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Abstract

The goal of this thesis is to develop, analyze, and implement new mixed finite element methods for
coupled and decoupled problems that arise in the context of fluid mechanics. In particular, we focus
on models describing the behavior of a fluid through porous media.

Firstly, an a priori error analysis of a fully-mixed finite element method based on Banach spaces for
a nonlinear coupled problem arising from the interaction between the concentration and temperature
of a solute immersed in a fluid moving through a porous medium is developed. The model consists of
the coupling of the stationary Brinkman-Forchheimer equations with a double diffusion phenomenon.
For the mathematical analysis, a nonlinear mixed formulation for the Brinkman-Forchheimer equation
is proposed, where in addition to the velocity, the velocity gradient and the pseudo-stress tensor are
introduced as new unknowns. In turn, a dual-mixed formulation for the double diffusion equations is
adopted using temperature/concentration gradients and Bernoulli-type vectors as additional unknowns.
The solvability of this formulation is established by combining fixed-point arguments, classical results
on nonlinear monotone operators, Babuška-Brezzi’s theory in Banach spaces, assumptions of sufficiently
small data, and Banach’s fixed-point theorem. In particular, Raviart-Thomas spaces of order k ≥ 0

are used to approximate the pseudo-stress tensor and Bernoulli vectors, and piecewise discontinuous
polynomials of degree k for the velocity, temperature, concentration fields, and their corresponding
gradients.

Now, an a posteriori error and computational adaptivity analysis is performed for the fully-mixed
variational formulation developed for the coupling of Brinkman–Forchheimer and double-diffusion equa-
tions. Here, a reliable and efficient residual-based a posteriori error estimator is derived. The reliability
analysis of the proposed estimator is mainly based on the strong monotonicity and inf-sup conditions of
the operators involved, along with an appropriate assumption on the data, a stable Helmholtz decom-
position in non-standard Banach spaces, and local approximation properties of the Raviart-Thomas
and Clément interpolants. In turn, the efficiency estimation is a consequence of standard arguments
like inverse inequalities, bubble function-based localization technique, and other results available in
the literature.

Finally, a mixed finite element method for the nonlinear problem given by the stationary convec-
tive Brinkman–Forchheimer equations with variable porosity is studied. Here, the pseudostress and the
gradient of the porosity times the velocity are incorporated as additional unknowns. As a consequence,
a three-field mixed variational formulation based on Banach spaces is obtained, where the aforemen-
tioned variables are the main unknowns of the system along with the velocity. The resulting mixed
scheme is then equivalently written as a fixed-point equation, so that Banach’s well-known theorem,
combined with classical results on nonlinear monotone operators and a hypothesis of sufficiently small
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data, is applied to demonstrate the unique solvability of the continuous and discrete systems.

For all the problems described above, several numerical experiments are provided that illustrate the
good performance of the proposed methods, and that confirm the theoretical results of convergence as
well as the reliability and efficiency of the respective a posteriori error estimators.



Resumen

El objetivo principal de esta tesis es desarrollar, analizar e implementar nuevos métodos de elementos
finitos mixtos para problemas acoplados y no acoplados que surgen en el contexto de la mecánica de
fluidos. En particular, nos enfocamos en modelos que describen el comportamiento de un fluido a
través de medios porosos.

En primer lugar, se desarrolla un análisis de error a priori de un método finitos de elementos com-
pletamente mixto basado en espacios de Banach para un problema acoplado no lineal que surge de la
interacción entre la concentración y la temperatura de un soluto que está inmerso en un fluido que
se mueve a través de un medio poroso. El modelo consiste en el acoplamiento de las ecuaciones esta-
cionarias de Brinkman–Forchheimer con un fenómeno de doble difusión. Para el análisis matemático,
se propone una formulación mixta no lineal para la ecuación de Brinkman–Forchheimer, en donde
además de la velocidad se introducen como nuevas incógnitas el gradiente de velocidad y el tensor
de pseudo-esfuerzo. A su vez, se adopta una formulación dual-mixta para las ecuaciones de doble
difusión haciendo uso de los gradientes de temperatura/concentración y vectores tipo Bernoulli como
incógnitas adicionales. La solubilidad de dicha formulación se establece combinando argumentos de
punto fijo, resultados clásicos sobre operadores monótonos no lineales, la teoría de Babuška-Brezzi en
espacios de Banach, supuestos de datos suficientemente pequeños y el teorema de punto fijo de Banach.
En particular, empleamos espacios de Raviart-Thomas de orden k ≥ 0 para aproximar el tensor de
pseudo-esfuerzo y los vectores de Bernoulli, y polinomios discontinuos por partes de grado k para el
campo de velocidad, temperatura, concentración y sus correspondientes gradientes.

Luego, se realiza un análisis de error a posteriori y de adaptabilidad computacional para la for-
mulación variacional completamente mixta desarrollada para el acoplamiento de las ecuaciones de
Brinkman–Forchheimer y de doble difusión. Aquí, se deriva un estimador de error a posteriori basado
en residuos, confiable y eficiente. El análisis de confiabilidad del estimador propuesto se basa princi-
palmente en el uso de las condiciones de Monotonía fuerte e inf-sup de los operadores involucrados,
junto con un supuesto adecuado sobre los datos, una descomposición de Helmholtz estable en espacios
de Banach no estándar y propiedades de aproximación local de los interpolantes de Raviart-Thomas
y Clément. A su vez, la estimación de eficiencia es consecuencia de argumentos estándares como las
desigualdades inversas, la técnica de localización basada en funciones de burbuja, y otros resultados
disponibles en la literatura.

Finalmente, se estudia un método de elementos finitos mixtos para el problema no lineal dado
por las ecuaciones estacionarias de Brinkman–Forchheimer convectivas con porosidad variable. Aquí,
incorporamos el pseudo-esfuerzo y el gradiente de la porosidad por la velocidad, como incógnitas
adicionales. Como consecuencia, obtenemos una formulación variacional mixta basada en espacios de
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Banach de tres campos, donde las variables mencionadas son las incógnitas principales del sistema
junto con la velocidad. El esquema mixto resultante se escribe entonces de forma equivalente como
una ecuación de punto fijo, de modo que el conocido teorema de Banach, combinado con resultados
clásicos sobre operadores no lineales monótonos y una hipótesis de datos suficientemente pequeños, se
aplican para demostrar la solubilidad de los sistemas continuo y discreto.

Para todos los problemas descritos anteriormente se proporcionan varios experimentos numéricos
que ilustran el buen desempeño de los métodos propuestos, y que confirman los resultados teóricos de
convergencia así como de confiabilidad y eficiencia de los estimadores de error a posteriori respectivos.
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Introduction

The exploration and modeling of natural phenomena in science and engineering through the principles
of continuum mechanics, along with the pursuit of developing sophisticated numerical methods for
approximating solutions to complex systems of partial differential equations (PDE’s), remain at the
forefront of scientific research in the field of numerical analysis. This field, rich in challenges and
opportunities, continues to captivate a significant portion of the global scientific community. An area
of particular interest is the study of fluid flow in porous media, which has a wide range of applications,
including processes arising in environmental engineering, oil extraction, the functioning of natural
groundwater systems in karst aquifers, chemical engineering, and the design of industrial filtration
systems, among others.

In general, the PDE’s that describe these models are often too complex to be solved analytically.
Therefore, it is essential to employ numerical methods to obtain approximate solutions that provide
a better understanding of these phenomena. Numerical analysis is crucial in this context, as it facili-
tates the construction of approximations, the identification of solvability conditions for the systems of
equations, and the evaluation of the stability and convergence properties of the applied methods.

Among the available numerical techniques, finite element methods have emerged as efficient tools
for obtaining solutions in finite-dimensional spaces and conducting precise computational simulations.
In particular, mixed finite element methods are especially suitable for directly calculating variables of
physical interest, which is essential in the analysis of various equations, such as those of Navier-Stokes,
Stokes/Darcy, Navier-Stokes/Darcy, Navier-Stokes/Darcy-Forchheimer, and Brinkman-Forchheimer
(see, e.g., [5, 16, 21, 39, 68, 74]).

Additionally, other mathematical techniques, such as fixed-point strategies and augmented mixed
finite element methods (see, e.g., [15, 30, 18, 44, 64]), allow for the development and analysis of
new variational formulations and numerical schemes that facilitate the solution of a wide variety of
problems. However, it is well-known that the inclusion of additional terms in the formulation can
increase complexity and computational cost. To address this difficulty, there has been a growing
development of mixed finite element methods based on Banach spaces, designed to solve a broad range
of nonlinear problems, both simple and coupled, in continuum mechanics (see, e.g., [9, 14, 25, 26, 34,
36, 42]).

According to the above discussion, the purpose of this thesis is to contribute to the development of
new mixed finite element methods within a Banach spaces framework, for nonlinear problems arising in
fluid mechanics. More precisely, we are interested in models describing the behavior of a fluid-saturated
porous medium, and hence our main goals can be described as follows:
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• Development of appropriate variational formulations, focusing on mixed or fully-mixed approa-
ches, with a special emphasis on the Brinkman–Forchheimer problem and coupled models in fluid
mechanics.

• Establishing the existence and uniqueness of continuous weak solutions using fixed-point strate-
gies, classical results on nonlinear monotone operators, and results for variational problems in
Banach spaces.

• Deriving the corresponding Galerkin scheme and employing appropiate finite element spaces, in
order to respect the mathematical and physical structure of the underlying problem.

• Analysing the solvability of the Galerkin scheme and establish the corresponding stability and
convergence results.

• Deriving a posteriori error estimators to establish adaptive methods that improve the precision
of numerical approximations, particularly in the presence of singularities or high gradients in the
solution.

• Validating the theoretical results through rigorous testing and illustrative numerical simulations,
including both academic and application-oriented examples.

Outline of the thesis

This thesis is organised as follows. In Chapter 1, we propose and analyze a new mixed finite el-
ement method for the nonlinear problem given by the coupling of the steady Brinkman–Forchheimer
and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach
introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the tempera-
ture/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain
a fully mixed variational formulation presenting a Banach spaces framework in each set of equations.
In this way, and differently from the techniques previously developed for this and related coupled
problems, no augmentation procedure needs to be incorporated now into the formulation nor into
the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-
point equation, so that the well-known Banach theorem, combined with classical results on nonlinear
monotone operators and Babuška-Brezzi’s theory in Banach spaces, are applied to prove the unique
solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the
required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. The
contents of this chapter gave rise to the following paper:

[24] S. Caucao, G.N. Gatica, and J.P. Ortega, A fully-mixed formulation in Banach spaces
for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. ESAIM
Math. Model. Numer. Anal., vol. 55, 6, pp. 2725–2758, (2021).

In Chapter 2, we develop an a posteriori error analysis for the model problem studied in Chapter 1.
More precisely, we derive a reliable and efficient residual-based a posteriori error estimator for the 2D
and 3D versions of the associated mixed finite element scheme. For the reliability analysis, and due to
the nonlinear nature of the problem, we employ the strong monotonicity of the operator involving the
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Forchheimer term, in addition to inf-sup conditions of some of the resulting bilinear forms, along with
a stable Helmholtz decomposition in nonstandard Banach spaces, which, in turn, having been recently
derived, constitutes another distinctive feature of the work, and local approximation properties of the
Raviart–Thomas and Clément interpolants. On the other hand, inverse inequalities, the localization
technique through bubble functions, and known results from previous works, are the main tools yielding
the efficiency estimate. The contents of this chapter originally appeared in the following paper:

[25] S. Caucao, G.N. Gatica, and J.P. Ortega, A posteriori error analysis of a Banach
spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous
medium. Computational Geosciences, vol. 27, 2, pp. 289–316, (2023).

Finally, in Chapter 3, we present and analyze a new mixed finite element method for the nonlinear
problem given by the stationary convective Brinkman–Forchheimer equations with varying porosity.
Our approach is based on the introduction of the pseudostress and the gradient of the porosity times
the velocity, as further unknowns. As a consequence, we obtain a mixed variational formulation
within a Banach spaces framework, with the velocity and the aforementioned tensors as the main
unknowns. The pressure, the velocity gradient, the vorticity, and the shear stress can be computed
afterwards via postprocessing formulae. A fixed-point strategy, along with monotone operators theory
and the classical Banach theorem, are employed to prove the well-posedness of the continuous and
discrete systems. Specific finite element subspaces satisfying the required discrete stability condition
are defined, and optimal a priori error estimates are derived. This chapter is constituted by the
following paper:

[26] S. Caucao, G.N. Gatica, and J.P. Ortega, A three-field mixed finite element method
for the convective Brinkman–Forchheimer problem with varying porosity. Journal of Com-
putational and Applied Mathematics, vol 451, Art. Num. 116090, (2024).

Throughout the three chapters of this thesis, the theoretical results such as: orders of convergence,
reliability and efficiency of the corresponding residual-based a posteriori error estimator, are illustrated
by several numerical examples, which also highlight the good performance of the proposed discrete
schemes and the associated adaptive algorithms. The computational implementations have been carried
out using the free finite element software FreeFem++ and the illustrator ParaView.

Preliminary notations

Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded domain with polyhedral boundary Γ, and let n be the outward
unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev
spaces Ws,p(Ω), with s ∈ R and p > 1, whose corresponding norms, either for the scalar, vectorial,
or tensorial case, are denoted by ∥ · ∥0,p;Ω and ∥ · ∥s,p;Ω, respectively. In particular, given a non-
negative integer m, Wm,2(Ω) is also denoted by Hm(Ω), and the notations of its norm and seminorm
are simplified to ∥ · ∥m,Ω and | · |m,Ω, respectively. By M and M we will denote the corresponding
vectorial and tensorial counterparts of the generic scalar functional space M, whereas M′ denotes its

dual space, whose norm is defined by ∥f∥M′ := sup
0̸=v∈M

|f(v)|
∥v∥M

, and ∥ · ∥, with no subscripts, will stand
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for the natural norm in any product functional space. In turn, for any vector fields v = (vi)i=1,n and
w = (wi)i=1,n, we set the gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,n

, div(v) :=
n∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,n .

Furthermore, for any tensor fields τ = (τij)i,j=1,n and ζ = (ζij)i,j=1,n, we let div(τ ) be the divergence
operator div acting along the rows of τ , and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑
i=1

τii, τ : ζ :=
n∑

i,j=1

τij ζij , and τ d := τ − 1

n
tr(τ ) I , (1)

where I is the identity matrix in Rn×n. In what follows, when no confusion arises, | · | will denote the
Euclidean norm in Rn or Rn×n. Additionally, given t ∈ (1,+∞), we introduce the Banach space

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
,

equipped with the usual norm

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) ,

and recall that, proceeding as in [58, eq. (1.43), Section 1.3.4] (see also [17, Section 4.1], [42, Section

3.1], and [66, eq. (2.11), Section 2.1]) one can prove that for each t ∈

{
(1,+∞) if n = 2 ,

[6/5,+∞) if n = 3 ,
there

holds the integration by parts formula

⟨τν,v⟩Γ :=

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (2)

where ⟨·, ·⟩Γ stands here for the duality pairing between H−1/2(Γ) and H1/2(Γ).



Introducción

La exploración y modelización de fenómenos naturales en ciencia e ingeniería a través de los principios
de la mecánica de medios continuos y la búsqueda del desarrollo de métodos numéricos sofisticados para
la aproximación de soluciones a sistemas complejos de ecuaciones diferenciales parciales (EDP’s) siguen
estando a la vanguardia de la investigación científica en el campo del análisis numérico. Este campo,
rico en retos y oportunidades, sigue cautivando a una parte significativa de la comunidad científica
mundial. Un área de especial interés es el estudio del flujo de fluidos en medios porosos, que tiene
una amplia gama de aplicaciones, incluyendo procesos que surgen en la ingeniería medioambiental, la
extracción de petróleo, el funcionamiento de los sistemas naturales de aguas subterráneas en acuíferos
kársticos, la ingeniería química y el diseño de sistemas de filtración industrial, entre otros.

En general, las EDP’s que describen estos modelos suelen ser demasiado complejas para ser resueltas
analíticamente. Por lo tanto, es fundamental emplear métodos numéricos para obtener soluciones
aproximadas que proporcionen una mejor comprensión de estos fenómenos. El análisis numérico es
crucial en este contexto, ya que facilita la construcción de aproximaciones, la identificación de las
condiciones de solvencia de los sistemas de ecuaciones y la evaluación de las propiedades de estabilidad
y convergencia de los métodos aplicados.

Entre las técnicas numéricas disponibles, los métodos de elementos finitos se han destacado como
herramientas eficientes para obtener soluciones en espacios de dimensión finita y realizar simulaciones
computacionales precisas. En particular, los métodos de elementos finitos mixtos son especialmente
adecuados para calcular directamente variables de interés físico, lo que resulta fundamental en el
análisis de diversas ecuaciones, como las de Navier-Stokes, Stokes/Darcy, Navier-Stokes/Darcy, Navier-
Stokes/Darcy-Forchheimer, y Brinkman-Forchheimer (véase, por ejemplo [5, 16, 21, 39, 68, 74]).

Además, otras técnicas matemáticas, como las estrategias de punto fijo y los métodos de elementos
finitos mixtos aumentados (véase, por ejemplo, [15, 30, 18, 44, 64]), permiten desarrollar y analizar
nuevas formulaciones variacionales y esquemas numéricos, que facilitan la solución de una amplia va-
riedad de problemas. Sin embargo, es conocido que la inclusión de términos adicionales en la for-
mulación puede aumentar la complejidad y el costo computacional. Para abordar esta dificultad,
recientemente ha habido un desarrollo creciente de métodos de elementos finitos mixtos basados en
espacios de Banach, diseñados para resolver una amplia gama de problemas no lineales, tanto simples
como acoplados, en mecánica del continuo (véase, por ejemplo [9, 14, 25, 26, 34, 36, 42]).

De acuerdo con la discusión anterior, el propósito de esta tesis es contribuir al desarrollo de nuevos
métodos de elementos finitos mixtos en un marco de espacios de Banach, para problemas no lineales que
surgen en mecánica de fluidos. Más concretamente, estamos interesados en los modelos que describen
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el comportamiento de un medio poroso saturado de fluido, y por lo tanto nuestros objetivos principales
se pueden describir como sigue:

• Desarrollo de formulaciones variacionales apropiadas, centrándose en enfoques mixtos o total-
mente mixtos, con especial énfasis en el problema de Brinkman–Forchheimer y modelos acoplados
en mecánica de fluidos.

• Establecer la existencia y unicidad de soluciones débiles continuas utilizando estrategias de punto
fijo, resultados clásicos sobre operadores monótonos no lineales y resultados para problemas
variacionales en espacios de Banach.

• Derivar el esquema de Galerkin correspondiente y emplear espacios de elementos finitos apropi-
ados, con el fin de respetar la estructura matemática y física del problema subyacente.

• Analizar la solubilidad del esquema de Galerkin y establecer los correspondientes resultados de
estabilidad y convergencia.

• Derivar estimadores de error a posteriori para establecer métodos adaptativos que mejoren la
precisión de las aproximaciones numéricas, particularmente en presencia de singularidades o
altos gradientes en la solución.

• Validar los resultados teóricos a través de pruebas rigurosas y simulaciones numéricas ilustrativas,
que incluyen tanto ejemplos académicos como orientados a aplicaciones.

Organización de la tesis

Esta tesis está organizada de la siguiente manera. En el Capítulo 1, proponemos y analizamos
un nuevo método de elementos finitos mixtos para el problema no lineal dado por el acoplamiento
de las ecuaciones estacionarias de Brinkman–Forchheimer y doble difusión. Además de la velocidad,
la temperatura y la concentración, nuestro enfoque introduce el gradiente de velocidad, el tensor de
pseudo-esfuerzo, y un par de vectores que involucran la temperatura/concentración, su gradiente y la
velocidad, como incógnitas adicionales. Como consecuencia, obtenemos una formulación variacional
completamente mixta que presenta un marco de espacios de Banach en cada conjunto de ecuaciones. De
esta manera, y a diferencia de las técnicas desarrolladas previamente para este y problemas acoplados
relacionados, no es necesario incorporar ahora un procedimiento de aumento en la formulación ni
en el análisis de solubilidad. El esquema resultante no aumentado se escribe entonces de manera
equivalente como una ecuación de punto fijo, de modo que el conocido teorema de Banach, combinado
con resultados clásicos sobre operadores monótonos no lineales y la teoría de Babuška-Brezzi en espacios
de Banach, se aplican para demostrar la solubilidad de los sistemas continuo y discreto. Se especifican
subespacios de elementos finitos apropiados que satisfacen las condiciones inf-sup discretas requeridas,
y se derivan estimaciones de error a priori óptimas. El contenido de este capítulo dio lugar al siguiente
artículo:

[24] S. Caucao, G.N. Gatica, and J.P. Ortega, A fully-mixed formulation in Banach spaces
for the coupling of the steady Brinkman–Forchheimer and double-diffusion equations. ESAIM
Math. Model. Numer. Anal., vol. 55, 6, pp. 2725–2758, (2021).
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En el Capítulo 2, desarrollamos un análisis de error a posteriori para el problema modelo estudiado
en el Capítulo 1. Más precisamente, derivamos un estimador de error a posteriori basado en residuos
confiable y eficiente para las versiones en 2D y 3D del esquema de elementos finitos mixtos asoci-
ado. Para el análisis de confiabilidad, y debido a la naturaleza no lineal del problema, empleamos la
monotonía fuerte del operador que involucra el término de Forchheimer, además de condiciones inf-sup
de algunas de las formas bilineales resultantes, junto con una descomposición de Helmholtz estable
en espacios de Banach no estándar, lo cual, a su vez, ha sido derivado recientemente y constituye
otra característica distintiva del trabajo, y propiedades locales de aproximación de los interpolantes
de Raviart–Thomas y Clément. Por otro lado, las desigualdades inversas, la técnica de localización
a través de funciones burbuja y los resultados conocidos de trabajos previos son las herramientas
principales que permiten obtener la estimación de eficiencia. El contenido de este capítulo apareció
originalmente en el siguiente artículo:

[25] S. Caucao, G.N. Gatica, and J.P. Ortega, A posteriori error analysis of a Banach
spaces-based fully mixed FEM for double-diffusive convection in a fluid-saturated porous
medium. Computational Geosciences, vol. 27, 2, pp. 289–316, (2023).

Finalmente, en el Capítulo 3, presentamos y analizamos un nuevo método de elementos finitos
mixto para el problema no lineal dado por las ecuaciones estacionarias de Brinkman–Forchheimer con
porosidad variable. Nuestro enfoque se basa en la introducción del pseudo-esfuerzo y el gradiente de
la porosidad multiplicada por la velocidad, como incógnitas adicionales. Como consecuencia, obten-
emos una formulación variacional mixta en un marco de espacios de Banach, con la velocidad y los
tensores mencionados anteriormente como las únicas incógnitas. La presión, el gradiente de velocidad,
la vorticidad y el tensor de esfuerzo pueden calcularse posteriormente mediante fórmulas de post-
procesamiento. Se emplea una estrategia de punto fijo, junto con la teoría de operadores monótonos
y el teorema clásico de Banach, para demostrar el buen planteamiento de los sistemas continuo y dis-
creto. Se definen subespacios de elementos finitos específicos que satisfacen la condición de estabilidad
discreta requerida, y se derivan estimaciones de error a priori óptimas. Este capítulo está constituido
por el siguiente artículo:

[26] S. Caucao, G.N. Gatica, and J.P. Ortega, A three-field mixed finite element method
for the convective Brink-man–Forchheimer problem with varying porosity. Journal of Com-
putational and Applied Mathematics, vol 451, Art. Num. 116090, (2024).

A lo largo de los tres capítulos de esta tesis, los resultados teóricos, como los órdenes de convergencia,
la confiabilidad y la eficiencia del estimador de error a posteriori basado en residuos correspondiente, se
ilustran mediante varios ejemplos numéricos, que también destacan el buen rendimiento de los esquemas
discretos propuestos y los algoritmos adaptativos asociados. Las implementaciones computacionales
se han llevado a cabo utilizando el software libre de elementos finitos FreeFem++ y el visualizador
ParaView.



CHAPTER 1

A fully-mixed formulation in Banach spaces for the coupling of the
steady Brinkman–Forchheimer and double-diffusion equations

1.1 Introduction

The phenomenon in which two scalar fields, such as heat and concentration of a solute, affect the
density distribution in a fluid-saturated porous medium, referred to as double-diffusive convection, is a
challenging multiphysics problem. This model has numerous applications, among which we highlight
predicting and controlling processes arising in geophysics, oceanography, chemical engineering, and
energy technology, to name a few areas of interest. In particular, some of them include groundwater
system in karst aquifers, chemical processing, simulation of bacterial bioconvection and thermohaline
circulation problems, convective flow of carbon nanotubes, and propagation of biological fluids (see,
e.g. [2], [10], [12], [55], and [88]). In this regard, we remark that much of the research in porous
medium has been focused on the use of Darcy’s law. However, this constitutive equation becomes
unreliable to model the flow of fluids through highly porous media with Reynolds numbers greater
than one, as in the above applications. To overcome this limitation, a first alternative is to employ
the Brinkman model [11], which describes Stokes flows through a set of obstacles, and therefore can
be applied precisely to that kind of media. Another possible option is the Forchheimer law [56], which
accounts for faster flows by including a nonlinear inertial term. According to the above, the Brinkman–
Forchheimer equation (see, e.g. [36] and [38]), which combines the advantages of both models, has been
used for fast flows in highly porous media. Moreover, this fact has motivated the introduction of the
corresponding coupling with the so called double-diffusion equations (a system of advection-diffusion
equations), through convective terms and the body force.

To the authors’ knowledge, one of the first works analyzing the coupling of the incompressible
Brinkman–Forchheimer and double-diffusion equations is [72], where well-posedness and regularity
of solution for a velocity-pressure-temperature-concentration variational formulation is established by
combining the Galerkin method with a smallness data assumption. Later on, the global solvabi-
lity of the coupling of the unsteady double-diffusive convection system under homogeneous Neumann
boundary conditions and a linearized version of the Brinkman–Forchheimer equations, was introduced
and analyzed in [76]. In particular, it is proved in [76] that the global solvability in L2-spaces holds
true for the 3-dimensional case. More recently, in [82] a finite volume method was adopted to solve the
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coupling of the time-dependent Brinkman–Forchheimer and double-diffusion equations. The focus of
this work was on the validity of the Brinkman–Forchheimer model when various combinations of the
thermal Rayleigh number, permeability ratio, inclination angle, thermal conductivity and buoyancy
ratio are considered. This study allowed the evaluation of the control parameters effect on the flow
structure, and heat and mass transfer. Meanwhile, an augmented fully-mixed formulation based on the
introduction of the fluid pseudostress tensor, and the pseudoheat and pseudodiffusive vectors (besides
the velocity, temperature and concentration fields) was analyzed in [30]. In there, the well-posedness
of the problem is achieved by combining a fixed-point strategy, the Lax–Milgram and Banach–Nečas–
Babuška theorems, and the well-known Schauder and Banach fixed-point theorems. The corresponding
numerical scheme is based on Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress
tensor, as well as the pseudoheat and pseudodiffusive vectors, whereas continuous piecewise polynomials
of degree k+1 are employed for the velocity, and piecewise polynomials of degree k for the temperature
and concentration fields. Optimal a priori error estimates were also derived.

We point out that the augmented formulation introduced in [30], and the consequent use of classi-
cal Raviart–Thomas spaces and continuous piecewise polynomials to define the discrete scheme, are
originated by the wish of performing the respective solvability analysis of the Brinkman–Forchheimer
equations within a Hilbertian framework. However, it is well known that the introduction of additional
terms into the formulation, while having some advantages, also leads to much more expensive schemes
in terms of complexity and computational implementation. In order to overcome this, in recent years
there has arisen an increasing development on Banach spaces-based mixed finite element methods to
solve a wide family of single and coupled nonlinear problems in continuum mechanics (see, e.g. [8],
[9], [14], [17], [34], [36], [42], and [43]). This kind of procedures shows two advantages at least: no
augmentation is required, and the spaces to which the unknowns belong are the natural ones arising
from the application of the Cauchy–Schwarz and Hölder inequalities to the terms resulting from the
testing and integration by parts of the equations of the model. As a consequence, simpler and closer
to the original physical model formulations are obtained.

According to the above bibliographic discussion, the goal of the present chapter is to continue
extending the applicability of the aforementioned Banach spaces framework by proposing now a new
fully-mixed formulation, without any augmentation procedure, for the coupled problem studied in [30]
and [72]. To this end, we proceed as in [42] and introduce the velocity gradient and pseudostress tensors
as auxiliary unknowns, and subsequently eliminate the pressure unknown using the incompressibility
condition. In turn, we follow [42, 43] and adopt a dual-mixed formulation for the double-difussion
equations making use of the temperature/concentration gradients and Bernoulli-type vectors as further
unknowns. Then, similarly to [42] and [44], we combine a fixed-point argument, classical results
on nonlinear monotone operators, Babuška-Brezzi’s theory in Banach spaces, sufficiently small data
assumptions, and the well known Banach fixed-point theorem, to establish existence and uniqueness
of solution of both the continuous and discrete formulations. In this regard, and since the formulation
for the double-diffusion equations is similar to the ones employed in [42, 43], our present analysis
certainly makes use of the corresponding results available there. In addition, applying an ad-hoc
Strang-type lemma in Banach spaces, we are able to derive the corresponding a priori error estimates.
Next, employing Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress tensor and
Bernoulli vectors, and discontinuous piecewise polynomials of degree k for the velocity, temperature,
concentration and its corresponding gradients fields, we prove that the method is convergent with
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optimal rate.

The rest of the chapter is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the work. In Section 1.2 we introduce the
model problem and derive the fully-mixed variational formulation in Banach spaces. Next, in Section
1.3 we establish the well-posedness of this continuous scheme by means of a fixed-point strategy and
Banach’s fixed-point theorem. The corresponding Galerkin system is introduced and analyzed in
Section 1.4, where the discrete analogue of the theory used in the continuous case is employed to prove
existence and uniqueness of solution. In Section 1.5, an ad-hoc Strang-type lemma in Banach spaces
is utilized to derive the corresponding a priori error estimate and the consequent rates of convergence.
Finally, the performance of the method is illustrated in Section 1.6 with several numerical examples in
2D and 3D, which confirm the aforementioned rates.

1.2 The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation.

1.2.1 The model problem

In what follows we consider the model introduced in [72] (see also [30, Section 2]), which is given
by a steady double-diffusive convection system in a fluid saturated porous medium. More precisely,
we focus on solving the coupling of the incompressible Brinkman–Forchheimer and double-diffusion
equations, which reduces to finding a velocity field u, a pressure field p, a temperature field ϕ1 and a
concentration field ϕ2, the latter two defining a vector ϕ := (ϕ1, ϕ2), such that

−ν∆u+K−1u+ F |u|u+∇p = f(ϕ) in Ω,

div(u) = 0 in Ω,

−div(Q1∇ϕ1) + R1 u · ∇ϕ1 = 0 in Ω,

−div(Q2∇ϕ2) + R2 u · ∇ϕ2 = 0 in Ω,

(1.1)

with parameters ν := Da µ̃/µ and F := ϑ Da R1, where Da stands for the Darcy number, µ̃ the viscosity,
µ the effective viscosity, R1 the thermal Rayleigh number, R2 the solute Rayleigh number, and ϑ is a
real number that can be calculated experimentally. In addition, the external force f is defined by

f(ϕ) := − (ϕ1 − ϕ1,r)g +
1

ϱ
(ϕ2 − ϕ2,r)g, (1.2)

with g representing the potential type gravitational acceleration, ϕ1,r the reference temperature, ϕ2,r
the reference concentration of a solute, and ϱ is another parameter experimentally valued that can
be assumed to be ≥ 1 (see [72, Section 2] for details). The spaces to which ϕ1,r and ϕ2,r belong will
be specified later on. In turn, the permeability, and the thermal diffusion and concentration diffusion
tensors, are denoted by K,Q1 and Q2, respectively, all them belonging to L∞(Ω). Moreover, the
inverse of K and tensors Q1,Q2, are uniformly positive definite tensors, which means that there exist
positive constants CK, CQ1 , and CQ2 , such that

v ·K−1(x)v ≥ CK |v|2 and v ·Qj(x)v ≥ CQj |v|2 ∀v ∈ Rn, ∀x ∈ Ω, j ∈ {1, 2}. (1.3)
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Equations (1.1) are complemented with Dirichlet boundary conditions for the velocity, the temperature,
and the concentration fields, that is

u = uD, ϕ1 = ϕ1,D, and ϕ2 = ϕ2,D on Γ, (1.4)

with given data uD ∈ H1/2(Γ), ϕ1,D ∈ H1/2(Γ) and ϕ2,D ∈ H1/2(Γ). Owing to the incompressibility
of the fluid and the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility
condition ∫

Γ
uD · n = 0. (1.5)

In addition, due to the first equation of (1.1), and in order to guarantee uniqueness of the pressure,
this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a new fully-mixed formulation for (1.1)–(1.5), and unlike [30], we do not
employ any augmentation procedure and simply proceed as in [42] (see also [43]). More precisely, we
now introduce as further unknowns the velocity gradient t, the pseudostress tensor σ, the tempera-
ture/concentration gradient t̃j , and suitable auxiliary variables ρj depending on t̃j , u, and ϕj , all of
which are defined, respectively, by

t := ∇u, σ := ν t− p I, t̃j := ∇ϕj ,

ρj := Qj t̃j −
1

2
Rj ϕj u, ∀ j ∈ {1, 2}, in Ω .

(1.6)

In this way, applying the matrix trace to the tensors t and σ, and utilizing the incompressibility
condition div(u) = 0 in Ω, one arrives at tr(t) = 0 in Ω and

p = − 1

n
tr(σ) in Ω. (1.7)

Hence, replacing back (1.7) in the second equation of (1.6), we find that the model problem (1.1)–(1.4)
can be rewritten, equivalently, as follows: Find (u, t,σ) and (ϕj , t̃j ,ρj), j ∈ {1, 2}, in suitable spaces
to be indicated below, such that

∇u = t in Ω,

ν t = σd in Ω,

K−1u+ F |u|u− div(σ) = f(ϕ) in Ω,∫
Ω
tr(σ) = 0,

∇ϕj = t̃j in Ω,

Qj t̃j −
1

2
Rj ϕj u = ρj in Ω,

1

2
Rj u · t̃j − div(ρj) = 0 in Ω,

u = uD and ϕ = ϕD on Γ,

(1.8)
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where the Dirichlet datum for ϕ is certainly given by ϕD := (ϕ1,D, ϕ2,D). At this point we stress that,
as suggested by (1.7), p is eliminated from the present formulation and computed afterwards in terms
of σ by using that identity. This fact justifies the fourth equation in (1.8), which aims to ensure that
the resulting p does belong to L2

0(Ω).

1.2.2 The fully-mixed variational formulation

In this section we follow [42] and [43] to derive a fully-mixed formulation in a Banach spaces frame-
work for the coupled system given by (1.8). To this end, we first multiply the third equation of (1.8)
by a test function v associated with the unknown u, which formally yields∫

Ω
K−1 u · v + F

∫
Ω
|u|u · v −

∫
Ω
v · div(σ) =

∫
Ω
f(ϕ) · v . (1.9)

Then, applying the Hölder and Cauchy-Schwarz inequalities, we find that the Forchheimer term, given
by the second expression in (1.9), can be bounded as∣∣∣∣∫

Ω
|u|u · v

∣∣∣∣ ≤ ∥u∥0,2ℓ;Ω ∥u∥0,2ℓ;Ω ∥v∥0,j;Ω ,

where ℓ, j ∈ (1,+∞) are conjugate to each other, that is 1
ℓ+

1
j = 1. In this way, while we could continue

our analysis with arbitrary values of ℓ and j, and hence with u and v belonging to the Lebesgue spaces
L2ℓ(Ω) and Lj(Ω), respectively, we prefer for simplicity to make the latter to coincide, that is such
that 2ℓ = j, which gives ℓ = 3

2 and j = 3, so that both u and v belong to L3(Ω). Consequently, the
fact that L3(Ω) is certainly contained in L2(Ω) and the uniform boundedness of K guarantee that the
first term in (1.9) is bounded as well, whereas for the third and fourth ones to be well-defined we need
to impose that div(σ) and f(ϕ) lie in L3/2(Ω).

Now, given t ∈ (1,+∞), we introduce the Banach space

H(divt; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lt(Ω)

}
, (1.10)

which is endowed with the natural norm

∥τ∥divt;Ω := ∥τ∥0,Ω + ∥div(τ )∥0,t;Ω ∀ τ ∈ H(divt; Ω) .

Then, proceeding as in [58, eq. (1.43), Section 1.3.4] (see also [17, Section 4.1], [42, Section 3.1]), one
can prove that for each t ≥ 2n

n+2 there holds

⟨τn,v⟩Γ =

∫
Ω

{
τ : ∇v + v · div(τ )

}
∀ (τ ,v) ∈ H(divt; Ω)×H1(Ω) , (1.11)

which says, in particular, that τn ∈ H−1/2(Γ) for all τ ∈ H(divt; Ω). In turn, we stress that the fact
that L2(Ω) is continuously embedded into Lt(Ω) for each t ∈ (1, 2) implies that for this range of t there
holds H(div; Ω) ⊂ H(divt; Ω).

Next, if we look originally for t in L2(Ω), then from the first equation of (1.8) we would have that
u ∈ H1(Ω), which is embedded in L3(Ω), so that applying (1.11) to τ ∈ H(div3/2; Ω) and u, and
employing the Dirichlet boundary condition on u, we obtain from that equation that∫

Ω
τ : t+

∫
Ω
u · div(τ ) = ⟨τn,uD⟩Γ . (1.12)
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Actually, because of the incompressibility condition satisfied by u (cf. second equation of (1.1)), which
is reconfirmed by the second equation of (1.8), t must be sought in L2

tr(Ω), where

L2
tr(Ω) :=

{
r ∈ L2(Ω) : tr(r) = 0 in Ω

}
.

Moreover, testing the aforementioned last identity against r ∈ L2
tr(Ω), which requires σ ∈ L2(Ω), thus

yielding σ ∈ H(div3/2; Ω) as well (recall that div(σ) must lie in L3/2(Ω)), we arrive at

ν

∫
Ω
t : r−

∫
Ω
σd : r = 0 . (1.13)

According to the previous analysis, the weak formulation of the Brinkman-Forchheimer part of the
coupled problem (1.8) reduces at first instance to: Find (u, t,σ) ∈ L3(Ω)×L2

tr(Ω)×H(div3/2; Ω) such
that (1.9), (1.12), and (1.13) hold for all (v, r, τ ) ∈ L3(Ω)× L2

tr(Ω)×H(div3/2; Ω).

However, similarly as in [42] (see also [17, 43]), we consider the decomposition

H(div3/2; Ω) = H0(div3/2; Ω)⊕ RI ,

where
H0(div3/2; Ω) :=

{
τ ∈ H(div3/2; Ω) :

∫
Ω
tr(τ ) = 0

}
and RI is a topological supplement for H0(div3/2; Ω). Then, it is clear from the fourth equation of (1.8)
that actually σ ∈ H0(div3/2; Ω). In addition, it is readily seen, using the compatibility condition (1.5),
that both sides of (1.12) explicitly vanish when τ ∈ RI, and hence testing against τ ∈ H(div3/2; Ω) is
equivalent to doing it against τ ∈ H0(div3/2; Ω). Therefore, denoting from now on

u⃗ := (u, t), w⃗ := (w, s), v⃗ := (v, r) ∈ L3(Ω)× L2
tr(Ω) ,

and suitably grouping the equations (1.9), (1.12), and (1.13), the aforementioned weak formulation
reads: Find (u⃗,σ) ∈

(
L3(Ω)× L2

tr(Ω)
)
×H0(div3/2; Ω) such that

[a(u⃗), v⃗] + [b(v⃗),σ] = [Fϕ, v⃗] ∀ v⃗ ∈ L3(Ω)× L2
tr(Ω),

[b(u⃗), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω),
(1.14)

where the nonlinear operator a :
(
L3(Ω) × L2

tr(Ω)
)
→
(
L3(Ω) × L2

tr(Ω)
)′, the linear and bounded

operator b :
(
L3(Ω)× L2

tr(Ω)
)
→ H0(div3/2; Ω)

′, and the functional GD ∈ H0(div3/2; Ω)
′, are defined,

respectively, as

[a(w⃗), v⃗] :=

∫
Ω
K−1w · v + F

∫
Ω
|w|w · v + ν

∫
Ω
s : r , (1.15)

[b(v⃗), τ ] := −
∫
Ω
v · div(τ )−

∫
Ω
τ : r , (1.16)

and
[GD, τ ] := −⟨τn,uD⟩Γ , (1.17)

for all w⃗, v⃗ ∈ L3(Ω)×L2
tr(Ω), and for all τ ∈ H0(div3/2; Ω). In turn, given φ := (φ1, φ2) in the spaces

to be indicated below, the functional Fφ is given by

[Fφ, v⃗] :=

∫
Ω
f(φ) · v ∀ v⃗ ∈ L3(Ω)× L2

tr(Ω) . (1.18)
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In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators.

On the other hand, for the double-diffusion equations in (1.8) we proceed analogously as for the
derivation of (1.9), (1.12), and (1.13). In fact, multiplying the sixth equation of (1.8) by a test
function r̃j associated with the unknown t̃j , we formally obtain∫

Ω
Qj t̃j · r̃j −

1

2
Rj

∫
Ω
ϕj u · r̃j −

∫
Ω
ρj · r̃j = 0 . (1.19)

Then, employing again the Cauchy-Schwarz and Hölder inequalities, we find that the convective term
from the foregoing equation can be bounded as∣∣∣∣∫

Ω
ϕj u · r̃j

∣∣∣∣ ≤ ∥ϕj∥0,2r;Ω ∥u∥0,2s;Ω ∥r̃j∥0,Ω ,

where r and s are conjugate to each other. But, knowing already that u is sought in L3(Ω), we are
forced to choose s = 3/2, which yields r = 3, and hence we look for ϕj in L6(Ω), whereas r̃j lies in
L2(Ω). As a consequence of the latter and the fact that Qj ∈ L∞(Ω), j ∈ {1, 2}, we notice that the
first and third terms of (1.19) are bounded if we look for both t̃j and ρj in L2(Ω). Now, we introduce
the vector version of (1.10), that is for each t ∈ (1,+∞) we set

H(divt; Ω) :=
{
η ∈ L2(Ω) : div(η) ∈ Lt(Ω)

}
.

Then, noting from the fifth equation of (1.8) that ϕj ∈ H1(Ω), which is embedded in L6(Ω), and
then applying the vector-scalar version of (1.11) to ηj ∈ H(div6/5; Ω) and ϕj , and using the Dirichlet
boundary condition on ϕj , it follows from that equation that∫

Ω
t̃j · ηj +

∫
Ω
ϕj div(ηj) =

〈
ηj · n, ϕj,D

〉
Γ
. (1.20)

Finally, testing the seventh equation of (1.8) against ψj ∈ L6(Ω), which requires div(ρj) ∈ L6/5(Ω),
thus yielding ρj ∈ H(div6/5; Ω) as well, we get

1

2
Rj

∫
Ω
ψj u · t̃j −

∫
Ω
ψj div(ρj) = 0 . (1.21)

Similarly as before for H(divt; Ω), we notice here that η · n ∈ H−1/2(Γ) for all η ∈ H(divt; Ω),
t ∈ (1,+∞). In addition, for each t ∈ (1, 2) there holds H(div; Ω) ⊂ H(divt; Ω).

Hence, setting from now on

ϕ⃗j := (ϕj , t̃j) , φ⃗j := (φj , s̃j) , ψ⃗j := (ψj , r̃j) ∈ L6(Ω)× L2(Ω) ,

and conveniently grouping (1.19), (1.20), and (1.21), the weak formulation of the double-diffusion
equations in (1.8) reads: Find (ϕ⃗j ,ρj) ∈

(
L6(Ω)× L2(Ω)

)
×H(div6/5; Ω), j ∈ {1, 2}, such that

[ãj(ϕ⃗j), ψ⃗j ] + [cj(u)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ L6(Ω)× L2(Ω),

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω),
(1.22)
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where the linear and bounded operators ãj , cj(w) :
(
L6(Ω) × L2(Ω)

)
→
(
L6(Ω) × L2(Ω)

)′ (for a
given w ∈ L3(Ω)), and b̃ :

(
L6(Ω) × L2(Ω)

)
→ H(div6/5; Ω)

′, and the bounded linear functional
G̃j ∈ H(div6/5; Ω)

′, are defined, respectively, as

[ãj(φ⃗j), ψ⃗j ] :=

∫
Ω
Qj s̃j · r̃j , (1.23)

[cj(w)(φ⃗j), ψ⃗j ] :=
1

2
Rj

{∫
Ω
ψj w · s̃j −

∫
Ω
φj w · r̃j

}
, (1.24)

[̃b(ψ⃗j),ηj ] := −
∫
Ω
ψj div(ηj)−

∫
Ω
ηj · r̃j , (1.25)

and
[G̃j ,ηj ] := −

〈
ηj · n, ϕj,D

〉
Γ
, (1.26)

for all φ⃗j , ψ⃗j ∈ L6(Ω)× L2(Ω), and for all ηj ∈ H(div6/5; Ω).

Summarizing, the fully-mixed formulation for the coupled problem (1.8) reduces to (1.14) and (1.22),
that is: Find (u⃗,σ) ∈

(
L3(Ω)×L2

tr(Ω)
)
×H0(div3/2; Ω) and (ϕ⃗j ,ρj) ∈

(
L6(Ω)×L2(Ω)

)
×H(div6/5; Ω),

j ∈ {1, 2}, such that

[a(u⃗), v⃗] + [b(v⃗),σ] = [Fϕ, v⃗] ∀ v⃗ ∈ L3(Ω)× L2
tr(Ω),

[b(u⃗), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω),

[ãj(ϕ⃗j), ψ⃗j ] + [cj(u)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ L6(Ω)× L2(Ω),

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω).

(1.27)

1.3 Analysis of the coupled problem

In this section we combine classical results on nonlinear monotone operators and the Babuška-Brezzi
theory in Banach spaces, with the Banach fixed-point theorem, to prove the well-posedness of (1.27)
under suitable smallness assumptions on the data. To that end we first collect some previous results
and notations that will serve for the forthcoming analysis.

1.3.1 Preliminaries

We begin by establishing the following abstract result.

Theorem 1.1. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator, B ∈ L(X,Y ′), and let V be
the kernel of B, that is,

V :=
{
v⃗ = (v1, v2) ∈ X : B(v⃗) = 0

}
.

Assume that
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(i) there exist constants L > 0 and p1, p2 ≥ 2, such that

∥A(u⃗)−A(v⃗)∥X′ ≤ L
2∑
j=1

{
∥uj − vj∥Xj +

(
∥uj∥Xj + ∥vj∥Xj

)pj−2∥uj − vj∥Xj

}
for all u⃗ = (u1, u2), v⃗ = (v1, v2) ∈ X,

(ii) the family of operators
{
A( · + z⃗) : V → V ′ : z⃗ ∈ X

}
is uniformly strongly monotone, that is

there exists α > 0 such that

[A(u⃗+ z⃗)−A(v⃗ + z⃗), u⃗− v⃗] ≥ α ∥u⃗− v⃗∥2X ,

for all z⃗ ∈ X, and for all u⃗, v⃗ ∈ V , and

(iii) there exists β > 0 such that

sup
v⃗∈X
v⃗ ̸=0

[B(v⃗), τ ]
∥v⃗∥X

≥ β ∥τ∥Y ∀ τ ∈ Y .

Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (u⃗, σ) ∈ X × Y such that

[A(u⃗), v⃗] + [B(v⃗), σ] = [F , v⃗] ∀ v⃗ ∈ X ,

[B(u⃗), τ ] = [G, τ ] ∀ τ ∈ Y .
(1.28)

Moreover, there exist positive constants C1 and C2, depending only on L,α, and β, such that

∥u⃗∥X ≤ C1M(F ,G) (1.29)

and

∥σ∥Y ≤ C2

{
M(F ,G) +

2∑
j=1

M(F ,G)pj−1

}
, (1.30)

where

M(F ,G) := ∥F∥X′ + ∥G∥Y ′ +
2∑
j=1

∥G∥pj−1
Y ′ + ∥A(0)∥X′ . (1.31)

Proof. We begin by noting that the unique solvability of problem (1.28) follows from hypotheses (i)–
(iii) and a direct application of a slight modification of [21, Theorem 3.1]. In fact, it suffices to observe
that this latter result remains valid if the continuity and strict monotonicity hypotheses given by [21,
(ii) and (iii)] are assumed to hold with different pairs (p1, p2). Now, in order to obtain (1.29)–(1.30),
and similarly to [21, Theorem 3.1], we first note that u⃗ can be decomposed as

u⃗ = u⃗V + u⃗G , (1.32)

with u⃗V ∈ V and u⃗G ∈ X satisfying

B(u⃗G) = G and ∥u⃗G∥X ≤ 1

β
∥G∥Y ′ . (1.33)
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We notice that (1.33) is consequence of hypothesis (iii) and the open mapping theorem (cf. [52, Lemmas
A.36 and A.42]). In turn, taking v⃗ = u⃗V ∈ V in the first equation of (1.28), we have

[A(u⃗V + u⃗G)−A(0 + u⃗G), u⃗V ] = [F , u⃗V ]− [A(u⃗G), u⃗V ] .

Then, combining hypothesis (i), (ii) and (1.33), we deduce that

α ∥u⃗V ∥2X ≤
{
∥F∥X′ + ∥A(u⃗G)∥X′

}
∥u⃗V ∥X

≤ c1

{
∥F∥X′ + ∥G∥Y ′ +

2∑
j=1

∥G∥pj−1
Y ′ + ∥A(0)∥X′

}
∥u⃗V ∥X ,

with c1 > 0 depending only on β and L, which yields

∥u⃗V ∥X ≤ c1
α

{
∥F∥X′ + ∥G∥Y ′ +

2∑
j=1

∥G∥pj−1
Y ′ + ∥A(0)∥X′

}
. (1.34)

In this way, employing (1.33) and (1.34) in (1.32), we deduce (1.29). On the other hand, from the first
equation of (1.28), and combining hypotheses (iii) and (i), we find that

∥σ∥Y ≤ 1

β

{
∥F∥X′ + ∥A(u⃗)∥X′

}
≤ c2

{
∥F∥X′ + ∥u⃗∥X +

2∑
j=1

∥u⃗∥pj−1
X + ∥A(0)∥X′

}
,

(1.35)

with c2 > 0 depending only on β and L. Then, (1.29) and (1.35) implies (1.30), which ends the
proof.

Next, we establish the stability properties of the operators and functionals involved in (1.27). We
begin by observing that the linear operators b, ãj , and b̃, j ∈ {1, 2}, satisfy the boundedness estimates∣∣[b(v⃗), τ ]∣∣ ≤ ∥v⃗∥ ∥τ∥div3/2;Ω ∀ v⃗ ∈ H , ∀ τ ∈ H0(div3/2; Ω) , (1.36)∣∣[ãj(ϕ⃗j), ψ⃗j ]∣∣ ≤ ∥Qj∥0,∞,Ω ∥ϕ⃗j∥ ∥ψ⃗j∥ ∀ ϕ⃗j , ψ⃗j ∈ H̃ , (1.37)∣∣[̃b(ψ⃗j),ηj ]∣∣ ≤ ∥ψ⃗j∥ ∥ηj∥div6/5;Ω ∀ ψ⃗j ∈ H̃ , ∀ηj ∈ H(div6/5; Ω) , (1.38)

where
H := L3(Ω)× L2

tr(Ω) and H̃ := L6(Ω)× L2(Ω) .

In turn, employing the Cauchy–Schwarz and Hölder inequalities, and recalling the definition of f (cf.
(1.2)), it is readily seen that, given φ ∈ L6(Ω), the functionals GD, Fφ and G̃j (cf. (1.17), (1.18) and
(1.26)) satisfy ∣∣[GD, τ ]∣∣ ≤ CD ∥uD∥1/2,Γ∥τ∥div3/2;Ω ∀ τ ∈ H(div3/2; Ω) , (1.39)∣∣[Fφ, v⃗]∣∣ ≤ ∥g∥0,Ω

(
∥φ∥0,6;Ω + ∥ϕr∥0,6;Ω

)
∥v⃗∥ ∀ v⃗ ∈ H , (1.40)∣∣[G̃j ,ηj ]∣∣ ≤ C̃D∥ϕj,D∥1/2,Γ ∥ηj∥div6/5;Ω ∀ηj ∈ H(div6/5; Ω) , (1.41)
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where ϕr := (ϕ1,r, ϕ2,r) ∈ L6(Ω), and CD and C̃D are positive constants depending on ∥ip∥, the norm
of the injection of H1(Ω) into Lp(Ω), with p equal to 3 and 6, respectively (see [17, eq. (4.4)] and [14,
Lemma 3.4] for details).

We end this section by collecting the inf-sup conditions for the operators b and b̃ (cf. (1.16) and
(1.25)), and by stating some fundamental properties of the operator cj(w) (cf. (1.24)), whose proofs
follow from a slight adaptation of [42, Lemma 3.3 and Lemma 3.4], respectively, reason why details
are omitted.

Lemma 1.2. There exist positive constants β and β̃, such that

sup
v⃗∈H
v⃗ ̸=0

[b(v⃗), τ ]

∥v⃗∥
≥ β ∥τ∥div3/2;Ω ∀ τ ∈ H0(div3/2; Ω) (1.42)

and

sup
ψ⃗∈H̃
ψ⃗ ̸=0

[̃b(ψ⃗),η]

∥ψ⃗∥
≥ β̃ ∥η∥div6/5;Ω ∀η ∈ H(div6/5; Ω) . (1.43)

Lemma 1.3. The operator cj(w) : H̃ → H̃′, j ∈ {1, 2}, is bounded for each w ∈ L3(Ω) with bounded-
ness constant given by Rj∥w∥0,3;Ω, and there hold the following additional properties

[cj(w)(ψ⃗j), ψ⃗j ] = 0 ∀ ψ⃗j ∈ H̃ , (1.44)∣∣[cj(w)(ϕ⃗j)− cj(z)(ϕ⃗j), ψ⃗j ]
∣∣ ≤ Rj∥w − z∥0,3;Ω∥ϕ⃗j∥∥ψ⃗j∥ ∀w, z ∈ L3(Ω), ∀ ϕ⃗j , ψ⃗j ∈ H̃ . (1.45)

1.3.2 A fixed point strategy

In what follows we proceed similarly to [44] (see also [30, 42, 43]) and utilize a fixed point strategy
to prove the well-posedness of (1.27). Let us first define the operator S : L6(Ω) → L3(Ω) as

S(φ) := u ∀φ ∈ L6(Ω) , (1.46)

where (u⃗,σ) :=
(
(u, t),σ

)
∈ H×H0(div3/2; Ω) is the unique solution (to be confirmed below) of the

problem
[a(u⃗), v⃗] + [b(v⃗),σ] = [Fφ, v⃗] ∀ v⃗ ∈ H ,

[b(u⃗), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω) .
(1.47)

In turn, for each j ∈ {1, 2} we let S̃j : L
3(Ω) → L6(Ω) be the operator given by

S̃j(w) := ϕj ∀w ∈ L3(Ω) , (1.48)

where (ϕ⃗j ,ρj) :=
(
(ϕj , t̃j),ρj

)
∈ H̃ ×H(div6/5; Ω) is the unique solution (to be confirmed below) of

the problem

[ãj(ϕ⃗j), ψ⃗j ] + [cj(w)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ H̃ ,

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) .
(1.49)
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Then, we can introduce S̃(w) :=
(
S̃1(w), S̃2(w)

)
∈ L6(Ω) for all w ∈ L3(Ω). Consequently, we set the

operator T : L3(Ω) → L3(Ω) as

T(w) := S
(
S̃(w)

)
∀w ∈ L3(Ω) , (1.50)

and realize that solving (1.27) is equivalent to finding u ∈ L3(Ω) such that

T(u) = u . (1.51)

1.3.3 Well-definedness of the fixed point operator

In this section we show that the uncoupled problems (1.47) and (1.49) are well-posed, which means,
equivalently, that S and S̃ (cf. (1.46) and (1.48)) are indeed well-defined. We begin with the operator
S. To this end, we first observe that, given φ ∈ L6(Ω), the problem (1.47) has the same structure as
the one in Theorem 1.1. Therefore, in order to apply this abstract result, we notice that, thanks to the
uniform convexity and separability of Lp(Ω) for p ∈ (1,+∞), all the spaces involved in (1.47), that is,
L3(Ω), L2

tr(Ω) and H0(div3/2; Ω), share the same properties.

We continue our analysis by proving that the nonlinear operator a (cf. (1.15)) satisfies hypothesis
(i) of Theorem 1.1 with p1 = 3 and p2 = 2.

Lemma 1.4. Let us define LBF := max
{
|Ω|1/3 ∥K−1∥0,∞,Ω, F, ν

}
. Then, there holds

∥a(u⃗)− a(v⃗)∥H′ ≤ LBF

{
∥u− v∥0,3;Ω + ∥t− r∥0,Ω +

(
∥u∥0,3;Ω + ∥v∥0,3;Ω

)
∥u− v∥0,3;Ω

}
, (1.52)

for all u⃗ = (u, t), v⃗ = (v, r) ∈ H.

Proof. It follows straightforwardly from the definition of a (cf. (1.15)), along with the triangle, Cauchy–
Schwarz, and Hölder’s inequalities. Further details are omitted.

Now, let us look at the kernel of the operator b (cf. (1.16)), that is

V :=
{
v⃗ = (v, r) ∈ H : [b(v⃗), τ ] = 0 ∀ τ ∈ H0(div3/2; Ω)

}
,

which, proceeding similarly to [42, eq. (3.34)], reduces to

V :=
{
v⃗ = (v, r) ∈ H : ∇v = r and v ∈ H1

0(Ω)
}
. (1.53)

The following lemma establishes hypothesis (ii) of Theorem 1.1 for a.

Lemma 1.5. The family of operators
{
a( ·+ z⃗) : V → V′ : z⃗ ∈ H

}
is uniformly strongly monotone,

that is, there exists αBF > 0, such that

[a(u⃗+ z⃗)− a(v⃗ + z⃗), u⃗− v⃗] ≥ αBF ∥u⃗− v⃗∥2 , (1.54)

for all z⃗ = (z, s) ∈ H, and for all u⃗ = (u, t), v⃗ = (v, r) ∈ V.
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Proof. Let z⃗ = (z, s) ∈ H and u⃗ = (u, t), v⃗ = (v, r) ∈ V. Bearing in mind the definition of a (cf.
(1.15)), and using (1.3), we obtain

[a(u⃗+ z⃗)− a(v⃗ + z⃗), u⃗− v⃗]

≥ CK ∥u− v∥20,Ω + F

∫
Ω

(
|u+ z|(u+ z)− |v + z|(v + z)

)
· (u− v) + ν ∥t− r∥20,Ω .

(1.55)

Hence, thanks to [6, Lemma 2.1, eq. (2.1b)] with p = 3, there exists c1(Ω) > 0, depending only on |Ω|,
such that ∫

Ω

(
|u+ z|(u+ z)− |v + z|(v + z)

)
· (u− v) ≥ c1(Ω) ∥u− v∥30,3;Ω ,

which, together with (1.55), yields

[a(u⃗+ z⃗)− a(v⃗ + z⃗), u⃗− v⃗] ≥ CK ∥u− v∥20,Ω + c1(Ω) F ∥u− v∥30,3;Ω + ν ∥t− r∥20,Ω . (1.56)

Next, bounding below the second term on the right hand side of (1.56) by 0, employing the fact that
t− r = ∇(u− v) in Ω and u− v ∈ H1

0(Ω) (cf. (1.53)), and using the continuous injection i3 of H1(Ω)

into L3(Ω) (see, e.g., [79, Theorem 1.3.4]), we deduce that

[a(u⃗+ z⃗)− a(v⃗ + z⃗), u⃗− v⃗] ≥ min
{
CK,

ν

2

}{
∥u− v∥21,Ω + ∥t− r∥20,Ω

}
≥ min

{
CK,

ν

2

}{
∥i3∥−2∥u− v∥20,3;Ω + ∥t− r∥20,Ω

}
,

which yields (1.54) with αBF := min
{
CK,

ν
2

}
min

{
1, ∥i3∥−2

}
.

As a corollary of Lemma 1.5, taking in particular u⃗− v⃗, 0 ∈ V and z⃗ = v⃗ ∈ H in (1.54), we arrive
at

[a(u⃗)− a(v⃗), u⃗− v⃗] ≥ αBF ∥u⃗− v⃗∥2 , (1.57)

for all u⃗, v⃗ ∈ H such that u⃗− v⃗ ∈ V.

We now establish the unique solvability of the nonlinear problem (1.47).

Lemma 1.6. For each φ ∈ L6(Ω), the problem (1.47) has a unique solution (u⃗,σ) :=
(
(u, t),σ

)
∈

H×H0(div3/2; Ω). Moreover, there exists a positive constant CS, independent of φ, such that

∥S(φ)∥0,3;Ω ≤ ∥u⃗∥ ≤ CS

{
∥g∥0,Ω

(
∥φ∥0,6;Ω + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
. (1.58)

Proof. Given φ ∈ L6(Ω), we first recall from (1.36), (1.39) and (1.40) that b,GD and Fφ are all linear
and bounded. Thus, bearing in mind Lemmas 1.4 and 1.5, and the inf-sup condition of b given by
(1.42) (cf. Lemma 1.2), a straightforward application of Theorem 1.1, with p1 = 3 and p2 = 2, to
problem (1.47) completes the proof. In particular, noting from (1.15) that a(0) is the null functional,
we get from (1.31) that

M(Fφ, GD) = ∥Fφ∥ + 2∥GD∥ + ∥GD∥2 ,

and hence the a priori estimate (1.29) yields

∥u⃗∥ ≤ C1

{
∥Fφ∥+ ∥GD∥+ ∥GD∥2

}
,

with a positive constant C1 depending only on LBF, αBF, and β. The foregoing inequality together
with the bounds of ∥GD∥ and ∥Fφ∥ (cf. (1.39) and (1.40)) imply (1.58) with CS depending only on
∥i3∥, LBF, αBF, and β, thus completing the proof.
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For later use in the work we note here that, applying (1.30), and using again the bounds (1.39) and
(1.40) for ∥GD∥ and ∥Fφ∥, respectively, the a priori estimate for the second component of the solution
to the problem defining S (cf. (1.47)) reduces to

∥σ∥div3/2;Ω ≤ Cσ

2∑
j=1

{(
∥g∥0,Ω

(
∥φ∥0,6;Ω + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

)j}
, (1.59)

with Cσ depending only on ∥i3∥, LBF, αBF, and β.

Next, we aim to proving the well-posedness of problem (1.49), or, equivalently, the well-definedness of
the operator S̃ (cf. (1.48)), for which, following [42, Lemma 3.6], we first establish the corresponding
hypotheses required by the Babuška–Brezzi theory in Banach spaces. In this way, and similarly to
(1.53) and [42, eq. (3.35)], we first let Ṽ be the kernel of the operator b̃ (cf. (1.25)), that is

Ṽ :=
{
ψ⃗ = (ψ, r̃) ∈ H̃ : ∇ψ = r̃ and ψ ∈ H1

0(Ω)
}
. (1.60)

Then the Ṽ-ellipticity of the operator ãj is stated as follows.

Lemma 1.7. There exists a positive constant α̃j such that

[ãj(ψ⃗j), ψ⃗j ] ≥ α̃j ∥ψ⃗j∥2 ∀ ψ⃗j := (ψj , r̃j) ∈ Ṽ . (1.61)

Proof. We proceed as in [42, Lemma 3.2]. In fact, given ψ⃗j := (ψj , r̃j) ∈ Ṽ, we know from (1.60)
that ∇ψj = r̃j and ψj ∈ H1

0(Ω). Hence, using the fact that Qj is a uniformly positive definite tensor
(cf. (1.3)), and resorting to the Poincaré inequality with positive constant cP , and to the continuous
injection i6 of H1(Ω) into L6(Ω) (see, e.g., [79, Theorem 1.3.4]), we obtain

[ãj(ψ⃗j), ψ⃗j ] ≥ CQj ∥r̃j∥20,Ω =
CQj

2

{
∥r̃j∥20,Ω + ∥∇ψj∥20,Ω

}
≥

CQj

2

{
∥r̃j∥20,Ω + c−1

P ∥i6∥−2∥ψj∥20,6;Ω
}
,

which gives (1.61) with α̃j :=
CQj

2
min

{
1, c−1

P ∥i6∥−2
}

.

We are now in position to provide the announced result. More precisely, denoting

∥Q∥0,∞;Ω := ∥Q1∥0,∞;Ω + ∥Q2∥0,∞;Ω and ∥ϕD∥1/2,Γ := ∥ϕ1,D∥1/2,Γ + ∥ϕ2,D∥1/2,Γ ,

we have the following lemma.

Lemma 1.8. For each w ∈ L3(Ω), and j ∈ {1, 2}, problem (1.49) has a unique solution (ϕ⃗j ,ρj) :=(
(ϕj , t̃j),ρj

)
∈ H̃ × H(div6/5; Ω). Moreover, there exists a positive constant C

S̃
, independent of w,

such that

∥S̃(w)∥0,6;Ω ≤
2∑
j=1

∥ϕ⃗j∥ ≤ C
S̃

(
1 + ∥Q∥0,∞;Ω + ∥w∥0,3;Ω

)
∥ϕD∥1/2,Γ . (1.62)
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Proof. We proceed as in [42, Lemma 3.5]. In fact, given w ∈ L3(Ω) and j ∈ {1, 2}, we introduce the
operator Aj(w) : H̃ → H̃′ defined by

[Aj(w)(ϕ⃗j), ψ⃗j ] := [ãj(ϕ⃗j), ψ⃗j ] + [cj(w)(ϕ⃗j), ψ⃗j ] ∀ ϕ⃗j , ψ⃗j ∈ H̃ , (1.63)

where ãj and cj(w) are the operators defined in (1.23) and (1.24), respectively. Then, the problem
(1.49) can be reformulated as: Find (ϕ⃗j ,ρj) ∈ H̃×H(div6/5; Ω) such that

[Aj(w)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ H̃ ,

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) .
(1.64)

Next, we observe from (1.37) and Lemma 1.3 that Aj(w) is bounded, that is there holds∣∣[Aj(w)(ϕ⃗j), ψ⃗j ]
∣∣ ≤ (

∥Qj∥0,∞;Ω + Rj∥w∥0,3;Ω
)
∥ϕ⃗j∥ ∥ψ⃗j∥ ∀ ϕ⃗j , ψ⃗j ∈ H̃ . (1.65)

In addition, it is clear from (1.61) and (1.44) that Aj(w) is elliptic on Ṽ (cf. (1.60)) with the same
constant α̃j from (1.61). In turn, recalling that the bounded linear operator b̃ satisfies the inf-sup
condition (1.43) (cf. Lemma 1.2) and that G̃j is a bounded linear functional (cf. (1.41)), a direct
application of the Babuška–Brezzi theory in Banach spaces guarantees that (1.64) is well-posed. More-
over, the corresponding a priori estimate provided by that theory (cf. [52, eq. (2.30), Theorem 2.34]),
and the continuity bounds of G̃j and Aj(w) (cf. (1.41), (1.65)), imply

∥ϕ⃗j∥ ≤ C̃D

β̃

(
1 +

∥Qj∥0,∞;Ω + Rj∥w∥0,3;Ω
α̃j

)
∥ϕj,D∥1/2,Γ , (1.66)

which yields (1.62) with C
S̃
:= max{C

S̃1
, C

S̃2
} and C

S̃j
:= α̃−1

j β̃−1C̃Dmax{1, α̃j , Rj}.

Similarly as for the derivation of (1.59), we notice that, applying the second a priori estimate
from [52, eq. (2.30), Theorem 2.34], and employing (1.41) and (1.65) to bound ∥G̃j∥ and ∥Aj(w)∥,
respectively, the second component of the solution to the problem defining S̃j (cf. (1.49)) can be
bounded as

∥ρj∥div6/5;Ω ≤ C̃D

β̃2

(
∥Qj∥0,∞;Ω + Rj ∥w∥0,3;Ω

)(
1 +

∥Qj∥0,∞;Ω + Rj ∥w∥0,3;Ω
α̃j

)
∥ϕj,D∥1/2,Γ . (1.67)

1.3.4 Solvability analysis of the fixed-point equation

Having proved the well-posedness of the uncoupled problems (1.47) and (1.49), which ensures that
the operators S, S̃ and T are well defined, we now aim to establish the existence of a unique fixed-
point of the operator T. For this purpose, in what follows we will verify the hypothesis of the Banach
fixed-point theorem. We begin by providing suitable conditions under which T maps a ball into itself.

Lemma 1.9. Given r > 0, let W be the closed ball in L3(Ω) with center at the origin and radius r,
and assume that the data satisfy

∥g∥0,Ω
(
(1 + ∥Q∥0,∞;Ω)∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ ≤ r

C(r)
, (1.68)

where C(r) := CSmax
{
1, C

S̃

}
(1 + r), and CS and C

S̃
are the constants specified in Lemmas 1.6 and

1.8, respectively. Then, there holds T(W) ⊆ W.
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Proof. Given w ∈ L3(Ω), from the definition of T (cf. (1.50)) and the a priori estimate for S (cf.
(1.58)), we first obtain

∥T(w)∥0,3;Ω = ∥S(S̃(w))∥0,3;Ω

≤ CS

{
∥g∥0,Ω

(
∥S̃(w)∥0,6;Ω + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
.

Then, using (1.62) to bound ∥S̃(w)∥0,6;Ω in the foregoing inequality, noting that ∥w∥0,3;Ω ≤ r, and
performing some minor algebraic manipulations, we arrive at

∥T(w)∥0,3;Ω

≤ C(r)
{
∥g∥0,Ω

(
(1 + ∥Q∥0,∞;Ω)∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
,

(1.69)

which, thanks to the assumption (1.68), yields ∥T(w)∥0,3;Ω ≤ r and ends the proof.

We now aim to prove that the operator T is Lipschitz continuous, for which, according to its
definition (cf. (1.50)), it suffices to show that both S and S̃ satisfy this property. We begin with the
corresponding result for S.

Lemma 1.10. Let αBF be given by (1.54). Then, there holds

∥S(ϕ)− S(ψ)∥0,3;Ω ≤ 1

αBF
∥g∥0,Ω ∥ϕ−ψ∥0,6;Ω ∀ϕ, ψ ∈ L6(Ω) . (1.70)

Proof. Given ϕ, ψ ∈ L6(Ω), we let (u⃗,σ) :=
(
(u, t),σ

)
and (u⃗0,σ0) :=

(
(u0, t0),σ0

)
∈ H ×

H0(div3/2; Ω) be the corresponding solutions of (1.47), so that u := S(ϕ) and u0 := S(ψ). Then,
subtracting the corresponding problems from (1.47), we obtain

[a(u⃗)− a(u⃗0), v⃗] + [b(v⃗),σ − σ0] = [Fϕ − Fψ, v⃗] ∀ v⃗ ∈ H ,

[b(u⃗− u⃗0), τ ] = 0 ∀ τ ∈ H0(div3/2; Ω) .
(1.71)

We note from the second equation of (1.71) that u⃗− u⃗0 ∈ V (cf. (1.53)). Hence, taking v⃗ := u⃗− u⃗0

in the first equation of (1.71), and applying (1.57) with u⃗, u⃗0 ∈ H, we obtain

αBF ∥u⃗− u⃗0∥2 ≤ [a(u⃗)− a(u⃗0), u⃗− u⃗0] = [Fϕ − Fψ, u⃗− u⃗0] . (1.72)

In turn, recalling the definitions of Fϕ (cf. (1.18)) and f (cf. (1.2)), employing Hölder’s inequality, and
using that ϱ ≥ 1, we find that

[Fϕ − Fψ, u⃗− u⃗0] =

∫
Ω

{
(ψ1 − ϕ1)−

1

ϱ
(ψ2 − ϕ2)

}
g ·
(
u− u0

)
≤ ∥g∥0,Ω ∥ϕ−ψ∥0,6;Ω ∥u⃗− u⃗0∥ ,

(1.73)

which, replaced back into (1.72), yields (1.70) and completes the proof.

We now establish the Lipschitz-continuity of S̃.
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Lemma 1.11. There exists a positive constant L
S̃
, depending on Rj , α̃j, and β̃, j ∈ {1, 2}, such that

∥S̃(w)− S̃(z)∥0,6:Ω ≤ L
S̃

(
1 + ∥Q∥0,∞;Ω + ∥w∥0,3;Ω

)
∥ϕD∥1/2,Γ ∥w − z∥0,3;Ω , (1.74)

for all w, z ∈ L3(Ω).

Proof. We proceed similarly to [42, Lemma 3.8]. In fact, given w, z ∈ L3(Ω), for each j ∈ {1, 2} we
let (ϕ⃗j ,ρj) :=

(
(ϕj , t̃j),ρj

)
, (φ⃗j , ξj) :=

(
(φj , s̃j), ξj

)
∈ H̃×H(div6/5; Ω) be the respective solutions of

(1.49), so that (ϕ1, ϕ2) = (S̃1(w), S̃2(w)) = S̃(w) and (φ1, φ2) = (S̃1(z), S̃2(z)) = S̃(z). It follows from
the corresponding second equations of (1.49) that ϕ⃗j − φ⃗j ∈ Ṽ (cf. (1.60)), and then the Ṽ-ellipticity
of ãj (cf. (1.61)) and the first equations of (1.49) applied to both S̃j(w) and S̃j(z), yield

α̃j ∥ϕ⃗j − φ⃗j∥2 ≤ [ãj(ϕ⃗j)− ãj(φ⃗j), ϕ⃗j − φ⃗j ] = −[cj(w)(ϕ⃗j)− cj(z)(φ⃗j), ϕ⃗j − φ⃗j ] .

In turn, adding and subtracting [cj(z)(ϕ⃗j), ϕ⃗j− φ⃗j ], and using the properties (1.44) and (1.45) satisfied
by cj , we deduce from the foregoing inequality that

α̃j∥ϕ⃗j − φ⃗j∥2 ≤ −[cj(w − z)(ϕ⃗j), ϕ⃗j − φ⃗j ]− [cj(z)(ϕ⃗j − φ⃗j), ϕ⃗j − φ⃗j ]

≤ Rj ∥ϕ⃗j∥ ∥w − z∥0,3;Ω ∥ϕ⃗j − φ⃗j∥ ,

which, together with the a priori estimate (1.62), implies (1.74) with L
S̃
:= C

S̃
max

{
α̃−1
1 R1, α̃

−1
2 R2

}
and concludes the proof.

As a consequence of Lemmas 1.10 and 1.11, we provide next the Lipschitz continuity of T.

Lemma 1.12. Let us define LT := α−1
BF LS̃

, with αBF and L
S̃

satisfying (1.54) and (1.74), respectively.
Then, there holds

∥T(w)−T(z)∥0,3;Ω ≤ LT

(
1 + ∥Q∥0,∞;Ω + ∥w∥0,3;Ω

)
∥g∥0,Ω ∥ϕD∥1/2,Γ ∥w − z∥0,3;Ω , (1.75)

for all w, z ∈ L3(Ω).

Proof. Let w, z ∈ L3(Ω). Then, from the definition of T (cf. (1.50)), and Lemma 1.10 (cf. (1.70)), we
deduce that

∥T(w)−T(z)∥0,3;Ω = ∥S
(
S̃(w)

)
− S

(
S̃(z)

)
∥0,3;Ω ≤ 1

αBF
∥g∥0,Ω ∥S̃(w)− S̃(z)∥0,6;Ω .

Hence, using the Lipschitz-continuity of the operator S̃ (cf. (1.74)), we find that

∥T(w)−T(z)∥0,3;Ω ≤
L
S̃

αBF

(
1 + ∥Q∥0,∞;Ω + ∥w∥0,3;Ω

)
∥g∥0,Ω ∥ϕD∥1/2,Γ∥w − z∥0,3;Ω ,

which yields (1.75) and ends the proof.

We are now in position to establish the main result concerning the solvability of (1.27).
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Theorem 1.13. Given r > 0, let W be the closed ball in L3(Ω) with center at the origin and radius
r, and assume that the data satisfy (1.68) and

LT

(
1 + ∥Q∥0,∞;Ω + r

)
∥g∥0,Ω ∥ϕD∥1/2,Γ < 1 . (1.76)

Then the operator T has a unique fixed point u ∈ W. Equivalently, the coupled problem (1.27) has
a unique solution (u⃗,σ) ∈ H × H0(div3/2; Ω) and (ϕ⃗j ,ρj) ∈ H̃ × H(div6/5; Ω), j ∈ {1, 2}, with
u ∈ W. Moreover, there exist positive constants Ci, i ∈ {1, 2, 3, 4}, depending on r, |Ω|, LBF, αBF, β,
∥Qj∥0,∞;Ω, Rj , α̃j, and β̃, such that the following a priori estimates hold

∥u⃗∥ ≤ C1

{
∥g∥0,Ω

(
∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
, (1.77)

∥σ∥div3/2;Ω ≤ C2

2∑
j=1

{(
∥g∥0,Ω

(
∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

)j}
, (1.78)

∥ϕ⃗j∥ ≤ C3 ∥ϕj,D∥1/2,Γ , and (1.79)

∥ρj∥div6/5;Ω ≤ C4 ∥ϕj,D∥1/2,Γ . (1.80)

Proof. We begin by recalling from Lemma 1.9 that, under the assumption (1.68), T maps the ball W
into itself, and hence, for each w ∈ W we have that both ∥w∥0,3;Ω and ∥T(w)∥0,3;Ω are bounded by
r. In turn, it is clear from Lemma 1.12 and Hypotheses (1.76) that T is a contraction. Therefore, the
Banach fixed-point theorem provides the existence of a unique fixed point u ∈ W of T, equivalently, the
existence of a unique solution (u⃗,σ) ∈ H×H0(div3/2; Ω) and (ϕ⃗j ,ρj) ∈ H̃×H(div6/5; Ω), j ∈ {1, 2},
of the coupled problem (1.27), with u ∈ W. In addition, it is clear that the estimates (1.79) and (1.80)
follow straightforwardly from (1.66) and (1.67), respectively, whereas proceeding as in (1.69), that is,
combining (1.58) (respectively (1.59)) with (1.62), we obtain (1.77) (respectively (1.78)), which finishes
the proof.

1.4 The Galerkin scheme

In this section we introduce and analyze the corresponding Galerkin scheme for the fully-mixed
formulation (1.27). The solvability of this scheme is addressed following basically the same techniques
employed throughout Section 1.3.

1.4.1 Preliminaries

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω by triangles K (respectively tetrahedra
K in R3), and set h := max

{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of Rn,

we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for each
integer k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ P̃k(K)x ,
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where x := (x1, . . . , xn)
t is a generic vector of Rn, P̃k(K) is the space of polynomials of total degree

equal to k defined on K, and, according to the convention in Section 1.1, we set Pk(K) := [Pk(K)]n

and Pk(K) := [Pk(K)]n×n. In this way, introducing the finite element subspaces:

Hu
h :=

{
vh ∈ L3(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht
h :=

{
rh ∈ L2

tr(Ω) : rh|K ∈ Pk(K) ∀K ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div3/2; Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

Hϕh :=
{
ψh ∈ L6(Ω) : ψh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht̃
h :=

{
r̃h ∈ L2(Ω) : r̃h|K ∈ Pk(K) ∀K ∈ Th

}
,

Hρ
h :=

{
ηh ∈ H(div6/5; Ω) : ηh|K ∈ RTk(K) ∀K ∈ Th

}
,

(1.81)

and denoting from now on ϕh := (ϕ1,h, ϕ2,h),φh := (φ1,h, φ2,h) ∈ Hϕ
h := Hϕh ×Hϕh, and

u⃗h := (uh, th), v⃗h := (vh, rh), u⃗0,h := (u0,h, t0,h) ∈ Hh := Hu
h ×Ht

h ,

ϕ⃗j,h := (ϕj,h, t̃j,h), ψ⃗j,h := (ψj,h, r̃j,h) ∈ H̃h := Hϕh ×Ht̃
h ,

the Galerkin scheme for (1.27) reads: Find (u⃗h,σh) ∈ Hh×Hσh and (ϕ⃗j,h,ρj,h) ∈ H̃h×Hρ
h, j ∈ {1, 2},

such that

[a(u⃗h), v⃗h] + [b(v⃗h),σh] = [Fϕh
, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] = [GD, τ h] ∀ τ h ∈ Hσh ,

[ãj(ϕ⃗j,h), ψ⃗j,h] + [cj(uh)(ϕ⃗j,h), ψ⃗j,h] + [̃b(ψ⃗j,h),ρj,h] = 0 ∀ ψ⃗j,h ∈ H̃h ,

[̃b(ϕ⃗j,h),ηj,h] = [G̃j ,ηj.h] ∀ηj,h ∈ Hρ
h .

(1.82)

We now develop the discrete analogue of the fixed-point approach utilized in Section 1.3.2. To this
end, we first consider the operator Sh : Hϕ

h → Hu
h defined by

Sh(φh) := uh ∀φh ∈ Hϕ
h , (1.83)

where (u⃗h,σh) :=
(
(uh, th),σh

)
∈ Hh×Hσh is the unique solution (to be confirmed below) of the first

two equations of (1.82) with the given φh ∈ Hϕ
h in place of ϕh, that is:

[a(u⃗h), v⃗h] + [b(v⃗h),σh] = [Fφh
, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] = [GD, τ h] ∀ τ h ∈ Hσh .
(1.84)

In turn, for each j ∈ {1, 2} we let S̃j,h : Hu
h → Hϕh be the operator given by

S̃j,h(wh) := ϕj,h ∀wh ∈ Hu
h , (1.85)

where (ϕ⃗j,h,ρj,h) :=
(
(ϕj,h, t̃j,h),ρj,h

)
∈ H̃h × Hρ

h is the unique solution (to be confirmed below) of
the last two equations of (1.82) with the given wh ∈ Hu

h in place of uh, that is:

[ãj(ϕ⃗j,h), ψ⃗j,h] + [cj(wh)(ϕ⃗j,h), ψ⃗j,h] + [̃b(ψ⃗j,h),ρj,h] = 0 ∀ ψ⃗j,h ∈ H̃h ,

[̃b(ϕ⃗j,h),ηj,h] = [G̃j ,ηj,h] ∀ηj,h ∈ Hρ
h .

(1.86)



1.4. The Galerkin scheme 27

Then, we set S̃h(wh) :=
(
S̃1,h(wh), S̃2,h(wh)

)
∈ Hϕ

h for all wh ∈ Hu
h . Hence, introducing the operator

Th : Hu
h → Hu

h as
Th(wh) := Sh

(
S̃h(wh)

)
∀wh ∈ Hu

h , (1.87)

we realize that solving (1.82) is equivalent to seeking a fixed point of Th, that is: Find uh ∈ Hu
h such

that
Th(uh) = uh . (1.88)

1.4.2 Solvability Analysis

We begin by proving that (1.84) is well posed, or equivalently that Sh (cf. (1.83)) is well defined.
Indeed, we remark in advance that the respective proof, being the discrete analogue of the one of
Lemma 1.6, makes use again of the abstract result given by Theorem 1.1. Hence, we first set the
discrete kernel of b, which is given by

Vh :=
{
v⃗h = (vh, rh) ∈ Hh :

∫
Ω
τ h : rh +

∫
Ω
vh · div(τ h) = 0 ∀ τ h ∈ Hσh

}
. (1.89)

Then, following the approach from [42, Section 5], we now prove the discrete inf-sup condition for b
and an intermediate result that will be used to show later on the strong monotonicity of a on Vh.

Lemma 1.14. There exist positive constants βd and Cd such that

sup
v⃗∈Hh
v⃗ ̸=0

[b(v⃗h), τ h]

∥v⃗h∥
≥ βd ∥τ h∥div3/2;Ω ∀ τ h ∈ Hσh , (1.90)

and
∥rh∥0,Ω ≥ Cd ∥vh∥0,3;Ω ∀ v⃗h = (vh, rh) ∈ Vh . (1.91)

Proof. We proceed as in [9, Lemma 4.2]. In fact, we begin by introducing the discrete space Z0,h

defined by

Z0,h :=
{
τ h ∈ Hσh : [b(vh,0), τ h] =

∫
Ω
vh · div(τ h) = 0 ∀vh ∈ Hu

h

}
,

which, using from (1.81) that div(Hσh ) ⊆ Hu
h , becomes

Z0,h =
{
τ h ∈ Hσh : div(τ h) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [42, Lemma 5.1] with the setting X = Hu
h ,

Y = Y1 = Ht
h, Y2 =

{
0
}
, V = Vh, Z = Hσh , and Z0 = Z0,h, where X,Y, Y1, Y2, V, Z, and Z0 correspond

to the notations employed there, we deduce that (1.90) and (1.91) are jointly equivalent to the existence
of positive constants β1 and β2, independent of h, such that there hold

sup
τh∈Hσ

h
τh ̸=0

[b(vh,0), τ h]

∥τ h∥div3/2;Ω
= sup
τh∈Hσ

h
τh ̸=0

∫
Ω
vh · div(τ h)

∥τ h∥div3/2;Ω
≥ β1 ∥vh∥0,3;Ω ∀vh ∈ Hu

h (1.92)
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and

sup
rh∈Ht

h
rh ̸=0

[b(0, rh), τ h]

∥rh∥0,Ω
= sup

rh∈Ht
h

rh ̸=0

∫
Ω
rh : τ h

∥rh∥0,Ω
≥ β2 ∥τ h∥div3/2;Ω ∀ τ h ∈ Z0,h . (1.93)

Then, we observe that (1.92) follows from a slight adaptation of [42, eq. (5.45)]. Furthermore, recalling
from [58, Lemma 2.3] that there exists a constant c1 > 0, depending only on Ω, such that

c1 ∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div(τ )∥20,Ω ∀ τ ∈ H0(div; Ω) ,

and using the fact that τ d
h ∈ Ht

h, we easily get (1.93) with β2 = c
1/2
1 .

We now establish the discrete strong monotonicity and continuity properties of a (cf. (1.15)).

Lemma 1.15. The family of operators
{
a(· + z⃗h) : Vh → V′

h : z⃗h ∈ Hh

}
is uniformly strongly

monotone, that is, there exists αBF,d > 0, such that

[a(u⃗h + z⃗h)− a(v⃗h + z⃗h), u⃗h − v⃗h] ≥ αBF,d ∥u⃗h − v⃗h∥2, (1.94)

for all z⃗h = (zh, sh) ∈ Hh, and for all u⃗h = (uh, th), v⃗h = (vh, rh) ∈ Vh (cf. (1.89)). In addition, the
operator a : Hh → H′

h is continuous in the sense of (1.52), with the same constant LBF.

Proof. We follow an analogous reasoning to the proof of Lemma 1.5. In fact, let z⃗h = (zh, sh) ∈ Hh

and u⃗h = (uh, th), v⃗h = (vh, rh) ∈ Vh. Then, according to the definition of a (cf. (1.15)), and using
(1.3) and [6, Lemma 2.1, eq. (2.1b)] with p = 3, we obtain, similarly to (1.56)

[a(u⃗h+ z⃗h)−a(v⃗h+ z⃗h), u⃗h− v⃗h] ≥ CK∥uh−vh∥20,Ω+ c1(Ω) F ∥uh−vh∥30,3;Ω+ ν ∥th− rh∥20,Ω . (1.95)

Next, bounding below the first and second terms on the right hand side of (1.95) by 0, and employing
the fact that u⃗h − v⃗h := (uh − vh, th − rh) ∈ Vh in combination with the estimate (1.91), we get

[a(u⃗h + z⃗h)− a(v⃗h + z⃗h), u⃗h − v⃗h] ≥
ν

2
min

{
1, C2

d

}{
∥uh − vh ∥20,3;Ω + ∥th − rh∥20,Ω

}
,

which gives (1.94) with αBF,d :=
ν

2
min

{
1, C2

d

}
. Furthermore, we now observe that for u⃗h = (uh, th),

v⃗h = (vh, rh) ∈ Hh there certainly holds

∥a(u⃗h)− a(v⃗h)∥H′
h
≤ ∥a(u⃗h)− a(v⃗h)∥H′ ,

whence the required continuity property of a : Hh → H′
h follows directly from (1.52).

We are now in position of establishing the discrete analogue of Lemma 1.6.

Lemma 1.16. For each φh ∈ Hϕ
h, the problem (1.84) has a unique solution (u⃗h,σh) =

(
(uh, th),σh

)
∈

Hh × Hσh . Moreover, there exists a positive constant CS,d, depending only on LBF, αBF,d, and βd, and
hence independent of φh, such that

∥Sh(φh)∥0,3;Ω ≤ ∥u⃗h∥ ≤ CS,d

{
∥g∥0,Ω

(
∥φh∥0,6;Ω + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
. (1.96)
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Proof. According to Lemma 1.15 and the discrete inf-sup condition for b provided by (1.90) (cf. Lemma
1.14), the proof follows from a direct application of Theorem 1.1, with p1 = 3 and p2 = 2, to the discrete
setting represented by (1.84). In particular, the a priori bound (1.96) is consequence of the abstract
estimate (1.29) applied to (1.84), which makes use of the bounds for GD and Fφh

given by (1.39)–(1.40).

We remark here that, proceeding similarly to the derivation of (1.59), we obtain

∥σh∥div3/2;Ω ≤ Cσ,d

2∑
j=1

{(
∥g∥0,Ω

(
∥φh∥0,6;Ω + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

)j}
, (1.97)

with Cσ,d depending only on LBF, αBF,d, and βd.

Next, we aim to show that the discrete operator S̃h is well defined. To this end, we now let Ṽh be
the discrete kernel of b̃, that is

Ṽh :=
{
ψ⃗h = (ψh, r̃h) ∈ H̃h :

∫
Ω
ηh · r̃h +

∫
Ω
ψh div(ηh) = 0 ∀ηh ∈ Hρ

h

}
.

Thus, we can establish a preliminary lemma, whose proof follows almost verbatim the one of Lemma
1.14 (see also [9, Lemma 4.2]).

Lemma 1.17. There exist positive constants β̃d and C̃d such that

sup
ψ⃗j,h∈H̃h

ψ⃗j,h ̸=0

[̃b(ψ⃗j,h),ηj,h]

∥ψ⃗j,h∥
≥ β̃d ∥ηj,h∥div6/5;Ω ∀ηj,h ∈ Hρ

h , (1.98)

and
∥r̃j,h∥0,Ω ≥ C̃d ∥ψj,h∥0,6;Ω ∀ ψ⃗j,h = (ψj,h, r̃j,h) ∈ Ṽh . (1.99)

The discrete analogue of Lemma 1.8 is established next.

Lemma 1.18. For each wh ∈ Hu
h , and j ∈ {1, 2}, problem (1.86) has a unique solution (ϕ⃗j,h,ρj,h) =(

(ϕj,h, t̃j,h),ρj,h
)
∈ H̃h×Hρ

h. Moreover, there exists a positive constant C
S̃,d

, independent of wh, such
that

∥S̃h(wh)∥0,6;Ω ≤
2∑
j=1

∥ϕ⃗j,h∥ ≤ C
S̃,d

(
1 + ∥Q∥0,∞;Ω + ∥wh∥0,3;Ω

)
∥ϕD∥1/2,Γ . (1.100)

Proof. We proceed as in Lemma 1.8. In fact, given wh ∈ Hu
h , we first recall from (1.63) and (1.65)

that Aj(wh) is bounded. Then, given ψ⃗j,h := (ψj,h, r̃j,h) ∈ Ṽh, we easily deduce from (1.3), (1.99),
and simple algebraic manipulations, that

[ãj(ψ⃗j,h), ψ⃗j,h] =

∫
Ω
Qj r̃j,h · r̃j,h ≥ α̃j,d ∥ψ⃗j,h∥2 , with α̃j,d :=

CQj

2
min

{
1, C̃2

d

}
, (1.101)

which, together with the fact that [cj(wh)(ψ⃗j,h), ψ⃗j,h] = 0 (cf. (1.44)), yields the Ṽh-ellipticity of both
ãj and Aj(wh) with constant α̃j,d (cf. (1.101)). In addition, the operator b̃ satisfies the discrete inf-sup
condition (1.98) (cf. Lemma 1.17). Thus, we conclude by a direct application of the Babuška–Brezzi
theory in Banach spaces that (1.86) is well-posed for each j ∈ {1, 2}. In addition, the a priori estimate
(1.100) follows similarly to (1.62) with C

S̃,d
depending only on Rj , α̃j,d, and β̃d.
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On the other hand, we notice that, following the same arguments yielding (1.67), we are able to
show that

∥ρj,h∥div6/5;Ω ≤ C̃D

β̃2d

(
∥Qj∥0,∞;Ω + Rj ∥wh∥0,3;Ω

)(
1 +

∥Qj∥0,∞;Ω + Rj ∥wh∥0,3;Ω
α̃j,d

)
∥ϕj,D∥1/2,Γ .

(1.102)

In what follows we analyze the fixed-point equation (1.88). We begin with the discrete version of
Lemma 1.9, whose proof, being a simple translation of the arguments proving that lemma, is omitted.

Lemma 1.19. Given r > 0, let Wh be the closed ball in Hu
h with center at the origin and radius r,

and assume that the data satisfy

∥g∥0,Ω
((

1 + ∥Q∥0,∞;Ω

)
∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ ≤ r

Cd(r)
, (1.103)

where Cd(r) := CS,dmax
{
1, C

S̃,d

}
(1 + r). Then Th(Wh) ⊆ Wh.

Next, we address the discrete counterparts of Lemmas 1.10 and 1.11, whose proofs, being almost
verbatim of the continuous ones, are omitted. We just remark that Lemma 1.20 below is derived using
the strong monotonicity of a on Vh (cf. (1.94)), whereas the Ṽh-ellipticity of ãj (cf. (1.101)) and
properties (1.44)–(1.45) are employed to obtain Lemma 1.21. Thus, we simply state the corresponding
results as follows.

Lemma 1.20. Let αBF,d be given by (1.94). Then, there holds

∥Sh(ϕh)− Sh(ψh)∥0,3;Ω ≤ 1

αBF,d
∥g∥0,Ω ∥ϕh −ψh∥0,6;Ω ∀ϕh, ψh ∈ Hϕ

h .

Lemma 1.21. There exists a positive constant L
S̃,d

, depending only on Rj , α̃j,d, and β̃d, j ∈ {1, 2},
such that

∥S̃h(wh)− S̃h(zh)∥0,6:Ω ≤ L
S̃,d

(
1 + ∥Q∥0,∞;Ω + ∥wh∥0,3;Ω

)
∥ϕD∥1/2,Γ ∥wh − zh∥0,3;Ω , (1.104)

for all wh, zh ∈ Hu
h .

As a straightforward consequence of Lemmas 1.20 and 1.21, we now state the Lipschitz-continuity
of the operator Th (cf. Lemma 1.12).

Lemma 1.22. Let us define LT,d := α−1
BF,d LS̃,d

, with αBF,d and L
S̃,d

satisfying (1.94) and (1.104),
respectively. Then, there holds

∥Th(wh)−Th(zh)∥0,3;Ω ≤ LT,d

(
1+∥Q∥0,∞;Ω+∥wh∥0,3;Ω

)
∥g∥0,Ω ∥ϕD∥1/2,Γ ∥wh−zh∥0,3;Ω , (1.105)

for all wh, zh ∈ Hu
h .

We are now in position of establishing the well-posedness of (1.82).
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Theorem 1.23. Given r > 0, let Wh be the closed ball in Hu
h with center at the origin and radius r,

and assume that the data satisfy (1.103) and

LT,d

(
1 + ∥Q∥0,∞;Ω + r

)
∥g∥0,Ω ∥ϕD∥1/2,Γ < 1 . (1.106)

Then the operator Th has a unique fixed point uh ∈ Wh. Equivalently, the coupled problem (1.82) has
a unique solution (u⃗h,σh) ∈ Hh×Hσh and (ϕ⃗j,h,ρj,h) ∈ H̃h×Hρ

h, j ∈ {1, 2}, with uh ∈ Wh. Moreover,
there exist positive constants Ci,d, i ∈ {1, 2, 3, 4}, depending on r, |Ω|, LBF, αBF,d, βd, ∥Qj∥0,∞;Ω, Rj , α̃j,d,
and β̃d, such that the following a priori estimates hold

∥u⃗h∥ ≤ C1,d

{
∥g∥0,Ω

(
∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

}
, (1.107)

∥σh∥div3/2;Ω ≤ C2,d

2∑
j=1

{(
∥g∥0,Ω

(
∥ϕD∥1/2,Γ + ∥ϕr∥0,6;Ω

)
+ ∥uD∥1/2,Γ + ∥uD∥21/2,Γ

)j}
, (1.108)

∥ϕ⃗j,h∥ ≤ C3,d ∥ϕj,D∥1/2,Γ , and (1.109)

∥ρj,h∥div6/5;Ω ≤ C4,d ∥ϕj,D∥1/2,Γ . (1.110)

Proof. It follows similarly to the proof of Theorem 1.13. Indeed, we first notice from Lemma 1.19 that
Th maps the ball Wh into itself. Next, it is easy to see from (1.105) (cf. Lemma 1.22) and (1.106) that
Th is a contraction, and hence the existence and uniqueness results follow from the Banach fixed-point
theorem. In addition, it is clear that the estimates (1.109) and (1.110) follow straightforwardly from
(1.100) and (1.102), respectively, whereas combining (1.96) (respectively (1.97)) with (1.100) we obtain
(1.107) (respectively (1.108)), which ends the proof.

1.5 A priori error analysis

In this section we derive the Céa estimate for the Galerkin scheme (1.82) with the finite element sub-
spaces given by (1.81) (cf. Section 1.4.1), and then use the approximation properties of the latter to es-
tablish the corresponding rates of convergence. In fact, let (u⃗,σ) = ((u, t),σ) ∈ H×H0(div3/2; Ω) and
(ϕ⃗j ,ρj) = ((ϕj , t̃j),ρj) ∈ H̃×H(div6/5; Ω), j ∈ {1, 2}, with u ∈ W, be the unique solution of the cou-
pled problem (1.27), and let (u⃗h,σh) = ((uh, th),σh) ∈ Hh×Hσh and (ϕ⃗j,h,ρj,h) = ((ϕj,h, t̃j,h),ρj,h) ∈
H̃h × Hρ

h, j ∈ {1, 2}, with uh ∈ Wh, be the unique solution of the discrete coupled problem (1.82).
Then, we are interested in obtaining an a priori estimate for the global error

∥(u⃗,σ)− (u⃗h,σh)∥ +

2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ .

For this purpose, we establish next an ad-hoc Strang-type estimate. Hereafter, given a subspace Xh

of a generic Banach space (X, ∥ · ∥X), we set as usual dist (x,Xh) := inf
xh∈Xh

∥x− xh∥X for all x ∈ X.

Lemma 1.24. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 × X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), such
that A and B satisfy the hypotheses of Theorem 1.1 with respective constants L, α, β, and exponents
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p1, p2 ≥ 2. Furthermore, let {X1,h}h>0, {X2,h}h>0 and {Yh}h>0 be sequences of finite dimensional
subspaces of X1, X2, and Y , respectively, set Xh := X1,h × X2,h, and for each h > 0 consider a
nonlinear operator Ah : X → X ′, such that Ah|Xh

: Xh → X ′
h and B|Xh

: Xh → Y ′
h satisfy the

hypotheses of Theorem 1.1 as well, with constants Ld, αd, and βd, all of them independent of h. In
turn, given F ∈ X ′, G ∈ Y ′, and a sequence of functionals {Fh}h>0, with Fh ∈ X ′

h for each h > 0, we
let (u⃗, σ) = ((u1, u2), σ) ∈ X × Y and (u⃗h, σh) = ((u1,h, u2,h), σh) ∈ Xh × Yh be the unique solutions,
respectively, to the problems

[A(u⃗), v⃗] + [B(v⃗), σ] = [F , v⃗] ∀ v⃗ ∈ X ,

[B(u⃗), τ ] = [G, τ ] ∀ τ ∈ Y ,
(1.111)

and
[Ah(u⃗h), v⃗h] + [B(v⃗h), σh] = [Fh, v⃗h] ∀ v⃗h ∈ Xh ,

[B(u⃗h), τh] = [G, τh] ∀ τh ∈ Yh .
(1.112)

Then, there exists a positive constant CST , depending only on p1, p2, Ld, αd, βd, and ∥B∥, such that

∥u⃗− u⃗h∥X + ∥σ − σh∥Y ≤ CST C1(u⃗, u⃗h)
{
C2(u⃗) dist (u⃗, Xh) +

2∑
j=1

dist (u⃗, Xh)
pj−1

+dist (σ, Yh) + ∥F − Fh∥X′
h
+ ∥A(u⃗)−Ah(u⃗)∥X′

h

}
,

where

C1(u⃗, u⃗h) := 1 +

2∑
j=1

(
∥uj∥Xj + ∥uj,h∥Xj

)pj−2 and C2(u⃗) := 1 +

2∑
j=1

∥uj∥
pj−2
Xj

. (1.113)

Proof. It is basically a suitable modification of the proof of [42, Lemma 6.1] (see also [61, Theorem
B.2]), which in turn, is a modification of [58, Theorem 2.6]. We omit further details and just stress
that the continuity bound and inf-sup condition of the respective linear operator Ah from [42, Lemma
6.1] are now replaced by the corresponding continuity bound and strong monotonicity property of the
present nonlinear operator Ah (cf. hypotheses (i) and (ii) of Theorem 1.1), respectively.

In order to apply Lemma 1.24, we now observe that the problems (1.27) and (1.82) can be rewritten
as two pairs of corresponding continuous and discrete formulations of the type defined by (1.111) and
(1.112), namely

[a(u⃗), v⃗] + [b(v⃗),σ] = [Fϕ, v⃗] ∀ v⃗ ∈ H ,

[b(u⃗), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω) ,

[a(u⃗h), v⃗h] + [b(v⃗h),σh] = [Fϕh
, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] = [GD, τ h] ∀ τ h ∈ Hσh ,

(1.114)
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and

[Aj(u)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ H̃ ,

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) ,

[Aj(uh)(ϕ⃗j,h), ψ⃗j,h] + [̃b(ψ⃗j,h),ρj,h] = 0 ∀ ψ⃗j,h ∈ H̃h ,

[̃b(ϕ⃗j,h),ηj,h] = [G̃j ,ηj,h] ∀ηj,h ∈ Hρ
h ,

(1.115)

where the operators Aj(u) and Aj(uh) are defined as in (1.63).

The following lemma provides a preliminary estimate for the error ∥(u⃗,σ)− (u⃗h,σh)∥.

Lemma 1.25. There exists a positive constant ĈST (r), independent of h, such that

∥(u⃗,σ)− (u⃗h,σh)∥

≤ ĈST (r)
{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Hσh ) + ∥g∥0,Ω ∥ϕ− ϕh∥0,6;Ω
}
.

(1.116)

Proof. We begin by observing that the continuous and discrete systems of (1.114) satisfy the hypotheses
of Theorem 1.1, with p1 = 3 and p2 = 2, and constants ∥b∥ ≤ 1, LBF, αBF, β, αBF,d, and βd (cf. (1.36),
proofs of Lemmas 1.2, 1.4, 1.5, and Lemmas 1.14 and 1.15). Therefore, applying Lemma 1.24 to the
context given by (1.114), we deduce the existence of a constant CST > 0, depending only on LBF, αBF,d,
and βd, such that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ CST C1(u⃗, u⃗h)
{
C2(u⃗) dist (u⃗,Hh) + dist (u⃗,Hh)

2

+dist (σ,Hσh ) + ∥Fϕ − Fϕh
∥H′

h

}
.

(1.117)

In turn, proceeding as in (1.73), we get

∥Fϕ − Fϕh
∥H′

h
≤ ∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω . (1.118)

Finally, replacing (1.118) back into (1.117), and using the fact that u ∈ W and uh ∈ Wh, we readily
obtain (1.116) with ĈST (r) := CST (1 + 2 r)(1 + r), which ends the proof.

Next, we have the following result concerning ∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥.

Lemma 1.26. There exists a positive constant C̃ST (r), independent of h, such that

2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ C̃ST (r)

{ 2∑
j=1

(
dist (ϕ⃗j , H̃h) + dist (ρj ,H

ρ
h)
)

+
(
1 + ∥Q∥0,∞;Ω + r

)
∥ϕD∥1/2,Γ ∥u− uh∥0,3;Ω

}
.

(1.119)

Proof. It proceeds similarly to the proof of [42, eq. (6.18)]. Indeed, we first observe that, with u ∈ W

and uh ∈ Wh given, the continuous and discrete systems of (1.115) satisfy the hypotheses of Theorem
1.1, with p1 = p2 = 2 and constants ∥b̃∥ ≤ 1, L = Ld = ∥Qj∥0,∞;Ω + Rj r, α̃j , β̃, α̃j,d, and β̃d (cf.
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(1.38), (1.65), (1.61), (1.43), (1.101), and (1.98)). Hence, applying Lemma 1.24 to the context given
by (1.115), we deduce the existence of a constant CjST (r) > 0, depending only on r, ∥Qj∥0,∞;Ω, Rj , α̃j,d,
and β̃d, such that

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥

≤ CjST (r)
{
dist (ϕ⃗j , H̃h) + dist (ρj ,H

ρ
h) + ∥Aj(u)(ϕ⃗j)−Aj(uh)(ϕ⃗j)∥H̃′

h

}
.

(1.120)

In turn, in order to bound the last term on the right-hand side of (1.120), we notice that the definition
of Aj(w) (cf. (1.63)) and the estimate (1.45) (cf. Lemma 1.3) give∣∣[Aj(u)(ϕ⃗j)−Aj(uh)(ϕ⃗j), ψ⃗j,h]

∣∣ = ∣∣[cj(u)(ϕ⃗j)− cj(uh)(ϕ⃗j), ψ⃗j,h]
∣∣

≤ Rj ∥ϕ⃗j∥ ∥u− uh∥0,3;Ω ∥ψ⃗j,h∥ ,

which, together with (1.120), the bound of ∥ϕ⃗j∥ (cf. (1.66)), and the fact that u ∈ W, yields

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥

≤ CjST (r)
{
dist (ϕ⃗j , H̃h) + dist (ρj ,H

ρ
h) + C

S̃j
Rj
(
1 + ∥Qj∥0,∞;Ω + r

)
∥ϕj,D∥1/2,Γ ∥u− uh∥0,3;Ω

}
.

The foregoing inequality leads to (1.119) with C̃ST (r) := max{C̃1
ST (r), C̃

2
ST (r)}, where

C̃jST (r) := CjST (r)max
{
1, C

S̃j
Rj
}

∀ j ∈ {1, 2} ,

thus concluding the proof.

The required Céa estimate will now follow from (1.116) and (1.119). In fact, bounding ∥ϕ−ϕh∥0,6;Ω
in (1.116) by the right hand side of (1.119), we find that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ ĈST (r)
{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Hσh )
}

+ CST (r) ∥g∥0,Ω
2∑
j=1

(
dist (ϕ⃗j , H̃h) + dist (ρj ,H

ρ
h)
)

+ CST (r)
(
1 + ∥Q∥0,∞;Ω + r

)
∥g∥0,Ω ∥ϕD∥1/2,Γ ∥u− uh∥0,3;Ω,

(1.121)

where CST (r) := ĈST (r) C̃ST (r). In turn, imposing the constant multiplying ∥u− uh∥0,3;Ω in (1.121)
to be sufficiently small, say ≤ 1/2, we derive the a priori error estimate for ∥(u⃗,σ)− (u⃗h,σh)∥. Hence,
employing this latter estimate to bound the last term on the right-hand side of (1.119), we deduce

the corresponding upper bound for
2∑
j=1

∥(ϕ⃗j ,ρj) − (ϕ⃗j,h,ρj,h)∥. More precisely, we have proved the

following result.

Theorem 1.27. Given r > 0, assume that the datum ϕD satisfy

CST (r)
(
1 + ∥Q∥0,∞;Ω + r

)
∥g∥0,Ω∥ϕD∥1/2,Γ ≤ 1

2
. (1.122)



1.5. A priori error analysis 35

Then, there exists a positive constant C, independent of h, but depending on r, LBF, αBF,d, βd, Rj, αj,d,
β̃d, ∥Qj∥0,∞;Ω, ∥g∥0,Ω, j ∈ {1, 2}, and the datum ϕD, such that

∥(u⃗,σ)− (u⃗h,σh)∥+
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥

≤ C

{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Hσh ) +
2∑
j=1

(
dist (ϕ⃗j , H̃h) + dist (ρj ,H

ρ
h)
)}

.

At this point we remark that (1.76), (1.106), and (1.122) share a similar structure holding for a given
r > 0 and sufficiently small datum ϕD. However, these assumptions are not fully comparable since
LT, LT,d, and CST (r), being defined in terms of the unknown constants ∥i6∥, ∥i3∥, CP , Cd, βd, and
β̃d, are not explicitly computable. As a consequence, we are not able to check in practice whether the
examples to be considered below in Section 1.6 satisfy those hypotheses. Nevertheless, the numerical
results reported there confirm the good performance of the method as well as the predicted rates of
convergence, which suggests that the aforementioned constraints on the data are more technical issues
of the analysis rather than limitations of the applicability of the numerical scheme. In addition, we
stress that they do not necessarily have a physical meaning, but only constitute sufficient conditions
guaranteeing that problems (1.27) and (1.82) are well-posed, and that the a priori error estimate
derived in Theorem 1.27 holds, respectively. In turn, it is important to highlight that (1.76), (1.106),
and (1.122) are less restrictive than their counterparts for the augmented fully-mixed formulation
proposed in [30], since they only require assumptions on ϕD instead of on uD, ϕD, and ϕr, as in [30,
eqs. (3.46) and (4.22), and Theorem 5.4].

In order to establish the rate of convergence of the Galerkin scheme (1.82), we recall next the
approximation properties of the finite element subspaces Hu

h ,Ht
h,Hσh ,H

ϕ
h,H

t̃
h, and Hρ

h (cf. (1.81)),
whose derivations can be found in [58], [57], [52], [68], and [17, Section 3.1] (see also [42, Section 5]).

(AP)1: there exists positive constants C1, C2, C3, and C4, independent of h, such that for each
l ∈ [0, k + 1], and for each v ∈ Wl,3(Ω), r ∈ Hl(Ω) ∩ L2

tr(Ω), ψ ∈ Wl,6(Ω), and r̃ ∈ Hl(Ω), there hold

dist (v,Hu
h) := inf

vh∈Hu
h

∥v − vh∥0,3;Ω ≤ C1 h
l ∥v∥l,3;Ω ,

dist (r,Ht
h) := inf

rh∈Ht
h

∥r− rh∥0,Ω ≤ C2 h
l ∥r∥l,Ω ,

dist (ψ,Hϕh) := inf
ψh∈Hϕ

h

∥ψ − ψh∥0,6;Ω ≤ C3 h
l ∥ψ∥l,6;Ω ,

and
dist (r̃,Ht̃

h) := inf
r̃h∈Ht̃

h

∥r̃− r̃h∥0;Ω ≤ C4 h
l ∥r̃∥l,Ω .

(AP)2: there exists positive constants C5 and C6, independent of h, such that for each l ∈ (0, k + 1],
and for each τ ∈ Hl(Ω) ∩H0(div3/2; Ω) with div(τ ) ∈ Wl,3/2(Ω), and η ∈ Hl(Ω) ∩H(div6/5; Ω) with
div(η) ∈ Wl,6/5(Ω), there hold

dist (τ ,Hσh ) := inf
τh∈Hσ

h

∥τ − τ h∥div3/2;Ω ≤ C5 h
l
{
∥τ∥l,Ω + ∥div(τ )∥l,3/2;Ω

}
,
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and
dist (η,Hρ

h) := inf
ηh∈H

ρ
h

∥η − ηh∥div6/5;Ω ≤ C6 h
l
{
∥η∥l,Ω + ∥div(η)∥l,6/5;Ω

}
.

Now we are in a position to provide the theoretical rate of convergence of the Galerkin scheme (1.82).

Theorem 1.28. In addition to the hypotheses of Theorems 1.13, 1.23, and 1.27, assume that there
exists l ∈ (0, k + 1] such that u ∈ Wl,3(Ω), t ∈ Hl(Ω) ∩ L2

tr(Ω), σ ∈ Hl(Ω) ∩H0(div3/2; Ω), div(σ) ∈
Wl,3/2(Ω), and for each j ∈ {1, 2}, ϕj ∈ Wl,6(Ω), t̃j ∈ Hl(Ω), ρj ∈ Hl(Ω) ∩ H(div6/5; Ω), and
div(ρj) ∈ Wl,6/5(Ω). Then, there exists a positive constant C, independent of h, such that

∥(u⃗,σ)− (u⃗h,σh)∥+
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ C hl
{
∥u∥l,3;Ω + ∥t∥l,Ω + ∥u∥2l,3;Ω + ∥t∥2l,Ω

+ ∥σ∥l,Ω + ∥div(σ)∥l,3/2;Ω +

2∑
j=1

(
∥ϕj∥l,6;Ω + ∥t̃j∥l,Ω + ∥ρj∥l,Ω + ∥div(ρj)∥l,6/5;Ω

)}
.

Proof. The result follows from a direct application of Theorem 1.27 and the approximation properties
provided by (AP)1 and (AP)2. Further details are omitted.

1.6 Numerical results

In this section we present three examples illustrating the performance of the fully-mixed finite
element method (1.82) on a set of quasi-uniform triangulations of the respective domains, and con-
sidering the finite element subspaces defined by (1.81) (cf. Section 1.4.1). In what follows, we refer
to the corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply
P0 − P0 − RT0 − P0 −P0 −RT0 and P1 − P1 − RT1 − P1 −P1 −RT1, respectively. Our implemen-
tation is based on a FreeFem++ code [70], in conjunction with the direct linear solver UMFPACK [50]. A
Newton–Raphson algorithm with a fixed tolerance tol = 1E − 6 is used for the resolution of the non-
linear problem (1.82). As usual, the iterative method is finished when the relative error between two
consecutive iterations of the complete coefficient vector, namely coeffm+1 and coeffm, is sufficiently
small, that is,

∥coeffm+1 − coeffm∥
∥coeffm+1∥

≤ tol ,

where ∥ · ∥ stands for the usual Euclidean norm in RDOF with DOF denoting the total number of degrees
of freedom defining the finite element subspaces Hu

h ,Ht
h,Hσh ,H

ϕ
h,H

t̃
h, and Hρ

h (cf. (1.81)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := ∥u− uh∥0,3;Ω , e(t) := ∥t− th∥0,Ω , e(σ) := ∥σ − σh∥div3/2;Ω , e(p) := ∥p− ph∥0,Ω ,

e(ϕj) := ∥ϕj − ϕj,h∥0,6;Ω , e(t̃j) := ∥t̃j − t̃j,h∥0;Ω , e(ρj) := ∥ρj − ρj,h∥div6/5;Ω, j ∈ {1, 2} ,

where ph stands for the post-processed pressure suggested by the identity (1.7), that is

ph = − 1

n
tr(σh) . (1.123)
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It follows that
∥p− ph∥0,Ω =

1

n
∥tr(σ − σh)∥0,Ω ≤ 1√

n
∥σ − σh∥div3/2;Ω ,

which shows that the rate of convergence for p is at least the one for σ, which is indeed confirmed
below by the numerical results reported. Next, as usual, for each ⋆ ∈

{
u, t,σ, p, ϕj , t̃j ,ρj

}
we let r(⋆)

be the experimental rate of convergence given by

r(⋆) :=
log
(
e(⋆)/ê(⋆)

)
log(h/ĥ)

,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. Similarly to [30, Section 6], in all
them we take for sake of simplicity ν = 1, ϱ = 1, R1 = 1, R2 = 1 and ϕr = (0, 0) . In turn, in the
first two examples the tensors K, Q1, and Q2 are taken as the identity matrix I, which satisfy (1.3).
In addition, the mean value of tr(σh) over Ω is fixed via a Lagrange multiplier strategy (adding one
row and one column to the matrix system that solves (1.84) for uh, th, and σh).

Example 1: 2D domain with different values of the parameter F

In this example we replicate the one from [30, Section 6, Example 1]. More precisely, we corroborate
the rates of convergence in a two-dimensional domain and also study the performance of the numerical
method with respect to the number of Newton iterations required to achieve certain tolerance when
different values of the parameter F are given. The domain is the square Ω = (−1, 1)2. We consider the
potential type gravitational acceleration g = (0,−1)t, and choose the data f (cf. (1.2)) such that the
exact solution is given by

u(x1, x2) =

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) ,

ϕ1(x1, x2) = 0.5 + 0.5 cos(x1x2) , and ϕ2(x1, x2) = 0.1 + 0.3 exp(x1x2) .

The model problem is then complemented with the appropriate Dirichlet boundary conditions. Tables
1.1 and 1.3 show the convergence history for a sequence of quasi-uniform mesh refinements, including
the number of Newton iterations when F = 10. Notice that we are able not only to approximate the
original unknowns but also the pressure field through the formula (1.123). The results confirm that the
optimal rates of convergence O(hk+1) predicted by Theorem 1.28 are attained for k = 0, 1. The Newton
method exhibits a behavior independent of the meshsize, converging in five iterations in all cases. In
Figure 1.1 we display the solution obtained with the fully-mixed P1 − P1 − RT1 − P1 − P1 − RT1

approximation with meshsize h = 0.0284 and 39, 102 triangle elements (actually representing 2, 074, 454

DOF). On the other hand, in Table 1.2 we show the behaviour of the iterative method as a function of the
parameter F ∈ {100, 101, 102, 103, 104, 105}, considering polynomial degree k = 0, different meshsizes
h, and a tolerance tol = 1E − 06. In this way, here we illustrate that the inertial term F |u|u is well
handled by the mixed finite element method (1.82), and that the latter evidences a robust behavior
with respect to the parameter F. In fact, only 9 Newton iterations are required to converge in the most
challenging case, namely F = 105.
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Example 2: Convergence against smooth exact solutions in a 3D domain

We now replicate [30, Section 6, Example 2]. More precisely, we consider the cube domain Ω = (0, 1)3

and the exact solution:

u(x1, x2, x3) =

 sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x1, x2, x3) = cos(πx1) exp(x2 + x3) ,

ϕ1(x1, x2, x3) = 0.5 + 0.5 cos(x1x2x3) , and ϕ2(x1, x2, x3) = 0.1 + 0.3 exp(x1x2x3) .

Similarly to the first example, we consider F = 10 and g = (0, 0,−1)t, whereas the data f is computed
from (1.2) using the above solution. The numerical solutions are shown in Figure 1.2, which were built
using the fully-mixed P0 − P0 − RT0 − P0 −P0 −RT0 approximation with meshsize h = 0.0643 and
63, 888 tetrahedral elements (actually representing 1, 867, 272 DOF). The convergence history for a set
of quasi-uniform mesh refinements using k = 0 is shown in Table 1.4. Again, the mixed finite element
method converges optimally with order O(h), as it was proved by Theorem 1.28.

Example 3: Flow through porous media with channel network

This last example is inspired by [3, Section 5.2.4], which, similarly to [30, Section 6, Example 3],
focuses on flow through porous media with channel network. To this end, we consider the square domain
Ω = (−1, 1)2 with an internal channel network denoted as Ωc (see the first plot of Figure 1.3 below),
and boundary Γ, whose left, right, upper and lower parts are given by Γleft = {−1} × (−1, 1),Γright =

{1} × (−1, 1),Γtop = (−1, 1) × {1}, and Γbottom = (−1, 1) × {−1}, respectively. We consider the
coupling of the Brinkman–Forchheimer and double-diffusion equations (1.8) in the whole domain Ω

with Q1 = 0.5 I and Q2 = 0.125 I, but with different values of the parameters F and K = α I for the
interior and the exterior of the channel, that is,

F =

{
10 in Ωc

1 in Ω \ Ωc

and α =

{
1 in Ωc

0.001 in Ω \ Ωc

.

The parameter choice corresponds to increased inertial effect (F = 10) in the channel and a high
permeability (α = 1), compared to reduced inertial effect (F = 1) in the porous medium and low
permeability (α = 0.001). In addition, the boundaries conditions are

u · n = 0.2 , u · t = 0 on Γleft , σ n = 0 on Γ \ Γleft ,

ϕ1 = 0.3 on Γbottom , ϕ1 = 0 on Γtop , ρ1 · n = 0 on Γleft ∪ Γright ,

ϕ2 = 0.2 on Γbottom , ϕ2 = 0 on Γtop , ρ2 · n = 0 on Γleft ∪ Γright .

In particular, the first row of boundary equations corresponds to inflow on the left boundary and
zero stress outflow on the rest of the boundary. We point out that, differently from [30, Section 6,
Example 3], Dirichlet boundary conditions for temperature and concentration are assumed on the
top and bottom of the domain instead of on the left and right sides of Ω as in [30]. We also note
that, using similar arguments to those employed in [34], we are able to extended our analysis to the
present case of mixed boundary conditions for the double-diffusion equations. In Figure 1.3, we display
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the computed magnitude of the velocity, velocity gradient, pseudostress tensor, and gradients of the
temperature and concentration, and the temperature and concentration fields, which were built using
the fully-mixed P0−P0−RT0−P0−P0−RT0 approximation on a mesh with 27, 287 triangle elements
(actually representing 475, 313 DOF). Similarly to [30], faster flow through the channel network, with
a significant velocity gradient across the interface between the porous medium and the channel, are
observed here. In addition, the magnitude of the pseudostress tensor is more diffused, since it includes
the pressure field. In turn, the temperature and concentration are zero on the top of the domain and go
increasing towards the bottom of it, which is consistent with the behavior observed in the magnitude
of the temperature and concentration gradients. According to the above, we stress that the fully-mixed
approach that we have proposed for the coupling of the Brinkman–Forchheimer and double-diffusion
equations has the ability to handle heterogeneous media using spatially varying parameters. Moreover,
while this example is certainly the most challenging one, due to the strong jump discontinuity of
the parameters across the two regions, we highlight that the numerical method (1.82) was able to
handle it very efficiently. We notice that the mesh used in this example was built by considering an
appropriate refinement around the interface that couples the porous medium with the channel network.
Nevertheless, this refinement can be automatized by employing a suitable a posteriori error indicator
that captures the aforementioned discontinuity of the parameters. The corresponding a posteriori error
analysis and numerical implementation will be addressed in a future work.

We end this section with a comparison between the present approach and the one from [30] in
terms of the corresponding DOF involved and the number of unknowns that they approximate. Indeed,
while at first glance the fully-mixed method (1.82) seems more expensive than its augmented mixed
counterpart from [30], we stress that the increase observed in the number of unknowns of the Galerkin
scheme (1.82) with respect to that from [30] for the same mesh, is due to the fact that, differently
from the latter, the former provides direct approximations to three additional variables of physical
interest as well, namely the velocity gradient tensor t, the temperature gradient vector t̃1, and the
concentration gradient vector t̃2, in addition to yielding the possibility of employing a post-processing
formula to recover the pressure (1.123). Moreover, these four further approximations hold with the
same rate of convergence of the remaining variables. However, if one wanted to use the method from
[30] to approximate the aforementioned extra unknowns, then one would need to employ numerical
differentiation, which, as we know, leads to loss of accuracy of the respective computations.
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

644 0.7454 5 0.6265 – 3.5704 – 20.4886 – 1.7848 –
2818 0.3667 5 0.2928 1.072 1.7526 1.003 9.1580 1.135 0.6221 1.486

10464 0.1971 5 0.1527 1.049 0.9061 1.063 4.7110 1.071 0.3118 1.113
41124 0.1036 5 0.0760 1.085 0.4593 1.057 2.3581 1.077 0.1521 1.117

164698 0.0554 5 0.0384 1.087 0.2288 1.111 1.1832 1.100 0.0758 1.109
665758 0.0284 5 0.0191 1.049 0.1130 1.059 0.5862 1.053 0.0367 1.088

e(ϕ1) r(ϕ1) e(t̃1) r(t̃1) e(ρ1) r(ρ1) e(ϕ2) r(ϕ2) e(t̃2) r(t̃2) e(ρ2) r(ρ2)

0.0450 – 0.1839 – 0.5943 – 0.0759 – 0.2101 – 0.4794 –
0.0227 0.962 0.1236 0.560 0.2962 0.982 0.0387 0.952 0.1023 1.014 0.2247 1.068
0.0129 0.907 0.0712 0.890 0.1585 1.007 0.0214 0.950 0.0541 1.026 0.1148 1.082
0.0069 0.977 0.0360 1.061 0.0796 1.071 0.0114 0.978 0.0278 1.040 0.0588 1.040
0.0036 1.051 0.0183 1.080 0.0402 1.090 0.0062 0.987 0.0140 1.094 0.0294 1.105
0.0018 1.018 0.0091 1.053 0.0199 1.055 0.0030 1.055 0.0069 1.066 0.0144 1.068

Table 1.1: Example 1, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P0−P0−RT0−P0−P0−RT0 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10 .

F

h
0.7454 0.3667 0.1971 0.1036 0.0554 0.0284

100 4 4 4 4 4 4
101 5 5 5 5 5 5
102 7 7 7 7 7 7
103 8 8 8 8 8 8
104 9 9 9 8 8 8
105 8 9 9 9 9 8

Table 1.2: Example 1, performance of the iterative method (number of iterations) upon variations of
the parameter F with polynomial degree k = 0 .
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1972 0.7454 5 0.1929 – 0.9854 – 5.3894 – 0.3053 –
8714 0.3667 5 0.0378 2.299 0.2021 2.234 1.1352 2.196 0.0608 2.274

32480 0.1971 5 0.0100 2.140 0.0544 2.114 0.3022 2.132 0.0159 2.166
127924 0.1036 5 0.0025 2.153 0.0135 2.172 0.0766 2.135 0.0039 2.188
512898 0.0554 5 0.0006 2.217 0.0034 2.173 0.0191 2.214 0.0009 2.165

2074454 0.0284 5 0.0001 2.122 0.0008 2.105 0.0047 2.116 0.0002 2.101

e(ϕ1) r(ϕ1) e(t̃1) r(t̃1) e(ρ1) r(ρ1) e(ϕ2) r(ϕ2) e(t̃2) r(t̃2) e(ρ2) r(ρ2)

0.0057 – 0.0692 – 0.1702 – 0.0086 – 0.0313 – 0.0956 –
0.0014 1.967 0.0169 1.990 0.0361 2.185 0.0022 1.927 0.0077 1.980 0.0209 2.143
0.0004 1.926 0.0046 2.087 0.0097 2.125 0.0006 2.030 0.0022 1.991 0.0057 2.092
0.0001 1.846 0.0011 2.139 0.0024 2.148 0.0001 1.888 0.0006 2.126 0.0015 2.090
3 E-05 2.228 0.0002 2.227 0.0006 2.214 5 E-05 2.051 0.0001 2.134 0.0004 2.182
8 E-06 2.113 7 E-05 2.101 0.0001 2.108 1 E-05 2.071 4 E-05 2.127 9 E-05 2.132

Table 1.3: Example 1, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P1−P1−RT1−P1−P1−RT1 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10 .

DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1512 0.7071 5 0.5090 – 2.6224 – 15.6024 – 1.2501 –
11616 0.3536 5 0.2705 0.912 1.4314 0.874 8.2301 0.923 0.6804 0.877
91008 0.1768 5 0.1382 0.969 0.7391 0.954 4.1324 0.994 0.3106 1.131

483336 0.1010 5 0.0793 0.993 0.4267 0.982 2.3465 1.011 0.1568 1.222
1867272 0.0643 5 0 .0505 0.998 0.2726 0.992 1.4870 1.009 0.0920 1.179

e(ϕ1) r(ϕ1) e(t̃1) r(t̃1) e(ρ1) r(ρ1) e(ϕ2) r(ϕ2) e(t̃2) r(t̃2) e(ρ2) r(ρ2)

0.0379 – 0.0919 – 0.3105 – 0.0784 – 0.1062 – 0.2233 –
0.0231 0.714 0.0793 0.213 0.1835 0.759 0.0444 0.820 0.0613 0.792 0.1229 0.862
0.0121 0.937 0.0472 0.745 0.0972 0.917 0.0230 0.951 0.0330 0.896 0.0636 0.951
0.0069 0.986 0.0283 0.913 0.0564 0.971 0.0132 0.986 0.0192 0.959 0.0367 0.983
0.0044 0.995 0.0183 0.964 0.0361 0.988 0.0084 0.995 0.0124 0.982 0.0234 0.993

Table 1.4: Example 2, Number of degrees of freedom, meshsizes, Newton iteration count, errors, and
rates of convergence for the fully-mixed P0−P0−RT0−P0−P0−RT0 approximation for the coupling
of the Brinkman–Forchheimer and double-diffusion equations with F = 10.
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Figure 1.1: Example 1, Computed magnitude of the velocity, velocity gradient component, and pseu-
dostress tensor component (top plots); computed pressure field, temperature field, and magnitude of
the temperature gradient (middle plots); concentration field and magnitude of the concentration gra-
dient (bottom plots).



1.6. Numerical results 43

Figure 1.2: Example 2, Computed magnitude of the velocity, velocity gradient component, pseudostress
tensor component (top plots); compute pressure field, temperature field, and magnitude of the temper-
ature gradient (middle plots); concentration field and magnitude of the concentration gradient (bottom
plots).



1.6. Numerical results 44

Figure 1.3: Example 3, Domain configuration, computed magnitude of the velocity, and computed
magnitude of the velocity gradient (top plots); pseudostress tensor, temperature field, and magnitude
of the temperature gradient (middle plots); concentration field and magnitude of the concentration
gradient (bottom plots).



CHAPTER 2

A posteriori error analysis of a Banach spaces-based fully mixed FEM
for double-diffusive convection in a fluid-saturated porous medium

2.1 Introduction

We have recently introduced and analyzed in Chapter 1, a Banach spaces-based fully-mixed vari-
ational formulation for the steady double-diffusive convection in a fluid-saturated porous medium
described by the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations
in Rn, n ∈ {2, 3}. In there, besides the velocity, temperature, and concentration, the approach in-
troduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temper-
ature/concentration, its gradient and the velocity, as further unknowns. As a consequence, a new
fully mixed variational formulation presenting a Banach spaces framework in each set of equations is
obtained. In this way, and differently from the techniques previously developed for this and related
coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor
into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a
fixed-point equation, so that the well-known Banach theorem, combined with classical results on non-
linear monotone operators and Babuška-Brezzi’s theory in Banach spaces, are applied to prove the
unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satis-
fying the required discrete inf-sup conditions as well as optimal a priori error estimates are specified
in Chapter 1.

Now, it is well known that adaptive algorithm based on a posteriori error estimates are very well
suited to recover the lose of orders of convergence of most of the standard Galerkin procedures, such
as finite element and mixed finite element methods, that are applied, specially to nonlinear problems,
under the eventual presence of singularities or high gradients of the exact solutions. In particular, this
powerful tool has been applied to quasi-Newtonian fluid flows obeying the power law, which include
the Brinkman–Forchheimer model. In this direction, we refer to [53], [49], [54], [83], and [31], for differ-
ent contributions addressing this interesting issue. Particularly, in [53] an a posteriori error estimator
defined via a non-linear projection of the residuals of the variational equations for a three-field model
of a generalized Stokes problem was proposed and analyzed. In turn, a new a posteriori error estimator
for a mixed finite element approximation of non-Newtonian fluid flow problems is developed in [54].
We observe that this mixed formulation, as in the finite volume methods, possesses local conservation

45
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properties, namely conservation of the momentum and the mass. Later on, a posteriori error analy-
ses for the aforementioned Brinkman–Darcy–Forchheimer model in velocity-pressure formulation have
been developed in [83]. In fact, two types of error indicators related to the discretization and to the
linearization of the problem are established. Furthermore, the first contribution devoted to derive an
a posteriori error analysis of the primal-mixed finite element method for the Navier–Stokes/Darcy–
Forchheimer coupled problem was proposed and analyzed in [31]. More precisely, usual techniques
employed within the Hilbertian framework are extended in [31] to the case of Banach spaces by deriv-
ing a reliable and efficient a posteriori error estimator for the mixed finite element method introduced
in [21]. The above includes corresponding local estimates and new Helmholtz decompositions for the
reliability, as well as respective inverse inequalities and local estimates of bubble functions for the effi-
ciency. Meanwhile, a posteriori error analysis of a momentum conservative Banach space-based mixed
finite element method for the Navier–Stokes problem was developed in [13]. Standard arguments re-
lying on duality techniques, a suitable Helmholtz decomposition in Banach frameworks and classical
approximation properties, are combined there with corresponding small data assumptions to derive
the reliability of the estimators. In turn, similar techniques to those in [13] are employed as well in
[63] to derive reliable and efficient residual-based a posteriori error estimators in 2D and 3D for the
fully-mixed finite element methods introduced in [42] and [43], thus providing the first a posteriori
error analyses of non-augmented Banach spaces-based mixed finite element methods for the stationary
Boussinesq and Oberbeck-Boussinesq systems. Finally, we refer to [32] for a recent a posteriori error
analysis of the partially augmented mixed formulation for the coupled Brinkman–Forchheimer and
double-diffusion equations introduced in [30]. We remark that a posteriori error analysis techniques
developed in [65], [67], [45], [27], [29], and [46] for augmented-mixed formulations in Hilbert spaces,
with the ones described in [31] and [13] for Banach spaces-based mixed formulations are combined in
[32] to develop two reliable and efficient residual-based a posteriori error estimators in two and three
dimensions.

In this chapter we proceed similarly to [13] and [63] and derive reliable and efficient residual-based
a posteriori error estimators in 2D and 3D for the fully-mixed finite element method introduced in
Chapter 1. This means that our analysis begins by applying the strong monotonicity and inf-sup
conditions of the operators defining the continuous formulation. Next, we apply suitable Helmholtz
decompositions in non-standard Banach spaces, local approximation properties of the Clément and
Raviart–Thomas interpolants, and small data assumption, to prove the reliability of a residual-based
estimator. In turn, the efficiency estimate is consequence of standard arguments such as inverse in-
equalities, the localization technique based on bubble functions, and other known results to be specified
later on in Section 2.3.3. We remark that up to the authors’ knowledge, the present work provides the
first a posteriori error analyses of non-augmented Banach spaces-based mixed finite element methods
for the coupling of the stationary Brinkman–Forchheimer and double-diffusion equations.

The rest of this chapter is organized as follows. The remainder of this section introduces some
standard notations and functional spaces. In Section 2.2 we recall from Chapter 1, the model problem
and its continuous and discrete fully-mixed variational formulations. Next, in Section 2.3 we derive
in full details a reliable and efficient residual-based a posteriori error estimator for the 2D version of
the problem. This includes preliminary results to be utilized for the derivation of the reliability and
efficiency estimates, and then the proofs of the latter themselves, respectively. Then, in Section 2.4
we establish the 3D version of the a posteriori error estimator provided in Section 2.3. Finally, several
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numerical results confirming the reliability and efficiency of the a posteriori error estimator, as well
as the good performance of the associated adaptive algorithm, and confirming the recovery of optimal
rates of convergence, are reported in Section 2.5.

2.2 The model problem and its variational formulation

In this section we recall from Chapter 1 the model problem, its fully-mixed variational formulation,
and the associated mixed finite element method.

2.2.1 The coupling of the Brinkman–Forchheimer and double-diffusion equations

In what follows we consider the model introduced in [72] (see also [30, 24]), which is given by a
steady double-diffusive convection system in a fluid saturated porous medium. More precisely, we focus
on solving the coupling of the incompressible Brinkman–Forchheimer and double-diffusion equations,
which reduces to finding a velocity field u, a pressure field p, a temperature field ϕ1 and a concentration
field ϕ2, both defining a vector ϕ := (ϕ1, ϕ2), such that

−ν∆u+K−1u+ F |u|u+∇p = f(ϕ) in Ω , div(u) = 0 in Ω ,

−div(Q1∇ϕ1) + R1 u · ∇ϕ1 = 0 in Ω , −div(Q2∇ϕ2) + R2 u · ∇ϕ2 = 0 in Ω ,

u = uD, ϕ1 = ϕ1,D, and ϕ2 = ϕ2,D on Γ ,

∫
Ω
p = 0 ,

(2.1)

with parameters ν := Da µ̃/µ and F := ϑ Da R1, where Da stands for the Darcy number, µ̃ the viscosity,
µ the effective viscosity, R1 the thermal Rayleigh number, R2 the solute Rayleigh number, and ϑ is a
real number that can be calculated experimentally. In addition, the Dirichlet boundary data is given
by uD ∈ H1/2(Γ), ϕ1,D ∈ H1/2(Γ) and ϕ2,D ∈ H1/2(Γ). Owing to the incompressibility of the fluid and
the Dirichlet boundary condition for u, the datum uD must satisfy the compatibility condition∫

Γ
uD · n = 0 . (2.2)

In turn, the external force f is defined by

f(ϕ) := − (ϕ1 − ϕ1,r)g +
1

ϱ
(ϕ2 − ϕ2,r)g , (2.3)

with g representing the potential type gravitational acceleration, ϕ1,r the reference temperature, ϕ2,r
the reference concentration of a solute, both of them living in L6(Ω), and ϱ is another parameter
experimentally valued that can be assumed to be greater than 1 (see [72, Section 2] for details). In
turn, the permeability, and the thermal diffusion and concentration diffusion tensors, are denoted by
K,Q1 and Q2, respectively, all them lying in L∞(Ω). Moreover, the inverse of K and tensors Q1,Q2,
are uniformly positive definite tensors, which means that there exist positive constants CK, CQ1 , and
CQ2 , such that

v ·K−1(x)v ≥ CK |v|2 and v ·Qj(x)v ≥ CQj |v|2 ∀v ∈ Rn, ∀x ∈ Ω, j ∈ {1, 2}. (2.4)
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Next, we introduce the velocity gradient t, the pseudostress tensor σ, the temperature/concentration
gradient t̃j , and suitable auxiliary variables ρj depending on t̃j , u, and ϕj , all of which are defined,
respectively, by

t := ∇u , σ := ν t− p I , t̃j := ∇ϕj , ρj := Qj t̃j −
1

2
Rj ϕj u, ∀ j ∈ {1, 2}, in Ω . (2.5)

In this way, utilizing the incompressibility condition (cf. second eq. in (2.1)) to eliminate the pressure,
which can be computed afterwards as

p = − 1

n
tr(σ) in Ω , (2.6)

we find that problem (2.1) can be rewritten, equivalently, as follows: Find (u, t,σ) and (ϕj , t̃j ,ρj), j ∈
{1, 2}, in suitable spaces to be indicated below such that

t = ∇u in Ω , σd = ν t in Ω , K−1u+ F |u|u− div(σ) = f(ϕ) in Ω ,

t̃j = ∇ϕj in Ω , Qj t̃j −
1

2
Rj ϕj u = ρj in Ω ,

1

2
Rj u · t̃j − div(ρj) = 0 in Ω ,

u = uD and ϕ = ϕD on Γ ,

∫
Ω
tr(σ) = 0 ,

(2.7)

where the Dirichlet datum for ϕ is given by ϕD := (ϕ1,D, ϕ2,D). Note that (2.6) and the last equation
of (2.7) establish that

∫
Ω p = 0, which is required for purposes of uniqueness of the pressure.

2.2.2 The fully-mixed variational formulation

We first recall from [24, Section 2.2] the following tensorial functional spaces

L2
tr(Ω) :=

{
r ∈ L2(Ω) : tr(r) = 0 in Ω

}
,

H0(div3/2; Ω) :=
{
τ ∈ H(div3/2; Ω) :

∫
Ω
tr(τ ) = 0

}
,

and observe that the following decomposition holds:

H(div3/2; Ω) = H0(div3/2; Ω)⊕ R I . (2.8)

Next, for the sake of clarity, we set the notations

u⃗ := (u, t) , v⃗ := (v, r) , w⃗ := (w, s) ∈ H := L3(Ω)× L2
tr(Ω) ,

ϕ⃗j := (ϕj , t̃j) , ψ⃗j := (ψj , r̃j) ∈ H̃ := L6(Ω)× L2(Ω) ,

where the product spaces H and H̃ are endowed, respectively, with the norms

∥v⃗∥ := ∥v∥0,3;Ω + ∥r∥0,Ω ∀ v⃗ ∈ H and ∥ψ⃗j∥ := ∥ψj∥0,6;Ω + ∥r̃j∥0,Ω ∀ ψ⃗j ∈ H̃ .

Hence, proceeding as in [24, eq. (2.27)], that is, multiplying the first two rows of equations in (2.7)
by suitable test functions, integrating by parts, using (2.2) and the Dirichlet boundary conditions, we
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find that the fully-mixed variational formulation of (2.7) reduces to: Find (u⃗,σ) ∈ H×H0(div3/2; Ω)

and (ϕ⃗j ,ρj) ∈ H̃×H(div6/5; Ω), j ∈ {1, 2}, such that

[a(u⃗), v⃗] + [b(v⃗),σ] = [Fϕ, v⃗] ∀ v⃗ ∈ H ,

[b(u⃗), τ ] = [GD, τ ] ∀ τ ∈ H0(div3/2; Ω) ,

[ãj(ϕ⃗j), ψ⃗j ] + [cj(u)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ H̃ ,

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) ,

(2.9)

where the operators a : H → H′, b : H → H0(div3/2; Ω)
′, ãj : H̃ → H̃′, b̃ : H̃ → H(div6/5; Ω)

′, and
cj(w) : H̃ → H̃′, for a given w ∈ L3(Ω), are defined, respectively, as

[a(w⃗), v⃗] :=

∫
Ω
K−1w · v + F

∫
Ω
|w|w · v + ν

∫
Ω
s : r , (2.10)

[b(v⃗), τ ] := −
∫
Ω
v · div(τ )−

∫
Ω
τ : r , (2.11)

[ãj(ϕ⃗j), ψ⃗j ] :=

∫
Ω
Qj t̃j · r̃j , [̃b(ψ⃗j),ηj ] := −

∫
Ω
ψj div(ηj)−

∫
Ω
ηj · r̃j , (2.12)

and
[cj(w)(ϕ⃗j), ψ⃗j ] :=

1

2
Rj

{∫
Ω
ψjw · t̃j −

∫
Ω
ϕjw · r̃j

}
, (2.13)

for all w⃗ = (w, s), v⃗ = (v, r) ∈ H, τ ∈ H0(div3/2; Ω) and for all ϕ⃗j := (ϕj , t̃j), ψ⃗j := (ψj , r̃j) ∈ H̃,
ηj ∈ H(div6/5; Ω). In turn, given φ = (φ1, φ2) ∈ L6(Ω), Fφ ∈ H′, GD ∈ H0(div3/2; Ω)

′, and G̃j ∈
H(div6/5; Ω)

′ are defined by

[Fφ, v⃗] :=

∫
Ω
f(φ) · v , [GD, τ ] := −⟨τn,uD⟩Γ , (2.14)

and
[G̃j ,ηj ] := −

〈
ηj · n, ϕj,D

〉
Γ
, (2.15)

for all v⃗ = (v, r) ∈ H, τ ∈ H0(div3/2; Ω) and for all ηj ∈ H(div6/5; Ω). We stress here that, similarly
to [17, Section 4.1], and since ηj · n ∈ H−1/2(Γ) for all ηj ∈ H(div6/5; Ω), the notation ⟨·, ·⟩Γ on the
right-hand side of (2.15) stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). Analogously,
and since τn ∈ H−1/2(Γ) for all τ ∈ H0(div3/2; Ω), the same notation on the right-hand side of (2.14)
stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). In all the terms above, [·, ·] denotes the
duality pairing induced by the corresponding operators.

The well-posedness of (2.9), which makes use of a fixed-point strategy along with classical results on
nonlinear monotone operators and the Babuška–Brezzi theory in Banach spaces, is established by [24,
Theorem 3.13]. More precisely, given r > 0, and under smallness assumptions on the data involving r,
namely those detailed in [24, eqs. (3.41) and (3.49)], it is proved that a suitable operator mapping the
ball W :=

{
w ∈ L3(Ω) : ∥w∥0,3;Ω ≤ r

}
into itself, has a unique fixed-point u in it, which yields the

unique solution

(u⃗,σ, ϕ⃗j ,ρj) ∈ H×H0(div3/2; Ω)× H̃×H(div6/5; Ω), j ∈ {1, 2} ,

of (2.9). In particular, note that there certainly holds

∥u∥0,3;Ω ≤ r . (2.16)
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2.2.3 The finite element method

We let
{
Th
}
h>0

be a regular family of triangulations of Ω, which are made of triangles T (when n = 2)
or tetrahedra (when n = 3) of diameter hT , and define the meshsize h := max

{
hT : T ∈ Th

}
. In turn,

given an integer l ≥ 0 and a subset S of Rn, we denote by Pl(S) the space of polynomials of degree ≤ l

defined on S, with vector and tensor versions denoted by Pl(S) := [Pl(S)]
n and Pl(S) := [Pl(S)]

n×n,
respectively. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local Raviart–Thomas
space of order k as

RTk(T ) := Pk(T ) ⊕ P̃k(T )x ,

where x := (x1, . . . , xn)
t is a generic vector of Rn, P̃k(T ) is the space of polynomials of total degree

equal to k defined on T . Next, recalling from [24, Section 4.1] the finite element spaces

Hu
h :=

{
vh ∈ L3(Ω) : vh|T ∈ Pk(T ) ∀T ∈ Th

}
,

Ht
h :=

{
rh ∈ L2

tr(Ω) : rh|T ∈ Pk(T ) ∀T ∈ Th
}
,

Hσh :=
{
τ h ∈ H0(div3/2; Ω) : ctτ h|T ∈ RTk(T ) ∀ c ∈ Rn, ∀T ∈ Th

}
,

Hϕh :=
{
ψh ∈ L6(Ω) : ψh|T ∈ Pk(T ) ∀T ∈ Th

}
,

Ht̃
h :=

{
r̃h ∈ L2(Ω) : r̃h|T ∈ Pk(T ) ∀T ∈ Th

}
,

Hρ
h :=

{
ηh ∈ H(div6/5; Ω) : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

(2.17)

and denoting from now on

ϕh := (ϕ1,h, ϕ2,h), φh := (φ1,h, φ2,h) ∈ Hϕ
h := Hϕh ×Hϕh ,

u⃗h := (uh, th), v⃗h := (vh, rh) ∈ Hh := Hu
h ×Ht

h ,

ϕ⃗j,h := (ϕj,h, t̃j,h), ψ⃗j,h := (ψj,h, r̃j,h) ∈ H̃h := Hϕh ×Ht̃
h ,

the Galerkin scheme for (2.9) reads: Find (u⃗h,σh) ∈ Hh ×Hσh and (ϕ⃗j,h,ρj,h) ∈ H̃h ×Hρ
h, j ∈ {1, 2},

such that

[a(u⃗h), v⃗h] + [b(v⃗h),σh] = [Fϕh
, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] = [GD, τ h] ∀ τ h ∈ Hσh ,

[ãj(ϕ⃗j,h), ψ⃗j,h] + [cj(uh)(ϕ⃗j,h), ψ⃗j,h] + [̃b(ψ⃗j,h),ρj,h] = 0 ∀ ψ⃗j,h ∈ H̃h ,

[̃b(ϕ⃗j,h),ηj,h] = [G̃j ,ηj.h] ∀ηj,h ∈ Hρ
h .

(2.18)

The solvability analysis and a priori error bounds for (2.18) are established in [24, Theorems 4.10 and
5.5], respectively. Indeed, similarly as remarked at the end of Section 2.2.2, and under the discrete
analogues of the assumptions [24, eqs. (3.41) and (3.49)], which are detailed in [24, eqs. (4.23)
and (4.26)], it is proved that a suitable discrete operator mapping the ball Wh :=

{
wh ∈ Hu

h :

∥wh∥0,3;Ω ≤ r
}

into itself, has a unique fixed-point uh in it, which yields the unique solution

(u⃗h,σh, ϕ⃗j,h,ρj,h) ∈ Hh ×Hσh × H̃h ×Hρ
h, j ∈ {1, 2} ,
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of (2.18). Certainly, in this case there also holds

∥uh∥0,3;Ω ≤ r . (2.19)

We observe that there is no restriction to define the radii r > 0 of the balls W and Wh, and hence, for
simplicity, they are chosen equal. Note also that the resulting bounds (2.16) and (2.19) are employed
later on to derive the reliability estimate.

2.3 A posteriori error analysis: The 2D case

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the
two-dimensional version of the Galerkin scheme (2.18). The corresponding a posteriori error analysis
for the 3D case, which follows from minor modifications of the one to be presented next, will be
addressed in Section 2.4.

2.3.1 Preliminaries for reliability

We start by introducing a few useful notations for describing local information on elements and
edges. First, given T ∈ Th, we let E(T ) be the set of edges of T , and denote by Eh the set of all
edges of Th, with corresponding diameters denoted by he. Then, we set Eh = Eh(Ω) ∪ Eh(Γ), where
Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Also for each e ∈ Eh we fix unit normal and
tangential vectors to e denoted by ne := (n1, n2)

t and se := (−n2, n1)t, respectively. However, when
no confusion arises, we will simply write n and s instead of ne and se, respectively. In addition, the
usual jump operator [[·]] across an internal edge e ∈ Eh(Ω) is defined for piecewise continuous tensor,
vector, or scalar-valued functions ζ as simply [[ζ]] := ζ|T − ζ|T ′ , where T and T ′ are the triangles of Th
having e as a common edge. Furthermore, given scalar, vector and matrix valued fields ϕ, v := (v1, v2)

t

and τ := (τij)2×2, respectively, we let

curl (ϕ) :=

(
∂ϕ

∂x2
,− ∂ϕ

∂x1

)t

, curl (v) :=

(
curl (v1)

t

curl (v2)
t

)
,

rot (v) :=
∂v2
∂x1

− ∂v1
∂x2

, and rot (τ ) :=

(
rot (τ11, τ12)

rot (τ21, τ22)

)
,

where the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart–Thomas and Clément interpolation operators
(cf. [52], [40]). We begin by defining for each p ≥ 2n

n+2 the spaces

Hp :=
{
τ ∈ H(divp; Ω) : τ |T ∈ W1,p(T ) ∀T ∈ Th

}
, (2.20)

and
Ĥσ
h :=

{
τ ∈ H(divp; Ω) : τ |T ∈ RTk(T ) ∀T ∈ Th

}
. (2.21)

In addition, we let Πkh : Hp → Ĥσ
h be the Raviart–Thomas interpolation operator, which is character-

ized for each τ ∈ Hp by the identities (see, e.g. [52, Section 1.2.7])∫
e
(Πkh(τ ) · n) ξ =

∫
e
(τ · n) ξ ∀ ξ ∈ Pk(e), ∀ edge or face e of Th , (2.22)
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when k ≥ 0, and ∫
T
Πkh(τ ) ·ψ =

∫
T
τ ·ψ ∀ψ ∈ Pk−1(T ), ∀T ∈ Th , (2.23)

when k ≥ 1. In turn, given q > 1 such that 1
p +

1
q = 1, we let

Hu
h :=

{
v ∈ Lq(Ω) : v|T ∈ Pk(T ) ∀T ∈ Th

}
, (2.24)

and recall from [52, Lemma 1.41] that there holds

div
(
Πkh(τ )

)
= Pk

h

(
div(τ )

)
∀ τ ∈ Hp , (2.25)

where Pk
h : Lp(Ω) → Hu

h is the usual orthogonal projector with respect to the L2(Ω)-inner product,
which satisfies the following error estimate (see [52, Proposition 1.135]): there exists a positive constant
C0, independent of h, such that for 0 ≤ l ≤ k + 1 and 1 ≤ p ≤ ∞ there holds

∥w − Pk
h(w)∥0,p;Ω ≤ C0 h

l ∥w∥l,p;Ω ∀w ∈ Wl,p(Ω) . (2.26)

We stress that Pk
h(w)|T = Pk

T (w|T ) ∀w ∈ Lp(Ω), where Pk
T : Lp(T ) → Pk(T ) is the corresponding

local orthogonal projector. In addition, denoting by Hu
h the vector version of Hu

h (cf. (2.24)), we let
Pk
h : Lp(Ω) → Hu

h be the vector version of Pk
h .

Next, we collect some approximation properties of Πkh.

Lemma 2.1. Given p > 1, there exist positive constants C1, C2, independent of h, such that for
0 ≤ l ≤ k and for each T ∈ Th there holds

∥τ −Πkh(τ )∥0,p;T ≤ C1 h
l+1
T |τ |l+1,p;T ∀ τ ∈ Wl+1,p(T ) , (2.27)

and
∥τ · n−Πkh(τ ) · n∥0,p;e ≤ C2 h

1−1/p
e |τ |1,p;T ∀ τ ∈ W1,p(T ), ∀ e ∈ Eh(T ) . (2.28)

Proof. For the estimate (2.27) we refer to [63, Lemma 3.1], whereas the proof of (2.28) can be found
in [13, Lemma 4.2].

Furthermore, denoting by Hp and Ĥσh the tensor versions of Hp (cf. (2.20)) and Ĥσ
h (cf. (2.21)),

respectively, we let Πk
h : Hp → Ĥσh be the operator Πkh acting row-wise. Then, according to the

decomposition (2.8), for each τ ∈ Hp there holds

Πk
h(τ ) = Πk

h,0(τ ) + ℓ I, with ℓ :=
1

n |Ω|

∫
Ω
tr(Πk

h(τ )) ∈ R

and Πk
h,0(τ ) := Πk

h(τ )− ℓ I ∈ Hσh .

Other approximation properties of Πkh and Πk
h, in particular those involving the div and div operators,

and using (2.25) and (2.26), and their tensorial versions with Πk
h and Pk

h, can also be derived.

We now recall from [13, Lemma 4.4] a stable Helmholtz decomposition for the nonstandard Ba-
nach space H(divp; Ω), whose particular cases given by p = 3/2 and p = 6/5 will be selected in the
forthcoming analysis. More precisely, we have the following result.
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Lemma 2.2. Given p > 1, there exists a positive constant Cp such that for each τ ∈ H(divp; Ω) there
exist ζ ∈ W1,p(Ω) and ξ ∈ H1(Ω) satisfying

τ = ζ + curl (ξ) in Ω and ∥ζ∥1,p;Ω + ∥ξ∥1,Ω ≤ Cp ∥τ∥divp;Ω .

We stress here that the foregoing result is certainly valid for the tensor version H(divp; Ω) of
H(divp; Ω) as well, and hence in particular for H0(divp; Ω). In other words, for each τ ∈ H0(divp; Ω)

there exist ζ ∈ W1,p(Ω) and ξ ∈ H1(Ω) such that

τ = ζ + curl (ξ) in Ω and ∥ζ∥1,p;Ω + ∥ξ∥1,Ω ≤ Cp ∥τ∥divp;Ω . (2.29)

On the other hand, defining Xh :=
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th

}
and denoting by Xh

its vector version, we let Ih : H1(Ω) → Xh and Ih : H1(Ω) → Xh be the usual Clément interpolation
operator and its vector version, respectively. Some local properties of Ih, and hence of Ih, are established
in the following lemma (cf. [40]):

Lemma 2.3. There exist positive constants C1 and C2, such that

∥v − Ih(v)∥0,T ≤ C1 hT ∥v∥1,∆(T ) ∀T ∈ Th ,

and
∥v − Ih(v)∥0,e ≤ C2 h

1/2
e ∥v∥1,∆(e) ∀ e ∈ Eh ,

where ∆(T ) := ∪
{
T ′ ∈ Th : T ′ ∩ T ̸= ∅

}
and ∆(e) := ∪

{
T ′ ∈ Th : T ′ ∩ e ̸= ∅

}
.

2.3.2 Reliability

In this section and from now on we employ the notations and results from Appendix 2.3.1. Recalling
that (u⃗h,σh, ϕ⃗j,h,ρj,h) ∈ Hh×Hσh ×H̃h×Hρ

h, j ∈ {1, 2} is the unique solution of the discrete problem
(2.18), we define the global a posteriori error estimator Θ by

Θ =

{ ∑
T∈Th

Θ
6/5
1,T

}5/6

+

{ ∑
T∈Th

Θ
3/2
2,T

}2/3

+

{ ∑
T∈Th

Θ2
3,T

}1/2

+

{ ∑
T∈Th

Θ3
4,T

}1/3

+

{ ∑
T∈Th

Θ6
5,T

}1/6

,

(2.30)

where, for each T ∈ Th, the local error indicators Θ
6/5
1,T , Θ3/2

2,T , Θ2
3,T , Θ3

4,T , and Θ6
5,T are defined as:

Θ
6/5
1,T :=

2∑
j=1

∥div(ρj,h)−
1

2
Rj uh · t̃j,h∥

6/5
0,6/5;T , (2.31)

Θ
3/2
2,T := ∥f(ϕh) + div(σh)−K−1uh − F |uh|uh∥

3/2
0,3/2;T , (2.32)
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Θ2
3,T := ∥σd

h − ν th∥20,T + h2T ∥rot (th)∥20,T +
∑

e∈Eh(T )∩Eh(Ω)

he∥[[ths]]∥20,e

+
∑

e∈Eh(T )∩Eh(Γ)

he∥ths−∇uDs∥20,e +
2∑
j=1

(
∥ρj,h −Qj t̃j,h +

1

2
Rj ϕj,h uh∥20,T

+h2T ∥rot (t̃j,h)∥20,T +
∑

e∈Eh(T )∩Eh(Ω)

he∥[[ t̃j,h·s]]∥20,e +
∑

e∈Eh(T )∩Eh(Γ)

he∥t̃j,h·s−∇ϕj,D·s∥20,e
)
,

(2.33)

Θ3
4,T := h3T ∥th −∇uh∥30,3;T +

∑
e∈Eh(T )∩Eh(Γ)

he∥uD − uh∥30,3;e , (2.34)

and

Θ6
5,T :=

2∑
j=1

(
h6T ∥t̃j,h −∇ϕj,h∥60,6;T +

∑
e∈Eh(T )∩Eh(Γ)

he∥ϕj,D − ϕj,h∥60,6;e
)
. (2.35)

Notice that the fourth and eighth terms defining Θ2
3,T (cf. (2.33)) require (∇uD s)|e ∈ L2(e) and

(∇ϕj,D ·s)|e ∈ L2(e) for all e ∈ Eh(Γ), respectively, which is guaranteed below by simply assuming that
uD ∈ H1(Γ) and ϕj,D ∈ H1(Γ), j ∈ {1, 2}. Nevertheless, aiming to be more precise, one just needs
that ∇uD|Γ ∈ L2(Γ) and ∇ϕj,D|Γ ∈ L2(Γ), for which it would actually suffice to assume that ∇uD|Γ
coincides with the trace of the gradient of a function in Ht(Ω), for some t > 3/2, and similarly for
∇ϕj,D. In any case, we stress that the Dirichlet data of the numerical results reported below in Section
2.5 do verify the firstly mentioned assumptions on uD and ϕj,D.

Throughout the rest of the chapter, given any r > 0, as specified at the end of Sections 2.2.2 and
2.2.3, both c(r) and C(r), with or without sub-indexes, denote positive constants depending on r, and
eventually on other constants or parameters.

The main result of this section, which establishes the reliability of Θ, reads as follows. To this end,
recalling that u⃗ := (u, t), u⃗h := (uh, th) ∈ H := L3(Ω)×L2

tr(Ω); σ, σh ∈ H0(div3/2; Ω); ϕ⃗j := (ϕj , t̃j),
ϕ⃗j,h := (ϕj,h, t̃j,h) ∈ H̃ := L6(Ω)× L2(Ω); and ρj , ρj,h ∈ H(div6/5; Ω); we set

∥(u⃗,σ)− (u⃗h,σh)∥ := ∥u− uh∥0,3;Ω + ∥t− th∥0,Ω + ∥σ − σh∥div3/2;Ω

and
∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ := ∥ϕj − ϕj,h∥0,6;Ω + ∥t̃j − t̃j,h∥0,Ω + ∥ρj − ρj,h∥div6/5;Ω .

Theorem 2.4. There exists a constant C(r) > 0 such that, under the data assumption

C(r) ∥g∥0,Ω ∥ϕD∥1/2,Γ ≤ 1

2
, (2.36)

there holds

∥(u⃗,σ)− (u⃗h,σh)∥+
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ CrelΘ , (2.37)

where Crel is a positive constant, independent of h.

We stress here that in order to derive the reliability estimate (2.37) (cf. Theorem 2.4), we first

bound, separately, the terms ∥(u⃗,σ) − (u⃗h,σh)∥ and
2∑
j=1

∥(ϕ⃗j ,ρj) − (ϕ⃗j,h,ρj,h)∥ by the norms of
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suitable residual functionals. This is done below in Lemmas 2.5 and 2.6, respectively, which, along
with the data assumption (2.36), yields a preliminary estimate for (2.37) (cf. Lemma 2.7). We begin
by bounding ∥(u⃗,σ) − (u⃗h,σh)∥. Indeed, proceeding analogously to [31, Section 5.1] (see also [49,
Section 1]), we first introduce the residual functionals Q : H → R and R : H0(div3/2; Ω) → R, defined
by

Q(v⃗) := [Fϕh
, v⃗]− [a(u⃗h), v⃗]− [b(v⃗),σh] ∀ v⃗ ∈ H , (2.38)

and
R(τ ) := [GD, τ ]− [b(u⃗h), τ ] ∀ τ ∈ H0(div3/2; Ω) , (2.39)

respectively, which, according to the first and second equations of the discrete problem (2.18), satisfy

Q(v⃗h) = 0 ∀ v⃗h ∈ Hh and R(τ h) = 0 ∀ τ h ∈ Hσh . (2.40)

The announced preliminary result regarding ∥(u⃗,σ) − (u⃗h,σh)∥ is established as follows. The one

regarding
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ is stated later on in Lemma 2.6.

Lemma 2.5. There exist C1(r), C2(r) > 0, independent of h, such that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ C1(r)
{
∥Q∥+ ∥R∥+ ∥R∥2

}
+ C2(r) ∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω . (2.41)

Proof. First, from the first two equations of (2.9) and the definition of Q and R (cf. (2.38) and (2.39)),
it is clear that

[a(u⃗)− a(u⃗h), v⃗] + [b(v⃗),σ − σh] = [Fϕ − Fϕh
, v⃗] +Q(v⃗) ∀ v⃗ ∈ H , (2.42)

and
[b(u⃗− u⃗h), τ ] = R(τ ) ∀ τ ∈ H0(div3/2; Ω) . (2.43)

Thus, proceeding similarly to [24, eqs. (3.5)-(3.6) in Theorem 3.1], we employ the continuous inf-sup
condition for b, which holds with a constant β (cf. [24, eq. (3.15) in Lemma 3.2]), the converse
implication of the equivalence provided in [52, Lemma A.42], and (2.43), to deduce that there exists
w⃗ := (w, s) ∈ H such that

b(w⃗) = b(u⃗− u⃗h) = R and ∥w⃗∥ ≤ 1

β
∥R∥ . (2.44)

It follows that the error u⃗− u⃗h can be decomposed as

u⃗− u⃗h = z⃗+ w⃗ , (2.45)

with z⃗ := u⃗− u⃗h − w⃗ ∈ V. Then, taking v⃗ = z⃗ in (2.42), we find that

[a(u⃗)− a(u⃗h), z⃗] = [Fϕ − Fϕh
, z⃗] +Q(⃗z) ,

and hence, subtracting and adding a(u⃗), we obtain

[a(u⃗− w⃗)− a(u⃗h), z⃗] = [a(u⃗− w⃗)− a(u⃗), z⃗] + [a(u⃗)− a(u⃗h), z⃗]

= [a(u⃗− w⃗)− a(u⃗), z⃗] + [Fϕ − Fϕh
, z⃗] +Q(⃗z) .

(2.46)
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At this point we recall from [24, eq. (3.30)] that a strong monotonicity property of the operator a
establishes the existence of a constant αBF such that

[a(x⃗)− a(y⃗), x⃗− y⃗] ≥ αBF ∥x⃗− y⃗∥2

for all x⃗, y⃗ ∈ H such that x⃗ − y⃗ ∈ V. Then, applying the foregoing inequality to x⃗ = u⃗ − w⃗ and
y⃗ = u⃗h, and using (2.46), we find that

αBF ∥z⃗∥2 ≤ [a(u⃗− w⃗)− a(u⃗), z⃗] + [Fϕ − Fϕh
, z⃗] +Q(⃗z) ,

from which, making use of the continuity of a, which involves a constant LBF depending on |Ω|,
∥K−1∥0,∞;Ω, F, and ν (cf. [24, eq. (3.25)]), the continuity of Fϕ (cf. [24, eq. (3.46)]), and then
performing simple algebraic computations, we obtain

αBF ∥z⃗∥2 ≤ LBF

{(
1 + 2 ∥u∥0,3;Ω

)
∥w∥0,3;Ω + ∥s∥0,Ω + ∥w∥20,3;Ω

}
∥z⃗∥

+
{
∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω + ∥Q∥

}
∥z⃗∥ .

The above estimate, together with the fact that ∥u∥0,3;Ω is bounded by r (cf. (2.16)), yield

∥z⃗∥ ≤ c1(r)
{
∥Q∥+ ∥w⃗∥+ ∥w⃗∥2

}
+

1

αBF
∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω , (2.47)

with c1(r) > 0 independent of h, and hence, using (2.45), (2.44) and (2.47), we conclude that

∥u⃗− u⃗h∥ ≤ ∥z⃗∥+ ∥w⃗∥ ≤ c2(r)
{
∥Q∥+ ∥R∥+ ∥R∥2

}
+

1

αBF
∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω , (2.48)

with c2(r) > 0 depending only on LBF, αBF, r, and β. On the other hand, applying the continuous
inf-sup condition for b (cf. [24, Lemma 3.2, eq. (3.15)]) to σ − σh, employing the identity (2.42) to
express [b(v⃗),σ − σh], and using again the continuity of a and Fϕ (cf. [24, eq. (3.25), (3.46)]), we
deduce that

β ∥σ − σh∥div3/2;Ω ≤ sup
v⃗∈H
v⃗ ̸=0

−[a(u⃗)− a(u⃗h), v⃗] + [Fϕ − Fϕh
, v⃗] +Q(v⃗)

∥v⃗∥

≤ LBF

{
1 + ∥u∥0,3;Ω + ∥uh∥0,3;Ω

}
∥u⃗− u⃗h∥+ ∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω + ∥Q∥ ,

which, along with the fact that both ∥u∥0,3;Ω and ∥uh∥0,3;Ω are bounded by r (cf. (2.16), (2.19)), and
some algebraic manipulations, imply

∥σ − σh∥div3/2;Ω ≤ c3(r)
{
∥u⃗− u⃗h∥+ ∥Q∥

}
+

1

β
∥g∥0,Ω∥ϕ− ϕh∥0,6;Ω , (2.49)

with c3(r) > 0 depending only on LBF, r, and β. Therefore, the estimate (2.41) follows from (2.48) and
(2.49), thus ending the proof.

We continue with a preliminary a posteriori estimate for the error ∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥. To that
end, we recall from [24, Section 3.3] that for each w ∈ L3(Ω), and j ∈ {1, 2}, we define the operator
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S̃j(w) := ϕj , where (ϕ⃗j ,ρj) :=
(
(ϕj , t̃j),ρj

)
is the solution of the problem arising from the last two

equations of (2.9) after replacing u by w, that is, (ϕ⃗j ,ρj) ∈ H̃×H(div6/5; Ω) is such that

[ãj(ϕ⃗j), ψ⃗j ] + [cj(w)(ϕ⃗j), ψ⃗j ] + [̃b(ψ⃗j),ρj ] = 0 ∀ ψ⃗j ∈ H̃ ,

[̃b(ϕ⃗j),ηj ] = [G̃j ,ηj ] ∀ηj ∈ H(div6/5; Ω) .
(2.50)

In turn, we know from [24, Lemma 3.8] that (2.50) is well-posed for each w ∈ L3(Ω), and j ∈ {1, 2},
which implies that the bilinear forms arising after adding the corresponding left-hand sides satisfy
global inf-sup conditions uniformly. In other words, denoting from now on HD := H̃ ×H(div6/5; Ω),
there exist positive constants γj , j ∈ {1, 2}, independent of w, such that

γj ∥(φ⃗j , ζj)∥ ≤ sup
(ψ⃗j ,ηj)∈HD

(ψ⃗j ,ηj )̸=0

[ãj(φ⃗j), ψ⃗j ] + [cj(w)(φ⃗j), ψ⃗j ] + [̃b(ψ⃗j), ζj ] + [̃b(φ⃗j),ηj ]

∥(ψ⃗j ,ηj)∥
, (2.51)

for all (φ⃗j , ζj) ∈ HD.

Next, we let Q̃j : H̃ → R and R̃j : H(div6/5; Ω) → R be the residual functionals defined by

Q̃j(ψ⃗j) := −[ã(ϕ⃗j,h), ψ⃗j ]− [cj(uh)(ϕ⃗j,h), ψ⃗j ]− [̃b(ψ⃗j),ρj,h] ∀ ψ⃗j ∈ H̃ , (2.52)

and
R̃j(ηj) := [G̃j ,ηj ]− [̃b(ϕ⃗j,h),ηj ] ∀ηj ∈ H(div6/5; Ω) , (2.53)

respectively, and observe, from the third and fourth equations of the discrete problem (2.18), that they
satisfy

Q̃j(ψ⃗j,h) = 0 ∀ ψ⃗j,h ∈ H̃h and R̃j(ηj,h) = 0 ∀ηj,h ∈ Hρ
h . (2.54)

Then, the aforementioned result regarding
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ is established as follows.

Lemma 2.6. There exists C3(r) > 0, independent of h, such that

2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ C3(r)

{
2∑
j=1

(
∥Q̃j∥+ ∥R̃j∥

)
+ ∥ϕD∥1/2,Γ ∥u− uh∥0,3;Ω

}
. (2.55)

Proof. We proceed similarly to [63, Lemma 3.5]. In fact, applying the inf-sup condition (2.51) to
w = u and (φ⃗j , ζj) := (ϕ⃗j − ϕ⃗j,h,ρj − ρj,h), adding and subtracting [cj(uh)(ϕ⃗j,h), ψ⃗j ], using the last
two equations of (2.9), and the definitions of Q̃j and R̃j (cf. (2.52), (2.53)), we deduce that

γj ∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥

≤ sup
(ψ⃗j ,ηj)∈HD

(ψ⃗j ,ηj )̸=0

Q̃j(ψ⃗j) + R̃j(ηj)

∥(ψ⃗j ,ηj)∥
+ sup

(ψ⃗j ,ηj)∈HD

(ψ⃗j ,ηj )̸=0

∣∣[cj(u)(ϕ⃗j,h)− cj(uh)(ϕ⃗j,h), ψ⃗j ]
∣∣

∥(ψ⃗j ,ηj)∥
,

which, together with the continuity of the operator cj (cf. [24, eq. (3.18)]), that is,∣∣[cj(u)(ϕ⃗j,h)− cj(uh)(ϕ⃗j,h), ψ⃗j ]
∣∣ ≤ Rj ∥ϕ⃗j,h∥ ∥u− uh∥0,3;Ω∥ ψ⃗j∥ ,



2.3. A posteriori error analysis: The 2D case 58

where Rj is a respective continuity constant, yields

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ 1

γj

(
∥Q̃j∥+ ∥R̃j∥

)
+

Rj

γj
∥ϕ⃗j,h∥ ∥u− uh∥0,3;Ω .

Thus, summing up over j ∈ {1, 2}, using the a priori estimate [24, eq. (4.29) in Theorem 4.10] to
bound ∥ϕ⃗j,h∥ in terms of ∥ϕj,D∥1/2,Γ, we obtain

2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤
2∑
j=1

1

γj

(
∥Q̃j∥+ ∥R̃j∥

)
+ c(r) ∥ϕD∥1/2,Γ ∥u− uh∥0,3;Ω , (2.56)

where ∥ϕD∥1/2,Γ := ∥ϕ1,D∥1/2,Γ + ∥ϕ2,D∥1/2,Γ and c(r) is a positive constant depending only on r

and data, and hence not on h. Finally, it is clear that (2.55) follows from (2.56), with C3(r) :=

max{1/γ1, 1/γ2, c(r)}, concluding the proof.

The announced preliminary estimate for (2.37) (cf. Theorem 2.4) will now follow by combining
(2.41) and (2.55). In this regard, we stress in advance that, while (2.55) holds for any h, its combined
use with (2.41), aiming to yield (2.58) below, is valid only for sufficiently small h since in this way one
ensures that ∥R∥ < 1. Needless to say, the latter is required for the derivation of (2.58), as explained
next.

In fact, bounding ∥ϕ− ϕh∥0,6;Ω in (2.41) by the right-hand side of (2.55), we find that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ C1(r)
{
∥Q∥+ ∥R∥+ ∥R∥2

}
+ C(r) ∥g∥0,Ω

2∑
j=1

(
∥Q̃j∥+ ∥R̃j∥

)
+ C(r) ∥g∥0,Ω ∥ϕD∥1/2,Γ ∥u− uh∥0,3;Ω ,

(2.57)

where C(r) := C2(r)C3(r). Thus, under the assumption (2.36) with this constant C(r), and noting
that when ∥R∥ < 1 the term ∥R∥2 is dominated by ∥R∥, whence the former can be neglected, it follows
from (2.57) that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ Ĉ(r)

{
∥Q∥+ ∥R∥ +

2∑
j=1

(
∥Q̃j∥+ ∥R̃j∥

)}
, (2.58)

with Ĉ(r) > 0, independent of h. Note that when ∥R∥ > 1, the term ∥R∥2, being dominant, will
appear in (2.58) and (2.59) instead of ∥R∥. As a consequence, the reliability estimate in Lemma 2.9
and the local estimators Θ3,T and Θ4,T (cf. (2.33), (2.34)) must be modified accordingly. The case
∥R∥ < 1 is assumed here for sake of simplicity. Nevertheless, being R a residual expression, it is
expected to converge to 0, which is somehow confirmed later on by the efficiency estimate, so that
the foregoing assumption seems quite reasonable. In turn, employing (2.58) to bound the last term on

the right-hand side of (2.55), we derive the corresponding upper bound for
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥.

More precisely, we have proved the following result.

Lemma 2.7. Assume (2.36) with the aforementioned constant C(r). Then, there exists a positive
constant C, independent of h, but depending on r, LBF, αBF, β, ∥g∥0,Ω, Rj, j ∈ {1, 2}, and the datum
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ϕD, such that

∥(u⃗,σ)− (u⃗h,σh)∥ +
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥

≤ C

{
∥Q∥+ ∥R∥+

2∑
j=1

(
∥Q̃j∥+ ∥R̃j∥

)}
.

(2.59)

Throughout the rest of this section, we provide suitable upper bounds for each one of the terms on
the right-hand side of (2.59). We begin by establishing the corresponding estimates for ∥Q∥ and ∥Q̃j∥
(cf. (2.38) and (2.52)).

Lemma 2.8. There hold

∥Q∥ ≤ ∥f(ϕh) + div(σh)−K−1uh − F |uh|uh∥0,3/2;Ω + ∥σd
h − ν th∥0,Ω (2.60)

and
∥Q̃j∥ ≤ ∥div(ρj,h)−

1

2
Rj uh · t̃j,h∥0,6/5;Ω + ∥ρj,h −Qj t̃j,h +

1

2
Rj ϕj,h uh∥0,Ω . (2.61)

Proof. First, using the definition of the functionals Q, Fϕh
and operators a, b (cf. (2.38), (2.14), (2.10),

(2.11)), the fact that τ d : r = τ : r, for all r ∈ L2
tr(Ω), and the Cauchy–Schwarz and Hölder inequalities,

we deduce that

|Q(v⃗)| =
∣∣∣∣∫

Ω

(
f(ϕh) + div(σh)−K−1uh − F |uh|uh

)
· v +

∫
Ω

(
σd
h − ν th

)
: r

∣∣∣∣
≤
(
∥f(ϕh) + div(σh)−K−1uh − F |uh|uh∥0,3/2;Ω + ∥σd

h − ν th∥0,Ω
)
∥v⃗∥ ,

which yields (2.60). Similarly, (2.61) can be derived by employing the definition of the functional Q̃j

and operators ã, cj(uh), b̃ (cf. (2.52), (2.12), (2.13)). We omit further details.

We now turn to the derivation of the corresponding estimate for ∥R∥ and ∥R̃j∥. To that end, we
first recall from (2.40) and (2.54) that R(τ h) = 0 for all τ h ∈ Hσ

h and R̃j(ηj,h) = 0 for all ηj,h ∈ Hρ
h,

respectively, whence the aforementioned norms can be defined as

∥R∥ := sup
τ∈H0(div3/2;Ω)

τ ̸=0

R(τ − τ h)
∥τ∥div3/2;Ω

and ∥R̃j∥ := sup
ηj∈H(div6/5;Ω)

ηj ̸=0

R̃(ηj − ηj,h)
∥ηj∥div6/5;Ω

, (2.62)

where the functions τ h and ηj,h are chosen properly within the suprema in (2.62) so that they depend
on the corresponding τ ∈ H0(div3/2; Ω) and ηj ∈ H(div6/5; Ω). More precisely, they are suitably
defined in what follows by employing the Helmholtz decompositions provided by Lemma 2.2 and
its tensorial version (2.29), with p ∈ {3/2, 6/5}. Indeed, letting ζ ∈ W1,3/2(Ω), ξ ∈ H1(Ω), and
ζj ∈ W1,6/5(Ω), ξj ∈ H1(Ω), such that

τ := ζ + curl (ξ) and ηj := ζj + curl (ξj) in Ω , (2.63)

with

∥ζ∥1,3/2;Ω + ∥ξ∥1,Ω ≤ C3/2 ∥τ∥div3/2;Ω and ∥ζj∥1,6/5;Ω + ∥ξj∥1,Ω ≤ C6/5 ∥ηj∥div6/5;Ω , (2.64)



2.3. A posteriori error analysis: The 2D case 60

we set

τ h := Πk
h(ζ) + curl (Ih(ξ)) + c I ∈ Hσh and ηj,h := Πkh(ζj) + curl (Ih(ξj)) ∈ Hρ

h , (2.65)

where the constant c is chosen so that tr(τ h) has a null mean value, and hence τ h does belong to Hσh .
Note that τ h and ηj,h can be seen as discrete Helmholtz decompositions of τ and ηj , respectively. In
this way, using that R(c I) = 0, and denoting

ζ̂ := ζ −Πk
h(ζ) , ξ̂ := ξ − Ih(ξ) , ζ̂j := ζj −Πkh(ζj) , and ξ̂j := ξj − Ih(ξj) ,

it follows from (2.63) and (2.65), that

R(τ ) = R(τ − τ h) = R(ζ̂) +R(curl (ξ̂)) , (2.66)

and
R̃j(ηj) = R̃j(ηj − ηj,h) = R̃j(ζ̂j) + R̃j(curl (ξ̂j)) ,

where, according to the definitions of R and R̃j (cf. (2.39), (2.53)), we find that

R
(
ζ̂
)
=

∫
Ω
th : ζ̂ +

∫
Ω
uh · div(ζ̂) −

〈
ζ̂n,uD

〉
Γ
, (2.67)

R
(
curl (ξ̂)

)
=

∫
Ω
th : curl (ξ̂) −

〈
curl (ξ̂)n,uD

〉
Γ
, (2.68)

R̃j

(
ζ̂j
)
=

∫
Ω
t̃j,h · ζ̂j +

∫
Ω
ϕj,h div(ζ̂j) −

〈
ζ̂j · n, ϕj,D

〉
Γ
,

and
R̃j

(
curl (ξ̂j)

)
=

∫
Ω
t̃j,h · curl (ξ̂j) −

〈
curl (ξ̂j) · n, ϕj,D

〉
Γ
.

The following lemma establishes the residual upper bound for ∥R∥.

Lemma 2.9. There exists a positive constant C, independent of h, such that

∥R∥ ≤ C


( ∑
T∈Th

Θ̃2
T

)1/2

+

( ∑
T∈Th

Θ3
4,T

)1/3
 , (2.69)

where Θ3
4,T is defined in (2.34), and

Θ̃2
T := h2T ∥rot (th)∥20,T +

∑
e∈Eh(T )∩Eh(Ω)

he∥[[ths]]∥20,e +
∑

e∈Eh(T )∩Eh(Γ)

he∥ths−∇uDs∥20,e .

Proof. We proceed as in [63, Lemma 3.8]. In fact, according to (2.66), we begin by estimating R(ζ̂).
Let us first observe that, for each e ∈ Eh, the identity (2.22) and the fact that uh|e ∈ Pk(e), yield∫
e
ζ̂n · uh = 0. Hence, locally integrating by parts the second term in (2.67), we readily obtain

R(ζ̂) =

∫
Ω

(
th −∇uh

)
: ζ̂ −

∑
e∈Eh(Γ)

∫
e
uD · ζ̂n =

∫
Ω

(
th −∇uh

)
: ζ̂ −

∑
e∈Eh(Γ)

∫
e

(
uD − uh

)
· ζ̂n .
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Thus, applying the Hölder inequality along with the approximation properties of Πk
h (cf. (2.27)–(2.28)

in Lemma 2.1) with p = 3/2 and l = 0, and the first stability estimate of (2.64), we find that

∣∣R(ζ̂)
∣∣ ≤ Ĉ1

∑
T∈Th

h3T ∥th −∇uh∥30,3;T +
∑

e∈Eh(Γ)

he ∥uD − uh∥30,3;e


1/3

∥τ∥div3/2;Ω . (2.70)

Next, we estimate R(curl (ξ̂)) (cf. (2.68)). In fact, regarding its second term, a suitable boundary
integration by parts formula (cf. [51, eq. (3.35) in Lemma 3.5]) yields〈

curl (ξ̂)n,uD

〉
Γ
= −

〈
∇uDs, ξ̂

〉
Γ
. (2.71)

In turn, locally integrating by parts the first term of R(curl (ξ̂)), we get∫
Ω
th : curl (ξ̂) =

∑
T∈Th

∫
T
rot (th) · ξ̂ −

∑
e∈Eh(Ω)

∫
e
[[ths]] · ξ̂ −

∑
e∈Eh(Γ)

∫
e
ths · ξ̂ ,

which together with (2.71), the Cauchy–Schwarz inequality, the approximation properties of Ih (cf.
Lemma 2.3), and again the first stability estimate of (2.64), implies

∣∣R(curl (ξ̂))
∣∣ ≤ Ĉ2

{ ∑
T∈Th

h2T ∥rot (th)∥20,T +
∑

e∈Eh(Ω)

he ∥[[ths]]∥20,e

+
∑

e∈Eh(Γ)

he ∥ths−∇uDs∥20,e

}1/2

∥τ∥div3/2;Ω .

(2.72)

Finally, it is easy to see that (2.62), (2.66), (2.70), and (2.72) give (2.69), which ends the proof.

The derivation of the residual upper bound for ∥R̃j∥ proceeds analogously to the proof of the previous
lemma. We omit further details and state the corresponding result as follows.

Lemma 2.10. There exists a positive constant C, independent of h, such that

2∑
j=1

∥R̃j∥ ≤ C


( ∑
T∈Th

Θ̂2
T

)1/2

+

( ∑
T∈Th

Θ6
5,T

)1/6
 , (2.73)

where Θ6
5,T is defined in (2.35), and

Θ̂2
T :=

2∑
j=1

(
h2T ∥rot (t̃j,h)∥20,T +

∑
e∈Eh(T )∩Eh(Ω)

he∥[[ t̃j,h · s]]∥20,e

+
∑

e∈Eh(T )∩Eh(Γ)

he∥t̃j,h · s−∇ϕj,D · s∥20,e
)
.

We end this section by stressing that the reliability estimate (2.37) (cf. Theorem 2.4) follows by
bounding each one of the terms ∥Q∥, ∥R∥, ∥Q̃j∥, and ∥R̃j∥ in Lemma 2.7 by the corresponding upper
bounds derived in Lemmas 2.8, 2.9 and 2.10, and considering the definition of the global estimator Θ

(cf. (2.30)).
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2.3.3 Preliminaries for efficiency

For the efficiency analysis of Θ (cf. (2.30)), we proceed as in [7], [65], [60], [31], [13] and [63],
and apply the localization technique based on bubble functions, along with inverse and discrete trace
inequalities. For the former, given T ∈ Th, we let T be the usual element-bubble function (cf. [86, eqs.
(1.5) and (1.6)]), which satisfies

ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T and 0 ≤ ψT ≤ 1 in T .

The specific properties of ψT to be employed in what follows, are collected in the following lemma,
for whose proof we refer to [86, Lemma 3.3 and Remark 3.2].

Lemma 2.11. Let k be a non-negative integer, and let p, q ∈ (1,+∞) conjugate to each other, that is
such that 1/p+ 1/q = 1, and T ∈ Th. Then, there exist positive constants c1, c2, and c3, independent
of h and T , but depending on the shape-regularity of the triangulations (minimum angle condition) and
k, such that for each u ∈ Pk(T ) there hold

c1∥u∥0,p;T ≤ sup
v∈Pk(T )
v ̸=0

∫
T
uψT v

∥v∥0,q;T
≤ ∥u∥0,p;T ,

and
c2 h

−1
T ∥ψTu∥0,q;T ≤ ∥∇(ψTu)∥0,q;T ≤ c3 h

−1
T ∥ψTu∥0,q;T .

In turn, the aforementioned inverse inequality is stated as follows (cf. [68, Lemma 1.138]).

Lemma 2.12. Let k, l, and m be non-negative integers such that m ≤ l, and let r, s ∈ [1,+∞], and
T ∈ Th. Then, there exists c > 0, independent of h, T , r, and s, but depending on k, l, m, and the
shape regularity of the triangulations, such that

∥v∥l,r;T ≤ c h
m−l+n(1/r−1/s)
T ∥v∥m,s;T ∀ v ∈ Pk(T ) . (2.74)

Finally, proceeding as in [1, Theorem 3.10], that is employing the usual scaling estimates with respect
to a fixed reference element T̂ , and applying the trace inequality in W1,p(T̂ ), for a given p ∈ (1,+∞),
one is able to establish the following discrete trace inequality.

Lemma 2.13. Let p ∈ (1,+∞). Then, there exits c > 0, depending only on the shape regularity of the
triangulations, such that for each T ∈ Th and e ∈ E(T ), there holds

∥v∥p0,p;e ≤ c
{
h−1
T ∥v∥p0,p;T + hp−1

T |v|p1,p;T
}

∀ v ∈ W1,p(T ) . (2.75)

2.3.4 Efficiency

We now aim to establish the efficiency estimate of Θ (cf. (2.30)). For this purpose, we will make
extensive use of the notations and results from Appendix 2.3.3, and the original system of equations
given by (2.7), which is recovered from the fully-mixed continuous formulation (2.9) by choosing suitable
test functions and integrating by parts backwardly the corresponding equations. The following theorem
is the main result of this section.
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Theorem 2.14. Assume, for simplicity, that uD and ϕj,D, j ∈ {1, 2}, are piecewise polynomials.
Then, there exists a positive constant Ceff, independent of h, such that

CeffΘ + h.o.t. ≤ ∥(u⃗,σ)− (u⃗h,σh)∥ +
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ , (2.76)

where h.o.t. stands for one or several terms of higher order.

The proof of (2.76) is carried out throughout the rest of this section. We begin the derivation of the
efficiency estimates with the following result.

Lemma 2.15. There exist positive constants C1, C2, C3, and C4, independent of h, such that for each
T ∈ Th there hold

∥σd
h − ν th∥0,T ≤ C1

{
∥σ − σh∥0;T + ∥t− th∥0,T

}
, (2.77)

∥f(ϕh) + div(σh)−K−1uh − F |uh|uh∥0,3/2;T

≤ C2

{
∥u− uh∥0,3;T + ∥σ − σh∥div3/2;T + ∥ϕ− ϕh∥0,6;T

}
,

(2.78)

∥div(ρj,h)−
1

2
Rj uh · t̃j,h∥0,6/5;T

≤ C3

{
∥u− uh∥0,3;T + ∥t̃j − t̃j,h∥0,T + ∥ρj − ρj,h∥div6/5;T

}
, and

(2.79)

∥ρj,h −Qj t̃j,h +
1

2
Rj ϕj,h uh∥0,T

≤ C4

{
∥u− uh∥0,3;T + ∥ϕj − ϕj,h∥0,6;T + ∥t̃j − t̃j,h∥0,T + ∥ρj − ρj,h∥0,T

}
.

(2.80)

Proof. First, in order to show (2.77), it suffices to recall that σd = ν t in Ω (cf. (2.7)). In turn, for the
proof of (2.78), we use the identity K−1u+ F |u|u− div(σ) = f(ϕ) in Ω (cf. (2.7)), the fact that

∥f(ϕ)− f(ϕh)∥0,3/2;T ≤ ∥g∥0,T ∥ϕ− ϕh∥0,6;T ,

which readily follows from the definition of f (cf. (2.3)), and the Hölder inequality, to obtain

∥f(ϕh) + div(σh)−K−1uh − F |uh|uh∥0,3/2;T

≤ C
{
∥u− uh∥0,3;T + ∥|u|u− |uh|uh∥0,3/2;T + ∥σ − σh∥div3/2;T + ∥ϕ− ϕh∥0,6;T

}
,

(2.81)

where C is a positive constant depending only on ∥g∥0,T ,K, and F. Next, adding and subtracting
|u|uh (also work with |uh|u), and employing the triangle and Cauchy–Schwarz inequalities, we find
that

∥|u|u− |uh|uh∥0,3/2;T ≤
(
∥u∥0,3;T + ∥uh∥0,3;T

)
∥u− uh∥0,3;T ,

which, together with the fact that ∥u∥0,3;T and ∥uh∥0,3;T are bounded by ∥u∥0,3;Ω and ∥uh∥0,3;Ω,
respectively, which in turn are bounded by data (cf. [24, eqs. (3.50) and (4.27)]), allows us to deduce
that there exists a positive constant C, independent of h, such that

∥|u|u− |uh|uh∥0,3/2;T ≤ C ∥u− uh∥0,3;T . (2.82)
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Then, replacing (2.82) back into (2.81), we conclude (2.78).

On the other hand, the proof of (2.79) and (2.80) follow from a slight adaptation of [63, eqs. (3.51)
and (3.52) in Lemma 3.14], respectively. In fact, using the identities 1

2 Rj u · t̃j − div(ρj) = 0 and
Qj t̃j − 1

2 Rj ϕj u = ρj in Ω (cf. (2.7)), and the triangle inequality, we obtain

∥div(ρj,h)−
1

2
Rj uh · t̃j,h∥0,6/5;T ≤ ∥div(ρj − ρj,h)∥0,6/5;T +

1

2
Rj ∥u · t̃j − uh · t̃j,h∥0,6/5;T (2.83)

and
∥ρj,h −Qj t̃j,h +

1

2
Rj ϕj,h uh∥0,T

≤ ∥ρj − ρj,h∥0,T + ∥Qj∥0,∞;Ω∥t̃j − t̃j,h∥0,T +
1

2
Rj∥ϕju− ϕj,huh∥0,T .

(2.84)

Next, adding and subtracting uh · t̃j and ϕjuh in the last terms of (2.83) and (2.84), respectively,
and, similarly to (2.82), using the fact that ∥ϕj∥0,6;T , ∥t̃j∥0,T , and ∥uh∥0,3;T are bounded by ∥ϕj∥0,6;Ω,
∥t̃j∥0,Ω, and ∥uh∥0,3;Ω, respectively, which in turn are bounded by data (cf. [24, eqs. (3.52), (4.27)]),
we deduce that there exist positive constants C̃, Ĉ, independent of h, such that

∥u · t̃j − uh · t̃j,h∥0,6/5;T ≤
(
∥uh∥0,3;T + ∥t̃j∥0,T

)(
∥u− uh∥0,3;T + ∥t̃j − t̃j,h∥0,T

)
≤ C̃

(
∥u− uh∥0,3;T + ∥t̃j − t̃j,h∥0,T

)
,

(2.85)

and

∥ϕju− ϕj,huh∥0,T ≤
(
∥uh∥0,3;T + ∥ϕj∥0,6;T

)(
∥u− uh∥0,3;T + ∥ϕj − ϕj,h∥0,6;T

)
≤ Ĉ

(
∥u− uh∥0,3;T + ∥ϕj − ϕj,h∥0,6;T

)
.

(2.86)

Finally, replacing (2.85) and (2.86) back into (2.83) and (2.84), respectively, we conclude (2.79) and
(2.80), completing the proof.

At this point, we stress that the local efficiency estimates for the remaining terms defining Θ (cf.
(2.30)) have already been proved in the literature by using the localization technique based on triangle-
bubble and edge-bubble functions (cf. Lemma 2.11), the local inverse inequality (cf. (2.74)), and the
discrete trace inequality (cf. (2.75)). More precisely, we provide the following result.

Lemma 2.16. Assume that uD and ϕj,D, j ∈ {1, 2}, are piecewise polynomials. Then, there exist
positive constants Ci, i ∈ {1, . . . , 10}, all independent of h, such that

a) h3T ∥th −∇uh∥30,3;T ≤ C1

{
∥u− uh∥30,3;T + hT ∥t− th∥30,T

}
∀T ∈ Th ,

b) h6T ∥t̃j,h −∇ϕj,h∥60,6;T ≤ C2

{
∥ϕj − ϕj,h∥60,6;T + hT ∥t̃j − t̃j,h∥60,T

}
∀T ∈ Th ,

c) he ∥uD − uh∥30,3;e ≤ C3

{
∥u− uh∥30,3;Te + hTe∥t− th∥30,Te

}
∀ e ∈ Eh(Γ) ,

d) he ∥ϕj,D − ϕj,h∥60,6;e ≤ C4

{
∥ϕj − ϕj,h∥60,6;Te + hTe∥t̃j − t̃j,h∥60,Te

}
∀ e ∈ Eh(Γ) ,

e) h2T ∥rot (th)∥20,T ≤ C5 ∥t− th∥20,T ∀T ∈ Th ,
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f) h2T ∥rot (t̃j,h)∥20,T ≤ C6 ∥t̃j − t̃j,h∥20,T ∀T ∈ Th ,

g) he ∥[[ths]]∥20,e ≤ C7 ∥t− th∥20,ωe
∀ e ∈ Eh(Ω) ,

h) he ∥[[̃tj,hs]]∥20,e ≤ C8 ∥t̃j − t̃j,h∥20,ωe
∀ e ∈ Eh(Ω) ,

i) he ∥ts−∇us∥20,e ≤ C9 ∥t− th∥20,Te ∀ e ∈ Eh(Γ) ,

j) he ∥t̃j,h · s−∇ϕj,D · s∥20,e ≤ C10 ∥t̃j − t̃j,h∥20,Te ∀ e ∈ Eh(Γ) ,

where Te is the triangle of Th having e as an edge, whereas ωe denotes the union of the two elements
of Th sharing the edge e.

Proof. The estimates a) and b) follow straightforwardly from a slight modification of the proof of [63,
Lemma 3.17], whereas c) and d) follow from [63, Lemma 3.18]. In turn, for the proof of e), f), g) and
h), we refer to [7, Lemmas 4.3 and 4.4]. Finally, the proof of i) and j) follow the same arguments to
the ones used in the proof of [65, Lemma 4.15].

We note here that if uD and ϕj,D, j ∈ {1, 2} were not piecewise polynomials but sufficiently smooth,
then higher order terms given by the errors arising from suitable polynomial approximations of these
expressions and functions would appear in the efficiency estimates c), d), i), and j), provided in Lemma
2.16, which explains the expression h.o.t. in the lower bound of (2.76).

We end this section by observing that the proof of (2.76) (cf. Theorem 2.14) follows straightforwardly
from Lemmas 2.15 and 2.16, and after summing up the local efficiency estimates over all T ∈ Th.
Further details are omitted.

2.4 A posteriori error analysis: The 3D case

In this section we extend the results from Section 2.3 to the three-dimensional version of (2.18).
Similarly as in the previous section, given a tetrahedron T ∈ Th, we let E(T ) be the set of its faces,
and let Eh be the set of all faces of the triangulation Th. Then, we write Eh = Eh(Ω) ∪ Eh(Γ), where
Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(Γ) := {e ∈ Eh : e ⊆ Γ}. Also, for each face e ∈ Eh we fix
a unit normal vector ne to e, and then, given v = (v1, v2, v3)

t ∈ L2(Ω) and τ := (τi,j)3×3 ∈ L2(Ω)

such that v|T ∈ C(T ) and τ |T ∈ C(T ) on each T ∈ Th, we let [[v × ne]] and [[τ × ne]] be the
corresponding jumps of the tangential traces across e. In other words, [[v × ne]] = (v|T − v|T ′) × ne
and [[τ × ne]] = (τ |T − τ |T ′)× ne, respectively, where T and T ′ are the tetrahedron of Th having e as
a common face and

τ × ne :=

(τ11, τ12, τ13)× ne
(τ21, τ22, τ23)× ne
(τ31, τ32, τ33)× ne

 .

From now on, when no confusion arises, we simply write n instead of ne. In the sequel we will also
make use of the following differential operators

curl (v) = ∇× v :=

(
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
,



2.4. A posteriori error analysis: The 3D case 66

and

curl (τ ) :=

curl (τ11, τ12, τ13)

curl (τ21, τ22, τ23)

curl (τ31, τ32, τ33)

 .

In turn, the tangential curl operator curl s and a tensor version of it, denoted curl s, which is defined
component-wise by curl s, will also be used (see [27, Section 3] for details).

We now set for each T ∈ Th

Θ2
3,T := ∥σd

h − ν th∥20,T + h2T ∥curl (th)∥20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he∥[[th×n]]∥20,e +
∑

e∈Eh(T )∩Eh(Γ)

he∥th × n− curl s(uD)∥20,e

+

2∑
j=1

(
∥ρj,h −Qj t̃j,h +

1

2
Rj ϕj,h uh∥20,T + h2T ∥curl (t̃j,h)∥20,T

+
∑

e∈Eh(T )∩Eh(Ω)

he∥[[ t̃j,h×n]]∥20,e +
∑

e∈Eh(T )∩Eh(Γ)

he∥t̃j,h×n− curl s(ϕj,D)∥20,e
)
,

(2.87)

and the global a posteriori error estimator is defined as

Θ =

{ ∑
T∈Th

Θ
6/5
1,T

}5/6

+

{ ∑
T∈Th

Θ
3/2
2,T

}2/3

+

{ ∑
T∈Th

Θ2
3,T

}1/2

+

{ ∑
T∈Th

Θ3
4,T

}1/3

+

{ ∑
T∈Th

Θ6
5,T

}1/6

,

(2.88)

where Θ
6/5
1,T , Θ

3/2
2,T , Θ3

4,T , and Θ6
5,T are defined as in (2.31), (2.32), (2.34), and (2.35), respectively.

In this way, the corresponding reliability and efficiency estimates, which constitute the analogue of
Theorems 2.4 and 2.14, are stated as follows.

Theorem 2.17. Assume (2.36) and that uD and ϕD are piecewise polynomials. Then, there exist
positive constants Creal and Ceff, independent of h, such that

CeffΘ+ h.o.t. ≤ ∥(u⃗,σ)− (u⃗h,σh)∥+
2∑
j=1

∥(ϕ⃗j ,ρj)− (ϕ⃗j,h,ρj,h)∥ ≤ CrelΘ .

The proof of Theorem 2.17 follows very closely the analysis of Section 2.3, except a few issues to
be described throughout the following discussion. Indeed, we first notice that the general a posteriori
error estimate given by Lemma 2.7 and the upper bounds for ∥Q∥ and ∥Q̃j∥ (cf. (2.60), (2.61)), are
also valid in 3D. In turn, we follow [59, Theorem 3.2] to derive a 3D version for arbitrary polyhedral
domains of the Helmholtz decomposition provided by Lemma 2.2, with p ≥ 6/5 (cf. [13, Lemma
3.4]). Next, the associated discrete Helmholtz decomposition and the functionals R and R̃j are set
and rewritten exactly as in (2.65), (2.66), and (2.3.2), respectively. In addition, in order to derive the
new upper bounds of ∥R∥ and ∥R̃j∥ (cf. (2.62)), we now need the 3D analogue of the integration by
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parts formula on the boundary given by (2.71). In fact, by employing the identities from [68, Chapter
I, eq. (2.17), and Theorem 2.11], we deduce that in this case there holds〈

curl (ξ) · n, θ
〉
Γ
= −

〈
curl s(θ), ξ

〉
Γ

∀ ξ ∈ H1(Ω), ∀ θ ∈ H1/2(Γ) .

In addition, the integration by parts formula on each tetrahedron T ∈ Th, which is used in the proof
of the 3D analogues of Lemmas 2.9 and 2.10, becomes (cf. [68, Chapter I, Theorem 2.11])∫

T
curl (q) · ξ −

∫
T
q · curl (ξ) =

〈
q× n, ξ

〉
∂T

∀q ∈ H(curl ; Ω), ∀ ξ ∈ H1(Ω) ,

where
〈
·, ·
〉
∂T

is the duality pairing between H−1/2(∂T ) and H1/2(∂T ), and, as usual, H(curl ; Ω) is
the space of vectors in L2(Ω) whose curl belongs to L2(Ω). We observe that, unlike the 2D case, it
is not necessary for the reliability analysis to assume that uD ∈ H1(Γ) and ϕj,D ∈ H1(Γ), j ∈ {1, 2},
since the curl s is defined into H1/2(Γ). Nevertheless, for computational purposes, in Section 2.5 we
will consider that uD and ϕj,D are sufficiently smooth, in which case curl s(uD) (resp. curl s(ϕj,D))
coincides with ∇uD × n (resp. ∇ϕj,D × n).

Finally, in order to prove the efficiency of Θ (cf. (2.88)), we first observe that the terms defining
Θ

6/5
1,T , Θ3/2

2,T , and the first and fifth terms defining Θ2
3,T (cf. (2.31), (2.32), (2.33)), are estimated exactly

as done for the 2D case in Lemma 2.15. For the remaining terms, we establish the following lemma.

Lemma 2.18. Assume that uD and ϕj,D, j ∈ {1, 2}, are piecewise polynomials. Then, there exist
positive constants Ĉi, i ∈ {1, . . . , 10}, all independent of h, such that

a) h3T ∥th −∇uh∥30,3;T ≤ Ĉ1

{
∥u− uh∥30,3;T + hT ∥t− th∥30,T

}
∀T ∈ Th ,

b) h6T ∥t̃j,h −∇ϕj,h∥60,6;T ≤ Ĉ2

{
∥ϕj − ϕj,h∥60,6;T + hT ∥t̃j − t̃j,h∥60,T

}
∀T ∈ Th ,

c) he ∥uD − uh∥30,3;e ≤ Ĉ3

{
∥u− uh∥30,3;Te + hTe∥t− th∥30,Te

}
∀ e ∈ Eh(Γ) ,

d) he ∥ϕj,D − ϕj,h∥60,6;e ≤ Ĉ4

{
∥ϕj − ϕj,h∥60,6;Te + hTe∥t̃j − t̃j,h∥60,Te

}
∀ e ∈ Eh(Γ) .

e) h2T ∥curl (th)∥20,T ≤ Ĉ5 ∥t− th∥20,T ∀T ∈ Th ,

f) h2T ∥curl (t̃j,h)∥20,T ≤ Ĉ6 ∥t̃j − t̃j,h∥20,T ∀T ∈ Th ,

g) he ∥[[th × n]]∥20,e ≤ Ĉ7 ∥t− th∥20,ωe
∀ e ∈ Eh(Ω) ,

h) he ∥[[̃tj,h × n]]∥20,e ≤ Ĉ8 ∥t̃j − t̃j,h∥20,ωe
∀ e ∈ Eh(Ω) ,

i) he ∥th × n− curl s(uD)∥20,e ≤ Ĉ9 ∥t− th∥20,Te ∀ e ∈ Eh(Γ) ,

j) he ∥t̃j,h × n− curl s(ϕj,D)∥20,e ≤ Ĉ10 ∥t̃j − t̃j,h∥20,Te ∀ e ∈ Eh(Γ) .

Proof. For a) and b) we refer again to [63, Lemma 3.17] by using now the local inverse inequality (2.74)
with n = 3, whereas c) and d) follow from [63, Lemma 3.18] and the present estimates a) and b). In
turn, for the proof of e), f), g) and h), we refer to [60, Lemmas 4.9 and 4.10]. Finally, i) and j) can be
derived after slight modification of the proof of [65, Lemma 4.15], along with the definitions of curl s
and curl s, respectively.
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2.5 Numerical results

This section serves to illustrate the performance and accuracy of the proposed fully-mixed finite
element scheme (2.18) along with the reliability and efficiency properties of the a posteriori error
estimator Θ (cf. (2.30)), in 2D and 3D domains. In what follows, we refer to the corresponding sets of
finite element subspaces generated by k = 0 and k = 1, as simply P0−P0−RT0−P0−P0−RT0 and
P1−P1−RT1−P1−P1−RT1, respectively. Our implementation is based on a FreeFem++ code [70].
Regarding the implementation of the Newton iterative method associated to (2.18) (see [24, Section
5] for details), the iterations are terminated once the relative error of the entire coefficient vectors
between two consecutive iterates, say coeffm+1 and coeffm, is sufficiently small, that is,

∥coeffm+1 − coeffm∥
∥coeffm+1∥

≤ tol ,

where ∥ · ∥ stands for the usual Euclidean norm in RDOF, with DOF denoting the total number of degrees
of freedom defining the finite element subspaces Hu

h , Ht
h, Hσh , Hϕh, H

t̃
h, and Hρ

h (cf. (2.17)), and tol is
a fixed tolerance chosen as tol = 1E− 6. As usual, the individual errors are denoted by:

e(u) := ∥u− uh∥0,3;Ω , e(t) := ∥t− th∥0,Ω , e(σ) := ∥σ − σh∥div3/2;Ω , e(p) := ∥p− ph∥0,Ω ,

e(ϕ) :=
2∑
j=1

∥ϕj − ϕj,h∥0,6;Ω , e(t̃) :=
2∑
j=1

∥t̃j − t̃j,h∥0;Ω , e(ρ) :=
2∑
j=1

∥ρj − ρj,h∥div6/5;Ω ,

where ph is the post-processed pressure suggested by (2.6):

ph = − 1

n
tr(σh) .

In turn, the global error and the effectivity index associated to the global estimator Θ are denoted,
respectively, by

e(σ⃗) := e(u) + e(t) + e(σ) + e(ϕ) + e(t̃) + e(ρ) and eff(Θ) :=
e(σ⃗)

Θ
.

Moreover, using the fact that DOF−1/n ∼= h, the respective experimental rates of convergence are
computed as

r(⋆) := −n
log
(
e(⋆)/e′(⋆)

)
log(DOF/DOF′)

for each ⋆ ∈
{
u, t,σ, p,ϕ, t̃,ρ, σ⃗

}
,

where DOF and DOF′ denote the total degrees of freedom associated to two consecutive triangulations
with errors e(⋆) and e′(⋆), respectively.

The examples to be considered in this section are described next. In all of them, for sake of simplicity,
we take ν = 1, ϱ = 1, R1 = 1, R2 = 1, ϕr = 0, g = (0,−1)t when n = 2 and g = (0, 0,−1)t when n = 3.
In turn, in the first three examples we consider F = 10 and the tensors K, Q1, and Q2 are taken as the
identity matrix I, which satisfy (2.4). In addition, it is easy to see for these examples that the boundary
data uD := u|Γ and ϕj,D := ϕj |Γ, with j ∈

{
1, 2
}
, satisfy the required regularity uD ∈ H1(Γ) and

ϕj,D ∈ H1(Γ) since the given exact solutions u and ϕj , j ∈
{
1, 2
}
, are sufficiently regular. Furthermore,

the condition
∫
Ω tr(σh) = 0 is imposed via a penalization strategy. Example 1 is used to show the
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accuracy of the method and the behaviour of the effectivity indexes of the a posteriori error estimator
Θ, whereas Examples 2–3 and 4 are utilized to illustrate the associated adaptive algorithm, with
and without manufactured solutions, respectively, in both 2D and 3D domains. The corresponding
adaptivity procedure, taken from [86], is described as follows:

1. Start with a coarse mesh Th.

2. Solve the Newton iterative method associated to (2.18) for the current mesh Th.

3. Compute the local indicator Θ̂T for each T ∈ Th, where

Θ̂T :=

5∑
i=1

Θi,T . (cf. (2.31)–(2.35))

4. Check the stopping criterion and decide whether to finish or go to next step.

5. Use the automatic meshing algorithm adaptmesh from [71, Section 9.1.9] to refine each T ′ ∈ Th
satisfying:

Θ̂T ′ ≥ Cadm
1

#T

∑
T∈Th

Θ̂T , for some Cadm ∈ (0, 1), (2.89)

where #T denotes the number of triangles of the mesh Th.

6. Define resulting mesh as current mesh Th, and go to step (2).

In particular, in Examples 2, 3 and 4 below we take Cadm = 0.8 (cf. (2.89)).

Example 1: Accuracy assessment with a smooth solution in a square domain.

We first concentrate on the accuracy of the fully-mixed method as well as the properties of the
a posteriori error estimator through the effectivity index eff(Θ), under a quasi-uniform refinement
strategy. We consider the square domain Ω = (−1, 1)2, and adjust the data in (2.3) so that the exact
solution is given by the smooth functions

u(x1, x2) =

(
− sin2(πx1) sin(2πx2)

sin(2πx1) sin
2(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) ,

ϕ1(x1, x2) = 15− 15 exp(−x1x2(x1 − 1)(x2 − 1)) , and ϕ2(x1, x2) = −0.5 + exp(−x21 − x22) .

Tables 2.1 and 2.2 show the convergence history for a sequence of quasi-uniform mesh refinements,
including the average number of Newton iterations. The results illustrate that the optimal rates of
convergence O(hk+1) established in [24, Theorem 5.5] are attained for k = 0, 1. In addition, the global
a posteriori error indicator Θ (cf. (2.30)), and its respective effectivity index are also displayed there,
from where we highlight that the latter remain always bounded.
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Example 2: Adaptivity in a 2D L-shaped domain.

We now aim at testing the features of adaptive mesh refinement after the a posteriori error estimator
Θ (cf. (2.30)). We consider an L-shaped domain Ω := (−1, 1)2 \ (0, 1)2. The manufactured solution is
given by

u(x1, x2) =

(
−π cos(πx2) sin(πx1)

π cos(πx1) sin(πx2)

)
, p(x1, x2) =

10(1− x1)

(x1 − 0.02)2 + (x2 − 0.02)2
− p0 ,

ϕ1(x1, x2) =
1

x2 + 1.055
, and ϕ2(x1, x2) =

1

x2 + 1.07
,

where p0 ∈ R is chosen so that
∫
Ω p = 0. Observe that the pressure, temperature and concentration

fields exhibit high gradients near the vertex (0,0) and the lines x2 = −1.055 and x2 = −1.07, re-
spectively. Tables 2.3–2.6 along with Figure 2.1, summarizes the convergence history of the method
applied to a sequence of quasi-uniformly and adaptively refined triangulation of the domain. Subop-
timal rates are observed in the first case, whereas adaptive refinement according to the a posteriori
error indicator Θ yields optimal convergence and stable effectivity indexes. Notice how the adaptive
algorithms improves the efficiency of the method by delivering quality solutions at a lower computa-
tional cost, to the point that it is possible to get a better one (in terms of e(σ⃗)) with approximately
only the 0.7% of the degrees of freedom of the last quasi-uniform mesh for the fully-mixed scheme in
both cases k = 0 and k = 1. Furthermore, the inital mesh and approximate solutions built using the
P1 −P1 −RT1 −P1 −P1 −RT1 scheme (via the indicator Θ) with 55, 299 triangle elements (actually
representing 2, 935, 459 DOF), are shown in Figure 2.2. In particular, we observe that the pressure and
concentration exhibit high gradients near the contraction region and at the bottom boundary of the
L-shaped domain, respectively. In turn, examples of some adapted meshes for k = 0 and k = 1 are
collected in Figure 2.3. We can observe a clear clustering of elements near the corner region of the
contraction and the bottom of the L-shaped domain as we expected.

Example 3: Adaptivity in a 3D L-shaped domain.

Here we replicate the Example 2 in a three-dimensional setting by considering the 3D L-shaped
domain Ω := (−0.5, 0.5)× (0, 0.5)× (−0.5, 0.5) \ (0, 0.5)3, and the manufactured exact solution

u(x1, x2, x3) =


sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , p(x1, x2, x3) =
10x3

(x1 − 0.02)2 + (x3 − 0.02)2
− p0,

ϕ1(x1, x2, x3) = 0.5 + 0.5 cos(x1x2x3) , and ϕ2(x1, x2, x3) = 0.1 + 0.3 exp(x1x2x3) .

Tables 2.7 and 2.8 along with Figure 2.4 confirm a disturbed convergence under quasi-uniform re-
finement, whereas optimal convergence rates are obtained when adaptive refinements guided by the a
posteriori error estimator Θ, with k = 0, are used. In turn, the initial mesh and some approximated
solutions after four mesh refinement steps (via Θ) are collected in Figure 2.5. In particular, we see
there that the pressure attains large values and hence, most likely, high gradients as well near the con-
traction region of the 3D L-shaped domain, as we expected. The latter is complemented with Figure
2.6, where snapshots of three meshes via Θ show a clustering of elements in the same region.
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Example 4: Flow through a 2D porous media with channel network.

Inspired by [24, Example 3, Section 6], we finally focus on a flow through a porous medium with a
channel network considering strong jump discontinuities of the parameters F and K accross the two
regions. We consider the square domain Ω = (−1, 1)2 with an internal channel network denoted as Ωc

(see the first plot of Figure 2.7 below), and boundary Γ, whose left, right, upper and lower parts are
given by Γleft = {−1} × (−1, 1), Γright = {1} × (−1, 1), Γtop = (−1, 1)× {1}, and Γbottom = (−1, 1)×
{−1}, respectively. Note that the boundary of the internal channel network is defined as a union of
segments. The initial mesh file is available in https://github.com/scaucao/Channel_network-mesh.
We consider the coupling of the Brinkman–Forchheimer and double-diffusion equations (2.7) in the
whole domain Ω with Q1 = 0.5 I and Q2 = 0.125 I, but with different values of the parameters F and
K = α I for the interior and the exterior of the channel, namely

F =

{
10 in Ωc

1 in Ω \ Ωc

and α =

{
1 in Ωc

0.001 in Ω \ Ωc

.

The parameter choice corresponds to increased inertial effect (F = 10) in the channel and a high
permeability (α = 1), compared to reduced inertial effect (F = 1) in the porous medium and low
permeability (α = 0.001). In addition, the boundary conditions are

u · n = 0.2 , u · t = 0 on Γleft , σ n = 0 on Γ \ Γleft ,

ϕ1 = 0.3 on Γbottom , ϕ1 = 0 on Γtop , ρ1 · n = 0 on Γleft ∪ Γright ,

ϕ2 = 0.2 on Γbottom , ϕ2 = 0 on Γtop , ρ2 · n = 0 on Γleft ∪ Γright .

In particular, the first row of boundary equations corresponds to inflow on the left boundary and
zero stress outflow on the rest of the boundary. We observe that for this example both ∇uD and
∇ϕj,D are zero on the corresponding part of the boundary since the data is constant in that region.
According to this, the assumptions on uD and ϕj,D are trivially satisfied, and the local estimator
Θ3,T (cf. (2.33)) is simplified accordingly. Analogously to [24, Figure 3, Section 6], in Figure 2.7 we
display the computed magnitude of the velocity, velocity gradient tensor, pseudostress tensor, and
gradients of the temperature and concentration, and the temperature and concentration fields, which
were built using the P0 −P0 −RT0 −P0 −P0 −RT0 scheme on a mesh with 48, 429 triangle elements
(actually representing 824, 663 DOF) obtained via Θ. Similarly to [24, Example 3, Section 6], faster
flow through the channel network, with a significant velocity gradient across the interface between
the porous medium and the channel, are observed. In turn, the temperature and concentration are
zero on the top of the domain and go increasing towards the bottom of it, which is consistent with the
behavior observed for the magnitude of the temperature and concentration gradients. Notice that both
the temperature and concentration are smooth across the fracture boundary since the parameters Q1

and Q2 are taken with the same values in the whole domain. These results are in agreement with those
reported in [24] but now taking into account that the mesh employed was obtained through an adaptive
refinement process guided by the a posteriori error indicator Θ. In turn, snapshots of some adapted
meshes generated using Θ are depicted in Figure 2.8. We can observe a suitable refinement around the
interface that couples the porous medium with the channel network as well as the region near the inflow
boundary and the regions where the pseudoestress, the temperature and the concentration are higher.
Note that there is also a refinement inside the channel but it is not significant as compared to the other

https://github.com/scaucao/Channel_network-mesh
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regions described above. The latter suggests that the indicator Θ is able to detect the strong jump
discontinuities of the model parameters along the interface between the channel and porous media, as
we expected, and at the same time localizes the regions where the solutions are higher.

DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

644 5 8.09E-01 – 7.68E+00 – 6.68E+01 – 3.60E+00 –
2818 5 4.05E-01 0.94 3.97E+00 0.89 3.52E+01 0.87 1.44E+00 1.24

10464 5 2.22E-01 0.92 2.12E+00 0.96 1.86E+01 0.97 7.50E-01 0.99
41124 5 1.11E-01 1.01 1.08E+00 0.98 9.33E+00 1.01 3.72E-01 1.02

164698 5 5.58E-02 1.00 5.43E-01 0.99 4.67E+00 1.00 1.85E-01 1.01
665758 5 2.78E-02 1.00 2.69E-01 1.01 2.32E+00 1.00 9.14E-02 1.01

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

3.52E+00 – 1.14E+01 – 3.26E+01 – 1.23E+02 – 1.52E+02 0.806
1.85E+00 0.87 5.76E+00 0.93 1.55E+01 1.01 6.27E+01 0.91 8.50E+01 0.738
9.19E-01 1.07 2.97E+00 1.01 7.86E+00 1.03 3.27E+01 0.99 4.50E+01 0.727
4.41E-01 1.08 1.50E+00 1.00 3.96E+00 1.00 1.64E+01 1.01 2.29E+01 0.718
2.24E-01 0.97 7.48E-01 1.00 1.98E+00 1.00 8.23E+00 1.00 1.15E+01 0.718
1.10E-01 1.02 3.72E-01 1.00 9.82E-01 1.01 4.08E+00 1.00 5.70E+00 0.716

Table 2.1: [Example 1] P0 − P0 − RT0 − P0 −P0 −RT0 scheme with quasi-uniform refinement.

Figure 2.1: [Example 2] Log-log plots of e(σ⃗) vs. DOF for quasi-uniform/adaptative schemes via Θ

for k = 0 and k = 1 (left and right plots, respectively).
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DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1972 5 3.83E-01 – 4.01E+00 – 3.07E+01 – 1.08E+00 –
8714 5 9.17E-02 1.93 8.86E-01 2.03 8.41E+00 1.74 2.75E-01 1.84

32480 5 2.49E-02 1.98 2.41E-01 1.98 2.35E+00 1.94 7.20E-02 2.04
127924 5 6.34E-03 1.99 5.97E-02 2.04 5.99E-01 1.99 1.71E-02 2.10
512898 5 1.59E-03 1.99 1.52E-02 1.97 1.50E-01 1.99 4.33E-03 1.97

2074454 5 3.86E-04 2.02 3.74E-03 2.00 3.66E-02 2.02 1.06E-03 2.02

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

5.64E-01 – 2.20E+00 – 8.71E+00 – 4.66E+01 – 7.54E+01 0.617
1.36E-01 1.91 5.48E-01 1.87 1.95E+00 2.01 1.20E+01 1.82 2.00E+01 0.600
3.87E-02 1.91 1.45E-01 2.02 5.13E-01 2.03 3.31E+00 1.96 5.52E+00 0.599
1.04E-02 1.91 3.76E-02 1.97 1.30E-01 2.00 8.44E-01 1.99 1.41E+00 0.598
2.35E-03 2.15 9.37E-03 2.00 3.27E-02 1.99 2.12E-01 1.99 3.53E-01 0.599
5.88E-04 1.98 2.28E-03 2.02 7.97E-03 2.02 5.16E-02 2.02 8.63E-02 0.598

Table 2.2: [Example 1] P1 − P1 − RT1 − P1 −P1 −RT1 scheme with quasi-uniform refinement.

Figure 2.2: [Example 2] Initial mesh, computed pressure and concentration fields.
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DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1832 8 1.35E+01 – 1.81E+02 – 8.63E+03 – 3.44E+02 –
7608 7 1.35E+01 – 2.51E+02 – 1.14E+04 – 3.56E+02 –

29666 6 1.03E+01 0.40 2.79E+02 – 1.06E+04 0.11 2.76E+02 0.37
117710 6 5.09E+00 1.02 2.20E+02 0.35 7.65E+03 0.48 1.86E+02 0.57
470938 6 1.91E+00 1.41 1.39E+02 0.66 4.64E+03 0.72 1.03E+02 0.85

1887552 6 5.24E-01 1.86 7.20E+01 0.94 2.44E+03 0.92 5.15E+01 1.00

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

2.26E+01 – 1.44E+02 – 1.62E+03 – 1.06E+04 – 1.05E+04 1.008
1.18E+01 0.91 9.89E+01 0.53 1.20E+03 0.42 1.30E+04 – 1.31E+04 0.995
6.25E+00 0.94 5.90E+01 0.76 7.37E+02 0.72 1.17E+04 0.15 1.19E+04 0.986
3.11E+00 1.01 3.08E+01 0.94 3.81E+02 0.96 8.29E+03 0.50 8.44E+03 0.982
1.64E+00 0.93 1.59E+01 0.95 1.95E+02 0.97 4.99E+03 0.73 5.14E+03 0.971
8.25E-01 0.99 7.97E+00 1.00 9.74E+01 1.00 2.62E+03 0.93 2.69E+03 0.973

Table 2.3: [Example 2] P0 − P0 − RT0 − P0 −P0 −RT0 scheme with quasi-uniform refinement.

DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

5640 7 9.83E+00 – 2.16E+02 – 6.50E+03 – 2.22E+02 –
23576 6 6.97E+00 0.48 2.23E+02 – 7.95E+03 – 1.96E+02 0.18
92202 6 2.75E+00 1.36 1.38E+02 0.70 6.54E+03 0.29 1.13E+02 0.81

366406 6 8.26E-01 1.74 7.01E+01 0.98 3.32E+03 0.98 5.38E+01 1.07
1467074 6 1.78E-01 2.21 2.52E+01 1.47 1.22E+03 1.45 1.74E+01 1.62
5882432 6 2.42E-02 2.87 6.83E+00 1.88 3.52E+02 1.79 4.90E+00 1.83

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

6.94E+00 – 5.91E+01 – 7.75E+02 – 7.57E+03 – 8.13E+03 0.931
2.79E+00 1.28 2.93E+01 0.98 4.80E+02 0.67 8.70E+03 – 9.19E+03 0.946
1.03E+00 1.46 1.17E+01 1.34 2.11E+02 1.20 6.91E+03 0.34 7.46E+03 0.926
2.68E-01 1.95 3.47E+00 1.76 6.40E+01 1.73 3.46E+03 1.00 3.77E+03 0.917
7.96E-02 1.75 9.89E-01 1.81 1.80E+01 1.83 1.26E+03 1.46 1.38E+03 0.915
2.09E-02 1.93 2.52E-01 1.97 4.60E+00 1.97 3.64E+02 1.79 3.95E+02 0.921

Table 2.4: [Example 2] P1 − P1 − RT1 − P1 −P1 −RT1 scheme with quasi-uniform refinement.
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DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

1832 8 1.35E+01 – 1.81E+02 – 8.63E+03 – 3.44E+02 –
3057 6 1.09E+01 0.84 2.54E+02 – 1.12E+04 – 2.98E+02 0.56
4422 6 3.81E+00 5.70 1.90E+02 1.57 7.29E+03 2.31 1.59E+02 3.42
7023 6 1.13E+00 5.25 8.77E+01 3.34 3.21E+03 3.54 6.87E+01 3.62

13072 6 1.01E+00 0.36 4.84E+01 1.91 1.52E+03 2.41 3.78E+01 1.92
25059 6 8.71E-01 0.46 3.42E+01 1.07 9.97E+02 1.30 2.64E+01 1.11
45447 6 7.85E-01 0.35 2.52E+01 1.02 7.46E+02 0.97 1.94E+01 1.04
77578 6 5.98E-01 1.02 1.90E+01 1.05 5.66E+02 1.03 1.42E+01 1.15

142989 6 4.51E-01 0.92 1.44E+01 0.92 4.26E+02 0.93 1.06E+01 0.96
250193 6 3.15E-01 1.28 1.09E+01 0.98 3.24E+02 0.98 8.02E+00 1.00
452423 6 2.42E-01 0.89 8.33E+00 0.91 2.49E+02 0.89 6.10E+00 0.93
795326 6 1.74E-01 1.18 6.33E+00 0.97 1.89E+02 0.97 4.63E+00 0.98

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

2.26E+01 – 1.44E+02 – 1.62E+03 – 1.06E+04 – 1.05E+04 1.008
1.71E+01 1.10 1.33E+02 0.32 1.41E+03 0.56 1.30E+04 – 1.29E+04 1.006
1.49E+01 0.75 1.19E+02 0.61 1.32E+03 0.33 8.94E+03 2.02 8.80E+03 1.015
9.87E+00 1.78 9.21E+01 1.09 1.09E+03 0.82 4.50E+03 2.97 4.40E+03 1.022
6.05E+00 1.58 5.81E+01 1.48 7.44E+02 1.24 2.38E+03 2.05 2.33E+03 1.020
4.26E+00 1.08 4.38E+01 0.86 5.73E+02 0.81 1.65E+03 1.12 1.62E+03 1.021
2.52E+00 1.76 2.58E+01 1.78 3.46E+02 1.69 1.15E+03 1.23 1.13E+03 1.014
1.91E+00 1.05 2.05E+01 0.86 2.75E+02 0.86 8.83E+02 0.97 8.71E+02 1.014
1.29E+00 1.29 1.35E+01 1.37 1.82E+02 1.35 6.37E+02 1.07 6.31E+02 1.010
9.61E-01 1.04 1.02E+01 0.99 1.38E+02 0.99 4.84E+02 0.98 4.79E+02 1.010
6.50E-01 1.32 6.82E+00 1.37 9.19E+01 1.37 3.57E+02 1.03 3.55E+02 1.006
4.83E-01 1.05 5.11E+00 1.03 6.90E+01 1.02 2.70E+02 0.99 2.69E+02 1.006

Table 2.5: [Example 2] P0 − P0 − RT0 − P0 −P0 −RT0 scheme with adaptive refinement via Θ.
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DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

5640 7 9.83E+00 – 2.16E+02 – 6.50E+03 – 2.22E+02 –
9105 6 4.34E+00 3.41 1.72E+02 0.96 7.14E+03 – 1.32E+02 2.16

13393 6 5.77E-01 10.45 5.41E+01 5.98 2.90E+03 4.66 4.49E+01 5.61
23159 6 1.05E-01 6.21 1.09E+01 5.86 5.62E+02 6.00 7.99E+00 6.30
41452 6 1.01E-01 0.15 4.78E+00 2.81 1.67E+02 4.17 3.51E+00 2.83
87093 6 8.66E-02 0.41 1.87E+00 2.53 7.49E+01 2.16 1.34E+00 2.59

198988 6 5.82E-02 0.96 1.13E+00 1.21 3.85E+01 1.61 8.13E-01 1.21
462786 6 1.67E-02 2.96 4.00E-01 2.47 1.64E+01 2.02 2.87E-01 2.47

1195614 6 8.38E-03 1.45 2.11E-01 1.35 7.38E+00 1.68 1.53E-01 1.33
2935459 6 2.34E-03 2.84 6.81E-02 2.52 2.70E+00 2.24 4.91E-02 2.53

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

6.94E+00 – 5.91E+01 – 7.75E+02 – 7.57E+03 – 8.13E+03 0.931
5.96E+00 0.64 4.98E+01 0.71 6.91E+02 0.48 8.06E+03 – 8.40E+03 0.960
4.60E+00 1.33 4.46E+01 0.57 6.33E+02 0.46 3.64E+03 4.12 3.76E+03 0.969
1.49E+00 4.13 1.68E+01 3.56 3.02E+02 2.71 8.93E+02 5.13 9.13E+02 0.978
6.00E-01 3.11 6.88E+00 3.07 1.31E+02 2.87 3.10E+02 3.63 3.20E+02 0.968
3.02E-01 1.85 3.88E+00 1.54 7.54E+01 1.48 1.56E+02 1.84 1.61E+02 0.972
9.88E-02 2.70 1.17E+00 2.91 2.26E+01 2.92 6.35E+01 2.18 6.65E+01 0.955
4.49E-02 1.87 6.17E-01 1.51 1.24E+01 1.42 2.99E+01 1.79 3.07E+01 0.974
1.59E-02 2.19 1.96E-01 2.42 3.82E+00 2.48 1.16E+01 1.99 1.21E+01 0.958
6.72E-03 1.91 9.50E-02 1.61 1.91E+00 1.55 4.77E+00 1.98 4.90E+00 0.975

Table 2.6: [Example 2] P1 − P1 − RT1 − P1 −P1 −RT1 scheme with adaptive refinement via Θ.

DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

4456 5 5.14E-01 – 5.94E+00 – 1.58E+02 – 9.39E+00 –
67000 4 2.96E-01 0.61 5.42E+00 0.10 1.50E+02 0.06 7.53E+00 0.24

271744 4 1.97E-01 0.87 4.79E+00 0.26 1.37E+02 0.19 5.90E+00 0.52
703252 4 1.35E-01 1.19 4.11E+00 0.48 1.18E+02 0.47 4.60E+00 0.79

1446088 4 9.80E-02 1.34 3.57E+00 0.58 1.02E+02 0.62 3.72E+00 0.88

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

2.06E-02 – 1.29E-01 – 2.47E-01 – 1.64E+02 – 1.50E+02 1.099
1.20E-02 0.59 6.45E-02 0.76 1.19E-01 0.81 1.56E+02 0.06 1.41E+02 1.107
7.34E-03 1.06 4.03E-02 1.01 7.45E-02 1.00 1.42E+02 0.20 1.29E+02 1.099
4.71E-03 1.39 2.78E-02 1.18 5.03E-02 1.24 1.22E+02 0.47 1.12E+02 1.095
3.22E-03 1.59 2.05E-02 1.27 3.65E-02 1.33 1.05E+02 0.62 9.63E+01 1.093

Table 2.7: [Example 3] P0 − P0 − RT0 − P0 −P0 −RT0 scheme with quasi-uniform refinement.
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DOF iter e(u) r(u) e(t) r(t) e(σ) r(σ) e(p) r(p)

4456 5 5.14E-01 – 5.94E+00 – 1.58E+02 – 9.39E+00 –
10246 5 5.54E-01 – 6.23E+00 – 1.65E+02 – 1.12E+01 –
52750 4 2.91E-01 1.18 5.41E+00 0.26 1.56E+02 0.10 6.90E+00 0.89

144226 4 1.41E-01 2.16 4.02E+00 0.88 1.14E+02 0.93 4.22E+00 1.46
915951 4 6.09E-02 1.37 2.34E+00 0.88 6.23E+01 0.98 2.02E+00 1.20

e(ϕ) r(ϕ) e(t̃) r(t̃) e(ρ) r(ρ) e(σ⃗) r(σ⃗) Θ eff(Θ)

2.06E-02 – 1.29E-01 – 2.47E-01 – 1.64E+02 – 1.50E+02 1.099
2.49E-02 – 1.41E-01 – 2.35E-01 0.17 1.72E+02 – 1.53E+02 1.126
1.07E-02 1.55 6.44E-02 1.44 1.17E-01 1.28 1.62E+02 0.11 1.47E+02 1.098
5.27E-03 2.11 3.90E-02 1.49 7.02E-02 1.52 1.18E+02 0.94 1.08E+02 1.091
2.48E-03 1.22 2.00E-02 1.09 3.72E-02 1.03 6.47E+01 0.98 5.94E+01 1.090

Table 2.8: [Example 3] P0 − P0 − RT0 − P0 −P0 −RT0 scheme with adaptive refinement via Θ.

Figure 2.3: [Example 2] Three snapshots of adapted meshes according to the indicator Θ for k = 0

and k = 1 (top and bottom plots, respectively).
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Figure 2.4: [Example 3] Log-log plot of e(σ⃗) vs. DOF for quasi-uniform/adaptative schemes via Θ for
k = 0.

Figure 2.5: [Example 3] Initial mesh, computed magnitude of the velocity, and pressure field.

Figure 2.6: [Example 3] Three snapshots of adapted meshes according to the indicator Θ for k = 0.
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Figure 2.7: [Example 4] Initial mesh, computed magnitude of the velocity, and velocity gradient
tensor (top plots); computed magnitude of the pseudostress tensor, temperature field, and magnitude
of the temperature gradient (middle plots); concentration field, and magnitude of the concentration
gradient (bottom plots).
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Figure 2.8: [Example 4] Three snapshots of adapted meshes according to the indicator Θ for k = 0.



CHAPTER 3

A three-field mixed finite element method for the convective
Brinkman–Forchheimer problem with varying porosity

3.1 Introduction

In this chapter we study mathematical and computational modeling of fast flow of fluid through
highly porous media using the stationary convective Brinkman–Forchheimer equations with varying
porosity. This type of flows has a broad range of applications, including processes arising in chemical,
petroleum, and environmental engineering. In particular, fast flows in the subsurface may occur in
fractured or vuggy aquifers or reservoirs, as well as near injection and production wells during ground-
water remediation or hydrocarbon production. Many of the investigations in porous media have mainly
focused on the use of Darcy’s law. However, as the Reynolds number increases, Darcy’s law becomes
less accurate, necessitating more comprehensive models. To overcome this deficiency, it is possible to
consider the convective Brinkman–Forchheimer equations (see, e.g. [37, 87, 84, 85, 75, 41]), where
terms are added to Darcy’s law in order to take into account high velocity flow and high porosity.

In this context, and up to the authors’ knowledge, [37] constitutes one of the first works in analyzing
the convective Brinkman–Forchheimer (CBF) equations. In that work, the authors prove continuous
dependence of solutions of the CBF equations written in velocity-pressure formulation on the Forch-
heimer coefficient in H1 norm. Later on, an approximation of solutions for the incompressible CBF
equations via the artificial compressibility method was proposed and analyzed in [87]. Meanwhile,
the two-dimensional stationary CBF equations were analyzed in [75]. The focus of this work is on
the well-posedness of the corresponding velocity-pressure variational formulation. More recently, an
augmented mixed pseudostress-velocity formulation was analyzed in [22]. In there, the well-posedness
of the problem is achieved by combining a fixed-point strategy, the Lax-Milgram theorem, and the
well-known Schauder and Banach fixed-point theorems. In turn, a non-augmented mixed formulation
based on Banach spaces was developed and analyzed for the CBF problem in [23]. The resulting
scheme is then written equivalently as a fixed-point equation, so that results recently established in
[48] for perturbed saddle-point problems in Banach spaces, together with the Banach-Nečas-Babuška
and Banach theorems, are applied to prove the well-posedness of the continuous and discrete systems.
Furthermore, new mixed finite element methods for the coupling of the CBF and double-diffusion equa-
tions were derived and analyzed in [19]. Similar arguments to the ones employed in [23] and [48] were
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employed to prove the existence and uniqueness of continuous and discrete problems. We also refer to
[69], [73], [81], [77], [78], and [80] for the analysis of mixed formulations and numerical studies of the
Darcy–Forchheimer equations and related coupled problems. In particular, in [73], a parameter-robust
mixed method is developed for the coupling of the Darcy–Forchheimer and Biot equations. Specifi-
cally, Bernardi–Raugel elements are used to discretize the displacement, while Raviart–Thomas and
discontinuous piecewise elements are considered for the fluid velocity and pressure.

Regarding the literature focused on the analysis of the CBF equations with varying porosity, we start
referring to [84], where the authors analyze the well-posedness of solution for a continuous velocity-
pressure variational formulation. In particular, the existence of solution is obtained without any data
assumption, while uniqueness is achieved for sufficiently small data. In turn, existence and uniqueness
of weak solutions for the CBF model was studied in [85] for bounded and unbounded domains. The
main novelty of this work is the use of a suitable extension of the Ladyzhenskaya functional method.
Meanwhile, a mixed formulation was introduced and analyzed in [41]. In there, the authors prove
existence of a unique solution under a small data condition. Then, the convergence of a Taylor-Hood
finite element approximation using a finite element interpolation of the porosity is proved under similar
smallness assumption. Moreover, optimal error estimates are derived.

The purpose of the present work is to develop and analyze a new three-field mixed formulation of the
CBF problem with varying porosity and study a suitable numerical discretization. To that end, unlike
previous works, and motivated by [42], [24], [35], and [4], we introduce the pseudostress tensor and
the gradient of the porosity times the velocity as additional unknowns, besides the fluid velocity, and
subsequently eliminate the pressure unknown using the incompressibility condition. Then, similarly
to [24] and [4], we combine a fixed-point argument, classical results on nonlinear monotone operators,
sufficiently small data assumptions, and the Banach fixed-point theorem, to establish existence and
uniqueness of solution of both the continuous and discrete formulations. In addition, applying an
ad-hoc Strang-type lemma in Banach spaces, we are able to derive the corresponding a priori error
estimates. Next, employing Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress
tensor, and discontinuous piecewise polynomials of degree k for the velocity and the gradient of the
porosity times the velocity, we prove that the method is convergent with optimal rates.

This chapter is organized as follows. The remainder of this section describes standard notation and
functional spaces to be employed throughout the paper. In Section 3.2 we introduce the model problem
and derive its three-field mixed variational formulation in a Banach spaces frameworks. Next, in Section
3.3 we establish the well-posedness of this continuous scheme by means of classical results on nonlinear
monotone operators and the Banach fixed point theorem. The Galerkin finite element approximation,
its corresponding a priori analysis and the consequent rates of convergence are developed in Section
3.4. Finally, the performance of the method is illustrated in Section 3.5 with some numerical examples
in 2D and 3D with and without manufactured solutions, which confirm the accuracy and flexibility of
our mixed finite element method.

3.2 Formulation of the model problem

In this section we introduce the model of interest and derive its corresponding weak formulation.
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3.2.1 The model problem

In what follows we consider the problem introduced in [84] (see also [85, 41]), which, given by the
convective Brinkman–Forchheimer equations with varying porosity ρ, is utilized to model fluid flow
through porous media with high porosity ρ. More precisely, we are interested in finding a velocity field
u and a pressure field p, such that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
+ ρ∇p+ D(ρ)u+ F(ρ) |u|u = ρ f in Ω ,

div(ρu) = 0 in Ω ,

u = uD on Γ ,

(3.1)

where µ = Re−1, Re is the Reynolds number, D(ρ) and F(ρ) are the Darcy and Forchheimer coefficients,
respectively, both depending on the distribution porosity function ρ, which is assumed to belong to
W1,4(Ω) ∩ L∞(Ω), f is a given external force, and uD ∈ H1/2(Γ) is a Dirichlet datum. In addition,
there exists a positive constant ρ0, such that

0 < ρ0 ≤ ρ(x) ≤ 1 a.e. in Ω . (3.2)

In turn, we assume that both D(ρ) and F(ρ) are positive and bounded functions, that is, there exist
positive constants D0, D1, F0, and F1, such that

0 < D0 ≤ D(s) ≤ D1 and 0 < F0 ≤ F(s) ≤ F1 ∀ s ∈ [ρ0, 1) . (3.3)

Since there always holds D(1) = F(1) = 0, we observe that the standard Navier–Stokes equation is
recovered from (3.1) when ρ = 1. In addition, due to the first equation of (3.1), and in order to
guarantee uniqueness of the pressure p, this unknown will be sought in the space

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
.

Next, in order to derive a mixed formulation for (3.1), in which the Dirichlet boundary condition
for the velocity becomes a natural one, we first recall the following properties

div(ϱv) = ϱ div(v) + v · ∇ϱ , div(ϱ τ ) = ϱdiv(τ ) + τ ∇ϱ ,

and ∇(ϱv) = ϱ∇v + v ⊗∇ϱ ,
(3.4)

for sufficiently smooth scalar, vector and tensor functions ϱ, v and τ , respectively. Then, using the
second equation of (3.1) and the first identity in (3.4), we obtain

0 = div(ρu) = ρdiv(u) + u · ∇ρ in Ω ,

from which
div(u) = −

(
u · ∇ρ

ρ

)
in Ω . (3.5)

We observe here, owing to the Dirichlet boundary condition uD on Γ and (3.5), that there holds∫
Γ
uD · n = −

∫
Ω

(
u · ∇ρ

ρ

)
. (3.6)
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Now, proceeding similarly as in [42] (see also [14], [24], and [4]), we introduce as further unknowns
the pseudostress and the gradient of the porosity times the velocity, that is

σ := µ∇u− (u⊗ u)− p I and t := ∇(ρu) in Ω . (3.7)

In this way, employing the third identity in (3.4), we get

t = ∇(ρu) = ρ∇u+ u⊗∇ρ ,

which yields

∇u =
t

ρ
−
(
u⊗ ∇ρ

ρ

)
. (3.8)

We stress that, alternatively to the definition adopted for t in (3.7), and similarly to [4], we can consider
t := ∇u+ 1

n

(
u · ∇ρ

ρ

)
I, which also yields a three-field variational formulation with the same structure

of the ones to be developed in what follows. In addition, while some computations would be simplified,
the main assumptions and conclusions of the analysis remain unaltered.

Next, applying the matrix trace to σ in (3.7), observing that tr(∇u) = div(u), and replacing the
latter by (3.5), one arrives at

p = − 1

n

{
tr(σ) + tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
in Ω . (3.9)

Thus, replacing (3.8) and (3.9) into the first equation of (3.7), applying the deviatoric operator (cf.
(1)) to σ (cf. (3.7)), which allows us to eliminate the pressure from the system, noting that tr(t) =

div(ρu) = 0, and dividing by ρ, it follows that

σd

ρ
=
µ

ρ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

)d)
− (u⊗ u)d

ρ
.

On the other hand, using the second identity in (3.4) with ϱ = ρ and τ = µ∇u− (u⊗u), we find that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
= − ρdiv

(
µ∇u− (u⊗ u)

)
−
(
µ∇u− (u⊗ u)

)
∇ρ ,

and hence, noting that ρ∇p = ρdiv(p I), and employing again (3.8), we deduce that

−div
{
ρ
(
µ∇u− (u⊗ u)

)}
+ ρ∇p = − ρdiv(σ) −

(
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
− (u⊗ u)

)
∇ρ .

Consequently, we can rewrite (3.1), equivalently, as follows: Find (u, t,σ) in suitable spaces to be
indicated below such that

t

ρ
−
(
u⊗ ∇ρ

ρ

)
= ∇u in Ω ,

µ

ρ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

)d)
− (u⊗ u)d

ρ
=

σd

ρ
in Ω ,

D(ρ)

ρ
u+

F(ρ)

ρ
|u|u−

(
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
− (u⊗ u)

)
∇ρ
ρ

− div(σ) = f in Ω ,

u = uD on Γ ,∫
Ω

{
tr(σ) + tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
= 0 .

(3.10)
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At this point we stress that, as suggested by (3.9), p is eliminated from the present formulation and
computed afterwards in terms of σ,u, and ρ by using that identity. In this way, the last equation
in (3.10) simply aims to ensure that the resulting p does belong to L2

0(Ω). Notice also that further
variables of interest, such as the velocity gradient G̃ := ∇u, the vorticity ω := 1

2

(
∇u − (∇u)t

)
, and

the shear stress tensor σ̃ := µ
(
∇u+ (∇u)t

)
− p I, can be computed, respectively, as follows:

G̃ =
t

ρ
−
(
u⊗ ∇ρ

ρ

)
, ω =

1

2µ

(
σ − σt

)
, and σ̃ = σt + µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
+ (u⊗ u) . (3.11)

3.2.2 The mixed variational formulation

In this section we derive the mixed variational formulation of (3.10). To this end, we start by seeking
originally u ∈ H1(Ω), which in turn, requires to assume that uD ∈ H1/2(Γ). Next, multiplying the first

equation of (3.10) by a tensor τ ∈ H(divt; Ω), with t ∈

{
(1,+∞) if n = 2 ,

[6/5,+∞) if n = 3 ,
, and then employing

(2), we obtain∫
Ω

t

ρ
: τ +

∫
Ω
u · div(τ )−

∫
Ω

(
u⊗ ∇ρ

ρ

)
: τ = ⟨τn,uD⟩Γ ∀ τ ∈ H(divt; Ω) . (3.12)

We notice here, thanks to Cauchy–Schwarz’s inequality and the facts that ρ is bounded (cf. (3.2)) and
τ ∈ L2(Ω), that the first term of (3.12) makes sense for t ∈ L2(Ω). Thus, bearing in mind the free
trace property of t, we look for this unknown in the space

L2
tr(Ω) :=

{
s ∈ L2(Ω) : tr(s) = 0 in Ω

}
.

Now, knowing that div(τ ) ∈ Lt(Ω), and employing again the boundedness of ρ (cf. (3.2)) along with
Hölder’s inequality, we deduce from the second term of (3.12) that it actually suffices to look for u

in Lt
′
(Ω), where t′ is the conjugate of t. Moreover, testing the second equation of (3.10) against

s ∈ L2
tr(Ω), we obtain

−
∫
Ω
σ :

s

ρ
+

∫
Ω
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
:
s

ρ
−
∫
Ω
(u⊗ u) :

s

ρ
= 0 ∀ s ∈ L2

tr(Ω) , (3.13)

from which, using the Cauchy–Schwarz and Hölder inequalities, and the fact that ∇ρ ∈ L4(Ω), we
deduce that the terms involving tensor products make sense for u ∈ L4(Ω), thus yielding t′ = 4 and
t = 4/3. Moreover, aiming to maintain the same space for the unknown σ and its test functions τ ,
we seek now σ ∈ H(div4/3; Ω). In this way, knowing now that div(σ) ∈ L4/3(Ω), we test the third
equation of (3.10) against v ∈ L4(Ω), and use that for each tensor field ζ, and for each pair of vector
fields (v,w), there holds (ζw) · v = ζ : (v ⊗w), to arrive at∫

Ω

D(ρ)

ρ
u · v +

∫
Ω

F(ρ)

ρ
|u|u · v −

∫
Ω
µ

(
t

ρ
−
(
u⊗ ∇ρ

ρ

))
:
(
v ⊗ ∇ρ

ρ

)
+

∫
Ω
(u⊗ u) :

(
v ⊗ ∇ρ

ρ

)
−
∫
Ω
v · div(σ) =

∫
Ω
f · v ∀v ∈ L4(Ω) .

(3.14)

Then, based on the previous discussion and the already established spaces for t,u, and v, we note
that the third, fourth, and fifth terms of (3.14) are well-defined. Furthermore, considering that L4(Ω)
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is certainly contained in both L2(Ω) and L3(Ω), and taking into account the bounds of D(ρ) and
F(ρ) (cf. (3.3)), we can guarantee that the first and second terms in (3.14) make sense as well. In
addition, for the term on the right hand side of (3.14) we need the datum f to belong to L4/3(Ω),
which is assumed from now on. According to the previous analysis, the weak formulation of the
convective Brinkman–Forchheimer problem with varying porosity (3.10) reduces at first instance to:
Find (u, t,σ) ∈ L4(Ω)×L2

tr(Ω)×H(div4/3; Ω) such that (3.12), (3.13), and (3.14) hold for all (v, s, τ ) ∈
L4(Ω)× L2

tr(Ω)×H(div4/3; Ω).

However, similarly as in [14] (see also [42], [24], and [4]), we consider the decomposition

H(div4/3; Ω) = H0(div4/3; Ω)⊕ R I ,

where
H0(div4/3; Ω) :=

{
τ ∈ H(div4/3; Ω) :

∫
Ω
tr(τ ) = 0

}
,

thanks to which each τ ∈ H(div4/3; Ω) can be uniquely decomposed as

τ = τ 0 + d0 I with τ 0 ∈ H0(div4/3; Ω) and d0 :=
1

n |Ω|

∫
Ω
tr(τ ) ∈ R .

In particular, using from the last equation of (3.10) that∫
Ω
tr(σ) = −

∫
Ω

{
tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
,

we obtain, σ = σ0 + c0 I with

σ0 ∈ H0(div4/3; Ω) and c0 := − 1

n |Ω|

∫
Ω

{
tr(u⊗ u) + µ

(
u · ∇ρ

ρ

)}
, (3.15)

which says that c0 is know explicitly in terms of u and ρ. Therefore, in order to fully determine σ, it
only remains to find its H0(div4/3; Ω)-component σ0, which is renamed from now on simply as σ. In
addition, it is easy to see, using the identity (3.6), that both sides of (3.12) always holds when τ ∈ RI,
and hence testing against τ ∈ H(div4/3; Ω) is equivalent to doing it against τ ∈ H0(div4/3; Ω). Thus,
denoting from now on

u⃗ := (u, t) , v⃗ := (v, s) , w⃗ := (w, r) ∈ H := L4(Ω)× L2
tr(Ω) and Q := H0(div4/3; Ω) ,

with corresponding norms given by

∥v⃗∥H := ∥v∥0,4;Ω + ∥s∥0,Ω ∀ v⃗ ∈ H and ∥τ∥Q := ∥τ∥div4/3;Ω ∀ τ ∈ Q ,

and suitably grouping the equations (3.12), (3.13), and (3.14), the aforementioned three-field mixed
formulation in Banach spaces associated with the convective Brinkman–Forchheimer equations with
varying porosity (3.10) reads: Find (u⃗,σ) ∈ H×Q such that

[a(u)(u⃗), v⃗] + [b(v⃗),σ] = [F, v⃗] ∀ v⃗ ∈ H,

[b(u⃗), τ ] = [G(u), τ ] ∀ τ ∈ Q ,
(3.16)
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where, given ϑ ∈ L4(Ω), the operator a(ϑ) : H → H′ is defined by

[a(ϑ)(w⃗), v⃗] := [A(w⃗), v⃗] + [B(ϑ)(w⃗), v⃗] , (3.17)

with the operators A : H → H′ and B(ϑ) : H → H′, given, respectively, by

[A(w⃗), v⃗] :=

∫
Ω

D(ρ)

ρ
w · v +

∫
Ω

F(ρ)

ρ
|w|w · v +

∫
Ω
µ

(
r

ρ
−
(
w ⊗ ∇ρ

ρ

))
:

(
s

ρ
−
(
v ⊗ ∇ρ

ρ

))
(3.18)

and
[B(ϑ)(w⃗), v⃗] := −

∫
Ω
(ϑ⊗w) :

(
s

ρ
−
(
v ⊗ ∇ρ

ρ

))
, (3.19)

for all w⃗, v⃗ ∈ H, whereas the operator b : H → Q′ is defined by

[b(v⃗), τ ] := −
∫
Ω
τ :

s

ρ
−
∫
Ω
v · div(τ ), (3.20)

for all (v⃗, τ ) ∈ H×Q. In turn, given ϑ ∈ L4(Ω), the functionals F ∈ H′ and G(ϑ) ∈ Q′ are given by

[F, v⃗] :=

∫
Ω
f · v ∀ v⃗ ∈ H and [G(ϑ), τ ] := −⟨τn,uD⟩Γ −

∫
Ω

(
ϑ⊗ ∇ρ

ρ

)
: τ , (3.21)

for all τ ∈ Q. In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding
operators.

We end this section by establishing the stability properties of the operators and functionals involved
in (3.16). First, we observe that the operators b,B and the functionals F and G(ϑ) are linear. In
turn, from the definition of b and B(ϑ) (cf. (3.20) and (3.19), respectively), and the Cauchy–Schwarz
and Hölder inequalities, we deduce that b and B(ϑ), satisfy the boundedness estimates∣∣[b(v⃗), τ ]∣∣ ≤ ρ−1

0 ∥v⃗∥H ∥τ∥Q ∀ v⃗ ∈ H , ∀ τ ∈ Q , (3.22)

and ∣∣[B(ϑ)(w⃗), v⃗]| ≤ CB ∥ϑ∥0,4;Ω ∥w∥0,4;Ω ∥v⃗∥H ≤ CB ∥ϑ∥0,4;Ω ∥w⃗∥H ∥v⃗∥H ∀ w⃗, v⃗ ∈ H , (3.23)

with CB := ρ−1
0 max

{
1, ∥∇ρ∥0,4;Ω

}
. On the other hand, from the definition of A (cf. (3.18)), and the

triangle and Hölder inequalities, we obtain that there exists LA > 0, depending on |Ω|, D1, F1, µ, ρ0,
and ∥∇ρ∥0,4;Ω, such that

∥A(w⃗)−A(⃗z)∥H′ ≤ LA

{(
1 + ∥w∥0,4;Ω + ∥z∥0,4;Ω

)
∥w − z∥0,4;Ω + ∥r− q∥0,Ω

}
, (3.24)

for all w⃗ := (w, r), z⃗ = (z,q) ∈ H. In addition, employing again the Cauchy–Schwarz and Hölder
inequalities, it is not difficult to see that the functionals F and G(ϑ) (cf. (3.21)) are bounded, that is∣∣[F, v⃗]∣∣ ≤ ∥f∥0,4/3;Ω ∥v⃗∥H ∀ v⃗ ∈ H ,

∣∣[G(ϑ), τ ]
∣∣ ≤ CG

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ∥0,4;Ω
)
∥τ∥Q ∀ τ ∈ Q ,

(3.25)

with CG := max
{
1, ∥i4∥

}
, where ∥i4∥ is the norm of the continuous injection i4 of H1(Ω) into L4(Ω).
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3.3 Analysis of the coupled problem

In this section we proceed similarly to [24] (see also [30, 47, 4]) and utilize a fixed point strategy,
combined with results on nonlinear monotone operators, to prove the well-posedness of (3.16).

3.3.1 A fixed point strategy

We first define the operator T : L4(Ω) → L4(Ω) as

T(ϑ) := w ∀ϑ ∈ L4(Ω) ,

where (w⃗, ζ) :=
(
(w, r), ζ

)
∈ H×Q is the unique solution (to be confirmed below) of the problem

[a(ϑ)(w⃗), v⃗] + [b(v⃗), ζ] = [F, v⃗] ∀ v⃗ := (v, s) ∈ H,

[b(w⃗), τ ] = [G(ϑ), τ ] ∀ τ ∈ Q .
(3.26)

It follows that (3.16) can be rewritten as the fixed-point equation: Find u ∈ L4(Ω) such that

T(u) = u , (3.27)

so that, letting (w⃗, ζ) be the solution of (3.26) with ϑ := u, it is clear that (u⃗,σ) := (w⃗, ζ) ∈ H×Q

is solution of (3.16).

Next, we recall a key result (cf. [24, Theorem 3.1]) that will be used to establish the well-posedness
of (3.26), equivalently, the well-definedness of the operator T.

Theorem 3.1. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 ×X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), and let V
be the kernel of B, that is,

V :=
{
v⃗ = (v1, v2) ∈ X : B(v⃗) = 0

}
.

Assume that

(i) there exist constants L > 0 and p1, p2 ≥ 2, such that

∥A(u⃗)−A(v⃗)∥X′ ≤ L

2∑
j=1

{
∥uj − vj∥Xj +

(
∥uj∥Xj + ∥vj∥Xj

)pj−2∥uj − vj∥Xj

}
for all u⃗ = (u1, u2), v⃗ = (v1, v2) ∈ X,

(ii) the family of operators
{
A( · + z⃗) : V → V ′ : z⃗ ∈ X

}
is uniformly strongly monotone, that is

there exists α > 0 such that

[A(u⃗+ z⃗)−A(v⃗ + z⃗), u⃗− v⃗] ≥ α ∥u⃗− v⃗∥2X ,

for all z⃗ ∈ X, and for all u⃗, v⃗ ∈ V , and
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(iii) there exists β > 0 such that

sup
v⃗∈X
v⃗ ̸=0

[B(v⃗), τ ]
∥v⃗∥X

≥ β ∥τ∥Y ∀ τ ∈ Y .

Then, for each (F ,G) ∈ X ′ × Y ′ there exists a unique (u⃗, σ) ∈ X × Y such that

[A(u⃗), v⃗] + [B(v⃗), σ] = [F , v⃗] ∀ v⃗ ∈ X ,

[B(u⃗), τ ] = [G, τ ] ∀ τ ∈ Y .
(3.28)

Moreover, there exist positive constants C1 and C2, depending only on L,α, and β, such that

∥u⃗∥X ≤ C1M(F ,G) (3.29)

and

∥σ∥Y ≤ C2

{
M(F ,G) +

2∑
j=1

M(F ,G)pj−1

}
, (3.30)

where

M(F ,G) := ∥F∥X′ + ∥G∥Y ′ +
2∑
j=1

∥G∥pj−1
Y ′ + ∥A(0)∥X′ . (3.31)

At this point we first observe that, given ϑ ∈ L4(Ω), the problem (3.26) has the same structure
as (3.28). Therefore, in order to apply Theorem 3.1, we notice that, thanks to the uniform convexity
and separability of Lp(Ω) for p ∈ (1,+∞), all the spaces involved in (3.26), that is, L4(Ω), L2

tr(Ω) and
H0(div4/3; Ω), share the same property, so that H and Q are uniformly convex and separable as well.

We continue our analysis by proving that the nonlinear operator a(ϑ) satisfies hypothesis (i) of
Theorem 3.1, with p1 = 3 and p2 = 2.

Lemma 3.2. There exists a constant LBF > 0, depending on CB and LA (cf. (3.23), (3.24)), such that

∥a(ϑ)(w⃗)− a(ϑ)(⃗z)∥H′

≤ LBF

{(
1 + ∥ϑ∥0,4;Ω + ∥w∥0,4;Ω + ∥z∥0,4;Ω

)
∥w − z∥0,4;Ω + ∥r− q∥0,Ω

}
,

(3.32)

for all ϑ ∈ L4(Ω), and for all w⃗ = (w, r), z⃗ = (z,q) ∈ H.

Proof. The result follows straightforwardly from the definition of a(ϑ) (cf. (3.17)), the triangle in-
equality, and the stability properties (3.23) and (3.24). Further details are omitted.

Now, we let V be the kernel of the operator b (cf. (3.20)), that is

V :=
{
v⃗ = (v, s) ∈ H : [b(v⃗), τ ] = 0 ∀ τ ∈ Q

}
,

which, proceeding similarly to [42, eq. (3.34)], reduces to

V :=

{
v⃗ = (v, s) ∈ H : v ∈ H1

0(Ω) and ∇v =
s

ρ

}
. (3.33)
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Indeed, to derive (3.33), we first use the fact that tr(s) = 0 in Ω to deduce that the identity defining
V is also true for τ = c I ∈ RI. Then, it is equivalent to testing it against τ ∈ H(div4/3; Ω), that is,

V :=
{
v⃗ = (v, s) ∈ H :

∫
Ω
τ :

s

ρ
+

∫
Ω
v · div(τ ) = 0 ∀ τ ∈ H(div4/3; Ω)

}
. (3.34)

Thus, given v⃗ = (v, s) ∈ V, we take an arbitrary τ ∈ C∞
0 (Ω) := [C∞

0 (Ω)]n×n in (3.34) (note that
this choice of τ is not possible for τ ∈ H0(div4/3; Ω)), and realize in this case that the expression∫
Ω v · div(τ ) corresponds to the evaluation of the tensorial distribution −∇v in the tensorial test

function τ . It follows from (3.34) that ∇v = s/ρ in the distributional sense, which, together with the
fact that ρ ∈ L∞(Ω), gives v ∈ H1(Ω). Additionally, knowing the above, and using (2) to integrate
by parts

∫
Ω v · div(τ ) in (3.34), we arrive at ⟨τn,v⟩Γ = 0 for all τ ∈ H(div4/3; Ω), which, using the

surjectivity of the normal trace from H(div4/3; Ω) onto H−1/2(Γ) (proved similarly as [58, Theorem
1.7]), yields v = 0 on Γ, and therefore v ∈ H1

0(Ω). This proves that V is contained in the space defined
on the right-hand side of (3.33), and since the converse is straightforward, we conclude the identity
(3.33).

The following lemma establishes hypothesis (ii) of Theorem 3.1 for a(ϑ).

Lemma 3.3. There exists a constant αBF > 0, depending only on D0, µ, and ∥i4∥, such that, under the
assumption ∥∥∥∇ρ

ρ

∥∥∥
0,4;Ω

≤ ρ0 αBF
2µ

, (3.35)

and for each ϑ ∈ L4(Ω) verifying
∥ϑ∥0,4;Ω ≤ r0 :=

αBF
2CB

, (3.36)

the family of operators a(ϑ)( · + z⃗) with z⃗ ∈ H, is uniformly strongly monotone on V with constant
αBF, that is

[a(ϑ)(w⃗ + z⃗)− a(ϑ)(v⃗ + z⃗), w⃗ − v⃗] ≥ αBF ∥w⃗ − v⃗∥2H , (3.37)

for all z⃗ = (z,q) ∈ H, and for all w⃗ = (w, r), v⃗ = (v, s) ∈ V.

Proof. Let z⃗ = (z,q) ∈ H and w⃗ = (w, r), v⃗ = (v, s) ∈ V. First, according to the definition of A (cf.
(3.18)), and using (3.3), we obtain

[A(w⃗ + z⃗)−A(v⃗ + z⃗), w⃗ − v⃗] ≥
∫
Ω

F(ρ)

ρ

(
|w + z|(w + z)− |v + z|(v + z)

)
· (w − v)

+ D0 ∥w − v∥20,Ω +

∫
Ω
µ

(
r− s

ρ
−
(
(w − v)⊗ ∇ρ

ρ

))
:

(
r− s

ρ
−
(
(w − v)⊗ ∇ρ

ρ

)) (3.38)

In turn, according to [6, Lemma 2.1, eq. (2.1b)] with p = 3 (see, also [73]), there exists c1(Ω) > 0,
depending only on |Ω|, such that(

|w + z|(w + z)− |v + z|(v + z)
)
· (w − v) ≥ c1(Ω) |w − v|3 ,

which, together with the bounds of ρ and F(ρ) (cf. (3.2), (3.3)), yields∫
Ω

F(ρ)

ρ

(
|w + z|(w + z)− |v + z|(v + z)

)
· (w − v) ≥ c1 (Ω) F0∥w − v∥30,3;Ω ≥ 0 ,
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and combining the latter with (3.38), the fact that
r− s

ρ
= ∇(w−v) (cf. (3.33)), and simple algebraic

computations, we find that

[A(w⃗ + z⃗)−A(v⃗ + z⃗), w⃗ − v⃗] ≥ D0∥w − v∥20,Ω +
µ

2
∥∇(w − v)∥20,Ω +

µ

2
∥r− s∥20,Ω

+ µ
∥∥∥(w − v)⊗ ∇ρ

ρ

∥∥∥2
0,Ω

− 2µ

∫
Ω

r− s

ρ
:
(
(w − v)⊗ ∇ρ

ρ

)
.

(3.39)

Now, applying the Cauchy–Schwarz and Young inequalities, we get∣∣∣∣∣
∫
Ω

r− s

ρ
:
(
(w − v)⊗ ∇ρ

ρ

)∣∣∣∣∣ ≤ 1

2ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥w⃗ − v⃗∥2H . (3.40)

Then, bounding below the fourth term on the right hand side of (3.39) by 0, using the inequality
(3.40), and the continuous injection i4 of H1(Ω) into L4(Ω), we deduce that

[A(w⃗ + z⃗)−A(v⃗ + z⃗), w⃗ − v⃗] ≥ min
{
D0,

µ

2

}
∥w − v∥21,Ω +

µ

2
∥r− s∥20,Ω − µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥w⃗ − v⃗∥2H

≥ min
{
D0,

µ

2

}
∥i4∥−2∥w − v∥20,4;Ω +

µ

2
∥r− s∥20,Ω − µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥w⃗ − v⃗∥2H .

In this way, defining

αBF :=
1

2
min

{
min

{
D0,

µ

2

}
∥i4∥−2,

µ

2

}
, (3.41)

we arrive at

[A(w⃗ + z⃗)−A(v⃗ + z⃗), w⃗ − v⃗] ≥
{
2αBF −

µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
∥w⃗ − v⃗∥2H .

On the other hand, from the definition of the operator a(ϑ) (cf. (3.17)), the foregoing inequality,
and the continuity bound of B(ϑ) (cf. (3.23)), it readily follows that

[a(ϑ)(w⃗ + z⃗)− a(ϑ)(v⃗ + z⃗), w⃗ − v⃗] = [A(w⃗ + z⃗)−A(v⃗ + z⃗), w⃗ − v⃗]− [B(ϑ)(w⃗ − v⃗), w⃗ − v⃗]

≥
{
2αBF −

(
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ∥ϑ∥0,4;Ω
)}

∥w⃗ − v⃗∥2H ,

which, thanks to (3.35) and (3.36), leads to (3.37), thus completing the proof.

We complete the verification of the hypotheses of Theorem 3.1, with the corresponding inf-sup
condition for the operator b.

Lemma 3.4. There exists a constant β > 0, such that

sup
v⃗∈H
v⃗ ̸=0

[b(v⃗), τ ]

∥v⃗∥H
≥ β ∥τ∥Q ∀ τ ∈ Q . (3.42)

Proof. It proceeds similarly as in [42, Lemma 3.3] taking in account now that ρ is bounded (cf. (3.2)).
We omit further details.
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We now establish the unique solvability of the nonlinear problem (3.26).

Lemma 3.5. Let αBF be defined as in (3.41) and assume that (3.35) is satisfied. Then for each
ϑ ∈ L4(Ω) verifying (3.36), the problem (3.26) has a unique solution (w⃗, ζ) := ((w, r), ζ) ∈ H × Q.
Moreover, there exists a constant CT > 0, independent of ϑ, such that

∥T(ϑ)∥0,4;Ω ≤ ∥w⃗∥H ≤ CT

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ∥0,4;Ω
)i}

. (3.43)

Proof. Given ϑ ∈ L4(Ω) as indicated, we proceed as in the proof of [24, Lemma 3.6]. In fact, we first
recall from (3.22) and (3.25) that b,F, and G(ϑ) are all bounded. Then, thanks to Lemmas 3.2, 3.3,
and 3.4, the proof follows from a straightforward application of Theorem 3.1, with p1 = 3 and p2 = 2,
to problem (3.26). In particular, noting from (3.17) that a(ϑ)(0) is the null functional, and employing
(1.31), we find that

M(F,G(ϑ)) = ∥F∥+ ∥G(ϑ)∥+ ∥G(ϑ)∥2 ,

and hence the a priori estimate (3.29) yields

∥w⃗∥H ≤ C1

{
∥F∥+ ∥G(ϑ)∥+ ∥G(ϑ)∥2

}
,

with C1 > 0 depending only on LBF, αBF, and β. In this way, the foregoing inequality along with (3.25)
yield (3.43) with CT depending only on ∥i4∥, LBF, αBF, and β. Moreover, applying (3.30), and using
again (3.25), the a priori estimate for the second component of the solution to the problem defining T

(cf. (3.26)) reduces to

∥ζ∥Q ≤ C
2∑
j=1

(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ∥0,4;Ω
)i)j

, (3.44)

with C depending only on ∥i4∥, LBF, αBF, and β.

3.3.2 Solvability analysis of the fixed-point equation

Having proved the well-posedness of problem (3.26), which ensures that the operator T is well
defined, we now aim to establish the existence of a unique fixed-point of the operator T (cf. (3.27)).
For this purpose, in what follows we will verify the hypothesis of the Banach fixed-point theorem. We
begin by providing suitable conditions under which T maps a ball into itself.

Lemma 3.6. Given r ∈ (0, r0], with r0 as in (3.36), we let W be the closed ball defined by

W :=
{
ϑ ∈ L4(Ω) : ∥ϑ∥0,4;Ω ≤ r

}
, (3.45)

and assume that the data satisfy

CT

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ∥0,4;Ω
)i}

≤ r , (3.46)

with CT satisfying (3.43). Then there holds T(W) ⊆ W.
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Proof. It is straightforward consequence of Lemma 3.5 and the assumption (3.46).

The Lipschitz continuity of the fixed-point operator T is proved next.

Lemma 3.7. Let r ∈ (0, r0], with r0 as in (3.36). Then, for all ϑ, ϑ0 ∈ W (cf. (3.45)), there holds

∥T(ϑ)−T(ϑ0)∥0,4;Ω ≤ L(data, r) ∥ϑ− ϑ0∥0,4;Ω , (3.47)

where

L(data, r) := CL

{(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ + r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)

+
(
2 + r + 2r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
,

with CL > 0, depending only on LBF, αBF, β, CT, and CB.

Proof. Given ϑ,ϑ0 ∈ W, we let (w⃗, ζ) :=
(
(w, r), ζ

)
and (w⃗0, ζ0) :=

(
(w0, r0), ζ0

)
∈ H × Q be

the corresponding solutions of (3.26), so that w := T(ϑ) and w0 := T(ϑ0). Then, subtracting the
corresponding problems from (3.26), and using the definition of the operator a(ϑ)(w⃗) (cf. (3.17)), we
obtain

[a(ϑ0)(w⃗)− a(ϑ0)(w⃗0), v⃗] + [b(v⃗), ζ − ζ0] = [B(ϑ0 − ϑ)(w⃗), v⃗] ,

[b(w⃗ − w⃗0), τ ] = [G(ϑ)−G(ϑ0), τ ] ,
(3.48)

for all (v⃗, τ ) ∈ H × Q. Next, we proceed similarly to [24, eqs. (3.5)-(3.6) in Theorem 3.1] (see also
[25, Lemma 3.2]), and employ the continuous inf-sup condition (3.42), which says that the linear and
bounded operator induced by b is surjective, along with the converse implication of the equivalence
provided in [52, Lemma A.42], and second equation from (3.48), we deduce that there exists φ⃗ :=

(φ,p) ∈ H such that

b(φ⃗) = b(w⃗ − w⃗0) = G(ϑ)−G(ϑ0) and ∥φ⃗∥H ≤ 1

β
∥G(ϑ)−G(ϑ0)∥Q′ . (3.49)

Now, applying the strong monotonicity of a(ϑ0) (cf. (3.37)), with w⃗0 ∈ H and 0, z⃗ = w⃗−w⃗0−φ⃗ ∈ V,
we get

αBF ∥z⃗∥2H ≤ [a(ϑ0)(w⃗ − φ⃗)− a(ϑ0)(w⃗0), z⃗] .

Then, adding and subtracting a(ϑ0)(w⃗) in the first component on the right hand side of the foregoing
inequality, using the first equation of (3.48), and the fact that [b(⃗z), ζ − ζ0] = 0, we find that

αBF ∥z⃗∥2H ≤ [a(ϑ0)(w⃗ − φ⃗)− a(ϑ0)(w⃗), z⃗] + [B(ϑ0 − ϑ)(w⃗), z⃗] ,

from which, using the continuity of a(ϑ) and B(ϑ) (cf. (3.32) and (3.23), respectively), and then
performing simple algebraic computations, we obtain

αBF ∥z⃗∥2H ≤ LBF

{
(1 + ∥ϑ0∥0,4;Ω + 2 ∥w∥0,4;Ω) ∥φ⃗∥H + ∥φ⃗∥2H

}
∥z⃗∥H

+ CB ∥ϑ− ϑ0∥0,4;Ω ∥w∥0,4;Ω ∥z⃗∥H .
(3.50)
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In turn, according to the definition of G(ϑ) (cf. (3.21)), we readily get

∣∣[G(ϑ)−G(ϑ0), τ ]
∣∣ = ∣∣∣∣ ∫

Ω

(
(ϑ− ϑ0)⊗

∇ρ
ρ

)
: τ

∣∣∣∣
≤
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ− ϑ0∥0,4;Ω ∥τ∥Q ,
(3.51)

which, along with the second identity from (3.49), yields

∥φ⃗∥H ≤ 1

β

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑ− ϑ0∥0,4;Ω . (3.52)

In this way, replacing (3.52) back into (3.50), and using the triangle inequality, we have that

∥z⃗∥H ≤ c1

{(
1 + ∥ϑ0∥0,4;Ω + ∥w∥0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+
(
∥ϑ∥0,4;Ω + ∥ϑ0∥0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥2
0,4;Ω

+ ∥w∥0,4;Ω

}
∥ϑ− ϑ0∥0,4;Ω .

with c1 > 0 depending only on LBF, αBF, β, and CB. Thus, bounding ∥w∥0,4;Ω by (3.43), and considering
that both ∥ϑ∥0,4;Ω and ∥ϑ0∥0,4;Ω are bounded by r, we deduce that

∥z⃗∥H ≤ c2

{(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ + r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)
+
(
2 + r + 2r

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
∥ϑ− ϑ0∥0,4;Ω ,

with c2 > 0 depending only on LBF, αBF, β, CT, and CB. Finally, employing (3.52), the foregoing
inequality, and the fact that ∥w⃗− w⃗0∥H ≤ ∥φ⃗∥H+∥z⃗∥H, we obtain (3.47) and conclude the proof.

We are now in position of establishing the main result of this section.

Theorem 3.8. Let W be the closed ball in L4(Ω) defined in (3.45) and r ∈ (0, r0], with r0 defined in
(3.36). Assume that the data satisfy (3.46) and

L(data, r) < 1 . (3.53)

Then, there exists a unique u ∈ W fixed-point of operator T. Equivalently, the problem (3.16) has a
unique solution (u⃗,σ) := (w⃗, ζ) ∈ H ×Q with u ∈ W, where (w⃗, ζ) is the unique solution of (3.26)
with ϑ = u. Moreover, there exist positive constants C̃1 and C̃2, depending only on LBF, αBF, β, CT, CB,
and r, such that there hold the following a priori bounds

∥u⃗∥H ≤ C̃1

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
(3.54)

and

∥σ∥Q ≤ C̃2

2∑
j=1

(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)j
. (3.55)
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Proof. It is clear from Lemma 3.6, (3.47), and hypothesis (3.53) that T is a contraction that maps
the ball W into itself, and thus a direct application of the Banach fixed-point theorem implies the
existence of a unique fixed point u ∈ W solution to (3.26), equivalently, the existence of a unique
solution (u⃗,σ) ∈ H×Q of the problem (3.16). Finally, the a priori estimates (3.54) and (3.55) are a
straightforward consequence of (3.43) and (3.44), respectively.

3.4 The Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of problem (3.16). The solvability of
this scheme is addressed following analogous tools to those employed throughout Section 3.3. Finally,
we derive the error estimates and obtain the corresponding rates of convergence.

3.4.1 Preliminaries

We first let
{
Th
}
h>0

be a regular family of triangulations of Ω by triangles K (respectively tetrahedra
K in R3), and set h := max

{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of Rn,

we denote by Pl(S) the space of polynomials of total degree at most l defined on S. Hence, for each
integer k ≥ 0 and for each K ∈ Th, we define the local Raviart–Thomas space of order k as

RTk(K) := Pk(K) ⊕ P̃k(K)x ,

where x := (x1, . . . , xn)
t is a generic vector of Rn, P̃k(K) is the space of polynomials of total degree

equal to k defined on K, and, according to the convention in Section 3.1, we set Pk(K) := [Pk(K)]n

and Pk(K) := [Pk(K)]n×n. In this way, introducing the finite element subspaces

Hu
h :=

{
vh ∈ L4(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th

}
,

Ht
h :=

{
sh ∈ L2

tr(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th
}
,

Qh :=
{
τ h ∈ H0(div4/3; Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

(3.56)

and setting the notations

u⃗h := (uh, th), v⃗h := (vh, sh) ∈ Hh := Hu
h ×Ht

h ,

the Galerkin scheme associated with (3.16) reads: Find (u⃗h,σh) ∈ Hh ×Qh, such that

[a(uh)(u⃗h), v⃗h] + [b(v⃗h),σh] = [F, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] = [G(uh), τ h] ∀ τ h ∈ Qh .
(3.57)

3.4.2 Solvability Analysis

In this section we adopt the discrete version of the fixed-point strategy utilized in Section 3.3 to
study the solvability of (3.57). To this end, we introduce the operator Td : H

u
h → Hu

h defined by

Td(ϑh) := wh ∀ϑh ∈ Hu
h , (3.58)
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where (w⃗h, ζh) := ((wh, rh), ζh) ∈ Hh × Qh is the unique solution (to be confirmed below) of the
problem

[a(ϑh)(w⃗h), v⃗h] + [b(v⃗h), ζh] = [F, v⃗h] ∀ v⃗h ∈ Hh ,

[b(w⃗h), τ h] = [G(ϑh), τ h] ∀ τ h ∈ Qh .
(3.59)

Therefore solving (3.57) is equivalent to seeking a fixed point of the operator Td, that is: Find uh ∈ Hu
h

such that
Td(uh) = uh ,

so that, letting (w⃗h, ζh) be the solution of (3.59) with ϑh := uh, it is clear that (u⃗h,σh) := (w⃗h, ζh) ∈
Hh ×Qh is solution of (3.57).

We begin by showing that (3.59) is well posed, or equivalently that Td is well defined. To this end,
we now let Vh be the discrete kernel of b, that is

Vh =

{
v⃗h = (vh, sh) ∈ Hh :

∫
Ω

sh
ρ

: τ h +

∫
Ω
vh · div(τ h) = 0 ∀ τ h ∈ Qh

}
.

Then, from a slight adaptation of [24, Lemma 4.1], which in turn follows by using similar arguments
to the ones developed in [42, Section 5], we now prove the discrete inf-sup condition for the operator
b (cf. (3.20)) and an intermediate result that will be used to show later on the strong monotonicity of
a(ϑh) on Vh.

Lemma 3.9. There exist positive constants βd and Cd such that

sup
v⃗h∈Hh
v⃗h ̸=0

[b(v⃗h), τ h]

∥v⃗h∥H
≥ βd ∥τ h∥Q ∀ τ h ∈ Qh , (3.60)

and
∥sh∥0,Ω ≥ Cd ∥vh∥0,4;Ω ∀ v⃗h = (vh, sh) ∈ Vh . (3.61)

Proof. We proceed as in [24, Lemma 4.1] (see also [9, Lemma 4.2]). In fact, we first introduce the
discrete space Z0,h defined by

Z0,h :=

{
τ h ∈ Qh : [b(vh,0), τ h] =

∫
Ω
vh · div(τ h) = 0 ∀vh ∈ Hu

h

}
,

which, using from (3.56) that div(Qh) ⊆ Hu
h , reduces to

Z0,h =
{
τ h ∈ Qh : div(τ h) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [42, Lemma 5.1], we deduce that (3.60) and
(3.61) are jointly equivalent to the existence of positive constants β1 and β2, independent of h, such
that there hold

sup
τh∈Qh
τh ̸=0

[b(vh,0), τ h]

∥τ h∥Q
= sup
τh∈Qh
τh ̸=0

∫
Ω
vh · div(τ h)

∥τ h∥Q
≥ β1 ∥vh∥0,4;Ω ∀vh ∈ Hu

h , (3.62)
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and

sup
sh∈Ht

h
sh ̸=0

[b(0, sh), τ h]

∥sh∥0,Ω
= sup

sh∈Ht
h

sh ̸=0

∫
Ω
ρ−1 sh : τ h

∥sh∥0,Ω
≥ β2 ∥τ h∥Q ∀ τ h ∈ Z0,h . (3.63)

Concerning (3.62), we stress that this result was already established in [42, Lemma 5.5]. In turn, for
the proof of (3.63), we first recall that a slight modification of the proof of [58, Lemma 2.3] (see also
[57, Proposition IV.3.1]) allows to show the existence of a constant c1 > 0, depending only on Ω, such
that (cf. [14, Lemma 3.2])

c1 ∥τ∥20,Ω ≤ ∥τ d∥20,Ω + ∥div(τ )∥20,4/3;Ω ∀ τ ∈ Q , (3.64)

and recalling that Z0,h ⊆ Pk(Th) since Qh ⊆ RTk(Th) (see the proof of [58, Theorem 3.3] for details),
given τ h ∈ Z0,h, we have that τ d

h ∈ Ht
h, so that bounding the supremum in (3.63) with sh := τ d

h, and
using the fact that ρ is bounded (cf. (3.2)), it follows that

sup
sh∈Ht

h
sh ̸=0

[b(0, sh), τ h]

∥sh∥0,Ω
≥ ∥τ d

h∥0,Ω ,

which, along with (3.64) implies (3.63) with β2 = c
1/2
1 , thus completing the proof.

We now establish the discrete strong monotonicity and continuity properties of a(ϑh) (cf. (3.17)).

Lemma 3.10. There exists a constant αBF,d > 0, depending only on µ and Cd (cf. (3.61)), such that,
under the assumption ∥∥∥∇ρ

ρ

∥∥∥
0,4;Ω

≤ ρ0 αBF,d
2µ

, (3.65)

and for each ϑh ∈ Hu
h verifying

∥ϑh∥0,4;Ω ≤ r̃0 :=
αBF,d
2CB

, (3.66)

the family of operators a(ϑh)( ·+z⃗h) with z⃗h ∈ Hh, is uniformly strongly monotone on Vh with constant
αBF,d, that is

[a(ϑh)(w⃗h + z⃗h)− a(ϑh)(v⃗h + z⃗h), w⃗h − v⃗h] ≥ αBF,d ∥w⃗h − v⃗h∥2H , (3.67)

for all z⃗h = (zh,qh) ∈ Hh, and for all w⃗h = (wh, rh), v⃗h = (vh, sh) ∈ Vh. In addition, the operator
a(ϑh) : Hh → H′

h is continuous in the sense of (3.32), with the same constant LBF.

Proof. We proceed as in the proof of Lemma 3.3. In fact, let z⃗h = (zh,qh) ∈ Hh and w⃗h =

(wh, rh), v⃗h = (vh, sh) ∈ Vh. Then, according to the definition of A (cf. (3.18)), and using (3.3)
and [6, Lemma 2.1, eq. (2.1b)] with p = 3, we obtain

[A(w⃗h + z⃗h)−A(v⃗h + z⃗h), w⃗h − v⃗h] ≥ D0 ∥wh − vh∥20,Ω + c1(Ω) F0 ∥wh − vh∥30,3;Ω

+ µ ∥rh − sh∥20,Ω + µ

∥∥∥∥(wh − vh)⊗
∇ρ
ρ

∥∥∥∥2
0,Ω

− 2µ

∫
Ω

rh − sh
ρ

:
(
(wh − vh)⊗

∇ρ
ρ

)
.

(3.68)
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Next, bounding below the first, second, and fourth terms on the right hand side of (3.68) by 0,
employing the fact that w⃗h − v⃗h := (wh − vh, rh − sh) ∈ Vh in combination with the estimate (3.61),
and using the discrete version of the inequality (3.40), we get

[A(w⃗h + z⃗h)−A(v⃗h + z⃗h), w⃗h − v⃗h]

≥ µ

2
min

{
1, C2

d

}{
∥wh − vh ∥20,4;Ω + ∥rh − sh∥20,Ω

}
− µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥w⃗h − v⃗h∥2H .

Then, defining
αBF,d :=

µ

4
min

{
1, C2

d

}
, (3.69)

we deduce that

[A(w⃗h + z⃗h)−A(v⃗h + z⃗h), w⃗h − v⃗h] ≥
{
2αBF,d −

µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
∥w⃗h − v⃗h∥2H .

Finally, from the definition of the operator a(ϑh) (cf. (3.17)), the continuity bound of B(ϑh) (cf.
(3.23)), and the foregoing inequality, we get

[a(ϑh)(w⃗h + z⃗h)− a(ϑh)(v⃗h + z⃗h), w⃗h − v⃗h]

≥
{
2αBF,d −

(
µ

ρ0

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ∥ϑh∥0,4;Ω
)}

∥w⃗h − v⃗h∥2H ,

which, together with (3.65) and (3.66), implies (3.67), completing the proof. In addition, we note that
for w⃗h = (wh, rh), z⃗h = (zh,qh) ∈ Hh there certainly holds

∥a(ϑh)(w⃗h)− a(ϑh)(⃗zh)∥H′
h
≤ ∥a(ϑh)(w⃗h)− a(ϑh)(⃗zh)∥H′ ,

whence the required continuity property of a(ϑh) : Hh → H′
h follows directly from (3.32).

The following result establishes the well-definiteness of the operator Td.

Lemma 3.11. Let αBF,d be defined as in (3.69) and assume that (3.65) is satisfied. Then, for each ϑh ∈
Hu
h verifying (3.66), the problem (3.59) has a unique solution (w⃗h, ζh) :=

(
(wh, rh), ζh

)
∈ Hh ×Qh.

Moreover, there exists a constant CTd > 0, independent of ϑh, such that

∥Td(ϑh)∥0,4;Ω ≤ ∥w⃗h∥H ≤ CTd

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑh∥0,4;Ω
)i}

. (3.70)

Proof. It follows from Lemmas 3.9 and 3.10, along with a straightforward application of Theorem 3.1,
with p1 = 3 and p2 = 2, to the discrete setting represented by (3.59). In turn, the a priori bound (3.70)
is consequence of the abstract estimate (3.29) applied to (3.59), and the bounds for F and G(ϑh) given
in (3.25). Furthermore, proceeding similarly to the derivation of (3.44), we obtain

∥ζh∥Q ≤ C̃

2∑
j=1

(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥ϑh∥0,4;Ω
)i)j

, (3.71)

with C̃ > 0, depending only on LBF, αBF,d, and βd.
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We now proceed to analyze the fixed-point equation (3.58). We begin with the discrete version of
Lemma 3.6, whose proof follows straightforwardly from Lemma 3.11.

Lemma 3.12. Given r̃ ∈ (0, r̃0], with r̃0 defined in (3.66), we let Wd be the closed ball defined by

Wd :=
{
ϑh ∈ Hu

h : ∥ϑh∥0,4;Ω ≤ r̃
}
, (3.72)

and assume that the data satisfy

CTd

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ + r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
≤ r̃ , (3.73)

with CTd > 0 satisfying (3.70). Then there holds Td(Wd) ⊆ Wd.

Next, we address the discrete counterpart of Lemma 3.7, whose proof, being analogous to the
continuous one, but now using the discrete inf-sup condition for b (cf. (3.60)) instead of the continuous
one, is omitted.

Lemma 3.13. Let r̃ ∈ (0, r̃0], with r̃0 defined in (3.66). Then, for all ϑh, ϑ0,h ∈ Wd (cf. (3.72)),
there holds

∥Td(ϑh)−Td(ϑ0,h)∥0,4;Ω ≤ Ld(data, r̃) ∥ϑh − ϑ0,h∥0,4;Ω , (3.74)

where

Ld(data, r̃) := CL,d

{(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ + r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)(
1 +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)

+

(
2 + r̃ + 2 r̃

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

}
,

with CL,d > 0, depending only on LBF, αBF,d, βd, CTd, and CB.

We are now in position of establishing the well posedness of (3.57).

Theorem 3.14. Let Wd be the closed ball in Hu
h(Ω) defined in (3.72) and r̃ ∈ (0, r̃0], with r̃0 defined

in (3.66). Assume that the data satisfy (3.73) and

Ld(data, r̃) < 1 . (3.75)

Then, there exists a unique uh ∈ Wd fixed-point of operator Td. Equivalently, the problem (3.57) has a
unique solution (u⃗h,σh) := (w⃗h, ζh) ∈ Hh ×Qh with uh ∈ Wd, where (w⃗h, ζh) is the unique solution
of (3.59) with ϑh = uh. Moreover, there exist positive constants C1,d and C2,d, depending only on
LBF, αBF,d, βd, CTd , CB, and r̃, such that there hold the following a priori bounds

∥u⃗h∥H ≤ C1,d

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
(3.76)

and

∥σh∥Q ≤ C2,d

2∑
j=1

(
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i)j
. (3.77)
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Proof. We first notice from Lemma 3.12 that Td maps the ball Wd into itself. Next, it is easy to see
from (3.74) (cf. Lemma 3.13) and the assumption (3.75) that Td is a contraction, and hence a direct
application of the Banach fixed-point theorem, imply the existence of a unique solution. In turn, the
a priori estimates (3.76) and (3.77) are consequences of (3.70) and (3.71), respectively.

We end this section by remarking that, as an alternative to the present choices of finite element
subspaces (cf. (3.56)), we can consider any triplet

(
Hu
h ,Ht

h,Qh

)
satisfying div(Qh) ⊆ Hu

h and the
discrete inf-sup conditions (3.62) and (3.63). The eventual existence of other discrete spaces satisfying
these requirements is subject of future research.

3.4.3 A priori error analysis

In this section we derive the Céa estimate for the Galerkin scheme (3.57) with the finite element
subspaces given by (3.56), and then use the approximation properties of the latter to establish the
corresponding rates of convergence. In fact, let (u⃗,σ) = ((u, t),σ) ∈ H × Q, with u ∈ W, be the
unique solution of the problem (3.16), and let (u⃗h,σh) = ((uh, th),σh) ∈ Hh × Qh, with uh ∈ Wd,
be the unique solution of the discrete problem (3.57). Then, we are interested in obtaining an a priori
estimate for the error

∥(u⃗,σ)− (u⃗h,σh)∥ := ∥u⃗− u⃗h∥H + ∥σ − σh∥Q .

To this end, we establish next an ad-hoc Strang-type estimate. In what follows, given a subspace Xh

of a generic Banach space (X, ∥ · ∥X), we set as usual

dist (x,Xh) := inf
xh∈Xh

∥x− xh∥X for all x ∈ X .

Lemma 3.15. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly
convex, and set X := X1 × X2. Let A : X → X ′ be a nonlinear operator and B ∈ L(X,Y ′), such
that A and B satisfy the hypotheses of Theorem 3.1 with respective constants L, α, β, and exponents
p1, p2 ≥ 2. Furthermore, let {X1,h}h>0, {X2,h}h>0 and {Yh}h>0 be sequences of finite dimensional
subspaces of X1, X2, and Y , respectively, set Xh := X1,h × X2,h, and for each h > 0 consider a
nonlinear operator Ah : X → X ′, such that Ah|Xh

: Xh → X ′
h and B|Xh

: Xh → Y ′
h satisfy the

hypotheses of Theorem 3.1 as well, with constants Ld, αd, and βd, all of them independent of h. In
turn, given F ∈ X ′, G ∈ Y ′, and a sequence of functionals {Fh}h>0, {Gh}h>0, with Fh ∈ X ′

h, Gh ∈ G′
h

for each h > 0, we let (u⃗, σ) = ((u1, u2), σ) ∈ X × Y and (u⃗h, σh) = ((u1,h, u2,h), σh) ∈ Xh × Yh be the
unique solutions, respectively, to the problems

[A(u⃗), v⃗] + [B(v⃗), σ] = [F , v⃗] ∀ v⃗ ∈ X ,

[B(u⃗), τ ] = [G, τ ] ∀ τ ∈ Y ,
(3.78)

and
[Ah(u⃗h), v⃗h] + [B(v⃗h), σh] = [Fh, v⃗h] ∀ v⃗h ∈ Xh ,

[B(u⃗h), τh] = [Gh, τh] ∀ τh ∈ Yh .
(3.79)



3.4. The Galerkin scheme 101

Then, there exists a positive constant CST , depending only on p1, p2, Ld, αd, βd, and ∥B∥, such that

∥u⃗− u⃗h∥X + ∥σ − σh∥Y ≤ CST C1(u⃗, u⃗h)
{
C2(u⃗) dist (u⃗, Xh) +

2∑
j=1

dist (u⃗, Xh)
pj−1

+dist (σ, Yh) + ∥F − Fh∥X′
h
+ ∥G − Gh∥Y ′

h
+ ∥A(u⃗)−Ah(u⃗)∥X′

h

}
,

where

C1(u⃗, u⃗h) := 1 +

2∑
j=1

(
∥uj∥Xj + ∥uj,h∥Xj

)pj−2 and C2(u⃗) := 1 +

2∑
j=1

∥uj∥
pj−2
Xj

.

Proof. It is basically a suitable modification of the proof of [42, Lemma 6.1] (see also [62, Theorem
B.2]), which in turn, is a modification of [58, Theorem 2.6]. We omit further details and just stress
that the continuity bound and inf-sup condition of the respective linear operator Ah from [42, Lemma
6.1] are now replaced by the corresponding continuity bound and strong monotonicity property of the
present nonlinear operator Ah (cf. hypotheses (i) and (ii) of Theorem 3.1), respectively.

We now establish the main result of this section.

Theorem 3.16. There exists a positive constant CST (r, r̃), depending only on r, r̃, CB (cf. (3.23)),
and C̃1 (cf. (3.54)), and hence independent of h, such that under the assumption

CST (r, r̃)

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
≤ 1

2
, (3.80)

there holds

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ C
{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Qh)
}
, (3.81)

where C is a positive constant, independent of h, but depending on r, r̃, C̃1, LBF, αBF,d, βd, and CB.

Proof. First, observe that the continuous and discrete problems (3.16) and (3.57) have the structure of
(3.78) and (3.79), respectively. Thus, as a direct application of Lemma 3.15, with p1 = 3 and p2 = 2,
we deduce the existence of a constant CST , depending on LBF, αBF,d, βd, and ρ0, such that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ CST C1(u⃗, u⃗h)
{
C2(u⃗) dist (u⃗,Hh) + dist (u⃗,Hh)

2

+ dist (σ,Qh) + ∥G(u)−G(uh)∥Q′
h
+ ∥a(u)(u⃗)− a(uh)(u⃗)∥H′

h

}
.

(3.82)

Next, proceeding similarly as for the derivation of (3.51), we readily find that

∥G(u)−G(uh)∥Q′
h
≤
∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

∥u− uh∥0,4;Ω . (3.83)

In turn, according to the definition of a(ϑ) (cf. (3.17)), and from the continuity bound of B(ϑ) (cf.
(3.23)), it follows that

∥a(u)(u⃗)− a(uh)(u⃗)∥H′
h
= ∥B(u− uh)(u⃗)∥H′

h
≤ CB ∥u∥0,4;Ω ∥u− uh∥0,4;Ω . (3.84)
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Then, replacing (3.83) and (3.84) back into (3.82), and using the fact that u ∈ W and uh ∈ Wd, we
deduce that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ ĈST (r, r̃)

{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Qh)

+

(∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

+ CB ∥u∥0,4;Ω
)
∥u− uh∥0,4;Ω

}
,

with ĈST (r, r̃) := CST (1 + r+ r̃)(1 + r). Finally, bounding ∥u∥0,4;Ω as in (3.54) instead of directly by
r, and performing simple algebraic manipulations, we get

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ ĈST (r, r̃)
{
dist (u⃗,Hh) + dist (u⃗,Hh)

2 + dist (σ,Qh)
}

+CST (r, r̃)

{
∥f∥0,4/3;Ω +

2∑
i=1

(
∥uD∥1/2,Γ +

∥∥∥∇ρ
ρ

∥∥∥
0,4;Ω

)i}
∥u− uh∥0,4;Ω ,

(3.85)

where CST (r, r̃) := ĈST (r, r̃)max
{
1, CB C̃1

}
max

{
1 + r, r2

}
. Thus, (3.85) in conjunction with the

data assumption (3.80), yield (3.81) and end the proof.

Now, in order to establish the rate of convergence of the Galerkin scheme (3.57), we recall next
the approximation properties of the finite element subspaces Hu

h ,Ht
h, and Qh (cf. (3.56)), whose

derivations can be found in [52], [58], [68], and [17, Section 3.1] (see also [42, Section 5]).

(AP)uh : there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for
each v ∈ Wl,4(Ω), there holds

dist (v,Hu
h) := inf

vh∈Hu
h

∥v − vh∥0,4;Ω ≤ C hl ∥v∥l,4;Ω .

(AP)th: there exists a positive constant C, independent of h, such that for each l ∈ [0, k + 1], and for
each s ∈ Hl(Ω) ∩ L2

tr(Ω), there holds

dist (s,Ht
h) := inf

sh∈Ht
h

∥s− sh∥0,Ω ≤ C hl ∥s∥l,Ω .

(AP)σh : there exists a positive constant C, independent of h, such that for each l ∈ (0, k + 1], and for
each τ ∈ Hl(Ω) ∩Q with div(τ ) ∈ Wl,4/3(Ω), there holds

dist (τ ,Qh) := inf
τh∈Qh

∥τ − τ h∥Q ≤ C hl
{
∥τ∥l,Ω + ∥div(τ )∥l,4/3;Ω

}
.

Now we are in a position to provide the theoretical rate of convergence of the Galerkin scheme (3.57).

Theorem 3.17. In addition to the hypotheses of Theorems 3.8, 3.14, and 3.16, assume that there exists
l ∈ (0, k + 1] such that u ∈ Wl,4(Ω), t ∈ Hl(Ω) ∩ L2

tr(Ω), σ ∈ Hl(Ω) ∩Q, and div(σ) ∈ Wl,4/3(Ω).
Then, there exists a constant C > 0, independent of h, such that

∥(u⃗,σ)− (u⃗h,σh)∥ ≤ C hl
{
∥u∥l,4;Ω + ∥t∥l,Ω + ∥u∥2l,4;Ω + ∥t∥2l,Ω + ∥σ∥l,Ω + ∥div(σ)∥l,4/3;Ω

}
.
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Proof. The result is a straightforward application of Theorem 3.16 and the approximation properties
(AP)uh , (AP)th, and (AP)σh . Further details are omitted.

We end this section by introducing suitable approximations for the pressure p, the velocity gradient
G̃ := ∇u, the vorticity ω := 1

2

(
∇u− (∇u)t

)
, and the shear stress tensor σ̃ := µ

(
∇u+ (∇u)t

)
− p I,

all them of physical interest. Indeed, the continuous expressions provided in (3.9) and (3.11), and the
decomposition of the original unknown σ given by (3.15), suggest the following discrete formulae in
terms of the solution (u⃗h,σh) ∈ Hh ×Qh of problem (3.57):

ph = − 1

n

{
tr(σh) + tr(uh ⊗ uh) + µ

(
uh ·

∇ρ
ρ

)}
− c0,h , G̃h =

th
ρ

−
(
uh ⊗

∇ρ
ρ

)
,

ωh =
1

2µ

(
σh − σt

h

)
, and σ̃h = σt

h + µ

(
th
ρ

−
(
uh ⊗

∇ρ
ρ

))
+ (uh ⊗ uh) + c0,h I ,

(3.86)

with
c0,h := − 1

n |Ω|

∫
Ω

{
tr(uh ⊗ uh) + µ

(
uh ·

∇ρ
ρ

)}
.

The following result establishes the rates of convergence for these additional variables.

Lemma 3.18. Assume that there exists l ∈ (0, k + 1] such that u ∈ Wl,4(Ω), t ∈ Hl(Ω) ∩ L2
tr(Ω),

σ ∈ Hl(Ω)∩Q, and div(σ) ∈ Wl,4/3(Ω). Then, there exists a constant C > 0, independent of h, such
that

∥p− ph∥0,Ω + ∥G̃− G̃h∥0,Ω + ∥ω − ωh∥0,Ω + ∥σ̃ − σ̃h∥0,Ω

≤ C hl
{
∥u∥l,4;Ω + ∥t∥l,Ω + ∥u∥2l,4;Ω + ∥t∥2l,Ω + ∥σ∥l,Ω + ∥div(σ)∥l,4/3;Ω

}
.

Proof. Recalling the formulae given in (3.9), (3.11), and (3.86), employing the triangle and Cauchy–
Schwarz inequalities whenever needed, it is not difficult to show that there exists a constant C > 0,
independent of h, such that

∥p− ph∥0,Ω + ∥G̃− G̃h∥0,Ω + ∥ω − ωh∥0,Ω + ∥σ̃ − σ̃h∥0,Ω

≤ C

{
∥(u⊗ u)− (uh ⊗ uh)∥0,Ω +

∥∥∥∥∇ρρ
∥∥∥∥
0,4;Ω

∥u− uh∥0,4;Ω + ∥t− th∥0,Ω + ∥σ − σh∥Q
}
,

(3.87)
where, adding and subtracting u⊗uh (also works with uh⊗u), applying the Cauchy–Schwarz inequality
and using the fact that u ∈ W and uh ∈ Wd, we find that

∥(u⊗ u)− (uh ⊗ uh)∥0,Ω ≤
(
∥u∥0,4;Ω + ∥uh∥0,4;Ω

)
∥u− uh∥0,4;Ω ≤ C ∥u− uh∥0,4;Ω . (3.88)

Then, replacing (3.88) back into (3.87), the result follows straightforwardly from Theorem 3.17.
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3.5 Numerical results

In this section we report three examples illustrating the performance of the mixed finite element
scheme (3.57) on a set of quasi-uniform triangulations of the respective domains, and considering
the finite element subspaces defined by (3.56) (cf. Section 3.4.1). In what follows, we refer to the
corresponding sets of finite element subspaces generated by k = 0 and k = 1, as simply P0−P0−RT0

and P1−P1−RT1, respectively. The implementation of the numerical method is based on a FreeFem++
code [70]. A Newton–Raphson algorithm with a fixed tolerance tol = 1E− 6 is used for the resolution
of the nonlinear problem (3.57). As usual, the iterative method is finished when the relative error
between two consecutive iterations of the complete coefficient vector, namely coeffm and coeffm+1,
is sufficiently small, that is,

∥coeffm+1 − coeffm∥DOF
∥coeffm+1∥DOF

≤ tol ,

where ∥ · ∥DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total number of
degrees of freedom defining the finite element subspaces Hu

h ,Ht
h, and Qh (cf. (3.56)).

We now introduce some additional notation. The individual errors are denoted by:

e(u) := ∥u− uh∥0,4;Ω , e(t) := ∥t− th∥0,Ω , e(σ) := ∥σ − σh∥div4/3;Ω ,

e(p) := ∥p− ph∥0,Ω , e(G̃) := ∥G̃− G̃h∥0,Ω , e(ω) := ∥ω − ωh∥0,Ω , e(σ̃) := ∥σ̃ − σ̃h∥0,Ω ,

and, as usual, for each ⋆ ∈
{
u, t,σ, p, G̃,ω, σ̃

}
we let r(⋆) be the experimental rate of convergence

given by

r(⋆) :=
log
(
e(⋆)/ê(⋆)

)
log(h/ĥ)

,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

The examples to be considered in this section are described next. In all of them, for sake of simplicity,
we take µ = 1 and similarly to [41, eq. (44)], we choose the Darcy and Forchheimer coefficients as
follow

D(ρ) = 150

(
1− ρ

ρ

)2

and F(ρ) = 1.75

(
1− ρ

ρ

)
.

In addition, similarly as in [28, eq. (5.1)], the null mean value of tr(σh) over Ω is implemented using
a scalar Lagrange multiplier, which consists of adding one row and one column to the matrix system
that solves (3.57) for uh, th, and σh. More precisely, letting

Q̃h :=
{
τ h ∈ H(div4/3; Ω) : ctτ h|K ∈ RTk(K) ∀ c ∈ Rn, ∀K ∈ Th

}
,

we replace (3.57) by the modified Galerkin system: Find (u⃗h,σh, ξ) ∈ Hh × Q̃h × R, such that

[a(uh)(u⃗h), v⃗h] + [b(v⃗h),σh] = [F, v⃗h] ∀ v⃗h ∈ Hh ,

[b(u⃗h), τ h] + ξ

∫
Ω
tr(τ h) = [G(uh), τ h] ∀ τ h ∈ Q̃h ,

λ

∫
Ω
tr(σh) = 0 ∀λ ∈ R ,

(3.89)
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which is easily shown to be uniquely solvable as well. In this way, the third row of (3.89) guarantees
that the mean value of tr(σh) equals 0, and taking in particular τ h ∈ Qh (cf. (3.56)), the first two
rows of (3.89) become the original discrete scheme (3.57).

Example 1: Two-dimensional smooth exact solution

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain is
the square Ω = (−1, 1)2. We define the porosity function

ρ(x1, x2) = 0.45

(
1 +

1− 0.45

0.45
exp

(
− (1− x2)

))
, (3.90)

and adjust the datum f in (3.10) such that the exact solution is given by

u(x1, x2) = ρ(x1, x2)
−1

(
sin(πx1) cos(πx2)

− cos(πx1) sin(πx2)

)
, p(x1, x2) = cos(πx1) exp(x2) .

The model problem is then complemented with the appropriate Dirichlet boundary condition. Tables
2.1 and 2.2 show the convergence history for a sequence of quasi-uniform mesh refinements, includ-
ing the number of Newton iterations. Notice that we are able not only to approximate the original
unknowns but also the pressure field, the velocity gradient, the vorticity and the shear stress tensor
through the formulae (3.86). The results illustrate that the optimal rates of convergence O(hk+1)

established in Theorem 3.17 and Lemma 3.18 are attained for k = 0, 1. The Newton method exhibits a
behavior independent of the meshsize, converging in six iterations in almost all cases. In Figure 3.1 we
display the porosity ρ (cf. (3.90)) as a function of x2 ∈ [−1, 1] and some solutions obtained with the
mixed P0 −P0 −RT0 approximation with meshsize h = 0.0284 and 39, 102 triangle elements (actually
representing 313, 328 DOF).

Example 2: Three-dimensional smooth exact solution

In the second example we consider the cube domain Ω = (0, 1)3 and the porosity

ρ(x1, x2, x3) = 0.45

(
1 +

1− 0.45

0.45
exp

(
− (2− x2 − x3)

))
.

Then, the manufactured solution is given by

u(x1, x2, x3) = ρ(x1, x2, x3)
−1

 sin(πx1) cos(πx2) cos(πx3)

−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 ,

and
p(x1, x2, x3) = cos(πx1) exp(x2 + x3) .

Similarly to the first example, the data f and uD are computed from (3.10) using the above solution.
The distribution of ρ values as a function of (x2, x3) ∈ [0, 1]× [0, 1] and some numerical solutions are
shown in Figure 3.2, which were built using the mixed P0 − P0 − RT0 approximation with meshsize
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h = 0.0643 and 63, 888 tetrahedral elements (actually representing 1, 094, 808 DOF). The convergence
history for a set of quasi-uniform mesh refinements using k = 0 is shown in Table 3.3. Again, the
mixed finite element method converges optimally with order O(h), as it was proved by Theorem 3.17
and Lemma 3.18.

Example 3: A channel flow problem in packed bed reactors

In the last example we study the behavior of the flow problem in a packed bed reactor, which is
represented by the plain domain Ω = (0, 2)× (0, 1) with boundary Γ, and whose input, upper, lower,
and output parts are given by Γin = {0} × (0, 1), Γtop = (0, 2) × {1}, Γbottom = (0, 2) × {0}, and
Γout = {2} × (0, 1), respectively. The porosity function ρ is defined as in (3.90), the body force term
is f = 0, and the boundary conditions are

u = (−0.2x2(x2 − 1), 0) on Γin, u = 0 on Γtop ∪ Γbottom, σn = 0 on Γout ,

which corresponds to inflow driven through a parabolic fluid velocity on the left boundary and zero
stress outflow on the right of the boundary. We stress here that, using similar arguments to those
explained in [20, Section 2.4], we are able to extend our analysis to the present case of mixed boundary
conditions. In Figure 3.3, we display the porosity values respect to x2 ∈ [0, 1] and the computed
magnitude of the velocity, magnitude of the gradient of the porosity times the velocity, pressure field,
magnitude of the velocity gradient, and magnitude of the vorticity, which were built using the mixed
P0 − P0 − RT0 approximation on a mesh with meshsize h = 0.0136 and 73, 666 triangle elements
(actually representing 593, 162 DOF). As expected, we observe faster flow through the middle of the
reactor. In turn, the pressure is higher on the left of the boundary and goes decaying to the right of
the domain. Finally, we notice that both the gradient of the porosity times the velocity, the velocity
gradient, and the vorticity are higher at the top of the domain.
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ)

304 0.7454 6 0.9471 – 3.5274 – 42.6598 –
1328 0.3667 7 0.4582 1.024 1.7374 0.998 16.6297 1.328
4928 0.1971 6 0.2367 1.064 0.9077 1.046 8.3534 1.109

19360 0.1036 6 0.1168 1.099 0.4620 1.051 4.0348 1.132
77520 0.0554 6 0.0593 1.082 0.2297 1.114 2.0082 1.112

313328 0.0284 6 0.0294 1.050 0.1135 1.057 0.9917 1.058

e(p) r(p) e(G̃) r(G̃) e(ω) r(ω) e(σ̃) r(σ̃)

3.7026 – 5.2614 – 2.2178 – 8.8986 –
1.1599 1.636 2.6550 0.964 1.1658 0.907 3.9226 1.155
0.5349 1.247 1.3919 1.040 0.6183 1.022 2.0170 1.071
0.2372 1.265 0.7055 1.057 0.3227 1.012 1.0054 1.083
0.1178 1.116 0.3521 1.108 0.1583 1.135 0.5033 1.103
0.0566 1.100 0.1741 1.056 0.0790 1.043 0.2475 1.064

Table 3.1: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors,
and rates of convergence for the mixed P0 − P0 −RT0 approximation of the CBF model with varying
porosity.

DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ)

932 0.7454 7 0.3009 – 1.0130 – 15.4230 –
4114 0.3667 7 0.0587 2.305 0.2099 2.219 2.4882 2.572

15328 0.1971 7 0.0157 2.127 0.0569 2.104 0.5987 2.295
60356 0.1036 7 0.0038 2.197 0.0143 2.152 0.1421 2.237

241962 0.0554 6 0.0010 2.188 0.0036 2.184 0.0357 2.202
978574 0.0284 6 0.0002 2.128 0.0009 2.104 0.0087 2.120

e(p) r(p) e(G̃) r(G̃) e(ω) r(ω) e(σ̃) r(σ̃)

1.0136 – 1.5401 – 0.5709 – 2.3496 –
0.1575 2.625 0.3226 2.204 0.1081 2.346 0.4693 2.271
0.0352 2.412 0.0878 2.096 0.0305 2.036 0.1255 2.125
0.0085 2.214 0.0218 2.166 0.0080 2.091 0.0309 2.179
0.0022 2.169 0.0056 2.176 0.0020 2.205 0.0080 2.166
0.0005 2.105 0.0014 2.103 0.0005 2.102 0.0020 2.104

Table 3.2: [Example 1] Number of degrees of freedom, meshsizes, Newton iteration count, errors,
and rates of convergence for the mixed P1 − P1 −RT1 approximation of the CBF model with varying
porosity.
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DOF h iter e(u) r(u) e(t) r(t) e(σ) r(σ)

888 0.7071 6 0.8815 – 2.6458 – 26.9990 –
6816 0.3536 6 0.4693 0.909 1.4294 0.888 13.3174 1.020

53376 0.1768 6 0.2416 0.958 0.7383 0.953 6.5654 1.020
283416 0.1010 6 0.1390 0.988 0.4276 0.976 3.6926 1.028

1094808 0.0643 6 0.0886 0.996 0.2737 0.988 2.3256 1.023

e(p) r(p) e(G̃) r(G̃) e(ω) r(ω) e(σ̃) r(σ̃)

1.8775 – 4.0119 – 2.3343 – 6.4082 –
1.0349 0.859 2.1729 0.885 1.2141 0.943 3.4413 0.897
0.5031 1.041 1.1218 0.954 0.6232 0.962 1.7540 0.972
0.2517 1.238 0.6492 0.977 0.3602 0.980 0.9865 1.028
0.1421 1.265 0.4154 0.988 0.2303 0.989 0.6186 1.033

Table 3.3: [Example 2] Number of degrees of freedom, mesh sizes, Newton iteration count, errors,
and rates of convergence for the mixed P0 − P0 −RT0 approximation of the CBF model with varying
porosity.

Figure 3.1: [Example 1] Porosity function, magnitude of the velocity, magnitude of the gradient of the
porosity times the velocity, and pseudostress tensor component (top plots); pressure field, magnitude
of the velocity gradient, magnitude of the vorticity, and shear stress tensor component (bottom plots).
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Figure 3.2: [Example 2] Porosity function, magnitude of the velocity, magnitude of the gradient of the
porosity times the velocity, and pseudostress tensor component (top plots); pressure field, magnitude
of the velocity gradient, magnitude of the vorticity, and shear stress tensor component (bottom plots).

Figure 3.3: [Example 3] Porosity function, magnitude of the velocity, and magnitude of the gradient
of the porosity times the velocity (top plots); pressure field, magnitude of the velocity gradient, and
magnitude of the vorticity (bottom plots).
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Conclusions

In this thesis we develop mixed finite element methods for a set of partial differential equations of
physical interest in fluid mechanics, more precisely, problems that model the behavior of a fluid through
porous media. We have proved the solvability of the continuous and discrete problems as well as their
convergence results, and we have also provided the corresponding numerical tests and simulations. The
main conclusions of this work are:

1. We introduced a fully-mixed finite element method for the coupled Brinkman–Forchheimer and
double-diffusion equations. We reformulated the system in terms of velocity, velocity gradient,
and pseudostress for the Brinkman–Forchheimer model, while temperature/concentration, tem-
perature/concentration gradients, and Bernoulli-type vectors are used for the double diffusion
equations. In particular, the resulting scheme has been written equivalently as a fixed-point equa-
tion. Then, through a fixed-point strategy together with classical results on nonlinear monotone
operators, Babuška-Brezzi’s theory in Banach spaces, and sufficiently small data assumptions, we
were able to develop the corresponding solvability analysis. Afterwards, an ad-hoc Strang-type
lemma in Banach spaces was used to rigorously derive an a priori error estimate. Finally, we
reported several numerical examples illustrating the satisfactory performance of the method and
confirming the theoretical rate of convergence.

2. We provided the a posteriori error analysis for the fully-mixed finite element methods for the
nonlinear problem given by the coupling of the Brinkman–Forchheimer and double diffusion
equations described in Chapter 1. We derive a reliable and efficient residual-based a posteriori
error estimator for this scheme. In addition, several numerical results illustrating the reliability
and efficiency of the estimator, and showing the expected behavior of the associated adaptive
algorithm were provided.

3. We derived a mixed formulation for the stationary convective Brinkman–Forchheimer equations
with varying porosity. Our approach introduces the pseudostress and the gradient of the poros-
ity times the velocity, as further unknowns. The introduction of these further unknowns lead
to a mixed formulation where the velocity together with the gradient of the porosity times the
velocity and the pseudostress tensor, are the main unknowns of the system. The correspond-
ing solvability analysis of the continuous and discrete systems, was established by combining
fixed-point arguments, classical results on nonlinear monotone operators, sufficiently small data
assumptions, and the Banach fixed-point theorem. In particular, for the Galerkin scheme, we
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employed Raviart–Thomas spaces of order k ≥ 0 for approximating the pseudostress tensor, and
discontinuous piecewise polynomials of degree k for the velocity and the gradient of the porosity
times the velocity. Finally, several numerical results were provided in order to validate the good
performance of the method and confirm the corresponding rate of convergence.

Future works

The methods developed and the results obtained in this thesis have motivated several ongoing and
future projects. Some of them are described below:

1. A posteriori error analysis for the convective Brinkman–Forchheimer problem with
varying porosity.

As a natural continuation, we are interested in developing an a posteriori error analysis for the
problem studied in Chapter 3, in order to improve its robustness in the context of problems
with complex geometries or solutions with high gradients. In particular, we are interested in
extending the results and techniques of Chapter 2 to provide reliable and efficient residual-
based a posteriori error estimator.

2. Development of a new mixed finite element method for the convective Brinkman–
Forchheimer problem with varying porosity

As a complement and alternative to our mixed method presented in Chapter 3, we are inter-
ested in developing and analyzing a pseudostress-velocity formulation for the problem of viscous
fluid flow through porous media with variable porosity, modeled by the convective Brinkman–
Forchheimer equations (see e.g. [41]), where the resistance to flow increases significantly with
the fluid velocity. More precisely, we consider the following system of equations (cf. (3.1)):

−div
{
ρ
(
2µ e(u)− (u⊗ u)

)}
+ ρ∇p+ D(ρ)u+ F(ρ) |u|m−2u = ρ f in Ω ,

div(ρu) = 0 in Ω ,

u = uD on Γ ,

where e(u) = 1
2(∇u+(∇u)t) is the symmetric part of the gradient, µ is the Brinkman coefficient

(or effective viscosity), which is assumed to be eventually variable and bounded, and m is a given
number in [3, 4]. The goal is to apply the ideas presented in [23] and [48] to obtain a saddle point
problem with a nonlinear perturbation in a Banach space framework.

3. Development of a mixed finite element method for the Biot–Brinkman–Forchheimer
model.

We are interested in applying a mixed finite element method to address the poroelasticity problem
coupled with the Brinkman-Forchheimer model, which describes the relationship between the
deformation of a poroelastic medium and fluid flow. In particular, given an external load f on
the solid, an external force g applied to the fluid, and a source term h, the model is expressed
by the following system:
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−div
{
2µ e(up) +

(
λ div(up) + αp

)
I
}

= f en Ω ,

−ν∆uf +K−1uf + F |uf |uf +∇p = g en Ω ,

∂

∂t

(
c0 p+ α div(up)

)
+ div(uf ) = h en Ω ,

where up is the displacement, λ and µ are the Lamé constants, p is the pressure, 0 < α ≤ 1 is
the Biot-Willis constant, and c0 > 0 is the constrained specific storage coefficient. Additionally,
uf is the fluid velocity, and ν, K, F are scalar functions representing viscosity, permeability,
and the Forchheimer number, respectively. On one hand, due to the mathematical structure of
this model, it is necessary to employ the studies conducted in [33, 35, 73] and the mathematical
techniques developed in Chapters 1 and 3 to analyze this problem.
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Conclusiones

En esta tesis desarrollamos métodos de elementos finitos mixtos para un conjunto de ecuaciones difer-
enciales parciales de interés físico en mecánica de fluidos, más precisamente, problemas que modelan
el comportamiento de un fluido a través de medios porosos. Hemos demostrado solubilidad de los pro-
blemas continuo y discreto, así como sus resultados de convergencia, para luego proporcionar ejemplos
numéricos y simulaciones correspondientes. Las principales conclusiones de este trabajo son:

1. Introdujimos un método de elementos finitos totalmente mixto para las ecuaciones acopladas de
Brinkman–Forchheimer y de doble difusión. Reformulamos el sistema en términos de velocidad,
gradiente de velocidad y pseudo-esfuerzo para el modelo de Brinkman–Forchheimer, mientras
que para las ecuaciones de doble difusión se utilizan temperatura/concentración, gradientes de
temperatura/concentración y vectores tipo Bernoulli. En particular, el esquema resultante se ha
escrito de forma equivalente como una ecuación de punto fijo. Seguidamente, a través de una
estrategia de punto fijo junto con resultados clásicos sobre operadores monótonos no lineales, la
teoría de Babuška-Brezzi en espacios de Banach, y supuestos de datos suficientemente pequeños,
hemos podido desarrollar el correspondiente análisis de solubilidad . Posteriormente, se utilizó un
Lema ad-hoc de tipo Strang en espacios de Banach para derivar rigurosamente una estimación de
error a priori. Finalmente, se reportaron varios ejemplos numéricos que ilustraron el desempeño
satisfactorio del método y que confirmaron los ordenes teóricos de convergencia.

2. Proporcionamos el análisis de error a posteriori para el método de elementos finitos completa-
mente mixto para el problema no lineal dado por el acoplamiento de las ecuaciones de Brinkman–
Forchheimer y de doble difusión, descrito en el Capítulo 1. Derivamos un estimador de error a
posteriori confiable y eficiente de tipo residual para dicho esquema. Además, se proporcionaron
varios resultados numéricos que ilustraron la confiabiidad y la eficiencia del estimador, y que
también mostraron el comportamiento esperado del algoritmo adaptativo asociado.

3. Derivamos una formulación mixta para las ecuaciones estacionarias de Brinkman-Forchheimer
convectivas con porosidad variable. Nuestro enfoque introduce el pseudo-esfuerzo y el gradiente
de la porosidad multiplicado por la velocidad, como otras incógnitas. La introducción de estas
incógnitas adicionales conduce a una formulación mixta donde la velocidad junto con el gradiente
de porosidad multiplicado por la velocidad y el tensor de pseudo-esfuerzo son las principales
incógnitas del sistema. El correspondiente análisis de solubilidad de los sistemas continuo y
discreto se estableció combinando argumentos de punto fijo, resultados clásicos de operadores
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monótonos no lineales, supuestos de datos suficientemente pequeños y el teorema de punto fijo
de Banach. En particular, para el esquema de Galerkin, empleamos espacios de Raviart–Thomas
de orden k ≥ 0 para aproximar el tensor de pseudo-esfuerzo, y polinomios discontinuos por
trozos de grado k para la velocidad y el gradiente de la porosidad multiplicado por la velocidad.
Finalmente, se proporcionaron varios resultados numéricos para validar el buen desempeño del
método y confirman los órdenes de convergencia correspondientes.

Trabajos futuros

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios proyectos en
curso y futuros. Algunos de ellos se describen a continuación:

1. Análisis de error a posteriori para el problema de Brinkman–Forchheimer convectivo
con porosidad variable.

Como continuación natural, estamos interesados en desarrollar un análisis de error a posteriori
para el problema estudiado en el Capítulo 3, con el fin de mejorar su robustez ante problemas
en los cuales se involucran geometrías complejas o soluciones con altos gradientes. En particular,
estamos interesados en extender los resultados y técnicas del Capítulo 2 para proporcionar un
estimador de error a posteriori confiable y eficiente de tipo residual.

2. Desarrollo de un nuevo método de elementos finitos mixtos para el problema de
Brinkman–Forchheimer convectivo con porosidad variable.

Como complemento y alternativa a nuestro método mixto presentado en el Capítulo 3, nos
interesa desarrollar y analizar una formulación pseudo-esfuerzo–velocidad para el problema del
flujo de un fluido viscoso a través de medios porosos con porosidad variable modelado por las
ecuaciones de convectivas de Brinkman–Forchheimer (véase [41]), donde la resistencia al flujo
aumenta de manera muy significativa con la velocidad del fluido. Más precisamente, consideramos
el siguiente sistema de ecuaciones (véase (3.1)):

−div
{
ρ
(
2µ e(u)− (u⊗ u)

)}
+ ρ∇p+ D(ρ)u+ F(ρ) |u|m−2u = ρ f en Ω ,

div(ρu) = 0 en Ω ,

u = uD sobre Γ ,

donde e(u) = 1
2(∇u+(∇u)t) es la parte simétrica del gradiente, µ es el coeficiente de Brinkman

(o viscosidad efectiva), que se supone eventualmente variable y acotado, y m es un número dado
en [3, 4]. La finalidad es aplicar las ideas expuestas en [23] y [48] para obtener un problema de
punto de silla con una perturbación no lineal en un marco de espacios de Banach.

3. Desarrollo de un método de elementos finitos mixtos para el modelo Biot–Brink-
man–Forchheimer.

Estamos interesados en aplicar un método de elementos finitos mixtos para abordar el problema
de poroelasticidad acoplado con el modelo Brinkman–Forchheimer, el cual describe la relación
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entre la deformación de un medio poroelástico y el flujo de fluidos. En particular, dado una
carga externa f sobre el sólido, una fuerza externa g aplicada al fluido, y un término fuente h, el
modelo se expresa mediante el siguiente sistema:

−div
{
2µ e(up) +

(
λ div(up) + αp

)
I
}

= f en Ω ,

−ν∆uf +K−1uf + F |uf |uf +∇p = g en Ω ,

∂

∂t

(
c0 p+ α div(up)

)
+ div(uf ) = h en Ω ,

donde up es el desplazamiento, λ y µ son las constantes de Lamé, p es la presión, 0 < α ≤ 1 es
la constante de Biot-Willis, y c0 > 0 es el coeficiente de almacenamiento específico restringido.
Además, uf es la velocidad del fluido, y ν, K, F son funciones escalares que representan la
viscosidad, la permeabilidad y el número de Forchheimer, respectivamente. Por un lado, debido
a la estructura matemática de este modelo, es necesario emplear los estudios realizados en [33, 35,
73] y las técnicas matemáticas desarrolladas en los Capítulos 1 y 3 para analizar este problema.
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