
Universidad de Concepción
Dirección de Postgrado

Concepción-Chile

Dinámica de redes discretas con
esquemas de actualización deterministas.

Aplicación a las redes de regulación génica.
(Dynamics of discrete networks with deterministic updates schedules.

Application to genetic regulatory networks.)

Tesis para optar al grado de Doctor en Ciencias Aplicadas con mención en Ingenieŕıa
Matemática.

Luis Miguel Gómez Guzmán
Enero-2015

Dinámica de redes discretas con esquemas de actualización deterministas.
Aplicación a las redes de regulación génica.

Luis Gómez Guzmán

Profesor Guia: Dr. Julio Aracena Lucero, Departamento de Ingenieŕıa Matemática, Facultad
de Ciencias F́ısicas y Matemáticas, Universidad de Concepción, Chile.

Co-tutor: Dr. Jaques Demongeot, Laboratorio AGIM, Facultad de Medicina, Universidad
de Grenoble, Francia.

Co-tutor: Dr. Lilian Salinas Ayala, Departamento de Informática y Ciencias de la
Computación, Facultad de Ingenieŕıa, Universidad de Concepción, Chile.

Director de Programa: Dr. Raimund Bürger, Universidad de Concepción, Chile

COMISIÓN EVALUADORA

Dr. Gilles Bernot, Université de Nice, Francia.

Dr. Alejandro Maass, Universidad de Chile.

Dr. Gonzalo Ruz, Universidad Adolfo Ibañez.

COMISIÓN EXAMINADORA

Firma:
Dr. Adrien Richard.
Université de Nice, Francia.

Firma:
Dr. Alejandro Maass.
Universidad de Chile, Chile.

Firma:
Dr. Gonzalo Ruz.
Universidad Adolfo Ibañez, Chile.

Firma:
Dr. Jacques Demongeot.
Université de Grenoble, Francia.

Firma:
Dra. Lilian Salinas.
Universidad de Concepción, Chile.

Firma:
Dr. Julio Aracena.
Universidad de Concepción, Chile.

Fecha Examen de Grado:

Calificación:

Concepción–Enero de 2015

casa

Agradecimientos.

En primer lugar, agradezco la gentileza, preocupación y dedicación brindada por mis
directores de tesis: Dr. Julio Aracena, Dr. Jacques Demongeot y la Dra. Lilian Salinas. Sin
lugar a dudas unos excelentes profesionales, quienes me han brindado su apoyo incondicional
en este largo camino, a pesar de las adversidades.

Por el apoyo financiero, agradezco a la Comisión Nacional de Investigación Cient́ıfica y
Tecnológica (CONICYT) a través de los proyectos FONDECYT No. 1090549 y No. 113103,
y a través de la Beca de Cotutela Doctoral en el Extranjero. Y a MECESUP a través del
proyecto UCO 0713.

A los miembros de la comisión evaluadora y examinadora, por su buena voluntad, interés
por el tema. tiempo y dedicación en la revisión de este trabajo.

A mis padres, por su cariño y apoyo durante estos 29 años. A mis suegros por su paciencia
durante estos últimos 6 años.

A mi esposa Gabriela, por iluminar estos últimos años de mi vida, por darme su apoyo
incondicional permaneciendo conmigo en todas y por darnos lo mas preciado que tenemos,
nuestros hijos Amara y Eluney. A mi hija Amara por su alegŕıa inagotable y a mi hijo Eluney
por nacer y hacernos felices a pesar de las dificultades.

Contents

1. Introduction 1

1.1. English version . 1

1.2. Spanish version . 5

2. Definitions and Notation 9

3. Robustness of limit cycles with update digraphs in Boolean networks 15

3.1. Motivation . 16

3.2. Necessary conditions to share limit cycles . 20

3.3. Possibility of sharing limit cycles . 24

3.4. Construction of classes preserving limit cycles 29

4. Limit cycle existence problems with deterministic update schedules in
Boolean networks 33

4.1. Limit Cycle Existence Problem . 34

4.2. Non-Primitive Update Digraph Problem . 46

4.3. Limit Cycle Non Existence Problem . 52

5. Feasible dynamics problems with deterministic update schedules in
Boolean networks 59

5.1. Feasible Transition Problem . 60

5.2. Feasible Limit Cycle Problem . 76

5.3. Other related problems . 85

6. Applications 90

6.1. Analysis of the robustness of limit cycles of the mammalian cell cycle network 90

i

CONTENTS

6.2. Analysis of the robustness of limit cycles of the fission yeast cell-cycle network 97

7. Conclusions 106

7.1. English version . 106

7.2. Spanish version . 109

A. Algorithms 112

A.1. Preliminary algorithms . 112

A.2. Symmetric AND-OR Limit Cycle Existence problem 113

A.3. OR Feasible Transition problem . 113

A.4. Feasible Limit Cycle problem . 118

Bibliography 120

ii

List of Figures

2.1. Example of an interaction digraph and an update digraph. 11

2.2. Example of GF
s , P(GF

s) and GF s . 12

2.3. Example of a reverse digraph. 13

3.1. Interaction digraph of the transformation defined in Theorem 3.2. 17

3.2. Complete bipartite digraph Kn,n used in Example 3.1. 19

3.3. Example of how Test 1 works. 22

3.4. Example of two Boolean networks satisfying the conditions of Corollary 3.8. 24

3.5. Example of two Boolean networks. 25

3.6. Update digraph associated to N defined in Example 3.5. 29

3.7. Example of two Boolean networks satisfying the conditions of Theorem 3.10 32

4.1. Interaction digraph of the transformation defined in Theorem 4.1. 35

4.2. Interaction digraph of the transformation defined in Theorem 4.2. 37

4.3. Example for odd l of the transformation mentioned in Remark 4.1. 38

4.4. Interaction digraph of the transformation defined in Proposition 5.18. 41

4.5. Forbidden configurations described in Example 4.2. 48

4.6. Example of an OR function without limit cycles under any update schedule. 49

4.7. Labeling results as detailed in Example 4.2. 50

4.8. Example of a Bow of length m. 51

4.9. Interaction digraph of the transformation defined in Theorem 4.28. 53

4.10. Boolean function described in Example 4.4. 56

4.11. Boolean function described in Example 4.5. 57

4.12. Sub-networks associated to the the sub-dynamics of the AND-OR network
described in Example 4.5 . 58

iii

LIST OF FIGURES

5.1. Interaction digraph of the transformation defined in Theorem 5.1. 60

5.2. Example of the transformation defined in Lemma 5.3 as detailed in Example 5.1. 64

5.3. Example of the transformation defined in Proposition 5.4. 65

5.4. Substructure of GF of the transformation defined in Theorem 5.5. 68

5.5. Interaction digraph of the transformation defined in Theorem 5.5. 69

5.6. Example of the transformation defined in Lemma 5.3 and Remark 5.3. 71

5.7. Necessary labels for the existence of solution for OR FT. 72

5.8. Example of an OR network. 75

5.9. Interaction digraph of the transformation defined in Theorem 5.13. 77

5.10. Interaction digraph of the transformation defined in Theorem 5.14. 78

5.11. Example of interaction digraph of the transformation defined in Theorem 5.16. 81

5.12. Example of the transformation defined in Theorem 5.23. 88

6.1. Interaction digraph of the mammalian cell cycle network. 92

6.2. Dynamical behavior of the mammalian cell cycle network synchronously updated. 93

6.3. Update digraph associated to Nv2 . 95

6.4. Dynamical behavior of Nv2 . 95

6.5. Update digraph associated to N6,2. 96

6.6. Dynamical behavior of N6,2. 96

6.7. Weight matrix digraph of the fission yeast cell-cycle network. 98

6.8. Interaction digraph of the fission yeast cell-cycle network. 100

6.9. Dynamical behavior of the fission yeast cell-cycle network synchronously up-
dated. 101

6.10. Update digraph associated to Nv2 . 102

6.11. Dynamical behavior of Nv2 . 103

6.12. Update digraph associated to N
′
v2

. 104

6.13. Dynamical behavior of N
′
v2

. 105

A.1. Interaction digraph structure after applying the OR FT Algorithm. 117

iv

List of Tables

3.1. Dynamical behavior of the transformation defined in Theorem 3.2. 17

3.2. Summary of the results of the necessary conditions of Chapter 3. 28

4.1. Definition of F in the transformation defined in Theorem 4.2. 36

4.2. Limit cycle from Proposition 4.12 if an alternated component of GF is considered. 43

4.3. Limit cycle from Proposition 4.12 if a bipartite OR component of GF is con-
sidered. 43

4.4. Sub-dynamics of the AND-OR network described in Example 4.5 57

5.1. Definition of GF̂ defined in Proposition 5.4. 65

5.2. Definition of F in the transformation defined in Theorem 5.5. 67

5.3. Transition table of the states defined in the reduction used in Theorem 5.5. . 70

5.4. Transition table of the states defined in Theorem 5.14. 79

5.5. Definition of GF defined in Theorem 5.16. 80

5.6. Example of a limit cycle according to the transformation defined in Theorem 5.16. 82

6.1. Notation for the nodes of the mammalian cell cycle network. 91

6.2. Local activation functions of the mammalian cell cycle network. 91

6.3. Attractors of the mammalian cell cycle network synchronously updated. . . . 92

6.4. Notation for the nodes of the fission yeast cell-cycle network. 97

6.5. Weight matrix and threshold vector of the fission yeast cell-cycle network. . . 98

6.6. Logical functions of the fission yeast cell-cycle network. 99

6.7. Limit cycle of the fission yeast cell-cycle network synchronously updated. . . 99

v

Chapter 1

Introduction

1.1. English version

A Boolean network is a system of n interacting Boolean variables, which evolve, in a
discrete time, according to a predefined rule. They have applications in many areas, including
circuit theory, computer science and social systems (Green et al., 2007; Tocci and Widmer,
2001). In particular, from the seminal works of Kauffman (1969, 1993) and (Thomas, 1973;
Schaefer, 1978), they are extensively used as models of gene regulatory networks. Despite
their simplicity, they provide a useful model in which different phenomena can be reproduced
and studied, and indeed, many regulatory models published in the biological literature fit
within their framework (Huang, 1999; Shmulevich et al., 2003; Fauré et al., 2006; Bornholdt,
2008). In this context, Boolean networks give a first idea of the qualitative dynamics of
a gene regulatory network represented by the temporal evolution of the gene and protein
states. They are used to investigate the organizational principles of a network and how
this influences its robustness. The reconstruction of gene regulatory networks using Boolean
networks has several advantages. They can effectively represent realistic complex biological
phenomena (Albert and Othmer, 2003; Ciliberti et al., 2007; Abou-Jaoudé et al., 2009, 2010;
Chaves et al., 2010; Veliz-Cuba and Stigler, 2011). Furthermore, the discretization to binary
values simplifies the obtained models by reducing the noise level in experimental data as well
as simulations in computers are easy to handle.

Since Boolean networks have a finite number of states, the long-run dynamic trajectories
always reach a periodic sequence of states, called attractor. When the period is one, the
attractor is said to be a fixed point, and when the period is greater than one, it is called
limit cycle. In the modeling of genetic regulatory networks, the attractors are associated to
distinct types of cells defined by patterns of gene activity. In particular, the limit cycles are
often associated with the cell cycle (Huang, 1999; Fauré et al., 2006).

The update schedule in a Boolean network, that is the order in which each node is
updated, is of great importance in the dynamics of the network. In general and probably due
to the difficulty of really knowing the order (if any) in which events take place in the cell,

1

1.1. ENGLISH VERSION

regulatory networks are usually studied with synchronous schedule (parallel scheme). One
reason for determinism is the need to model some periodical behaviors; when randomness is
introduced, attractors became regions of the phase space, but are no longer exact dynamical
cycles (Aracena et al., 2009). However, many other update schedules with a certain level
of asynchronism have been used in Boolean networks to model different biological systems
(Thomas, 1973; Chaves et al., 2005; Mendoza and Alvarez-Buylla, 1998; Albert and Othmer,
2003; Hansson et al., 2005). Other types of deterministic update schedules, introduced by
Robert (1986, 1995), and used in the discrete modeling of genetic regulatory networks (see
Ruz et al. (2014); Goles et al. (2013); Meng and Feng (2014)) and other dynamical systems
are: the sequential update (nodes are updated one by one in a prescribed order) and block-
sequential updates (which are sequential over the sets of a partition, but parallel inside of
each set).

The change in the update schedule of a Boolean network can yield variations on the
dynamical behavior of the network, in particular on the set of attractors. The robustness
of Boolean networks against perturbations of their update schedule has been studied mainly
from an experimental and statistical point of view (Elena, 2009; Chaves et al., 2005; Demon-
geot et al., 2008; Fauré et al., 2006; Goles and Noual, 2010; Christoph Schmal and Drossel,
2010).

There are many theoretical and analytical studies about the effect of changing the deter-
ministic update schedule in Boolean networks. Some of the pioneering works in this context
were done by Robert (1986, 1995), who projected continuous tools into the discrete problem,
and Goles (1980), who studied the dynamics of discrete neural networks with deterministic
update schedules. Some other studies were done in Mortveit and Reidys (2001), where it
was studied the set of update schedules preserving the whole dynamical behavior of a special
class of discrete dynamical networks, called sequential dynamical systems, where the inter-
action digraph is symmetric or equivalently an undirected graph and the update schedule
is sequential. In Goles and Noual (2012) disjunctive networks are classified according to
the robustness of their dynamics with respect to changes in the update schedule. In Elena
(2009), is given an analytical classification of Boolean networks according to their dynamical
behavior. Also, in Salinas (2008) and Aracena et al. (2009), were given equivalence classes of
update schedules, based on their associated update digraphs, such that elements in the same
class, yield the same dynamical behavior. Furthermore, in Aracena et al. (2013a), was stud-
ied how many different dynamics can exist in a Boolean network when the update schedule
is changed.

Since the fixed points are invariant to the update schedule, the interesting problem when
analyzing the attractors, is focused on the limit cycles. In this context, there are also several
theoretical and analytical studies that have been done when different update schedules are
used. Most of them show that the limit cycles are very sensitive to changes in the update
schedule of the network. In particular, Demongeot et al. (2008) studied the role of the update
schedule on the asymptotic behavior of gene regulatory networks, essentially on the occur-
rence of limit cycles. Ruz and Goles (2013) used the swarm intelligence technique to analyze
the ability of the networks to preserve the attractors when the updating schemes are changed

2

1.1. ENGLISH VERSION

from parallel to sequential. Also, Goles and Salinas (2008) did a comparative analysis on the
attractors in Boolean networks with parallel and sequential update schedules. They proved
that both schemes cannot have limit cycles in common. Also, Macauley and Mortveit (2009)
give limit cycle equivalence classes (isomorphic as directed graphs) in sequential dynamical
systems.

One of the major problems in the understanding of the function of many biological
complex systems, such as genetic networks or molecular signaling pathways, is the inference
of the network with a given update schedule from observed data, as for example a limit
cycle. In this sense, the reconstruction of a genetic regulatory network has been so far done
considering mainly synchronous update (see for example Shmulevich et al. (2002); Akutsu
et al. (1999)). However, there are limit cycles, under sequential or block-sequential schedules,
which cannot be yielded with parallel update (Goles and Salinas, 2008).

In this work, we focus our study on different problems related to limit cycles and deter-
ministic updated schedules, which can be divided in two main topics, robustness and inverse
problems. In the first one, we are interested in whether a given limit cycle (or the full set of
limit cycles) of a given Boolean network is kept when the update schedule is changed. And in
the second topic we are interested in, given a dynamical characteristic and Boolean function,
determining whether there is an update schedule such that the Boolean function updated
under it presents the characteristic in its dynamical behavior. In this context, we explore
families of Boolean networks with different types of local activation functions and struc-
tural properties of the interaction digraph, to define the sharp delineation of the algorithmic
complexity for the several problems that arise.

This thesis is organized as follows. In Chapter 2, we introduce all definitions and notation
that are used through the following chapters.

In Chapter 3 we study the robustness of limit cycles of two given Boolean networks
that differ only in their update schedules. Since in Aracena et al. (2009), was shown that if
two update schedules belong to the same class (equal update digraphs) then the respective
Boolean networks have the same dynamical behabior, we are interested in studying different
classes yielding the same limit cycle set. In this context, we show that the related decision
problems are NP-Hard (that is, intractable computationally problems) and that the informa-
tion provided by the update digraph is not sufficient to determine whether two given Boolean
networks share limit cycles or not. Besides, we give a polynomial algorithm that works as a
necessary condition for sharing limit cycles for two given update digraphs: if this algorithm
returns TRUE, then no matter the Boolean function used, they will never share any limit
cycle. If the algorithm returns FALSE, then we give some sufficient conditions to construct
a Boolean function that will have a common limit cycle for the corresponding Boolean net-
works. Also, we give some sufficient conditions which allows us to, given a Boolean network,
construct a non equivalent update schedule that share a given limit cycle of the given Boolean
network.

In Chapter 4 we study some problems about the existence of update schedules which
yield limit cycles. Here, we prove that the problem of existence is NP-Hard even for AND-

3

1.1. ENGLISH VERSION

OR functions or symmetric interaction digraph. Nevertheless, we show that the problem is
polynomial if both conditions are satisfied. Besides, we prove that such an update schedule
exists if and only if the limit cycle set of the network updated in parallel is non empty.
Furthermore, this last condition is characterized by a property in the interaction digraph
that can be verified in polynomial time. For the problem of deciding the existence of an
update schedule that does not generate limit cycles, we prove that the general case is NP-
Hard, and that there always exists such an update schedule in the case of OR functions.

In Chapter 5, we are interested in studying the problem of, given a Boolean function and
a sequence of global state vectors, whether there exists an update schedule that generates
the given sequence as a limit cycle when the Boolean function is updated under it. In first
place, we deal with a more basic problem: a single transition. We prove that this problem is
NP-Complete even for OR functions. In this case, we give a characterization of the existence
of solution in terms of the interaction digraph and an algorithm to test it, this algorithm
being polynomial in the symmetric case. About the sequence problem, we prove that it is
also NP-Complete even for OR functions. Besides, we show that the symmetric OR case and
the case where the length of the limit cycle is equal to two are both polynomial. We also
study another related problems and we prove that all of them are NP-Complete even in the
OR case.

In Chapter 6, we apply the results of Chapter 3 for studying the robustness of the limit
cycles of two genetic regulatory networks when the update schedule is changed: the logical
version of the mammal cell cycle network and the fission yeast cell-cycle network, introduced
in Fauré et al. (2006) and Davidich and Bornholdt (2008), respectively. Some theoretical
and simulation results were given about the robustness of their dynamical behaviors against
changes in the update schedule in Ruz et al. (2014) and Goles et al. (2013), respectively. For
each network we construct non equivalent update schedules that yield the same attractors as
the networks synchronously updated.

Finally, in Appendix A are given some explicit algorithms from the results of Chapters 4
and 5.

4

1.2. SPANISH VERSION

1.2. Spanish version

Una red Booleana es un sistema de n variables Booleanas que interactúan y evolucionan,
en tiempo discreto, de acuerdo a una regla predefinida. Tienen aplicaciones en diversas áreas,
incluyendo la teoŕıa de circuitos, ciencias de la computación y sistemas sociales (Green et al.,
2007; Tocci and Widmer, 2001). En particular, de los trabajos seminales de Kauffman (1969,
1993) y (Thomas, 1973; Schaefer, 1978), son usadas extensamente como modelos de redes
de regulación génica. A pesar de su simplicidad, ella proporcionan un modelo útil en el cual
diferentes fenómenos pueden ser reproducidos y estudiados, y de hecho, muchos modelos
regulatorios en la literatura biológica calzan en este marco (Huang, 1999; Shmulevich et al.,
2003; Fauré et al., 2006; Bornholdt, 2008). En este contexto, las redes Booleanas dan una
primera impresión de la dinámica cualitativa de una red de regulación génica representada
por la evolución temporal de los estados de las protéınas. Ellas son usadas para investigar los
principios organizacionales de una red y como ésta afecta a su robustez. La reconstrucción de
redes génicas regulatorias tiene varias ventajas, puesto que pueden representar efectivamente
fenómenos biológicos complejos reales (Albert and Othmer, 2003; Ciliberti et al., 2007; Abou-
Jaoudé et al., 2009, 2010; Chaves et al., 2010; Veliz-Cuba and Stigler, 2011). Mas aún, la
discretización a estados binarios simplifica los modelos obtenidos puesto que reduce el nivel
de ruido de los datos experimentales y también las simulaciones conputacionales son fáciles
de manejar.

Puesto que las redes Booleanas tienen un número finito de estados, las trayectorias
dinámicas de largo plazo siempre alcanzan una secuencia de estados periódicos, llamada
atractor. Cuando el periódo es uno, el atractor se dice punto fijo, y cuando el peŕıodo es
mayor que uno, se llama ciclo limite. En el modelamiento de redes de regulación génica, los
atractores están asociados a distintos tipos de células definidos por patrones en la actividad
génica. En particular, los ciclos limites son usualmente asociados con ciclos celulares (Huang,
1999; Fauré et al., 2006).

El esquema de actualización de una red Booleana, que es el orden en el cual cada
nodo es actualizado, es de gran importancia en la dinámica de la red. En general y debido
probablemente a la dificultad de conocer el orden (si es que alguno existe) en el que los
eventos tienen lugar en la célula, las redes regulatorias son usualmente estudiadas con un
esquema sincrónico (o paralelo). Una razón para el determinismo es la necesidad de modelar
algunos comportamientos periódicos; cuando la aleatoriedad es introducida, los atractores
forman regiones del espacio fase, pero ya no son ciclos dinámicos exactos (Aracena et al.,
2009). Sin embargo, esquemas de actualización con algún nivel de asincronismo han sido
utilizados en redes Booleanas para modelar distintos sistemas biológicos (Thomas, 1973;
Chaves et al., 2005; Mendoza and Alvarez-Buylla, 1998; Albert and Othmer, 2003; Hansson
et al., 2005). Otros tipos de esquemas de actualización deterministas, introducidos por Robert
(1986, 1995), y usados en la modelación discreta de redes génicas regulatorias (ver Ruz et al.
(2014); Goles et al. (2013); Meng and Feng (2014)) y otros tipos de sistemas dinámicos son:
el esquema secuencial (los nodos son actualizados uno por uno en un orden preestablecido) y
bloque-secuenciales (que son secuenciales sobre los conjuntos de una partición, pero paralelos

5

1.2. SPANISH VERSION

dentro de cada conjunto).

El cambio en el esquema de actualización de una red Booleana puede producir variaciones
en el comportamiento dinámico de la red, y en particular en el conjunto de atractores. La
robustez de las redes Booleanas contra perturbaciones en el esquema de actualización a sido
estudiado principalmente desde un punto de vista experimental y estad́ıstico (Elena, 2009;
Chaves et al., 2005; Demongeot et al., 2008; Fauré et al., 2006; Goles and Noual, 2010;
Christoph Schmal and Drossel, 2010).

Hay varios estudios teóricos y anaĺıticos acerca del efecto de cambiar el esquema de
actualización determinista de una red Booleana. Algunos de los trabajos pioneros en este
contexto fueron hechos por Robert (1986, 1995), quien proyectó herramientas del análisis
continuo al problema discreto, y Goles (1980), quien estudio la dinámica de redes neuro-
nales discretas con esquemas de actualización deterministas. Otros estudios fueron hechos
en Mortveit and Reidys (2001), donde se estudio el conjunto de esquemas de actualización
que preservan el comportamiento dinámico completo de una clase especial de redes dinámi-
cas discretas, llamada sistemas dinámicos secuenciales, en donde el d́ıgrafo de interacción es
simétrico o equivalentemente un grafo no dirigido, y el esquema es secuencial. En Goles and
Noual (2012), las redes disyuntivas son clasificadas de acuerdo a la robustez de su dinámica
con respecto a cambios en el esquema de actualización. En Elena (2009), se da una clasifica-
ción anaĺıtica de las redes Booleanas de acuerdo a su comportamiento dinámico. A su vez,
en Salinas (2008) y Aracena et al. (2009), son definidas clases de equivalencia de esquemas
de actualización, basado en su d́ıgrafo de actualización, de forma tal que elementos en la
misma clase tiene el mismo comportamiento dinámico. Mas aún, en Aracena et al. (2013a),
se estudiaron cuantas dinámicas diferentes pueden existir en una red Booleana cuando el
esquema de actualización es cambiado.

Puesto que los puntos fijos son invariantes al esquema de actualización, el problema
interesante al analizar los atractores esta centrado en los ciclos limites. En este contexto,
también hay varios estudios teóricos y anaĺıticos que se han hecho cuando diferentes esquemas
de actualización son utilizados. La mayoŕıa de ellos muestra que los ciclos limites son muy
sensibles a cambios en el esquema de actualización de la red. En particular, Demongeot et al.
(2008) estudiaron el rol del esquema de actualización en el comportamiento asintótico de
redes de regulación génica, esencialmente en la ocurrencia de ciclos limites. Ruz and Goles
(2013) usaron técnicas de inteligencia de enjambre para analizar la habilidad de las redes
Booleanas para preservar los atractores cuando el esquema de actualización es cambiado desde
el paralelo al secuencial. También, Goles and Salinas (2008) hicieron una análisis comparativo
de los atractores en redes Booleanas con los esquemas paralelo y secuencial y probaron que
ambos esquemas no pueden tener ciclos limites en común. Por otra parte, Macauley and
Mortveit (2009) dan clases de equivalencias de ciclos limites (isomorfas como grafos dirigidos)
en sistemas dinámicos secuenciales.

Uno de los mayores problemas en la comprensión de la función de muchos sistemas
biológicos complejos, tales como redes de regulación génica o v́ıas de señalización moleculares,
es la inferencia de la red con un esquema de actualización dado a partir de datos observados,

6

1.2. SPANISH VERSION

como por ejemplo un ciclo limite. En este sentido, la reconstrucción de una red de regulación
génica a sido hasta ahora hecho principalmente considerando el esquema sincrónico (ver por
ejemplo Shmulevich et al. (2002); Akutsu et al. (1999)). Sin embargo, hay ciclos limites, bajo
esquemas secuenciales o bloque-secuenciales, que no pueden ser generados por el esquema
paralelo (Goles and Salinas, 2008).

En este trabajo, nos enfocamos en estudiar diferentes problemas relacionados con ciclos
limites y esquemas de actualización deterministas, que pueden ser divididos en dos temas.
En el primero, nos interesa saber si un ciclo limite dado (o el conjunto total de ciclos limites)
de una red Booleana es mantenido cuando el esquema de actualización es cambiado. Y en el
segundo nos interesa, dada una caracteŕıstica dinámica de una función Booleana, determinar
si existe un esquema de actualización de forma tal que la función Booleana actualizada bajo
este esquema presenta la caracteŕıstica en su comportamiento dinámico. En este contexto,
exploramos familias de redes Booleanas con distintos tipos de funciones locales de activación
y propiedades estructurales del d́ıgrafo de interacción, para definir la delgada delineación de
la complejidad algoŕıtmica de los diversos problemas que surgen.

Esta tesis esta organizada como sigue. En el Caṕıtulo 2, introducimos todas las defini-
ciones y notación que utilizaremos en los caṕıtulos siguientes.

En el Caṕıtulo 3 estudiamos la robustez de los ciclos limites de dos redes Booleanas
dadas que solo difieren en su esquema de actualización. Puesto que en Aracena et al. (2009),
fue mostrado que si dos esquemas de actualización pertenecen a la misma clase (digrafos
de actualización iguales) entonces las redes Booleanas respectivas tienen el mismo compor-
tamiento dinámico, estamos interesados en estudiar distintas clases que generen el mismo
conjunto de ciclos limites. En este contexto, mostramos que los problemas de decisión re-
lacionados son todos NP-Hard (esto es, problemas computacionalmente intratables) y que
la información entregada por el d́ıgrafo de actualización no es suficiente para determinar si
dos redes Booleanas dadas comparten ciclos limites o no. Además, entregamos un algoritmo
polinomial que funciona como una condición necesaria para compartir ciclos limites para
dos d́ıgrafos de actualización dados: si este algoritmos retorna VERDADERO, entonce sin
importar la función Booleana usada, ellos nunca van a compartir ningún ciclo limite. Si el
algoritmo retorna FALSO, entonces damos algunas condiciones suficientes para construir una
función Booleana que tendrá un ciclo limite en común para las redes Booleanas respectivas.
A su vez, damos algunas condiciones suficientes que nos permite, dada una red Booleana,
construir un esquema de actualización no equivalente que comparte un conjunto de ciclos
limites dado de la red Booleana dada.

En el Caṕıtulo 4 estudiamos algunos problemas relacionados con la existencia de es-
quemas de actualización que producen ciclos limites. Aqúı, probamos que el problema de
existencia es NP-Hard incluso para funciones AND-OR o con grafo de interacción simétrico.
Sin embargo, mostramos que el problema es polinomial si ambas condiciones se cumplen. A
su vez, probamos que tal esquema de actualización existe si y solo si el conjunto de ciclos
limites de la red actualizada en paralelo es no vaćıo. Mas aún, esta ultima condición esta
caracterizada por una propiedad del d́ıgrafo de interacción que puede ser verificada en tiem-

7

1.2. SPANISH VERSION

po polinomial. Para el problema de decidir la existencia de un esquema de actualización que
no genere ciclos limites, probamos que el caso general es NP-Hard y que siempre existe tal
esquema en el caso de funciones OR.

En el Caṕıtulo 5, estamos interesados en estudiar, dada una función Booleana y una
secuencia de vectores estados globales, si existe un esquema de actualización que genere
la secuencia dada como un ciclo limite cuando la función Booleana es actualizada bajo él.
En primer lugar, tratamos con un problema mas básico: una transición. Probamos que este
problema es NP-Completo incluso para funciones OR. En este caso, damos una caracteriza-
ción de la existencia de solución en términos del d́ıgrafo de interacción y un algoritmo para
testearlo, que se vuelve polinomial en el caso simétrico. Para el problema de la secuencia,
también probamos que es NP-Completo para funciones OR. Además, mostramos que el caso
OR simétrico y cuando el largo del ciclo limite es dos son ambos polinomiales. También es-
tudiamos otros problemas relacionados y probamos que todos son NP-Completos incluso en
el caso OR.

En el Caṕıtulo 6, aplicamos los resultados del Caṕıtulo 3 para estudiar la robustez de
los ciclos limites de dos redes de regulación génica cuando el esquema de actualización es
cambiado: La versión lógica de las redes del ciclo celular mamı́fero y del ciclo celular de
la levadura de fisión, introducidas en Fauré et al. (2006) y Davidich and Bornholdt (2008),
respectivamente. Algunos resultados teóricos y de simulación son dados acerca de la robustez
de sus comportamiento dinámico contra cambios en el esquema de actualización en Ruz
et al. (2014) y Goles et al. (2013), respectivamente. Para cada red, construimos esquemas no
equivalentes que producen los mismos atractores que las redes iteradas sincrónicamente.

Finalmente, en el Apéndice A son dados algunos algoritmos expĺıcitos de los resultados
de los Caṕıtulos 4 y 5.

8

Chapter 2

Definitions and Notation

Let V be a set of n elements. We denote a function F = (fv)v∈V : {0, 1}n → {0, 1}n,
where each component function, fv : {0, 1}n → {0, 1}, is a Boolean function, and such that
∀x ∈ {0, 1}n, ∀v ∈ V : F (x)v = fv(x).

Given x = (xv)v∈V ∈ {0, 1}
n and u ∈ V , we define x̄u ∈ {0, 1}n as:

∀v ∈ V : x̄uv =

{
xv if v 6= u

¬xu if v = u

Where ∀a ∈ {0, 1} : ¬a = 1⇐⇒ a = 0.

We also define x̄ ∈ {0, 1}n as: ∀v ∈ V, x̄v = ¬xv.
A Boolean network N = (F, s) is defined by a finite set V of n elements; n state vari-

ables xv ∈ {0, 1}, v ∈ V ; a function F = (fv)v∈V called global activation function, where its
component functions fv are called local activation functions, and an update schedule defined
by a function s : V → {1, . . . , n} such that s(V) = {1, . . . ,m} for some m ≤ n. A block of
an update schedule s is a set Bi = {v ∈ V : s(v) = i}, 1 ≤ i ≤ m. An update schedule s is
also denoted by s = {v ∈ B1}{v ∈ B2} · · · {v ∈ Bm}. A synchronous or parallel update is
given by an update schedule s such that ∀v ∈ V , s(v) = 1. A sequential update corresponds
to a bijective function. Other kinds of update schedules can be considered as block-sequential
updates. Block-sequential updates schedules were introduced in Robert (1986).

The iteration of the Boolean network with an update function s is given by:

xk+1
v = fv(x

lu
u : u ∈ V)

where lu = k if s(v) ≤ s(u) and lu = k + 1 if s(v) > s(u).

This is equivalent to applying a function F s : {0, 1}n → {0, 1}n in a parallel way, with
F s(x) = (f sv (x))v∈V defined by:

f sv (x) = fv(g
s
v,u(x) : u ∈ V),

9

where the function gsv,u is defined by gsv,u(x) = xu if s(v) ≤ s(u) and gsv,u(x) = f su(x) if
s(v) > s(u). Thus, the function F s corresponds to the dynamical behavior of the network
N = (F, s). We note that F s was called Serial-Parallel operator in Robert (1986), and in the
particular case of sequential updates it was called Gauss-Seidel operator.

We say two Boolean networks N1 = (F1, s1) and N2 = (F2, s2) have the same dynamical
behavior if F s1

1 = F s2
2 .

Since {0, 1}n is a finite set, we have two limit behaviors for the iteration of a network:

Fixed Point. We define a fixed point as x ∈ {0, 1}n such that F s(x) = x.

Limit Cycle. We define a cycle of length p > 1 as the sequence
[xk]pk=0 = [x0, . . . , xp−1, x0] such that xk ∈ {0, 1}n, xk are pairwise distinct and F s(xk) =
xk+1, for all k = 0, . . . , p − 1 and xp ≡ x0. The set of limit cycles of N is denoted by
LC(N).

Fixed points and limit cycles are called attractors of the network.

We say that a node is frozen for a limit cycle if its state is constant on it.

Given a digraph G, the node set of G is referred to as V (G), and its arc set as A(G). An
arc (v, v) ∈ A(G) is called a loop of G. Given a node v ∈ V (G), the set of incoming nodes
to v is denoted as N−G (v) = {u ∈ V (G) : (u, v) ∈ A(G)}. Analogously, the set of outgoing
nodes from v is denoted as N+

G (v) = {u ∈ V (G) : (v, u) ∈ A(G)}. We denote the maximum
in-degree the digraph as ∆− (G) = maxv∈V (G)

∣∣N−G (v)
∣∣. The set of reachable nodes from v

is defined as R+
G (v) = {u ∈ V : there exists a path from v to u in G}. The set of nodes that

reach v is defined as R−G (v) = {u ∈ V : there exists a path from u to v in G}.
Given U ⊆ V (G), G [U] is the digraph obtained from G by removing all nodes in

V (G) \ U and all arcs incoming to or outgoing from these nodes. G [U] is called the sub-
digraph generated by U .

Given a strongly connected digraph G, the index of cyclicity of G, denoted ρ(G), is
defined as the greatest common divisor of the lengths of the cycles of G. If the digraph has
non trivial strongly connected components {Gi}mi=1, then the index of cyclicity is defined as
ρ(G) = lcm{ρ(Gi) : 1 ≤ i ≤ m}, or zero if it does not have any cycles. A strongly connected
component is not trivial if it has at least one arc. ρ(G) was defined in Jarrah et al. (2010) and
it was called the loop number of G and it was proved that can be calculated in polynomial
time. ρ(G) correspond to the index of cyclicity of G as in Schutter and Moor (2000) and
to the index of imprimitivity of the adjacency matrix of G as in Brualdi and Ryser (1991)
and Berman and Plemmons (1994). We say that G is primitive if ρ(G) = 1. The gird of a
digraph G, denoted g(G), is defined as the length of the shortest cycle in G. We denote by
L(C) the length of a cycle C of G.

The digraph associated to a Boolean function F = (fv)v∈V , called interaction digraph, is
the directed graph GF = (V,A), where (u, v) ∈ A if and only if fv depends on xu, i.e., if there

10

12

3 4

f1(x) = x1 ∧ x4

f2(x) = x1 ∨ x4

f3(x) = x2

f4(x) = x3

12

3 4

⊕

	

	

	

⊕ ⊕

s(i) = i, ∀i ∈ {1, . . . , n}
a) b)

Figure 2.1: a) Digraph associated to a Boolean network. b) Update Digraph associated to a
Boolean network and an update schedule.

exists x ∈ {0, 1}n such that fv(x) 6= fv(x̄
u). Note that if fv is constant, then N−

GF
(v) = ∅.

See an example of a interaction digraph in Figure 2.1.

Given G = (V,A) a digraph with node set V of n elements and s : V → {1, . . . , n} an
update schedule, we denote Gs = (G, labs) the labeled digraph, called update digraph, where
the function labs : A→ {	,⊕} is defined as:

labs(u, v) =

{
⊕ if s(u) ≥ s(v)

	 if s(u) < s(v)

The update digraph associated to a Boolean network N = (F, s) is defined by
GF
s = (GF , labs) (see an example of update digraph Gs in Figure 2.1). Hence, we define

the following equivalence relation between update schedules s and s′:

s ∼GF s′ ⇐⇒ GF
s = GF

s′

We denote [s]GF the equivalence class of s induced by ∼GF . Note that the label on a
loop will always be ⊕. It was proven in Aracena et al. (2009) that if two different updates
schedules have the same update digraph, then they also have the same dynamical behavior.

Given an update digraph Glab = (G, lab), with G = (V,A), we define the operator P as
P(Glab) = (V ′, A′), where V ′ = V and (u, v) ∈ A′ if and only if:

i.- (u, v) ∈ A and lab(u, v) = ⊕ or,

ii.- there exists w ∈ V such that (w, v) ∈ A, lab(w, v) = 	 and (u,w) ∈ A′.

Note that GF s is a sub-digraph of P(GF
s) (See an example in Figure 2.2). P(GF

s) is
referred to as the parallel digraph of Glab.

Given a digraph G = (V,A), a function lab: A → {⊕,	,#} is called a partial label of
G. In this case, the labeled digraph Glab = (G, lab) is called a partial labeled digraph. The

11

GF
s P

(
GF
s

)
GF s

12

3 4

⊕

	

	

	

⊕ ⊕

12

3 4

12

3 4

f1(x) = x1 ∧ x4

f2(x) = x1 ∨ x4

f3(x) = x2

f4(x) = x3

s = {1} {2} {3} {4}

f s1 (x) = x1 ∧ x4

f s2 (x) = x4

f s3 (x) = x4

f s4 (x) = x4

Figure 2.2: Example of GF
s , P(GF

s) and GF s

support of lab is defined by Sup (Glab) = {a ∈ A : lab (a) 6= #}. If Sup (Glab) = A, we say
that Glab is a total labeled digraph.

A partial labeled digraph Glab is an update digraph if there exists an update schedule s
such that

∀a ∈ Sup (Glab) : labs (a) = lab (a) (2.1)

Besides, an update schedule that satisfies (2.1) can be found in polynomial time (Aracena
et al., 2011).

Given a partial or total labeled digraph Glab = (G = (V,A), lab), we define
GR

lab = (GR = (V,AR), labR), the reverse digraph, as follows:

(u, v) ∈ AR ⇐⇒ ((u, v) ∈ A ∧ lab(u, v) = ⊕) ∨ ((v, u) ∈ A ∧ lab(v, u) =).

labR(u, v) = 	 if lab(v, u) = 	 and labR(u, v) = ⊕ otherwise.

Basically, all 	-arcs keep their labels and get their orientation inverted, all ⊕-arcs remain
with its labels and orientation at least that the respective 	-arcs already exists, and all #-arcs
get removed (see an example in Figure 2.3).

A cycle in GR
lab is called forbidden if it contains at least one 	-arc. It was shown in

Aracena et al. (2011) that Glab is an update digraph if and only if GR
lab does not contain any

forbidden cycles. Besides, this property can be tested in polynomial time.

Given a partial labeled update digraph Gl̃ab, a label lab of G is said to be an extension

of l̃ab if

12

12

3 4

⊕

#

	

	

	⊕ ⊕

12

3 4

⊕

	

	

	⊕

a) b)

Figure 2.3: In a) a partial labeled digraph and in b) its reverse digraph.

1. Sup
(
Gl̃ab

)
⊆ Sup (Glab).

2. ∀a ∈ Sup
(
Gl̃ab

)
: lab (a) = l̃ab (a).

3. Glab is an update digraph.

It was also shown in Aracena et al. (2011) that there always exist an extension of l̃ab.

Given a finite set U of k elements, we say that a Boolean function f : {0, 1}k → {0, 1}
is monotonic on input v ∈ U if for every x ∈ {0, 1}k such that xv = 0, we have that
f(x) ≤ f(x̄v). A loop (v, v) ∈ A

(
GF
)

is monotonic if fv is monotonic on input v. In
particular, a monotonic function f is said to be an AND function, denoted f (x) =

∧
v∈U

xv,

if and only if f (x) = 1⇐⇒ ∀v ∈ U : xv = 1. We say that a monotonic function f is an OR
function, denoted f (x) =

∨
v∈U

xv, if and only if f (x) = 1⇐⇒ ∃v ∈ U : xv = 1.

In this way, we say that a function F : {0, 1}n → {0, 1}n is monotonic if each local
activation function is monotonic. We say that F is an AND-OR function if each local
activation function is either an AND or an OR function. In this case, we define VAND (F) ⊆
V
(
GF
) (
VOR (F) ⊆ V

(
GF
))

as the nodes that have an AND (OR) local activation function.
In particular, we say that F is an OR function if each local activation function is an OR
function.

An AND-OR function F can be completely described by its interaction digraph, labeling
AND and OR nodes differently (in the figures of this paper, white nodes represent OR nodes,
and dark gray nodes represent AND nodes). That is, given G = (V,A) a digraph and

{VAND, VOR} a partition of V , we define F : {0, 1}|V | → {0, 1}|V | as follows:

∀v ∈ V : fv (x) =


∧

u∈N−G (v)

xu if v ∈ VAND∨
u∈N−G (v)

xu if v ∈ VOR

13

Note that if N−G (v) = ∅, then

fv (x) =

{
1 if v ∈ VAND

0 if v ∈ VOR

14

Chapter 3

Robustness of limit cycles with
update digraphs in Boolean networks

A Boolean network is said to be robust for a certain dynamical property, if small changes
in the network do not affect some characteristic observed. There are several kinds of per-
turbations in a Boolean network: for instance, perturbations of the states of the nodes in a
given global state of the network, changes in the local activation functions, or modifications
of the type of update schedule, which is at the center of the present study. The last two ones
correspond to changes in the definition of the network and therefore they can yield variations
on the set of attractors.

The robustness of Boolean networks against perturbations of their the update sched-
ule has been studied mainly from an experimental and statistical point of view (Elena,
2009; Chaves et al., 2005; Demongeot et al., 2008; Fauré et al., 2006). More recently,
Christoph Schmal and Drossel (2010) have studied Boolean networks that follow a reliable
trajectory in state space, which can be robust against perturbations in the update schedule.
On the other hand, there exist only a few analytic studies on this subject (Salinas, 2008;
Gómez, 2009; Noual, 2011). In particular, Goles and Salinas (2008) have done a comparative
analysis on the attractors in Boolean networks with parallel and sequential update schedules.

Some analytic works about perturbations of update schedules have been made in a
special class of discrete dynamical networks, called sequential dynamical systems, where the
interaction digraph is symmetric or equivalently an undirected graph and the update schedule
is sequential. For this class of networks, the team of Barrett, Mortveit and Reidys studied the
set of sequential update schedules preserving the whole dynamical behavior of the network
(Mortveit and Reidys, 2001) and the set of attractors in a certain class of cellular automata
(Hansson et al., 2005).

This chapter1 deals with the robustness of attractors of Boolean networks against changes
in the deterministic update schedule, which may range from the parallel update, the most

1This chapter was published in Aracena et al. (2013b).

15

3.1. MOTIVATION

common (Kauffman, 1969), to the sequential update, passing through all the combinations of
block-sequential updates. Some of the pioneering works in this context was done by Robert
(1986) and Goles (1980).

In Salinas (2008) equivalence classes of deterministic update schedules were defined
according to the labeled digraph associated to a given Boolean network (update digraph).
It was proved that two schedules in the same class yield the same dynamical behavior of a
given Boolean network (Salinas, 2008; Aracena et al., 2009). Besides, it was exhibited that
the limit cycles of a Boolean network are very sensitive to changes of the update schedule.
In this way, the existence of frozen nodes in a limit cycle could make it more robust. The
importance of the frozen nodes of the attractors in the robustness of Boolean networks has
been previously studied by Greil et al. (2007); Kauffman (1990).

Here, we study the update schedules preserving a set of given limit cycles of a Boolean
network. Because the schedules in the same equivalence class preserve the whole dynamics of
a Boolean network, we focus on the problem of determining the distinct equivalence classes
whose elements preserve the limit cycles, not necessarily the whole dynamics, of a given
Boolean network.

3.1. Motivation

The following result was proven in Aracena et al. (2009).

Theorem 3.1. Let N1 = (F, s1) and N2 = (F, s2) be two Boolean networks that differ only
in the update schedule. If [s1]GF = [s2]GF , then F s1 = F s2.

In this way, the equivalence classes of update schedules [s]GF previously defined are such
that elements in a same class yield the same dynamical behavior in Boolean networks which
differ only in the update schedule.

Hence, the interesting problem is knowing for a given Boolean network if there exists
another non equivalent update schedule such that preserves the limit cycles of the network.
Next, we show that the related problem is NP-hard.

Limit Cycle Problem (LCP): Given a Boolean network N = (F, s) and C ∈ LC(N).
Does there exists ŝ /∈ [s]GF such that C ∈ LC(F, ŝ)?

Theorem 3.2. LCP is NP-hard.

Proof. We prove that SAT0 ≤p LCP, where SAT0 is defined as

SAT0: Given a normal conjunctive formula (ncf) φ with φ(~0) = 1. Does there exist x 6= ~0

such that φ(x) = 1?, where
→
0= (0, 0, . . . , 0).

16

3.1. MOTIVATION

Note that SAT0 is obviously NP-complete.

Let φ be a ncf in variables w1, . . . , wn such that φ(~0) = 1, with ~0 ∈ {0, 1}n. We define
V and F = (fv)v∈V : {0, 1}n+3 → {0, 1}n+3 as follows:

∀i ∈ {1, . . . , n}, fvi(x) = ¬xvi ∧ xz2 ,
fz1(x) = ¬xz1 ∧ xz2 ,

fz2(x) = ¬xz1 ∧
n∧
i=1

¬xvi ,

fvφ(x) = φ (xvi : i ∈ {1, . . . , n}) ∧ ¬xz1 .

v1 v2 . . . vn z1

vφ

z2

Figure 3.1: Interaction digraph of the transformation defined in Theorem 3.2.

Now, we consider the Boolean network N = (F, s) where s = {z2, vφ} {v1, . . . , vn, z1}.
Clearly C =

[
~0,~1,~0

]
∈ LC(N), where ~1 = (1, 1, . . . , 1), ~0 ∈ {0, 1}n+3.

Moreover, from the dynamical behavior of N described in Table 3.1 we have that
LC(N) = {C}. Hence, if there is another update schedule that share a limit cycle with
N , it must be necessarily C. Now, we prove the equivalence,

x F s(x)
xv1 , . . . , xvn xvn+1 xvn+2 xvn+3 f sv1(x), . . . , f svn(x) f svn+1

(x) f svn+2
(x) f svn+3

(x)

= ~0 0 ∗ ∗ ~1 1 1 1

= ~0 1 ∗ ∗ ~0 0 0 0

6= ~0 0 ∗ ∗ ~0 0 0 ∗
6= ~0 1 ∗ ∗ ~0 0 0 0

Table 3.1: Dynamical behavior of the transformation defined in Theorem 3.2 (∗ means either
0 or 1).

17

3.1. MOTIVATION

(=⇒) Let ŵ 6= ~0 be such that φ(ŵ) = 1. Then, considering the update sched-
ule ŝ = {z2} {vi : ŵi = 1} {vφ} {vi : ŵi = 0} {z1}, we have that C ∈ LC(F, ŝ) and
ŝ /∈ [s]GF .

(⇐=) Let be ŝ /∈ [s]GF an update schedule such that C ∈ LC(F, ŝ). We note that:

labŝ(z1, vφ) = 	 =⇒ f ŝvφ(~0) = 0.

Therefore, labŝ(z1, vφ) = ⊕. Since f ŝvφ(~0) = 1, necessarily φ(xŝ) = 1, where:

∀i ∈ {1, . . . , n}, xŝvi =

{
0 if labs(vi, vφ) = ⊕
1 if labs(vi, vφ) = 	.

Now, since ŝ /∈ [s]GF , we have that there exists i ∈ {1, . . . , n} such that labs(vi, vφ) = 	,
meaning that xŝ 6= ~0. Indeed, since fv(~0) = 1 for every v ∈ {v1, . . . , vn, z1}, then
labŝ(v, z2) = labs(v, z2) = ⊕ and labŝ(z2, v) = labs(z2, v) = 	. Therefore, there exists
i ∈ {1, . . . , n} such that labs(vi, vφ) = 	.

2

It is easy to check that C is the only limit cycle of N̂ = (F, ŝ) in the above proof. Hence,
we obtain the following Corollary.

Corollary 3.3. The following problems are NP-hard.

Limit Cycle Set Problem: Given a Boolean network N = (F, s). Does there exists
ŝ /∈ [s]GF such that LC(N) = LC(F, ŝ)?

Common Limit Cycle Problem: Given a Boolean network N = (F, s). Does there
exists ŝ /∈ [s]GF such that LC(N) ∩ LC(F, ŝ) 6= ∅?

On another hand, the following theorem shows that for any given Boolean network, the
possibility that another non equivalent update schedule yields a same limit cycle depends on
the global activation function F and not only on the associated update digraph. Therefore,
it is not possible to define a new equivalence relation between update schedules, by relaxing
the condition of equal update digraphs, and such that elements in the same class preserve
the set of limit cycles and not necessarily the whole dynamics of the network.

Theorem 3.4. Let G = (V,A) be a digraph and let s1, s2 be two different update schedules
such that Gs1 6= Gs2. Then, there exists a function F : {0, 1}n → {0, 1}n, with GF = G,
such that N1 = (F, s1) and N2 = (F, s2) verify LC(N1) 6= LC(N2).

18

3.1. MOTIVATION

1 2

3 4

...
...

2n-1 2n

Figure 3.2: Complete bipartite digraph Kn,n used in Example 3.1.

Proof. We are going to define F such that C = [~0,~1,~0] is a limit cycle of N1 but not of N2,
where ~0, ~1 ∈ {0, 1}n.

For each v ∈ V , we define

fv(x) =
∧

u∈N−G (v)

xσuu .

where xσuu = xu if labs1(u, v) = 	 and xσuu = ¬xk if labs1(u, v) = ⊕.

Hence, on one hand, by induction on the nodes in increasing order according to the
value of s1, we obtain that ∀ v ∈ V, fv(~0) = 1 ∧ fv(~1) = 0. Thus, F s1(~0) = ~1 ∧ F s1(~1) = ~0.
Therefore, C = [~0,~1,~0] is a limit cycle of N1.

On the other hand, let v ∈ V such that ∃u ∈ N−G (v), labs1(u, v) 6= labs2(u, v). Then,
f s2v (~0) = 0 6= f s1v (~0). Therefore, C is not a limit cycle of N2. 2

As a direct consequence of Theorem 3.4, the existence of shared limit cycles in networks,
which differ only in the update schedule, could depend strongly on the global activation
function, as shown in Example 3.1.

Example 3.1. Let N = (F, s) be a Boolean network such that GF = Kn,n, where Kn,n is
the complete bipartite digraph as shown in Figure 3.2.

For a given k ∈ {1, . . . , n}, we define F = (f1, . . . , f2n) as follows:

fi(x) =


1 if

∑
i∈N−

GF
(i)

xi ≥ k,

0 if
∑

i∈N−
GF

(i)

xi < k.

Hence, if s is the parallel update schedule, then C = [x0, x1, x0] is a limit cycle of N , where
x0
i = 0 for i even, x0

i = 1 for i odd and for every i, x1
i = ¬x0

i .

19

3.2. NECESSARY CONDITIONS TO SHARE LIMIT CYCLES

Next, we exhibit that the existence of another non equivalent update schedule that
preserves the limit cycle C depends on the value of k.

For k = 1 and k = n we have that for every i, fi(x) =
∨

j∈N−
GF

(i)

xj and fi(x) =
∧

j∈N−
GF

(i)

xj,

respectively. It is easy to check that in either case, there is not any other class of update
schedules that yields the limit cycle C.

For k =
⌈
n
2

⌉
, we have that for every i, fi is the majority function.

In the parallel schedule, we have that each node in state one receives exactly n ones and
each node in state zero also receives exactly n zeros. Thus, to keep the state of a node
in C, we need that each node receives at least

⌈
n
2

⌉
ones or zeros, respectively. That

means that we have to change at most
⌊
n
2

⌋
ones or zeros to zeros or ones, respectively.

Hence, if

kn =

{ ⌊
n
2

⌋
if n is odd,⌊

n−1
2

⌋
if n is even.

then, we need both of the following conditions:

|{i ∈ I : s(i) = 1}| ≤ kn and |{i ∈ P : s(i) = 1}| ≤ kn,

where I = {1, 3, . . . , 2n−1} and P = {2, 4, . . . , 2n}. Therefore,

|{[s]GF : C ∈ LC(F, s)}| ≥ 1 +

(
kn∑
i=1

(
n

i

))2

.

3.2. Necessary conditions to share limit cycles

Now we are interested in studying what kind of information is provided by the up-
date digraph about the possibility of two Boolean networks, that differ only in their update
schedule, to share limit cycles.

From the previous section we know that there always exists a global function F such
that for any two non-equivalent update schedules s1 and s2, LC(F,s1) 6= LC(F, s2). Goles
and Salinas (2008) proved that in the case where the interaction digraph does not have loops,
the dynamical behavior of the network updated in parallel way does not share limit cycles
with any sequential update schedule. Also, Aracena et al. (2009) proved that for any update
schedule there exists a sequential update schedule what does not share limit cycles. Now,
given N1 = (F, s1) and N2 = (F, s2) two Boolean networks such that GF

s1
6= GF

s2
and the

loops are monotonic, we propose a polynomial test that give us a necessary condition on the
update digraphs for N1 and N2 to share a limit cycle.

20

3.2. NECESSARY CONDITIONS TO SHARE LIMIT CYCLES

3.2.1. Necessary conditions algorithm

In this section we present Test 1 such that with input a given digraph G = (V,A)
and s1 and s2 two update schedules on V , returns TRUE if any pair of Boolean networks
N1 = (F, s1) and N2 = (F, s2) such that GF = G satisfies LC(N1) ∩ LC(N2) = ∅.

Test 1
Input: G = (V,A), s1, s2

Output: true or false

1 M = ∅
2 N = V
3 while ∃v ∈ N such that (((N−G (v) \ {v}) ∩N = ∅) ∨ (∃u ∈M,N−G (u) = {v})) ∨

(∀u ∈ (N−G (v) \ {v}) ∩N, ((labs1(u, v) = ⊕ ∧ labs2(u, v) =)) ∨
(∀u ∈ (N−G (v) \ {v}) ∩N, ((labs1(u, v) = 	 ∧ labs2(u, v) = ⊕)) do

4 M ←M ∪ {v}
5 N ← N \ {v}
6 end
7 if M = V then
8 return true

9 else
10 return false

11 end

This algorithm marks the nodes that should be frozen in a possible shared limit cycle
of two Boolean networks which differ only in their update schedule. If every node is marked,
i.e. belongs to M , then the only shared attractors are fixed points.

Definition 3.1. Let N = (F, s) and N ′ = (F, s′) be two Boolean networks with different
update schedules. We say that a node v ∈ V (GF), without a loop or with a monotonic loop,
has the homogeneous labels property if ∀u ∈ N−

GF
(v), labs(u, v) = ⊕ and ∀u ∈ N−

GF
(v) \ {v},

labs′(u, v) = 	.

The following result was proved in Aracena et al. (2009).

Proposition 3.5. Let N = (F, s) and N ′ = (F, s′) be two Boolean networks with different
update schedules and C ∈ LC(N) ∩ LC(N ′). If v ∈ V (GF) has the homogeneous labels
property, then v is a frozen node in C.

Theorem 3.6. Let G = (V,A) be a digraph and let s1 and s2 be two update schedules on
V . If Test 1(G, s1, s2)=TRUE, then every function F such that GF = G and the loops are
monotonic, satisfies LC(F, s1) ∩ LC(F, s2) = ∅. Besides, Test 1 runs on time O(|V |2).

Proof. We distinguish the following causes for a node to be frozen in a shared limit cycle:

1. A node without loop depending either only on frozen nodes or without inputs.

21

3.2. NECESSARY CONDITIONS TO SHARE LIMIT CYCLES

2. A node with a monotonic loop, such that it does not depend on a node (different from
itself) that is not frozen.

3. A node that is the only input of a frozen node.

These ones are checked in line 3 of Test 1, consecutively. Hence, if N = V , then all nodes
are frozen in the limit cycle, which is a contradiction. Besides, all conditions are feasible for
being checked in O(|V |) elemental operations. Hence, run time of Test 1 is O(|V |2). 2

Example 3.2. Let us consider Gs1 and Gs2 as defined in Figure 3.3a) . Then, nodes 2
and 5 are marked because of the homogeneous label property (Figure 3.3b)). Next, node 3 is
marked because it is the only input to a marked node and node and node 4 is marked because
all its incoming neighbors are marked (Figure 3.3c)). Finally, node 1 is marked because all
its incoming neighbors are marked (Figure 3.3d)).

21

4 3

5

⊕/	

⊕

⊕

⊕/	
⊕

⊕/	

⊕

⊕

⊕

21

4 3

5

⊕/	

⊕

⊕

⊕/	
⊕

⊕/	

⊕

⊕

⊕

a) b)

21

4 3

5

⊕/	

⊕

⊕

⊕/	
⊕

⊕/	

⊕

⊕

⊕

21

4 3

5

⊕/	

⊕

⊕

⊕/	
⊕

⊕/	

⊕

⊕

⊕

c) d)

Figure 3.3: Example of how Test 1 works, as described in Example 3.2.

Thus, we have the following relation between the update digraph structure and the
preservation of limit cycles in Boolean networks.

Corollary 3.7. Let N1 = (F, s1) and N2 = (F, s2) be two Boolean networks such that
∆−(GF) = 1, GF is connected and [s1]GF 6= [s2]GF . Then, LC(N1) ∩ LC(N2) = ∅.

22

3.2. NECESSARY CONDITIONS TO SHARE LIMIT CYCLES

Proof. We apply Test 1 to GF , s1 and s2. Since [s1]GF 6= [s2]GF , ∃v ∈ V (GF),
u ∈ N−

GF
(v) : labs1(u, v) 6= labs2(u, v).

Given that ∆−(GF) = 1, we have that v satisfies the homogeneous labels property, and
therefore, is marked.

Sequentially and forward, all nodes reachable from v (i.e., there exists a path from v
to the nodes) are marked, since each one of them has only one input, which is marked.

Sequentially and backward, all nodes reaching v (i.e., there exists a path from the nodes
to v) are marked, since they correspond to the only input of a marked node.

Since GF is connected, all nodes are marked. Thus, Test 1(GF , s1, s2)=TRUE.

Therefore, LC(N1) ∩ LC(N2) = ∅. 2

Definition 3.2. Given a digraph G = (V,A), we will say that G′ = (V ′, A′) is a source
sub-digraph of G if V ′ ⊆ V , A′ = A ∩ V ′ × V ′ and ∀v ∈ V ′, (u, v) ∈ A⇒ u ∈ V ′.

Corollary 3.7 can be simply extended to networks having a source sub-digraph with the
properties stated in it as is established in the following result.

Corollary 3.8. Let N1 = (F, s1) and N2 = (F, s2) be two Boolean networks and C ∈
LC(N1) ∩ LC(N2). If G′ is a source sub-digraph of GF that satisfies the properties stated
in Corollary 3.7, then every node v ∈ V (G′) is frozen in C.

Example 3.3 shows an application of Corollary 3.8.

Example 3.3. Let us consider F = (f1, f2, f3, f4, f5) and C as defined in Figure 3.4 and let
us define N1 = (F, s1), N2 = (F, s2), where s1 = {1, 2, 3, 4, 5} and s2 = {1, 2, 4, 5} {3}.

The sub-digraph G′ = (V ′ = {1, 3}, A′ = {(1, 3), (3, 1)}) of GF satisfies the conditions of
Corollary 3.8 and LC(N1)∩LC(N2) = {C}. Hence, we can see that nodes 1 and 3 are indeed
frozen in C.
Remark 3.1. Observe that for Ni = (F, si), i = 1, 2 two given Boolean networks such that
∆−(GF) = 1 and GF is connected,

LC(N1) = LC(N2) Y LC(N1) ∩ LC(N2) = ∅.

Indeed, from Theorem 3.1, if GF
s1

= GF
s2

, then F s1 = F s2 . This implies
LC(N1) = LC(N2). Otherwise, by Corollary 3.7 LC(N1) ∩ LC(N2) = ∅.

This tells us that for a Boolean networkN = (F, s), withGF connected and ∆−(GF) = 1,
and whose limit cycle set is not empty, the unique equivalence class of update schedules yield-
ing this set is [s]GF . This is not true if any condition on GF does not hold (see Example 3.4).
Indeed, it is sufficient that there exists a node v ∈ V (GF) with |N−

GF
(v)| ≥ 2 for there to be

different limit cycle sets in Boolean networks which differ only in the update schedule.

23

3.3. POSSIBILITY OF SHARING LIMIT CYCLES

GF
s1

GF
s2

52

1 4

3

⊕
⊕

⊕

⊕

⊕

⊕

⊕

52

1 4

3

⊕
⊕

	

⊕

⊕

⊕

⊕

f1(x) = x3

f2(x) = x3 ∨ x5

f3(x) = x1

f4(x) = x1 ∧ x5

f5(x) = x3 ∧ x4

C =




1
1
1
0
1

 ;


1
1
1
1
0

 ;


1
1
1
0
1




Figure 3.4: Example of two Boolean networks satisfying the conditions of Corollary 3.8, as
detailed in Example 3.3.

Example 3.4. Let us consider F = (f1, f2, f3, f4, f5) as defined in Figure 3.5 and let us
define N1 = (F, s1) and N2 = (F, s2), where s1 = {1, 2, 3, 4, 5} and s2 = {1, 2} {5} {3, 4}. We
note that GF is connected, ∆−(GF) = 2 and GF

s1
6= GF

s2
.

Each network has six limit cycles, but only three of them are common to both networks.
More precisely, LC(N1) ∩ LC(N2) = {C1, C2, C3}, where C1 = [x1, x2, x1], C2 = [x3, x4, x3] and
C3 = [x5, x6, x5] with:

x1 =


1
0
0
0
0

 , x2 =


0
1
0
0
0

 , x3 =


0
0
1
0
0

 , x4 =


0
0
0
1
0

 , x5 =


1
0
0
1
0

 , x6 =


0
1
1
0
0

 .

Therefore, as shown in the previous example, for Boolean networks N = (F, s), where
∆−(GF) ≥ 2 and LC(N) 6= ∅, it is not possible to guarantee the existence of another
equivalence class [s′]GF different from [s]GF such that LC(F, s′) = LC(N), only knowing the
update digraph GF

s as established in Theorem 3.4. It is necessary to have some additional
knowledge about the local activation functions of the network.

3.3. Possibility of sharing limit cycles

In the previous section we proved that given G, s1 and s2 such that Gs1 6= Gs2 if
Test 1(G, s1, s2)=TRUE, then it is not possible to have a same limit cycle in Boolean net-

24

3.3. POSSIBILITY OF SHARING LIMIT CYCLES

GF
s1

GF
s2

42

1 3

5

⊕ ⊕

⊕⊕ ⊕ ⊕

42

1 3

5

	 ⊕

⊕⊕ ⊕ ⊕

f1(x) = x2

f2(x) = x1

f3(x) = x4

f4(x) = x3

f5(x) = x1 ∧ x3

Figure 3.5: Example of two Boolean networks that do not satisfy the conditions of Re-
mark 3.1, as detailed in Example 3.4.

works with interaction digraph G and update schedules s1 and s2.

In this section, we study the possibility of sharing limit cycles
when Test 1(G, s1, s2)=FALSE.

Definition 3.3. Given Gs1 and Gs2 two update digraphs, we denote for every v ∈ V :

N−e (v) = {u ∈ N−G (v) : labs1(u, v) = labs2(u, v)},
N−d (v) = {u ∈ N−G (v) : labs1(u, v) 6= labs2(u, v)}.

Theorem 3.9. Let G, s1 and s2 be such that Gs1 6= Gs2 and Test 1(G, s1, s2)=FALSE and
N and M the resulting sets. If the following conditions

1. ∀v ∈ N , N−e (v) ∩N 6= ∅,

2. ∀v ∈ N , |N−G (v)| = 2 =⇒ N−G (v) ⊆ N−e (v),

3. ∀v ∈M , |N−G (v)| = 2 =⇒ N−G (v) ⊆ N−e (v) ∨ N−G (v) ⊆ N−d (v),

are satisfied, then ∃F, GF = G ∧ LC(F, s1) ∩ LC(F, s2) 6= ∅.

Proof. Since Test 1(G, s1, s2)=FALSE, then N 6= ∅. We will define each local acti-
vation function fv such that GF = G and [x0, x1, x0] ∈ LC(F, s1) ∩ LC(F, s2), where
∀v ∈ V \M, x0

v = 0, x1
v = 1 and ∀v ∈M, x0

v = x1
v = 0. For given v ∈ V , we denote xσuu = xu

if labs1(u, v) = 	 and xσuu = ¬xu if labs1(u, v) = ⊕. Next, we define the activation local
functions fc depending on each case:

Case 1: v ∈M,N−G (v) ∩M 6= ∅, then

fv(x) =
∧

u∈N−G (v)

xu.

25

3.3. POSSIBILITY OF SHARING LIMIT CYCLES

Case 2: v ∈ M,N−G (v) ⊆ N . Since |N−G (v)| 6= 1 and by the hypothesis N−G (v) ⊆ N−e (v) or
N−G (v) ⊆ N−d (v), then ∃u1 6= u2, {u1, u2} ⊆ N−e (v) ∨ {u1, u2} ⊆ N−d (v). Hence,

fv(x) = (x
σu1
u1 Y x

σu2
u2) ∧

∧
u∈N−G (v)\{xu1 ,xu2}

xu.

Case 3: v ∈ N . If N−G (v) ∩N ⊆ N−e (v) ∨ N−G (v) ∩M 6= ∅, then

fv(x) =
∧

u∈N−e (v)∩N

xσuu ∨
∧

u∈N−G (v)\(N−e (v)∩N)

xu.

Case 4: v ∈ N , N−G (v) ∩M = ∅, ∃u1, u2 ∈ N−e (v) ∩ N, u1 6= u2 and N−G (v) ∩ N−d (v) 6= ∅,
then

fv(x) = x
σu1
u1 ∨

(x
σu1
u1 Y x

σu2
u2) ∧

∧
u∈N−G (v)\{u1,u2}

xu

 .
Case 5: Otherwise, i.e. v ∈ N and ∃u1 ∈ N−e (v) ∩N and ∃u2, u3 ∈ N−d (v) ∩N, u2 6= u3

fv(x) = x
σu1
u1 ∨

(x
σu2
u2 Y x

σu3
u3) ∧

∧
u∈N−G (v)\{u1,u2,u3}

xu

 .
Hence, it is easy to check that the local functions defined in this way satisfy the condi-

tions: GF = G ∧ LC(F, s1) ∩ LC(F, s2) 6= ∅. 2

If there exists at least one node which does not satisfy the conditions of Theorem 3.9,
then the proposed limit cycle is not a shared limit cycle for the networks. In this case
we propose Test 2 that receives as input the digraph G, update schedules s1, s2 and
sets M and N resulting from Test 1. If this algorithm returns TRUE then it is easy to
see that there exists a function F such that (F, s1) and (F, s2) share a limit cycle, i.e.
LC(F, s1) ∩ LC(F, s2) 6= ∅. The construction of function F is the same that we have seen
before. In fact, this algorithm propose a way to eliminate the critical cases marking a new
node as frozen.

26

3.3. POSSIBILITY OF SHARING LIMIT CYCLES

Test 2
Input: G = (V,A), s1, s2, N, M
Output: true or false

1 while
(∃v ∈ N)(∀u ∈ N−G (v) ∩N), lab1(u, v) 6= lab2(u, v) ∨ [(∃v ∈M), N−G (v) = {u1, u2},
u1 ∈ N−e (v) ∧ u2 ∈ N−d (v)] do

2 if (∀u ∈ N−G (v) ∩N), lab1(u, v) 6= lab2(u, v) then
3 x← v
4 else
5 x← u2

6 end
7 M ←M ∪ {x}
8 N ← N \ {x}
9 while ∃v ∈ N, ((N−G (v) ∩N = ∅) ∨ (∃u ∈M,N−G (u) ∩N = {v})) do

10 M ←M ∪ {v}
11 N ← N \ {v}
12 end

13 end
14 if N 6= ∅ then
15 return true

16 else
17 return false

18 end

jaja

The results proved so far has been summarized in Table 3.2 that shows how the space of
Boolean networks gets divided.

27

3.3.
P

O
S
S
IB

IL
IT

Y
O

F
S
H

A
R

IN
G

L
IM

IT
C

Y
C

L
E

S

Gs1 = Gs2 Gs1 6= Gs2

∃F : LC(F, s1) 6= LC(F, s2)

∀F : F s1 = F s2 Test 1=TRUE Test 1=FALSE

Certain Conditions = TRUE Certain Conditions = FALSE

∀F : LC(F, s1) = LC(F, s2) ∀F : LC(F, s1) ∩ LC(F, s2) = ∅ Test 2=TRUE Test 2=FALSE

∃F : LC(F, s1) ∩ LC(F, s2) 6= ∅ ∃F : LC(F, s1) ∩ LC(F, s2) 6= ∅ ?

Table 3.2: Summary of the results of the necessary conditions of Chapter 3.

28

3.4. CONSTRUCTION OF CLASSES PRESERVING LIMIT CYCLES

3.4. Construction of classes preserving limit cycles

Theorem 3.2 and Example 3.1 show that determining the non-equivalent update sched-
ules which preserve limit cycles of a given Boolean network is in general not an easy task,
and that it depends strongly on the global activation function F of the network.

As shown in Corollary 3.8, the existence of frozen nodes is a necessary condition for
Boolean networks whose update schedules differ to share limit cycles, under certain hypothe-
ses on their architecture. However, the existence of frozen nodes is not by itself a sufficient
condition as shows the following example.

Example 3.5. Let us consider the Boolean network N = (F, s), where

∀i ∈ {1, . . . , 9}, fi(x) =
∨

j∈N−
GF

(i)

xj,

with N−
GF

(i) as shown in Figure 3.6, and

f10 = (¬x3 ∧ x4 ∧ ¬x9) ∨ (x3 ∧ ¬x4 ∧ x9),

s = {1, 2, 3, 7, 8, 9} {4, 5, 6, 10} and C = [x0, x1, x2, x0] ∈ LC(N), with x0 =
(1, 0, 0, 1, 1, 0, 1, 0, 0, 1), x1 = (0, 1, 0, 0, 1, 1, 0, 1, 0, 1), x2 = (0, 0, 1, 1, 0, 1, 0, 0, 1, 1). Note that
node 10 is frozen in C.

It is easy to check that there is not another non-equivalent update schedule s′ such that
C is also a limit cycle of N ′ = (F, s′).

10

3

1

2 4

6

5

9

7 8

⊕

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

	

	
⊕

Figure 3.6: Update digraph associated to N defined in Example 3.5.

Nevertheless, the existence of frozen nodes can be, in some cases, a sufficient condition
for two Boolean networks N = (F, s) and N ′ = (F, s′), such that s and s′ do not belong
to the same update schedules equivalence class, to share a given limit cycle as shown in the
following result.

29

3.4. CONSTRUCTION OF CLASSES PRESERVING LIMIT CYCLES

Theorem 3.10. Let be N = (F, s) a Boolean network, C =
[
xk
]p
k=0

, p > 1 a limit cycle of
N , Z the set of frozen nodes in C and v ∈ Z, satisfying either of the following conditions:

1.- All labels incoming to v are of the same type.

2.- N−
GF

(v) ⊆ Z.

Then there exists an update schedule ŝ with [ŝ]GF 6= [s]GF and such that C ∈ LC(F, ŝ).

Proof. Let xkv = a, a ∈ {0, 1}, ∀k ∈ {0, . . . , p− 1}.

1.- Case i. ∀u ∈ N−
GF

(v), labs(u, v) = 	.

Let u∗ ∈ N−
GF

(v) : s(u∗) = min
u∈N−

GF
(v)
s(u) = m ≥ 1. Given k ∈ {1, . . . ,m}, we define:

ŝ(v) = k,

∀u 6= v, s(u) < k, ŝ(u) = s(u),

∀u 6= v, k ≤ s(u) ≤ s(v), ŝ(u) = s(v) + 1,

∀u 6= v, s(u) > s(v), ŝ(u) =

{
s(u) + 1 if ∃w 6= v : s(w) = s(v)

s(u) if @w 6= v : s(w) = s(v).

Hence, ∀u ∈ N−
GF

(v), labŝ(u, v) = ⊕ and ∀(w, y) ∈ A(GF), w, y 6= v, labŝ(w, y) = labs(w, y).
Therefore, [ŝ]GF 6= [s]GF .

Thus,

f ŝv (x0
u : u ∈ N−

GF
(v)) = fv(x

0
u : u ∈ N−

GF
(v)) = f sv (x1

u : u ∈ N−
GF

(v)) = x1
v.

By induction, we have f ŝv (xku : u ∈ N−
GF

(v)) = xkv = a, ∀k ∈ {0, . . . , p− 1}.
Hence, ∀u ∈ N+

GF
(v),

f ŝu(xkw : w ∈ N−
GF

(u)) = f ŝu(xkw : w ∈ N−
GF

(u) \ {u}, a) = f su(xkw : w ∈ N−
GF

(u))

Besides, f ŝu(xk) = f su(xk), ∀u ∈ N+
GF

(u) ∪ {u}. Therefore, C ∈ LC(F, ŝ).

Case ii. ∀u ∈ N−
GF

(v), labs(u, v) = ⊕ is analogous.

2.- We must consider two cases:

Case i. ∀u ∈ N−
GF

(v) : labs(u, v) = 	 or ∀u ∈ N−
GF

(v) : labs(u, v) = ⊕. This case is
covered by condition 1, where all the inputs have the same label.

30

3.4. CONSTRUCTION OF CLASSES PRESERVING LIMIT CYCLES

Case ii. ∃u1 ∈ N−GF (v), labs(u, v) = ⊕ and ∃u2 ∈ N−GF (v), labs(u, v) = 	.

Let be N−⊕ (v) = {u ∈ N−
GF

(v) : labs(u, v) = ⊕} 6= ∅ and u∗ ∈ N−
GF

(v) such that
s(u∗) = max

u∈N−
GF

(v)
s(u) = M . Given k ∈ {M + 1, . . . ,

∣∣V (GF
)∣∣}, we define:

ŝ(v) = k,

∀u 6= v, s(u) < k, ŝ(u) = s(u),

∀u 6= v, s(u) ≥ k, ŝ(u) = s(u) + 1.

Observe that, if @w 6= v, s(w) = s(v), then @w 6= v, ŝ(w) = s(v), i.e. there is no vertex
updated in time s(v), in this way we need to define s′ such that:

s′(u) =

{
ŝ(u) if ŝ(u) < s(v),

ŝ(u)− 1 if ŝ(u) > s(v).

We have that:
∀ u ∈ N−

GF
(v) : labŝ(u, v) = 	.

Then,

f ŝv
(
x0
u : j ∈ N−

GF
(v)
)

= fv
(
x1
u : u ∈ N−

GF
(v)
)

= fv
(
x0
u : j ∈ N−⊕ (v); x1

u : u ∈ N−
GF

(v) \N−⊕ (v)
)

= f sv
(
x0
)

= x1
v.

In the same way, we can prove by induction on k that

∀k ∈ {0, . . . , p− 1} : F ŝ(xk) = F s(xk) = xk+1.

Therefore, C is also a limit cycle of N̂ . 2

Corollary 3.11. Let be F a Boolean function, C ∈ LC(F, sp) and v ∈ V (GF) a frozen node
in C. Then, there exists an update schedule s with [s]GF 6= [sp]GF and such that C ∈ LC(F, s).

Proof. Straightforward from the previous theorem. 2

Observe that both conditions in Theorem 3.10 are of different kind. The first one
is related to the update digraph and the second one to the limit cycle. Furthermore,
note that Theorem 3.10 is also valid for a limit cycle set. In this case, Z corresponds
to the intersection of the frozen node sets of every limit cycle. Besides, if we take
W = {u ∈ Z : N−

GF
(u) ⊆ Z} (the nodes in Z who satisfies the condition 2 of Theorem 3.10),

we have the same result for every U ⊆ W of independent nodes, applying simultaneously the
update schedules of every node in U. The importance of the frozen nodes of the attractors
in the robustness of Boolean networks has been previously studied by Greil et al. (2007);
Kauffman (1990).

31

3.4. CONSTRUCTION OF CLASSES PRESERVING LIMIT CYCLES

GF
s3

GF
s4

52

1 4

3

⊕
⊕

	

⊕

⊕

⊕

⊕

52

1 4

3

⊕
⊕

⊕

	

⊕

	

⊕

s3 = {2, 3, 4, 5} {1} s4 = {1, 3, 4, 5} {2}

Figure 3.7: Update digraphs corresponding to Boolean networks N3 = (F, s3) and
N4 = (F, s4) mentioned in Example 3.6.

Example 3.6. Let N1 = (F, s1) and C be the Boolean network and the limit cycle de-
fined in Example 3.3. Each frozen node i ∈ {1, 2, 3} satisfies at least one of the conditions
established in Theorem 3.10. Node 2 satisfies condition 1, whereas nodes 1 and 3 satisfy
condition 2. Therefore, we can define at least three new update schedules s2, s3 and s4,
each one in a different equivalence class, such that C is also a limit cycle of the networks
Ni = (F, si), i ∈ {2, 3, 4}. Update schedule s2 is described in Example 3.3 and update
schedules s3 and s4 are shown in Figure 3.7.

32

Chapter 4

Limit cycle existence problems with
deterministic update schedules in
Boolean networks

In this chapter, we are interested in studying two problems: given a Boolean function,
there exists an update schedule such that the given Boolean network updated under it gener-
ates limit cycles? and, there exists an update schedule such that the given Boolean network
updated under does not yield any limit cycles? The specific problem of determining the
existence of limit cycles of a Boolean network with parallel update is known to be NP-Hard
(Just, 2006). Here, we study this problem in the case of other kinds of update schedules
(sequential and block-sequential).

Many theoretical and analytic studies have been done about the limit cycles of a Boolean
network when different update schedules are used (Aracena et al., 2013b; Demongeot et al.,
2008; Goles and Noual, 2012; Elena, 2009; Macauley and Mortveit, 2009). Most of them show
that the limit cycles are very sensitive to changes in the update schedule of the network. For
instance, in Goles and Salinas (2008) is proved that for networks without negative loops
it is not possible that the parallel and the sequential update share limit cycles. In Goles
and Matamala (1993) it was proved that a symmetric neuronal network can simulate any
arbitrary neuronal network. In Goles and Noual (2012) was studied the dynamics of disjunc-
tive networks updated under block-sequential updated schedules and a classification of the
dynamics according to the topology of the interaction digraph was given. In Aracena et al.
(2009), equivalence classes of deterministic update schedules were defined according to the
labeled digraph associated to a given Boolean network (update digraph). It was also proved
that two schedules in the same class yield the same dynamical behavior of a given Boolean
network. In Aracena et al. (2013b), as a continuation of the previous work mentioned, it was
studied the robustness of the limit cycles (since fixed point are invariant under the update
schedule used) of Boolean networks updated under different updates schedules.

In this context, we prove that without restrictions on the interaction digraph, this prob-

33

4.1. LIMIT CYCLE EXISTENCE PROBLEM

lem is NP-Hard even in the case of AND-OR networks for any kind of update schedule
(synchronous, sequential and block-sequential). Besides, we give certain families of the net-
works in which each problem is polynomial, this classes are in AND-OR networks and depend
strongly on the topology of the interaction digraph of the network. polynomial, these classes
are in AND-OR networks and depend strongly on the topology of the interaction digraph of
the network.

About the non existence problem, we prove that it is NP-Complete even for AND-OR
functions. We also give a characterization of the existence of solution of the OR case and
give some insights to its complexity.

4.1. Limit Cycle Existence Problem

In this section we study the complexity of deciding when there exists an update schedule
that generates limit cycles when a given Boolean function is updated under it. That is, we
are going to study the following problem

Limit Cycle Existence problem (LCE): Given a set V of n elements and
F = (fv)v∈V : {0, 1}n → {0, 1}n. Does there exists an update schedule s such that
LC(F, s) 6= ∅?

MON LCE, AND-OR LCE and OR LCE problems are the corresponding LCE
problems when F is a monotonic, an AND-OR and an OR function, respectively.

A specific and directly related problem is to determine the existence of a limit cycle in a
given Boolean network with synchronous schedule. This problem was proved to be NP-Hard
even for AND-OR functions (Just, 2006). Here, we are interested in determining for a given
Boolean network the existence of a deterministic update schedule that yields a limit cycle.

First, we prove that the general case is NP-Hard.

Theorem 4.1. LCE is NP-Hard

Proof. We show that SAT ≤p LCE.

Given a normal conjunctive formula (ncf) φ in variables w1, . . . , wn, we consider
F = (fv)v∈V : {0, 1}n+3 → {0, 1}n+3, where V = {v1, . . . , vn, vφ, z1, z2}, as follows (see Fig-
ure 4.1):

∀i ∈ {1, . . . , n} , fvi(x) = xvi
fvφ(x) = φ (xvi : i ∈ {1, . . . , n})
fz1(x) = xvφ ∧ xz2
fz2(x) = xvφ ∧ xz1

34

4.1. LIMIT CYCLE EXISTENCE PROBLEM

vφ

v1

v2

vn

...

z1

z2

Figure 4.1: Interaction digraph of the transformation defined in Theorem 4.1.

Then, we have:

(=⇒) Let w be such that φ(w) = 1. Then, if we consider
the update schedule s = {v1, . . . , vn, vφ} {z1, z2}, it is clear that
C = [(w, 1, 0, 1), (w, 1, 1, 0), (w, 1, 0, 1)] ∈ LC(F, s).

(⇐=) Let us suppose that ∀w : φ(w) = 0. Then, for every update schedule s, we have that:

• ∀x ∈ {0, 1}n+3, ∀i ∈ {1, . . . , n} : f svi(x) = xvi .

• ∀x ∈ {0, 1}n+3 : f svφ(x) = 0. Therefore,

• ∀x ∈ {0, 1}n+3 : f szi(F
s(x)) = 0, i ∈ {1, 2}.

Thus, LC(F, s) = ∅, for every update schedule s. 2

Now we prove that the LCE problem restricted to AND-OR functions is also NP-Hard.

Theorem 4.2. AND-OR LCE is NP-Hard.

Proof. We show that SAT ≤p AND-OR LCE.

Given a ncf φ in variables w1, . . . , wn with clauses C1, . . . , Cm and let us define
F = (fv)v∈V : {0, 1}4n+m+5 → {0, 1}4n+m+5 according to the following table:

See GF in Figure 4.2. There, and trough all this work in AND-OR networks, gray nodes
represent AND nodes and white nodes represent OR nodes.

Here, ∀i ∈ {1, . . . , n}, nodes vi represent literals wi and nodes v̄i represent literals ¬wi.
Now, we note that:

1. For any update schedule s, ∀x0 ∈ {0, 1}4n+m+5 :

∀k ≥ 1, ∀i ∈ {1, . . . , n} , ∀v ∈ {vi, v̄i} : xk+1
v = f sv (xk) = x0

v

35

4.1. LIMIT CYCLE EXISTENCE PROBLEM

v ∈ V Type N−
GF

(v)
vi, i ∈ {1, . . . , n} AND {vi}
v̄i, i ∈ {1, . . . , n} AND {v̄i}
oi, i ∈ {1, . . . , n} OR {vi, v̄i}
ai, i ∈ {1, . . . , n} AND {vi, v̄i}
A AND {o1, · · · , on}
O OR {a1, · · · , an}
vCj , j ∈ {1, . . . ,m} OR {vi : wi ∈ Cj} ∪ {v̄i : ¬wi ∈ Cj}
vφ AND {vC1 , · · · , vCm}
z1 AND {z2, vφ, A}
z2 OR {z3, O}
z3 OR {z1}

Table 4.1: Definition of F in the transformation defined in Theorem 4.2.

∀k ≥ 2, ∀i ∈ {1, . . . , n} , ∀v ∈ {oi, ai} : xk+1
v = f sv (xk) = x0

v

∀k ≥ 2, ∀j ∈ {1, . . . ,m} : xk+1
vCj

= f svCj
(xk) = x1

vCj

∀k ≥ 2, ∀v ∈ {A,O, vφ, z1, z2, z3} : xk+1
v = f sv (xk) = x2

v

2. fA(x) = 1 ∧ fO(x) = 0 ⇐⇒ ∀i ∈ {1, . . . , n} : xv̄i = ¬xvi

(=⇒) If ∃ŵ : φ(ŵ) = 1, and we consider the update schedule s and the limit cycle
C = [x0, x1, x0] as described in the following table:

v ∈ V vi v̄i oi ai Cj A O vφ z1 z2 z3

s (v) 1 1 1 1 1 1 1 1 2 3 2

x0
v ŵvi ¬ŵvi 1 0 1 1 0 1 1 0 0
x1
v ŵvi ¬ŵvi 1 0 1 1 0 1 0 1 1

Clearly, C ∈ LC(F, s).

(⇐=) Let s be an update schedule such that C =
[
xk
]p
k=0
∈ LC(F, s).

For the first note above, only nodes z1, z2 or z3 can cycle. For these nodes to cycle, it
is necessary that:

fvφ(x0) = 1

fA(x0) = 1

fO(x0) = 0

From the first equation, we have that φ
(
x0
vi
, x0

v̄i
: i ∈ {1, . . . , n}

)
= 1. Second

and third equations imply that ∀i ∈ {1, . . . , n} : xv̄i = ¬xvi . Therefore,
φ(x0

i : i ∈ {1, . . . , n}) = 1. 2

36

4.1. LIMIT CYCLE EXISTENCE PROBLEM

vφ

vC1 vC2
. . . vCm

v1 v̄1 vn v̄n

a1 o1

. . .

an on A O

z1 z2

z3

Figure 4.2: Interaction digraph of the transformation defined in Theorem 4.2.

Remark 4.1. It is clear from the proof of the previous theorem that AND-OR LCE is
NP-Hard even in the following cases:

i.- Restricted to the parallel update schedule. In this case we remove the vertex z3 and we
add an arc from z1 to z2.

ii.- Restricted to sequential update schedules.

iii.- Restricted to limit cycles of length 2.

iv.- Restricted to maximum in-degree equal to 2. To see this, we just need to add interme-
diary nodes before every node that has in-degree greater than two as is exemplified in
Figure 4.3. We note that the nodes that fulfill this condition are z1, A,O, vφ and the
clause nodes. To simplify the transformation for clause nodes, we could consider 3-SAT
instead of SAT. This transformation is enough because the only nodes that cycle are
z1, z2 and z3.

4.1.1. OR Limit Cycle Existence Problem

Now, we are going to give some partial results in order to study OR LCE.

The dynamical behavior of an OR network parallel updated is completely characterized
by the following theorem, proved in Jarrah et al. (2010), but with our wording:

Theorem 4.3. Let F be an OR function and let us consider N = (F, sp), where sp is the
parallel update schedule.

37

4.1. LIMIT CYCLE EXISTENCE PROBLEM

1 2 3 4 . . . n

Z

1 2 3 4 . . . l

Z

Z12 Z34 . . .

Z1234 . . .

...
. . .

Z1...l−1

Figure 4.3: Example for odd l of the transformation mentioned in Remark 4.1 to deal with
nodes with in-degree in greater than two in Theorem 4.2.

1. If GF is strongly connected then:

LC(N) = ∅ if and only if GF is primitive.

2. If GF is not strongly connected then:

LC(N) = ∅ if and only if GF is primitive or it does not have cycles.

OR networks updated under another kind of update schedules were studied in Goles and
Noual (2012), where, in our wording, was shown the following result:

Proposition 4.4. Let F be an OR function with symmetric GF . Then, for all s 6= sp

LC(F, s) = ∅. Furthermore, LC(F, sp) 6= ∅ if and only if GF is bipartite. In this case, all
limit cycles are of length 2.

We exhibit an straightforward corollary.

Corollary 4.5. Let F be an OR function with GF a complete digraph. Then, for every
update schedule s, LC(F, s) = ∅.

It is clear that the condition in the above proposition can be tested in polynomial time
and therefore SYMMETRIC OR LCE is polynomial. We are now considering the problem
in the general case.

Since in Theorem 4.3 the limit cycles dynamics of OR networks synchronously updated
is polynomial characterized, our approach will consist in studying GF s . Constructing this
digraph from the Boolean function it is not an easy task, since several compositions of OR
functions must be made. However, it is enough to work with the most easily to construct
P(GF

s), since next lemma shows that they are both the same digraph.

38

4.1. LIMIT CYCLE EXISTENCE PROBLEM

Lemma 4.6. If F is an OR (AND) function, then F s is also an OR (AND) function and
GF s = P(GF

s).

Proof. Straightforward from the definition of operator P and the fact that the composition
of OR functions is also an OR function (and therefore F s is an OR function). 2

It also was proven in Goles and Noual (2012), but rewrited in our wording, the following
lemma:

Lemma 4.7. Given an update digraph Glab with G = (V,A) and let us consider P(Glab) =
(V,A′). Then,

(v0, vm) ∈ A′ ⇐⇒ ∃{v1, . . . , vm−1} ⊆ V : ∀i ∈ {0, . . . ,m− 1}, (vi, vi+1) ∈ A ∧

(lab(v0, v1) = ⊕ ∧ lab(vi, vi+1) = 	, ∀i ∈ {2, . . . ,m− 1})

Now we prove an equivalent relation between the cycles in an update digraph and the
cycles in the parallel digraph, that will allow us to characterize the existence of solutions of
OR LCE.

Lemma 4.8. Given an update digraph Glab. Then, every cycle in Glab produce a cycle in
P(Glab) with length the number of the ⊕-labeled arcs of it. Conversely, every cycle in P(Glab)
comes from a cycle in Glab with a number of ⊕-labeled arcs equal to the length of the cycle.

Proof. Let us consider G = (V,A) and P(Glab) = (V,A′)

(=⇒) Let C be a cycle in Glab with N ⊕-labeled arcs, and let us consider:

A+ = {e ∈ A(C) : lab(e) = ⊕}
A− = {e ∈ A(C) : lab(e) = 	}

If A− = ∅, then the result es trivially true.
Let us suppose that A− 6= ∅ and let us consider a path P− = [i, v0, . . . , vm, j] ⊆ C such
that (i, v0), (vm, j) ∈ A+ and (vk, vk+1) ∈ A−, 0 ≤ k < m. This path exists since A+

and A− are non empty. Then, necessarily (i, vk) ∈ A′, 0 ≤ k ≤ m (Lemma 4.7). Now,
let us consider the paths:

P i
+ = [vi0, . . . , v

i
mi
, ki] ⊆ C, 0 ≤ i < m

such that for each i, (vij, v
i
j+1) ∈ A+, 0 ≤ j < mi and (ki, jik), (ji0, v

i
0) ∈ A−. And the

paths P l
−, 0 ≤ l < m, which are P−-like paths without i and j, such that:

C = P 0
+, P

0
−, P

1
+, P

1
−, . . . , P

m−1
− , v0

0

39

4.1. LIMIT CYCLE EXISTENCE PROBLEM

By the noted above for the path P−, paths P i
− generates the arcs (vimi , v

i+1
0) ∈ A′, 0 ≤

i < m. Therefore, C induce a cycle Ĉ in P(Glab) with the form:

Ĉ = P 0
+ \
{
k0
}
, P 1

+ \
{
k1
}
, . . . , Pm

+ \ {km} , v0
0

Since
m−1∑
i=1

∣∣P i
+ \ {ki}

∣∣ = N , we have that Ĉ has length N .

(⇐=) The proof if analogous going backward and using the converse implication of Lemma 4.7.

2

Next proposition give us a characterization of the existence of solutions of OR LCE.

Proposition 4.9. Let N = (F, s) be an OR network with strongly connected GF . Then,
LC(N) 6= ∅ if and only if there exists a number 2 ≤ k ≤ g(GF), such that each cycle in GF

s

has a multiple of k ⊕-labeled arcs.

Proof.

LC(N) 6= ∅ ⇐⇒ GF s is not primitive (Theorem 4.3)

⇐⇒ k = ρ(GF s) > 1

⇐⇒ every cycle in GF s has length a multiple of k

⇐⇒ every cycle in GF
s has a multiple of k ⊕ -labeled arcs

(Lemma 4.6 and Lemma 4.8)

2

We note that above characterization was also proved in Goles and Noual (2012), but
with other wording and different technique.

In Section 4.2 we give some partial results on the study of the complexity of the problem
defined by this characterization.

4.1.2. Polynomial cases

We are now extending the result for symmetric OR functions to symmetric AND-OR
functions. The LCE problem here will be referred as SYMMETRIC AND-OR LCE.

First, we are going to show that symmetry is not a sufficient condition for the problem
to be polynomial.

Proposition 4.10. SYMMETRIC LCE is NP-Hard.

40

4.1. LIMIT CYCLE EXISTENCE PROBLEM

Proof. The proof is similar to that of Theorem 4.1, with the same limit cycle C, but
changing the local activation functions by the following:

∀i ∈ {1, . . . , n} , fvi(x) = xvi ∧ xvφ
fvφ(x) = φ (xvi : i ∈ {1, . . . , n}) ∧ (xz1 ∨ xz2)
fz1(x) = xvφ ∧ xz2
fz2(x) = xvφ ∧ xz1

In this case GF is symmetric as shown in Figure 4.4.

vφ

v1

v2

vn

...

z1

z2

Figure 4.4: Interaction digraph of the transformation defined in Proposition 5.18.

2

Now we give some definitions in order to prove the result.

Definition 4.1. Given F an AND-OR function with symmetric GF .

We denote each non trivial connected component of G [VOR(F)] by GOR
1 , . . . , GOR

kOR
. We

call them OR components of GF .

We denote each non trivial connected component of G [VAND(F)] by GAND
1 , . . . , GAND

kAND
.

We call them AND components of GF .

We define the alternated nodes as

VAO = V \
(
kOR⋃
i=1

V
(
GOR
i

)
∪

kAND⋃
i=1

V
(
GAND
i

))

and we denote by GAO
1 , . . . , GAO

kAO
, to the connected component of G [VAO]. We call them

alternated components of GF .

We call to the set
{
GOR

1 , . . . , GOR
kOR

, GAND
1 , . . . , GAND

kAND
, GAO

1 , . . . , GAO
kAO

}
, an AOA (AND-

OR ALTERNATED) decomposition of GF .

Remark 4.2. jaja

41

4.1. LIMIT CYCLE EXISTENCE PROBLEM

1. The set
{
V
(
GOR

1

)
, . . . , V

(
GOR
kOR

)
, V
(
GAND

1

)
, . . . , V

(
GAND
kAND

)
, V
(
GAO

1

)
, . . . , V

(
GAO
kAO

)}
is a partition of V (GF).

2. Given i ∈ {1, . . . , kAO}, we note that ∀u ∈ V
(
GAO
i

)
:

u ∈ VOR =⇒ N−
GF

(u) ⊆ VAND

u ∈ VAND =⇒ N−
GF

(u) ⊆ VOR

Therefore, the non trivial alternate components of GF are bipartite.

Next lemma shows that every non bipartite AND or OR component of GF is frozen in
any limit cycle when the network is updated in a parallel way.

Lemma 4.11. Given F an AND-OR function with symmetric GF , C ∈ LC(F, sp) and D an
OR or an AND component of GF . If D is non bipartite, then every node in V (D) is frozen
in C.

Proof. Let C =
[
xk
]p
k=0
∈ LC(F, sp) and D be a non bipartite OR component of GF (the

AND case is analogous). Then, there exists cycle of nodes C = v1 . . . v2N+1v1 in D (cycle of
odd length).

Observe that if there exists a path of length l from a node u to a node v and xtu = 1
then xt+lv = 1. Hence, for all node vi ∈ V (C), vki = 1 ⇒ vk+2N+1

i = 1. Besides, since GF is
symmetric, for all v ∈ V (D), and for all k ∈ {0, . . . , p− 1}, xkv = 1 ⇒ xk+2

v = 1. Therefore,
if there exists v ∈ V (C) and k ∈ {0, . . . , p− 1} such that xkv = 1, then for all v ∈ V (C) and
for all k ∈ {0, . . . , p− 1}, xkv = 1. Thus, every node in the cycle C is frozen. Finally, since
GF is strongly connected, the result holds. 2

Observe that, the neighbors nodes of V (D) are not involved in the property of every
node in V (D) is frozen in C, but in the value of the nodes of V (D) in C.

Next Theorem give a polynomial testable characterization of when a symmetric AND-
OR function can generate limit cycles when it is synchronously updated.

Proposition 4.12. Given F an AND-OR function with symmetric GF . Then, LC(F, sp) 6= ∅
if and only if there exists a bipartite element in the AOA decomposition of GF .

Proof. Let F be an AND-OR function with symmetric GF .

(=⇒) Let C ∈ LC(F, sp). We have two cases:

1.- There exists an OR or an AND bipartite component of GF , and therefore the result holds.

2.- All OR and AND components of GF are non bipartite. By Lemma 4.11, all of them are
frozen in C. Thus, there exists an alternated component of GF .

If every alternated component of GF is trivial, then each one of them has only frozen
incoming neighbors, and therefore are also frozen. Then, there exists a non trivial alter-
nated component of GF which, by Remark 4.2, is bipartite.

42

4.1. LIMIT CYCLE EXISTENCE PROBLEM

(⇐=) Let D be a bipartite element in the AOA decomposition of GF .

1.- Let us suppose that D is an alternated connected component of GF . We note that

∀v ∈ VOR ∩ V (D) :N−
GF

(v) ⊆
kAND⋃
i=1

V
(
GAND
i

)
∀v ∈ VAND ∩ V (D) :N−

GF
(v) ⊆

kOR⋃
i=1

V
(
GOR
i

)
If we consider C = [x0, x1, x0], defined according to Table 4.2, it is clear that
C ∈ LC(F, sp).

v ∈ V
(
GF
)

VOR ∩ V (D) VAND ∩ V (D) V
(
GF
)
\ V (D)

x0
v 1 0 0

x1
v 0 1 0

Table 4.2: Limit cycle from Proposition 4.12 if an alternated component of GF is considered.

2.- Let us suppose that D is an OR component of GF .

Let us denote by D1 and D2 the two sets of the bi-partition of D, and by VT the set
that contains the nodes of all the trivial alternated components of GF . We define the
following sets:

V 1
T =

{
v ∈ VT : N−

GF
(v) ⊆ V (D1)

}
⊆ VAND

V 2
T =

{
v ∈ VT : N−

GF
(v) ⊆ V (D2)

}
Now, we define C = [x0, x1, x0] according to Table 4.3, it is clear that C ∈ LC(F, sp).

v ∈ V
(
GF
)

V (D1) ∪ V 1
T V (D2) ∪ V 2

T V
(
GF
)
\
(
V (D) ∪ V 1

T ∪ V 2
T

)
x0
v 1 0 0

x1
v 0 1 0

Table 4.3: Limit cycle from Proposition 4.12 if a bipartite OR component of GF is considered.

3.- If D is an AND component of GF , then the proof is analogous that in the OR case. 2

Next proposition shows that if a symmetric AND-OR function does not have limit cycles
when parallel updated, then it does not have limit cycles under any update schedule.

Proposition 4.13. Given F an AND-OR function with symmetric GF . If LC(F, sp) = ∅,
then for every update schedule s 6= sp, LC(F, s) = ∅.

43

4.1. LIMIT CYCLE EXISTENCE PROBLEM

Proof. Let us suppose that LC(F, sp) = ∅.
Let s 6= sp be an update schedule. We note that, since GF is symmetric, then s 6= sp if

an only if there exists (u, v) ∈ A
(
GF
)

such that s(u) < s(v).

Let C =
[
xk
]p
k=0
∈ LC(F, s). Since LC(F, sp) = ∅, then all elements in the AOA

decomposition of GF are not bipartite, by Proposition 4.12. Therefore, by Lemma 4.11, every
OR and AND component updated in parallel is frozen in C. Besides, by Proposition 4.12,
there are only trivial alternated components of GF .

Now, let u, v ∈ VOR (the AND case is analogous) be such that (u, v) ∈ A
(
GF
)

and
s(u) < s(v). If there exists k ∈ {0, . . . , p− 1} such that xku = 1, we have that:

xku = 1 =⇒ xkv = 1 =⇒ xk+1
u = 1 =⇒ xk+1

v = 1 · · · =⇒ xk−1
u = 1 =⇒ xk−1

v = 1

Thus, u and v are frozen in C at value 1 as well as every node in the same connected
component. Otherwise, u is frozen in C at value 0 as well as every node in the same connected
component. In either case, all the OR component is frozen in C.

Finally, all alternated nodes have only frozen neighbors, so they are also frozen. There-
fore, every node is frozen in C, which is a contradiction. 2

Above results allow us to characterize the existence of solution of SYMMETRIC AND-
OR LCE.

Theorem 4.14. Given F an AND-OR function with symmetric GF . Then, there exists an
update schedule s such that, LC(F, s) 6= ∅ if and only if there exists a bipartite element in
the AOA decomposition of GF .

Proof. Straightforward from Proposition 4.12 and Proposition 4.13. 2

The difference between Proposition 4.4 and Proposition 4.12 is that, in the OR case,
the only schedule than can cycle is the parallel one and only when the interaction digraph is
bipartite, and in the AND-OR case, there are others non parallel update schedules that can
cycle when there exist the bipartite element in the AOA decomposition of the interaction
digraph (for instance, keeping the nodes in the bipartite element in the same block and all
the other nodes sequentially), but if such bipartite element does not exist, then no update
schedule can cycle.

Corollary 4.15. SYMMETRIC AND-OR LCE is polynomial.

Proof. In Theorem 4.14 we characterized the existence of solution of this problem and such
characterization is testable in polynomial time. 2

4.1.3. Cyclic equivalence classes of updates schedules

In this section, we define another kind of equivalence class of update schedules related
to the existence of limit cycles that are generated when a cyclic permutation of the blocks

44

4.1. LIMIT CYCLE EXISTENCE PROBLEM

of an update schedule is done. In this context, sufficient conditions in Boolean networks
are given in Macauley and Mortveit (2009) for when two non-equivalent sequential updates
induce topologically conjugated limit cycles. Here, we extend these results to block-sequential
update schedules.

Proposition 4.16. Let F = (fv)v∈V : {0, 1}v → {0, 1}n be a Boolean function and
{Bj}mj=1 a partition of V . Let us consider s0 = B1 · · ·Bm, sj = Bj+1 · · ·BmB1 · · ·Bj and
Nj = (F, sj), j ∈ {0, . . . ,m− 1}. Then:

i.- ∀i, j ∈ {0, . . . ,m− 1} : LC(Ni) 6= ∅ ⇐⇒ LC(Nj) 6= ∅,

ii.- ∀i, j ∈ {0, . . . ,m− 1} : |LC(Ni)| = |LC(Nj)|,

iii.- ∀i, j ∈ {0, . . . ,m− 1}, ∀C =
[
xk
]p
k=0
∈ LC(Ni), ∃Ĉ =

[
x̂k
]p̂
k=0
∈ LC(Nj) : p = p̂.

Proof.

i.- We prove first the result for N0 and N1.

(=⇒) Let be C =
[
xk
]p
k=0
∈ LC(N0). Let us denote ykj =

(
xkv
)
v∈Bj .

We note that ∀v ∈ B1 : xk+1
v = f s1v (xk) = fv

(
yk+1

1 , . . . , yk+1
j−1 , y

k
j , . . . , y

k
m

)
.

Now, let us define Ĉ =
[
x̂k
]p
k=0

as:

∀v ∈ V : x̂kv =

{
xk+1
v if v ∈ B1

xkv if v /∈ B1

We will show that Ĉ ∈ LC(N1), by proving that x̂k+1 = F s2(x̂k), ∀k. Let us define[
ŷk
]m
j=1

analogous to
[
yk
]m
j=1

.

Let be v ∈ B1, then for every k we have that:

f s2v (x̂k) = fv
(
ŷk1 , ŷ

k+1
2 , . . . , ŷk+1

m

)
= fv(x

k+1) = xk+2
v = x̂k+1

v

Now, considering v ∈ Bj \B1 we have that:

f s2v (x̂k) = fv
(
ŷk1 , ŷ

k+1
2 , . . . , ŷk+1

j−1 , ŷ
k
j , . . . , ŷ

k
m

)
= fv

(
yk+1

1 , yk+1
2 , . . . , yk+1

j−1 , y
k
j , . . . , y

k
m

)
= xk+1

v = x̂k+1
v

Therefore, LC(N1) 6= ∅.
(⇐=) The proof is completely analogous to the done above.

45

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

Now, applying the above result to schedules sj and sj+1 and by induction in j, it is
clear that

LC(N0) 6= ∅ ⇐⇒ LC(N1) 6= ∅ ⇐⇒ LC(N2) 6= ∅ · · · ⇐⇒ LC(Nm−1) 6= ∅

ii.- Straightforward from the done above.

iii.- Straightforward from the proof of part i. 2

Remark 4.3. Even though in above corollary the Boolean networks do not necessarily share
limit cycles, the existence of a limit cycle in one of the network give us the existence of a
limit cycle in every other. In this way, they form an equivalence class for the LCE problem.
Besides, all elements in the same class have the same number of limit cycles, and for each
limit cycles in one network, there is one in each networks of the same length.

4.2. Non-Primitive Update Digraph Problem

In this section, we are goint to study the following problem

Non-Primitive Update Digraph problem (NPUD): Given G a digraph. Does there
exists an integer 2 ≤ k ≤ g(G) and lab: A(G) → {⊕,	} such that Glab is an update digraph
and each cycle in Glab has a multiple of k ⊕-labeled arcs?

We recall that NPUD problem arise in Section 4.1 as a characterization of the existence
of solution of OR LCE. Therefore, we have the following result.

Lemma 4.17. OR LCE and NPUD are equivalent problems.

Proof. Straightforward from Proposition 4.9. 2

Remark 4.4. haha

1. Let us recall that condition each cycle in Glab has a multiple of k ⊕-labeled arcs is
equivalent to ρ(P(Glab)) = k, condition that is polynomially testable (Jarrah et al.,
2010). Thus, NPUD is NP, and therefore OR LCE.

2. If F is monotonic, solving NUPD will solve LCE, but the converse is not necessarily
true.

The complexity of the NPUD problem lies in both, the ⊕-labeled arcs and the update
digraph conditions. In fact, the first condition can always be solved for k = 2, or equivalently,
an even number of ⊕-labeled arcs. To prove this, we need the following definitions.

Definition 4.2. We consider the following definitions

46

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

1. Given an undirected graph U = (V,E), we call an UOCES (Undirected Odd Cycles
Edge Set) to a set F ⊆ E such that G [E \ F] does not have odd length cycles.

2. We say that an UOCES F is minimal if ∀e ∈ F : F \ {e} is not an UOCES.

3. Given a digraph G = (V,A), we denote U(G) to the undirected graph that comes from
G by removing the orientation of its arcs.

4. We call F and UOCAS (Undirected Odd Cycles Arc Set) of a digraph G to an UOCES
of the undirected graph U(G).

Lemma 4.18. Given a digraph G = (V,A), there exists a label function lab : A → {⊕,	}
such that each cycle in Glab has an even number of ⊕-labeled arcs.

Proof. Let F be a minimal UOCAS of G and let define lab as

∀a ∈ A : lab(a) =

{
	 if a ∈ F
⊕ if a /∈ F

It is clear that each cycle in Glab has an even number of ⊕-labeled arcs. 2

In this way, we can always define a label function such that the each cycle of the labeled
digraph has an even number of ⊕-labeled arcs. However, this labeled digraph it is not always
an update digraph as shown in the following example.

Example 4.1. Let us consider an OR function F with complete GF and |V (GF)| > 2.
In Corollary 4.5, we prove that for every update schedule s, LC(F, s) = ∅. Therefore, NPUD
in this case does not have a solution. However, the label function defined in Lemma 4.18 is
valid and fulfill the first condition of NPUD.

Remark 4.5. In Goles and Noual (2012), it was shown a polynomial characterization that
solves OR LCE problem in symmetric networks, that we call SYMMETRIC OR LCE. There-
fore, SYMMETRIC NPUD is polynomial, which can only have a solution for k = 2. Thus,
the open problem is the non symmetric case.

Next are two straightforward lemmas.

Lemma 4.19. If G is a non symmetric digraph with cycles of length two, then NPUD has a
solution in G if and only if it has a solution with k = 2.

Lemma 4.20. Let G be a strongly connected digraph. Then, every cycle in G has an even
amount of ⊕ labels if and only if each path between two nodes in G has the same parity.

Next proposition shows that there is a solution of NPUD in some digraph, then there is
solution in any sub-digraph.

Proposition 4.21. Let G = (V,A) be a digraph and e /∈ A. If NPUD has a solution in
G+ e, then it also has a solution in G with the same k.

47

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

Proof. Let suppose that lab: A+ e → {⊕,	} is such that (G+ e)lab is an update digraph
and every cycle in G + e has a multiple of k ⊕-labeled arcs, with 2 ≤ k ≤ g(G + e). Then,
clearly Glab|G is an update digraph and every cycle in G+ e which does not include e has a
multiple of k ⊕-labeled arcs. Thus, Glab|G is an update digraph and every cycle in G has a
multiple of k ⊕-labeled arcs. Therefore, Glab|G is an update digraph and ρ(P(Glab)) = k. 2

Corollary 4.22. If there is no solution of NPUD in a sub-digraph of G, then there is no
solution in G.

The following is an example that NPUD not necessarily has a solution for non complete
digraphs.

⊕
⊕ ⊕

	
⊕ 	

	
	 ⊕

(a) (b) (c)

	
⊕ ⊕

⊕
	 	

⊕

	 	

⊕

⊕ ⊕

(d) (e) (f) (g)

Figure 4.5: Forbidden configurations described in Example 4.2.

Example 4.2. First, we need to be sure that the labeling respect the rules of keeping the
parity of label ⊕ in alternative paths between two nodes, and the rules for an update digraph.
According to this, in Figure 4.5 we show some forbidden configurations. Configuration a,b
and c are forbidden because they do not respect the parity of ⊕ labeling rule; d and e because
they do not respect the update digraph rules; and f because we cannot have two 	 labels in
a cycle of length 3.

In Figure 4.6 we can observe an OR Boolean network where each update schedule does
not produce limit cycles. In fact we can observe several cycles in the graph:

[1, 2, 3, 1] of length 3.

[1, 2, 6, 1] of length 3.

[3, 4, 6, 3] of length 3.

[3, 5, 6, 5] of length 3.

[1, 2, 3, 4, 6, 1] of length 5.

[1, 2, 3, 4, 5, 6, 1] of length 6.

48

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

The maximum common divisor of the length of the cycles is 1, then there is no limit
cycles in the network updated in parallel. To obtain an update schedule that produce a limit
cycle, we need that every cycle in the digraph has a multiple of 2 ⊕ labels or that every
cycle in the digraph has a multiple of 3 = g(G) ⊕ labels. Since every node in the digraph
belongs to a cycle of length 3, is impossible to find an update schedule where every cycle
has a length a multiple of three ⊕ labels, since this lead to the parallel update schedule. To
find an update schedule where the length of every cycle in the associated parallel digraph is
a multiple of two, we need to find a labeled digraph which is an update digraph, and also
every cycle in the digraph has an even number of ⊕ labels and at least two. To have this
two conditions we need to avoid the forbidden configurations between three nodes showed
in Figure 4.5.

f1(x) = x4 ∨ x5

f2(x) = x1

f3(x) = x2 ∨ x5

f4(x) = x2 ∨ x3

f5(x) = x2 ∨ x4

1

2

3

4 5

Figure 4.6: Example of an OR function without limit cycles under any update schedule.

Now we will show that this is not possible. Let us suppose that we choose lab(5, 1) = ⊕
(See Figure 4.7 a)-d)). To avoid the forbidden configurations a and c we need that lab(4, 5) =
	 and lab(4, 1) = ⊕. Given lab(4, 5) = 	, the forbidden configuration f forces lab(5, 3) =
lab(3, 4) = ⊕. Since lab(3, 4) = ⊕, to avoid the forbidden configurations a and c we need
that lab(2, 4) = ⊕ and lab(2, 3) = 	. In this way, the arc (2, 5) it cannot be labeled, since
either labeling generates the forbidden configurations b and c between nodes 2, 5 and 3.

Now, let us choose lab(5, 1) = 	 (See Figure 4.7 e)-h)). We need that lab(6, 3) =
lab(3, 5) = ⊕ to have at least 2 labels ⊕ in the cycle [1, 2, 5, 1]. Since lab(5, 2) = ⊕, we need
that lab(2, 3) = ⊕ and lab(5, 2) = 	 to avoid forbidden configurations a and b. lab(2, 3) = ⊕
forces lab(3, 4) = 	 and lab(2, 4) = ⊕ to avoid forbidden configurations a and b. In this
manner, the cycle [3, 4, 5, 3] has two arcs labeled 	, which is forbidden.

It is known that non primitive monotonic networks have limit cycles when they are
synchronously updated. Next we will show that in some cases, there are other classes of
updates schedules that also generate limit cycles. But first, we need some previous results.

The following theorem was proved in Bang-Jensen and Gutin (2007).

Theorem 4.23. Let G=(V,A) be a strongly connected digraph with ρ = ρ(G) > 1, then
∀k ∈ {1, . . . , ρ} , ∃Vk ⊆ V : ∀v ∈ Vk, N−G (v) ⊆ Vk+1 with Vρ+1 = V1.

Next lemma shows that in a monotonic Boolean network, every node has at least one
incoming neighbor in the parallel digraph.

49

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

1

2

3

4 5

⊕

1

2

3

4 5
	

⊕⊕

1

2

3

4 5

⊕

	

⊕⊕
⊕

1

2

3

4 5

	

⊕

	

⊕
⊕

⊕
⊕

a) b) c) d)

1

2

3

4 5

	

1

2

3

4 5

⊕

	

⊕ 1

2

3

4 5

⊕⊕

	

⊕

	

1

2

3

4 5

⊕⊕

	 	
⊕

⊕

	

e) f) g) h)

Figure 4.7: Labeling results as detailed in Example 4.2.

Lemma 4.24. Let N = (F, s) be a monotonic network. Then, ∀v ∈ V
(
GF
)
, N−

GFs
(v) 6= ∅.

Proof. Let suppose that ∃v ∈ V : N−
GFs

(v) = ∅. Then, it is clear that:

∀x ∈ {0, 1}n , ∀k : (f sv)k(x) = 0 Y (f si)k(x) = 1

Therefore, ~1 Y~0 is not a fixed point of N , which is a contradiction. 2

Theorem 4.25. Let F be a monotonic Boolean function with GF = (V,A) strongly connected,
non symmetric and ρ = ρ(G) > 1. Then there exists an update schedule s /∈ [sp] such that
LC(F, s) 6= ∅.

Proof. By Theorem 4.23 we have a partition of V, {Vk}ρk=1 such that ∀k ∈ {1, . . . , ρ} , ∀v ∈
Vk, N

−
GF

(v) ⊆ Vk+1 with Vρ+1 = V1. The idea is to label appropriately all arcs going from
Vk, to Vk+1 for some chosen k’s.

For each k, it is easy to see that every cycle C in GF goes trough Vk → Vk+1, L(C)
ρ

times.

We can choose 2 ≤ K < ρ sets
{
Vkj
}K
j=1

and ⊕-label all arcs from Vkj to Vkj+1, and we will

have that each cycle C in GF has L(C)
ρ
K ⊕-labeled arcs. Note that if K = p, then we have

that all arcs are labeled ⊕, which is class of the parallel update schedule. However, even if
K < p, this construction not always give us an update schedule not equivalent to the parallel
one. To refine the result, we have to consider two cases.

50

4.2. NON-PRIMITIVE UPDATE DIGRAPH PROBLEM

1. If ρ < g(GF) or 2 < ρ = g(GF), then above construction it is valid.

2. If 2 = ρ = g(GF), then above construction only give the class of the parallel update
schedule as a solution. However, since GF is non symmetric then we can construct two
more non equivalent update schedules in the following way:

We ⊕-label all cycles of length two.

We ⊕-label all remaining arcs from V1 to V2 and 	-label all remaining arcs from
V2 to V1. This give us the first update schedule.

We 	-label all remaining arcs from V1 to V2 and ⊕-label all remaining arcs from
V2 to V1. This give us the second update schedule.

2

Remark 4.6. The remaining case is when GF is symmetric. In this case, when F is an OR
function, the only solution is sp (Proposition 4.4).

Corollary 4.22 allow us to search for forbidden configuration in order to study the NPUD
problem, as done in Example 4.2. Next, is one of such configurations.

Definition 4.3. We call the following digraph G = (V,A) a Bow of length m if:

V ≡ {v1, . . . , vm+2}

∀i ∈ {1, . . . ,m} : (vi, vi+1), (vi+1, vi) ∈ A.

((v1, vm+2), (vm+1, vm+2) ∈ A) Y ((vm+2, v1), (vm+2, vm+1) ∈ A)

See an example of a Bow in Figure 4.8.

v1 v2 . . . vm vm+1

vm+2

Figure 4.8: Example of a Bow of length m.

Proposition 4.26. There is no solution of NPUD in any Bow of odd length.

51

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

Proof. Let be G = (V,A) a Bow of odd length m. We can suppose that
(v1, vm+2), (vm+1, vm+2) ∈ A, since the other case is analogous. By Lemma 4.19, we must
only consider solving NPUD for k = 2. Therefore, if there exists a solution of NUPD in
G, every arc in A between nodes in {v1, . . . , vm+1} must be labeled ⊕. Now, we have four
options:

1. To set lab(v1, vm+2) = ⊕ = lab(vm+1, vm+2). In this case we have that the path [v1, vm+2]
has a odd number (equal to one) of ⊕-arcs, and the path [v1, v2, . . . , vm+1, vm+2] has
an even number (equal to m + 1) of ⊕-arcs. Therefore, by Lemma 4.20, this is not a
solution of NPUD.

2. To set lab(v1, vm+2) = 	 = lab(vm+1, vm+2). In this case we have that the path [v1, vm+2]
has a even number of ⊕-arcs (equal to zero), and the path [v1, v2, . . . , vm+1, vm+2] has
an odd number (equal to m) of ⊕-arcs. Therefore, by Lemma 4.20, this is not a solution
of NPUD.

3. To set lab(v1, vm+2) = ⊕ and lab(vm+1, vm+2) = 	. In this case, the re-
sulting labeled digraph is not an update digraph because of the forbidden cycle
[v1, vm+2, vm+1, vm, . . . , v2, v1].

4. To set lab(v1, vm+2) = 	 and lab(vm+1, vm+2) = ⊕. In this case, the resulting labeled di-
graph is not an update digraph because of the forbidden cycle [v1, v2, . . . , vm+1, vm+2, v1].

In either case, there is no solution of NPUD. 2

Corollary 4.27. Let G a digraph. If G contain as a sub-digraph a Bow of odd length, then
there is no solution of NPUD for G.

Proof. Straightforward from Proposition 4.26 and Corollary 4.22. 2

Remark 4.7. It is easy to check that converse of above corollary holds if |V (G)| ≤ 4. In
this case, there could only be Bows of length 1.

Example 4.3. Converse of Corollary 4.27 does not hold if |V (G)| ≥ 5, as we can see in the
following example. We will consider the same digraph as in Example 4.2 (G), but adding the
arc (2, 1) (G′). Since there is no solution of NPUD in G, neither there is a solution in G′.
However, there is no Bow of any length in G′.

4.3. Limit Cycle Non Existence Problem

In this section, we study the complexity of deciding when there exists an update schedule
that has only fixed points as attractors. That is, we are going to consider the following
problem

52

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

Limit Cycle Non Existence problem (LCNE): Given F a Boolean function. Does
there exists an update schedule s such that: LC (F, s) = ∅?

This problem is NP-Hard in the general case, as shown in the following theorem.

Theorem 4.28. LCNE is NP-Hard.

Proof. We are going to show that SAT ≤p LCNE.

First, we will recall the dynamical behavior of the network NN = (FN , sp), where:

∀i ∈ {1, . . . , n− 1} , fNi (x) = xi Y

(
n∧

j=i+1

xj

)
fNn (x) = ¬xn

The dynamic of this network consist in a single limit cycle containing all global states.

Now, let be φ a ncf in variables w1 . . . , wn and let us define the set V and the function
F = (fv)v∈V : {0, 1}n+1 → {0, 1}n+1 as follows:

∀i ∈ {1, . . . , n− 1} , fvi(x) = xvi Y

(
n∧

j=i+1

xvj ∧ ¬xvφ

)
,

fvn(x) = ¬xvn Y xvφ
fvφ(x) = φ (xvi : i ∈ {1, . . . , n})

See the interaction digraph in Figure 4.9.

1 2 3 . . . vn−1 vn

vφ

Figure 4.9: Interaction digraph of the transformation defined in Theorem 4.28.

Now we prove the equivalence,

(⇐=) If ∀w, φ(w) = 0, then given any initial global state x0 ∈ {0, 1}n+1, we have that
∀k ≥ 1: xkn+1 = 0. Thus, ∀p ≥ 1 we have that:

xk+p
n =

{
¬xkn if p odd
xkn if p even

Therefore, LC(F, s) 6= ∅, for any update schedule s.

53

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

(=⇒) Let us suppose that ∃ŵ : φ(ŵ) = 1 and let be s = {v1, . . . , vn} {vφ}.
First we must note that for any given initial global state x0 ∈ {0, 1}n+1, if xkvφ = 1 for
some k > 0, then

xk+1
vi

= f svi(x
k) = xkvi

xk+1
vn = f svn(xk) = xkvn
xk+1
vφ

= f svφ(xk) = 1 = xkvφ .

Therefore, F s(xk+p) = xk, ∀p ≥ 1. Now we must consider the following cases:

1.- If x0
vφ

= 0, then as long as xkvφ = 0, N = (F, s) has the same dynamical behavior

as NN , and therefore, for some k, xkvi = x̂vi , ∀i ∈ {1, . . . , n}. Thus, xkvφ = 1 and

then F s(xk+p) = xk+1, ∀p ≥ 1.

2.- If x0
vφ

= 1 and f svφ(x0) = 0 , we apply the same argument as before, for some
k > 1.

3.- If x0
vφ

= 1 and f svφ(x0) = 1 , we apply the same argument as before, for k = 1.

Therefore, LC(F, s) = ∅.

2

4.3.1. Polynomial cases

In this section we are going to show some polynomial cases of the LCNE problem and
moreover, we show that the answer to the problem is always positive.

First, we show that the OR case of the LCNE problem referred as OR LCNE, is poly-
nomial. In order to do that, we need the following definitions.

Definition 4.4. Given a digraph G = (V,A) and V ⊆ V a minimum FVS of the cycles of
G. With this set, we can obtain the next FAS of the cycles of G:⋃

v∈V
N+
G (v)

From this FAS, we can extract a minimal FAS, AV , and define a labeled digraph
GV = (G, labV) as follows:

labV(u, v) =

{
⊕ if (u, v) ∈ AV
	 i.a.c.

In Aracena et al. (2011), was proved the following result:

Lemma 4.29. GV is an update digraph.

54

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

It is straightforward from above definitions the following lemma:

Lemma 4.30. There exists a sequential update schedule sV such that GV = GsV .

Now the OR LCNE case.

Theorem 4.31. Let F be an OR (AND) function. Then, there exists a sequential update
schedule s such that N = (F, s) has only have fixed points as attractors.

Proof. Let V be a minimum FVS of the cycles of GF = (V,A) and let consider N = (F, s),
with s = sV defined in Lemma 4.30. We will prove that N has only fixed point as attractors.
For doing so, we will analyze the structure of GF s = (V,As). First we note that:

∀(u, v) ∈ A, labs(u, v) = 	, ∃ w ∈ V : (w, v) ∈ As

Besides, all arcs (v, u), v ∈ V such that labs(v, u) = ⊕ remains in GF s . Therefore, the
strongly connected components of GF s are formed entirely by nodes of V with no arc incoming
from the nodes of VC .

On the other hand, we know that every node v ∈ V , has a cycle C in GF such
that V ∩ V (C) = {v}. These cycles induce a loop on v,∀v ∈ V , in GF s (Corollary 4.6
and Lemma 4.8), which is monotonic, and thus GF s is primitive. In addition, F s it is
necessarily an OR (AND) function due to Corollary 4.6. Therefore, by Theorem 4.3 we have
that LC(N) = LC(F s, sp) = ∅. 2

Remark 4.8. Clearly OR LCNE is polynomial with positive answer, however, the proof
above does not allow us to find the update schedule in polynomial time. Nevertheless,
in Goles and Noual (2012) was shown a polynomial way to find one such update schedule,
although it is not necessarily a sequential one.

Remark 4.9. In Fogelman et al. (1985) was proved that monotonic symmetric threshold
networks do not have limit cycles updated under any sequential update schedule, therefore
the LCNE problem in this kind of networks is polynomial with positive answer. In particular,
SYMMETRIC AND-OR LCNE is polynomial.

Above results, might led us to think that the LCNE problem will always have a solution
for monotonic or AND-OR functions. However, the following to examples shows that this is
not the case.

Example 4.4. Let us consider the monotonic function F = (fi)
5
i=1 : {0, 1}5 → {0, 1}5 as

defined in Figure 4.10. It is easy to see that no matter the update schedule applied, there
are always at least two limit cycles: one having node 4 frozen at value 0 and node 5 frozen
at value 1, and the other one having node 4 frozen at value 1 and node 5 frozen at value
0. However, they are not necessarily the same limit cycles in each network. We note that
the loops at nodes 4 and 5 can be replaced by two cycles of length 2, adding two additional
nodes, one for node 4 and one for node 5.

55

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

GF

f1(x) = (x3 ∧ x4) ∨ (x2 ∧ x5) ∨ (x4 ∧ x5)
f2(x) = (x1 ∧ x4) ∨ (x3 ∧ x5) ∨ (x4 ∧ x5)
f3(x) = (x2 ∧ x4) ∨ (x1 ∧ x5) ∨ (x4 ∧ x5)
f4(x) = x4 ∨ (x1 ∧ x2 ∧ x3)
f5(x) = x5 ∨ (x1 ∧ x2 ∧ x3)

1

2

3

4 5

Figure 4.10: Boolean function described in Example 4.4.

Next example shows that if we remove the symmetry to AND-OR functions, the the
LCNE problem does not necessarily have a solution.

Example 4.5. Let us consider the monotonic function F = (fi)
12
i=1 : {0, 1}12 → {0, 1}12 as

defined in Figure 4.11. We note that nodes 4 and 5 will remain constant trough the whole
dynamics. Therefore, we can decompose its dynamics into four sub-dynamics:

N00: That is the dynamical behavior when node 4 and node 5 take value 0.

N11: That is the dynamical behavior when node 4 and node 5 take value 1.

N01: That is the dynamical behavior when node 4 takes value 0 and node 5 takes value 1.

N10: That is the dynamical behavior when node 4 takes value 1 and node 5 takes value 0.

In Table 4.4 are shown the four sub-dynamics. In a) is shown the evaluation of nodes
4 and 5 and in b) is shown its simplification. The sub-digraphs associated to sub-dynamics
N01 and N10 are shown in Figure 4.12a) and Figure 4.12b), respectively.

Now, we are looking for an update schedule that does not generates limit cycles for N00,
N11, N01 and N10 simultaneously. Since N00 and N11 do not have limit cycles under any
update schedule, we just need to focus in N01 and N10.

If we analyze N10 (case N01 is analogous), we note that the only update schedules that
do not generate limit cycles are those in which its update digraph have only one arc labeled
⊕. Without lost of generality, we can suppose that such arc is (1, 7). Then, as necessary
conditions such that the resulting labeled digraph be an update digraph, we have that:

lab(2, 8) = 	 ∧ lab(8, 3) = 	 =⇒ lab(3, 12) = ⊕ ∨ lab(12, 2) = ⊕,
lab(3, 9) = 	 ∧ lab(9, 1) = 	 =⇒ lab(1, 10) = ⊕ ∨ lab(10, 3) = ⊕

Thus, N01 will have necessarily two arcs labeled ⊕. Therefore, there is no update schedule
such that LC(F, s) = ∅.

56

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

GF

f1(x) = x6 ∨ x9 ∨ x11

f2(x) = x6 ∨ x7 ∨ x12

f3(x) = x6 ∨ x8 ∨ x10

f4(x) = x4

f5(x) = x5

f6(x) = x4 ∧ x5

f7(x) = x1 ∧ x4

f8(x) = x2 ∧ x4

f9(x) = x3 ∧ x4

f10(x) = x1 ∧ x5

f11(x) = x2 ∧ x5

f12(x) = x3 ∧ x5

1

2 3

4 56

7

8

9

1011

12

Figure 4.11: Boolean function described in Example 4.5.

N00 N11 N01 N10

a)

f1(x) = x6 ∨ x9 ∨ x11

f2(x) = x6 ∨ x7 ∨ x12

f3(x) = x6 ∨ x8 ∨ x10

f4(x) = 0
f5(x) = 0
f6(x) = 0
f7(x) = 0
f8(x) = 0
f9(x) = 0
f10(x) = 0
f11(x) = 0
f12(x) = 0

f1(x) = x6 ∨ x9 ∨ x11

f2(x) = x6 ∨ x7 ∨ x12

f3(x) = x6 ∨ x8 ∨ x10

f4(x) = 1
f5(x) = 1
f6(x) = 1
f7(x) = x1

f8(x) = x2

f9(x) = x3

f10(x) = x1

f11(x) = x2

f12(x) = x3

f1(x) = x6 ∨ x9 ∨ x11

f2(x) = x6 ∨ x7 ∨ x12

f3(x) = x6 ∨ x8 ∨ x10

f4(x) = 0
f5(x) = 1
f6(x) = 0
f7(x) = 0
f8(x) = 0
f9(x) = 0
f10(x) = x1

f11(x) = x2

f12(x) = x3

f1(x) = x6 ∨ x9 ∨ x11

f2(x) = x6 ∨ x7 ∨ x12

f3(x) = x6 ∨ x8 ∨ x10

f4(x) = 1
f5(x) = 0
f6(x) = 0
f7(x) = x1

f8(x) = x2

f9(x) = x3

f10(x) = 0
f11(x) = 0
f12(x) = 0

b)

f1(x) = 0
f2(x) = 0
f3(x) = 0
f4(x) = 0
f5(x) = 0
f6(x) = 0
f7(x) = 0
f8(x) = 0
f9(x) = 0
f10(x) = 0
f11(x) = 0
f12(x) = 0

f1(x) = 1
f2(x) = 1
f3(x) = 1
f4(x) = 1
f5(x) = 1
f6(x) = 1
f7(x) = 1
f8(x) = 1
f9(x) = 1
f10(x) = 1
f11(x) = 1
f12(x) = 1

f1(x) = x11

f2(x) = x12

f3(x) = x10

f4(x) = 0
f5(x) = 1
f6(x) = 0
f7(x) = 0
f8(x) = 0
f9(x) = 0
f10(x) = x1

f11(x) = x2

f12(x) = x3

f1(x) = x9

f2(x) = x7

f3(x) = x8

f4(x) = 1
f5(x) = 0
f6(x) = 0
f7(x) = x1

f8(x) = x2

f9(x) = x3

f10(x) = 0
f11(x) = 0
f12(x) = 0

Table 4.4: Sub-dynamics of the AND-OR network described in Example 4.5

57

4.3. LIMIT CYCLE NON EXISTENCE PROBLEM

1

2 3

4 56

7

8

9

1011

12

1

2 3

4 56

7

8

9

1011

12

a) b)

Figure 4.12: Sub-networks associated to the the sub-dynamics of the AND-OR network
described in Example 4.5

58

Chapter 5

Feasible dynamics problems with
deterministic update schedules in
Boolean networks

In this chapter we are interested in studying the decision problem of when there exists
an update schedule such that a given Boolean function has as a limit cycle a given sequence
of global state vectors when it is updated under such update schedule. This problem arise
for instance, from the reconstruction of a genetic regulatory network from observed data, as
a mean to understand the function of the system (Shmulevich et al., 2002; Akutsu et al.,
1999).

We start by studying the case of a simple transition, and we prove the the problem is
NP-Complete even in the case of OR networks. Nevertheless, we give some polynomial cases
for both the AND-OR and the OR cases. We also give an algorithm (non polynomial) that is
as polynomial as we can get, to decide the OR case and that give us a solution if the answer
is positive. This algorithm is also applicable to the AND-OR case, since the AND-OR case
reduces to the OR case. in the case of the sequence problem, we prove that for any interaction
digraph, this problem is NP-Complete even in the case of Disjunctive networks. Besides, we
give certain families of the networks in which each problem is polynomial, this classes are
in AND-OR networks and depend strongly on the topology of the interaction digraph of
the network. polynomial, this classes are in AND-OR networks and depend strongly on the
topology of the interaction digraph of the network.

We also study another related problem, and we prove that all of them are NP-Complete
even in the case of OR networks.

59

5.1. FEASIBLE TRANSITION PROBLEM

5.1. Feasible Transition Problem

In this section we study the complexity of deciding when there exists an update schedule
that generates a given transition when a given Boolean function is updated under it. That
is, we are going to study the following problem

Feasible Transition problem (FT): Given a set V of n elements,
F = (fv)v∈V : {0, 1}n → {0, 1}n and x, y ∈ {0, 1}n. Does there exists an update schedule s
such that F s(x) = y?

AND-OR FT and OR FT problems are the corresponding FT problems when F is
an AND-OR and an OR function, respectively.

First we show that the problem is NP-Complete in the general case:

Theorem 5.1. FT is NP-Complete.

Proof. It is clear that FT is NP. To prove NP-Hardness, we show that SAT ≤p FT.
Given a ncf φ in variables w1, . . . , wn, we consider x = ~0 = (0, . . . , 0) , y = ~1 = (1, . . . , 1) ∈
{0, 1}n+1 and F : {0, 1}n+1 → {0, 1}n+1 as follows (see Figure 5.1):

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

v1 v2 . . . vn

vφ

Figure 5.1: Interaction digraph of the transformation defined in Theorem 5.1.

(=⇒) If there exists w such that φ(w) = 1, then defining s = {vi : wi = 1}{vφ}{vi : wi = 0},
it is clear that F s(x) = y.

(⇐=) Let us suppose that there exists an update schedule s such that F s(x) = y. Then we
have that:

1 = f svφ (x) = fvφ(hs1 (x) , . . . , hsn (x))

where

∀i ∈ {1, . . . , n} : hsi (x) =

{
xvi if s(vφ) ≤ s(vi)

fvi (x) = yvi if s(vφ) > s(vi)

60

5.1. FEASIBLE TRANSITION PROBLEM

If we define xs = (hs1 (x) , . . . , hsn (x)), the global state just before node φ gets updated,
then we have that

φ (xs) = fvφ (xs) = 1

2

For further study, we need the following definition:

Definition 5.1. Given F : {0, 1}n → {0, 1}n , x, y ∈ {0, 1}n, we define for each q, r ∈ {0, 1}:

Vqr (x, y) := {v ∈ V
(
GF
)

: xv = q ∧ yv = r}

And the set of constant nodes:

Vc (x, y) = V00 (x, y) ∪ V11 (x, y)

When there is no confusion, we will ignore the argument (x, y) in the previous definitions.

This allows to prove the following result, that establishes necessary conditions for AND-
OR FT to have a solution.

Lemma 5.2. Let F : {0, 1}n → {0, 1}n be an AND-OR function, x, y ∈ {0, 1}n and s an
update schedule. If F s(x) = y then, for each v ∈ V

(
GF
)

we have that:

1.- If v ∈ VOR (F) and

i.- v ∈ V10 ∪ V00, then ∀u ∈ N−
GF

(v) :

(u ∈ V01 ∧ s(u) ≥ s(v)) ∨ (u ∈ V10 ∧ s(u) < s(v)) ∨ u ∈ V00

ii.- v ∈ V01 ∪ V11, then ∃u ∈ N−
GF

(v) :

(u ∈ V01 ∧ s(u) < s(v)) ∨ (u ∈ V10 ∧ s(u) ≥ s(v)) ∨ u ∈ V11

2.- If v ∈ VAND (F) and

i.- v ∈ V01 ∪ V11, then ∀u ∈ N−
GF

(v) :

(u ∈ V10 ∧ s(u) ≥ s(v)) ∨ (u ∈ V01 ∧ s(u) < s(v)) ∨ u ∈ V11

ii.- v ∈ V10 ∪ V00, then ∃u ∈ N−
GF

(v) :

(u ∈ V10 ∧ s(u) < s(v)) ∨ (u ∈ V01 ∧ s(u) ≥ s(v)) ∨ u ∈ V00

61

5.1. FEASIBLE TRANSITION PROBLEM

Proof. Let v ∈ V
(
GF
)
.

1.- If v ∈ VOR (F),

i.- Let us suppose v ∈ V10 ∪ V00 and let u ∈ N−
GF

(v). Since f sv (x) = 0, necessarily
xu = 0 ∨ yu = 0. Now:

If u ∈ V01, then xu = 0 ∧ yu = 1. Since f sv (x) = 0, it is necessary that
s(u) ≥ s(v).

If u ∈ V10, then xu = 1 ∧ yu = 0. Since f sv (x) = 0, it is necessary that
s(u) < s(v).

Otherwise, j must necessarily be in V00.

ii.- Straightforward from the definition of OR functions and analogous argument as
before.

2.- If v ∈ VAND (F), the proof is straightforward from the definition of AND functions and
analogous argument as before. 2

Remark 5.1. We know Theorem 3.1 that Boolean networks updated under different up-
dates schedules that generate the same update digraph have the same dynamical behavior.
Therefore, we focus on finding an update digraph wich satisfies certain restrictions. In this
way, according to the definition of an update digraph and to the established in the previous
lemma, we have that for OR nodes (AND nodes), all incoming arcs of the nodes in V00 ∪ V10

(V11 ∪ V01) have their labels uniquely defined. To satisfy the necessary conditions such that
F s(x) = y, at least one incoming arc to the nodes in V11∪V01 (V00∪V10) must be chosen and
labeled accordingly. It is in this choice where the complexity of the problem arises.

Next lemma shows that considering the FT problem with or without constant nodes are
equivalent problems in AND-OR networks.

Lemma 5.3. Let be F : {0, 1}n → {0, 1}n, and x, y ∈ {0, 1}n. There exists
F̂ : {0, 1}n → {0, 1}n , x̂, ŷ ∈ {0, 1}n, where Vc (x̂, ŷ) = ∅, such that FT AND-OR has a solu-
tion with instance 〈F, x, y〉 if and only if it has a solution with instance 〈F̂ , x̂, ŷ〉.

Proof. Let be GF = (V,A). First, we implicitly define x̂ and ŷ by defining:

V01 (x̂, ŷ) = V01 (x, y) ∪ V11 (x, y).

V10 (x̂, ŷ) = V10 (x, y) ∪ V00 (x, y).

Clearly, Vc (x̂, ŷ) = ∅.
Now, F̂ is an AND-OR function defined by its interaction digraph GF̂ = (V, Â) and a

node set partition
{
V̂AND, V̂OR

}
according to the following transformation (see an example

in Figure 5.2).

62

5.1. FEASIBLE TRANSITION PROBLEM

First, we remove from A all arcs outgoing from the constant nodes since they are not
necessary for establishing the value of their outgoing neighbors. That is:

Â = A \ {(u, v) ∈ A : u ∈ Vc (x, y)}

Since we removed some arcs, now there might be nodes that get all its incoming arcs
removed. If for instance, one of these nodes is an OR node that changes from zero to one,
i.e., it belongs to V01 (x, y), FT AND-OR with instance 〈F̂ , x̂, ŷ〉 will not have a solution since
the OR function is defined as the constant function zero when the node have empty incoming
neighborhood, nevertheless if it has or not solution with instance 〈F, x, y〉. Thus, with the
objective of do not change the existence of solutions, we redefine the local functions of the
nodes in the sets

UOR =
{
v ∈ VOR ∩ V01 (x̂, ŷ) : N−

GF̂
(v) = ∅ ∧N−

GF
(v) 6= ∅ ∧N−

GF
(v) * V00 (x, y)

}
UAND =

{
v ∈ VAND ∩ V10 (x̂, ŷ) : N−

GF̂
(v) = ∅ ∧N−

GF
(v) 6= ∅ ∧N−

GF
(v) * V11 (x, y)

}
according to:

V̂OR = UAND ∪ (VOR \ UOR)

V̂AND = UOR ∪ (VAND \ UAND)

Now we prove the equivalence,

(=⇒) Let s be solution of AND-OR FT with instance 〈F, x, y〉. Then if we consider ŝ ∈ [s′]GF̂ ,
where labs′ is defined as

∀a ∈ Â : labs′ (a) = labs (a)

it is clear from the definitions of an AND-OR function, F̂ , x̂ and ŷ that F̂ ŝ (x̂) = ŷ.

(⇐=) Let s be solution of AND-OR FT with instance 〈F̂ , x̂, ŷ〉. The update schedule s
generates certain labels in all arcs removed from GF .

1. Let v ∈ V00 (x, y) ∩ VOR, u ∈ N+
GF

(v) ∩ V10 (x̂, ŷ) ∩ VOR and w ∈ N+
GF

(v) ∩ V01 (x̂, ŷ) ∩ VOR:

• Whichever the label of arc (v, u) might be, the node u will receive from the
node v the value 0 that it needs.

• Since, for the node w the value 0 of the node v is useless, it does not matter
at all the label that the arc (v, w) might take.

2. The analysis is analogous in the other cases.

2

Remark 5.2. It is clear from the proof of the previous lemma that a solution in one problem
is also a solution in the other one.

63

5.1. FEASIBLE TRANSITION PROBLEM

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

a) b)

Figure 5.2: Example of the transformation defined in Lemma 5.3 as detailed in Example 5.1.

Example 5.1. Let us consider an AND-OR function F with interaction digraph as shown
in Figure 5.2 a).

If we consider V11 = {1, 2}, V00 = {3, 4}, V01 = {5, 6} and V10 = {7, 8}, then the
interaction digraph of F̂ is shown in Figure 5.2 b).

Now, we show that the AND-OR case reduces to the OR case. Next, we prove that
AND-OR FT is NP-Complete, and therefore OR FT it is too.

Proposition 5.4.
AND-OR FT ≤p OR FT

Proof. Let F : {0, 1}n → {0, 1}n be an AND-OR function and x, y ∈ {0, 1}n.
By Lemma 5.3, we can suppose Vc (x, y) = ∅.

We construct an OR function F̂ : {0, 1}n+m → {0, 1}n+m, x̂, ŷ ∈ {0, 1}n+m, where m is
defined below, such that:

∃s : F s(x) = y ⇐⇒ ∃ŝ : F̂ ŝ(x̂) = ŷ

We define F̂ by its interaction digraph GF̂ = (V̂ , Â) constructed from GF = (V,A).

The idea of the transformation is the following: OR nodes remain the same, and for
each AND node we add an structure that allow us to simulate the AND behavior in one
transition with only OR nodes. This structure includes the original AND node: v, a copy of

it: v̂, the incoming neighbors denoted N−
GF

(v) =
{
uv1, . . . , u

v
m(v)

}
, and a copy of each one of

64

5.1. FEASIBLE TRANSITION PROBLEM

them: ûv1, . . . , û
v
m(v), where m (v) =

∣∣N−
GF

(v)
∣∣. Therefore, m = |VAND|+

∑
v∈VAND

m (v). The

connections are defined according to the incoming neighborhood as detailed in Table 5.1 (see
and example in Figure 5.3).

w ∈ V̂ N−
GF̂

(w)

v ∈ VOR N−
GF

(v)
v ∈ VAND {v̂}
v̂ : v ∈ VAND

{
ûv1, . . . , û

v
m(v)

}
ûvk : v ∈ VAND, k ∈ {1, . . . ,m(v)} {uvk}

Table 5.1: Definition of GF̂ defined in Proposition 5.4.

v

u1 u2 um(v). . .

	 	
⊕

	 ⊕ 	

v̂

ûv
1 ûv

2
ûvm(v)

. . .

v

uv
1 uv

2
uvm(v)

. . .

	 	
⊕

⊕ ⊕ ⊕

⊕

	 ⊕ 	

GF
s GF̂

ŝ

Figure 5.3: Example of the structure associated to an AND node v in the transformation
defined in Proposition 5.4.

Finally, we define x̂, ŷ by

∀v ∈ V : x̂v = xv ∧ ŷv = yv

and
∀û ∈ V̂ \ V : (x̂û = ¬xu) ∧ (ŷû = ¬yu)

That is,
∀û ∈ V̂ \ V : u ∈ Vqr (x, y) =⇒ û ∈ Vrq (x̂, ŷ)

since q = ¬r.

65

5.1. FEASIBLE TRANSITION PROBLEM

By Lemma 5.2, we have that for every update schedule ŝ such that F̂ ŝ (x̂) = ŷ and for
each v ∈ VAND:

∀k ∈ {1, . . . ,m (v)} : ŝ(uvk) ≥ŝ(ûvk) (5.1)

ŝ(v̂) ≥ŝ(v) (5.2)

(=⇒) Let us suppose that ∃s : F s(x) = y. We define ŝ according to:

∀v ∈ V : ŝ(v) =s(v) (5.3)

∀v̂ ∈ V̂ \ V : ŝ(v̂) =s(v) (5.4)

It is clear that ŝ as defined above fulfill conditions (5.1) and (5.2).

Now, since each AND node v do not changes its outgoing neighbors, and the nodes in
N−
GF

(v) do not change their incoming neighbors, we have that every node in N−
GF

(v)

do not change their value when applying F̂ . Then,

• ∀v ∈ VAND:

∀k ∈ {1, ...,m(v)} , (5.1) =⇒ (uvk ∈ Vqr (x, y) =⇒ ûvk ∈ Vrq (x̂, ŷ)) (5.5)

(5.3), (5.4), (5.5) =⇒ (v ∈ Vqr (x, y) =⇒ v̂ ∈ Vrq (x̂, ŷ)) (5.6)

(5.2), (5.6) =⇒ (v ∈ Vqr (x, y) =⇒ v ∈ Vqr (x̂, ŷ)) (5.7)

• ∀v ∈ VOR : by

v ∈ Vqr (x, y) =⇒v ∈ Vqr (x̂, ŷ) (5.8)

Therefore, F̂ ŝ(x̂) = ŷ. We note that, ∀s′ ∈ [ŝ]GF̂ : F̂ s′(x̂) = ŷ.

(⇐=) If OR FT has a solution with instance 〈F̂ , x̂, ŷ〉, we take the update schedule ŝ with
the least amount of blocks. Then, by (5.1) and (5.2), we can define s according to:

∀v ∈ V : s(v) =ŝ(v)

∀v̂ ∈ V̂ \ V : s(v) =ŝ(v̂)

The analysis is analogous to the done before, since the converse of the right side
of (5.5), (5.6), (5.7) and (5.8) hold. 2

Now we show that the AND-OR case is NP-Complete.

Theorem 5.5. AND-OR FT is NP-Complete.

66

5.1. FEASIBLE TRANSITION PROBLEM

w ∈ V type xw yw N−
GF

(w)
1 vi, i ∈ {1, . . . , n} OR 0 1 {z1, vφ}
2 v̄i, i ∈ {1, . . . , n} OR 0 1 {z1, vφ}
3 oi, i ∈ {1, . . . , n} OR 0 1 {vi, v̄i}
4 ai, i ∈ {1, . . . , n} AND 1 0 {vi, v̄i}
5 A AND 0 1 {O, o1, · · · , on}
6 O OR 1 0 {a1, · · · , an}
7 a′i, i ∈ {1, . . . , n} AND 0 1 {ai}
8 z1 OR 1 0 {z2}
9 z2 AND 0 1 {z3}
10 z3 OR 1 0 {z1, o1, · · · , on, a′1, · · · , a′n}
11 z4 OR 1 0 {O, vC1 , · · · , vCm}
12 vCj , j ∈ {1, . . . ,m} OR 0 1 {vi : wi ∈ Cj} ∪ {v̄i : ¬wi ∈ Cj}
13 vφ AND 0 1 {vC1 , · · · , vCm}

Table 5.2: Definition of F in the transformation defined in Theorem 5.5.

Proof. First, as in the general case, this problem is NP. To prove NP-hardness, we show
that SAT ≤p AND-OR FT.

Given a ncf φ in variables w1, . . . , wn, with clauses C1, . . . , Cm, we define V and
F = (fv)v∈V : {0, 1}5n+m+7 → {0, 1}5n+m+7, x, y ∈ {0, 1}5n+m+7 as described in Table 5.2.

Here, ∀ i ∈ {1, . . . , n}, nodes vi and v̄i, represent literals wi and ¬wi, respectively. Nodes
vC1 , . . . , vCm represent the clauses. Nodes z1, z2, z3, z4 and vφ, are technical nodes to make
sure that each literal node is updated either before or after all clause nodes (see Figures 5.4
and 5.5). Finally, ∀ i ∈ {1, . . . , n}, nodes oi, ai, a

′
i together with nodes A and O and its

connection structure with nodes z1, z2 and z3 make sure that nodes vi and v̄i have opposite
values when necessary (see Figures 5.4 and 5.5), using that:

fA(x) = 1 ∧ fO(x) = 0 ⇐⇒ ∀i ∈ {1, . . . , n} : xv̄i = ¬xvi (∗)

(=⇒) Let w be such that φ(w) = 1, then we consider the update schedule s as defined
in Table 5.3. It is clear from Table 5.3 that F s(x) = y.

(⇐=) Let s be an update schedule such that F s(x) = y.

Let xs be the global state just before node vφ gets updated. Then

fvφ

(
xsvCj

: j ∈ {1, . . . ,m}
)

= 1. Besides, given the definitions of F , x and y, we have

the following conditions for s:

1) ∀i ∈ {1, . . . , n} , s(vi) ≤ s(z1) ∨ s(vφ) < s(vi).

2) ∀i ∈ {1, . . . , n} , s(v̄i) ≤ s(z1) ∨ s(vφ) < s(v̄i).

3) ∀i ∈ {1, . . . , n} , s(vi) < s(oi) ∨ s(v̄i) < s(oi).

67

5.1. FEASIBLE TRANSITION PROBLEM

Bi

vi v̄i

oi

ai

a′i

0
1

0
1

0
1

1
0

0
1

Z

z1

z3

z2

1
0

0
1

1
0

vφ

Figure 5.4: Structure that together with its connection structure with nodes A and O allows
that literal nodes have opposite values when necessary (Theorem 5.5).

4) ∀i ∈ {1, . . . , n} , s(ai) ≤ s(vi) ∨ s(ai) ≤ s(v̄i).

5) ∀i ∈ {1, . . . , n} , s(oi) < s(A) ∧ s(A) ≤ s(O).

6) ∀i ∈ {1, . . . , n} , s(ai) < s(O).

7) ∀i ∈ {1, . . . , n} , s(a′i) ≤ s(ai).

8) s(z1) ≤ s(z2).

9) s(z2) ≤ s(z3).

10) ∀i ∈ {1, . . . , n} , s(z3) ≤ s(a′i) ∧ s(z3) ≤ s(oi) ∧ s(z1) < s(z3) .

11) ∀j ∈ {1, . . . ,m} , s(z4) ≤ s(vCj) ∧ s(O) < s(z4).

12) ∀j ∈ {1, . . . ,m} ,∃i ∈ {1, . . . , n} : s(vi) < s(vCj) ∨ s(v̄i) < s(vCj).

13) ∀j ∈ {1, . . . ,m} , s(vCj) < s(vφ).

If we observe the labels generated by s, we can see that only labels incoming to nodes
vCj , oi, ai, vi and v̄i remain undefined. Now, from the previous conditions we have that:

a) Let be i ∈ {1, . . . , n} such that s(vi) ≤ s(z1), then we have:

s(vi) ≤ s(z1)
(10,7)
< s(ai)

(6)
< s(O)

(11)
< s(z4)

(11)

≤ s(vCj)
(13)
< s(vφ)

b) Analogously, if s(vφ) < s(vi), then s(z1) < s(vi).

c) 1), a) and b) imply:

∀i ∈ {1, . . . , n} : s(vi) ≤ s(z1) Y s(vφ) < s(vi)

68

5.1. FEASIBLE TRANSITION PROBLEM

B1 Bn
. . .

Z z4

vC1

vCm

··
· vφOA

o1 ona1
an

Figure 5.5: GF . The structure connection of z4 and vφ allows that literal nodes update either
before or after all clause nodes, in the transformation defined in Theorem 5.5.

d) Analogously:
∀i ∈ {1, . . . , n} : s(v̄i) ≤ s(z1) Y s(vφ) < s(v̄i)

e) Besides, if s(vi) ≤ s(z1), then:

s(vi) ≤ s(z1)
(10,7)
< s(ai)

(4)
=⇒ s(ai) ≤ s(v̄i)

(2)
=⇒ s(vφ) < s(v̄i)

f) Analogously, if s(vφ) < s(vi), then s(v̄i) ≤ s(z1).

Properties c) and d) imply that when clause nodes get updated, they all have the same
input, namely xs =

(
xsv1 , . . . , x

s
vn , x

s
v̄1
, . . . , xsv̄1

)
. Therefore, fvφ (xs) = 1.

Properties (∗), e) and f) imply that xs =
(
xsv1 , . . . , x

s
vn ,¬xsv1 , . . . ,¬xsvn

)
and therefore

φ(x̂) = 1, where x̂ =
(
xsv1 , . . . , x

s
vn

)
. 2

5.1.1. OR Feasible Transition Problem

In this section we consider F : {0, 1}n → {0, 1}n an OR function with interaction digraph
G = (V,A) and x, y ∈ {0, 1}n. We are trying to find out an update schedule s such that:
F s(x) = y. As a consequence of Lemma 5.3, we can consider Vc = ∅.
Remark 5.3. We note that if Vc 6= ∅, as an extension of Lemma 5.3, we can also remove all
arcs incoming to nodes in V01 ∪ V11 that have at least one incoming arc from a node in V11,
since they will get the value one that they need no matter the labels of their incoming arcs.
That is, Â = A \R, where:

R = {(u, v) ∈ A : u ∈ Vc} ∪
{

(u, v) ∈ A : v ∈ N+
11 ∩ (V01 ∪ V11)

}
N+

11 =
⋃
v∈V11

N+
G (v)

69

5.1. FEASIBLE TRANSITION PROBLEM

k s (k) xk F s(x)k
vi : wi = 1 1 0 · · · 0 1 · · · 1
vi : wi = 0 11 0 · · · 0 1 · · · 1
v̄i : wi = 1 12 0 · · · 0 1 · · · 1
v̄i : wi = 0 2 0 · · · 0 1 · · · 1

z1 3 1 0
z2 4 0 1
z3 5 1 0
ai 6 1 · · · 1 0 · · · 0
a′i 6 0 · · · 0 1 · · · 1
oi 6 0 · · · 0 1 · · · 1
A 7 0 1
O 7 1 0
z4 8 1 0
vCj 9 0 · · · 0 1 · · · 1
vφ 10 0 1

Table 5.3: Transition table of the states defined in the transformation defined in Theorem 5.5.

You can see an example of this transformation in Figure 5.6. We note that after removing
these arcs, we may get AND nodes. However, these AND nodes will have empty incoming
neighborhood and therefore they are not part of the problem.

Example 5.2. Let us consider an OR function F with interaction digraph as shown in Fig-
ure 5.6 a). If we consider V11 = {1, 2}, V00 = {3, 4}, V01 = {5, 6} and V10 = {7, 8}, then the
result of the transformation is shown in Figure 5.6 b).

Now, for the existence of such s, Lemma 5.2 give us observe two immediate necessary
conditions that depend only on x and y, and not on the structure of G:

∀v ∈ V10, ∀u ∈ N−G (v) : xu = 0 ∨ yu = 0

∀v ∈ V01, ∃u ∈ N−G (v) : xu = 1 ∨ yu = 1

We call above conditions as compatible neighbors property.

Since constructing an update schedule that correspond to a certain update digraph can
be done in polynomial time (Aracena et al., 2011), we focus on solving the problem by labeling
only a sufficient amount of arcs.

According to Lemma 5.2, all arcs incoming to a node in V10, are uniquely determined,
i.e., ∀v ∈ V10, ∀u ∈ N−G (v):

u ∈ V01 =⇒ lab(u, v) = ⊕.

70

5.1. FEASIBLE TRANSITION PROBLEM

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

a) b)

Figure 5.6: Example of the transformation defined in Lemma 5.3 and Remark 5.3.

u ∈ V10 =⇒ lab(u, v) = 	.

Lemma 5.6. If G [V10] has cycles, then OR FT has no solution.

Proof. If G [V10] has a cycle C, then by Lemma 5.2 we have that:

∀a ∈ A(C) : lab(a) = 	

This give us a forbidden cycle in GR
lab which tell us that Glab is not an update digraph.

Therefore OR FT has no solution. 2

Now, we have to analyze the incoming arcs of the nodes in V01 and we would like to have
something similar to the nodes in V10. Since the OR function tell us that for this nodes, only
one incoming one is necessary to determine its value, we need to define the label of only one
incoming arc. However, which one we chose? It is in this choice were it lies the complexity
of this problem.
Nevertheless, Lemma 5.2 tell us that for v ∈ V01 and u ∈ N−G (v):

If we label u ∈ V01 then lab(u, v) must be 	.

If we label u ∈ V10 then lab(u, v) must be ⊕.

This conditions are summarized at Figure 5.7.

To study the labeling condition of the nodes in V01, we need the following definitions.

71

5.1. FEASIBLE TRANSITION PROBLEM

V10

	 	

	
	

	 	
	

	

	

	

	

V01

⊕ ⊕ ⊕ ⊕

	 	
	

	

Figure 5.7: Necessary labels for the existence of solution for OR FT.

Definition 5.2. We define the following sets:

L+ = {v ∈ V01 : N+
G (v) ∩ V10 6= ∅}

L− = {v ∈ V01 : N−G (v) ∩ V10 6= ∅}
O = {v ∈ V01 : N−G (v) ∩ V10 = ∅}

Remark 5.4. We note that for OR FT to have a solution it is necessary that:

∀v ∈ L+, ∀u ∈ N+
G (v) ∩ V10 : lab(u, v) = ⊕

For each node in {v ∈ L+ : N−G (v) ⊆ V10}, at least one incoming arc must be labeled
⊕.

Definition 5.3. Let GP = (V P , EP) the poset graph of G[V01] and {S0
t }qt=1 ⊆ V P its source

nodes.

Remark 5.5. If V11 6= ∅, then by Lemma 5.3, every node in N+
11 ∩ V01 is a source node of

ĜP , that we will call constant induced source nodes, and denote {C0
t }q1t=1.

The non constant induced source nodes will be denoted {N0
t }q2t=1.

Now we show another necessary condition for OR FT to have a solution.

Lemma 5.7. If there exists a non trivial source node of GP contained in O, then OR FT
does not have a solution.

72

5.1. FEASIBLE TRANSITION PROBLEM

Proof. Let be t ∈ {1, . . . , q} such that S0
t ⊆ O. By Lemma 5.2, and definition of O, we

must 	-label at least one incoming arc of every node of S0
t . Clearly in this case we have a

forbidden cycle in GR
lab and therefore OR FT does not have a solution. 2

Therefore for OR FT to have a solution, every source node of GP must have at least one
node in L−.

Remark 5.6. We note that:

If V11 6= ∅, then the previous lemma must be applied to the non trivial and non constant
induced source nodes of GP .

If
{
v ∈ L− : N−G (v) ⊆ V10

}
6= ∅ then every node in this set will be a trivial non constant

induced source node of GP .

Every node in the above set does not fulfill condition of Lemma 5.7.

Corollary 5.8. If L− = ∅, then OR FT does not have a solution.

Above results can be summarized in the following theorem

Theorem 5.9. Let be V a set of n nodes and F = (fv)v∈V be an OR function with interaction
digraph G = (V,A), and x, y ∈ {0, 1}n without constant nodes. If there exists an update
schedule s such that F s(x) = y, then the following conditions hold:

i. V10 and V01 has the compatible neighbors property.

ii. G[V10] is acyclic.

iii. L− 6= ∅.

iv. Every non trivial source node of GP have at least one node in L−.

Now we show sufficient conditions for OR FT to have a solution.

Theorem 5.10. If necessary conditions of Theorem 5.9 hold and

i. There exists A0 = {(ut, vt)}qt=1 ⊆ A such that

∀t ∈ {1, . . . , q} : ut ∈ V10 ∧ vt ∈ S0
t

ii. The partially labeled digraph Glab that comes from Lemma 5.2 and Remark 5.4, including
the correct labeling of A0, is an update digraph.

Then, there exists an update schedule s such that F s(x) = y.

73

5.1. FEASIBLE TRANSITION PROBLEM

Proof. We consider Glab the update digraph that comes from Lemma 5.2 and Remark 5.4,
including the correct labeling of A0. First we note that:

∀t ∈ {1, . . . , q} : lab (ut, vt) = ⊕

Now, we do the following:

Starting from v1, we build a spanning tree of the nodes in R+
G(v1)∩V01 and we add the

nodes to a new defied set ST .

For each t ∈ {2, . . . , q}, starting from vt, we build a spanning tree of the nodes in(
R+
G(vt) ∩ V01

)
\ ST and we add the nodes to ST .

We label every arc between nodes in ST as 	.

Since,

1. ∀t ∈ {1, . . . , q} : lab (ut, vt) = ⊕∧ lab (vt, wt) = 	, where wt is the corresponding node
in ST ,

2. ∀u ∈ L+ ∩ ST , ∀v ∈ N+
G (u) ∩ V10 : lab (u, v) = ⊕ ∧ lab (w, u) = 	, where w is the

corresponding node in ST ,

we have that this new labeled digraph, Glab, is an update digraph. Since all necessary
dynamical conditions are met, we have that every update schedule s such that

∀a ∈ Sup (Glab) : labs (a) = lab (a)

is such that F s(x) = y, and can be found in polynomial time. 2

Remark 5.7. If V11 6= ∅, then A0 = {(ut, vt)}q2t=1 where:

∀t ∈ {1, . . . , q2} : ut ∈ N0
t

Next example shows that condition i from Theorem 5.10 cannot be checked sequentially.

Example 5.3. Let us consider an OR function with part of its interaction digraph as shown
in Figure 5.8. There, gray nodes represent nodes in V10 and red nodes represent nodes in
{N0

t }q2t=1 (see Definition 5.3 and Remark 5.5).

1. If we first label arc (4, i) as ⊕, then necessarily arcs (7, f1) and (9, f2) must be labeled
	, because otherwise Glab would not be an update digraph. Additionally, arcs (6, f1)
and (13, f2) must be labeled ⊕ to fulfill dynamical conditions.

2. If we now label arc (1, j) as ⊕, then necessarily incoming arcs to node k1 must be labeled
	 so Glab remains an update digraph. Therefore, OR FT does not get a solution in
this way since there is no local solution for node k2. We obtain the same conclusion if
we first label arc (2, j) as ⊕.

Thus, there is no solution if we proceed in this way. However, we might find a solution if we
start labeling arc (3, i).

74

5.1. FEASIBLE TRANSITION PROBLEM

k1

1

j

2

k2 12

9

8i

7

11

f2

5 410

13

f1

6
3

⊕

⊕

	

	

	

	

	

	

⊕

	

	

	
⊕

⊕

	
	

	

⊕

⊕ 	

⊕
	

⊕

⊕

⊕

Figure 5.8: Example of an OR network such that condition i from Theorem 5.10 cannot be
checked sequentially.

Algorithm

Summarizing the previous results, we obtain the following algorithm, for a given digraph
G = (V,A), x, y ∈ {0, 1}|V |.

1. We apply the transformation to deal with constant nodes according to the established
in Lemma 5.3 and Remark 5.3.

2. If there is a cycle between nodes in V10, then there is no solution. If there is not, we go
to the next step.

3. We label the incoming arcs to nodes in V10 according to the established in Lemma 5.2.

4. If the resulting partial labeled digraph it is an update digraph, then we go to the next
step, if it is not, then there is no solution.

5. We check for the existence of the set A0 from Theorem 5.10.

6. OR FT has a solution if and only if such set exists.

Only step 4 is non polynomial. We note that this algorithm can be extended to obtain
an update schedule if it exists. The complete algorithm will be presented in Appendix A.

5.1.2. Polynomial cases

In this section we are going to give two cases, depending of the structure of the interaction
digraph, in which FT is polynomial.

Proposition 5.11. AND-OR FT is polynomial if ∆−
(
GF
)
≤ 1.

75

5.2. FEASIBLE LIMIT CYCLE PROBLEM

Proof. Let 〈F, x, y〉 be an instance of AND-OR FT. By Lemma 5.3, we can suppose Vc = ∅.
Since ∆−

(
GF
)
≤ 1, the necessary conditions established in Lemma 5.2 become sufficient.

Now, it is easy to see that these conditions can be checked in polynomial time. 2

Remark 5.8. We note that in this class of networks, given s1 and s2 two different updates
schedules, we have that: F s1 = F s2 ⇐⇒ GF

s1
= GF

s2
⇐⇒ LC(F, s1) = LC(F, s2) (Aracena

et al., 2009, 2013b).

Proposition 5.12. SYMMETRIC OR FT is polynomial.

Proof. Let 〈F, x, y〉 be an instance of OR FT, with symmetric GF = (V,A). By Lemma 5.3,
we can suppose Vc = ∅. By the results of the previous section (summarized in the given
algorithm), we only need to prove that the existence of the set A0 from Theorem 5.10 can
be decided in polynomial time.

We note that for the existence of solution, by Lemma 5.6, it is necessary that V01 be
disconnected, i.e., ∀v ∈ V01 : N−G (v) ∩ V01 = ∅. Besides, by Lemma 5.7, it is necessary that
every source node of the poset graph of V01 has an element that has an incoming arc from a
node in V10. Since V10 is disconnected, choosing any set A0 fulfilling its definition will give
us an update digraph and therefore SYMMETRIC OR FT has a solution.

In this way, the existence or non existence of the update schedule can be decided in
polynomial time. 2

5.2. Feasible Limit Cycle Problem

In this section we study the complexity of determining the existence of an update sched-
ule such that a given sequence of state vectors is a limit cycle for a given global activation
function. That is, we are going to consider the problem

Feasible Limit Cycle Problem (FLC): Given a set V of n elements and
F = (fv)v∈V : {0, 1}n → {0, 1}n and a sequence C =

[
xk
]p
k=0

such that xk ∈ {0, 1}n, xk are
pairwise distinct and xp ≡ x0. Does there exist an update schedule s such that C ∈ LC (F, s)?

MON FLC and OR FLC problems are the corresponding FLC problems when F is
a monotonic and an OR function, respectively. We note that this problem gain importance
when we consider several kind of update schedules because if it is restricted to the parallel
update schedule is trivially polynomial.

Now, to prove the next result, we are going to use an special case of the general satisfi-
ability problem (SAT), which is defined as follows:

76

5.2. FEASIBLE LIMIT CYCLE PROBLEM

Not-All-Equal Satisfiability (NAESAT): Given φ a ncf in variables w1, . . . , wn.
Does there exist w such that φ(w) = 1 and there is no clause in φ all literals of which are set
to 1?

This problem is known to be NP-Complete (Schaefer, 1978). Observe that NAESAT is
equivalent to: given a ncf φ, does there exists w such that φ(w) = φ(w̄) = 1?

First, we prove that the general case is NP-Complete.

Theorem 5.13. FLC is NP-Complete.

Proof. It is clear that FLC is NP. To prove NP-Hardness we show that NAESAT ≤p FLC.

Given a 3-ncf φ in variables w1, . . . , wn, we consider V = {v1, . . . , vn, vφ},
x0 = (~0, 1), x1 = (~1, 1) and C = [x0, x1, x0], where ~0 = (0, . . . , 0), ~1 = (1, . . . , 1) ∈ {0, 1}n and
F = (fv)v∈V : {0, 1}n+1 → {0, 1}n+1 as follows:

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

See GF in Figure 5.9.

vφ

v1

v2

vn

...

Figure 5.9: Interaction digraph of the transformation defined in Theorem 5.13.

(=⇒) If there exists w such that φ(w) = φ(w̄) = 1, then by defining
s = {vi : wi = 1}{vφ}{vi : wi = 0}, it is clear that C ∈ LC(F, s).

(⇐=) Let us suppose that there exists an update schedule s such that C ∈ LC(F, s). Then
we define w ∈ {0, 1}n such that wi = 1 ⇐⇒ s(vi) < s(vφ). It is easy to check that
φ (w) = φ (w̄) = 1. 2

Next, we show that the ideas of the previous proof can be extended to the monotonic
case.

Theorem 5.14. MON FLC is NP-Complete.

77

5.2. FEASIBLE LIMIT CYCLE PROBLEM

Proof. As in the general case, this problem is NP. To prove NP-Hardness, we
show that SAT ≤p MON FLC. Given a ncf φ in variables w1, . . . , wn, we build
F = (fv)v∈V : {0, 1}2n+3 → {0, 1}2n+3, C = [x0, x1, x2 ≡ x0] where x0, x1 ∈ {0, 1}2n+3 and
V = {v1 . . . , vn, v̄1, . . . , v̄n, z1, z2, z3}, as follows:

∀i ∈ {1, . . . , n} fvi(x) = xv̄i ∧ (xz1 ∨ xz3)
∀i ∈ {1, . . . , n} fv̄i(x) = xvi

fz1(x) =
n∧
i=1

xvi

fz2(x) = xz1 ∧ φ̂ (xvi , xv̄i : i ∈ {1 . . . , n})
fz3(x) = xz2

where nodes vi represent literals wi; nodes v̄i represent literals ¬wi and φ̂ is the monotonic
version of φ, in variables xv1 , . . . , xvn , xv̄1 , . . . , xv̄n , that comes from φ replacing literals wi by
xvi and ¬wi by xv̄i (see Figure 5.10). Finally, we define x1 = x0 and:

x0
u =

{
1 if u ∈ {v1, . . . , vn}
0 if u ∈ {v̄1, . . . , v̄n, z1, z2, z3}

z1

v1 vn

z3

v̄1 v̄n

z2

. . .

. . .

Figure 5.10: Interaction digraph of the transformation defined in Theorem 5.14.

The definition of F is similar than in Theorem 5.13, but monotonically. In order to
achieve the monotony property, we add the v̄i nodes that allow us to use φ̂ instead of φ, and
the role of vφ back there, that is to allow cycling, is monotonically done here by nodes z1, z2

and z3.

(=⇒) Let w be such that φ(w) = 1, then if we consider the update schedule:

s = {z1}{vi, v̄i : wi = 0}{z2}{vi, v̄i : wi = 1}{z3}

78

5.2. FEASIBLE LIMIT CYCLE PROBLEM

v ∈ V vi : wi = 1 vi : wi = 0 v̄i : wi = 1 v̄i : wi = 0 z1 z2 z3

s(v) 4 2 4 2 1 3 5
x0
v 1 1 0 0 0 0 0

x1
v = F s(x0)v 0 0 1 1 1 1 1

x0
v = F s(x1)v 1 1 0 0 0 0 0

Table 5.4: Transition table of the states defined in Theorem 5.14.

From Table 5.4, it is clear that ∀k ∈ {0, 1} : F s(xk) = xk+1 and x2 ≡ x0. Therefore, C ∈
LC(F, s).

(⇐=) Let s be an update schedule such that ∀k ∈ {0, 1} : F s(xk) = xk+1 and let xs be the
global state just before node z1 get updated. Since 1 = x1

z2
= f sz1(x

0) = fz1(x
s), we have that

φ̂(xsvi , x
s
v̄i

: i ∈ {1, . . . , n}) = 1. On another hand, we note that ∀i ∈ {1, . . . , n}:

1) x0
vi

= 1, x1
vi

= 0, x0
v̄i

= 0, x1
v̄i

= 1 =⇒ s(v̄i) ≤ s(vi).

2) x1
vi

= 0, x0
vi

= 1, x1
v̄i

= 1, x0
v̄i

= 0 =⇒ s(vi) ≤ s(v̄i).

3) Since vi and v̄i are connected by a cycle of length 2, necessarily

(s(vi) ≥ s(z1) ∧ s(v̄i) ≥ s(z1)) Y (s(vi) < s(z1) ∧ s(v̄i) < s(z1))

Thus, 1) and 2) imply that ∀i ∈ {1, . . . , n} : s(vi) = s(v̄i) and then
∀i ∈ {1, . . . , n} , ∀k ∈ {0, 1} : xkv̄i = ¬xkvi . From this and 3), we have that ∀i ∈
{1, . . . , n} , ∀k ∈ {0, 1} : xsv̄i = ¬xsvi .

Therefore, φ(x̂) = 1, with x̂ =
(
xsvi
)n
i=1

. 2

To prove the OR case, we need a completely different approach, since above ideas are
not sufficient when we are restricted to OR functions. First we prove the SAT variation we
are going to use. We define:

SAT01: Given φ a ncf such that φ(~0) = φ(~1) = 1. Does there exists x /∈
{
~0,~1
}

such that

φ(x) = 1?

Lemma 5.15. SAT01 is NP-Complete.

Proof. It is clear that SAT01 is NP. To prove NP-Hardness, we show that SAT ≤p SAT01.

Let φ be a ncf in variables x1 . . . , xn and clauses C1, . . . , Cn. We define φ̂ a ncf as follows:

φ̂ (x) =


m∧
j=1

n∧
i,k=1
i6=k

(Cj ∨ ¬xi ∨ xk) if φ(~0) = φ(~1) = 0

x1 ∨ ¬x2 if φ(~0) = 1 ∨ φ(~1) = 1

79

5.2. FEASIBLE LIMIT CYCLE PROBLEM

Clearly, φ̂(~0) = φ̂(~1) = 1.

(=⇒) Let x ∈ {0, 1}n be such that φ(x) = 1. Hence,

If x ∈
{
~0,~1
}

, then φ̂(x) = x1 ∨ ¬x2 and considering x̂ = (1, 0) we have that φ̂(x̂) = 1.

If x /∈
{
~0,~1
}

, then considering x̂ = x we have that φ̂(x̂) = 1.

(⇐=) Let x̂ be such that φ̂ (x̂) = 1 and let us suppose that ∀x : φ(x) = 0, then there exist
j ∈ {1, . . . ,m} such that Cj (x̂) = 0.

Thus, ∀i 6= k ∈ {1, . . . , n} : Cj (x̂) ∨ ¬x̂i ∨ x̂k = ¬x̂i ∨ x̂k = 1.

Now, if there exists k ∈ {1, . . . , n} such that x̂k = 0, then for each i 6= k ∈ {1, . . . , n} we
have that x̂i = 0 and therefore, x̂ = ~0. Otherwise, x̂ = ~1.

Analogously, if there exists i ∈ {1, . . . , n} such that x̂i = 1, then for each
k 6= i ∈ {1, . . . , n} we have that x̂k = 1 and therefore, x̂ = ~1. Otherwise, x̂ = ~0.

Thus, φ̂ is only satisfiable by ~0 and ~1. 2

Now we prove that OR FLC is NP-Complete.

Theorem 5.16. OR FLC is NP-Complete.

Proof. We prove that SAT01 ≤p OR FLC.

Let φ be ncf in variables w1, . . . , wn with clauses C0, . . . , Cm−1 such that φ(~0) = φ(~1) = 1.

We define an OR function F and a limit cycle C such that each variable wi is represented
by a node vi ∈ V (GF) and whose value is defined according to the relative order of schedule
between node vi and a given node vφ. Besides, each clause of φ is associated to a transitions
in the limit cycle C.

More precisely, we define F = (fv)v∈V : {0, 1}3m+n+4 → {0, 1}3m+n+4 an OR function by
its interaction digraph defined in Table 5.5 (see an example in Figure 5.11).

v ∈ V N−
GF (v)

vi, i ∈ {1, . . . , n} {z0} ∪
{
C1
j : wi ∈ Cj

}
∪
{
C2
j : ¬wi ∈ Cj

}
Ck
j , j ∈ {0, . . . ,m− 1} , k ∈ {1, 2}

{
Ck−1
j

}
C0
j , j ∈ {0, . . . ,m− 1}

{
C2
j−1 mod m

}
zk, k ∈ {0, 1, 2} {zk−1 mod 3}
vφ {v1, . . . , vn}

Table 5.5: Definition of GF defined in Theorem 5.16.

80

5.2. FEASIBLE LIMIT CYCLE PROBLEM

And, we define C = [x0,0, x1,0, x2,0, x0,1, . . .] =
[
xk,j
]
k∈Z3,j∈Zm of length 3m as:

xk,jvi =

{
1 if k = 0 ∨ (k = 1 ∧ wi ∈ Cj) ∨ (k = 2 ∧ ¬wi ∈ Cj)
0 otherwise

xk,j
Ck
′
j′

=

{
1 if j = j′ ∧ k = k′

0 otherwise

xk,jzk′ =

{
1 if k = k′

0 otherwise

xk,jvφ = 1.

See an example in Table 5.6.

φz0

z1

z2

v1 v2 v3 v4

C0
0 C0

1 C0
2

C1
0 C2

0 C1
1 C2

1 C1
2 C2

2

⊕ ⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕

⊕⊕

⊕

	 	 		

	 	

	
	

	

	

	

	
	

⊕

Figure 5.11: Example ofGF for φ (w) = (w1 ∨ w2 ∨ ¬w3 ∨ w4) ∧ (¬w2 ∨ w3 ∨ ¬w4) ∧ (¬w1 ∨ ¬w3)
according to the transformation defined in Theorem 5.16.

In this way, each clause Cj in φ is represented by the vectors x1,j and x2,j such that:
x1,j
vi

= 1 and x2,j
vi

= 0 if the literal wi is in Cj; x
1,j
vi

= 0 and x2,j
vi

= 1 if ¬wi is in Cj, and
x1,j
vi

= 0 and x2,j
vi

= 0 otherwise. Hence, for all j ∈ {0, . . . ,m− 1}, x2,j
vφ

= 1 if and only if

there exists i ∈ {1, . . . , n} such that either x1,j
vi

= 1, x2,j
vi

= 0 and s(vi) ≥ s(vφ) or x1,j
vi

= 0,
x2,j
vi

= 1 and s(vi) < s(vφ). Therefore, we obtain an equivalence between the relative order
of nodes vi and vφ, and the value of the variable wi as follows:

s (vi) ≥ s (vφ) ⇐⇒ wi = 1 (5.9)

In this way, variable vφ remains frozen with value equal to one if and only if all clauses
are satisfiable.

81

5.2. FEASIBLE LIMIT CYCLE PROBLEM

C0
0 C1

0 C2
0 C0

1 C1
1 C2

1 C0
2 C1

2 C2
2 z0 z1 z2 v1 v2 v3 v4 vφ

x0,0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
x1,0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1
x2,0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1

x0,1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1
x1,1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1
x2,1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1

x0,2 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1
x1,2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
x2,2 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1

x0,3 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

Table 5.6: Example of C for φ (w) = (w1 ∨ w2 ∨ ¬w3 ∨ w4) ∧ (¬w2 ∨ w3 ∨ ¬w4) ∧ (¬w1 ∨ ¬w3)
according to the transformation defined in Theorem 5.16.

Besides, we note that, by Lemma 5.2 applied to each transition in C, we have that for
every update schedule s such that C ∈ LC (F, s):

∀k ∈ {1, 2} , ∀j ∈ {0, . . . ,m− 1} : s
(
Ck−1

j

)
≥ s

(
Ck

j

)
(5.10)

∀j ∈ {0, . . . ,m− 1} : s
(
C2

j−1 mod m

)
≥ s

(
C0

j

)
(5.11)

∀k ∈ {0, 1, 2} : s (zk−1 mod 3) ≥ s (zk) (5.12)

∀i ∈ {1, . . . , n} : s (z0) < s (vi) (5.13)

∀i ∈ {1, . . . , n} , ∀k ∈ {1, 2} , ∀j ∈
{
t : Ck

t ∈ N−
GF (i)

}
: s

(
Ck

j

)
< s (vi) (5.14)

We note that conditions (5.10)–(5.14) define uniquely the labels of the arcs involved as
shown in Figure 5.11.

We show now the details of the proof:

(=⇒) Let w /∈
{
~0,~1
}

be such that φ(w) = 1, then we define the update schedule s as

s = B1B2B3B4B5,

where

B1 =
{
Ck
j : j ∈ {0, . . . ,m− 1} , k ∈ {0, 1, 2}

}
,

B2 = {zk : k ∈ {0, 1, 2}} ,
B3 = {vi : wi = 0} ,
B4 = {vφ} ,
B5 = {vi : wi = 1} .

It is easy to see that s satisfies conditions (5.9)–(5.14) and for all v ∈ V \ {vφ},

xk,jv =

{
f sv (x2,j−1 mod m) if k = 0

f sv (xk−1,j) otherwise

82

5.2. FEASIBLE LIMIT CYCLE PROBLEM

Also by condition (5.9) and by definition of F and C we have that:

f svφ
(
xk,j
)

=



∨
{i:s(vi)<(vφ)}

x0,j
vi
∨ ∨
{i:s(vi)≥(vφ)}

x2,j−1 mod m
vi

if k = 0∨
{i:s(vi)<(vφ)}

x1,j
vi
∨ ∨
{i:s(vi)≥(vφ)}

x0,j
vi

if k = 1∨
{i:s(vi)<(vφ)}

x2,j
vi
∨ ∨
{i:s(vi)≥(vφ)}

x1,j
vi

if k = 2

Moreover,

w 6= ~1 =⇒
∨

{i:s(vi)<(vφ)}
x0,j
vi

= 1, and

w 6= ~0 =⇒
∨

{i:s(vi)≥(vφ)}
x0,j
vi

= 1, and

φ(w) = 1 =⇒
∨

{i:s(vi)<(vφ)}
x2,j
vi
∨

∨
{i:s(vi)≥(vφ)}

x1,j
vi

= 1.

Hence ∀j ∈ {0, . . . ,m− 1} , ∀k ∈ {0, 1, 2} : f svφ
(
xk,j
)

= 1. Therefore, C ∈ LC (F, s).

(⇐=) Let s be an update schedule such that C ∈ LC(F, s). Then, by definition of C, conditions
(5.10)–(5.14) are satisfied and we define w by condition (5.9). Clearly, φ(w) = 1.

Since φ(~0) = φ(~1) = 1, then following configurations do not appear in C:

xk,j v1 · · · vn vφ
x0,j 1 ~1 1 1

x1,j 1 ~1 1 1

x2,j 0 ~0 0 1

x0,j+1 1 ~1 1 1

xk,j
′

v1 · · · vn vφ
x0,j′ 1 ~1 1 1

x1,j′ 0 ~0 0 1

x2,j′ 1 ~1 1 1

x0,j′+1 1 ~1 1 1

Thus, ∃i, j ∈ {1, . . . , n} : s (vi) ≥ s (vφ) ∧ s (vj) < s (vφ) and therefore w /∈
{
~0,~1
}

. 2

Remark 5.9. Note that the proof of the previous theorem can be modified to prove that
OR FLC is NP-Complete restricted to sequential update schedules. We just need to add two
extra nodes in the digraph: a node a to the cycle with nodes Ck

j and a node b to the cycle

with nodes zk. In this way, the limit cycle C will be xk,jb = xk,jz0 and xk,ja = xk,j
C0

0
in the new

nodes. From Lemma 5.2 we deduce conditions about the update schedule compatible with a
sequential update.

83

5.2. FEASIBLE LIMIT CYCLE PROBLEM

5.2.1. Polynomial cases

In this section, we are going to show some cases in which FLC is polynomial.

Given the results of Section 4.1, we can prove that SYMMETRIC OR FLC is also
polynomial.

Proposition 5.17. SYMMETRIC OR FLC is polynomial.

Proof. Let F be an OR function with symmetric GF and a sequence of different state
vectors C =

[
xk
]p
k=0

, xk ∈ {0, 1}n , xp = x0. According to Proposition 4.4, to determine the
solution to the problem is necessary and sufficient to check p = 2, F (x0) = x1 and F (x1) = x0,
which can be done in polynomial time. 2

However, symmetrization by itself is not a sufficient condition as shown in the following
result.

Proposition 5.18. SYMMETRIC FLC is NP-Hard.

Proof. To prove this result, we keep the limit cycle of Theorem 5.13 but we change the
local activation functions by the following:

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi ∧ xvφ
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

In this way GF is symmetric, and the proof is similar to Theorem 5.13. 2

Now we consider FLC problem in AND-OR networks but only for limit cycles of length
2, that we call AND-OR 2-FLC problem. For simplicity, we are going to prove the OR case,
since the extension to the AND-OR case is straightforward.

Proposition 5.19. OR 2-FLC is polynomial.

Proof. Let be F an AND-OR function and C = [x0, x1, x2 ≡ x0]. The idea is to label
GF according to the dynamical conditions imposed by the limit cycle using Lemma 5.2,
then if this digraph partially labeled is an update digraph, the Extension Theorem shown in
(Aracena et al., 2011) ensure that there exists an update schedule that generates it. We note
that we construct an update digraph instead of the update schedule, since in Aracena et al.
(2009) was shown that two different update schedules that yields the same update digraph
have the same dynamical behavior. Now we proceed to the details of the algorithm.

1. First, we note that considering that we want that F s (x0) = x1 for some update schedule
s, we can define, according to Definition 5.1, the sets V10, V01, V00, V11, Vc. It is clear
that nodes in Vc are frozen in C.

84

5.3. OTHER RELATED PROBLEMS

2. We decompose GF into its strongly connected components G1, G2, . . . Gm.

3. For every node in V11, we check that every reachable node from it belongs to V11. By
the dynamical behavior of OR functions, if there is a reachable node that does not
belongs to V11, then C can not be a limit cycle under any update schedule.

4. For every node in V00, we check that every node that reach it node belongs to V00. By
the behavior of OR functions, if there is such a node that does not belongs to V00, then
C can not be a limit cycle under any update schedule.

At this point, we have only frozen strongly connected components, namely
G1

00, G
2
00, . . . G

m0
00 for those that are frozen at value 0 and G1

11, G
2
11, . . . G

m1
11 for those

that are frozen at value 1, or components in which every node cycle in C, namely
G1
c , G

2
c , . . . G

mc
c . Besides, each component Gi

11 send arcs to components of the same
kind, as well as the components Gi

00 only receive arcs from components of the same
kind.

Due to the behavior of OR functions, it is clear that the labels in the arcs between
nodes in the frozen connected components can take any value to fulfill the dynami-
cal conditions imposed by C, as well as the labels in the arcs between components.
Therefore, we just need to label the arcs in the components Gi

c.

5. For each node in the components Gi
c, we label their incoming arcs according to the

conditions in the update schedule established in Lemma 5.2.

6. We check if the digraph partially labeled is an update digraph. Such test is polynomial
as shown in Aracena et al. (2011). If the digraph partially labeled is an update digraph,
the Extension Theorem ensure us that there is a label function lab defined in all arcs
of GF such that (GF , lab) is an update digraph and such that it contains the partial
labeled digraph as a sub-digraph. Therefore, there exists an update schedule s such
that C ∈ LC(F, s). Besides, such an update schedule can be found in polynomial time
(Aracena et al., 2011). 2

Corollary 5.20. AND-OR 2-FLC is polynomial.

Proof. We just need to apply an analogous procedure as in the previous theorem, but
considering the AOA decomposition of the interaction digraph. 2

5.3. Other related problems

In this section, we study another related decision problems, defined as follows:

1. Predecessor Problem (PP): Given F : {0, 1}n → {0, 1}n and y ∈ {0, 1}n. Does
there exists x ∈ {0, 1}n such that F (y) = x?

It is known that this problem is NP-Complete (ref?).

85

5.3. OTHER RELATED PROBLEMS

2. Boolean Network Predecessor Problem (BNP): Given N = (F, s) a Boolean
network and y ∈ {0, 1}n. Does there exists x ∈ {0, 1}n such that F s(x) = y?

3. Update Schedule Predecessor Problem (USP): Given F : {0, 1}n → {0, 1}n
and y ∈ {0, 1}n. Does there exist an update schedule s and x ∈ {0, 1}n such that
F s(x) = y?

4. Feasible Multiple Transitions Problem (FMT): Given F : {0, 1}n → {0, 1}n,
and two sets

{
xk : k ∈ {0, . . . , p}

}
⊆ {0, 1}n and

{
yk : k ∈ {0, . . . , p}

}
⊆ {0, 1}n. Does

there exist an update schedule s such that ∀k ∈ {0, . . . , p} : F s(xk) = yk?

5. Feasible Trajectory Problem (FTy): Given F : {0, 1}n → {0, 1}n and a set{
xk : k ∈ {0, . . . , p}

}
⊆ {0, 1}n. Does there exist an update schedule s such that

∀k ∈ {0, . . . , p− 1} : F s(xk) = xk+1?

Now we show all the complexity results.

Theorem 5.21. BNP is NP-Complete.

Proof. Clearly, this problem is NP. To show NP-Hardness, we show that PP ≤p BNP.

Let F : {0, 1}n → {0, 1}n be a Boolean function and y ∈ {0, 1}n, and let us consider
N = (F, sp) where sp is the parallel update schedule. Then, it is clearly true that:

∃x ∈ {0, 1}n : F (x) = y ⇐⇒ ∃x ∈ {0, 1}n : F sp(x) = y

2

Theorem 5.22. USP is NP-Complete.

Proof. Clearly, this problem is NP. To show NP-Hardness, we show that SAT ≤p USP.

Given a ncf φ in variables w1, . . . , wn, we consider x = ~1 ∈ {0, 1}n+1, V and
F = (fv)v∈V : {0, 1}n+1 → {0, 1}n+1 as follows:

∀i ∈ {1, . . . , n} : fvi(x) = ¬xvi
fvφ(x) = φ(xvi : i ∈ {1, . . . , n})

(=⇒) If there exists w such that φ(w) = 1, then we define y = ~0 ∈ {0, 1}n+1 and
s = {vi : wi = 1} {vφ} {vi : wi = 0}. Clearly F s(x) = y.

(⇐=) Let us suppose that there exists an update schedule s and x ∈ {0, 1}n such that
F s(x) = y. If we consider w =

(
xsvi
)n
i=1

, where xs is the global state just before node
vφ gets updated, then φ(w) = 1.

2

Theorem 5.23. OR USP is NP-Complete.

86

5.3. OTHER RELATED PROBLEMS

Proof. It is clear that as in the general case, this problem is NP. To prove NP-Hardness,
we show that OR FT ≤p OR USP.

Let be F : {0, 1}n → {0, 1}n an OR function with interaction digraph GF = (V,A) and
x, y ∈ {0, 1}n and let us define for each q ∈ {0, 1} :

Vq = {v ∈ Vqq ∪ V¬qq : N−
GF

(v) ⊆ Vc}

We built F̂ : {0, 1}2n → {0, 1}2n by constructing GF̂ =
(
V̂ , Â

)
, where V̂ contains each

node v ∈ V and a copy of it, denoted v̂, and Â is defined as follows:

1.- Â = A \ {(v, u) ∈ A : v ∈ Vc, u /∈ V0 ∪ V1}.
i.- ∀q ∈ {0, 1}, ∀v ∈ Vq, we choose a node wv,q ∈ N−GF (v)∩Vqq, if exists. We note that

wq always exists if there is a solution.

ii.- Â = Â \
{

(u, v) ∈ A : v ∈ Vq, u ∈ N−GF (v) \ {wv,q} , q ∈ {0, 1}
}

.

2.- ∀v ∈ V : N−
GF̂

(v̂) = {v}.

Finally, we define ŷ := (y, x). See an example of the transformation in Figure 5.12.

(=⇒) If there exists update schedule s = B1 B2 · · ·Bm such that F s(x) = y, then considering

ŝ =
{
v ∈ V̂ \ V

}
{v ∈ B1} {v ∈ B2} · · · {v ∈ Bm} and x̂ = (x, x) ∈ {0, 1}2n, we have:

∀v ∈ V : f̂ ŝv̂ (x̂) = x̂v = xv

∀v ∈ V \ (V0 ∪ V1) : f̂ ŝv (x̂) = f sv (x) = yv

∀q ∈ {0, 1}, ∀v ∈ Vq : f̂ ŝv (x̂) =

{
x̂wv,q if s(wv,q) ≥ s(v)
ŷwv,q if s(wv,q) < s(v)

=q = yv

Therefore, F̂ ŝ(x̂) = ŷ.

(⇐=) Let us suppose that there exists an update schedule ŝ = B1 B2 · · ·Bm and
x̂ ∈ {0, 1}2n such that F̂ ŝ(x̂) = ŷ. Then, if we consider the update schedule
s = {v ∈ B1 ∩ V } {v ∈ B2 ∩ V } · · · {v ∈ Bm ∩ V }, removing the empty blocks, and
z = (x̂vi)

n
i=1 ∈ {0, 1}

n we have that F s(z) = y.

Now, we are going to show that z can be chosen as x. We note that ∀v ∈ V :

ŷv̂ = xv =

{
yv if ŝ(v) < ŝ(v̂)
x̂v if ŝ(v) ≥ ŝ(v̂)

(5.15)

and therefore ∀v ∈ V : ŝ(v) ≥ ŝ(v̂) =⇒ x̂v = xv.

On another hand, if v /∈ Vc, then xv 6= yv and by (5.15) necessarily ŝ(v) ≥ ŝ(v̂) and
therefore x̂v = xv.

Now, let be v ∈ Vqq such that ŝ(v) < ŝ(v̂) and x̂v 6= xv, with q ∈ {0, 1}, then

87

5.3. OTHER RELATED PROBLEMS

GF GF̂

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v̂1
v̂2

v̂3
v̂4

v̂5

v̂6

v̂7

v̂8

a) b)

Figure 5.12: Example of the transformation defined in Theorem 5.23, as detailed in Exam-
ple 5.4.

• If N+

GF̂
(v) = {v̂}, then changing the value of x̂v to q = xv does not produce any

effect in the value of node v nor the rest of the network.

• If ∃u ∈ N+

GF̂
(v) \ {v̂}, then u ∈ Vq, ŝ(v) < ŝ(u) and ŷu = ŷv = q. Therefore,

changing the value of x̂v to q = xv do not produce any effect in the value of nodes
v and u, nor the rest of the network.

Thus, F s(x) = y. 2

Example 5.4. Let us consider an OR function F with interaction digraph as shown in
Figure 5.12 a). If we consider, V11 = {1, 2}, V00 = {3, 4}, V01 = {5, 6} and V10 = {7, 8},
then the result of the transformation is shown in Figure 5.12 b), with V1 = {v2}, V0 = {v3},
wv2,1 = v1 and wv3,0 = v4.

Theorem 5.24. The following problems are NP-Complete:

i.- FTy.

ii.- FMT.

iii.- OR FTy.

iv.- OR FMT.

88

5.3. OTHER RELATED PROBLEMS

Proof.

i.- Clearly, this problem is NP. To show NP-Hardness, it is clear that FLC ≤p FTy through
identity reduction. By Theorem 5.13 we have the result.

ii.- Clearly, this problem is NP. To show NP-Hardness, it is clear that FTy ≤p FMT through
identity reduction. By part i, we have the result.

iii.- Straightforward from Theorem 5.16 and part i.

iv.- Straightforward from parts ii and iii. 2

89

Chapter 6

Applications

In this section we are going to apply some of the resulta of the previous chapters to
some Boolean networks used in the literature.

First, we study the mammalian cell cycle network (Fauré et al., 2006; Ruz et al., 2014)
and next we study the fission yeast cell-cycle network (Davidich and Bornholdt, 2008; Goles
et al., 2013). Here, using mainly the results of Chapter 3, we study the robustness of limit
cycles when the update schedule is changed and we exhibit some update schedule classes,
different of the parallel one, that generates the same attractors that the respective networks
updated in parallel.

6.1. Analysis of the robustness of limit cycles of the

mammalian cell cycle network

In this section we study the robustness of the mammalian cell cycle network first in-
troduced in Fauré et al. (2006) and extensively studied in Ruz et al. (2014), where some
theoretical results were given, but their approach is essentially by simulations, using all pos-
sible update schedules. Our aim here is to give some insights to the robustness of the networks
when the update schedule is changed, without using any simulations. This network was also
studied in Gómez (2009), but the objective was to find non sequential update schedules
that do not shared limit cycles with the parallel one. Now, we are interested in to find non
equivalent updated schedules that yield the same limit cycle that the parallel schedule.

We proceed now to describe the network. The network has 10 nodes, that for simplifying
notation we denote it as shown in Table 6.1.

The local activation functions are given in Table 6.2 according to described in Ruz et al.
(2014). The interaction digraph is given in Figure 6.1.

This network synchronously updated, denoted Np = (F, sp) has only one fixed point
and one limit cycle of length 7 as attractors, that are described in Table 6.3. The complete

90

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

CycD ≡ v1 p27 ≡ v6

Rb ≡ v2 Cdc20 ≡ v7

E2F ≡ v3 Cdh1 ≡ v8

CycE ≡ v4 UbcH10 ≡ v9

CycA ≡ v5 CycB ≡ v10

Table 6.1: Notation for the nodes of the mammalian cell cycle network.

fv1(x) = xv1
fv2(x) = (¬xv1 ∧ ¬xv10) ∧ ([¬xv4 ∧ ¬xv5] ∨ xv6)
fv3(x) = (¬xv2 ∧ ¬xv5 ∧ ¬xv10) ∨ (xv6 ∧ ¬xv2 ∧ ¬xv10)
fv4(x) = xv3 ∧ ¬xv2
fv5(x) = (¬xv2 ∧ ¬xv7 ∧ ¬(xv8 ∧ xv9)) ∧ (xv3 ∨ xv5)
fv6(x) = (¬xv1 ∧ ¬xv10) ∧ ([¬xv4 ∧ ¬xv5] ∨ [xv6 ∧ ¬(xv4 ∧ xv5)])
fv7(x) = xv10
fv8(x) = (¬xv5 ∧ ¬xv10) ∨ xv7 ∨ (xv6 ∧ ¬xv10)
fv9(x) = ¬xv8 ∨ (xv8 ∧ xv9 ∧ [xv7 ∨ xv5 ∨ xv10])
fv10(x) = ¬xv7 ∧ ¬xv8

Table 6.2: Local activation functions of the mammalian cell cycle network.

dynamical behavior is shown in Figure 6.2

91

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

Figure 6.1: Interaction digraph of the mammalian cell cycle network.

v ∈ V
(
GF
)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Fixed Point
x0
v 0 1 0 0 0 1 0 1 0 0

Limit Cycle
x0
v 1 0 1 0 0 0 0 1 1 0
x1
v 1 0 1 1 0 0 0 1 0 0
x2
v 1 0 1 1 1 0 0 1 0 0
x3
v 1 0 0 1 1 0 0 0 0 0
x4
v 1 0 0 0 1 0 0 0 1 1
x5
v 1 0 0 0 1 0 1 0 1 1
x6
v 1 0 0 0 0 0 1 1 1 0
x7
v 1 0 1 0 0 0 0 1 1 0

Table 6.3: Attractors of the mammalian cell cycle network synchronously updated.

92

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

x0

x0

x1

x2

x3

x4

x5

x6

Figure 6.2: Dynamical behavior of the mammalian cell cycle network synchronously updated.

93

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

We note that the frozen nodes of C =
[
xk
]7
k=0

are the nodes in the set Z = {v1, v2, v6}.
It is clear that any sequential update schedule does not have C as a limit cycle (Goles and
Salinas, 2008). Besides, according to Proposition 3.5, any update schedule s satisfying the
following property does not has C as a limit cycle:

∀v /∈ Z, ∀u ∈ N−
GF

(v) : labs(u, v) = 	

For instance,
∀v /∈ Z : sv = {u ∈ V : u 6= v} {v}

On another hand, by Corollary 3.11, there exists an updated schedule s /∈ [sp]GF , such
that C ∈ LC(F, s). Moreover, Theorem 3.10 allow us to construct it. In fact, there are
several such update schedules. We detail some of them:

∀v ∈ Z : sv = {u ∈ V : u 6= v} {v}
sv1,v2 = {u ∈ V : u /∈ {v1, v2}} {v1, v2}
sv1,v6 = {u ∈ V : u /∈ {v1, v6}} {v1, v6}
sv2,v6 = {u ∈ V : u /∈ {v2, v6}} {v2, v6}

sv1,v2,v6 = {u ∈ V : u /∈ Z} {v1, v2, v6}

Besides, also have C as a limit cycle all update schedules that are a division (considering
all permutations) of the second block of the last four update schedules above.

On another hand, in Section 4.1.3 another kind of equivalence classes was defined, such
that update schedules in the same class have a one-to-one correspondence between their
limit cycles, maintaining even their length, but they do not necessarily have limit cycles in
common. However, since in this case, the involved nodes are frozen in C, they do share this
limit cycle. In this way, according to Proposition 4.16, every cyclic permutation of the update
schedules above will have C as a limit cycle.

Next, we explicit the dynamical behavior of some of these schedules. In Figure 6.3 is
shown the update digraph of Nv2 = (F, sv2) and in Figure 6.4 is shown its full dynamical
behavior.

In Figure 6.5 is shown the update digraph of N6,2 = (F, s6,2), where
s6,2 = {u ∈ V : u /∈ {v2, v6}} {v6} {v2}. In Figure 6.6 is shown its full dynamical behavior.

94

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

⊕

⊕

⊕

⊕

	

	

	

	

	

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

Figure 6.3: GF
sv2

.

x0

x0

x1

x2

x3

x4

x5

x6

Figure 6.4: Dynamical behavior of Nv2 .

95

6.1. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE MAMMALIAN
CELL CYCLE NETWORK

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

⊕

⊕

⊕

⊕

	

	

	

	

	

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕⊕

	

	

	

	
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

Figure 6.5: GF
s6,2

.

x0

x0

x1

x2

x3

x4

x5

x6

Figure 6.6: Dynamical behavior of N6,2.

96

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

6.2. Analysis of the robustness of limit cycles of the

fission yeast cell-cycle network

In this section we are going to study the robustness of the fission yeast cell-cycle network
first introduced in Davidich and Bornholdt (2008) and extensively studied in Goles et al.
(2013), where some theoretical and simulation results were given. Just like in the previous
section, our aim here is to give some insights to the robustness of the networks when the
update schedule is changed, without using any simulations. In particular, we are interested
in to find non equivalent updated schedules that yields the same limit cycle that the parallel
schedule.

We proceed now to describe the network. The network has 10 nodes, that for simplifying
notation we are going to denote as shown in Table 6.4.

Start ≡ v1 Slp1 ≡ v6

Sk ≡ v2 Cdc2/Cdc13* ≡ v7

Cdc2/Cdc13 ≡ v3 Weel/Mik1 ≡ v8

Ste9 ≡ v4 Cdc25 ≡ v9

Rum1 ≡ v5 PP ≡ v10

Table 6.4: Notation for the nodes of the fission yeast cell-cycle network.

The local activation functions are threshold functions with an special Heaviside function
as described next:

∀ ∈ {1, . . . , 10} : fvi(x) = H

(
n∑
j=1

wijxvj − θi
)

=



0 if
n∑
j=1

wijxvj − θi < 0

1 if
n∑
j=1

wijxvj − θi > 0

xvi if
n∑
j=1

wijxvj − θi = 0

The weight matrix and threshold vector are given in Table 6.5 and the weigh matrix
digraph is given in Figure 6.7.

97

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

W =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 −1 0 0 0 0 0 0 0 0 0
v2 1 −1 0 0 0 0 0 0 0 0
v3 0 0 0 −1 −1 −1 0 0 0 0
v4 0 −1 −1 0 0 0 −1 0 0 1
v5 0 −1 −1 0 0 0 −1 0 0 1
v6 0 0 0 0 0 −1 1 0 0 0
v7 0 0 0 −1 −1 −1 0 −1 1 0
v8 0 0 −1 0 0 0 0 0 0 1
v9 0 0 1 0 0 0 0 0 0 −1
v10 0 0 0 0 0 1 0 0 0 −1


, θ =



0
0
−1

2

0
0
0
1
2

0
0
0



Table 6.5: Weight matrix and threshold vector of the fission yeast cell-cycle network.

v2

v1

v3v4 v5

v6

v7

v8

v9v10

Figure 6.7: Weight matrix digraph of the fission yeast cell-cycle network.

98

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

fv1(x) = 0
fv2(x) = xv1
fv3(x) = ¬xv4 ∧ ¬xv5 ∧ ¬xv6
fv4(x) = (¬xv2 ∧ ¬xv3 ∧ xv4 ∧ ¬xv7) ∨ (¬xv2 ∧ ¬xv3 ∧ xv4 ∧ xv10)

∨(¬xv2 ∧ ¬xv3 ∧ ¬xv7 ∧ xv10)
∨(¬xv2 ∧ xv4 ∧ ¬xv7 ∧ xv10)
∨(¬xv3 ∧ xv4 ∧ ¬xv7 ∧ xv10)

fv5(x) = (¬xv2 ∧ ¬xv3 ∧ xv5 ∧ ¬xv7) ∨ (¬xv2 ∧ ¬xv3 ∧ xv5 ∧ xv10)
∨(¬xv2 ∧ ¬xv3 ∧ ¬xv7 ∧ xv10)
∨(¬xv2 ∧ xv5 ∧ ¬xv7 ∧ xv10)
∨(¬xv3 ∧ xv5 ∧ ¬xv7 ∧ xv10)

fv6(x) = xv7
fv7(x) = ¬xv4 ∧ ¬xv5 ∧ ¬xv6 ∧ ¬xv8 ∧ xv9
fv8(x) = (¬xv3 ∧ xv8) ∨ (¬xv3 ∧ xv10) ∨ (xv8 ∧ xv10)
fv9(x) = (xv3 ∧ xv9) ∨ (xv3 ∧ ¬xv10) ∨ (xv9 ∧ ¬xv10)
fv10(x) = xv6

Table 6.6: Logical functions of the fission yeast cell-cycle network.

The logical equivalent functions are given Table 6.6 and the interaction digraph in Fig-
ure 6.8

This network synchronously updated, denoted Np = (F, sp) has twelve fixed points and
one limit cycle of length 3 as attractors. The limit cycle is described in Table 6.7. The
complete dynamical behavior is shown in Figure 6.9

v ∈ V
(
GF
)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

x0
v 0 0 0 0 0 0 0 0 1 1
x1
v 0 0 1 1 1 0 1 1 0 0
x2
v 0 0 0 0 0 1 0 0 1 0
x3
v 0 0 0 0 0 0 0 0 1 1

Table 6.7: Limit cycle of the fission yeast cell-cycle network synchronously updated.

We note that the frozen nodes of C =
[
xk
]3
k=0

are the nodes in the set Z = {v1, v2}.
It is clear that any sequential update schedule does not have C as a limit cycle (Goles and
Salinas, 2008). Besides, according to Proposition 3.5, any update schedule s satisfying the
following property does not have C as a limit cycle:

∀v /∈ Z, ∀u ∈ N−
GF

(v) : labs(u, v) = 	
For instance,

∀v /∈ Z : sv = {u ∈ V : u 6= v} {v}

On another hand, by Corollary 3.11, there exists an updated schedule s /∈ [sp]GF , such
that C ∈ LC(F, s). Moreover, Theorem 3.10 allow us to construct it. In fact, there are five

99

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

v2

v1

v3v4 v5

v6

v7

v8

v9v10

Figure 6.8: Interaction digraph of the fission yeast cell-cycle network.

of such update schedules, that we detail next:

∀v ∈ Z : sv = {u ∈ V : u 6= v} {v}
sv1,v2 = {u ∈ V : u /∈ {v1, v2}} {v1, v2}
s1,2 = {u ∈ V : u /∈ {v1, v2}} {v1} {v2}
s2,1 = {u ∈ V : u /∈ {v1, v2}} {v2} {v1}

We note that in this case, due to the topology of the interaction digraph, the update
schedules sv1,v2 , sv1 and s2,1 belong to the parallel update schedule class. Besides, sv2 and
s1,2 belong to the same class. Therefore, Theorem 3.10 only ensure us one different update
schedule class that has C as a limit cycle.

On another hand, in Section 4.1.3 was defined another kind of equivalence classes, such
that update schedules in the same class have a one-to-one correspondence between their
limit cycles, maintaining even their length, but they do not necessarily have limit cycles in
common. However, since in this case, the involved nodes are frozen in C, they do share this
limit cycle. In this way, according to Proposition 4.16, every cyclic permutation of the update
schedules above will have C as a limit cycle.

Thus, we have at least two equivalent classes different from the parallel one that yield C
as a limit cycle. They are, sv2 and s

′
v2

= {v2} {u ∈ V : u 6= v2}. In Figure 6.10 is shown the

100

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

x0

x1

x2

Figure 6.9: Dynamical behavior of the fission yeast cell-cycle network synchronously updated.

update digraph of Nv2 = (F, sv2) and in Figure 6.11 is shown its full dynamical behavior.
In Figure 6.12 is shown the update digraph of N

′
v2

= (F, s
′
v2

) and in Figure 6.13 is shown its
full dynamical behavior.

101

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

v2

v1

v3v4 v5

v6

v7

v8

v9v10

⊕

⊕

⊕

⊕

	

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

Figure 6.10: GF
sv2

.

102

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

x0

x1

x2

Figure 6.11: Dynamical behavior of Nv2 .

103

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

v2

v1

v3v4 v5

v6

v7

v8

v9v10

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

⊕

	

⊕

⊕

⊕

	

⊕

⊕

⊕

⊕

⊕ ⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

⊕

Figure 6.12: GF
s′v2

.

104

6.2. ANALYSIS OF THE ROBUSTNESS OF LIMIT CYCLES OF THE FISSION
YEAST CELL-CYCLE NETWORK

x0

x1

x2

Figure 6.13: Dynamical behavior of N
′
v2

.

105

Chapter 7

Conclusions

7.1. English version

In this thesis, we were interested in studying the dynamical behavior, mainly the limit
cycles, of a given Boolean function updated under different deterministic update schedules
(parallel, block sequential and sequential).

Our first subject of interest (Chapter 3), was to study the relationship between the
update digraphs and the shared limit cycles of Boolean networks which differ only in their
update schedule. This was motivated by a result proved in Aracena et al. (2009), which
states that update schedules in the same equivalence class (equal update digraphs) yield the
same dynamical behavior. Thus, our aim here was to define, if possible, new equivalence
classes such that update schedules in the same class have the same set of limit cycles but not
necessarily the whole dynamics. In this context, we first proved that the decision problems
involved are all NP-hard (that is, intractable computationally problems). Next, we showed
that it is not possible to define the desired equivalence classes, since for any two given different
update digraphs, there always exists a Boolean function having as interaction digraph the
given digraph and such that there is at least one limit cycle that is not common in both
networks. This tell us that the information provided by the update digraphs is not sufficient
to determine whether the networks have the same set of limit cycles.

Our next step was to study what information can provide the update digraph about
the sharing of limit cycles. We first propose a polynomial algorithm that works as necessary
condition for two Boolean networks to share at least one limit cycle. Furthermore, we show
that the existence of update schedules preserving some limit cycle depends strongly on the
global activation function and the structural properties of the network (see Example 3.1).
In some Boolean networks, the only update schedules keeping a given limit cycle are those
preserving the whole dynamical behavior of the network. This fact was observed previously by
Goles and Salinas (2008) in the particular case of parallel and sequential update schedules.
However, it is possible to define under certain conditions a set of non equivalent update
schedules, that preserve some given limit cycles. These update schedules depend strongly on

106

7.1. ENGLISH VERSION

the frozen nodes of the preserved limit cycles. We also give some trivial cases in which the
related decision problems are polynomial. It is an open problem to know whether there are
non trivial families of Boolean networks and interaction digraphs in which these problems
are polynomial.

A more basic problem than deciding if there are two non equivalent update schedules
that share a limit cycle for a given Boolean network, is to determine if there exists an update
schedule that yields any limit cycle (referred in Chapter 4 as LCE problem). The related
problem that consists in determining whether the parallel update schedule yields any limit
cycle is known to be NP-Hard (Just, 2006). In this context, we proved that the LCE problem
is NP-Hard even for AND-OR functions and in functions having a symmetric interaction
digraph. This problem in symmetric OR functions is polynomial, this was proved in Goles
and Noual (2012). Here we extend this result to symmetric AND-OR functions. In this
case, we prove that such an update schedule exists if and only if the limit cycle set of the
network updated in parallel is non empty. Furthermore, this last condition is characterized
by a property in the interaction digraph that can be verified in polynomial time. This tell us
that the simplicity of the Boolean function and its topological architecture are both necessary
for establishing polynomiality. The general OR case remains open, nevertheless we give a
characterization that describes the existence of solutions for it. This characterization define
a new decision problem, that consists in labeling a given digraph such that the resulting
labeled digraph is an update digraph, and the associated parallel digraph is non primitive.
The complexity of this problem remains open, but we give some partial insights to solve it.
In particular, we showed that if there is a digraph that has no solution, then neither any
digraph that contains it. This allow us to search for forbidden configurations when analyzing
the problem.

On the other hand, we also studied the problem of determining whether there exists an
update schedule that does not generate any limit cycle and we proved that it is NP-Hard.
In Goles and Salinas (2010) is shown a polynomial algorithm that constructs from a given
monotonic network another network such that, when updated in parallel, it has the same
fixed points but without limit cycles. Motivated by that work, we studied if it was possible
to do the same but such that the constructed network was the associated parallel network.
However, we show that this is not always possible by exhibiting an example of an AND-
OR function that has limit cycles updated under any update schedule (see Example 4.5).
Nevertheless, we proved that such an update schedule always exists in the OR case. Besides,
an update schedule yielding this property can be found in polynomial time (Goles and Noual,
2012). It remains open the study of the complexity for other families of Boolean functions.

Our next subject of study is related to the inference of update schedules yielding a given
dynamical property, mainly the limit cycles (Chapter 5). It is clear that as a prior step,
we need to consider all the results developed in Chapter 4, since it would be pointless to
search for an update schedule, that has a particular sequence as a limit cycles, if the Boolean
network cannot cycle for any update schedule. For starting our analysis, we considered a
more basic case, that is a single transition. We proved that it is NP-Complete even for OR
functions. In this case, we give a characterization of the existence of solution in terms of

107

7.1. ENGLISH VERSION

the interaction digraph and an algorithm (OR FT Algorithm) to test it, this algorithm is
polynomial in the symmetric case. It remains open whether there is another non trivial class
of OR networks in which this algorithm becomes polynomial. About the sequence problem,
we also proved that it is NP-Complete even for OR networks. It would be no surprise that
the symmetric OR case is once again polynomial. But just as in the case of the LCE problem,
we proved that symmetry by it self is not enough for establishing polynomiality. In addition,
we proved that the AND-OR case restricted to limit cycles of length two is also polynomial.
However, it is not clear and it remains open what happens with limit cycles of a fixed length
greater than two. It is known that the satisfiability problem of normal conjunctive formulas
has a change of phase in its complexity when the number of clauses is increased, and we
conjecture that the complexity of the problem for this case has a similar behavior. Finally,
we also studied another related problems and we proved that all of them are NP-Complete
even in the OR case.

Last but not least, we applied the results from Chapter 3 and Chapter 4 to study the
robustness of limit cycles against changes in the update schedule of two known genetic regu-
latory networks: the mammalian cell cycle network and the fission yeast cell cycle network.
The limit cycles of these networks updated in parallel have frozen nodes, which allow us to
construct some non equivalent update schedules that share those limit cycles. Furthermore,
using the cyclic equivalence classes of update schedules defined in Chapter 4 (that consists in
cyclic permutations of the blocks of an update schedule that generates shifted limit cycles),
and due to the frozen characteristic of the nodes involved, we were able to define a few more
non equivalent update schedules that also generates the same limit cycles. Besides, we give
some local conditions on the update digraphs, such that any update schedule that satisfies
them, does not generate the same limit cycles.

108

7.2. SPANISH VERSION

7.2. Spanish version

En esta tesis, estuvimos interesados en estudiar el comportamiento dinámico, princi-
palmente de los ciclos limites, de una función Booleana dada actualizada bajo diferentes
esquemas de actualización deterministas (paralelo, secuencial, bloque-secuencial).

Nuestro primer tema de interés (Caṕıtulo 3), fue estudiar la relación entre los d́ıgrafos
de actualización y los ciclos limites compartidos de redes Booleanas que solo difieren en su
esquema de actualización. Esto motivado por un resultado probado en Aracena et al. (2009),
que establece que los esquemas de actualización en la misma clase de equivalencia (d́ıgrafos
de actualización iguales) generan el mismo comportamiento dinámico. Aśı, nuestro objeti-
vo fue determinar, si es que es posible, nuevas clases de equivalencia de forma tal que los
esquemas de actualización en la misma clase produzcan el mismo conjunto de ciclos limites
pero no necesariamente toda la dinámica. En este contexto, primero probamos que los pro-
blemas de decisión relacionados son todos NP-Hard (esto es, problemas computacionalmente
intratables). A continuación, mostramos que no es posible definir las clases de equivalencia
deseadas, puesto que para cualquier par de d́ıgrafos de actualización distintos, siempre existe
una función Booleana que tiene como d́ıgrafo de interacción el d́ıgrafo dado, y de forma tal
que hay al menos un ciclo limite que no es común en ambas redes. Esto nos dice que la
información proporcionada por los d́ıgrafos de actualizacion no es suficiente para determinar
si las redes tienen el mismo conjunto de ciclos limites.

Nuestro siguiente paso fue estudiar que información puede proveer el d́ıgrafo de actuali-
zación acerca de la capacidad de compartir ciclos limites. Primero propusimos un algoritmo
polinomial que trabaja como una condición necesaria para que dos redes Booleanas com-
partan al menos un ciclo limite. Mas aún, mostramos que la existencia de esquemas de
actualización que preserven algunos ciclos limites depende fuertemente de las funciones loca-
les de activación y de las propiedades estructurales de la red (ver Ejemplo 3.1). En algunas
redes Booleanas, los únicos esquemas que preservan un ciclo limite dado son aquellos que
preservan todo el comportamiento dinámico de la red. Este hecho fue observado previamente
por Goles and Salinas (2008) en el caso particular de los esquemas paralelo y secuencial. Sin
embargo, es posible definir bajo ciertas condiciones un conjunto de esquemas de actualización
no equivalentes que preservan un conjunto dado de ciclos limites. Estos esquemas dependen
fuertemente de los nodos “frozen” de los ciclos limites preservados. También, damos algu-
nos casos triviales en el que los problemas de decisión relacionados son polinomiales. Queda
abierto el saber si existen familias no triviales de redes Booleanas y d́ıgrafos de interacción
en el que estos problemas sean polinomiales.

Un problema mas básico que el decidir si hay dos esquemas de actualización no equi-
valentes que comparten un ciclo limite para una red Booleana dada, es determinar si existe
un esquema de actualización que genere algún ciclo limite (referido como problema LCE en
el Caṕıtulo 4). El problema relacionado que consiste en determinar si el esquema paralelo
genera ciclos limites es conocido ser NP-Hard (Just, 2006). En este contexto, probamos que
el problema LCE es NP-Hard incluso para funciones AND-OR y en funciones que tienen un

109

7.2. SPANISH VERSION

d́ıgrafo de interacción simétrico. En Goles and Noual (2012), se probó que este problema es
polinomial en funciones OR simétricas. Aqúı, extendemos este resultados a funciones AND-
OR simétricas. En este caso, probamos que tal esquema existe si y solo si el conjunto de
ciclos limites de la red iterada en paralelo es no vaćıo. Mas aún, esta última condición esta
caracterizada por una propiedad en el d́ıgrafo de interacción que puede ser verificada en tiem-
po polinomial. Esto nos dice que la simplicidad de la función Booleana y de su arquitectura
topológica son ambas necesarias para establecer la polinomialidad. El caso OR general per-
manece abierto, pero damos una caracterización que describe la existencia de solución. Esta
caracterización define un nuevo problema de decisión, que consiste en etiquetar un d́ıgrafo
dado de forma tal que el d́ıgrafo etiquetado resultante sea un d́ıgrafo de actualización, y que
el d́ıgrafo paralelo asociado sea no primitivo. La complejidad de este problema permanece
abierta, pero damos algunos resultados parciales al respecto. En particular, mostramos que
si hay un d́ıgrafo en el cual este problema no tiene solución, entonces tampoco hay solución
en cualquier d́ıgrafo que lo contenga. Esto nos permite buscar por configuraciones prohibidas
cuando lo analizamos.

Por otra parte, también estudiamos el problema de determinar si existe un esquema de
actualización que no genere ciclos limites y probamos que es NP-Hard. En Goles and Salinas
(2010) se da un algoritmo polinomial que construye a partir de una red monótona dada, otra
red que, cuando es iterada en paralelo, tiene los mismos puntos fijos que la red original, pero
sin ciclos limites. Motivados por este trabajo, estudiamos si era posible de realizar lo mismo,
pero de forma tal que la red construida coincidiera con la red paralela asociada. Sin embargo,
mostramos que esto no es siempre posible exhibiendo un ejemplo de función AND-OR que
genera ciclos limites iterada bajo cualquier esquema de actualización (ver Ejemplo 4.5). No
obstante, probamos que tal esquema siempre existe en el caso OR. Además, un esquema
de actualización con esta propiedad puede ser encontrado en tiempo polinomial (Goles and
Noual, 2012). Permanece abierto el estudio de la complejidad para otras familias de funciones
Booleanas.

Nuestro siguiente tema de estudio esta relacionado con la inferencia de esquemas de
actualización que producen alguna propiedad dinámica dada, principalmente ciclos limites
(Caṕıtulo 5). Es claro que como un paso previo, necesitamos considerar los resultados desarro-
llados en el Caṕıtulo 4, puesto que no tendŕıa sentido el buscar un esquema de actualización
que tenga una secuencia particular como ciclo limite, si la red no genera ciclos limites con
ningún esquema. Para comenzar nuestro análisis, consideramos un caso mas básico, el de
una sola transición. Probamos que este problema es NP-Completo incluso para redes OR.
En este caso, damos una caracterización de la existencia de solución en términos del d́ıgrafo
de interacción y un algoritmo (OR FT Algorithm) para testearlo, que se vuelve polinomial
en el caso simétrico. Permanece abierto si existen otras clases de redes OR en el que este
algoritmo se vuelve polinomial. Con respecto al problema de la secuencia, también probamos
que es NP-Completo incluso para redes OR. No debeŕıa sorprender que el caso OR simétrico
es nuevamente polinomial. Pero al igual que el caso del problema LCE, probamos que solo
la simetŕıa no es suficiente para establecer la polinomialidad. Además, probamos que el caso
AND-OR restringido a ciclos limites de largo dos es polinomial. Sin embargo, no es claro

110

7.2. SPANISH VERSION

y permanece abierto que pasa con ciclos limites con largo fijo mayor que dos. Es conocido
que el problema de satisfacibilidad de formulas normales conjuntivas tiene un cambio de fa-
se en su complejidad cuando el número de clausulas es aumentado, y conjeturamos que la
complejidad del problema en este caso debeŕıa presentar un comportamiento similar. Final-
mente, también estudiamos otros problemas de decisión relacionados y probamos que todos
son NP-Completos incluso en el caso OR.

Por último pero no menos importante, aplicamos los resultados de los Caṕıtulos 3 y 4
para estudiar la robustez de los ciclos limites contra cambios en el esquema de actualización
de dos conocidas redes de regulación génica: la red del ciclo celular mamı́fero y la red del
ciclo celular de la levadura de fisión. Los ciclos limites de estas redes actualizadas en paralelo
tienen nodos frozen, lo que nos permite construir algunos esquemas no equivalentes que
comparten esos ciclos limites. Mas aún, usando las clases de equivalencia ćıclica de esquemas
de actualización definidas en el Caṕıtulo 4 (que consiste en permutaciones ćıclicas de los
bloques de un esquema que genera ciclos limites desplazados), y a la caracteŕıstica frozen de
los nodos involucrados, fuimos capaces de definir unos pocos más esquemas no equivalentes
que también generan los mismos ciclos limites. Por otra parte, dimos algunas condiciones
locales en los d́ıgrafos de actualización, de forma tal que cualquier esquema que las satisfaga,
no genera los mismos ciclos limites.

111

Appendix A

Algorithms

In this chapter, we are going to explicit the some algorithms presented in previous
chapters.

A.1. Preliminary algorithms

In this section, we are going to introduce some existents algorithms that we are going
to use in the following ones.

We recall that in Aracena et al. (2011) was proven that to decide if a partial labeled
digraph is an update digraph can be done in polynomial time, as well as finding an update
schedule that generates a certain update digraph. Besides, some algorithms were given that
we will call CheckingUD with input a partial or total labeled digraph, and UD2US with input
an update digraph, respectively. The output of the first one is a logical value, TRUE or
FALSE, and the output of the second one is the found update schedule.

On another hand, in Aracena et al. (2011) was also proven the Extension Theorem, that
states that if a partial labeled digraph is an update digraph, then there always exists an
extension. Besides, we propose the following algorithm that can find one of such extensions
in polynomial time:

Here, the input is the partial labeled digraph Gl̃ab and the output is the total labeled
digraph Glab. The algorithm basically tries to label an unlabeled arc as ⊕ and test if the
generated labeled digraph is an update digraph. If it is not, the Extension Theorem ensures
us labeling the arc as 	, then the resulting labeled digraph it is an update digraph.

112

A.2. SYMMETRIC AND-OR LIMIT CYCLE EXISTENCE PROBLEM

Procedure ExtendingLab(Gl̃ab)

Output: Glab

1 ∀e ∈ A : lab (e)← #
2 ∀e ∈ Sup

(
Gl̃ab

)
: lab (e)← l̃ab (e)

3 foreach e /∈ Sup (Glab) do
4 lab (e)← ⊕
5 if ¬CheckingUD (Glab) then
6 lab (e)← 	
7 end

8 end

A.2. Symmetric AND-OR Limit Cycle Existence prob-

lem

In Chapter 4 was found a polynomial testable condition that help us to decide whether
there exists an update schedule such that a given symmetric AND-OR function generates limit
cycles when it is updated under such update. Besides, one of the solutions of the problem is
the parallel update schedule. The algorithm is straightforward, and we just need to consider
a procedure, that we will call GetAOA, that gets as input the interaction digraph, an it gives
as output a set containing each element of the AOA decomposition of the interaction digraph.
In this way, the algorithm gets as follows:

SYMMETRIC AND-OR LCE Algorithm

Input: F a symmetric AND-OR function
Output: true or false

1 AOA←GetAOA (GF , VOR(GF), VAND(GF))
2 foreach E ∈ AOA do
3 if E is bipartite then
4 return true

5 end

6 end
7 return false

A.3. OR Feasible Transition problem

We can summarize the results of Section 5.1.1 in the OR FT Algorithm presented is this
one. Before that, we introduce two procedures:

113

A.3. OR FEASIBLE TRANSITION PROBLEM

CNTreatment: it makes the transformation when there are constant nodes
(see Lemma 5.3 and Remark 5.3).

CheckingNC: it checks all necessary conditions presented in Theorem 5.9.

Besides, we are going to use the next procedures, from which we are not going to give
an explicit algorithm:

GettingSets(G, x, y): used in Line 2 of the OR FT Algorithm, it constructs the re-
spective node sets according to Definition 5.1, 5.2 and 5.3, and Remark 5.5.

SNSearch
(
N0

1 , . . . , N
0
q2

)
: used in Line 7 of the OR FT Algorithm, it takes one node

in each N0
t and one incoming arc from V10 for each node, label the arcs as ⊕ and check

if the generated labeled digraph is an update digraph. If it is not, it check another
incoming arcs combination, and then another set of nodes. If it find one, the output
is the start nodes set V0 and the arc set A0. We note that checking if the labeled
digraphs are update digraph can be done in polynomial time, but checking all the
possible combination it is not.

SpanningTree(i, G): used in Line 15 of the OR FT Algorithm, is a polynomial pro-
cedure to get the nodes of an spanning tree in G starting at i.

Procedure CNTreatment(G, V00, V11, V10, V01)

Output:
(
Ĝ, V01, V10, VR

)
if V00 6= ∅ then

V10 ← V00 ∪ V10

Â← A \ {(i, j) ∈ A : i ∈ V00}
else

Â← A
end
if V11 6= ∅ then

V01 ← V11 ∪ V01

Â← Â \ {(i, j) ∈ A : i ∈ V11}
N+

11 ←
⋃

i∈V11
N+
GF

(i)

Â← Â \
{

(i, j) ∈ A : j ∈ N+
11 ∩ V01

}
VR ← N+

11 ∩ V01

else
VR ← ∅

end

114

A.3. OR FEASIBLE TRANSITION PROBLEM

Procedure CheckingNC(G, Ĝ, V00, V11, V10, V01, L
−, O,N0

1 , . . . , N
0
q2

)

Output: true or false

if ∃i ∈ V01 : N−G (i) ⊆ V00 then
return false //Lemma 5.2

else if ∃i ∈ V10 : N−G (i) ∩ V11 6= ∅ then
return false //Lemma 5.2

else if Ĝ[V10] has cycles then
return false //Lemma 5.6

else if L− = ∅ then
return false //Corollary 5.8

else if ∃t ∈ {1, . . . , q2} : N0
t is non trivial and N0

t ⊆ O then
return false //Lemma 5.7

else
return true

end

115

A.3. OR FEASIBLE TRANSITION PROBLEM

OR FT Algorithm

Input: G = (V,A); x, y ∈ {0, 1}|V |

Output:
(
s, Ĝl̃ab, Glab

)
or false

//initialization

1 ∀e ∈ Â : l̃ab (e)← #
2
(
V00, V11, V10, V01, L

+, L−, O, P 0
1 , . . . , P

0
q , N

0
1 , . . . , N

0
q2

)
← GettingSets (G, x, y)

//constant nodes transformation

3

(
Ĝ, V01, V10, VR

)
← CNTreatment (G, V00, V11, V10, V01)

4 if CheckingNC
(
G, Ĝ, V00, V11, V10, V01, L

−, O,N0
1 , . . . , N

0
q2

)
then

//labeling the arcs incoming to V10

5 ∀i ∈ V10, ∀j ∈ N−Ĝ (i) ∩ V10 : l̃ab(j, i)← 	
6 ∀i ∈ L+, ∀j ∈ N+

Ĝ
(i) ∩ V10 : l̃ab(i, j)← ⊕

//start nodes search and labeling, the only non polynomial line in

the algorithm!

7 (V0, A0)← SNSearch
(
N0

1 , . . . , N
0
q2

)
8 if A0 = ∅ then
9 return false

10 else

11 ∀e ∈ A0 : l̃ab (e)← ⊕
12 VR ← V0 ∪ VR

//spanning tree construction and labeling

13 ST ← ∅
14 foreach r ∈ VR do

15 ST ← ST ∪ SpanningTree
(
r, Ĝ

[(
{r} ∪R+

Ĝ
(r) ∩ V01

)
\ ST

])
16 end

17 ∀i ∈ ST , ∀j ∈ N+

Ĝ
(i) ∩ ST : l̃ab(i, j)← 	

//getting the remaining labels

18 Glab ← ExtendingLab(Ĝl̃ab)

//getting the update schedule

19 s← UD2US(Glab)

20 end

21 else
22 return false
23 end

116

A.3. OR FEASIBLE TRANSITION PROBLEM

V10 V01

Figure A.1: Interaction digraph structure after applying the OR FT Algorithm.

We note that the OR FT Algorithm it is also valid for AND-OR functions, after applying
the transformation described in Proposition 5.4.

On another hand, we recall that in Proposition 5.12 was proven that SYMMETRIC OR
FT is polynomial. In terms of the OR FT Algorithm, we just need to change Line 7 by:

(V0, A0)← SNElection
(
N0

1 , . . . , N
0
q2

)
where the SNElection procedure can be described as follows:

Procedure SNElection(N0
1 , . . . , N

0
q2

)

Output: (V0, A0)

V0 ← ∅
A0 ← ∅
foreach t ∈ {1, . . . , q2} do

Choose a node vt ∈ N0
t

Choose a node ut ∈ N−Ĝ (vt) ∩ V10

V0 ← V0 ∪ {ut}
A0 ← A0 ∪ {(ut, vt)}

end

117

A.4. FEASIBLE LIMIT CYCLE PROBLEM

A.4. Feasible Limit Cycle problem

In Proposition 5.17 was proven that SYMMETRIC OR FLC is polynomial, besides the
parallel update schedule is the only possible solution. The algorithm is straightforward and
can be described as follows:

SYMMETRIC OR FLC Algorithm

Input: F symmetric OR function; x1, . . . , xp = x0

Output: true or false

1 if p = 2 then
2 if GF is bipartite then
3 if F (x0) 6= x1 then
4 return false

5 else if F (x1) 6= x0 then
6 return false

7 else
8 return true
9 end

10 else
11 return false

12 end

13 else
14 return false

15 end

On another hand, it was proved in Proposition 5.19 that OR 2-FLC is also polynomial.
The algorithm is described in the proof, and here we explicit it in the OR 2-FLC Algorithm
described next.

We note that the for loop in Line 1 of the OR 2-FLC Algorithm initializes the partial

label l̃ab with Sup
(
GF

l̃ab

)
= ∅. Besides, the GetVpq procedure used in Line 4 obtains the

respective sets according to Definition 5.1.

Finally, we note that this algorithm is easily extensible to the AND-OR case, making
the analogous analysis to the AND nodes, and checking the respectives connections between
AND and OR nodes.

118

A.4. FEASIBLE LIMIT CYCLE PROBLEM

OR 2-FLC Algorithm

Input: F an OR function; x0, x1, x2 ≡ x0

Output: s or false

1 for a ∈ A
(
GF
)

do

2 l̃ab(a)← #
3 end
4 (V00, V1, V10, V01, Vc)← GetVpq(x0, x1)
5 foreach v ∈ V11 do
6 if ∃u ∈ R+

GF
(v) : u /∈ V11 then

7 return false

8 end

9 end
10 foreach v ∈ V00 do
11 if ∃u ∈ R−

GF
(v) : u /∈ V00 then

12 return false

13 end

14 end
15 foreach v ∈ V10 do
16 foreach u ∈ N−

GF
(v) ∩ V01 do

17 l̃ab(u, v)← ⊕
18 end
19 foreach u ∈ N−

GF
(v) ∩ V10 do

20 l̃ab(u, v)← 	
21 end

22 end
23 foreach v ∈ V01 do
24 foreach u ∈ N−

GF
(v) ∩ V01 do

25 l̃ab(u, v)← 	
26 end
27 foreach u ∈ N−

GF
(v) ∩ V10 do

28 l̃ab(u, v)← ⊕
29 end

30 end
31 if CheckingUD (GF

l̃ab
) then

32 Glab ← ExtendingLab(GF

l̃ab
)

33 s← UD2US(Glab)

34 else
35 return false

36 end

119

Bibliography

Abou-Jaoudé, W., Ouattara, D., Kaufman, M., 2009. From structure to dynamics: frequency
tuning in the p53-mdm2 network: I. logical approach. Journal of Theoretical Biology 258,
561–577.

Abou-Jaoudé, W., Ouattara, D., Kaufman, M., 2010. From structure to dynamics: frequency
tuning in the p53-mdm2 network: Ii. differential and stochastic approaches. Journal of
Theoretical Biology 264, 1177–1189.

Akutsu, T., Miyano, S., Kuhara, S., et al., 1999. Identification of genetic networks from a
small number of gene expression patterns under the Boolean network model. In: Pacific
Symposium on Biocomputing. Vol. 4. pp. 17–28.

Albert, R., Othmer, H. G., 2003. The topology of the regulatory interactions predicts the
expression pattern of the drosophila segment polarity genes. Journal of Theoretical Biology
223, 1–18.

Aracena, J., Demongeot, J., Fanchon, E., Montalva, M., 2013a. On the number of different dy-
namics in boolean networks with deterministic update schedules. Mathematical biosciences
242 (2), 188–194.

Aracena, J., Fanchon, E., Montalva, M., Noual, M., 2011. Combinatorics on update digraphs
in Boolean networks. Discrete Applied Mathematics 159, 401–409.

Aracena, J., Goles, E., Moreira, A., Salinas, L., 2009. On the robustness of update schedules
in Boolean networks. Biosystems 97, 1–8.

Aracena, J., Gómez, L., Salinas, L., 2013b. Limit cycles and update digraphs in Boolean
networks. Discrete Applied Mathematics 161, 1–2.

Bang-Jensen, J., Gutin, G., 2007. RDigraphs Theory, Algorithms and Applications. Springer-
Verlag, Berlin.

Berman, A., Plemmons, R. J., 1994. Nonnegative matrices in the mathematical sciences.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

Bornholdt, S., 2008. Boolean network models of cellular regulation: prospects and limitations.
Journal of the Royal Society Interface 5 (Suppl 1), S85–S94.

120

BIBLIOGRAPHY

Brualdi, R. A., Ryser, H. J., 1991. Combinatorial matrix theory. Cambridge University Press,
Cambridge.

Chaves, M., Réka, A., Sontag, E., 2005. Robustness and fragility of Boolean models for
genetic regulatory networks. Journal of Theoretical Biology 235, 431–449.

Chaves, M., Tournier, L., Gouzé, J., 2010. Comparing Boolean and piecewise affine differential
models for genetic networks. Acta Biotheorica 58, 217–232.

Christoph Schmal, T. P. P., Drossel, B., 2010. Boolean networks with robust and reliable
trajectories. New Journal of Physics 12, 113054.

Ciliberti, S., Martin, O., Wagner, A., 2007. Robustness can evolve gradually in complex
regulatory gene networks with varying topology. PLoS Comput. Biol. 3, e17.

Davidich, M., Bornholdt, S., 2008. Boolean model predicts cell cycle sequence of fission yeast.
PLos ONE 3, e1672.

Demongeot, J., Elena, A., Sené, S., 2008. Robustness in regulatory networks: a multi-
disciplinary approach. Acta Biotheoretica 56 (1-2), 27–49.

Elena, A., 2009. Robustesse des réseaux d’automates booleéns a seuil aux modes d’itération.
Application a la modélisation des réseaux de régulation génétique, PhD thesis. Université
Joseph Fourier (Grenoble I), Grenoble, France.

Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D., 2006. Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle. Bioinformatics 22, 124–131.

Fogelman, F., Goles, E., , Pellegrin, D., 1985. Decreasing energy functions as a tool for
studying threshold networks. Discrete Applied Mathematics 12, 261–277.

Goles, E., 1980. Comportement oscillatoire d’une famille d’automates cellulaires non uni-
formes. These docteur ingénieur. IMAG, Université de Grenoble, Grenoble, France.

Goles, E., Montalva, M., Ruz, G., 2013. Deconstruction and dynamical robustness of regula-
tory networks: Application to the yeast cell cycle networks. Bull Math Biol 75, 939–966.

Goles, E., Noual, M., 2010. Block-sequential update schedules and Boolean automata circuits.
DMTCS Proceedings (01), 41–50.

Goles, E., Noual, M., 2012. Disjunctive networks and update schedules. Advances in Applied
Mathematics 48, 646–662.

Goles, E., Salinas, L., 2008. Comparison between parallel and serial dynamics of Boolean
networks. Theoretical Computer Science 396, 247–253.

Goles, E., Salinas, L., 2010. Sequential operator for filtering cycles in boolean networks.
Advances in Applied Mathematics 45 (3), 346–358.

121

BIBLIOGRAPHY

Goles, S., Matamala, M., 1993. Complexity of block-sequential update for symmetric neural
networks. In: Proceedings of 1993 International Joint Conference on Neural Networks.
IEEExplore, Nagoya, pp. 1469–1472.

Gómez, L., 2009. Robustez de ciclos dinámicos en redes Booleanas, Engineering thesis. Uni-
versidad de Concepción, Concepción, Chile.

Green, D. G., Leishman, T. G., Sadedin, S., 2007. The emergence of social consensus in
Boolean networks. In: Artificial Life, 2007. ALIFE’07. IEEE Symposium on. IEEE, pp.
402–408.

Greil, F., Drossel, B., Sattler, J., 2007. Critical kauffman networks under deterministic asyn-
chronous update. New Journal of Physics 9 (10), 373.

Hansson, A., Mortveit, H., Reidys, C., 2005. On asynchronous cellular automata. Advances
in Complex Systems 8 (4), 521–538.

Huang, S., 1999. Gene expression profiling, genetic networks and cellular states: an inte-
grating concept for tumorigenesis and drug discovery. Journal of Molecular Medicine 77,
469–480.

Jarrah, A. S., Laubenbacher, R., Veliz-Cuba, A., 2010. The dynamics of conjunctive and
disjunctive Boolean networks. Bulletin of Mathematical Biology 72, 1425–1447.

Just, W., 2006. The steady state system problem is np-hard even for monotone quadratic
Boolean dynamical systems. pre-print.

Kauffman, S., 1969. Metabolic stability and epigenesis in randomly connected nets. Journal
of Theoretical Biology 22, 437–67.

Kauffman, S., 1990. Requirements for evolvability in complex systems: orderly dynamics and
frozen components. Physica D: Nonlinear Phenomena 42, 135–152.

Kauffman, S., 1993. The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, New York.

Macauley, M., Mortveit, H. S., 2009. Cycle equivalence of graph dynamical systems. Nonlin-
earity 22 (2), 421.

Mendoza, L., Alvarez-Buylla, E., 1998. Dynamics of the genetic regulatory network for ara-
bidopsis thaliana flower morphogenesis. Journal of Theoretical Biology 193, 307–319.

Meng, M., Feng, J., 2014. Function perturbations in Boolean networks with its application
in a d. melanogaster gene network. European Journal of Control 20 (2), 87 – 94.
URL http://www.sciencedirect.com/science/article/pii/S0947358014000028

Mortveit, H., Reidys, C., 2001. Discrete, sequential dynamical systems. Discrete Mathematics
226, 281–295.

122

http://www.sciencedirect.com/science/article/pii/S0947358014000028

BIBLIOGRAPHY

Noual, M., 2011. Dynamics in parallel of double Boolean automata circuits. Tech. rep., LIP,
École Normale Supérieure de Lyon.

Robert, F., 1986. Discrete Iterations: A Metric Study. Springer-Verlag, Berlin.

Robert, F., 1995. Les Systèmes Dynamiques Discrets. Mathématiques et Applications.
Springer.
URL http://books.google.cl/books?id=Oztl9R30BW8C

Ruz, G., Goles, E., Montalva, M., Fogel, G., 2014. Dynamical and topological robustness
of the mammalian cell cycle network: A reverse engineering approach. BioSystems 115,
23–32.

Ruz, G. A., Goles, E., 2013. Learning gene regulatory networks using the bees algorithm.
Neural Computing and Applications 22 (1), 63–70.

Salinas, L., 2008. Estudio de modelos discretos: estructura y dinámica, PhD thesis. Univer-
sidad de Chile, Santiago, Chile.

Schaefer, T. J., 1978. The complexity of satisfiability problems. In: Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing. STOC ’78. ACM, New York, NY,
USA, pp. 216–226.
URL http://doi.acm.org/10.1145/800133.804350

Schutter, B. D., Moor, B. D., 2000. On the sequence of consecutive powers of a matrix in a
Boolean algebra. SIAM Journal on Matrix Analysis and Applications 21, 328–354.

Shmulevich, I., Lähdesmäki, H., Dougherty, E., Astola, J., Zhang, W., 2003. The role of
certain post classes in Boolean network models of genetic networks. Proceedings of the
National Academy od Sciences USA 100, 10734–10739.

Shmulevich, I., Saarinen, A., Yli-Harja, O., Astola, J., 2002. Inference of genetic regula-
tory networks via best-fit extensions. In: Computational and Statistical Approaches to
Genomics. Springer, pp. 197–210.

Thomas, R., 1973. Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42, 563–585.

Tocci, R., Widmer, N., 2001. Digital Systems: Principles and Applications, seventh Edition.
Prentice-Hall.

Veliz-Cuba, A., Stigler, B., 2011. Boolean models can explain bistability in the lac operon.
J. Comput. Biol. 18, 783–794.

123

http://books.google.cl/books?id=Oztl9R30BW8C
http://doi.acm.org/10.1145/800133.804350

	Introduction
	English version
	Spanish version

	Definitions and Notation
	Robustness of limit cycles with update digraphs in Boolean networks
	Motivation
	Necessary conditions to share limit cycles
	Possibility of sharing limit cycles
	Construction of classes preserving limit cycles

	Limit cycle existence problems with deterministic update schedules in Boolean networks
	Limit Cycle Existence Problem
	Non-Primitive Update Digraph Problem
	Limit Cycle Non Existence Problem

	Feasible dynamics problems with deterministic update schedules in Boolean networks
	Feasible Transition Problem
	Feasible Limit Cycle Problem
	Other related problems

	Applications
	Analysis of the robustness of limit cycles of the mammalian cell cycle network
	Analysis of the robustness of limit cycles of the fission yeast cell-cycle network

	Conclusions
	English version
	Spanish version

	Algorithms
	Preliminary algorithms
	Symmetric AND-OR Limit Cycle Existence problem
	OR Feasible Transition problem
	Feasible Limit Cycle problem

	Bibliography

