f.).

In the first case, we have considered a clamped circular cylindrical thin shell
completely filled with a compressible fluid (see Figure 6.6). The dimensions of the
shell are radius 0.1 m, height 0.3 m, and thickness 0.002m. The physical properties
of the materials, which correspond to aluminum and water, are the following:
density of the shell: p, = 2700kg/m?,

Young modulus: E = 69 x 10° Pa,
Poisson coefficient: v = 0.3,

density of the fluid: p, = 1000 kg/m?,
sound speed: ¢ = 1483 m/s.

correction factor: k = 5/6.



Capitulo 6. Computation of the vibration modes of plates and shells coupled with
124 a fluid

0.5

0.4

0.3

0.2

01

-0.1

-0.2

-0.3

-0.4

-05

Figure 6.5: Vibration mode of frequency wy. Deformed plate and fluid pressure.
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Figure 6.6: Cylinder filled with fluid.

Table 6.3 shows the computed lowest vibration frequencies. They are ordered
according to their circumferential and axial mode numbers n and m, respectively
(see Figures 6.8 and 6.9). This table also includes “exact” values of the vibration
frequencies obtained by extrapolating the frequencies computed with these meshes.
In the last column, we include the results reported in [63], which are obtained with
an analytical method based on a finite Fourier series expansion. Note that in all
cases the difference between the “exact” values and those in [63] are smaller than
3.0%.

It can be seen from Table 6.3 that the method appears locking-free for the
computation of vibration modes with low circumferential number (n = 0 and n = 1).
Instead, for larger circumferential numbers (n = 2, n = 3, etc.), the computed values
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Figure 6.7: Used meshes for N=3.

n=1 n=2

m=1 m=2

Figure 6.9: Axial modes.

of the vibration frequencies are close to the exact ones only for highly refined meshes.
This suggests that the method locks for circumferential numbers greater than 1 in
this case. This observation agrees with the results reported in [58] for a cylindrical
shell in vacuum.

For the second test, we have considered a moderately thick circular cylinder
clamped by both ends and filled with fluid. We have used the same material prop-
erties as in the example of the plate from the previous section; i.e., a steel structure
filled with water. The height of the cylinder is 3.5m, its inner diameter length is
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Table 6.3: Vibration frequencies for a thin cylindrical shell filled with fluid.

Mode N=3 N=4 N=5 “exact” [63]
n=1m=1 1020.3491 1013.3759 1010.1519 1004.4146433 1007.5
n=1m=2 1727.6673 1713.7354 1707.3111 1695.9488040 1699.5
n=2,m=1 841.9886 792.0624 768.7160  726.1533379  728.6
n=2,m=2 1539.8293 1499.4937 1481.1173 1449.6221483 1453.9
n=3, m=1 956.2804 793.6864 712.6670 539.6201194  553.0
n=3,m=2 1433.4752 1310.1966 1253.4812 1153.8148361 1156.2
n=4,m=1 1337.5487 1023.6297 863.8526 502.6526781  516.8
n=4,m=2 1631.5230 1355.9940 1226.7993 989.8001371  985.5
n=295 m=1 1935.2604 1425.5616 1176.4975 668.9915372 644.0
n=295m=2 2133.8595 1644.8755 1415.2789 994.6122312 974.5

2.0m, and its thickness 0.1 m.

Table 6.4 shows the lowest vibration frequencies computed with the method
described in this paper. We have used the same meshes as in the previous example.
We denote by w’ and w} the shell and fluid mode, respectively. We also include the
“exact” values of the vibration frequencies obtained by extrapolating the computed
frequencies. In the last column we include the discrepancy (in %) between the values
computed on the finest mesh and the “exact” values. Let us remark that w? is a shell
mode with circumferential number n = 2; this is the reason why the discrepancy is
larger for this mode.

Table 6.4: Vibration frequencies for a moderately thick cylindrical shell filled with
fluid.

mode N =3 N =14 N =5 “exact” discrepancy
w} 1162.5606 1160.2396 1159.1665 1157.2567655 0.165%
wj% 2288.0000 2270.9296 2263.1405 2249.6966024 0.597%
wl o 1213.3284 1204.3192 1200.1554 1192.8062219 0.616%
w?  1014.5626  948.2604  916.9248  858.3380240 6.825%

To allow for comparison, we reproduce in Table 6.5 some results reported in [17].
In this reference, the same problem has been solved, but considering the structure
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as a three-dimensional elastic solid. The total numbers of d.o.f. used in each mesh
are also given in the table. Let us recall that the corresponding numbers of d.o.f.
of the meshes in Table 6.4 are 4956, 11168, and 21100, respectively. The impressive
advantage of using the present 2D model can be clearly observed.

Table 6.5: Vibration frequencies reported in [17].

mode Mesh 1 (8544 d.o.f.) Mesh 2 (57720 d.o.f.) Mesh3 (183840 d.o.f.)

w} 1188.4430 1166.6490 1158.6870
wy 2348.5520 2281.9990 2255.3540
w; 1311.8430 1237.6660 1219.2640
w? 1701.5000 1153.6710 1009.3770

Finally, Figures 6.10 and 6.11 show the deformed shell and the fluid pressure
field for the two lowest-frequency vibration modes in Table 6.4.

-1
15 -15

Figure 6.10: Vibration mode of frequency w!. Deformed shell and fluid pressure.
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Figure 6.11: Vibration mode of frequency w}. Deformed shell and fluid pressure.
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