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Resumen

En este trabajo de tesis se desarrollan esquemas numéricos para aproximar la solución de proble-

mas de flujo cinemático multi-especies con (posiblemente) término difusivo fuertemente degenerado

y se deduce y analiza un nuevo modelo de tráfico vehicular multi-especies con corrección difusiva.

Espećıficamente se plantean esquemas numéricos para modelos multi-especies de tráfico vehicular

y para problemas de sedimentación polidispersa. La tesis tiene los siguientes objetivos.

El primer objetivo de esta tesis es demostrar que un algoritmo de refinamiento de malla adap-

tativo (AMR) es eficiente respecto al tiempo de ejecución y memoria en la simulación de un modelo

de sedimentación polidispersa. Se aplica esta técnica adaptativa a dos esquemas shock-capturing

de alto orden.

El segundo objetivo es demostrar que esquemas Impĺıcitos-Expĺıcitos Runge-Kutta permiten

obtener una eficiente solución numérica para los problemas de flujo cinemático multi-especies con

término difusivo fuertemente degenerado. Estos esquemas consisten en una combinación de es-

quemas expĺıcitos Runge-Kutta para el término convectivo con un tratamiento impĺıcito para el

término difusivo. El sistema no lineal que resulta de la discretización impĺıcita se resuelve mediante

una novedosa técnica que consiste en regularizar los coeficientes de difusión y el uso del método

de Newton-Raphson con algunas técnicas adecuadas. Finalmente se obtiene un esquema con una

condición CFL menos restrictiva que para un esquema con un tratamiento expĺıcito para el término

difusivo.

El tercer objetivo de esta tesis es proponer un modelo multi-clase Lighthill-Whitham-Richards

de tráfico vehicular con corrección difusiva que considera tiempos reacción y distancias de antic-

ipación. El modelo puede ser parabólico bajo una cierta relación entre las velocidades máximas

y los tiempos de reacción para cada especie. Se analiza la estabilidad del modelo, basado en la

información caracteŕıstica de la matriz de difusión. Se muestra que la solución del problema con

corrección difusiva puede desarrollar inestabilidades debido a altos tiempos de reacción o pequeñas

distancias de anticipación, tales inestabilidades pueden estar controladas debido a la naturaleza no

lineal del problema.

Finalmente, se proponen una nueva clase de esquemas numéricos de dos pasos para la solución de

problemas de tráfico vehicular multi-clase que combina en un primer paso la solución de ecuaciones
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en coordenadas Lagrangianas, y el segundo paso consistente en resolver una ecuación de transporte.

Se busca obtener un esquema numérico anti-difisivo convergente. Para el segundo paso se consideran

dos diferentes estrategias, una basada en recientes y novedosos esquemas anti-diffusivos los cuales

son sencillos de implementar y con la propiedad T.V.D., tales esquemas se denominaran “L-AR”. La

segunda estrategia se basa en el clásico método aleatorio de Glimm, tales esquemas se denominaron

“L-RS”. Para el caso N = 1 se demuestra que los esquemas L-AR son conservativos, tienen la

propiedad T.V.D. y satisfacen el principio del máximo, con lo cual se muestra que convergen a una

solución débil de la ley de conservación. Ambos esquemas L-AR y L-RS se generalizaron para el

caso N > 1. Se muestra mediante resultados numéricos que estos esquemas resultan competitivos

con respecto a una variedad de otros esquemas, aparte de que no requieren del uso de la información

caracteŕıstica del flujo.



Summary

In this dissertation, numerical schemes for the approximate solution of problems of multi-species

kinematic flow models with (possibly) strongly degenerate diffusion terms are introduced and an

analysis of a new diffusively corrected multi-species traffic flow model is presented. In particular,

new numerical schemes for multi-species traffic flow models and polydisperse sedimentation pro-

blems are proposed. The thesis has the following aims.

The first aim of this thesis is to demonstrate that an adaptive mesh refinement algorithm saves

computational resources in simulations of polydisperse sedimentation model. The implementation of

this adaptive technique is applied to two state-of-the-art high resolution shock capturing techniques.

The second goal of this thesis is to demonstrate that implicit-explicit Runge-Kutta schemes

efficiently generate a numerical solution of multi-species kinematic flow models with strongly de-

generate diffusive term. Theses schemes consist in combining an explicit Runge-Kutta scheme for

the time integration of the convective part with an implicit one for the diffusive part. To solve the

highly nonlinear and non-smooth system that arises in the implicit discretization, it is proposed to

regularize the diffusion coefficients and to apply the Newton-Raphson method with suitable glo-

balization techniques. The CFL condition for the numerical scheme obtained is less severe than for

an explicit treatment of the diffusive term.

The third goal of this thesis is to propose a diffusively corrected multi-class Lighthill-Whitham-

Richards traffic model with anticipation lengths and reaction times. We analyse the stability of

this diffusively corrected model under varying reaction times and anticipation lengths. It is de-

monstrated that instabilities may develop for high reaction times and short anticipation lengths,

and that these instabilities may have controlled frequencies and amplitudes due to their nonlinear

nature.

Finally, we propose to introduce a new class of two-step numerical schemes for the multi-class

Lighthill-Whitham-Richards traffic model. The new class of schemes combines in the first step

the solutions of equations in Lagrangian coordinates and in a second step, a transport equation

is solved to remap the solution to the original coordinates. The new schemes are referred to as

“Lagrangian-remap” (LR) schemes. In the second step, two different strategies are considered.

One strategy for LR schemes incorporates recent anti-diffusive techniques for transport equations.
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The corresponding subclass of LR schemes are named “Lagrangian-anti-diffusive-remap” (L-AR)

schemes. The second strategy consists in handling the remap step by Glimm-like random sampling,

which gives rise to a statistically conservative “Lagrangian-random sampling” (L-RS) scheme. The

LR schemes for the MCLWR model are supported by a partial analysis of the L-AR schemes for

N = 1, which are total variation diminishing (TVD) under a suitable CFL condition and therefore

produce numerical solutions that converge to a weak solution, and by numerical examples for both

L-AR and L-RS subclasses of schemes.



Introduction

Multi-species kinematic flow models

Multi-species kinematic flow models arise in the mathematical description of a wide variety

of phenomena that involve the flow of one disperse substance through a continuous phase, and

where the disperse substance consists of particles belonging to a number N of species that can

be distinguished by some characteristic property. To mention a few examples, problems arising

in different contexts: wastewater treatment, mineral processing, chemical engineering, volcanology,

traffic flows, petrology and medicine.

The term “kinematic” means that the velocity vi of species i ∈ {1, . . . , N} is an explicit function

of the vector Φ := (φ1, . . . , φN )T ∈ RN of the unknown concentrations (volume fractions or densi-

ties) φi of each species. Thus, standard multi-species kinematic flow models are given by systems

of N scalar, in general nonlinear, first-order conservation laws

∂tΦ + ∂xf(Φ) = 0, f(Φ) = (f1(Φ), . . . , fN (Φ))T =
(
φ1v1(Φ), . . . , φNvN (Φ)

)T
, (1)

where t is time and x is the spatial coordinate. This work focuses particularly on two applications

of multi-species kinematic flow models. As we will see throughout this thesis, our study will be

highly motivated by these applications.

Polydisperse suspensions consist of small solid particles dispersed in a viscous fluid, where the

particles are assumed to belong to a number N of species where species i is associated with the

volume fraction φi, the phase velocity vi that is assumed to be given as an explicit function of Φ,

and a size (diameter) di, where d1 > d2 > · · · > dN . The continuity equations for all species lead

to a system of conservation laws in the form (1). This model was studied intensively in recent

years [12, 22, 23, 52, 54, 77, 79, 94, 115, 116] in where a number of algebraic expressions for f(Φ)

have been proposed in the literature. We will consider the Masliyah-Lockett-Bassoon (MLB) model

[77, 79].

Multi-class traffic flow model. The well-known Lighthill-Whitham-Richards (LWR) kinematic

traffic model [75, 92] considers the density of cars φ = ρ/ρmax, where ρ is the local number of

cars per mile and ρmax is some maximum bumper-to-bumper density and the local velocity v =

v(x, t) as function of the local density, v = v(φ(x, t)), where t is time, x is the spatial coordinate

along either an unbounded, one-directional highway or a closed circuit. Usually it is assumed that

v(φ) = vmaxV (φ), where vmax is the preferential velocity of drivers on a free highway and V is a

hindrance function describing the drivers’ behaviour of reducing speed in presence of other cars.

1
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The function V satisfies the assumption

V (0) = 1, V (φ) ≥ 0, V ′(φ) ≤ 0, 0 ≤ φ ≤ φmax. (2)

These assumptions lead to the one-dimensional scalar conservation law

∂tφ+ ∂xf(φ) = 0, x ∈ R, t > 0, (3)

where the flux density function f is given by

f(φ) = φv(φ) = vmaxφV (φ). (4)

Benzoni-Gavage and Colombo [8] and Wong and Wong [113] introduced the multi-class (MCLWR)

traffic flow model where we distinguish N classes of drivers associated with preferential velocities

vmax
1 > vmax

2 > · · · > vmax
N and assume that the sought quantity is the vector Φ := (φ1, . . . , φN )T

of the densities φi of the cars of the different driver classes. The local velocity vi of vehicles of

driver class i is given by vi = vi(φ) = vmax
i V (φ) for i = 1, . . . , N , where V is a function of the

total local density φ := φ1 + · · · + φN . Thus, the MCLWR model is given by a strongly coupled

system of nonlinear first-order conservation laws in the form (1), where the components of the flux

vector f(Φ) are given by

fi(Φ) = φivi(φ) = φiv
max
i V (φ), i = 1, . . . , N. (5)

Solutions of (1) include kinematic shocks separating areas of different composition. The accu-

rate numerical approximation of these solutions is a challenge since closed-form eigenvalues and

eigenvectors of the flux Jacobian Jf (Φ) are usually not available, and the characteristic fields are

neither genuinely nonlinear nor linearly degenerate. For some polydisperse models [64, 77, 79] and

for the MCLWR model [50], the eigenstructure can be analyzed through a convenient hyperbolic-

ity criterion that has become known as the “secular equation” [3, 22]. Based on this idea, Bürger

et al. [23] and Donat and Mulet [50] proposed a shock-capturing high order or spectral weighted

essentially non-oscillatory (WENO) scheme for the numerical solution of these models calculating

in a numerical form the eigenstructure of Jf (Φ). The computational cost of these schemes for ob-

taining simulations with fine resolution and near steady states can be quite high, in part due to the

costly operations involving the computation of the eigenstructure and the nonlinear reconstructions.

It is one of the purposes in this thesis to discuss two different techniques for solving numerically

(1) that perform better in terms of resolution accuracy and efficiency, using characteristic infor-

mation in Chapter 1 and a new class of schemes that do not rely on characteristic information in

Chapter 4.

In Chapter 1, for models of polydisperse sedimentation, an adaptive technique, namely the

Adaptive Mesh Refinement (AMR) algorithm [11], is applied to two different shock capturing

WENO schemes proposed in [23], one implemented in a component-wise fashion combined with

global Lax-Friedrichs flux vector splitting (denoted “COMP-GLF”) and another one applied in
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a characteristic-wise (spectral) fashion which uses the eigenstructure of Jf (Φ) (denoted “SPEC-

INT”). The two schemes equipped with AMR allow us to obtain speed-up of CPU time and saves in

memory requirement when are compared with the corresponding non-adaptive version. The AMR

technique consists in using a fine mesh near the shocks, heads and tails of rarefactions, while em-

ploying a coarse mesh near smooth regions.

The contents of Chapter 1 corresponds to the article [32]:

� R. Bürger, P. Mulet, and L.M. Villada. Spectral WENO schemes with Adaptive Mesh Refine-

ment for models of polydisperse sedimentation. ZAMM Z. Angew. Math. Mech., 93 (2013),

pp. 373–386.

Diffusively Corrected Multi-species kinematic flow models

In some applications, the velocities also depend on the spatial variation of Φ to account for

additional effects such as sediment compressibility in sedimentation or drivers’ reaction time and

anticipation length in traffic flow. In the sedimentation model, this property reflects that the solid

particles possibly form a compressible sediment layer, while in the traffic flow models, it reflects

that each driver adjusts his speed to the concentration slightly ahead and that this reaction is

subject to a small delay.

For traffic flow models in the case N = 1, Nelson [81, 82] showed that introducing an anticipation

length L and a reaction time τ , replacing V (φ(x, t)) by V (φ(x+L− vmaxV τ, t− τ)) and neglecting

O(L2 + τ2) terms when expanding the latter expression around (x, t), one obtains a “diffusively

corrected” version of (3), (4) of the form

∂tφ+ ∂xf(φ) = A(φ)xx, (6)

where the funcion A is Lipschitz continuous and increasing so that the governing equation (6) of the

diffusively corrected LWR model (“DCLWR model”) is a strongly degenerate parabolic PDE in the

sense that A(φ) = 0 for φ ≤ φc, where φc is a critical density value (e.g., a perception threshold),

and A′(φ) > 0 for φ > φc.

In Chapter 2, first we introduce a new model, called diffusively corrected MCLWR model

(“DCMCLWR model”), by combining the assumptions of the DCLWR model with those of the

MCLWR model. In particular, we associate class i of drivers with the triple (vmax
i , Li, τi), i =

1, . . . , N , which means that drivers of different classes may have different preferential velocities,

anticipation lengths, and reaction times. The resulting model can be written as a system of partial

differential equations with an extra, possibly strongly degenerate diffusive term of the type

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
, (7)

where B(Φ) is a given N × N matrix function expressing the diffusive correction. On the other

hand, for models of polydisperse sedimentation, diffusive terms leading to the form (7) were first
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proposed by Stamatakis and Tien [106], and a theory of sedimentation of polydisperse suspensions

forming compressible sediments was advanced in [12].

Although the available mathematical theory does not allow us to be conclusive about the

existence, uniqueness and well-posedness of the solutions of such strongly degenerate hyperbolic-

parabolic systems, it is plausible to perform simulations with appropriate numerical methods.

With respect to the use of efficient numerical schemes it is important to remark that explicit

numerical schemes to solve (7) are widely used in many applications for example the explicit high-

resolution central difference scheme by Kurganov-Tadmor (KT) was used in [12], however, the

diffusive term imposes a drastic time step size restriction to comply with the stability condition

[71, Sect. 4.2]. On the other hand, an implicit treatment in the parabolic term in (7) requires the

solution of highly nonlinear and non-smooth systems of algebraic equations and the efficient solution

of these systems with nonlinear solver requires some degree of smoothness in the coefficients of the

matrix function B.

It is the purpose of Chapter 2 to apply implicit-explicit (IMEX) Runge-Kutta schemes to

solve the strongly degenerate parabolic partial differential equations (7). These schemes consist in

combining a Runge-Kutta scheme with an implicit discretization, denoted D(Φ), of the diffusive

term with an explicit one, denoted C(Φ), for the convective term. With this idea, the problem (7)

is expressed in the form

∂tΦ = C(Φ) +D(Φ). (8)

The stability restriction on the time step ∆t that IMEX Runge-Kutta schemes impose when applied

to (8) is expressed as

∆t

∆x
max

Φ
ρ(Jf (Φ)) ≤ Ccfl ≤ 1,

where ∆x is the size of the space discretization and ρ(·) is the spectral radius. This ∆t restriction

depends on the convective term alone which is discretized by a spectral WENO scheme like SPEC-

INT (see [23]). This IMEX strategy has been used in other contexts, such as convection-diffusion

problems, convection problems with stiff reaction terms [4, 49], and stiff terms in hyperbolic systems

with relaxation [17, 18, 19, 20, 89].

In the context of strongly degenerate parabolic partial differential equations, we propose to use

different types of IMEX Runge-Kutta proposed in the literature [4, 17, 18, 68, 89, 122] with an

adequate regularization of the diffusive coefficients and apply a suitable technique based on Newton-

Raphson’s method to solve the nonlinear systems in an efficient way. The proposed regularization is

applied to the non-smooth diffusion coefficient, in a way that does not change the strong degeneracy

of the diffusion term. The final schemes are much more efficient, in term of error reduction versus

CPU time, than the explicit schemes.

The contents of Chapter 2 corresponds to the article [31]:

� R. Bürger, P. Mulet, and L.M. Villada. Regularized nonlinear solvers for IMEX methods

applied to diffusively corrected multi-species kinematic flow models. SIAM J. Sci. Comput.,

35 (2013), pp. B751–B777.
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Analysis of DCMCLWR model

In Chapter 3, an analysis of the conditions on the non-negative parameters vmax
i , τi and Li

under which B(Φ) has eigenvalues with positive real part for all Φ ∈ Dφmax{Φ ∈ RN | φ1 >

0, . . . , φN > 0, φ < 1} is performed. This generates the following restriction:

Lk(φ) + τkv
max
k φV ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax, k = 1, . . . , N . (9)

If (9) is violated, then the model is likely to exhibit anti-diffusive phenomena such as formation

of clusters, steep density gradients, stop-and-go waves, and other instability phenomena. A similar

conclusion (though based on a slightly different model) has been drawn, for example, in [87]. To

analyse the eigenstructure of the matrix B(Φ) it is not sufficient to establish a stability criterion

for the model (7). A linearized stability analysis consists in analysing the eigenvalues of the matrix

M(Φ, ξ) :=
i

ξ
Jf (Φ) +B(Φ) ∈ CN×N , ξ ∈ R+,

where i =
√
−1 and ξ is a frecuency parameter.

Numerical experiments showed that stable behavior is obtained when the eigenvalues of M

have positive real parts and that instabilities may be triggered otherwise, although the nonlinear

character of the equations stabilizes some initial traffic configurations that would explode under

the linearized equations. The nonlinearities also help to control the amplitude (and in some cases

the frequency) of instabilities in the simulations. While we associate oscillations in the numerical

solution with unstable behaviour in general, we distinguish between situations where there is a blow-

up of frequency, which means that violations of the stability condition lead to strongly oscillating

solutions (akin to those studied in [13]), and situations of mildly unstable behaviour with finite

frequencies of oscillation, and where numerical solutions can be interpreted as the formation of stop-

and-go waves (although the latter phenomenon is usually associated with much larger amplitudes,

cf., e.g., [86, 87]).

In a series of numerical examples we compare the performance of the IMEX-Runge-Kutta

schemes introduced in Chapter 2 with KT scheme and one scheme introduced in [24] adapted

to the context of DCMCLWR models. This allows to show the efficiency of IMEX-Runge-Kutta

schemes, and also allows to conclude that some oscillations are not numerical artefacts.

The contents of Chapter 3 corresponds to the accepted article [30]:

� R. Bürger, P. Mulet, and L.M. Villada. A diffusively corrected multiclass Lighthill-Whitham-

Richards traffic model with anticipation lengths and reaction times. Adv. Appl. Math. Mech.,

to appear.
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Lagrangian-Remap schemes for MCLWR traffic model

In Chapter 4 we propose to introduce a new class of schemes for multi-species traffic flow model

(1). These new schemes are based on a Lagrangian-Projection decomposition for each density , i.e.

the approach is to combine the solution of the governing equation in a Lagrangian reference frame

with an algorithm to remap the original mesh. Here, we propose an idea of numerical strategy easy

to implement that is independent of N (number of species), does not use the knowledge of the

eigenstructure of the model and is expected to be anti-diffusive. These schemes are referred to as

“Lagrangian-remap” (LR) schemes.

For this thesis, we introduce these LR schemes only for MCLWR models (1), (5) (we consider

here the local number of cars per mile ρ instead of the density φ = ρ/ρmax). In the case N = 1 the

idea is to solve (3), (4) by exploiting the assumption on the hindrance function V (ρ) described in

(2). The two steps are described below: we first apply a Lagrangian method [56] (Lagrangian step)

to solve

∂tρ+ ρ∂xv(ρ) = 0, (10)

and use this solution, evolved over the time interval of length ∆t, as the initial condition for solving

in a second step the transport equation

∂tρ+ v(ρ)∂xρ = 0, (11)

whose solution, again evolved over a time interval of length ∆t, provides the sought approximate

solution valid for t+ ∆t (remap step).

The idea behind the introduction of LR schemes is to solve (11) using anti-diffusive techniques

that have been developed recently for transport equations and thereby to increase the overall effi-

ciency of the proposed splitting strategy, while keeping its simplicity. More precisely, the remap

step can be handled in two different ways. One alternative is to employ an anti-diffusive but stable

numerical scheme for the transport equation (11), where care is taken to design the scheme for

the remap step in such a way that the resulting scheme (first step followed by a second step)

is conservative with respect to (3). Anti-diffusive techniques are based on the pioneering work of

Després and Lagoutière [46], Bouchut [15], Bokanowski and Zidani [14]. This subclass of LR schemes

will be addressed as “Lagrangian-anti-diffusive remap” (L-AR) schemes. Alternatively, the remap

step can be handled by random sampling in a Glimm-like approach [55]. The resulting scheme,

denoted here as “Lagrangian-random-sampling” (L-RS) scheme, is only statistically conservative.

We discuss a partial analysis of the L-AR scheme with the conclusion that under the CFL

condition

−1 ≤ λρmaxv
′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρmax. (12)

λv(ρ) ≤ 1 for 0 ≤ ρ ≤ ρmax, (13)

where λ = ∆t/∆x, the L-AR schemes have the total variation diminishing (TVD) property and

satisfy the maximum principle and therefore converge to a weak solution of (3). We remark that

CFL condition (12) is obtained in the analysis of stability for the Lagrangian step, while (13) is

the CFL condition for the transport step (11).
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Both L-AR and L-RS subclasses of LR schemes can readily be extended to the multiple-species

case (N > 1). For that case, we propose to equip the L-RS scheme with random sampling among the

fan of states of the simple Harten, Lax and van Leer (HLL) approximate Riemann solver [61, 111].

Numerical experiments show that the proposed schemes are competitive with respect to recent

schemes introduced in [24].

The contents of Chapter 4 corresponds to the following preprint submitted [29]:

� R. Bürger, C. Chalons, and L.M. Villada. Anti-diffusive and random-sampling Lagrangian-

remap schemes for the multiclass Lighthill-Whitham-Richards traffic model. Preprint 2013-14,

Centro de Investigación en Ingenieŕıa Matemática, Universidad de Concepción; (submitted).





Chapter 1

Spectral WENO schemes with

Adaptive Mesh Refinement for

models of polydisperse sedimentation

1.1 Introduction

1.1.1 Scope

The sedimentation of a polydisperse suspension of small rigid equal-density spheres that belong

to a finite number N of species differing in size can be described by a spatially one-dimensional

system of first-order nonlinear conservation laws

∂tΦ + ∂xf(Φ) = 0, Φ = (φ1, . . . , φN )T, f(Φ) =
(
f1(Φ), . . . , fN (Φ)

)T
; 0 < x < K, t > 0. (1.1)

The unknowns are the volume fractions (concentrations) φi of species i, i = 1, . . . , N , as functions

of depth x and time t. The flux density functions fi are given by fi(Φ) = φivi(Φ), where vi = vi(Φ)

is the phase velocity of particle species i that is assumed to be given as an explicit function of Φ.

The model (1.1) and its variants are widely used in applications including wastewater treatment,

mineral processing, chemical engineering and volcanology. Moreover, a very similar model describes

multi-class traffic flow. See [12, 23, 50] for references.

Typical solutions of (1.1), for instance for batch settling of an initially homogeneous suspension

in a column, include moving and stationary discontinuities (kinematic shocks) separating areas

of different composition. The accurate numerical approximation of these solutions is a challenge

since closed-form eigenvalues and eigenvectors of the flux Jacobian Jf (Φ) are usually not available,

and the characteristic fields are neither genuinely nonlinear nor linearly degenerate. Some of these

sedimentation models, including the widely used models by Masliyah, Lockett and Bassoon (MLB

model) [77, 79] and Höfler and Schwarzer (HS model) [64], give rise to flux Jacobians whose eigen-

structure can be analyzed through a convenient hyperbolicity criterion that has become known as

the “secular equation” [3, 22]. When this approach applies, hyperbolicity can be ensured under

easily verifiable conditions and the eigenstructure of the Jacobian can be computed numerically,

9
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so that efficient shock capturing schemes may be applied for the numerical computation of the

solutions of the models.

The computational cost of these schemes for obtaining simulations with fine resolution and near

steady states can be quite high, in part due to the costly operations involving the computation of

the eigenstructure and the nonlinear reconstructions. Adaptive techniques, as the Adaptive Mesh

Refinement (AMR) algorithm [11], aim to reduce the computational cost of these schemes, by using

a higher resolution near salient flow features (shocks, heads and tails of rarefactions, etc.), while

employing a coarse mesh near smooth regions of the flow.

In the present chapter, we apply the AMR technique to two different WENO schemes intro-

duced in [23], namely to a WENO scheme implemented in a component-wise fashion combined

with global Lax-Friedrichs flux vector splitting (denoted by “COMP-GLF”), and alternatively, to

a WENO scheme applied in a characteristic-wise (spectral) fashion, and which makes essential

use of the interlacing property of the velocities v1, . . . , vN with the eigenvalues of Jf (Φ) (see Sec-

tion 1.2.1). The second version is denoted by “SPEC-INT”. The scheme COMP-GLF does not rely

on characteristic information, is much easier to implement than SPEC-INT, and on a fixed uniform

grid is several times faster than SPEC-INT. However, SPEC-INT is substantially more accurate

than COMP-GLF, and turns out to be even more efficient than COMP-GLF in terms of reduction

of numerical error per CPU time [23]. It turns out that equipping both versions with AMR produces

substantial gains in computational efficiency when compared with the corresponding non-adaptive

version, and that the adaptive versions based on SPEC-INT are consistently more efficient than

those relying on COMP-GLF.

1.1.2 Related work

Any kind of adaptativity that permits to restrict the use of a high-resolution scheme on a fine

grid to a portion of the computational domain will produce a benefit in terms of computational

efficiency. Common methods are multiresolution algorithms [40, 41], moving mesh methods [107]

and approximations on unstructured meshes [65]. Adaptive Mesh Refinement (AMR) is a grid

adaptation technique, introduced by Berger and Oliger [11] for hyperbolic conservation laws, which

is based not so much on the reduction of the number of cells on the grid as on the reduction of the

overall number of applications of the integration algorithm. This algorithm in very time-consuming

especially for high-resolution shock capturing schemes. The AMR algorithm is a two-fold adaptive

method. The goal of allowing arbitrary grid resolution is attained by the definition of a set of

overlapping grids of different resolutions –a grid hierarchy– being the grid at each resolution level

defined only on the part of the domain that is foreseen to require such a resolution. The way in

which the grids are overlapped allows to refine also in time, in the sense that each grid is integrated

with temporal steps adapted to its spatial grid size. This time refinement is another key feature for

improving the overall performance of the algorithm [10, 11].
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1.2 Preliminaries

1.2.1 Sedimentation of polydisperse suspensions

The MLB model arises from the continuity and linear momentum balance equations for the

solid species and the fluid through suitable constitutive assumptions and simplifications. We refer

to [12] for details and introduce the model here in its final form. For particles that have the same

density, the velocities v1, . . . , vN are given by

vi(Φ) :=
(%s − %f)gd

2
1

18µf
(1− φ)V (φ)(δi − δTΦ), i = 1, . . . , N, (1.2)

where d1 > d2 > · · · > dN are the respective species diameters, δi := d2
i /d

2
1, δ := (δ1 =

1, δ2, . . . , δN )T, %s and %f are the solid and fluid densities, g is the acceleration of gravity, µf is

the fluid viscosity, φ := φ1 + · · · + φN is the total solids volume fraction, and V (φ) is a hindered

settling factor that is assumed to satisfy V (0) = 1, V (φmax) = 0 and V ′(φ) ≤ 0 for φ ∈ [0, φmax],

where the constant φmax denotes the maximum total solids concentration. A standard choice in

[94] is

V (φ) = (1− φ)nRZ−2 if Φ ∈ Dφmax , nRZ > 2; V (φ) = 0 otherwise, (1.3)

where Dφmax := {Φ ∈ Rn |φ1 ≥ 0, . . . , φN ≥ 0, φ ≤ φmax} is the set of physically relevant concen-

tration vectors and nRZ is the material-dependent Richardson-Zaki exponent [93].

The components f1(Φ), . . . , fN (Φ) of the flux vector f(Φ) of the MLB model are given by

fi(Φ) := v1(0)φi(1− φ)V (φ)(δi − δTΦ), i = 1, . . . , N. (1.4)

1.2.2 Secular equation and hyperbolicity analysis

For general kinematic models with vi = vi(φ1, . . . , φN ), the Jacobian Jf (Φ) has no definite

structure, hence its spectral information cannot be readily obtained. However, when v1, . . . , vN do

not depend on each of the N components of Φ in an individual way, but are functions of a small

number m� N of scalar functions of Φ (as is the case of the MLB model), i.e., vi = vi(p1, . . . , pm)

and pl = pl(Φ) for i = 1, . . . , N and l = 1, . . . ,m, then the entries of Jf (Φ) are given by

fij =
∂(φivi)

∂φj
= viδij +

m∑
l=1

φi
∂vi
∂pl

∂pl
∂φj

, i, j = 1, . . . , N,

i.e., Jf (Φ) is a rank-m perturbation of the diagonal matrix D := diag(v1, . . . , vN ) of the form

Jf = D +BAT, where

B := (Bil) = (φi∂vi/∂pl), A := (Ajl) = (∂pl/∂φj), 1 ≤ i, j ≤ N, 1 ≤ l ≤ m. (1.5)

The hyperbolicity analysis is then based on the following theorem, which can be found in [3], but

we give here the form in [51], which provides the explicit formulas to be used in the applications.
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Theorem 1.1 (The secular equation, [3, 51]) Assume that vi > vj for i < j, and that A and

B have the formats specified in (1.5). We denote by Spr the set of all (ordered) subsets of r ele-

ments taken from a set of p elements. If X is an m × N matrix, I := {i1 < · · · < ik} ∈ SNk and

J := {j1 < · · · < jl} ∈ Sml , then we denote by XI,J the k×l submatrix of X given by (XI,J)p,q = Xip,jq .

Let λ 6= vi for i = 1, . . . , N . Then λ is an eigenvalue of D +BAT if and only if

R(λ) := det
(
I +AT(D − λI)−1B

)
= 1 +

N∑
i=1

γi
vi − λ

= 0. (1.6)

The relation R(λ) = 0 is known as the secular equation [3]. The coefficients γi are given by the

following expression:

γi =

min{N,m}∑
r=1

∑
i∈I∈SN

r ,J∈Sm
r

detAI,J detBI,J∏
l∈I,l 6=i(vl − vi)

, i = 1, . . . , N. (1.7)

When m ≤ 2, the quantities (1.7) can be easily computed and the hyperbolicity analysis via

the secular equation is much less involved than discussing the zeros of det(Jf (Φ) − λI), as was

done in [12, 94]. For m = 3 or m = 4, the computations are more involved [22], but have turned

out very useful in providing at least partial results concerning hyperbolicity, where the theoretical

analysis of det(Jf (Φ)−λI) is essentially out of reach. For the special case of the MLB model with

equal-density spheres, vi depends on the parameters p1 := φ and p2 := δTΦ. Therefore, we are in

the case m = 2 and we can compute explicitly the coefficients γi = −v1(0)(n−1)(1−φ)n−2φiδi > 0

if φi > 0 and φ < 1.

The following Theorem illustrates the importance of the secular equation. Its proof (see [22])

follows from Theorem 1.1 by a discussion of the poles of R(λ) and its asymptotic behavior as

λ→ ±∞.

Theorem 1.2 (Interlacing property, [22]) With the notation of Theorem 1.1, assume that γi ·
γj > 0 for i, j = 1, . . . , N . Then D +BAT is diagonalizable with real eigenvalues λ1, . . . , λN which

are the roots of the secular equation (1.6). If γ1, . . . , γN > 0, the following so-called interlacing

property holds:

vN < λN < vN−1 < λN−1 < · · · < v1 < λ1 < M2 := v1 + γ1 + · · ·+ γN . (1.8)

As a consequence, we see that the model (1.1) with the flux vector f(Φ) of the MLB model given

by (1.4) is strictly hyperbolic in Dφmax if φ1 > 0, . . . , φN > 0 and φ < φmax < 1.

1.3 Numerical schemes

1.3.1 SPEC-INT and COMP-GLF schemes

It is well known that nonlinear hyperbolic systems of conservation laws of the type (1.1) can

develop discontinuities (shocks), even for smooth initial data. By Lax-Wendroff’s theorem [73],



1.3 Numerical schemes 13

conservative schemes can cope with this situation since their limits are weak solutions of the con-

servation law. For grid points xj := j∆x for j = 1, . . . ,M , where ∆x := L/M , and tn := n∆t for

n ∈ N0, a conservative scheme for Φn
j ≈ Φ(xj , tn) is given by

Φn+1
j = Φn

j −
∆t

∆x

(
f̂ j+1/2 − f̂ j−1/2

)
, f̂ j+1/2 = f̂

(
Φn
j−s+1, . . . ,Φ

n
j+s

)
, j = 1, . . . ,M,

where we impose the zero-flux boundary conditions

f̂1/2 = f̂M+1/2 = 0.

The key point is the design of the numerical flux f̂ i+1/2 so that the resulting scheme is (at least

formally second-order) accurate and stable. The most common approach for this task is to solve

Riemann problems, either exactly (as in the original Godunov scheme, which is very costly), or

approximately (e.g., as in the Roe scheme). For polydisperse sedimentation, exact Riemann solvers

are out of reach, since the eigenstructure of the flux Jacobian is hard to compute.

In [12], the authors used central schemes [71] for the MLB model. In [23] we used Shu-Osher’s

technique [100] along with the information provided by the secular equation to get efficient schemes

for polydisperse sedimentation based on MLB and HS models. We here briefly describe this scheme,

which is based on the method of lines, that is, on applying an ODE solver (we use the third-order

TVD Runge-Kutta method of [100]) to a spatially semi-discretized equations. For the discretiza-

tion of the flux derivative we use local characteristic projections. Local characteristic informa-

tion to compute f̂ i+1/2 is provided by the eigenstructure of the flux Jacobian Jf (Φj+1/2), where

Φj+1/2 := 1
2(Φj + Φj+1), given by the right and left eigenvectors , rj+1/2,i and lj+1/2,i, respectively

for each species i, that form the respective matrices

Rj+1/2 =
[
rj+1/2,1 . . . rj+1/2,N

]
,
(
R−1
j+1/2

)T
=
[
lj+1/2,1 . . . lj+1/2,N

]
.

From a local flux-splitting f±,k (we omit its dependency on j + 1/2) given by f−,k + f+,k = f ,

where ±λk(Jf±,k(Φ)) ≥ 0, Φ ≈ Φj+1/2 and λk is the k-th eigenvalue, k = 1, . . . , N , we can define

the k-th characteristic flux as

g±,kj = lTi+1/2,k · f
±,k(Φj).

If R+ and R− denote upwind-biased reconstructions (in our experiments we use the fifth-order

WENO method introduced in [66]), then

ĝi+1/2,k = R+
(
g+,k
i−s+1, . . . , g

+,k
i+s−1;xi+1/2

)
+R−

(
g−,ki−s+2, . . . , g

−,k
i+s ;xi+1/2

)
,

f̂ i+1/2 = Ri+1/2ĝi+1/2 =

n∑
k=1

ĝi+1/2,kri+1/2,k.

If we do not want to use local characteristic information, we can use the previous formula with

Rj+1/2 = IN , where IN denotes theN×N identity matrix, and a global flux splitting f− + f+ = f ,

where ±λk(Jf±(Φ)) ≥ 0 for all k. With this choice, and denoting by ek the kth unit vector, we get

g±,kj = eT
k f
±(Φj) = f±k (Φj), i.e., g±,kj are the components of the split fluxes, and the numerical flux
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is computed component by component by reconstructing the split fluxes component by component,

i.e., f̂ j+1/2 = (f̂j+1/2,1, . . . , f̂j+1/2,N )T, where

f̂j+1/2,k = R+
(
g+,k
j−s+1, . . . , g

+,k
j+s−1;xj+1/2

)
+R−

(
g−,kj−s+2, . . . , g

−,k
j+s;xj+1/2

)
, k = 1, . . . , N.

This scheme will be referred to as COMP-GLF and it is a high-order extension of the Lax-Friedrichs

scheme.

We now explain the SPEC-INT scheme. If λk(Jf (Φ)) > 0 (respectively, < 0) for all Φ ∈
[Φj ,Φj+1], where [Φj ,Φj+1] ⊂ RN denotes the segment joining both states, then we upwind (since

then there is no need for flux splitting):

f+,k = f , f−,k = 0 if λk(Jf (Φ)) > 0, f+,k = 0, f−,k = f if λk(Jf (Φ)) < 0.

On the other hand, if λk(Jf (Φ)) changes sign on [Φj ,Φj+1], then we use a Local Lax-Friedrichs

flux splitting given by f±,k(Φ) = f(Φ)± αkΦ, where the numerical viscosity parameter αk should

satisfy

αk ≥ max
Φ∈[Φj ,Φj+1]

∣∣λk(Jf (Φ)
)∣∣. (1.9)

The usual choice of the numerical viscosity

αk = max
{∣∣λk(Jf (Φj)

)∣∣, ∣∣λk(Jf (Φj+1)
)∣∣}

produces oscillations in the numerical solution indicating that the amount of numerical viscosity

is insufficient. The right-hand side of (1.9) can usually not be evaluated exactly since closed-form

expressions for the eigenvalues are not available. However, for the present class of models, we may

use the interlacing property (see Corollary 1.2) to generate a fairly sharp bound of that expression.

In the case of the MLB model, we have γk < 0 (see [22, 51]) and the interlacing property can be

written as

vk+1(Φ) ≤ λk(Φ) ≤ vk(Φ), k = 1, . . . , N

so we have

|λk(Φ)| ≤ max{|vk(Φ)|, |vk+1(Φ)|}

and therefore we can get efficiently computable bounds

max
Φ∈[Φj ,Φj+1]

|λk(Φ)| ≤ αk := max

{
max

Φ∈[Φj ,Φj+1]

∣∣vk(Φ)
∣∣, max

Φ∈[Φj ,Φj+1]

∣∣vk+1(Φ)
∣∣}, k = 1, . . . , N. (1.10)

(The same property also holds for other models, under appropriate circumstances [22].) We denote

by “SPEC-INT” the scheme for which α1, . . . , αN are defined by (1.10).



1.3 Numerical schemes 15

1.3.2 Adaptive Mesh Refinement (AMR)

We now outline the main building blocks of the AMR algorithm and refer to [6] for details.

We denote by G0, . . . , GL a 1D grid hierarchy composed of L + 1 grids, such that, except for the

coarsest grid G0, cells of a given grid are obtained by the subdivision of cells of the immediately

coarser grid into r parts (we assume r = 2). The unit interval is thus divided into N0, . . . , NL

subintervals of length hl = 1/Nl, with Nl = 2lN0, l = 0, . . . , L, whose centers will be denoted by

xlj = (j + 1/2)hl, j = 0, . . . , Nl − 1, l = 0, . . . , L. A “mesh” Gl at resolution level l is just a subset

of the index set {0, . . . , Nl − 1} whose “extent”, the union of the cells indexed by elements of Gl,

is denoted by Ωl(Gl). We consider only “nested” grid hierarchies, i.e., Ωl(Gl) ⊆ Ωl−1(Gl−1) for

1 ≤ l ≤ L is assumed to hold along with Ω0(G0) = Ω.

The meshes will be dynamically updated so that they adapt to the features of the solution, and

we denote by Gtll the mesh that corresponds to the resolution level l and time tl. Over each mesh

we consider a numerical solution defined by a discrete function Φtl
l = (Φtl

l,j), with Φtl
l,j ≈ Φ(xlj , tl)

and j ∈ Gtll . For a given time instant t we denote Φt = {Φt
l}, 0 ≤ l ≤ L. This set includes the

solution values on all scales.

The algorithm can be described by the time evolution of the meshes and their associated nu-

merical solutions, starting with tl = 0, l = 0, . . . , L and ending at tl = T , l = 0, . . . , L, for some

T > 0. The main building blocks of the AMR algorithm — integration and adaptation of the grids

and projection from fine to coarse grids — are described next.

We now describe how the integration of the grids corresponding to the various refinement levels

is organized. The first step is to select a time step ∆t0 for the coarsest grid, so that the following

CFL condition relevant for the grid Gt0 is satisfied:

∆t0 ≤
Ccflh0

K
, 0 < Ccf1 ≤ 1, (1.11)

where K is an upper bound of the spectral radius of all Jacobian matrices Jf (Φ), Φ ∈ Φt: For the

SPEC-INT scheme, the eigenvalues of Jf (Φ) are readily available to compute the spectral radius,

whereas for COMP-GLF one can use (1.8) to obtain an upper bound for it. The time steps for the

rest of the grids are taken by ∆tl = ∆tl−1/2 for l = 1, . . . , L, which implies that the equivalent CFL

condition holds for each grid. A time step for G0 corresponds therefore to 2l time steps for Gl. The

grids are integrated according to the order dictated by the following condition: tl′ ≤ tl ≤ tl′ + ∆tl

if l ≤ l′.
At some step of this time evolution, (Φtl+k∆tl

l , Gtll ), k = 1, 2, are sequentially computed from

(Φtl
l , G

tl
l ), supplemented by boundary conditions at a band surrounding Ωl(G

tl
l ) obtained by (cubic

in space and linear in time) interpolation from (Φtl
l−1, G

tl
l−1) and (Φtl+2∆tl

l−1 , Gtll−1), which must have

been computed in previous steps. Once (Φtl+2∆tl
l , Gtll ) is computed, there is data that overlay

Ωl(G
tl
l ) at different resolution levels. It is at this point that the projection of the data at the fine

resolution level should be applied to modify the values Φtl+2∆tl
l−1,j of the immediately coarser grid

function that correspond to cells overlaid by cells at Gtll and adjacent to them as well, i.e., such

that {2j, 2(j− 1), 2(j+ 1)}∩Gtll 6= ∅. In this case, the numerical fluxes corresponding to interfaces
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of refined coarse cells are modified in such a way that

Φtl+2∆tl
l−1,j =

1

2

(
Φtl+2∆tl
l,2j + Φtl+2∆tl

l,2j+1

)
if Φtl

l−1,j =
1

2

(
Φtl
l,2j + Φtl

l,2j+1

)
,

i.e., discrete conservation is maintained.

The next issue is the update of the grids. The grids corresponding to the various levels Gl,

1 ≤ l ≤ L have to be modified according to the current characteristics of the flow. The adaptation

of each refinement level is performed by discarding the current grid and creating a new one according

to specified refinement criteria. In this way, coarsening is not directly performed on refined areas,

but implicitly obtained by not refining.

For our cell-centered approach, if xlj = (j + 1/2)hl is the center of a cell of a grid Gtl and

I(Φt
l−1, x) is an MUSCL interpolation operator defined on the data Φt

l−1 = {Φt
l−1,i}i∈Gt

l−1
, then the

cell defined by xlj will be selected for refinement if∣∣∣∣Φt
l,j − I

(
Φt
l−1, x

l
j

)∣∣∣∣ > τp ·max
l,j

∣∣∣∣Φt
l,j − I

(
Φt
l−1, x

l
j

)∣∣∣∣,
where τp is a given tolerance. Note that only the cells present in the current grid are considered

for refinement. New cells are included only because of the addition of some extra cells around each

marked cell. We also ensure that the refined grid is obtained by subdivision of coarse cells: if a

cell xtl,j is selected for refinement, then every cell that overlaps the same coarse cell as xtl,j is also

included in the refined grid. Further, we also include a cell in the refinement list if the modulus

of the discrete gradient, computed in the coarser grid, exceeds some large threshold, so that shock

formation can be detected from steepened data. For the discrete gradient we use the approximation

∂Φ

∂x

(
xl−1
j , t

)
≈ 1

hl−1
max

{∣∣Φt
l−1,j+1 − Φt

l−1,j

∣∣, ∣∣Φt
l−1,j − Φt

l−1,j−1

∣∣}.
Once the cells that will compose the refined grid have been selected we add a certain number of

extra cells forming a band around each marked cell to ensure that the cells adjacent to a singularity

are refined. This device of creating “safety points” follows the spirit of [60, 74, 91]. These extra cells

will avoid singularities to escape from the fine grid during one coarse time step. To this aim it would

suffice to add a band of one coarse cells around each marked cell. Another criterion for adding cells

is dictated by the need of interpolating ghost cell values from relatively smooth regions: the length of

the stencil of the interpolation operator must be less than twice the length — measured in number

of coarse cells — of the band of added cells. In our case we use third-order linear interpolation, and

this imposes the addition of two coarse cells at each side of a marked cell. For analogous reasons,

if the computation of the numerical flux depends on 2N values of the fine grid, then, in order to

ensure that it is computed using non-interpolated data, the length of the band has to be greater

than N/2. In the case of the method used in this work, described in Section 1.3.1, we have N = 3,

and thus the number of coarse cells added should be at least 2. According to the criteria above, we

add two coarse cells in our implementation.

The last observation for this refinement procedure is that it should be performed from fine

to coarse resolution levels to ensure that at every moment of the update process it holds that
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Figure 1.1: Example 1.1 (N = 4): numerical solution obtained with SPEC-INT-AMR with L+1 = 6

levels with coarsest grid of 50 subintervals at (a) t = 50 s and (b) t = 300 s . Here and in Figure 1.5,

the numbers 1, 3 and 5 on the top of the frame bottom represent the level l of the grid hierarchy.

Ωl(G
t
l) ⊆ Ωl−1(Gtl−1). We also enforce the inclusion Ωl(G

t
l) ⊇ Ωl+1(Gtl+1), so that the whole se-

quence of grids verifies the desired inclusions. Finally note that the process of computing data at

the corresponding surrounding bands is possible because the grids are nested, and this implies that

Ω̃l(G
t
l) ⊆ Ω̃l−1(Gtl−1).

Once the new grid Ĝl is computed such that Ωl(Ĝ
t
l) ⊆ Ωl−1(Gtl−1) is satisfied, one sets

Φ̂t
l,j =

I(Φt
l−1, x

l
j) if j ∈ Ĝtl \Gtl ,

Φt
l,j if j ∈ Gtl ,

i.e., the value at the j-th cell is interpolated from data at the next coarser level for cells not in Gtl .

The refined grid is therefore defined by (Ĝtl , Φ̂
t
l). Discrete boundary conditions are also applied if

the grid overlaps the domain boundary.

1.4 Numerical results

The threshold value τp plays a special role for the performance of the SPEC-INT-AMR and

COMP-GLF-AMR methods, since computational time and accuracy are related to their variations.

Initially, we perform additional numerical experiments based on different examples in order to study

the effect of different choices of the parameter τp. In preliminary computations (not shown here)

we tested the values τp = 10−q, q = 2, 3, 4, 5. For q = 2 the AMR schemes turned out to be most

efficient in terms of reduction of error per CPU time. Moreover, in our experiments we use a CFL

number of Ccfl = 0.5, cf. (1.11).



18 Chapter 1

(a) (b)

0.253 0.2535 0.254 0.2545 0.255 0.2555 0.256 0.2565 0.257 0.2575

0.9

0.89

0.88

0.87

0.86

φ
1

x

 

 

SPEC−INT−AMR(5)

COMP−GLF−AMR(5)

Reference

0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066 0.068

0.576

0.574

0.572

0,57

0.568

0.566

φ
2

x

 

 

SPEC−INT−AMR(5)

COMP−GLF−AMR(5)

Reference

(c) (d)

0.0812 0.0813 0.0814 0.0815 0.0816 0.0817 0.0818

0.4

0.38

0.36

0.34

0.32

0.3

0.28

φ
3

x

 

 

SPEC−INT−AMR(5)

COMP−GLF−AMR(5)

Reference

0.086 0.0861 0.0862 0.0863 0.0864 0.0865 0.0866 0.0867 0.0868

0.26

0.25

0.22

0.2

0.18

0.16

φ
4

x

 

 

SPEC−INT−AMR(5)

COMP−GLF−AMR(5)

Reference

Figure 1.2: Example 1.1 (N = 4): numerical solution at time t = 50 s: details of using SPEC-INT-

AMR and COMP-GLF-AMR methods with a grid hierarchy of L+ 1 = 5 levels on a coarsest grid

with N0 = 50 subintervals. Here and in Figure 1.3, the reference solution is computed by SPEC-INT

on a fixed grid with Nref = 25600 subintervals.

SPEC-INT-AMR(5) COMP-GLF-AMR(5)

Fixed grid size % Integrations % Memory % CPU time % Integrations % Memory % CPU time

800 23.77 20.11 23.21 28.11 23.85 20.80

1600 12.34 11.31 12.60 14.16 13.30 13.91

3200 6.41 6.09 7.54 7.60 7.31 6.50

6400 3.31 3.30 4.95 4.17 4.02 4.92

Table 1.1: Example 1.1 (N = 4): Percentage of storage space (memory), number of integrations

and CPU time of the adaptive algorithm with respect to the fixed grid algorithm with τp = 10−2

at simulated time t = 50 s, for a hierarchy of L+ 1 = 5 levels and four different values of N0.
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Figure 1.3: Example 1.1 (N = 4): details of numerical solution at time t = 300 s obtained by

SPEC-INT-AMR and COMP-GLF-AMR methods with a grid hierarchy of L + 1 = 5 levels on a

coarsest grid with N0 = 50 subintervals.

1.4.1 Example 1.1 (N = 4)

As in [22, 23], we consider the standard test case of batch settling of an initially homogeneous

suspension in a column characterized by the velocity functions (1.2) with parameters N = 4,

%s = 2790 kg/m3, %f = 1208 kg/m3, µf = 0.02416 Pa s, g = 9.8 m/s2, δ1 = 1, δ2 = 0.64, δ3 = 0.36

and δ4 = 0.16. We employ the hindered settling factor (1.3) with exponent nRZ = 4.7 and initial

concentrations φ0
i = 0.05 for i = 1, . . . , 4.

We simulate the process until the sedimentation process attains a steady state, that is when

all particles are captured in a sediment. This sediment usually consists of layers of different com-

position (which is part of the solution of the problem) separated by stationary kinematic shocks.

Figure 1.1 shows the numerical solution obtained with SPEC-INT-AMR as concentration profiles

at two different times together with the corresponding hierarchical grids. We have used a grid



20 Chapter 1

(a) (b)

10
0

10
1

10
2

10
−4

10
−3

CPU time [s]

L
1
−

E
rr

o
r

 

 

SPEC−INT
SPEC−INT−AMR τ

p
=1.e−2

SPEC−INT−AMR τ
p
=1.e−3

COMP−GLF
COMP−GLF−AMR τ

p
=1.e−2

COMP−GLF−AMR τ
p
=1.e−3

10
1

10
2

10
3

10
−4

10
−3

CPU time [s]

L
1
−

E
rr

o
r

 

 

SPEC−INT
SPEC−INT−AMR τ

p
=1.e−2

SPEC−INT−AMR τ
p
=1.e−3

COMP−GLF
COMP−GLF−AMR τ

p
=1.e−2

COMP−GLF−AMR τ
p
=1.e−3

Figure 1.4: Example 1.1 (N = 4): approximate L1 errors versus CPU time for SPEC-INT-AMR

and COMP-GLF-AMR for different values of τp at simulated times t = 50 s (a) and t = 300 s (b).

Here and in Figure 1.7, for each scheme the interpolated symbols correspond to different values

of N0, and the AMR versions have been implemented with L+ 1 = 4 levels of refinement.

hierarchy of L + 1 = 6 levels with a coarsest grid of N0 = 50 subintervals so that the finest grid

has N5 = NL = 1600 subintervals. The tolerance for the interpolation error sensor has been set

to τp = 10−2. The plotted positions indicate that the adaptive mesh refinement technique works

correctly, in the sense that the scheme correctly detects the formation of shocks and refines the

corresponding areas.

In Figures 1.2 and 1.3 we compare the results obtained by SPEC-INT-AMR and COMP-GLF-

AMR with a reference solution computed with SPEC-INT scheme on a fixed uniform grid with

Nref = 25600 subintervals at times t = 50 s and t = 300 s, respectively. We have used a grid

hierarchy of L+ 1 = 5 levels with a coarsest grid of N0 = 50 subintervals so that NL = N4 = 800.

The tolerance for the interpolation error sensor has been set to τp = 10−2. The solution of the

adaptive computation is mapped to the finest grid using the computed solution where available,

and by interpolation from coarse to fine elsewhere. A few enlarged views of relevant parts of the

numerical solutions shown in Figures 1.2 and 1.3 illustrate that the algorithm correctly identifies

the regions corresponding to the shocks. The percentage of the number of integrations of the AMR

algorithm with respect to a solution on the uniform finest grid with N4 subintervals is 25.20% and

29.70% for the SPEC-INT-AMR and COMP-GLF-AMR methods, respectively, for this experiment.

We observe a slight “overshoot” in the φ1 plot of Figure 1.3 close to x = 1. This phenomenon also

appears in the reference solution, and is possibly associated with the fact that the function V (φ)

is cut off abruptly at φ = φmax, see (1.3).

In Table 1.4, we present the percentages of storage space, number of integrations and CPU

time required by AMR with respect to schemes on the uniform finest mesh for constant tolerance

τp = 10−2. The indicated percentage represents the average memory load over all iterations. The

values of the table correspond to coarsest grids of N0 = 50, 100, 200 and 400 subintervals and
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SPEC-INT COMP-GLF SPEC-INT COMP-GLF

t = 50 s t = 50 s t = 300 s t = 300 s

N0 error cr cpu error cr cpu error cr cpu error cr cpu

200 169.3 — 3.0 512.6 — 0.5 138.7 — 13.3 640.3 — 9.7

400 77.8 1.12 11.5 239.5 1.09 3.7 50.0 1.47 45.7 295.1 1.11 26.7

800 40.0 0.95 40.4 126.4 0.92 13.3 34.6 0.52 166.9 172.3 0.77 83.6

1600 13.2 1.60 182.6 53.1 1.25 47.7 12.5 1.47 639.7 74.3 1.21 291.5

3200 8.3 0.65 630.0 31.1 0.76 169.1 7.3 0.76 2551.2 42.4 0.81 1074.1

t = SPEC-INT-AMR SPEC-INT-AMR COMP-GLF-AMR COMP-GLF-AMR

50 s τp = 10−2 τp = 10−3 τp = 10−2 τp = 10−3

N0 error cr cpu error cr cpu error cr cpu error cr cpu

25 169.3 — 1.7 169.3 — 1.8 519.1 — 0.4 518.9 — 0.43

50 77.8 1.12 4.3 77.8 1.12 4.8 243.4 1.09 1.1 242.4 1.09 1.1

100 40.0 0.95 9.8 40.0 0.95 11.0 127.6 0.93 2.7 127.4 0.92 2.9

200 13.2 1.60 24.2 13.2 1.60 27.4 52.8 1.27 6.3 52.8 1.27 6.8

400 8.3 0.65 57.8 8.3 0.65 64.3 30.1 0.88 15.2 30.1 0.80 17.2

t = SPEC-INT-AMR SPEC-INT-AMR COMP-GLF-AMR COMP-GLF-AMR

300 s τp = 10−2 τp = 10−3 τp = 10−2 τp = 10−3

N0 error cr cpu error cr cpu error cr cpu error cr cpu

25 138.3 — 8.5 138.5 — 9.1 648.8 — 3.8 649.0 — 4.0

50 50.0 1.47 30.8 50.0 1.47 35.3 300.2 1.11 8.3 299.6 1.11 8.9

100 34.6 0.52 61.8 34.6 0.52 65.4 175.7 0.77 19.4 175.6 0.77 20.5

200 12.5 1.47 152.3 12.5 1.47 149.0 75.4 1.21 43.5 75.3 1.22 54.2

400 7.3 0.76 256.8 7.3 0.76 272.5 43.2 0.80 95.2 44.4 0.76 123.2

Table 1.2: Example 1.1: approximate L1 errors (in short, “error”), multiplied by 105; convergence

rates (cr), and CPU times (in seconds), at two different times for SPEC-INT and COMP-GLF on

a fixed grid, and SPEC-INT-AMR and COMP-GLF-AMR with two different values of τp.

i 1 2 3 4 5 6 7

φ0i [10−2] 0.2365 1.1039 3.5668 3.8776 6.0436 10.8998 4.2718

di [10−5 m] 290 250 210 170 130 90 50

δi 1.000000 0.743163 0.524376 0.343639 0.200951 0.0963 0.029727

Table 1.3: Example 1.2: Initial conditions φ0
i , real di and normalized squared δi particle sizes.

L+ 1 = 5 levels of refinement. We observe that CPU time and the percentage of memory allocated

by the SPEC-INT-AMR and COMP-GLF-AMR codes decreases as N0 increases, as expected.

However, we observe in Figures 1.2 that COMP-GLF-AMR code produces spurious oscillations

in the piecewise constant part of the solution. These oscillations also are present in the results

obtained with COMP-GLF with uniform mesh and do not disappear upon mesh refinement, as was

observed in [23]. In Table 1.2 and Figure 1.4, we display approximate L1 errors and CPU times at

two different times for the methods SPEC-INT-AMR and COMP-GLF-AMR using a grid hierarchy

for different levels, corresponding to values of N0 = 25, 50, 100, 200 and 400, and for the methods
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Figure 1.5: Example 1.2. (N = 7): numerical solution with SPEC-INT-AMR with L+ 1 = 6 levels,

coarsest grid of N0 = 50 cells at t = 228.05 s (a), t = 400 s (b), t = 1286.94 s (c) and t = 2500 s (d).

SPEC-INT and COMP-GLF using a fixed uniform grid corresponding to values of N0 = 200, 400,

800, 1600 and 3200. For a given base resolution N0 and hierarchy depth L, we observe that COMP-

GLF-AMR is faster than SPEC-INT-AMR (as should be expected, since the former scheme avoids

the costly computation of the spectral decomposition of the flux Jacobian), but the latter provides

results that are much closer to the reference solution. In addition, for a fixed L1 error, the CPU

time is smaller for the AMR technique than for the equivalent fixed-grid computation. In many

cases the AMR technique is around ten times faster. We plotted different choices for the threshold

value τp and observe that, for this case, the choice τp = 10−2 gives the best efficiency.

1.4.2 Example 1.2 (N = 7)

This example is based on experimental data from [52], where the settling of suspension in a

column of height h = 0.227 m was considered. The initial concentrations φ0
i , diameters di and
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normalized diameters δi = di/d1 are given in Table 1.3. The maximum total concentration is

φmax = 0.6 and the hindered settling factor is given by (1.3) with the exponent nRZ = 5. These

values were also used in [52]. The value of the exponent nRZ is close to 4.65, which is the limiting

value for this exponent for small particle Reynolds numbers and if particles are small compared

with the width of the settling column, according to the well-known theoretical analysis of [93].

Other authors use similar values. For instance, the value nRZ = 4.7 of Example 1.1 has been

adopted from [96], while nRZ = 5 is supported in [103]. On the other hand, the value of φmax

is supported by experimental results by Amy et al. [2], who observe that particle segregation is

completely stopped beyond that value, which in turn is close to the packing density of around 0.65

for random arrangements of equal-sized spheres. (It is well known that imposing a limit on φ, as

we do here, is actually a strong simplification for a multi-size polydisperse suspension since smaller

spheres may fill the interstices between larger ones, and thereby denser packings could be achieved;

see the discussion e.g. in [96].)

We simulate the process until the phenomenon enters in a steady state. Figs 1.5 shows the

numerical solution obtained with SPEC-INT-AMR as concentration profiles at four different times

together with the corresponding grid hierarchy. We have used a grid hierarchy of L+ 1 = 6 levels

with a coarsest grid of N0 = 50 points so that results are comparable with those for a fixed grid of

N5 = 1600 points. The tolerance for the interpolation error sensor has been set to τp = 10−2.

The plotted positions indicate that the adaptive mesh refinement technique works correctly, in

the sense that the scheme detects the shock formation and refines these areas.

In Figures 1.6 we show enlarged views of relevant parts of the numerical solutions for individual

concentration and compare the results obtained at times t = 400 s by SPEC-INT-AMR method

with a grid hierarchy of L+ 1 = 6 levels on a coarsest grid with N0 = 50, and SPEC-INT method

on a fixed grid with N0 = 1600, with a reference solution computed by SPEC-INT on a fixed grid

with Nref = 25600 subintervals. The tolerance for the interpolation error sensor has been set to

τp = 10−2. The percentage of integrations of the algorithm with respect to the solution on the finest

grid is a 16.88% and the percentage of memory allocated by AMR technique is only 14.62% of the

amount of memory allocated after each iteration of the coarse grid.

We comment that the original information in [52] is related to a suspension with a continuous

initial particle size distribution determined from experiments in [2], which is then discretized into

N = 28 particle size “bins”. This particle size distribution also defines the initial data for 14

or 7 size classes (by suitable summation of the initial volume fractions for N = 28 over two or

four neighboring bins). The final (stationary) result for N = 28 obtained by a first-order numerical

method, is compared in [52] with original experimental data from [2]. Since the mathematical model

of [52] is the same as ours, with the same parameters, the solutions are nearly the same, up to small

errors due to the different numerical methods. We verified this by calculating Φ for N = 28 with

the present method; results practically coincided with those of [52, Figure 2] (not shown here). In

this work we chose N = 7 to allow for a reasonable graphic representation while focusing on fine

details of the transient profiles of the individual species.
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Figure 1.6: Example 1.2 (N = 7): enlarged view in Figure 1.5(b) for φ1 (a), φ2 (b), φ4 (c), φ5

(d), φ6 (e) and φ7 (f). In addition, the solution produced by SPEC-INT on a fixed grid with 1600

subintervals and the reference solution computed by SPEC-INT on a fixed grid with Nref = 12800

is shown.
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Figure 1.7: Example 1.2 (N = 7): approximate L1 errors versus CPU time for SPEC-INT-AMR,

COMP-GLF-AMR for different values of τp at simulated times t = 400 s (a) and t = 2500 s (b).

SPEC-INT COMP-GLF SPEC-INT COMP-GLF

t = 400 s t = 400 s t = 2500 s t = 2500 s

N0 error cr cpu error cr cpu error cr cpu error cr cpu

200 161.5 — 29.6 656.0 — 2.0 100.0 — 117.6 812.5 — 13.2

400 86.6 0.89 117.3 350.8 0.90 8.3 50.2 0.99 462.7 389.7 1.06 52.1

800 45.0 0.94 459.3 180.0 0.96 36.5 25.0 1.00 2036 210.6 0.88 303.6

1600 21.0 1.09 1830.6 90.1 0.99 189.2 12.5 1.00 8876 154.5 0.44 2137

3200 7.0 1.57 8520.5 45.3 0.99 756.2 6.2 1.00 38187 83.1 0.89 12579

t = SPEC-INT-AMR SPEC-INT-AMR COMP-GLF-AMR COMP-GLF-AMR

400 s τp = 10−2 τp = 10−3 τp = 10−2 τp = 10−3

N0 error cr cpu error cr cpu error cr cpu error cr cpu

25 161.3 — 18.3 161.4 — 20.6 657.5 — 1.8 560.2 — 2.3

50 86.6 0.89 44.8 86.6 0.89 49.5 361.0 0.86 5.6 365.8 0.61 6.8

100 45.0 0.94 119.7 45.0 0.94 134.2 201.3 0.84 14.0 195.1 0.91 17.6

200 21.0 1.09 296.8 21.0 1.09 324.9 96.7 1.05 39.0 135.6 0.52 42.0

400 7.0 1.57 712.3 7.0 1.57 869.4 56.4 0.77 104.8 68.1 0.99 103.2

t = SPEC-INT-AMR SPEC-INT-AMR COMP-GLF-AMR COMP-GLF-AMR

2500 s τp = 10−2 τp = 10−3 τp = 10−2 τp = 10−3

N0 error cr cpu error cr cpu error cr cpu error cr cpu

25 100.8 — 93.2 100.0 — 114.9 815.1 — 13.3 814.1 — 14.3

50 50.3 1.00 232.0 50.3 0.99 270.7 395.5 1.04 40.4 390.7 1.05 47.8

100 25.0 1.00 524.0 25.0 1.00 563.5 205.2 0.94 103.8 207.8 0.91 145.7

200 12.5 1.00 1254.2 12.8 0.95 1546.0 146.5 0.48 256.6 146.7 0.50 363.7

400 6.2 0.99 3971.6 6.2 1.04 4158.5 77.0 0.92 802.4 85.1 0.78 1078

Table 1.4: Example 1.2: approximate L1 errors (in short, “error”), multiplied by 105; convergence

rates (cr), and CPU times (in seconds), at two different times for SPEC-INT and COMP-GLF on

a fixed grid, and SPEC-INT-AMR and COMP-GLF-AMR with two different values of τp.
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The approximate errors in the L1-norm between the adaptive scheme for different levels and the

corresponding scheme on an equivalent uniform fine grid are displayed in Table 1.4 and in Figure 1.7.

From that figure we infer that the adaptive techniques SPEC-INT-AMR and COMP-GLF-AMR

are always cheaper in CPU time that SPEC-INT and COMP-GLF methods on the finest grid. The

reference solution was computed with SPEC-INT scheme on a fixed grid with 12800 subintervals

at times t = 400 s and t = 2500 s. The CPU time used with adaptive technique is roughly a tenth

of the CPU time required for the equivalent uniform grid. This CPU time can further be decreased

when using more levels. We plotted different choices for the threshold value τp and observe that

τp = 10−2 is the most efficient choice.
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1.5 Conclusions of Chapter 1

We have applied an adaptive mesh refinement algorithm to save computational resources in

simulations of polydisperse sedimentation by two state-of-the-art high resolution shock capturing

techniques. In our experiments with 4 and 7 species and a given CPU time, the scheme that utilizes

the characteristic information obtained through the use of the secular equation is more efficient

than the scheme that makes no use of this information.

We are well aware that although one-dimensional kinematic models such as (1.1) are widely used

in engineering and other fields where besides the vertical segregation the composition of the final

deposit is of interest, many relevant applications involve flow fields that are lateral to the direction

of gravity and can be described by spatially two- or three-dimensionsional models only. For instance,

an interesting phenomenon of that kind is the settling of a suspension beneath inclined walls [44].

However, the extension of the present model to multiple space dimensions does not only give rise

to a multi-dimensional analogue of (1.1); rather, additional equations of motion for the flow field

of the mixture need to be solved (e.g., a variant of the Stokes system [12]). In one space dimension,

this flow field is determined by boundary conditions and vanishes for batch settling in a column.

The development of adaptive techniques to save computational effort for such multi-dimensional

“coupled” sedimentation-flow models is topic of some of the authors’ current resarch (see e.g. [33]

for first results for the monodisperse case N = 1).

In view of the additional equations of motion, the computational difficulties for these models go

beyond applying, say, AMR just to a multi-dimensional version of (1.1), so the treatment of two-

or three-dimensional flow models is not within the scope of the paper. In fact, already in one space

dimension AMR gives rise to considerable speedup. Finally, we mention that models of segregation

of polydisperse dry granular materials (see e.g. [97, 108] and papers cited in these works) address

similar physical phenomena, but are constructed in a different way than the MLB model. Although

these models do not require the solution of additional flow equations in multiple space dimensions

(in contrast to the sedimentation model), they do not give rise to strongly coupled systems of

conservation laws (as does the sedimentation model),and therefore do not form a suitable case of

example for spectral WENO schemes, and their AMR refinement.





Chapter 2

Regularized nonlinear solvers for

Implicit-Explicit methods

2.1 Introduction

2.1.1 Scope

In this chapter we focus on multi-species flow models defined by equation (1.1) in Chapter 1

in which the velocities also depend on the spatial variation of Φ to account for additional effects

such as sediment compressibility or drivers’ reaction time and anticipation length in traffic flow.

These corrections can be usually posed in such a way that the resulting system of partial differential

equations (PDEs) has an extra, possibly strongly degenerate diffusive term. We therefore consider

systems of PDEs of the type

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
, (2.1)

where B(Φ) is a given N × N matrix function expressing the diffusive correction. The system

(2.1) is supplied with an initial condition and depending on the application, zero-flux or periodic

boundary conditions.

Although the available mathematical theory does not allow us to be conclusive about the

existence, uniqueness and well-posedness of the solutions of such strongly degenerate hyperbolic-

parabolic systems, it is plausible to perform simulations with appropriate numerical methods. Ex-

plicit schemes for hyperbolic systems of first-order conservation laws are widely used in many

applications. Although they can be rather slow for some steady-state computations, due to CFL

stability restrictions on the time step size, their use for unsteady computations is deemed as prac-

tical in many situations. This does not hold when diffusion terms are present. However, one can

resort to an implicit treatment of these terms to overcome the drastic step size restrictions imposed

by the stability condition for explicit schemes applied to parabolic equations.

The purpose of this chapter is to design nonlinear solvers for suitable regularizations of the

systems that appear when using implicit-explicit (IMEX) schemes for the efficient solution of initial-

boundary value problems for (2.1) under the specific assumptions of diffusively corrected kinematic

29
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flow models. Moreover, we demonstrate the overall efficiency of these schemes when compared with

schemes that are explicit or based on other nonlinear solvers. The specific assumptions, which are

reflected in the design of the numerical schemes and in our analysis, include that the number N

of species (and therefore of scalar equations) may be arbitrarily large; that the flux vector f(Φ) is

constructed in a systematic way that makes characteristic-wise schemes applicable to the convective

part of (2.1) (even though the eigenstructure of the flux Jacobian Jf (Φ) is not available in closed

algebraic form); and that (2.1) is often strongly degenerate, where the location of the type-change

interface is unknown beforehand and B may even be discontinuous as a function of Φ. We focus

on a model of sedimentation of polydisperse suspensions forming compressible sediment layers, and

a diffusively corrected multi-class Lighthill-Whitham-Richards (LWR) model for vehicular traffic

that includes anticipation length and reaction time.

The main novelty of this chapter is the particular method of solution of the nonlinear systems

that appear with the implicit treatment of the degenerate diffusion term. This method is based on

the Newton-Raphson method applied after regularizing the non-smooth diffusion coefficient. The

final schemes are much more efficient, in term of error reduction versus CPU time, than the explicit

schemes.

2.1.2 Related work

First-order models of the type (1.1) were widely studied in recent years, with an emphasis on

polydisperse sedimentation [12, 22, 23, 52, 115] and multiclass vehicular traffic [8, 50, 85, 113,

117, 118, 120]. Other applications include the settling and creaming of emulsions and dispersions

[54, 94]. Among the polydisperse sedimentation models, one of the most widely used velocity model

is the Masliyah-Lockett-Bassoon (MLB) model [77, 79]. We refer to [22, 116] for alternate velocity

models. On the other hand, the multi-class extension of the LWR model [75, 92], the MCLWR

model, was introduced by Benzoni-Gavage and Colombo [8] and Wong and Wong [113]. All these

models have in common that although the functions vi are constructed in a systematic manner,

the eigenvectors and eigenvalues of the Jacobian Jf (Φ) = (∂fi(Φ)/∂φj)1≤i,j≤N are usually not

available in closed algebraic form. It is in general difficult to estimate the subregion ofN -dimensional

phase space where (1.1) is strictly hyperbolic, i.e., Jf (Φ) has pairwise distinct real eigenvalues, or

to solve the Riemann problem for (1.1) exactly or approximately. However, for some of these

models, the functions vi depend on a small number of independent scalar functions of Φ only,

so that Jf (Φ) is a low-rank perturbation of a diagonal matrix. In this case, the calculus of the

so-called secular equation, advanced first by Anderson [3], allows one to establish that, under

determined circumstances, the eigenvalues of Jf (Φ) are real and interlace with the velocities vi

[22, 51]. This information provides starting values to determine the exact eigenvalues by a root

finder, and eventually to determine the corresponding eigenvectors. This has led to the construction

of involved but efficient characteristic-wise weighted essentially non-oscillatory (WENO) schemes

[66, 76, 98, 99] for (1.1) [23, 50]. These schemes are employed herein to discretize the convective

part of (2.1).

For models of polydisperse sedimentation, diffusive terms leading to the form (2.1) were first
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proposed by Stamatakis and Tien [106]. A theory of sedimentation of polydisperse suspensions

forming compressible sediments was advanced in [12], where the system (2.1) was solved by the

Kurganov-Tadmor (KT) explicit high-resolution central difference scheme [71]. Its application to

strongly degenerate convection-diffusion systems is explicitly proposed in [71, Sect. 4.2]. On the

other hand, the multi-class version of the diffusively corrected LWR model proposed by Nelson

[81], which can also be understood as a diffusively corrected version of the MCLWR traffic model

[8, 113], is newly derived herein. We also mention that in a very recent paper, Abeynaike et al. [1]

propose a model for the sedimentation and creaming of size-distributed droplets in glycerol/biodiesel

dispersions that is equivalent to (2.1).

An IMEX Runge-Kutta scheme consists in combining a Runge-Kutta scheme with an implicit

discretization of the diffusive term with an explicit one for the convective term. To introduce the

main idea, we consider the problem

∂tΦ = C(Φ) +D(Φ), (2.2)

where C(Φ) and D(Φ) are discretizations of the convective and diffusive terms, respectively. The

stability restriction on the time step ∆t that explicit schemes impose when applied to (2.2) is very

severe (∆t must be proportional to the square ∆x2 of the grid spacing), due to the presence of D(Φ).

The implicit treatment of both C(Φ) and D(Φ) would remove any stability restriction on ∆t, but

the upwind nonlinear discretization of C(Φ) that is needed for stability makes its implicit treatment

extremely involved. In fact, after the pioneering work of Crouzeix [42], numerical integrators that

deal implicitly with D(Φ) and explicitly with C(Φ) can be used with a time step restriction dictated

by the convective term alone. These schemes, apart of having been profusely used in convection-

diffusion problems and convection problems with stiff reaction terms (see [4, 49] and references

therein), have been recently used to deal with stiff terms in hyperbolic systems with relaxation (see

[17, 18, 19, 20, 89]). Finally, we mention that many authors have proposed IMEX Runge-Kutta

schemes for the solution of semi-discretized partial differential equations [4, 68, 89, 122].

2.2 Diffusively corrected multi-species kinematic flow models

2.2.1 Polydisperse sedimentation

We consider a model of sedimentation of a suspension of equal-density particles belonging to

N species with sizes d1 > d2 > · · · > dN . We let φi denote the local volume fraction of species i

having size di, and define φ := φ1 + · · · + φN . The evolution of Φ = Φ(x, t) as a function of

depth x and time t in a column is then governed by the combined effects of hindered settling and

sediment compressibility. These effects determine the convective and diffusive parts, respectively,

of the following system of convection-diffusion equations (see [12]):

∂tφi + ∂xfi(Φ) = ∂x
(
ai(Φ, ∂xΦ)

)
, i = 1, . . . , N, 0 < x < K, t > 0, (2.3)

this phenomena is described in Section 2.6, and is supplemented by the initial condition Φ(x, 0) =

Φ0(x) for 0 ≤ x ≤ K, where Φ0 is the given initial concentration distribution, and zero-flux
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boundary conditions corresponding to settling in a closed column of height K, i.e.,

φivi = fi(Φ)− ai(Φ, ∂xΦ) = 0 for x = 0 and x = K, t > 0. (2.4)

Here the flux density functions f1, . . . , fN are those of the MLB model described in Section 1.2.1

are given by (1.4) with hindered settling function V (φ) (1.3).

The diffusion functions on the right-hand side of (2.3) are given by

ai(Φ, ∂xΦ) = αi,1(Φ)∂xφ1 + · · ·+ αN,1(Φ)∂xφN , i = 1, . . . , N,

where

αij :=
µV (φ)

gφ

{
(1− φ)φi(δi − δTΦ)σ′e(φ)

−
[
δiδij − δjφi −

φi
φ

(δi − δTΦ)

]
σe(φ)

}
, i, j = 1, . . . , N,

(2.5)

where δij is the standard Kronecker symbol. Here σe denotes the effective solid stress function, and

σ′e is its derivative. This function is assumed to satisfy

σe(φ), σ′e(φ)

= 0 for φ ≤ φc,

> 0 for φ > φc,
(2.6)

where φc is a critical concentration at which the particles touch each other. A typical function σe

having these properties is given by

σe(φ) =

0 for φ ≤ φc,

σ0

(
(φ/φc)

k − 1
)

for φ > φc,
σ0, k > 0. (2.7)

Defining the matrix B(Φ) := (αij)1≤i,j≤N and f(Φ) = (f1(Φ), . . . , fN (Φ)) we can rewrite (2.3)

in the form (2.1).

2.2.2 Hyperbolicity and parabolicity analysis for the polydisperse sedimenta-

tion model

For the flux f(Φ), Jf (Φ) is a rank-two perturbation of a diagonal matrix. This property allows

one to analyze hyperbolicity, to localize eigenvalues, and to eventually calculate the corresponding

eigenvectors of Jf (Φ), by using the so-called secular equation [3], see [22, 51]. This hyperbolicity

analysis was shown in Section 1.2.2. With respect to the diffusion matrix B(Φ), in [12] it is proved

that its eigenvalues are positive and pairwise distinct on D0
φmax
\Dφc by evaluating the characteristic

polynomial in a fashion similar to that used for the eigenvalues of Jf (Φ).

Theorem 2.1 ([12]) Let G(φ) := φ(1− φ)2σ′e(φ)− σe(φ), W (φ) := µV (φ)/(gφ) and assume that

V (φ) 6= 0 for φ < φmax and V (φ) = 0 otherwise. Then, for all Φ ∈ D0
φmax
\Dφc the matrix

B(Φ) has N distinct positive eigenvalues Λ1, . . . ,ΛN ; i.e., the system (2.1) is strictly parabolic

on Φ ∈ D0
φmax
\Dφc. Moreover, we have the following interlacing properties, where for brevity we

write W = W (φ) and σe = σe(φ):
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1. If Φ is chosen such that G(φ) > 0, then these eigenvalues satisfy

0 < WσeδN < ΛN < WσeδN−1 < · · · < Wσeδ1 < ΛN < Wδ1φ(1− φ)2σ′e(φ).

2. At those points Φ where G(φ) < 0, we have

0 < Wσeφ(1− φ)2δN < ΛN < WσeδN−1 < · · · < Wσeδ1 < ΛN < Wδ1σ
′
e(φ).

3. If G(φ) = 0, then the eigenvalues are given by Λi = Wσeδi for i = 1, . . . , N .

2.2.3 A new diffusively corrected MCLWR model (DCMCLWR model)

In this subsection we consider a multi-class version of the diffusively corrected kinematic traffic

flow model introduced in [81] (see also [25, 82]) for N = 1. This diffusively corrected multi-class

LWR model (“ DCMCLWR model”) will be derived and analyzed in Chapter 3. Assume now that

φi, i = 1, . . . , N , is the density of vehicles of class i having the preferential velocity vmax
i , where

vmax
1 > vmax

2 > · · · > vmax
N > 0. (2.8)

According to the MCLWR model [8, 113], the local velocity vi of vehicles of species i is given by

vi = vmax
i V (φ), where vmax

i is the preferential velocity of drivers of species i on a free highway, as

usual, φ = φ1 + · · ·+φN , and V is a non-increasing function satisfying V (0) = 1, V (φmax) = 0, and

V ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax. Thus, the standard MCLWR model (without diffusive correction) is

given by the equation (1.1), where

fi(Φ) = φiv
max
i V (φ), i = 1, . . . , N. (2.9)

Let us now assume that the behavior of drivers of species i is associated with an anticipa-

tion distance Li and a reaction time τi, i = 1, . . . , N . Then, following the reasoning in [25], the

reaction of the driver does not depend on the value of φ seen at the point φ(x, t), but rather

on pi(x, t) := φ(x+ Li − vmax
i V τi, t− τi). This formulation takes into account that vmax

i V τi is the

distance travelled by a car of species i in a time interval of length τi. (Note that notation is am-

biguous here, since we are not specific about the argument of V , cf. [25].) To obtain a usable

expression for the flux fi, we expand V (pi(x, t)) around φ(x, t). Writing φ = φ(x, t) and denoting

τ := max{τ1, . . . , τN}, L := max{L1, . . . , LN}, we obtain

V (pi(x, t)) = V (φ) + V ′(φ)
[
∂xφ

(
Li − vmax

i V (φ)τi
)
− τi∂tφ

]
+O(τ2 + L2). (2.10)

On the other hand, summing the conservation laws ∂tφi + ∂x(vmax
i φiV (φ)) = 0 over i = 1, . . . , N

and defining vmax := (vmax
1 , . . . , vmax

N )T, we get

∂tφ = ∂tφ1 + · · ·+ ∂tφN = −∂x
(
V (φ)(vmax)TΦ

)
.

Inserting this result into (2.10) we get

V (pi(x, t)) = V (φ) + V ′(φ)
[(
Li − τivmax

i V (φ)
)
∂xφ+ τi∂x

(
V (φ)(vmax)TΦ

)]
+O(τ2 + L2).
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Neglecting the O(τ2 + L2) term and inserting the result into the conservation equations

∂tφi(x, t) + ∂x
(
φi(x, t)vi(x, t)

)
= 0, vi(x, t) = vmax

i V
(
pi(x, t)

)
, i = 1, . . . , N,

we obtain a system of the form (2.1), where the components of the flux vector f(Φ) are given by

(2.9) and the entries of the diffusion matrix B(Φ) are now given by

αij(Φ) = −V ′(φ)
[
Li + τi

(
V ′(φ)(vmax)TΦ +

(
vmax
j − vmax

i

)
V (φ)

)]
φiv

max
i , 1 ≤ i, j ≤ N. (2.11)

For traffic flow models we will use periodic boundary conditions corresponding to a circular road

of length K, namely

Φ(0, t) = Φ(K, t), t > 0. (2.12)

2.2.4 Hyperbolicity and parabolicity analysis for the diffusively corrected MCLWR

model

According to [51], the MCLWR model (2.1), (2.9) with B ≡ 0 is strictly hyperbolic and the

Jacobian Jf (Φ) is a rank-one perturbation of a diagonal matrix. The eigenstructure of Jf (Φ)

can again be computed via the secular equation [3], as is explained in the following version of

Theorem 1.1 Section 1.2.2.

Theorem 2.2 ([51]) Consider the first-order multiclass kinematic traffic flow model (1.1), (2.9)

(i.e., without diffusive terms) and assume that the velocities vmax
i are ordered according to (2.8). If

Φ ∈ D0
1, then the Jacobian Jf (Φ) has N distinct real eigenvalues λ1, . . . , λN which are the roots of

the secular equation (1.6) with γi = vmax
i φiV

′(φ), and the following interlacing property holds:

vmax
N + V ′(φ)(vmax)TΦ < λN < vmax

N < λN−1 < vmax
N−1 < · · · < vmax

2 < λ1 < vmax
1 .

We now wish to state sufficient conditions on the non-negative parameters vmax
i , τi and Li under

which B(Φ) has eigenvalues with positive real part for all Φ ∈ Dφmax . The latter property will only

hold under restrictions on the parameters Li and τi. In fact, already in the case N = 1, where

B(φ) = −V ′(φ)(L+ τvmaxφV
′(φ))φvmax, and considering that V ′(φ) ≤ 0, we get that B(φ) ≥ 0 for

all 0 ≤ φ ≤ φmax if and only if

φV ′(φ) ≥ − L

τvmax
for all 0 ≤ φ ≤ φmax. (2.13)

Thus, we cannot expect B(Φ) to have non-negative eigenvalues only without further limitations

and structural conditions between the parameters vmax
i , Li and τi.

Theorem 2.3 The eigenvalues µ1, . . . , µN of B(Φ) are given by µi = −V ′(φ)λi, i = 1, . . . , N ,

where

λ1 =
C1

2
−
(
C2

1

4
− C2

)1/2

, λ2 =
C1

2
+

(
C2

1

4
− C2

)1/2

, λ3 = · · · = λN = 0,
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where we have

C1 =
N∑
k=1

φkv
max
k

(
Lk + τkV

′(φ)(vmax)TΦ
)
,

C2 =

N∑
i,j=1
i<j

φiv
max
i φjv

max
j τiτj

(
Li
τi
− Lj
τj

+ (vmax
j − vmax

i )V (φ)

)
(vmax
j − vmax

i )V (φ).

(2.14)

Proof. We have B(Φ) = −V ′(φ)B̃(Φ), where B̃(Φ) = (α̃ij(Φ))1≤i,j≤N is defined in an obvious

manner via (2.11). (Clearly, since V ′(φ) ≤ 0, B(Φ) has non-negative eigenvalues on Dφmax if B̃(Φ)

has.) Since B̃(Φ) is a rank-2 matrix of size N × N , we know that det(λI − B̃(Φ)) = λN−2(λ2 −
C1λ+ C2), where Ck = Ck(Φ) is the sum of the k-rowed principal minors of B̃(Φ), that is,

C1 = tr B̃(Φ), C2 =
N∑

i,j=1
i<j

(
α̃iiα̃jj − α̃jiα̃ij

)
. (2.15)

From (2.11) we get that α̃ij = (Li + τiV
′(φ)(vmax)TΦ + τi(v

max
j − vmax

i )V (Φ))φiv
max
i for i, j =

1, . . . , N . Evaluating (2.15) then yields (2.14). �

We recall that the system (2.1) is called parabolic at a state Φ0 if the eigenvalues of B(Φ0) have

non-negative real parts. This is precisely the case if C1(Φ0) ≥ 0 and C2(Φ0) ≥ 0. Thus, we can

expect the system to be well-posed only if

C1(Φ) > 0, C2(Φ) > 0 on D0
φmax

. (2.16)

In view of V ′(φ)(vmax)TΦ ≤ 0, a sufficient condition for C1(Φ) ≥ 0 to hold is that

Lk(φ) + τkv
max
1 φV ′(φ) ≤ 0 for 0 ≤ φ ≤ φmax, k = 1, . . . , N . (2.17)

Note that this condition is the multi-class (N ≥ 1) extension of (2.13). Furthermore, note that we

can write (2.17) as

τk ≤ min
0≤φ≤φmax

− Lk(φ)

φV ′(φ)vmax
1

. (2.18)

If (2.18) is violated, that is, when the reaction time of a driver is not sufficiently small, then the

model is likely to exhibit anti-diffusive phenomena such as formation of clusters, steep density

gradients, stop-and-go waves, and other instability phenomena. A similar conclusion (though based

on a slightly different model) has been drawn, for example, in [87]. For the diffusively corrected

MCLWR model we expand on this observation, and more closely analyze instability phenomena

chapter 3 and in [30].

In the case N = 1, Nelson [81] (cf. [25, 82]) suggests to employ

L = L(φ) = max

{
(vmaxV (φ))2

2a
, Lmin

}
, (2.19)
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where the first argument is the distance required to decelerate to full stop from speed vmaxV (φ) at

deceleration a, and the second is a minimal anticipation distance Lmin > 0 regardless of how small

the velocity is. In the multi-class case we could define Li, for instance, by (2.19) with vmax replaced

by vmax
i . However, in our numerical experiments, we select Li and τi constant to ensure that (2.16)

is always satisfied.

2.3 Numerical schemes

2.3.1 Spatial discretization

For grid points xj := (j − 1
2)∆x for j = 1, . . . ,M , where ∆x := K/M , and tn := n∆t for n ∈ N0,

and using the notation ∆−gk = gk − gk−1 we discretize (2.1) in space as follows:

dΦj(t)

dt
= Lj(Φ) := − 1

∆x
∆−f j+1/2 +

1

∆x
∆−gj+1/2, j = 1, . . . ,M, (2.20)

where Φj(t) ≈ Φ(xj , t), the convective numerical flux f j+1/2 := f(Φj−2, . . . ,Φj+3) is calculated by

the characteristic-wise fifth-order WENO approximation see Section 1.3.1 and [23], and the flux

corresponding to the parabolic term is given by

B(Φ)∂xΦ|x=xj+1/2
≈ gj+1/2 :=

1

2∆x

(
B(Φj+1) +B(Φj)

)
∆−Φj+1,

which gives a second-order approximation for the diffusive term. (Higher order approximations of

these terms could be used to match the order of approximation of the convective term, but we will

not pursue this herein.)

The operator L := (L1, . . . ,LM )T appearing in (2.20) is now given by

Lj(Φ) = − 1

∆x
∆−f j+1/2 +

1

2∆x2
∆−
((
B(Φj+1) +B(Φj)

)
∆−Φj+1

)
for j = 2, . . . ,M − 1, along with appropriate modifications of this formula for j = 1 and j = M to

account for boundary conditions. This can be further written as follows:

L(Φ) = − 1

∆x
(∆−f)(Φ) +

1

∆x2
B(Φ)Φ, (2.21)

where B(v) = {Bij(v)}i,j=1,...,M ∈ R(NM)×(NM) is a block tridiagonal matrix formed by blocks

Bij ∈ RN×N generally given by

Bii(v) =
1

2∆x2

(
B(vi+1) + 2B(vi) +B(vi−1)

)
, i = 1, . . . ,M,

Bi,i−1(v) = Bi−1,i(v) = − 1

2∆x2

(
B(vi−1) +B(vi)

)
, i = 2, . . . ,M.

(2.22)
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2.3.2 Boundary conditions

For the polydisperse sedimentation model we discretize the zero-flux boundary conditions (2.4)

by setting f1/2 − g1/2 = 0 and fM+1/2 − gM+1/2 = 0. This affects L1 and LM , which now read as

L1(Φ) = − 1

∆x
f3/2 +

1

2∆x2

(
B(Φ2) +B(Φ1)

)
∆−Φ2,

LM (Φ) =
1

∆x
fM−1/2 −

1

2∆x2

(
B(ΦM−1) +B(ΦM )

)
∆−ΦM .

This can be written as (2.21) with

B11(v) =
1

2∆x2

(
B(v2) +B(v1)

)
, BMM (v) =

1

2∆x2

(
B(vM−1) +B(vM )

)
.

When we discretize the periodic boundary conditions (2.12), for the discretization of the flux at

x = 0 we formally need values Φ−j for j = 0, 1, 2. By periodicity the value Φ−j should agree with

the value ΦM−j . Similarly, at x = K the value ΦM+j , j = 1, 2, 3, should agree with Φj . Therefore,

we have the following:

L1(Φ) =− 1

∆x
∆−f3/2 +

1

2∆x2

((
B(Φ2) +B(Φ1)

)
∆−Φ2

−
(
B(Φ1) +B(ΦM )

)
(Φ1 − ΦM )

)
,

LM (Φ) =− 1

∆x
∆−fM+1/2 +

1

2∆x2

((
B(ΦM ) +B(Φ1)

)
(Φ1 − ΦM )

−
(
B(ΦM−1) +B(ΦM )

)
∆−ΦM

)
.

The blocks in the first and last rows of blocks of matrix B in (2.22) that should be modified with

respect to the general definition are

B11(v) =
1

2∆x2

(
B(v2) + 2B(v1) +B(vM )

)
,

BMM (v) =
1

2∆x2

(
B(v1) + 2B(vM ) +B(vM−1)

)
,

B1,M (v) = − 1

2∆x2

(
B(v1) +B(vM )

)
, BM,1(v) = − 1

2∆x2

(
B(v1) +B(vM )

)
.

Therefore, the block structure of B turns out to be circulant tridiagonal.

2.3.3 Explicit schemes

Given an approximation Φn = (Φn
1 , . . . ,Φ

n
M )T for t = tn, we can compute an approximation

Φn+1 = (Φn+1
1 , . . . ,Φn+1

M )T for t = tn+1 from (2.20) by using an ODE solver, such as Euler’s

method or third-order TVD Runge-Kutta method (see [57, 58, 100]). For instance, Euler’s method

can be written as

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn)Φn. (2.23)

Other explicit schemes, such as the KT scheme [71] that we use in our numerical experiments, have

a similar formulation.
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A von Neumann analysis of the stability of these explicit schemes applied to suitable lineariza-

tions about constant states would suggest that

∆t

∆x
max

Φ
ρ(Jf (Φ)) +

∆t

2∆x2
max

Φ
ρ(B(Φ)) ≤ Ccfl1 ≤ 1 (2.24)

is an appropriate CFL stability condition, where ρ(·) is the spectral radius. The constant Ccfl1

depends on the method and should be empirically adjusted for nonlinear problems, since (2.24) is

deduced for linearized problems and schemes.

2.3.4 Implicit-explicit schemes

The CFL stability condition (2.24) restricts the time step size dramatically when B(Φ) 6= 0.

This restriction could be overcome by implicit schemes, but the implicit treatment of the convective

term is complicated due to the highly nonlinear scheme that is used for its discretization. Therefore,

implicit-explicit (IMEX) schemes, which treat the diffusive term implicitly and the convective term

explicitly, could be an attractive alternative in this situation. The simplest IMEX scheme for the

approximation of (2.20) is the following version of (2.23):

Φn+1 = Φn − ∆t

∆x
(∆−f)(Φn) +

∆t

∆x2
B(Φn+1)Φn+1. (2.25)

The CFL condition for IMEX schemes is

∆t

∆x
max

Φ
ρ(Jf (Φ)) ≤ Ccfl2 ≤ 1,

which is much less restrictive than (2.24). Here, as mentioned above, the constant Ccfl2 depends on

the method used for the spatial and temporal discretizations.

For the case of zero-flux boundary conditions, the boundary condition at x = 0 for the scheme

(2.25) should be fk1/2 − gk1/2 = 0 for k = n or k = n + 1. The use of different treatments for the

convective and diffusive parts does not allow us to impose this condition in a natural manner as

for explicit schemes. However, we impose this condition to avoid adding ghost cells and changing

the structure of the matrices, but this treatment does generate a loss of precision at the boundary.

In this manner we use for j = 1 the equation

Φn+1
1 = Φn

1 −
∆t

∆x
fn3/2 +

∆t

∆x2

(
B(Φn+1

2 ) +B(Φn+1
1 )

)
∆−Φn+1

2 .

The boundary condition at x = K is treated in a similar way. For periodic boundary conditions

(cf. Section 2.3.2), the equations for j = 1 and j = M in (2.25) are

Φn+1
1 = Φn

1 −
∆t

∆x
∆−fn3/2 +

∆t

2∆x2

((
B(Φn+1

2 ) +B(Φn+1
1 )

)
∆−Φn+1

2

−
(
B(Φn+1

1 ) +B(Φn+1
M )

) (
Φn+1

1 − Φn+1
M

))
,

Φn+1
M = Φn

M −
∆t

∆x
∆−fnM+1/2 +

∆t

2∆x2

((
B(Φn+1

M ) +B(Φn+1
1 )

) (
Φn+1

1 − Φn+1
M

))
−
(
B(Φn+1

M−1) +B(Φn+1
M )

)
∆−Φn+1

M

)
.
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2.3.5 IMEX Runge-Kutta schemes

To introduce IMEX-RK methods for the initial-boundary value problems of (2.1) at hand, we

basically follow the notation in [4, 89] and rewrite the semi-discrete formulation (2.20) in the form

(2.2), where

C(Φ) := − 1

∆x
(∆−f)(Φ), D(Φ) :=

1

∆x2
B(Φ)Φ.

For the diffusive part we utilize an s-stage diagonally implicit (DIRK) scheme with coefficients

A ∈ Rs×s, c, b ∈ Rs, in the common Butcher notation, where A = (aij) with aij = 0 for j > i.

For the convective part we employ an s-stage explicit scheme with coefficients Â ∈ Rs×s, b̂, ĉ ∈ Rs

with Â = (âij) with âij = 0 for j ≥ i. The idea is that the resulting scheme is explicit in C and

implicit in D. The corresponding Butcher arrays are denoted by

D :=
c A

bT , D̂ :=
ĉ Â

b̂
T .

The computations of an IMEX-RK scheme necessary to advance an approximate solution Φn

from time tn to tn+1 = tn+∆t are given in Algorithm 2.1 (see [89]; this is a version of the algorithm

originally proposed in [4, p. 154]):

Algorithm 2.1 (Implicit-explicit Runge-Kutta (IMEX-RK) scheme)

Input: approximate solution vector Φn for t = tn

do i = 1, . . . , s

solve for Φ(i) the nonlinear equation

Φ(i) = Φn + ∆t

(
i−1∑
j=1

aijKj + aiiD
(
Φ(i)

)
+

i−1∑
j=1

âi,jK̂j

)
Ki ← D(Φ(i))

K̂i ← C(Φ(i))

enddo

Φn+1 ← Φn + ∆t
s∑
j=1

bjKj + ∆t
s∑
j=1

b̂jK̂j

Output: approximate solution vector Φn+1 for t = tn+1 = tn + ∆t.

Algorithm 2.1 requires solving for the vector u = Φ(i) ∈ RMN a nonlinear system of NM scalar

equations of the form

F i(u) := u− aii∆tB(u)u− ri = 0, i = 1, . . . , s, (2.26)
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where the vector ri ∈ RMN is given by

ri = Φn + ∆t
i−1∑
j=1

aijB
(
Φ(j)

)
Φ(j) + ∆t

i−1∑
j=1

âi,j(∆
−f)

(
Φ(j)

)
. (2.27)

The solution of systems (2.26), (2.27) will be discussed in Section 2.4.

There are different types of IMEX-RK schemes in the literature characterized by the structure of

the matrix A ∈ Rs×s. Following the classification by Boscarino [16], we mention IMEX-RK schemes

of so-called type A, described in [89], for which the matrix A is invertible. Moreover, IMEX-RK

schemes of type CK, described in [68], are characterized by the property that A can be written in

the form

A =

[
0 0

a Ã

]
,

where the submatrix Ã ∈ R(s−1)×(s−1) is invertible and a ∈ R(s−1)×1. Finally, IMEX-RK schemes

of type ARS, introduced in [4], can now be understood as a special case of schemes of type CK,

namely with a = 0.

We consider in this chapter the following three schemes which are identified with the notation

IMEX-Name(s, σ, p), where this triplet characterizes the number s of stages of the implicit scheme,

the number σ of effective stages of the explicit scheme (σ = s or σ = s+ 1) and the order p of the

method: the scheme IMEX-ARS(1,1,1) (cf. [4]) defined by the pair of Butcher arrays

D =

0 0 0

1 0 1

0 1

, D̂ =

0 0 0

1 1 0

1 0

, (2.28)

the scheme IMEX-ARS(2,2,2) (cf. [4]) defined by

D =

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

, D̂ =

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

,

where γ = 1− 1√
2
, δ = 1− 1

2γ
,

(2.29)

and the scheme IMEX-SSP2(3,3,2) introduced in [89], which is defined by

D =

1/4 1/4 0 0

1/4 0 1/4 0

1 1/3 1/3 1/3

1/3 1/3 1/3

, D̂ =

0 0 0 0

1/2 1/2 0 0

1 1/2 1/2 0

1/3 1/3 1/3

(2.30)

Note that scheme IMEX-ARS(1,1,1) corresponds to a combination of the explicit and implicit

Euler schemes (2.25).
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2.4 Nonlinear solvers

Section 2.3.5 shows that IMEX-RK schemes are applicable to (2.1) as long as one can efficiently

find the solution of the nonlinear system (2.26), whose existence and uniqueness is guaranteed if

∆t is sufficiently small.

Due to the structure of the nonlinearity in (2.26), its solution could be obtained by a lagged

diffusivity fixed point iteration that entails solving a convection-diffusion equation with a linear

diffusion term at each iteration, and which consists in freezing the diffusion coefficient at the current

iteration and solving the resulting linear equation for the next one. Nevertheless, the convergence of

such a scheme could require a stringent restriction of ∆t. This is just the kind of limitation that we

want to avoid by the implicit treatment of the diffusion term. We therefore resort to an alternative

nonlinear solver, based on the Newton-Raphson method, to handle the nonlinear systems (2.26).

Although some of the IMEX-RK schemes that we consider are singly-diagonally implicit Runge-

Kutta (SDIRK) schemes, we do not exploit the fact that the Jacobians associated with the nonlinear

function defined in (2.26) satisfy JF i(u) = JF j (u) for the efficient solution of linear systems with

these matrices, since this would entail “freezing” the Jacobians, a fact that would lead to a degra-

dation of the convergence rate of the corresponding approximated NR method. Besides, since these

Jacobians have a block tridiagonal structure, the triangularization step that could be saved by

freezing Jacobians has a similar cost as the substitution steps that are needed to solve systems with

distinct right hand sides. For the sake of simplicity, we denote F = F i in the rest of this section.

To approximately solve the nonlinear system (2.26) by the NR iterative method it is necessary

that the coefficients of the matrix function B, and therefore those of B, be at least continuously

differentiable ([88, page 311]). However, the models of interest here, namely the diffusively corrected

polydisperse sedimentation and MCLWR models, do not naturally satisfy this assumption. We

therefore replace B by a smooth approximation Bε, and denote the corresponding version of B
by Bε, where it is understood that Bε → B and Bε → B as ε → 0. The precise algebraic form

of this approximation is defined separately for each specific application in section 2.5. Note that

the purpose of this approximation is to create smoothness, but not to convert the problem into a

uniformly parabolic one.

We denote by F ε(u) the function (2.26), where B(u) has been replaced by Bε(u). The function

F ε is highly nonlinear for small ε, in the sense that the second derivative of F ε is much larger

than its first derivative. Therefore, by Kantorovich’s theorem (see [45]), the region of guaranteed

convergence shrinks when ε→ 0. On the other hand, the linearity of F ε behaves in the opposite way

when increasing ε (in fact, for the regularization used in Section 2.5, F ε(u)→ u−r when ε→∞),

so the region of guaranteed convergence of the NR method increases. With these observations, we

use a similar strategy as the one used in [39] to efficiently solve F ε(u) = 0 for a prescribed ε = εmin

as follows:

If uε is a solution of F ε(uε) = 0, then uε is used as an initial datum for approximating the

solution of F ε′(u) = 0 for ε′ < ε by the NR method with a line search strategy (see [45]). This

process is started with a sufficiently large value ε0 and it is performed until a solution F εmin(u) = 0

is obtained. Based on the previous discussion on the linearity of F ε, we select ε0 as the smallest
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power of 10 for which the NR method succeeds (i.e., converges within a given tolerance and a

generously large maximum number of iterations) solving F ε0(u) = 0 when given u = Φn as the

initial guess.

The decrease of ε can be automated by using that limε→ε′ uε = uε′ (this is ensured by com-

pactness and uniqueness of solutions of the problems near Φn) enables us to choose ε′ = κε for

some κ ∈ (0, 1) and use uε as the initial iteration to solve F ε′(u), hoping that this initial guess is

close enough to the solution for the NR method to converge within a given tolerance and a given

maximum number of iterations. If the NR method does not succeed, then we take κ closer to 1 and

try again; on the other hand, if the NR method takes a small number of iterations to converge (less

than 3, say), then we diminish the factor κ.

It is easy to see that the direction obtained from the NR method for the solution of F ε(u) = 0,

namely the vector (−JF ε(u))−1F ε(u), is a direction of descent for m(u) = ‖F ε(u)‖22. Therefore

we can use the following algorithm to ensure the convergence of the NR method.

Algorithm 2.2 (Newton-Raphson (NR) method with line search strategy)

Input: approximate solution vector Φn at t = tn as a starting value

u(0) ← Φn, ε← ε0, m(u)← ‖F ε(u
(0))‖22, ν ← 0

while ε ≥ εmin do

while ν ≤ Niter and m(u(ν)) < tol do

solve for pν the linear system JF ε(u
(ν))pν = −F ε(u

(ν))

α0 ← 1

k ← 0

while αk ≥ αmin do

u← u(ν) + αkpν , m(u)← ‖F ε(u)‖22
if m(u) < m(u(ν)) then

u(ν+1) ← u

else

αk+1 ← 0.8αk

endif

k ← k + 1

endwhile

ν ← ν + 1

endwhile

Decrease ε

endwhile

Output: approximate solution u of the nonlinear system F εmin(u) = 0.
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Since the matrix JF ε(u) is block tridiagonal (and block circulant for periodic boundary condi-

tions), an efficient block tridiagonal solver for the linear systems JF ε(u)z = −F ε(u) can be used.

The invertibility of these matrices (only for sufficiently small ∆t) is not ensured, but we have not

experienced any invertibility failures in our tests.

2.5 Numerical results

For comparison purposes, we compute reference solutions for numerical tests by the KT scheme

[71], which is employed in [12] for the numerical solution of (2.1) for the diffusively corrected

polydisperse sedimentation model (sedimentation with compression). The reference solution is based

on a fine discretization with Mref = 12800 cells and ∆t is selected at each time step following the

formula

∆t = Ccfl1

(
maxΦ ρ̃(Jf (Φ))

∆x
+

maxΦ ρ̃(B(Φ))

2∆x2

)−1

(2.31)

with Ccfl1 = 0.25 and with estimates ρ̃ of the spectral radius of the corresponding matrices obtained

from Theorems 1.2 and 2.1 for the polydisperse case and Theorems 2.2 and 2.3 for the traffic model.

This CFL number has been adjusted empirically to be the largest multiple of 0.05 that yields an

oscillation-free reference solution. The variable time step (2.31) with Ccfl1 = 0.25 has been used for

the KT scheme in all tests. The following time steps for the IMEX-RK schemes are used:

∆t = Ccfl2∆x
(
max

Φ
ρ(Jf (Φ))

)−1
, (2.32)

where ρ(Jf (Φ)) is computed along with the characteristic information needed for the convective

part and Ccfl2 is empirically obtained as the largest multiple of 0.05 that yields oscillation-free

simulations with Mref cells. These numbers are Ccfl2 = 0.25 for the scheme IMEX-ARS(1,1,1)

(2.28) in Example 2.1 and Ccfl2 = 0.1 for Examples 2.2 and 2.3, whereas Ccfl2 = 0.7 for the

methods IMEX-ARS(2,2,2) (2.29) and IMEX-SSP2(3,3,2) (2.30) in all examples. We mention that

the scheme IMEX-ARS(1,1,1) applied to fifth-order WENO (WENO5) spatial semi-discretizations

should have a stability restriction related to that for the forward Euler method and WENO5. A

modified von Neumann analysis carried out in [80] indicates that the CFL number of the schemes

obtained by using Euler method to integrate semi-discretizations obtained by WENO5 have a

stability restriction proportional to ∆x4. In our experiments we have not had to use such a small

restriction, but we have had to reduce the Courant number considerably with respect to the other

IMEX methods.

Total approximate L1 errors at different times for each scheme are computed as follows. Let

us denote by (φMj,i(t))
M
j=1 and (φref

l,i (t))Mref
l=1 the numerical solution for the i-th component at time t

calculated with M and Mref cells, respectively. We use cubic interpolation from the reference grid

to the M cells grid to compute φ̃ref
j,i (t) for j = 1, . . . ,M . We then calculate the approximate L1

error in species i by

ei(t) :=
1

M

M∑
j=1

∣∣φ̃ref
j,i (t)− φMj,i(t)

∣∣, i = 1, . . . , N.
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Figure 2.1: Example 2.1: (a) reference solution (KT scheme, M = 12800) at T = 4000 s, (b, c)

enlarged views of numerical solutions with M = 200 at T = 4000 s, (d) reference solution at

T = 10000 s, (e, f) enlarged views of numerical solutions with M = 200 at T = 10000 s.

The total approximate L1 error at time t is defined as etot(t) := e1(t) + · · ·+ eN (t).
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Figure 2.2: Example 2.1: numerical approximation by scheme IMEX-ARS(2,2,2) at simulated time

T = 4000 s using M = 200 and a fixed value of ε = εmin in (2.33).

(a) (b)

IMEX scheme νmax kmax ν̄ k̄

ARS(1,1,1) 5 5 1.56 0.71

ARS(2,2,2) 6 4 2.06 0.51

SSP2(3,3,2) 6 3 2.21 0.23

IMEX scheme νmax kmax ν̄ k̄

ARS(1,1,1) 3 1 1.12 0.001

ARS(2,2,2) 3 1 1.10 0.01

SSP2(3,3,2) 3 1 1.07 0.02

Table 2.1: Examples 2.1 and 2.3: maximum number of iterations νmax required by the NR method

for solving (2.26), maximum number of reductions kmax of α in Algorithm 2.2, global average

number of iterations ν̄, and global average number of reductions k̄ of α required different IMEX

schemes with M = 400 for (a) Example 2.1 at T = 10000 s and (b) Example 2.3 at T = 0.2 h.

2.5.1 Example 2.1: settling of a tridisperse suspension

We simulate the settling of a tridisperse (N = 3) suspension forming a compressible sediment.

The mixture is described by the model functions (1.3), (1.4) and (2.7) with φmax = 0.66, nRZ = 4.7,

σ0 = 180 Pa, φc = 0.2, k = 2, µf = 10−3 Pa s, d = 1.19×10−5 m, ρs = 1800 kg/m3, and g = 9.81 m/s2

[12]. The initial concentration is Φ0 = (0.04, 0.04, 0.04)T in a vessel of height K = 1 m with

normalized squared particle sizes δ = (1, 0.5, 0.25)T.

For this model, the coefficients are defined in terms of the function σe(φ) and its derivative (cf.

(2.5)). The regularization of Section 2.4 is achieved by replacing σe(φ) by a regularized smooth

function σe(φ; ε) such that σe(φ; ε)→ σe(φ) for all φ and σ′e(φ; ε)→ σ′e(φ) for all φ 6= φc as ε→ 0.

Specifically, if σe satisfies (2.6), we choose

σe(φ; ε) = σe(φ) exp
(
−ε/(φ− φc)

2
)
, ε > 0. (2.33)

In Figure 2.1 we compare results obtained by schemes KT, IMEX-ARS(1,1,1), IMEX-ARS(2,2,2)

and IMEX-SSP2(3,3,2). We observe good approximations for the IMEX schemes compared with
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Figure 2.3: Example 2.1: comparison of the convergence history of nonlinear solvers obtained with

scheme IMEX-ARS(1,1,1) with (a) M = 800 at simulated time T = 19.2 s, NR method versus

Algorithm 2.2, (b) M = 1600 at simulated time T = 76.4 s, Algorithm 2.2 without line search

versus NR method with line search.

KT IMEX-ARS(1,1,1) IMEX-ARS(2,2,2) IMEX-SSP2(3,3,2)

T [s] M error cr cpu error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 150.4 — 0.6 130.3 — 0.2 145.1 — 0.1 146.1 — 0.2

200 75.7 0.99 4.7 61.3 1.08 1.1 70.3 1.04 0.6 70.9 1.04 0.9

4000 400 38.4 0.98 31.4 31.1 0.96 4.3 36.2 0.95 2.4 36.8 0.94 6.0

800 20.8 0.88 289.1 16.7 0.90 20.9 18.5 0.96 11.2 18.9 0.95 18.9

1600 11.3 0.88 2349.0 9.0 0.89 108.7 9.9 0.89 65.5 10.1 0.90 97.8

100 141.1 — 2.4 136.5 — 0.7 142.2 — 0.4 139.6 — 0.6

200 75.6 0.89 18.1 64.9 1.07 3.1 68.7 1.04 1.7 68.8 1.02 2.7

10000 400 40.2 0.91 101.6 41.8 0.63 11.7 43.8 0.64 8.7 43.8 0.65 14.0

800 21.6 0.89 1103.0 19.6 1.09 70.7 20.7 1.08 39.0 20.7 1.08 57.9

1600 12.6 0.78 9058.6 12.0 0.70 318.3 12.3 0.75 173.5 12.2 0.76 280.1

Table 2.2: Example 2.1: total approximate L1 errors etot(T ) (“error”, to be multiplied by 10−5),

convergence rates (cr), and CPU times (cpu), at two times T for the schemes KT and IMEX-

ARS(1,1,1) with Ccfl1 = Ccfl2 = 0.25, and the schemes IMEX-ARS(2,2,2) and IMEX-SSP2(3,3,2)

with Ccfl2 = 0.7.

the KT scheme near φc. No oscillations appear at this scale. The nonlinear system (2.26) is solved

by Algorithm 2.2, where ε varies from ε0 = 10−4 to εmin = 10−7 and tol = 10−8. Figure 2.2 displays

numerical approximations obtained by IMEX-ARS(2,2,2) where the diffusion coefficient is regula-

rized by (2.33) for different fixed values of ε = εmin. Note that for ε = 10−5, the reference solution

is approximated well.

Table 2.1 (a) informs some details of the convergence history of the NR method to obtain a

numerical approximation within several IMEX–RK schemes. Observe that, for each fixed value of ε,
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Figure 2.4: Example 2.1: total approximate L1 errors versus CPU time for KT and IMEX schemes

at simulated times (a) T = 4000 s, (b) T = 10000 s. Here and in Figures 2.7 and 2.9, for each scheme

the interpolated symbols correspond to different values of M .

within scheme IMEX-ARS(2,2,2) the NR method requires at most 6 iterations, but in general, only

2 or 3 iterations were necessary. With respect to α, Algorithm 2.2 reduces this parameter at most

five times, but less than once in average.

In Figure 2.3 we test different variants of Algorithm 2.2 to ascertain which of its internal mecha-

nisms is the one that ensures convergence. In the first setup we compare the (undamped) NR method

versus our proposed algorithm. The system to be solved corresponds to scheme IMEX-ARS(1,1,1).

The simulated time is T = 19.2 s, we set M = 800, and the parameters for Algorithm 2.2 are

ε0 = 10−4 and εmin = 10−8. In the second setup we compare Algorithm 2.2 without line search

with a gradual descent of ε from ε0 = 10−4 to εmin = 10−6 with the NR method with line search

applied directly to F εmin(u) = 0. Again the system to be solved corresponds to scheme IMEX-

ARS(1,1,1), and the simulated time is T = 76.4 s with M = 1600. The simulated times T provided

in these tests correspond to the time step when one of the nonlinear solvers in the comparison

did not succeed converging within a generously prescribed maximum number of iterations. Fig-

ure 2.3 shows ‖F (u(ν))‖2 (without regularization) for ν = 0, 1, 2 . . . until Algorithm 2.2 reaches

convergence. As can be deduced from Figure 2.3 (a), the NR method does not converge while

Algorithm 2.2 does (although not at a quadratic rate for ‖F (u(ν))‖2, since NR is applied to F ε

for decreasing ε > 0). We deduce from Figure 2.3 (b) that the damped NR method applied to

F εmin(u) = 0 stalls, due to the choice of an extremely small step-length to ensure decrease of the

objective function, while Algorithm 2.2 without line search converges. Therefore, as shown in both

experiments, the mechanism that ensures convergence to the solution is the gradual descent of ε

towards the prescribed εmin; the line search procedure may enhance efficiency, permitting a faster

decrease of ε.
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Table 2.2 and Figure 2.4 show approximate L1 total errors, convergence rates and CPU times

for Example 2.1. According to Table 2.2, scheme IMEX-ARS(2,2,2) is the most efficient: for the

same resolution M , scheme IMEX-ARS(1,1,1) has the smallest error, closely followed by schemes

IMEX-ARS(2,2,2), IMEX-SSP2(3,3,2) and KT in increasing order with respect to error size; on the

other hand, the CPU time of scheme IMEX-ARS(2,2,2) is the lowest, basically due to the increased

CFL number compared with scheme IMEX-ARS(1,1,1) and the smaller number of implicit stages

with respect to scheme IMEX-SSP2(3,3,2). One can also deduce from Table 2.2 that the CPU time

scales as O(M2) for the IMEX-RK schemes, whereas it scales as O(M3) for the KT scheme. This

implies a nearly fixed cost of the solution of nonlinear systems per time step and that the gap in

CPU time increases with M . For instance, scheme IMEX-ARS(2,2,2) is about 60 times faster than

the KT scheme for a resolution of M = 1600 cells.

A careful observation of CPU times of the same scheme and resolution at different simulated

times yields that the CPU time is not proportional to the simulated time. This is due to the variable

time stepping in formulas (2.31) and (2.32) and to the fact that the spectral radius of the Jacobian

of the fluxes and the diffusion matrix is smaller at the early stages of the simulation (in fact, the

diffusion matrix may be null in a noticeable period of time) so the time steps may be larger at the

beginning of the simulation.

2.5.2 Examples 2.2 and 2.3: diffusively corrected kinematic traffic model

We consider a circular road and a numberN of driver classes associated with velocities vmax
i > vmax

j

for i < j. If ρi denotes the number of cars of species i per mile, and ρmax is the maximal “bumper-

to-bumper” number of cars per mile, we define φi := ρi/ρmax. To make results comparable with

those of [25], we employ the Dick-Greenberg model [48, 59] V (φ) = VDG(φ) = min{1,−C lnφ}, and

choose (as in [25, 81, 82]) C = e/7 ≈ 0.38833 so thatV (φ) = 1, V ′(φ) = 0 for 0 ≤ φ ≤ φc = exp(−1/C) ≈ 0.076142,

V (φ) = −C lnφ, V ′(φ) = −C/φ for φc < φ < 1.

Equipping class 1 with the same properties as the model of [25], we set τ = 2 s = 0.0005̄ h. We

choose all anticipation lengths Li = L = 0.05 mi and all reaction times τi = τ , i = 1, . . . , N in such

a way that (2.18) holds with φmax = 1, i.e.,

τ ≤ min
0≤φ≤1

(
− L(φ)

φV ′(φ)vmax
1

)
=

L

Cvmax
1

=
7 · 0.05 mi

e · 70mi/h
≈ 0.00184 h = 6.622 s.

We easily see that in this case

C2 = τ2(V (φ))2
N∑

i,j=1
i<j

φiv
max
i φjv

max
j (vmax

j − vmax
i )2 ≥ 0.

For this model, according to (2.11), the coefficients depend on V (φ) and its derivative. The

regularization mentioned in Section 2.4 is achieved by replacing V (φ) by

V (φ; ε) = 1 + (V (φ)− 1) exp
(
−ε/(φ− φc)

2
)
, ε > 0.
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Figure 2.5: Example 2.2: numerical solution obtained with scheme IMEX-SSP2(3,3,2) with M =

1600 at simulated times (a) T = 0.0 h (initial datum), (b) T = 0.01 h, (c) T = 0.05 h (with marked

areas of enlarged views shown in Figure 2.6), (d) T = 0.1 h, (e) T = 0.5 h and (f) T = 5.0 h.
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Figure 2.6: Example 2.2: (a, b, c, d) Enlarged views (cf. Figure 2.5 (c)) of reference solution (scheme

KT, Mref = 12800) and numerical solutions for individual species for KT and IMEX schemes with

M = 400, at simulated time T = 0.05 h.

To be definite, we study N = 3 vehicle classes with vmax
1 = 70 mi/h, vmax

2 = 50 mi/h and

vmax
3 = 30 mi/h on a circular roadway with length K = 4 mi, i.e., we use periodic boundary

conditions. The initial density distribution is given by an isolated platoon of maximum global

density ρ0, Φ0(x, 0) = p(x− 1)ρ0(0.25, 0.4, 0.35)T, where

p(x) =

 10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise,

and we choose ρ0 = 0.45 and ρ0 = 0.25 in Examples 2.2 and 2.3, respectively. Algorithm 2.2 is used

with ε varying from ε0 = 10−4 to εmin = 10−6 and tol = 10−7. Previous numerical tests indicate

that εmin = 10−6 is sufficient to obtain good approximations.

Figure 2.5 shows the time evolution obtained with IMEX-SSP2(3,3,2) with M = 1600 cells of

the initial density platoon for Example 2.2.
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Figure 2.7: Example 2.2: total approximate L1 errors versus CPU time for KT and IMEX schemes

at simulated times (a) T = 0.05 h, (b) T = 0.25 h.

KT IMEX-ARS(1,1,1) IMEX-ARS(2,2,2) IMEX-SSP2(3,3,2)

T [h] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

200 305.7 — 1.4 307.8 — 0.7 308.3 — 0.3 314.4 — 0.5

400 172.4 0.82 10.4 185.5 0.74 5.5 180.2 0.77 1.6 178.2 0.81 2.4

0.05 800 88.4 0.96 78.6 118.6 0.64 25.3 97.2 0.89 13.9 91.6 0.96 13.5

1600 42.8 1.04 592.5 58.7 1.01 174.3 49.9 0.98 93.7 43.4 1.07 89.0

3200 22.8 0.90 4704.5 31.3 0.90 1268.4 30.8 0.76 543.9 26.2 0.72 701.6

200 343.2 — 5.3 255.2 — 4.9 194.4 — 3.5 180.2 — 3.2

400 165.7 1.04 40.9 157.9 0.69 20.6 97.4 0.99 15.0 90.4 0.99 20.0

0.25 800 74.5 1.15 324.1 97.0 0.70 95.8 44.2 1.13 73.3 37.5 1.26 107.8

1600 37.2 0.99 2022.1 48.9 0.98 504.7 22.3 0.98 380.9 19.8 0.92 604.4

3200 19.4 0.94 14965.5 26.9 0.86 2469.7 12.6 0.82 1904.3 10.6 0.90 2992.2

Table 2.3: Example 2.2: total approximate L1 errors etot(T ) (“error”, to be multiplied by 10−5),

convergence rates and CPU times at time T for scheme KT with Ccfl1 = 0.25, scheme IMEX-

ARS(1,1,1) with Ccfl2 = 0.1, and schemes IMEX-ARS(2,2,2) and IMEX-SSP2(3,3,2) with Ccfl2 =

0.7.

The average density exceeds φc, i.e., the traffic is relatively dense. We observe that the numerical

solution evolves to a stationary solution, which must lie in the parabolic region. In Figure 2.6

we compare the results obtained by the KT and IMEX-RK schemes. Plotted areas correspond to

regions where the diffusive term acts. The IMEX-RK schemes approximate adequately the reference

solution.

In Table 2.3 and Figure 2.7 we display the history of total approximate L1 errors and CPU

times for Example 2.2. We infer that schemes IMEX-ARS(2,2,2) and IMEX-SSP2(3,3,2) are always

more efficient than the KT scheme, with speedup factors above 10. However, for small resolutions,

scheme IMEX-ARS(1,1,1) is penalized by the CFL reduction and, for instance, it is less efficient
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Figure 2.8: Example 2.3: (a) reference solution (scheme KT, Mref = 12800), (b, c, d) enlarged views

of reference solution and numerical solutions for individual species for KT and IMEX schemes with

M = 800, at simulated time T = 0.2 h.

than the KT scheme for M = 200. Note that the numerical approximations with scheme IMEX-

SSP2(3,3,2) have smaller error than those obtained with scheme IMEX-ARS(2,2,2), but the CPU

time is larger.

In Example 2.3 we choose ρ0 = 0.25 so that the average density is below φc. This case does not

evolve into a stationary solution. In Figure 2.8 we compare results obtained by the KT, IMEX-RK

schemes at simulated time T = 0.2 h with respect to the reference solution. Numerical approxima-

tions are computed with M = 800 cells. It is observed that the IMEX-RK schemes approximate

adequately the reference solution. In Table 2.1 (b) some details of the convergence history of the

NR method are described. Observe that for scheme IMEX-SSP2(3,3,2) and each fixed value of ε,

the NR method requires at most 3 iterations, but in average, only one iteration is necessary. With

respect to α, at some point Algorithm 2.2 reduces it at maximum once but, in general, in most

cases not even one reduction was necessary.
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Figure 2.9: Example 2.3: total approximate L1 errors versus CPU time for KT and IMEX-RK

schemes at simulated times (a) T = 0.06 h, (b) T = 0.2 h.

KT IMEX-ARS(1,1,1) IMEX-ARS(2,2,2) IMEX-SSP2(3,3,2)

T [h] M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

200 283.8 — 0.8 294.8 — 2.5 168.7 — 0.4 163.9 — 0.6

400 170.9 0.71 6.8 150.4 0.97 10.1 102.4 0.72 1.9 102.1 0.68 2.6

0.06 800 96.9 0.81 56.9 82.9 0.85 41.8 59.0 0.79 9.0 53.1 0.94 12.5

1600 48.4 1.01 307.9 45.5 0.86 166.5 33.2 0.83 45.0 26.7 0.99 90.8

3200 25.1 0.94 2660.1 26.2 0.79 874.4 16.9 0.97 197.4 13.0 1.03 464.3

200 186.0 — 3.0 183.3 — 8.8 180.2 — 1.3 162.8 — 1.9

400 93.6 0.99 20.5 95.2 0.94 34.9 95.4 0.91 5.9 81.9 0.99 12.1

0.20 800 49.3 0.92 157.4 50.1 0.92 138.3 50.5 0.91 28.3 38.5 1.08 63.0

1600 25.0 0.97 1367.8 27.3 0.87 546.3 30.2 0.74 141.5 17.2 1.16 354.8

3200 13.3 0.90 10261.1 14.4 0.92 2309.2 11.3 1.01 651.5 9.2 0.90 1474.4

Table 2.4: Example 2.3: total approximate L1 total errors etot(T ) (“error”, to be multiplied by 10−5),

convergence rates and CPU times for KT scheme with Ccfl1 = 0.25, scheme IMEX-RK(1,1,1) with

Ccfl2 = 0.1, and schemes IMEX-ARS(2,2,2) and IMEX-SSP2(3,3,2) with Ccfl2 = 0.7.

In Table 2.4 and Figure 2.9, we display total approximate L1 errors and CPU times for Exam-

ple 2.3. Schemes IMEX-ARS(2,2,2) and IMEX-SSP2(3,3,2) appear to be always more efficient than

the KT scheme. This reconfirms the same trends as those mentioned for the previous setup. As in

Example 2.2, numerical approximations with scheme IMEX-SSP2(3,3,2) have smaller errors than

those obtained with scheme IMEX-ARS(2,2,2), but the CPU time is larger.
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2.6 Derivation of the model of polydisperse sedimentation with

compression

In this subsection the derivation of the model of polydisperse sedimentation with compression

described in Section 2 of [12] is summarized. A suspension may be represented as a superposition

of continuous media, each following its own movement with the only restrictions imposed by the

interaction between components. Each component obeys the laws of conservation of mass and

momentum, incorporating terms to account for the interchange of momentum between components.

Assuming that there is no mass transfer between species, the local mass balance equation of the

solid species and the fluid are described as

∂φi
∂t

+∇ · (φivi) = 0, i = 1, . . . , N,
∂φ

∂t
−∇ · ((1− φ)vf) = 0, (2.34)

where vi is the phase velocity of solids species i, i = 1, . . . , N , and vf is the fluid phase velocity.

Defining the volume-average velocity of the mixture q := (1 − φ)vf + φ1v1 + · · · + φNvN and the

relative velocities ui := vi−vf for i = 1, . . . , N , the solids mass balance equations can be rewritten

in terms of q and u1, . . . ,uN as

∂φi
∂t

+∇ · (φiui + φiq− φi(φ1u1 + · · ·+ φNuN )) = 0, i = 1, . . . , N. (2.35)

The sum of all equations in (2.34) produces the simple mass balance of the mixture ∇ ·q = 0. The

momentum balance equations for the N solid species and the fluid are

%iφi
Dvi
Dt

= ∇ ·Ti + %iφib + mf
i + ms

i , i = 1, . . . , N, (2.36)

%f(1− φ)
Dvf

Dt
= ∇ ·Tf + %f (1− φ)b− (mf

1 + · · ·+ mf
N ). (2.37)

Here %f is the mas density of the fluid, Ti denotes the stress tensor of particles species i, Tf that

of the fluid, b is the body force, mf
i and ms

i is the particle-particle interaction term of species i,

and Dv/Dt := ∂v/∂t+ (v · ∇)v.

We assume that the stress tensors of the solid and fluid phase can be written as Ti = −piI+TE
i

for each i, and Tf = −pfI + TE
f , respectively, where pi denotes the phase pressure of particles

species i, pf that of the fluid, I denotes the identity tensor and TE
i , TE

f are the corresponding extra

(or viscous) stress tensors. We assume that viscous effects due to the motion of the mixture are not

dominant, all viscous effects are assigned to the fluid extra-stress tensor.

As the phase pressures p1, . . . , pN and pf are theoretical variables which cannot be measured ex-

perimentally, they are replaced by the pore pressure p and the effective solid stress σe, which are

measurable. We assume that σe is a function of the local composition of the sediment, σe = σe(φ).

In stating the generic assumption on σe, we consider that during sedimentation, when φ ≤ φc,

there is no permanent contact between the particles and the momentum transfer between the par-

ticles occurs entirely through the fluid or through collisions. This means that the total stress of the

mixture, pt, which can be decomposed in two different ways as

pt = pf + p1 + · · ·+ pN = p+ σe(φ) (2.38)
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equals the pore pressure, and therefore σe(φ) = 0 for φ ≤ φc. During consolidation, when φ > φc,

permanent contact is established between the solid particles, and the contact forces are transmitted

through solid-solid contacts. Moreover, it can be assumed that the part of the total stress supported

by the skeleton of networked solid particles is an increasing function of their concentrations φ, i.e.,

σ′e(φ) > 0 for φ > φc. There generic assumptions on σe(φ) can be summarized as

σe(φ)

= 0, for φ ≤ φc,

> 0, for φ > φc,
σ′e(φ)

= 0, for φ ≤ φc,

> 0, for φ > φc;
(2.39)

Now, it is possible to relate the fluid phase pressures pf and the pore pressure as pf = (1 − φ)p,

which (2.38) can be rewritten as

p1 + · · ·+ pN = φp+
φ1 + · · ·+ φN

φ
σe(φ). (2.40)

Thus, the phase pressure pi is related to p and σe by pi = (φi/φ)(φp+ σe(φ)) for i = 1, . . . , N.

On the other hand, we assume that the only body force is gravity, b = −gk, where g is the

acceleration of gravity and k is the upwards-pointing unit vector. With respect to the interaction

force, the solid-fluid interaction term related to species i is given by mf
i = αi(Φ)ui + βi(Φ)∇φi,

where the βi can be shown to coincide with the pore pressure p, αi is the resistance coefficient

for the transfer of momentum between the fluid and solid phase species i, i = 1, . . . , N . Doing a

dimensional analysis we obtain the following simplified linear momentum balances

αi(Φ)ui = %iφigk + φi∇p+∇
(
φi
φ
σe(φ)

)
, i = 1, . . . , N, (2.41)

∇p = −%fgk−
1

1− φ
(α1(Φ)u1 + · · ·+ αN (Φ)uN ) +

1

1− φ
∇ ·TE

f . (2.42)

The small viscous term ∇ ·TE
f is retained in (2.42) when this equation acts as an equation for the

motion of mixture and is, however, deleted when (2.42) is inserted into (2.41), in order to produce

a solvable linear system for the slip velocities u1, . . . ,uN . Thus, the system can be written as

αi(Φ)(1− φ)

φi
ui +

N∑
j=1

αj(Φ)uj = (1− φ)

[
(%i − %f)gk +

1

φi
∇
(
φi
φ
σe(φ)

)]
, i = 1, . . . , N. (2.43)

As in [12], we obtain an explicit formula for the slip velocities ui solving the equations in (2.43)

and by choosing φi/α(Φ) = −d2
iV (Φ)/(18µf) which is consistent with the Masliyah-Lockett-Bassoon

model

ui = − d2
i

18µf
V (φ)

[
(%i − %f(Φ))gk +

σe(φ)

φ
∇
(
φi
φ

)
+

1− φ
φ
∇σe(φ)

]
, i = 1, . . . , N, (2.44)

where µf is the viscosity of the pure fluid, di are the respective species diameters, and the hindered

settling factor V (φ) can be chosen as V (φ) = (1− φ)n−2 for n > 2.
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The final model equations are the continuity equations of the solids species and of the mixture

∇ · q = 0, the linear momentum balance of the fluid (2.42), and the equations (2.44) for the slip

velocities ui derived from the linear momentum balances of the solid species. To derive explicit

expressions for the fluxes φ1v1, . . . , φNvN appearing in these equations, we introduce the reduced

densities %̄i := %i − %f , i = 1, . . . , N , the vector %̄ = (%̄1, . . . , %̄N )T, and the parameters µ :=

−gd2
1/(18µf) and δi := d2

i /d
2
1, i = 1, . . . , N , such that (2.44) reads

ui = µδiV (φ)

[
(%̄i − %̄TΦ)k +

σe(φ)

gφi
∇
(
φi
φ

)
1− φ
gφ
∇σe(φ)

]
, i = 1, . . . , N. (2.45)

We get φivi = fMLB
i (Φ)k + φiq − ai(Φ,∇Φ) for i = 1, . . . , N , where the components of fMLB

i (Φ)

(corresponding to the MLB model for suspensions of rigid spheres) are given by

fi(Φ) = fMLB
i (Φ) = µδiV (φ)

[
δi(%̄i − %̄TΦ)−

N∑
k=1

δkφk(%̄k − %̄TΦ)

]
, i = 1, . . . , N. (2.46)

If we let δ := (δ1, . . . , δN )T, then the vectors ai(Φ,∇Φ) are given by

ai(Φ,∇Φ) = −µV (φ)

g

{
(1− φ)φi

φ
(δi − δTΦ)∇σe(φ) +

σe(φ)

[
δi∇(

φi
φ

)− φi
(
δ1∇(

φ1

φ
) + · · ·+ δN∇(

φN
φ

)

)]}
, i = 1, . . . , N.

The continuity equations for the solids, i.e., for the N unknowns φ1 to φN , can then be rewritten

as
∂φi
∂t

+∇ ·
(
φiq + fMLB

i (Φ)k
)

= ∇ · ai(Φ,∇Φ), i = 1, . . . , N. (2.47)

Finally, in a closed one-dimensional vessel, the mixture velocity at the bottom vanishes, hence

q = 0 and the remaining equations that actually have to be solved are the system of convection-

diffusion equations

∂φi
∂t

+
∂fMLB

i (Φ)

∂z
=

∂

∂z

[
ai(Φ,

∂φ

∂z
)

]
, i = 1, . . . , N. (2.48)
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2.7 Conclusions of Chapter 2

Some kinematic models can be enriched with nonlinear, non-smooth and strongly degenerate

diffusive terms to account for certain additional features. Their long-term fine simulations with

explicit schemes is limited by the typical parabolic time step restriction, but implicit-explicit Runge-

Kutta schemes can overcome this burden. We have shown that classical Newton-Raphson methods

(with or without damping) for the nonlinear systems that appear in this IMEX formulation do not

work for vanishing smoothness regularizations of the diffusion coefficients whereas a smart solving

strategy based on the damped Newton-Raphson’s method and a gradual decrease of the regularizing

parameter can be efficiently applied for this purpose. The speedup of these IMEX methods with

respect to the Kurganov-Tadmor (explicit) scheme is computed for some selected tests and shown

to be at least an order of magnitude for moderate spatial resolutions.

The limitations of this approach stem from the fact that a regularization of the diffusion coeffi-

cients has to be selected and there is a tradeoff between the fidelity to the original coefficients and

computational time. Nevertheless, we stress that the proposed regularizations do not change the

strong degeneracy of the diffusion.





Chapter 3

A diffusively corrected multiclass

Lighthill-Whitham-Richards traffic

model with anticipation lengths and

reaction times

3.1 Introduction

3.1.1 Scope

The well-known Lighthill-Whitham-Richards (LWR) kinematic traffic model [75, 92] states that

the density of cars φ = ρ/ρmax, where ρ is the local number of cars per mile and ρmax is some

maximum bumper-to-bumper density, can be described by the conservation law ∂tφ+∂x(φv(φ))x =

0, where t is time, x is the spatial coordinate along either an unbounded, one-directional highway

or a closed circuit, and the local velocity v = v(x, t) is a given function of the local density,

v = v(φ(x, t)). It is usually assumed that v(φ) = vmaxV (φ), where vmax is the preferential velocity

of drivers on a free highway and V is a hindrance function describing the drivers’ behaviour of

reducing speed in presence of other cars. The function V satisfies V (0) = 1 and V ′(φ) ≤ 0. These

assumptions lead to the one-dimensional scalar conservation law

∂tφ+ ∂xf(φ) = 0, x ∈ R, t > 0, (3.1)

where the flux density function f is given by

f(φ) = φv(φ) = vmaxφV (φ). (3.2)

The model (3.1), (3.2) has been extended in several directions. On one hand, Nelson [81, 82]

showed that introducing an anticipation length L and a reaction time τ , replacing V (φ(x, t)) by

V (φ(x+L−vmaxV τ, t− τ)) and neglecting O(L2 + τ2) terms when expanding the latter expression

around (x, t), one obtains a “diffusively corrected” version of (3.1), (3.2) of the following form:

∂tφ+ ∂xf(φ) = A(φ)xx. (3.3)

59
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Here, L may also depend on φ, and under certain restrictions on L = L(φ), τ and v(φ), the fun-

cion A is Lipschitz continuous and increasing so that the governing equation (3.3) of the diffusively

corrected LWR model (“DCLWR model”) is a strongly degenerate parabolic PDE in the sense

that A(φ) = 0 for φ ≤ φc, where φc is a critical density value (e.g., a perception threshold), and

A′(φ) > 0 for φ > φc. Properties of (3.3), under the additional assumption of abruptly varying

road surface conditions, were analyzed in [25]. On the other hand, Benzoni-Gavage and Colombo

[8] and Wong and Wong [113] extended the LWR model (3.1), (3.2) to a multi-class model, the

so-called “MCLWR model”, by distinguishing N classes of drivers associated with preferential ve-

locities vmax
1 > vmax

2 > · · · > vmax
N . For the MCLWR model, the sought quantity is the vector

Φ := (φ1, . . . , φN )T of the densities φi of the cars of the different driver classes. The local velocity

vi of vehicles of driver class i is given by vi = vi(φ) = vmax
i V (φ) for i = 1, . . . , N , where we define

φ := φ1 + · · · + φN . Thus, the MCLWR model is given by a strongly coupled system of nonlinear

first-order conservation laws of the type

∂tΦ + ∂xf(Φ) = 0, x ∈ R, t > 0; f(Φ) =
(
f1(Φ), . . . , fN (Φ)

)T
, (3.4)

where the components of the flux vector f(Φ) are given by

fi(Φ) = φivi(φ) = φiv
max
i V (φ), i = 1, . . . , N. (3.5)

It can be shown [50, 118] that the system (3.4), (3.5) is strictly hyperbolic for Φ ∈ D0 := {Φ ∈
RN | φ1 > 0, . . . , φN > 0, φ < 1}.

It is the purpose of this chapter to analyse the new model called diffusively corrected multi-class

LWR model (“DCMCLWR model”) introduced in Section 2.2.3, by combining the assumptions

of the DCLWR model with those of the MCLWR model. In particular, we associate class i of

drivers with the triple (vmax
i , Li, τi), i = 1, . . . , N , which means that drivers of different classes may

have different preferential velocities, anticipation lengths, and reaction times. The resulting model,

which reduces to (3.1) and (3.2) in the respective limit cases N = 1 and L = 0, τ = 0, where

L := (L1, . . . , LN )T and τ := (τ1, . . . , τN )T, can be cast as a quasi-linear system of second-order

PDEs of the form

∂tΦ + ∂xf(Φ) = ∂x
(
B(Φ)∂xΦ

)
. (3.6)

Here the flux vector f = f(Φ) is the same as in the MCLWR model, and B = B(Φ) is an N ×N
matrix expressing the diffusive correction. The precise functional form of B(Φ) depends on the

choice of V (φ) and the vectors of parameters vmax := (vmax
1 , . . . , vmax

N )T, L and τ .

The system (3.6) is supplied with an initial condition and periodic boundary conditions,

Φ(x, t) = Φ(x+ L, t), x ∈ R

where L is the length of a circular road. We formulate, and in part evaluate, a stability criterion

for the model (3.6) based on an analysis of the eigenvalues of the matrices

M(Φ, ξ) :=
i

ξ
Jf (Φ) +B(Φ) ∈ CN×N , ξ ∈ R+, (3.7)
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where i =
√
−1 and Jf (Φ) denotes the Jacobian matrix of f(Φ). Furthermore, by a series of nu-

merical experiments we illustrate the behaviour of solutions to (3.6), and in particular the effect of

different values of Li and τi for different classes of drivers.

3.1.2 Related work

To put the chapter into the proper perspective, we mention first that the MCLWR model has

been analyzed in a number of papers including [9, 51, 78, 118]. In particular, its hyperbolicity

has been established [51, 118] and the admissible waves of the Riemann problem have been inves-

tigated [118]. Moreover, the model (3.4), (3.5) admits a separable, strictly convex entropy since

the corresponding Jacobian matrix Jf (Φ) is diagonally symmetrizable [8, 9]. Component-wise or

characteristic high-resolution numerical schemes for (3.4), (3.5) involving weighted essentially non-

oscillatory (WENO) flux reconstructions are advanced in [28, 50, 117, 119]. On the other hand,

particularly simple first- and second-order difference schemes for the same problem that rely on the

structure of the fluxes fi (3.5) along with the definite sign of the velocities vi are introduced in [24].

Variants of the original MCLWR model (in the sense of [8, 113]) have been proposed and in part

analyzed for highways with varying road surface conditions [27, 120, 121], traffic flow on networks

[63, 84], and stochastic fundamental diagrams (equivalent to the velocity functions vi) [85].

To provide justification for the presence of second-order terms in (3.6), we mention that Nelson

and Sopasakis [83] show that for one driver class, the first-order chapman-Enskog expansion of the

classical Prigogine-Herman [90] kinetic equation of vehicular traffic leads to a traffic stream model

that can be expressed by the DCLWR equation (3.3). Thus, as is argued in [81], a DCLWR model is

presumably the proper traffic-theoretical analogue of the Navier-Stokes equations of fluid dynamics.

Moreover, Lighthill and Whitham themselves, at the end of their paper [75], propose to include

a diffusion effect “due to the fact that each driver’s gaze is concentrated on the road in front of

him, so that he adjusts his speed to the concentration slightly ahead” [75, p. 344]. Since the model

development in Section 3.2 closely follows the original calculus by Nelson [81] in the case N = 1,

the same arguments are valid for the present systems case (N ≥ 1). That said, we are well aware of

the well-known general criticism by Daganzo [43] of second-order traffic models, who argues that

diffusion terms may cause “wrong way travel” in determined situations. However, we demonstrate

in Example 3.14 of Section 3.4.6 that the nonlinearity of the diffusion terms in (3.6) in conjunction

with the (mild) assumption V ′(0) = V ′(1) = 0 prevents this phenomenon from occurring.

Several alternative approaches have been pursued to extend the LWR model to finite reaction

times and anticipation lengths. The treatment by Sopasakis and Katsoulakis [105] (see also [70]) for

one driver class leads to a scalar conservation law with a non-local flux involving a non-symmetric

“anticipation kernel”. In [86] a linear stability analysis is applied to a second-order macroscopic local

traffic model, and a corrected “effective density” sensor accounts for aggressive or timid drivers.

A related analysis is presented in [101]. Ngoduy and Tampere [87] study the influence of different

reaction times (of a single driver class) in terms of the same model. Their condition for traffic
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stability reads [87, Eq. (39)]

τ <
1

2φ2|V ′(φ)|vmax
for 0 < φ < 1 (3.8)

(in our notation). If this condition is violated, then their model can develop instabilities that can

be considered as stop-and-go waves. The relation between reaction times and anticipation lengths

and traffic stability is also discussed in [110].

Finally, we mention that other kinematic flow models that give rise to systems of the type

(3.6) include the sedimentation of polydisperse suspensions [12] and the settling and creaming of

dispersions of droplets [1]. These models are typically posed with zero-flux boundary conditions on

a bounded x-interval.

3.2 Diffusively Corrected MCLWR model DCMCLWR

3.2.1 The model equations

We consider the DCMCLWR model introduced in Section 2.2.3, equations (2.1),(2.9) and where

the coefficients of the diffusive matrix B are given by (2.11). In this chapter we focus on the

hindrance functions V according to Dick [48] and Greenberg [59], namely

V (φ) = min
{

1,−C lnφ
}

=

1 for φ ≤ φDG,

−C lnφ for φ > φDG

(3.9)

with a parameter C > 0, where we employ the common value C = e/7 ≈ 0.38833 such that

φDG = exp(−1/C) ≈ 0.076142. Alternatively we use the common linear Greenshields (GS) velocity

function

V (φ) = 1− φ. (3.10)

Note that in view of (2.11), the particular form of the velocity function (3.9) implies that B(Φ) =

0 for φ ≤ φc = φDG, so (3.6) degenerates to the first-order system (3.4) for the corresponding

vectors Φ. Thus, the resulting model is strongly degenerate. In general, and following [95], we

assume that φc is an explicitly known perception threshold or critical density such that the drivers’

reaction is instantaneous in relatively free flow, i.e. when φ ≤ φc, and otherwise is modeled by the

diffusion term. Thus, for a unified treatment we assume that

B(Φ) =
(
Bij(Φ)

)
i,j=1,...,N

, where Bij(Φ) =

0 if φ ≤ φc,

αij(Φ) if φ > φc.
(3.11)

3.2.2 Stability analysis

We perform a linearized stability analysis for the system (3.6) under the assumptions of the

DCMCLWR model. The linearized equation for a small perturbation u about a constant state Φ(0)
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is obtained by substituting Φ = Φ(0) +u into (3.6) and neglecting quadratic terms in u. This yields

the following linearized version of (3.6):

∂tu+ J∂xu = B∂2
xu, where J := Jf

(
Φ(0)

)
, B := B

(
Φ(0)

)
. (3.12)

We now seek solutions of (3.12) of the form u(x, t) = z(t; ξ) exp(iξx) for a fixed frequency ξ. The

vector function z satisfies the system of ordinary differential equations

z′ = −ξ2Mz, (3.13)

where ′ ≡ d/dt and M = M(Φ(0), ξ) is the matrix defined in (3.7). The general solution of (3.13)

is of the well-known form

z(t; ξ) =

r∑
j=1

exp
(
−ξ2λjt

)
qj(t, ξ), (3.14)

where λ1, . . . , λr are the eigenvalues of M that appear in its associated Jordan blocks of correspon-

ding sizes m1, . . . ,mr, where m1 + · · ·+mr = N , and qj are polynomials (with vectorial coefficients

related to the Jordan decomposition basis) of degree less or equal mj − 1. If limt→+∞ |z(t; ξ)| <∞,

then Re(λj) ≥ 0 if mj = 1 or Re(λj) > 0 if mj > 1.

With respect to the instability phenomena predicted by eigenvalue analysis of J and B, we

mention first that if B has an eigenvalue λ with Re(λ) < 0, then it turns out that M will do so

for |ξ| > ξ0, for some ξ0. It would then follow that this would trigger a growth of z(t; ξ) in (3.14)

when t→∞ for |ξ| > ξ0. This would completely ruin the solution of the nonlinear system, for these

oscillations would appear in all frequencies above ξ0. Milder instabilities would be expected if B

has eigenvalues with positive real parts but M does not, since this should only hold for relatively

small values of ξ. These phenomena are illustrated in the numerical examples.

Considering separately the two terms of the matrix M (cf. (3.7)), namely (i/ξ)J and B, we

obtain that the linearized stability condition for (3.6) when B = 0 is exactly the hyperbolicity

condition for the resulting system (ξ can take any sign), whereas the linearized stability condition

when f = 0 is directly inherited by the condition on M , i.e., the eigenvalues of B = B(Φ(0)) should

have non-negative real parts if they are simple and strictly positive real parts if they have some

corresponding Jordan block of non-trivial dimension. Unfortunately, J having real eigenvalues and

B having eigenvalues with strictly positive real parts does not imply that eigenvalues of M have

strictly positive real parts, as the following simple counterexample shows: with ξ = 1 and

J =

[
1 0

0 −3

]
, B =

[
−1 −3

3 3

]
,

the eigenvalues of M = iJ+B are −0.2332−2.2436i and 2.2332+4.2436i, whereas the eigenvalues

of B are 1± 2.2361i.

This discussion illustrates that the satisfaction of the stability criterion stipulated by (3.14),

namely that the pairwise distinct eigenvalues λ1, . . . , λr of the matrix M = M(Φ(0), ξ) satisfy

Reλ1 ≤ 0, . . . ,Reλr ≤ 0, (3.15)
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can in general not be evaluated exactly by analyzing J and B separately. However, some special

cases are tractable. These include the DCMCLWR with drivers having the same maximum speed

so that classes of drivers are distinguished by their reaction times and anticipation lengths (see

Sect. 3.2.3).

3.2.3 DCLWR model with drivers having the same maximum speed

Let us consider the model (3.5), (3.6), (3.11) under the assumption

vmax
1 = · · · = vmax

N =: vmax. (3.16)

This means that the classes of vehicles are distinguished only by the drivers’ reaction times τi

and anticipation lengths Li. Under the assumption (3.16), and defining the constant vector e :=

(1, . . . , 1)T, Dτ := diag(τ1, . . . , τN ) and DL := diag(L1, . . . , LN ), we obtain

Jf (Φ) = vmax
(
V (φ)I + V ′(φ)ΦeT

)
,

B(Φ) = −V ′(φ)vmax
(
vmaxφV ′(φ)DτΦ +DLΦ

)
eT. (3.17)

Under the present assumptions, and setting Φ := Φ(0) and φ := φ(0), we obtain

M = vmax

[
i

ξ
V (φ)I + V ′(φ)

(
i

ξ
Φ−

(
vmaxφV ′(φ)Dτ +DL

)
Φ

)
eT

]
.

This matrix is a rank-one perturbation of a multiple of the identity matrix I, and its eigenvalues

are given by

λ̃1 = vmax

[
i

ξ
V (φ) + V ′(φ)

(
i

ξ
φ−

(
vmaxφV ′(φ)τT +LT

)
Φ
))]

,

λ̃2 = · · · = λ̃N = vmax i

ξ
V (φ),

(3.18)

with the corresponding one- and (N − 1)-dimensional eigenspaces

V1 =

{
w ∈ CN : w = α

(
i

ξ
Φ−

(
vmaxφV ′(φ)Dτ +DL

)
Φ

)
, α ∈ R

}
,

V2,...,N =
{
w ∈ RN : eTw = 0

}
,

so that all Jordan blocks are trivial. On the other hand, the rank-one matrix B(Φ) defined by

(3.17) has the eigenvalues

β1 = −V ′(φ)vmax
(
vmaxφV ′(φ)τT +LT

)
Φ, β2 = · · · = βN = 0,

which are the real parts of λ̃1, . . . , λ̃N given by (3.18). We have proved the following lemma.

Lemma 3.1 Under the assumption (3.16), the stability criterion (3.15) is violated for a vector

Φ := Φ(0), i.e. the matrix M has an eigenvalue µ with Reµ > 0, if and only if V ′(φ) < 0 and

(vmaxφV ′(φ)τT +LT)Φ < 0, (3.19)

that is, if the matrix B has a negative eigenvalue β1.
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3.3 Parabolicity analysis

In Theorem 2.2 and Theorem 2.3 in Section 2.2.4 was established the conditions of stability

for convective and diffusive terms respectively that appearing in (3.6). Now we remark that in the

stability criterion for the diffusive term, it is observed in Theorem 2.3 that for quantities in (2.14),

C2
1 6= 4C2 generically, we henceforth use C1, C2 > 0 as a sufficient condition for B(Φ) to have

eigenvalues with non-negative real parts only. From the next result we can obtain reaction times

that ensure that the matrix B(Φ) has eigenvalues with non-negative real parts only with velocity

functions V (φ) that satisfy

V (φ) =

1 for φ ≤ φc,

W (φ) for φ > φc,
(3.20)

where W is a function that satisfies W (φc) = 1, W (1) = 0 and W ′(φ) < 0 for φc < φ < 1. For

instance, W (φ) = −C lnφ with φc = φDG gives the Dick-Greenberg model (3.9) and W (φ) =

(1− φ)/(1− φv) produces a variant of the Greenshields model (3.10).

The following Theorem, a relationship between reaction time and free velocity is established.

Theorem 3.2 Let vmax
1 , . . . , vmax

N be free velocities such that vmax
1 > vmax

2 > · · · > vmax
N , V (φ) a

velocity function that satisfies (3.20) and

Li = Li(φ) = max
{
Lmin, β(vmax

i V (φ))2
}
, (3.21)

where the parameters Lmin, β > 0 are chosen such that

Lmin ≤ β(vmax
i )2. (3.22)

Then there exist reaction times τi = τ(vmax
i ) for i = 1, . . . , N , where τ(v) is a monotone increa-

sing function and τ1 ≤ Lmin/(v
max
1 κ), with κ = maxφ |φV ′(φ)|, such that the matrix B(Φ) has

eigenvalues with positive real part.

Note that (3.21) is a multiclass version of the equation

L(φ) = max

{
Lmin,

(v(φ))2

2a

}
proposed in [82] for N = 1, where a is the deceleration and Lmin is a minimum anticipation distance

(regardless of how small the velocity is).

Proof.[Proof of Theorem 3.2] We consider φ > φc, since B(Φ) = 0 otherwise. By Theorem 2.3 it

is ensured that B(Φ) has eigenvalues with non-negative real parts only when C1, C2 > 0, and this

is in turn guaranteed when

Lk + τkS(Φ) ≥ 0 for all Φ and k = 1, . . . , N , S(Φ) := V ′(φ)ΦTvmax, (3.23)

∆ij :=
Li
τi
− Lj
τj

+
(
vmax
j − vmax

i

)
V (φ) ≤ 0 for all Φ and 1 ≤ i < j ≤ N . (3.24)
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Let φ = φ∗i be the unique solution of Lmin = β(vmax
i )2V (φ)2, then

Li(φ) =

β(vmax
i )2V (φ)2 for φ ≤ φ∗i ,

Lmin for φ ≥ φ∗i .
(3.25)

From the assumption (3.22) we deduce that φc ≤ φ∗i for i = 1, . . . , N . Furthermore, φ∗i ≥ φ∗j for

i < j. Moreover, S(Φ) = V ′(φ)ΦTvmax ≥ V ′(φ)φvmax
1 implies that a sufficient condition for (3.23)

to hold is given by

τi ≤
Lmin

κvmax
1

for i = 1, . . . , N . (3.26)

We consider now condition (3.24). From (3.20) and (3.25) we get

Li
τi
− vmax

i V (φ) =



β(vmax
i )2

τi
− vmax

i if φ ≤ φc,

β(vmax
i )2W (φ)2

τi
− vmax

i W (φ) if φc ≤ φ ≤ φ∗i ,

Lmin

τi
− vmax

i W (φ) if φ∗i ≤ φ ≤ 1,

i = 1, . . . , N.

We consider a pair of indices i < j and discuss the cases determined by φ belonging to [φc, φ
∗
j ]

(Case 1), [φ∗j , φ
∗
i ] (Case 2) or [φ∗i , 1] (Case 3).

In Case 1, if we use the functional form τi = τ(vmax
i ), for some τ to be determined, and denote

ψ(v, φ) :=
β(vW (φ))2

τ
− vW (φ),

then ∆ij = ψ(vmax
i , φ)− ψ(vmax

j , φ). If ψv ≤ 0 then ∆ij ≤ 0 for i < j, and this is equivalent to

τ ′ ≥ 2τ

v
− τ2

v2β̃
, β̃ := β̃(φ) := βW (φ).

We consider µ(v) = vnτ(v), with n to be determined so to simplify the latter expression:

µ′ = nvn−1τ + vnτ ′ ≥ nvn−1τ + vn
(

2τ

v
− τ2

v2β̃

)
= nvn−1τ + 2vn−1τ − vn−2τ2

β̃
.

We take n = −2 so that this expression yields:

µ′ ≥ −v
−4τ2

β̃
= −µ

2

β̃
=⇒ µ′

µ2
= −

(
1

µ

)′
≥ − 1

β̃
= −

(
v

β̃

)′
,

and, upon integration and some algebra,

τ = v2µ ≥ β̃v2

v +A
, (3.27)

for some positive A to avoid null denominators.
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In Case 2, and taking into account that Lmin ≥ β(vmax
j )2W 2 for φ ≥ φ∗j , we get

∆ij =
Li
τi
− vmax

i W (φ)−
(
Lj
τj
− vmax

j W (φ)

)
=
β(vmax

i )2W (φ)2

τi
− vmax

i W (φ)−
(
Lmin

τj
− vmax

j W (φ)

)
≤ β(vmax

i )2W (φ)2

τi
− vmax

i W (φ)−

(
β(vmax

j )2W (φ)2

τj
− vmax

j W (φ)

)
,

As in Case 1, if τ satisfies (3.27) then ∆ij ≤ 0.

In Case 3 we get

0 ≥ Lmin

τi
− vmax

i W (φ)−
(
Lmin

τj
− vmax

j W (φ)

)
= Lmin

(
1

τi
− 1

τj

)
−W (φ)

(
vmax
i − vmax

j

)
.

(3.28)

Since W (1) = 0 and vmax
i > vmax

j , then (3.28) holds if and only if τi ≥ τj .
Recapitulating, we deduce that (3.24) holds if τi = τ(wi) with τ satisfying

τ ≥ βW (φ)v2

v +A
, for all φ, τ ′ ≥ 0,

and, since W (φ) ≤ 1, this is equivalent to

τ ≥ βv2

v +A
, τ ′ ≥ 0. (3.29)

We consider the increasing function

τ̃(v) :=
βv2

v +A
for A > 0 that certainly satisfies (3.29). Therefore, to ensure that B(Φ) with τi = τ̃(wi) has

eigenvalues with non-negative real parts only, we use (3.26), so we need to find conditions on A so

that

βv2

v +A
≤ Lmin

κvmax
1

⇐⇒ βv2 − Lmin

κvmax
1

(v +A) ≤ 0 for all 0 ≤ v ≤ vmax
1 . (3.30)

The roots of

βv2 − Lmin

κvmax
1

(v +A) = 0

are

w± =
1

2β

[
Lmin

κvmax
1

±
((

Lmin

κvmax
1

)2

+ 4β
Lmin

κvmax
1

A
)1/2

]
and (3.30) will hold if w− ≤ 0 (which is true) and vmax

1 ≤ w+, which yields after some algebraic

manipulations

β(vmax
1 )2 ≤ Lmin

κ
+

Lmin

κvmax
1

A =⇒ A ≥
(
κβ(vmax

1 )2

Lmin
− 1

)
vmax

1 > 0.

This concludes the proof. �
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3.4 Numerical results

In the subsequent series of examples, we solve the system (3.6) numerically for 0 ≤ t ≤ T and

0 ≤ x < K along with the initial and periodic boundary conditions

Φ(x, 0) = Φ0(x), 0 ≤ x < K; Φ(0, t) = Φ(K, t) for 0 ≤ t ≤ T ,

corresponding to a circular one-directional road of length K. Numerical approximations are ob-

tained by the Kurganov-Tadmor (KT) scheme [71] applied to the DCMCLWR model. In fact,

Kurganov and Tadmor [71] explicitly propose a version of their scheme for convection-diffusion

problems of the type (3.6), even though a well-posedness analysis for systems of PDEs of this type

is not available in the strongly degenerate case. In [12] the same method was applied to (3.6) in the

context of a model of polydisperse sedimentation. To further support the use of the KT scheme,

we mention that numerical experiments conducted in [31] indicate that the KT scheme, a class

of schemes introduced in [24] and based on MUSCL-type spatial differencing and Runge-Kutta

temporal differencing and an alternative implicit-explicit (IMEX) scheme designed for (3.6) that

involves a spectral WENO scheme for the convective part converge to the same solution of (3.6) as

∆t,∆x→ 0 (under suitable CFL conditions). In some examples we will compare the performance

of the KT scheme with Scheme 10 introduced in [24] which is originally defined for (3.4) and is

adapted to (3.6) by adding the same discretization of ∂x(B(Φ)∂xΦ) as that of the KT scheme, also

we will compare with one of the same class of schemes introduced in [31] and described in Section

2.3.5, namely the scheme IMEX-ARS(3,4,3), which is order of accuracy 3 and is defined by the

Butcher array

D =

0 0 0 0 0

γ 0 γ 0 0

1 + γ

2
0

1− γ
2

γ 0

1 0 b1(γ) b2(γ) γ

0 b1(γ) b2(γ) γ

, D̂ =

0 0 0 0 0

γ γ 0 0 0

1 + γ

2
â31(γ) â32(γ) 0 0

1 â41(γ) â42 â43 0

0 b1(γ) b2(γ) γ

, (3.31)

where γ is the middle root of 6x3 − 18x2 + 9x− 1 = 0, and

b1(γ) = −3

2
γ2 + 4γ − 1

4
, b2(γ) =

3

2
γ2 − 5γ +

5

4
,

â31(γ) =

(
1− 9

2
γ +

3

2
γ2

)
â42 +

(
11

4
− 21

2
γ +

15

4
γ2

)
â43 −

7

2
+ 13γ − 9

2
γ2,

â32(γ) =

(
−1 +

9

2
γ − 3

2
γ2

)
â42 +

(
−11

4
+

21

2
γ − 15

4
γ2

)
â43 + 4− 25

2
γ +

9

2
γ2,

â41(γ) = 1− â42 − â43.
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In the following numerical examples, and unless otherwise stated, the x-interval [0,K] is sub-

divided into M = 3200 subintervals of length ∆x = K/M . We denote by ∆t the time step used

to advance the numerical solution from time t = tn to tn+1 = tn + ∆t and by Φn
j the vector of

numerical solutions associated with cell [j∆x, (j + 1)∆x), j = 0, . . . ,M − 1, at time tn. For each

iteration, the time step ∆t is determined anew by using the following formula (derived from a

linearized CFL condition):

∆t

∆x
max

0≤j≤M−1
%
(
Jf
(
Φn
j

))
+

∆t

2∆x2
max

0≤j≤M−1
%
(
B
(
Φn
j

))
= Ccfl1

for the KT scheme and Scheme 10 of [24], and

∆t

∆x
max

0≤j≤M−1
%
(
Jf
(
Φn
j

))
= Ccfl2

for IMEX-ARS(3,4,3), where %(·) is the spectral radius.

3.4.1 Example 3.1 (DG model, N = 4, stable behaviour).

In Example 3.1 we consider the DG velocity function (3.9), a circular road of length K = 10 mi,

N = 4 driver classes with the respective preferential velocities vmax
1 = 60 mi/h, vmax

2 = 55 mi/h,

vmax
3 = 50 mi/h and vmax

4 = 45 mi/h, and a uniform minimum anticipation length Lmin = 0.03 mi.

The reaction times are chosen such that the eigenvalues of the diffusion matrix B(Φ) have non-

negative real parts for Φ ∈ D0 ⊂ R4. According to (2.14) this is ensured if the parameters τ1, . . . , τN

satisfy the following condition:

τ1 ≤
Lmin

Cvmax
1

; τi ≤
(
vmax
i

vmax
i−1

)2

τi−1, i = 2, . . . , N. (3.32)

To satisfy (3.32) here, we choose τ1 = 0.0013 h, τ2 = 0.0011 h, τ3 = 0.0008 h and τ4 = 0.0006 h.

Figure 3.1 shows the evolution of the initial traffic “platoon” given by

Φ0(x, 0) = p(x)


0.2

0.3

0.2

0.3

 , p(x) =


10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise.

(3.33)

We observe that the system tends to a stationary constant solution.
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Figure 3.1: Example 3.1 (DG model, N = 4): (a) initial datum (3.33) and (b–f) numerical solution

at simulated times (b) t = 0.08 h, (c) t = 0.2 h, (d) t = 0.3 h, (e) t = 9 h and (f) T = 50.0 h.
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Figure 3.2: Example 3.2 (DG model, N = 2): (a, b, c) stable behaviour for individual driver classes

(spatially separated), followed by (d) unstable behavior for mixed driver classes.
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Figure 3.3: Examples 3.2–3.8 (DG model, N = 2). Stability region for the diffusion matrix B and

instability region forM for ξ ∈ [0, 100] for (a) Examples 3.2–3.5, (b) Examples 3.6–3.8.
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3.4.2 Examples 3.2–3.5 (DG model, N = 2, unstable behaviour)

In Examples 3.2 to 3.5 we consider the DG model (3.9), a circular road of length K = 2 mi,

and N = 2 driver classes. The preferential velocities of the two classes are given by vmax
1 = 80 mi/h

and vmax
2 = 30 mi/h, and a minimum anticipation distance Lmin = 0.03 mi. For Example 3.2, the

parameters τ1 = 0.00096 h and τ2 = 0.0025 h have been chosen in such a way that the condition for

the PDE (3.3) (for N = 1) to be parabolic for φ > φc, namely

τ ≤ L

|φV ′(φ)|vmax
for φc ≤ φ < 1, (3.34)

is satisfied by both triples (vmax, L, τ) = (vmax
i , Li, τi), i = 1, 2, but that at the same time C2 < 0

in a subregion of D0. In Figure 3.2 we show a numerical example obtained for these values of

parameters in which φ1 and φ2 initially have disjoint support, i.e. drivers of both classes are well

separated. The “convoys” of both species initially evolve according to the scalar model studied

in [25, 81, 82], see Figures 3.2 (a–c). As soon as both classes enter in contact, unstable solution

behaviour emerges, as can be seen in the oscillatory part of the solution visible in Figure 3.2 (d).

To ensure the parabolicity condition, we choose reaction times according to (3.32) by setting

τ1 = 0.0008 h and τ2 = 0.0011 h in Examples 3.3–3.5. As in Example 3.2, we observe that with

these reaction times each driver class is associated with stable behaviour when the respective other

class is absent. In Figure 3.3 (a) we describe a stability region in the (φ1, φ2)-plane (phase space)

corresponding to points at which the real parts of the eigenvalues of B(Φ) are positive. This is a

subregion of R2
+ bounded by curves C1(Φ) = 0 and C2(Φ) = 0. Next, we choose the initial condition

φi(x, 0) = φ0
i + δφ0

[
cosh−2

(
320

K

(
x− 5K

16

))
− 0.25 cosh−2

(
40

K

(
x− 11K

32

))]
(3.35)

for i = 1, 2 (similar to the one proposed in [87]), where δφ0 is the amplitude of perturbation;

we here choose δφ0 = 0.08. We select the initial density Φ0 in the different regions and compute

the solution until a finite time. For the initial conditions φ0
1 = φ0

2 = 0.15 (Example 3.3) or φ0
1 =

φ0
2 = 0.4 (Example 3.4) (Figures 3.4 (a–d)), which lie both in the instability region, we observe

that amplitudes present in the initial datum are expanded but remain bounded in the instability

region, while the frequencies are extended to maximum frequency. When φ0
1 = 0.25 and φ0

2 = 0.25

in the stability region (Example 3.5), simulations (Figures 3.4 (e, f)) show that amplitudes of

the disturbance decrease with time, and that the corresponding frequency of oscillation does not

increase. In both cases, initial perturbations generate waves traveling downstream and upstream.

3.4.3 Examples 3.6–3.8 (DG model, N = 2, mildly unstable behaviour)

We continue using the DG model (3.9), consider a circular road of length K = 4 mi and employ

vmax
1 = 80 mi/h, vmax

2 = 30 mi/h, τ1 = 0.00095 h, τ2 = 0.00075 h and Lmin = 0.01 mi. For this

choice of parameters, we observe in Figure 3.3 (b) that the instability region of M = M(Φ, ξ) is a

subset of the stability region of B, which indicates that bounded or unbounded instabilities could

be generated even when the parabolicity conditions (2.14) are satisfied. As in the last example, we

choose two initial conditions close to the instability region.
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Figure 3.4: Examples 3.3–3.5 (DG model, N = 2): Simulations for different initial conditions which

lie in the stability or instability region (cf. Figure 3.3): (a, b) φ0
1 = φ0

2 = 0.15 (Example 3.3), (c, d)

φ0
1 = φ0

2 = 0.4 (Example 3.4), (e, f) φ0
1 = φ0

2 = 0.25 (Example 3.5).



74 Chapter 3

(a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.04

0.05

0.06

0.07

x [mi]

φ 1

 

 

t=0.0
t=0.1  

0 0.5 1 1.5 2 2.5 3 3.5 4
0.46

0.47

0.48

0.49

0.5

x [mi]

φ 2

 

 

t=0.0
t=0.1    

(c) (d)

φ
1

φ 2

0.02 0.04 0.06 0.08 0.1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

C
2
(Φ)=0

C
1
(Φ)=0

φ
1

φ 2

0.02 0.04 0.06 0.08 0.1
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

C
1
(Φ)=0

C
2
(Φ)=0

(e) (f)

Figure 3.5: Example 3.6 (DG model, N = 2). Unperturbed initial state in stability region of B and

initial perturbation in stability region of B and partially in instability region of M : (a, b) initial

datum and numerical solution at t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d)

the numerical solution for t = 0.1 h; (e, f) numerical solution for 0 ≤ t ≤ 0.1 h.
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Figure 3.6: Example 3.7 (DG model, N = 2). Unperturbed initial state and initial perturbation in

stability region of B and in instability region of M : (a, b) initial datum and numerical solution

at t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d) the numerical solution for

t = 0.1 h; (e, f) numerical solution for 0 ≤ t ≤ 0.1 h.
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Figure 3.7: Example 3.8 (DG model, N = 2). Unperturbed initial state in stability region of B and

large-amplitude initial perturbation partially in instability region of B: (a, b) initial datum and

numerical solution at t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d) numerical

solution for t = 0.1 h; (e, f) numerical solution for 0 ≤ t ≤ 0.1 h.
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Figure 3.8: Example 3.7 (DG model, N = 2): comparison of reference solution (Mref = 12800) with

approximate solutions computed by schemes KT and IMEX-ARS(3,4,3) (3.31) and Scheme 10 of

[24] with M = 1600.

IMEX-ARS(3,4,3) KT Scheme 10

M error CPU time [s] error CPU time [s] error CPU time [s]

400 1.7e-3 1.92 1.8e-3 2.29 2.3e-3 0.34

800 1.4e-3 6.60 1.7e-3 9.92 1.9e-3 1.23

1600 9.3e-4 25.74 1.2e-3 55.94 1.4e-3 5.02

3200 2.9e-4 105.91 8.9e-4 308.26 9.1e-4 26.41

Table 3.1: Example 3.7 (DG model, N = 2): approximate total L1 errors and CPU times at time

t = 0.03 h for the KT scheme with Ccfl1 = 0.1, scheme IMEX-ARS(3,4,3) (3.31) with Ccfl2 = 0.6

and Scheme 10 of [24] with Ccfl1 = 0.25.

We display numerical solutions for different initial conditions. We observe in Figure 3.5 that an

initial perturbation is split into two waves, a wave traveling downstream which decreases rapidly in

amplitude, and another wave traveling upstream which can cause traffic instability depending on

the initial condition.For φ0
1 = 0.04 and φ0

2 = 0.47 (Example 3.6) and an initial perturbation with

amplitude δφ0 = 0.03 which does not lie in the instability region for M , waves traveling upstream

and downstream decrease in amplitude until a steady state is nearly reached. Numerical solutions

are displayed in Figure 3.5.

For φ0
1 = 0.12 and φ0

2 = 0.4 (Example 3.7) and an initial perturbation with amplitude δφ0 =

0.01, which lie in the instability region for M , waves traveling downstream decrease in amplitude,

while waves traveling upstream grow in amplitude and until some frequency, which cause traffic

instabilities. Numerical solutions at different times are displayed in Figure 3.6. Phase space diagrams

are also shown in order to display how instabilities may be triggered. In Table 3.1 we calculate total

approximate L1 errors and CPU times at time t = 0.03 h for two different numerical schemes. The

reference solution was calculated using the KT scheme with M = 12800 subintervals.
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IMEX-ARS(3,4,3) KT Scheme 10

M error CPU time [s] error CPU time [s] error CPU time [s]

400 3.1e-4 2.52 4.9e-4 4.05 6.7e-4 0.36

800 1.2e-4 10.60 2.4e-4 16.82 2.5e-4 1.31

1600 5.3e-5 39.43 8.9e-5 87.65 9.3e-5 6.33

3200 2.3e-5 145.04 2.8e-5 490.67 4.5e-5 30.24

Table 3.2: Example 3.8 (DG model, N = 2): approximate total L1 errors and CPU times at time

t = 0.03 h for the KT scheme KT with Ccfl1 = 0.1, scheme IMEX-ARS(3,4,3) (3.31) with Ccfl2 = 0.6

and Scheme 10 of [24] with Ccfl1 = 0.25.

This information indicates that the numerical solutions produced by all three schemes converge

to the same solution as ∆t,∆x→ 0. In particular, the oscillations visible in the numerical solution

(see Figure 3.6 (a, b)) are not artifacts produced by the numerical scheme. That the oscillations

are not a numerical artifact is further supported by Figure 3.8, where we compare the numerical

solutions obtained for M = 1600 with all three schemes with the reference solution, obtained by

the KT scheme with Mref = 12800.

In Example 3.8 we choose the constants φ0
1 = 0.05 and φ0

2 = 0.5, which lie in the stability

region, and add an initial perturbation with amplitude δφ0 = 0.05 so that the initial function

(φ1(x, 0), φ2(x, 0))T defined by (3.35) assumes values that are in the instability region for B(Φ). In

the numerical solution (see Figure 3.7) we observe that waves traveling upstream generate a wave

that decreases in amplitude, and we also observe instabilities that remain controlled. In Table 3.2 we

calculate total approximate L1 errors and CPU times at time t = 0.03 h for three different numerical

schemes. This table indicates that oscillations present in the numerical solution (cf. Figures 3.7 (a)

and (b)) are not produced by the numerical scheme.

3.4.4 Examples 3.9–3.11 (GS model, N = 4 and N = 2)

Now, we consider a DCMCLWR model with the Greenshields (GS) velocity function (3.10) and

assume that B(Φ) is given by (3.11) with the perception threshold φc = 0.05. In Example 3.9

we choose N = 4 and vmax
1 = 60 mi/h, vmax

2 = 55 mi/h, vmax
3 = 50 mi/h, vmax

4 = 45 mi/h and

Lmin = 0.03 mi. The reaction times are chosen such that the eigenvalues of B(Φ) have positive

sign. In fact, we ensure that (2.14) holds by choosing τ1 = 0.0005 h, τ2 = 0.0004 h, τ3 = 0.0003 h

and τ4 = 0.0002 h. Figure 3.10 shows a time evolution of the initial concentration platoon to a final

(nearly) constant steady state reached at t = 50 h.

To analyse chaotic behaviour, we consider in Example 3.10 a circular road of length 4 mi and

interaction between N = 2 classes with the respective free velocities vmax
1 = 60 mi/h and vmax

2 =

30 mi/h with an anticipation distance Lmin = 0.01 mi. Instabilities occur when we choose reaction

times as τ1 = 0.0024 h and τ2 = 0.0008 h. In Figure 3.9 we display the stability region for the

diffusion matrix B(Φ) and the instability region for the matrix M . As for the Dick-Greenberg

model, we choose two different initial conditions and show that traffic instabilities can occur. In

Figure 3.11 we display a time evolution of an initial condition with φ1 = 0.2 and φ2 = 0.23 and a

perturbation with amplitude δφ0 = 0.02 in the instability region (Example 3.10).
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Figure 3.9: Examples 3.10 and 3.11 (GS model, N = 2): stability region for diffusion matrix B and

instability region for M .

We observe that the solution is a wave travelling upstream which grows in amplitude and

frequency which are instabilities remain controlled, both in amplitude and frequency. We provide in

Table 3.4 and in Figure 3.13 information similar to that of Table 3.1 and Figure 3.8 for Example 3.7,

illustrating that also for this case, the oscillations observed are not a numerical artifice and that all

three numerical schemes apparently approximate the same solution In Figure 3.12 we display a time

evolution of an initial condition with φ1 = φ2 = 0.18 and a perturbation with amplitude δφ0 = 0.05

in the stability region of B but with some values in the instability region of M (Example 3.11). We

observe that the solution consists of two waves traveling downstream and decreasing in amplitude.

i 1 2 3 4 5

Li [mi] 0.006 0.012 0.03 0.008 0.028

τi [h] 0.00028 0.00052 0.00132 0.00036 0.00122

Table 3.3: Example 3.12 (DG model, N = 5, drivers having the same maximum speed): reaction

times and anticipation distances.

3.4.5 Examples 3.12 and 3.13 (DG model, N = 5, drivers having the same

maximum speed)

In Example 3.12 we consider a circular road of 10 mi and choose N = 5 classes of drivers with

the same free velocities vmax = 50 mi/h. To satisfy the parabolicity condition (3.15), it is sufficient

to choose reaction times τi and anticipation distances Li such that τi ≤ Li(|φV ′(φ)|vmax)−1 for i =

1, . . . , N . We employ the DG velocity function (3.9) and choose the reaction times and anticipation

distances given in Table 3.3. Figure 3.14 shows a time evolution of the initial concentration platoon

Φ0(x, 0) = p(x)(0.2, 0.2, 0.2, 0.2, 0.2)T, where p(x) is given in (3.33), for which stable behavior is

observed. When condition (3.15) is not satisfied, unstable behavior with non-controlled oscillations

appears. As Example 3.13 we consider the same initial platoon (3.33) but we choose τ2 = 0.00104 h.

Simulations are displayed in Figure 3.15(a).
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Figure 3.10: Example 3.9 (GS model, N = 4): (a) initial datum and solution at simulated times

(b) t = 0.08 h, (c) t = 0.2 h, (d) t = 0.3 h, (e) t = 9 h and (f) t = T = 50.0 h.
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Figure 3.11: Example 3.10 (GS model, N = 2). Unperturbed initial state and small-amplitude

initial perturbation in stability region of B and in instability region of M : (a, b) initial datum

and numerical solution at t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d) the

numerical solution for t = 0.1 h; (e, f) numerical solution for 0 ≤ t ≤ 0.1 h.
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Figure 3.12: Example 3.11 (GS model, N = 2): Unperturbed initial state in stability region of B

and initial perturbation in stability region of B and in instability region of M : (a, b) initial datum

and numerical solution at t = 0.1 h; (c, d) phase plane plots of (c) the initial datum and (d) the

numerical solution for t = 0.1 h; (e, f) numerical solution for 0 ≤ t ≤ 0.1 h.
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Figure 3.13: Example 3.10 (GS model, N = 2): comparison of reference solution (Mref = 12800)

with approximate solutions computed by schemes KT and IMEX-ARS(3,4,3) (3.31) and Scheme 10

of [24] with M = 800.

IMEX-ARS(3,4,3) KT Scheme10

M error CPU time [s] error CPU time [s] error CPU time [s]

400 2.1e-3 2.12 2.5e-3 4.05 8.1e-3 2.54

800 1.8e-3 9.12 2.0e-3 67.80 4.4e.3 12.08

1600 1.4e-3 47.38 1.9e-3 274.75 2.1e-3 50.45

3200 7.2e-5 205.44 1.0e-3 1059.48 1.0e-3 253.94

Table 3.4: Example 3.10 (GS model, N = 2): approximate total L1 errors and CPU times at time

t = 0.03 h for the KT scheme with Ccfl1 = 0.05, scheme IMEX-ARS(3,4,3) (3.31) with Ccfl2 = 0.6

and Scheme 10 of [24] with Ccfl2 = 0.1.

3.4.6 Example 3.14 (Daganzo’s test, N = 4)

We finish this numerical section with a test proposed by Daganzo in [43]. In that paper, the

author argues that second-order (scalar) partial differential equations modelling traffic flow will

give negative fluxes, i.e., cars moving backwards, at traffic jams. To perform a multiclass test that

corresponds to this situation, we specify zero-flux boundary conditions and set up the following

initial condition:

Φ(x, 0) =

ΦL for x < 0,

ΦR for x > 0,
(3.36)

where ΦL = 0 and ΦR is such that φR = 1. This initial condition prescribes an initially stopped

traffic after some point (x = 0) and no cars behind it. This density distribution should be a

stationary solution for the model, but, as Daganzo predicts in [43], the numerical scheme applied
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Figure 3.14: Example 3.12 (DG model, N = 5, drivers having the same maximum speed): (a, b)

total concentration at different times, (c, d) individual concentrations and enlarged views at times

(c) t = 0.025 h and (d) t = 0.1 h.

to our model and this initial condition produce a smearing of the profile around x = 0, i.e., cars

move backwards, see the dashed numerical solution in Figure 3.15(b).

Nevertheless, the analysis in [43] is performed for linear diffusion, but our model yields strongly

degenerate, nonlinear diffusion terms. Therefore, we can modify the numerical scheme for preventing

this smearing as the following reasoning indicates: A stationary solution for the KT scheme satisfies

f̂ j+1/2 =
(
B(Φ)∆Φ

)
j+1/2

,

where f̂ j+1/2 and (B(Φ)∆Φ)j+1/2 are the numerical convective and diffusive fluxes, respectively,

of the KT scheme defined at the boundary between cells centered at xj and xj+1, where xj = j∆x

and j ∈ Z. The function (3.36) would be a stationary solution if

f̂ j+1/2 = 0 (3.37)
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Figure 3.15: (a) Example 3.13 (DG model, N = 5, drivers having the same maximum speed):

instabilities may occur when the parabolicity condition (3.15) is not satisfied. (b) Example 3.14

(Daganzo’s test): solutions with the original DG velocity and modified velocity.

and (
B(Φ)∆Φ

)
j+1/2

= 0. (3.38)

Since the total concentration of (3.36) is zero for x < 0 and one for x > 0, the physical convective

fluxes are 0 for Φ in (3.36). If no artificial viscosity is added to numerical fluxes, then (3.37) holds

for (3.36). One therefore deduces that condition (3.38) is sufficient for (3.36) to be a stationary

solution for the numerical scheme. Since the discretization of the latter is

∆x

2

(
B(Φj) +B(Φj+1)

)
(Φj+1 − Φj),

it is then sufficient that B(Φj) = 0. Since the latter is proportional to V ′(φj) and either φj = 0 or

φj = 1, this would be ensured if V ′(0) = V ′(1) = 0. The first requirement is satisfied for the DG

velocity (3.9) and the second one could be obtained by modifying the velocity function. We have

performed the modification to the KT scheme in this manner and obtained that (3.36) is indeed a

stationary solution for the numerical scheme (see Figure 3.15).
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3.5 Conclusions of Chapter 3

We have analyzed the stability of a diffusively corrected multiclass Lighthill-Whitham-Richards

(DCMCLWR) traffic model that takes into account anticipation lengths and reaction times. The

basic result is that to achieve stability, defined in terms of the linearized version (3.12) of (3.6),

it is not sufficient to ensure that the diffusion matrix B has eigenvalues with positive real parts;

rather, one also has to consider a contribution from the convective part defined by the Jacobian J ,

multiplied by i/ξ. Thus, it is not possible in general to identify stable or unstable solution behaviour

with a particular type of (3.6), unless we consider the special cases J = 0, J being a rank-one

perturbation of a multiple of I (as for the case of equal free velocities discussed in Section 3.2.3)

or B = 0 (as for the standard MCLWR model). This contrasts, for example, with the stability

analysis of a model of polydisperse sedimentation [26], whose governing equations can be written

as (3.4), and for which a stability analysis similar to the one conducted in Section 3.2.2 shows

that a criterion for stable segregation (formation of horizontal concentration interfaces that move

vertically), introduced in [7] for N = 2 and supported by experimental results, is equivalent to

hyperbolicity of (3.4). The experiments show that stable behavior is obtained when the eigenva-

lues of M have positive real parts and that instabilities may be triggered otherwise, although the

nonlinear character of the equations stabilizes some initial traffic configurations that would explode

under the linearized equations. The nonlinearities also help to control the amplitude (and in some

cases the frequency) of instabilities in the simulations. While we associate oscillations in the nu-

merical solution with unstable behaviour in general, we distinguish between situations where there

is a blow-up of frequency (such as in Examples 3.2, 3.3, 3.4 and 3.13), which means that violations

of the stability condition lead to strongly oscillating solutions (akin to those studied in [13]), and

situations of mildly unstable behaviour (such as the ones observed in Examples 3.5 to 3.8 and 3.10)

with finite frequencies of oscillation, and where numerical solutions can be interpreted as the forma-

tion of stop-and-go waves (although the latter phenomenon is usually associated with much larger

amplitudes, cf., e.g., [86, 87]).

The present model, the stability analysis and its numerical simulations allow us to draw some

conclusions of stable and unstable traffic flow caused by heterogeneous drivers’ behaviour. To

elucidate this issue, let us first point out that the condition (3.34), which is precisely the condition

for the scalar equation (3.3) to be (degenerate) parabolic, is very similar to the condition (3.8)

derived in [87]. While it is plausible that traffic flow is stable, and for instance free of marked

stop-and-go waves, if reaction times of drivers are sufficiently small, our analysis leads to a further

conclusion for N ≥ 2. Namely, for that case it turns out that to ensure stable traffic flow it is not

sufficient so require that (3.34) be satisfied with L, τ and vmax replaced by Li, τi and vmax
i for

i = 1, . . . , N . This is vividly illustrated in Example 3.2: two populations of drivers may produce

stable traffic flow when separated spatially, however, when they start to “mix”, then instabilities

occur. This behaviour is essentially produced by the fact that the larger reaction time τ2 of species 2

(in Example 3.2) in not sufficiently small in presence of the significantly faster drivers of class 1.

In fact, in view of the assumption (2.8) the criterion (3.32) states that the eigenvalues of B have

non-negative real parts (a condition necessary, but in general not sufficient, to ensure stability of
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traffic flow) if the reaction time τi of drivers of a given class i is adapted to the velocities of drivers

of the faster classes 1 to i− 1. In particular, (3.32) means that τ1 ≥ τ2 ≥ · · · ≥ τN .

Finally, we remark that in the numerical examples the reaction times have been chosen relatively

high (up to the value of τ2 = 0.0025 h = 9 s in Example 3.2). We are well aware that these values

are not representative for real-world traffic flow, where reaction times of about τ = 1 s are realistic

(cf., e.g., [109, 110]), but for non-attentive drivers the reaction time may be substantially larger.

Moreover, Nelson [81] employs τ = 2 s for his order-of-magnitude study, and Ngoduy and Tampere

[87] study the effect of reaction time on flow stability for several values of τ up to τ = 2 s. However,

we have not made the effort in this work to maximally adjust parameters to real systems, but rather

chose the parameters in such a way that the effects of instability become well visible. That said, it

should be pointed out that the choices of reaction times alone do not determine stable or unstable

behaviour; the key information is expressed by the spectrum of the matrix M(Φ, ξ) defined in (3.7),

and this spectrum decisively depends not only on the parameter vectors L, τ and vmax, but also

on the choice of the function V (φ) via its derivative V ′(φ), which is present in the parabolicity or

stability bounds (3.19) and (3.34) and in Theorem 3.2. For the latter function we have used the

simple given functional forms (3.9) and (3.10); other choices of V (φ), especially those with large

values of V ′(φ), possibly give rise to appreciable instability phenomena at more realistic reaction

times. In light of the comments made in Section 3.2.2, evaluation of the instability criterion (3.15)

unfortunately requires analyzing the spectrum of M(Φ, ξ), unless we are in the special case of equal

preferential velocities (Section 3.2.3), where Lemma 3.1 provides an easily applicable criterion to

decide whether traffic instabilities are excluded (which occurs if (3.19) cannot be satisfied).





Chapter 4

Lagrangian-Remap schemes for the

MCLWR traffic model

4.1 Introduction

4.1.1 Scope

In this chapter we consider exclusively the multiclass Lighthill-Whitham-Richards (MCLWR)

traffic model described in the previous chapters, where the components of the unknowns vector

ρ = (ρ1, . . . , ρN )T corresponds to ρi = ρi(x, t) the local number of cars per mile of class i which

the MCLWR model is expressed as the following system of strongly coupled nonlinear first-order

conservation laws

∂tρ+ ∂xf(ρ) = 0, x ∈ R, t > 0, (4.1)

where x is horizontal distance and either I = R for an unbounded highway or I = (0, L) for a

traffic circle of length L > 0, t is time, f(ρ) = (f1(ρ), . . . , fN (ρ))T, where

fi(ρ) = ρivi(ρ), i = 1, . . . , N, (4.2)

and vi(ρ) is the velocity of cars of class i, which is assumed to be an explicit function of the local

total density ρ := ρ1 + · · · + ρN . We assume that for all i, 0 ≤ ρi ≤ ρ ≤ ρmax, where ρmax is a

maximum density corresponding to a bumper-to-bumper situation. It is usually assumed that

vi(ρ) = vmax
i V (ρ), i = 1, . . . , N, (4.3)

where vmax
i is the preferential velocity of class i corresponding to a free highway, and V (ρ) is a

hindrance factor that takes into account drivers’ attitude to reduce speed in presence of other cars.

The function V is usually assumed that

V (0) = 1, V ′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρmax, V (ρmax) = 0. (4.4)

The numerical solution of (4.1), (4.2) is a challenge since the eigenvalues and eigenvectors

of the Jacobian matrix Jf (ρ) = (∂fi(ρ)/∂ρj)1≤i,j≤N are not available in closed algebraic form.
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Alternatively, one can construct easy-to-implement numerical schemes for (4.1), (4.2) by exploiting

the concentration-times-velocity form (4.2) of the fluxes, and utilizing that by (4.3) and (4.4), the

functions vi are non-negative, bounded, and strictly decreasing. This idea was first used in [24] to

design a family of relatively simple difference schemes for (4.1), (4.2).

It is the purpose of this chapter to introduce a new class of schemes for (4.1), (4.2) that do not

rely on spectral (characteristic) information and are as easy to implement as the schemes introduced

in [24], but perform better in terms of resolution, accuracy and efficiency. To explain the main idea,

let us consider the continuity equation for the case N = 1 of a single driver class

∂tρ+ ∂x
(
ρv(ρ)

)
= 0, x ∈ I, t > 0, (4.5)

corresponding to the original LWR model [75, 92], where

v(ρ) = vmaxV (ρ), (4.6)

and for ease of the argument, in the scalar case we assume that time is scaled such that vmax equals

unity. We formally rewrite (4.5) as

∂tρ+ ρ∂x
(
v(ρ)

)
+ v(ρ)∂xρ = 0, x ∈ I, t > 0. (4.7)

The new class of schemes for (4.5) is based on splitting (4.7) into two different equations, which

are solved successively for each time iteration. To advance the solution from time t to t + ∆t, we

first apply a Lagrangian method [56] to solve

∂tρ+ ρ∂xv(ρ) = 0, (4.8)

and use this solution, evolved over the time interval of length ∆t, as the initial condition for solving

in a second step the transport equation

∂tρ+ v(ρ)∂xρ = 0, (4.9)

whose solution, again evolved over a time interval of length ∆t, provides the sought approximate

solution valid for t+ ∆t. These steps will be identified as “Lagrangian” and “remap” steps, respec-

tively, so the class of schemes introduced herein is addressed as “Lagrangian-remap” (LR) schemes.

(The names “Lagrangian” and “remap” will be given more insight in Sections 4.3 and 4.4 below.)

The idea behind the introduction of LR schemes is to solve (4.9) using anti-diffusive techniques

that have been developed recently for transport equations and thereby to increase the overall

efficiency of the proposed splitting strategy, while keeping its simplicity. More precisely, the remap

step can be handled in two different ways. One alternative is to employ an anti-diffusive but

stable numerical scheme [46, 15, 14] for the transport equation (4.9) (remap step), where care

is taken to design the scheme for the remap step in such a way that the resulting scheme (first

step followed by second step) is conservative. This subclass of LR schemes will be addressed as

“Lagrangian-anti-diffusive remap” (L-AR) schemes. The L-AR schemes are discussed in several

variants defined by different choices of a particular numerical flux. Alternatively, the remap step
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can be handled by random sampling in a Glimm-like approach [55]. The resulting scheme, denoted

here as “Lagrangian-random-sampling” (L-RS) scheme, is only statistically conservative, but turns

out to be less diffusive than, for example, a (deterministic) integral remap step. Note that the

loss of strictly conservativity property does not prevent the convergence to a weak solution in this

context.

Both L-AR and L-RS subclasses of LR schemes can readily be extended to the multiple-species

case (N > 1). For that case, we propose to equip the L-RS scheme with random sampling among the

fan of states of the simple Harten, Lax and van Leer (HLL) approximate Riemann solver [61, 111].

Our proposal of the class of LR schemes for the MCLWR model is supported by a partial

analysis of the L-AR schemes for N = 1, with the conclusion that under suitable CFL conditions,

the L-AR schemes have the total variation diminishing (TVD) property and therefore converge to

a weak solution and by a number of numerical experiments that show that the proposed schemes

are competitive with respect to recent schemes introduced in [24], see Section 4.2.3.

4.1.2 Related work

The MCLWR model has been analyzed by several groups of authors, cf. e.g. [9, 50, 78, 118]. In

particular, its hyperbolicity has been established [50, 118] and the admissible waves of the Riemann

problem have been investigated [118]. Moreover, the model (4.1), (4.2) admits a separable, strictly

convex entropy since its Jacobian matrix Jf (ρ) is diagonally symmetrizable [8, 9]. Component-wise

or characteristic high-resolution numerical schemes for (4.1), (4.2) involving weighted essentially

non-oscillatory (WENO) flux reconstructions are advanced in [23, 50, 117, 119]. On the other

hand, as mentioned above, particularly simple first- and second-order difference schemes for the

same problem that rely on the structure of the fluxes fi (4.2) along with the definite sign of

the velocities vi are introduced in [24]. Variants of the original MCLWR model (in the sense of

[8, 113]) have been proposed, and in part analyzed, for highways with varying road surface conditions

[27, 120, 121], traffic flow on networks [63, 84], stochastic fundamental diagrams (equivalent to the

velocity functions vi) [85], and diffusive corrections modeling anticipation lengths and reaction

times [30, 32].

Anti-diffusive numerical schemes used in this paper have been advanced in the pioneering work

by Després and Lagoutière [46] for the linear transport equation with application to gas dynamics,

and then extended to monotone scalar conservation laws by Bouchut [15] and applied to Hamilton-

Jacobi-Bellman equations by Bokanowski and Zidani in [14]. We also refer to [47, 67, 69, 72] for

further extensions. Furthermore, variants of the Glimm-like and mixed approach of the L-R and

especially L-RS schemes have turned out successful in a number of contexts, ranging from the

computation of classical and nonclassical shock waves [34, 35, 36], contacts discontinuities in two-

phase flow and traffic flow models [5, 36, 62], phase transitions in traffic flow models set on a

non-convex state space [37], to Vlasov equations [104].
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4.2 Preliminaries

4.2.1 Weak solutions and entropy admissibility

We briefly recall the concepts of a weak solution and of entropy for (4.1) under the specific

assumptions (4.2) and (4.3), and considering the initial condition

ρ(x, 0) = ρ0(x), x ∈ I. (4.10)

We closely follow the preliminary remarks of [27]. First of all, it is well known that even if ρ0 is

smooth, solutions of (4.1), (4.10) develop discontinuities, and so we seek a weak solution, which is

a bounded measurable function ρ = ρ(x, t) satisfying∫
R+

∫
I

(
φtρ+ φxf(ρ)

)
dx dt+

∫
I
φ(x, 0)ρ0(x) dx = 0 (4.11)

for any smooth test function φ = φ(x, t) with compact support contained in I × R+. If a weak

solution ρ has a discontinuity along a smooth curve x = x(t) and ρ is continuous on either side

of x(t) with limits ρ− and ρ+ to the left and right of the jump, respectively, then the weak

formulation (4.11) implies the following Rankine-Hugoniot (RH) jump condition, where s = dx/dt

is the shock speed:

f(ρ+)− f(ρ−) = s(ρ+ − ρ−). (4.12)

As is well known, weak solutions of (4.1) are not unique, so an additional admissibility criterion

(usually motivated by the “physics” of the problem) needs to be imposed. Suppose that (4.1) admits

a strictly convex entropy, meaning that there exists a strictly convex function E = E(ρ) and an

entropy flux F = F(ρ) such that ∇F(ρ) = ∇E(ρ)Jf (ρ). Then a weak solution ρ of (4.1) is said to

be entropy-admissible [21] if for every smooth nonnegative test function ϕ with compact support

in I × (0,∞), the inequality ∫
R+

∫
I

(
ϕtE(ρ) + ϕxF(ρ)

)
dx dt ≥ 0 (4.13)

is valid. This inequality follows from a parabolic regularization of (4.1) if one lets the regularization

parameter tend to zero, assuming that the corresponding solutions converge boundedly a.e. to a

limit ρ (see [27, 102] for details). Note that (4.13) can also be expressed as ∂tE(ρ) + ∂xF(ρ) ≤ 0

in the sense of distributions. Moreover, (4.13) implies that all discontinuities satisfy the following

entropy jump condition (in addition to (4.12)):

F(ρ+)−F(ρ−) ≤ s
(
E(ρ+)− E(ρ−)

)
. (4.14)

For general N and systems of the type (4.1), the existence of an entropy pair (E(ρ),F(ρ))

that satisfies ∇F(ρ) = ∇E(ρ)Jf (ρ) is an exceptional property. However, for the MCLWR model

with f(ρ) defined by (4.2), (4.3), Benzoni-Gavage and Colombo [8] showed that a convex entropy

function E(ρ) and corresponding entropy flux F(ρ) are given by

E(ρ) =
N∑
i=1

ρi(ln ρi − 1)

vmax
i

, F(ρ) = V (ρ)
N∑
i=1

ρi ln ρi − V(ρ), (4.15)
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where V is any primitive of V , i.e., V ′(ρ) = V (ρ). Finally, for later use we mention that in [8] it is

also shown that for the special choice

V (ρ) = 1− ρ

ρmax
, (4.16)

the entropy jump condition (4.14) is equivalent to

ρ− ≤ ρ+. (4.17)

In the present chapter, we will not attempt to prove that any of the newly introduced schemes

converges to an entropy solution, i.e., a weak solution that satisfies (4.13). However, further support

of the new schemes is provided by a heuristic argument based on evaluating a discrete analogue of

E(ρ) for given numerical solutions, and for some examples involving (4.16), we will verify whether

the numerical solution approximates discontinuities that are consistent with (4.17).

4.2.2 Interlacing property of the MCLWR model

We assume that for N > 1, the velocities vmax
i are ordered as

0 < vmax
1 ≤ vmax

2 ≤ · · · ≤ vmax
N . (4.18)

Then a version of Theorem 2.2 in Section 2.2.4 indicate that the eigenvalues λi = λi(ρ) interlace

with the velocities vi = vi(ρ) as follows:

v1 −
N∑
i=1

ρiv
max
i V ′(ρ) ≤ λ1 ≤ v1 ≤ · · · ≤ vj−1 ≤ λj ≤ vj ≤ · · · ≤ vN . (4.19)

Note that (4.19) implies that λ1 may be negative (corresponding to backwards-propagating char-

acteristic information), while always λ2, . . . , λN ≥ 0.

4.2.3 Some simple difference schemes for the MCLWR model

The decisive advantage of our treatment is the simplicity of the new schemes. In that respect

these schemes are comparable with a class of schemes introduced in [24]. If ∆x = 1/M denotes a

spatial meshsize, xj = j∆x for j ∈ Z, ∆t > 0 is a time step, tn := n∆t, λ := ∆t/∆x, and ρni,j
denotes the approximate cell average of ρi on the cell [xj−1/2, xj+1/2]× [tn, tn+1], then Scheme 4 of

that paper is defined by

ρn+1
i,j = ρni,j − λ

(
hni,j+1/2 − h

n
i,j−1/2

)
,

hni,j+1/2 := hi
(
ρnj ,ρ

n
j+1

)
:= ρni,jvi

(
ρnj+1

)
, i = 1, . . . , N.

(4.20)

Scheme 10 of [24] is a version of (4.20) that is second-order accurate both in space and time. It

is based on MUSCL-type spatial differencing and Runge-Kutta (RK) time stepping. The MUSCL

version of hi(·, ·) is given by

hMUSCL
i,j+1/2 :=hMUSCL

i

(
ρnj−1, . . . ,ρ

n
j+2

)
= hi

(
ρnj+1 −

1

2
σnj+1,ρ

n
j +

1

2
σnj

)
, i = 1, . . . , N, (4.21)
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where the so-called slope vector σnj := (σn1,j , . . . , σ
n
N,j)

T is defined by the van Leer limiter [112],

namely

σni,j =
|φni,j − φni,j−1|(φni,j+1 − φni,j) + |φni,j+1 − φni,j |(φni,j − φni,j−1)

|φni,j − φni,j−1|+ |φni,j+1 − φni,j |
. (4.22)

Furthermore, if we write the scheme resulting from using the flux (4.21) as

ρn+1
j = ρnj − Γj(ρ

n
j−2, . . . ,ρ

n
j+2)

= ρnj − λ
[
hMUSCL

(
ρnj−1, . . . ,ρ

n
j+2

)
− hMUSCL

(
ρnj−2, . . . ,ρ

n
j+1

)]
,

(4.23)

then the resulting MUSCL-RK version takes the following two-step form:

ρ̃n+1
j = ρ̃nj − Γj

(
ρnj−2, . . . ,ρ

n
j+2

)
,

ρn+1
j =

1

2

(
ρnj + ρ̃n+1

j − Γj
(
ρ̃n+1
j−2 , . . . , ρ̃

n+1
j+2

))
.

(4.24)

Scheme 10 of [24] is defined by (4.24), with the ingredients (4.20)–(4.23). For the ease of presenta-

tion, in the remainder of the chapter we will address Schemes 4 and 10 of [24] simply as “Scheme 4”

and “Scheme 10”, respectively.

4.3 Discretization of the Lagrangian step

Before introducing a Lagrangian method we observe that defining τ := 1/ρ, we obtain from

(4.8) the conservation of mass equation in Lagrangian coordinates

ρ∂tτ − ∂xv = 0. (4.25)

In other words, solving (4.8), or equivalently (4.25), means solving the original equation (4.5) on a

moving referential mesh with velocity v. Let us then denote vnj+1/2 an approximate value of v(ρ) at

the interface point x = xj+1/2 at time tn and assume now that {ρnj }j∈Z is an approximate solution

(4.5) at time t = tn and used as initial condition for (4.25). Then a numerical solution {ρn+1,−
j }j∈Z

of (4.25) at time ∆t can be naturally computed by

ρn+1,−
j

[
∆x+

(
vnj+1/2 − v

n
j−1/2

)
∆t
]

= ρnj ∆x, j ∈ Z, (4.26)

since (4.26) expresses that the initial mass in the cell [xj−1/2, xj+1/2] at time tn (the right-hand

side) equals the mass on the modified cell [x̄j−1/2, x̄j+1/2] at time ∆t (the left-hand side), where

the new interface positions are

x̄j+1/2 = xj+1/2 + vnj+1/2 ∆t for all j.

This is illustrated in Figure 4.1. In particular, with this discretization and using the transformation

τnj = 1/ρnj in (4.26), we obtain the following discretization of (4.25):

ρnj
(
τn+1,−
j − τnj

)
= λ

(
vnj+1/2 − v

n
j−1/2

)
.

A natural choice for the velocity values in the interface point is vj+1/2 := v(ρnj+1) for all j. A

general theory about Lagrangian schemes can be found in [56]. Now, we indicate some properties

of the numerical solution of the Lagrangian scheme (4.26) under certain CFL conditions.
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xj+3/2 xj+5/2

Figure 4.1: Illustration of the Lagrangian step.

Lemma 4.1 Assume that the following pair of CFL conditions hold:

λv(ρ) ≤ 1 for 0 ≤ ρ ≤ ρmax, (4.27)

−1 ≤ λρmaxv
′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρmax. (4.28)

If {ρn+1,−
j }j∈Z denotes the numerical solution produced by the scheme (4.26), then the following

maximum property holds:

min
{
ρnj , ρ

n
j+1

}
≤ ρn+1,−

j ≤ max
{
ρnj , ρ

n
j+1

}
for all j ∈ Z. (4.29)

Proof. We have ∆x+
(
vnj+1 − vnj

)
∆t ≥ ∆x if vnj+1 ≥ vnj , that is, if ρnj ≥ ρnj+1. In this case we

obtain from (4.26)

ρn+1,−
j ≤ ρnj = max

{
ρnj , ρ

n
j+1

}
,

and the lower bound

ρn+1,−
j =

ρnj ∆x

∆x+ ∆t(vnj+1 − vnj )
=

ρnj
1 + λ(vnj+1 − vnj )

≥ min
{
ρnj , ρ

n
j+1

}
= ρnj+1

is valid if and only if

(
ρnj+1 − ρnj

)(
1 + λ

vnj+1 − vnj
ρnj+1 − ρnj

ρnj+1

)
=
(
ρnj+1 − ρnj

)(
1 + λv′

(
ζnj+1/2

)
ρnj+1

)
≤ 0,

where ζnj+1/2 ∈ [ρnj+1, ρ
n
j ] is an intermediate value; that is, if

1 + λv′
(
ζnj+1/2

)
ρnj+1 ≥ 0, (4.30)

However, (4.30) holds if (4.28) is satisfied. Now, if vnj+1 ≤ vnj , by (4.27) we get

0 ≤ ∆tvnj+1 ≤ ∆tvnj ≤ ∆x,

which is equivalent to

0 ≤ ∆t
(
vnj+1 − vnj

)
+ ∆x ≤ ∆x,
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which in turn implies that

ρnj = min
{
ρnj , ρ

n
j+1

}
≤ ρn+1,−

j .

To establish the upper bound, we note that under the present conditions,

1 + λ
(
vnj+1 − vnj

)
= 1 + λv′

(
ζnj+1/2

)(
ρnj+1 − ρnj

)
≥ 1 + λv′

(
ζnj+1/2

)
ρnj+1,

from which it is easy to deduce that

ρn+1,−
j =

ρnj
1 + λ(vnj+1 − vnj )

≤ max
{
ρnj , ρ

n
j+1

}
= ρnj+1

holds if (4.30) is valid, where ρnj ≤ ζnj+1/2 ≤ ρ
n
j+1 is an intermediate value, which again is ensured

if (4.28) is valid. �

Remark 4.2 The CFL conditions (4.27) and (4.28) are equivalent to classical CFL condition for

one-dimensional conservation laws, λ|f ′(ρ)| ≤ 1.

4.4 Anti-diffusive schemes for the remap step

After the Lagrangian step, the new values ρn+1,−
j represent approximate values of the density on

a moved mesh with new cells [x̄j−1/2, x̄j+1/2] for all j. In order to avoid dealing with moving meshes,

a so-called remap step is necessary to define the new approximations ρn+1
j on the uniform mesh

with cells [xj−1/2, xj+1/2]. Figure 4.1 illustrates that this step amounts to “averaging” the density

values at time ∆t on the cells [xj−1/2, xj+1/2]. It is clear that this average step can equivalently

be reformulated by the solution of the transport equation (4.9) with initial data defined by ρn+1,−
j

on each cell [xj−1/2, xj+1/2]. This is illustrated in Figure 4.2. The aim of this section is to propose

and investigate several discretizations of (4.9), whereby we seek to introduce as little numerical

diffusion as possible.

4.4.1 Anti-diffusive schemes

Here, we describe the conditions analyzed in [46, 15, 14] for solving (4.9) with initial condition

{ρn+1,−
j }j∈Z by using an anti-diffusive numerical scheme in the form

ρn+1
j = ρn+1,−

j − V̄ n
j λ
(
ρn+1,−
j+1/2 − ρ

n+1,−
j−1/2

)
. (4.31)

Here V̄ n
j is a velocity value,

V̄ n
j = V̄

(
ρn+1,−
j+1/2 , ρ

n+1,−
j−1/2 , ρ

n
j , ρ

n
j+1, ρ

n+1,−
j

)
,

which will be chosen in such a way that the whole scheme (4.26), (4.31) is conservative, and the

quantities ρn+1,−
j+1/2 are numerical fluxes associated with the cell interfaces xj+1/2, j ∈ Z, and they
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0

∆t

ρn+1,−
j−1

xj−3/2

✂
✂
✂
✂
✂

ρn+1,−
j

xj−1/2

☎
☎
☎
☎
☎

x̄j−1/2 x̄j+1/2

ρn+1
j

ρn+1,−
j+1

xj+1/2

ρn+1,−
j+2

xj+3/2 xj+5/2

Figure 4.2: Illustration of the remap step.

will be chosen so that the scheme (4.31) satisfies certain stability and consistency requirements. To

discuss this issue, we define for V̄ n
j > 0

mj−1/2 := min
{
ρn+1,−
j , ρn+1,−

j−1

}
, Mj−1/2 := max

{
ρn+1,−
j , ρn+1,−

j−1

}
,

b+j := Mj−1/2 +
ρn+1,−
j −Mj−1/2

V̄ n
j λ

, B+
j := mj−1/2 +

ρn+1,−
j −mj−1/2

V̄ n
j λ

.

According to [46], to ensure the consistency property

ρn+1,−
j+1/2 → ρ as ρn+1,−

j , ρn+1,−
j+1 → ρ, 0 ≤ ρ ≤ ρmax, for all j ∈ Z

it is sufficient that

mj+1/2 ≤ ρ
n+1,−
j+1/2 ≤Mj+1/2 for all j ∈ Z, (4.32)

while for the L∞ and TVD stability conditions it is necessary to have

b+j ≤ ρ
n+1,−
j+1/2 ≤ B

+
j for all j ∈ Z. (4.33)

For the definition of the flux ρn+1,−
j+1/2 , note that the choice

ρn+1,−
j+1/2 = ρn+1,−

j for all j ∈ Z (4.34)

produces a diffusive and stable scheme, while for

ρn+1,−
j+1/2 = ρn+1,−

j+1 for all j ∈ Z

we obtain an anti-diffusive but unstable scheme. For this reason, Després and Lagoutière [46]

proposed to choose ρn+1,−
j+1/2 as close to the value ρn+1,−

j+1 as possible, subject to the constraints (4.32)

and (4.33). In the following section we discuss how to choose this numerical flux. In the following

lemma, the first part of wich is proved in [46] and extended to the case of nonlinear conservation

laws by Bouchut [15], we resume the existence and properties of the schemes defined by (4.31). For

this purpose, conditions (4.32) and (4.33) can be reduced by using the notation

aj+1/2 := max
{
b+j ,mj+1/2

}
, Aj+1/2 := min

{
B+
j ,Mj+1/2

}
.
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Lemma 4.3 Assume that condition (4.27) is in effect. Then

aj+1/2 ≤ ρ
n+1,−
j ≤ Aj+1/2 for all j ∈ Z,

and for any flux that satisfies

ρn+1,−
j+1/2 ∈ [aj+1/2, Aj+1/2] for all j ∈ Z, (4.35)

the scheme (4.31) is L∞-stable and Total Variation Diminishing (TVD), i.e.

min
{
ρn+1,−
j−1 , ρn+1,−

j

}
≤ ρn+1

j ≤ max
{
ρn+1,−
j−1 , ρn+1,−

j

}
for all j ∈ Z, (4.36)∑

j∈Z

∣∣ρn+1
j+1 − ρ

n+1
j

∣∣ ≤∑
j∈Z

∣∣ρn+1,−
j+1 − ρn+1,−

j

∣∣ for n ∈ N0 := {0, 1, 2, . . . }. (4.37)

Moreover, for each n there exist numbers αj ∈ [0, 1] such that

ρn+1,−
j = αjρ

n+1,−
j−1/2 + (1− αj)ρn+1,−

j+1/2 . (4.38)

Proof. In [46] the properties (4.36) and (4.37) are proved. We only prove property (4.38). To this

end, assume that (4.27) is in effect and that ρn+1,−
j+1/2 satisfies (4.32) and (4.33). If ρn+1,−

j = Mj−1/2,

then (4.33) implies that

ρn+1,−
j ≤ ρn+1,−

j+1/2 ≤ max
{
ρn+1,−
j−1/2 , ρ

n+1,−
j+1/2

}
. (4.39)

On the other hand, from (4.32) we have ρn+1,−
j−1/2 ≤Mj−1/2 = ρn+1,−

j , and thus

min
{
ρn+1,−
j−1/2 , ρ

n+1,−
j+1/2

}
≤ ρn+1,−

j . (4.40)

Combining (4.39) and (4.40) we obtain

min
{
ρn+1,−
j−1/2 , ρ

n+1,−
j+1/2 } ≤ ρ

n+1,− ≤ max
{
ρn+1,−
j−1/2 , ρ

n+1,−
j+1/2

}
(4.41)

The proof is similar if ρn+1,−
j = mj−1/2. From (4.41) we deduce (4.38). �

4.4.2 Choice of the numerical fluxes

We have specified in Section 4.4.1 the stability bounds (4.35) for the numerical fluxes that gua-

rantee that the whole L-AR scheme (4.44) converges to a weak solution of (4.5). In this Subsection,

we describe numerical techniques following the methodology outlined in [46, 15, 14, 47, 114] for

solving (4.9) by an anti-diffusive scheme in the form (4.31). As we mentioned before, the choice

(4.34) leads to a stable but diffusive scheme, so the idea is to choose the numerical flux ρn+1,−
j+1/2 as

close as possible to the value the downwind value of the numerical solution ρn+1,−
j+1 , when the CFL

condition (4.27) is satisfied.

Limited downwind anti-diffusive flux

This numerical flux was formulated by Desprès and Lagoutière [46] and is defined by

ρn+1,−
j+1/2 := argmin

ρ∈[aj+1/2,Aj+1/2]

∣∣ρ− ρn+1,−
j+1

∣∣ = min
{

max
{
ρn+1,−
j+1 , aj+1/2

}
, Aj+1/2

}
. (4.42)

In Lemma 4.3 it is proved that this scheme satisfies (4.35). Following [14] we denote this scheme for

(4.9) by UBee, and refer to the corresponding complete L-AR scheme based on (4.42) as L-UBee

scheme.
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Relaxed anti-diffusive flux

An equivalent form of scheme (4.42) was formulated by Bouchut [15] for the advection equation

as follows:

ρn+1,−
j+1/2 := ρdiss

j+1/2 + minmod
(
ρL
j+1/2 − ρ

diss
j+1/2, ρ

R
j+1/2 − ρ

diss
j+1/2

)
,

where the standard minmod function is defined by

minmod(a, b) :=

sgn(a) min{|a|, |b|} if sgn a = sgn b,

0 otherwise,

the dissipative flux ρdiss
j+1/2 is the classical upwind flux, and ρL

j+1/2 and ρR
j+1/2 are the extremal

left-wind and right-wind fluxes. These quantities are defined as follows:

ρdiss
j+1/2 = ρn+1,−

j , ρL
j+1/2 =

ρn+1,−
j − ρn+1,−

j−1

λV̄ n
j

+ ρn+1,−
j−1 , ρR

j+1/2 = ρn+1,−
j+1 .

A modification described in [114] for advection equation consists in applying a relaxed anti-diffusive

flux as follows:

ρn+1,−
j+1/2 := ρdiss

j+1/2 + ϕj minmod
(
ρL
j+1/2 − ρ

diss
j+1/2, ρ

R
j+1/2 − ρ

diss
j+1/2

)
.

Here ϕj ∈ [0, 1] is a discontinuity indicator with ϕj ≈ 0 in smooth regions and ϕj ≈ 1 near a

discontinuity. This choice of ϕj guarantees that (4.35) is satisfied. We denote this scheme for (4.9)

by rUBee, and the corresponding L-AR scheme by L-rUBee scheme. The discontinuity indicator is

chosen as

ϕj =
βj

βj + γj
,

where

αj =
∣∣ρn+1,−
j−1 − ρn+1,−

j

∣∣2 + ε, βj =

∣∣∣∣ αjαj−1
+
αj+1

αj+2

∣∣∣∣2, γj =
|ρn+1,−

max − ρn+1,−
min |2

αj
,

where ρn+1,−
max and ρn+1,−

min are the maximum and minimum values of ρn+1,−
j for all grid points, ε is

a small positive number taken as ε = 10−6. Clearly, 0 ≤ αj ≤ 1. Near a discontinuity, γj � βj , so

ϕj ≈ 1, and ϕj = O(∆x2) in smooth regions.

NBee scheme

This scheme, which was proposed by Bokanowski and Zidani in [14] for linear transport equation,

corresponds to a second-order scheme in space which is more diffusive than the U-Bee scheme, and

which is defined by

ρn+1,−
j+1/2 := ρn+1,−

j +
1− λ̄

2
ϕj
(
ρn+1,−
j+1 − ρn+1,−

j

)
, (4.43)

where λ̄ = λV̄ n
j and

ϕj = ϕNB
(
rj , λ̄

)
, rj =

ρn+1,−
j − ρn+1,−

j−1

ρn+1,−
j+1 − ρn+1,−

j

,

ϕNB(r, λ̄) = max

{
0,min

{
1,

2r

λ̄

}
,min

{
r,

2

1− λ̄

}}
.
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It is proved in [14] that the numerical flux (4.43) satisfies the assumptions of Lemma 4.3. This

so-called NBee scheme (for (4.9)) is written here in a limiter version. We refer to the corresponding

L-AR scheme as L-NBee scheme.

4.4.3 Lagrangian-anti-diffusive remap (L-AR) schemes, scalar case (N = 1)

We are now able to describe the subclass of Lagrangian-anti-diffusive remap (L-AR) schemes of

LR schemes. Assume we have a numerical solution {ρnj }j∈Z that approximate the solution of (4.5)

at time t = tn and wish to advance this solution to t = tn+1 = tn + ∆t, where ∆t is subject to

certain CFL-type restrictions. To this end, two steps are performed successively:

1. Lagrangian step. Consider that {ρnj }j∈Z is an initial solution for (4.8). Then we can obtain a

numerical solution {ρn+1,−
j }j∈Z after an evolution over a time interval of length ∆t, by using

scheme (4.26).

2. Anti-diffusive remap step. Solve equation (4.9) with initial condition {ρn+1,−
j }j∈Z using an

anti-diffusive scheme (4.31) for a specific choice of V̄ n
j , obtaining a numerical solution {ρn+1

j }j∈Z
which approximate the solution of (4.5) at time t = tn+1 = tn + ∆t.

In the next lemma, the choice of V̄ n
j is motivated by the existence of a classical conservative

update formula for the whole LR scheme (4.26), (4.31).

Lemma 4.4 Assume that the CFL conditions (4.27) and (4.28) are satisfied. Then there exists

a definition of V̄ n
j ∈ [min{vnj , vnj+1},max{vnj , vnj+1}] such that the complete L-AR scheme can be

written in the form

ρn+1
j = ρnj − λ

(
ρn+1,−
j+1/2 v

n
j+1 − ρ

n+1,−
j−1/2 v

n
j

)
, j ∈ Z, n ∈ N0. (4.44)

Proof. Let {ρn+1,−
j }j∈Z be a solution of (4.8) obtained by numerical scheme (4.26). Using this so-

lution we solve equation (4.9) by the scheme (4.31), where the value V̄ n
j still needs to be determined

in such a way that the resulting scheme is conservative. Replacing ρn+1,−
j in (4.31) by

ρn+1,−
j = ρnj − λ

(
vnj+1 − vnj

)
ρn+1,−
j ,

we obtain

ρn+1
j = ρnj − λV̄ n

j

(
ρn+1,−
j+1/2 − ρ

n+1,−
j−1/2

)
− λ
(
vnj+1 − vnj

)
ρn+1,−
j . (4.45)

Since ρn+1,−
j+1/2 satisfies the assumptions of Lemma 4.3, we may conclude from (4.38) that there exist

numbers αnj ∈ [0, 1] such that

ρn+1,−
j = αnj ρ

n+1,−
j−1/2 +

(
1− αnj

)
ρn+1,−
j+1/2 , j ∈ Z,

i.e. we may define

αnj = α
(
ρn+1,−
j+1/2 , ρ

n+1,−
j−1/2 , ρ

n+1,−
j

)
=


ρn+1,−
j − ρn+1,−

j+1/2

ρn+1,−
j−1/2 − ρ

n+1,−
j+1/2

if ρn+1,−
j−1/2 − ρ

n+1,−
j+1/2 6= 0,

0 otherwise.
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With αnj defined in this way, we set

V̄ n
j :=

(
1− αnj

)
vnj + αnj v

n
j+1

and replacing in equation (4.45) we obtain (4.44). �

Remark 4.5 From a practical point of view, the L-AR schemes are implemented by simply using

the equivalent form (4.44). From a theoretical point of view, the Lagrangian-remap decomposition

of (4.44) is used to prove the stability properties in Lemma 4.7 below, using Lemmas 4.1 and 4.3

for the Lagrangian and remap steps, respectively.

Remark 4.6 Note that (4.31) define a fully implicit numerical scheme according with definition

of V̄ n
j . A way to overcome this difficulty is replacing V by max{vnj , vnj+1} in (4.31) and in the

definitions of b+j and B+
j , with this we can calculate the numerical fluxes ρn+1,−

j+1 satisfying the

constraints (4.33).

Note that the numerical scheme (4.44) is written conservative form

ρn+1
j = ρnj − λ

(
Fnj+1/2 − F

n
j−1/2

)
,

where we define the numerical flux as

Fnj+1/2 := F
(
ρnj−1, ρ

n
j , ρ

n
j+1, ρ

n
j+2

)
:= ρn+1,−

j+1/2 v
n
j+1.

This four-point numerical flux is consistent with the flux f(ρ) = ρv(ρ) since by (4.26) and (4.32),

we have

ρn+1,−
j−1 , ρn+1,−

j , ρn+1,−
j+1 → ρ as ρnj−1, . . . , ρ

n
j+2 → ρ.

This eventually means that F (ρ, . . . , ρ) = ρv(ρ).

Next, we prove some properties for the numerical scheme (4.44).

Lemma 4.7 Assume that the CFL conditions (4.27) and (4.28) are satisfied. Then the numerical

scheme (4.44) has the TVD property, is L∞-stable, and as consequence of (4.29) and (4.36) it

satisfies the maximum property

min
{
ρnj−1, ρ

n
j , ρ

n
j+1

}
≤ ρn+1

j ≤ max
{
ρnj−1, ρ

n
j , ρ

n
j+1

}
for all j ∈ Z, n ∈ N0.

Proof. We recall from Lemma 4.3 that if (4.27) is satisfied and the scheme associated with the

remap step, (4.31), satisfies (4.35), then (4.31) has the TVD property (4.37). For the Lagrangian

step, we obtain from (4.26)

ρn+1,−
j+1 − ρn+1,−

j =
[
1 + λρn+1,−

j v′
(
ζnj+1/2

)](
ρnj+1 − ρnj

)
− λρn+1,−

j+1 v′
(
ζj+3/2

)(
ρnj+3/2 − ρ

n
j+1

)
.

(4.46)
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Since ρn+1,−
j ≥ 0, v′(ρ) ≤ 0 and

1 + λρn+1,−
j v′

(
ζnj+1/2

)
≥ 1 + λρmaxv

′(ζnj+1/2

)
≥ 0

due to the CFL condition (4.28), (4.46) implies that∣∣ρn+1,−
j+1 − ρn+1,−

j

∣∣ ≤ [1 + λρn+1,−
j v′

(
ζnj+1/2

)]∣∣ρnj+1 − ρnj
∣∣

− λρn+1,−
j+1 v′

(
ζnj+3/2

)∣∣ρnj+2 − ρnj+1

∣∣ for all j ∈ Z.

Summing over j ∈ Z, we get∑
j∈Z

∣∣ρn+1,−
j+1 − ρn+1,−

j

∣∣ ≤∑
j∈Z

∣∣ρnj+1 − ρnj
∣∣+ λ

∑
j∈Z

ρn+1,−
j v′

(
ζnj+1/2

)∣∣ρnj+1 − ρnj
∣∣

− λ
∑
j∈Z

ρn+1,−
j+1 v′

(
ζnj+3/2

)∣∣ρnj+2 − ρnj+1

∣∣
=
∑
j∈Z
|ρnj+1 − ρnj |. (4.47)

Then, from (4.37) and (4.47) we obtain the TVD property for the numerical scheme (4.44) under

the natural CFL conditions (4.27) and (4.28). The L∞ bound is a consequence of the TVD property,

i.e., ∣∣ρn+1
j

∣∣ ≤ ∣∣ρn+1
j − ρn+1

j−1

∣∣+
∣∣ρn+1
j−1 − ρ

n+1
j−2

∣∣+ · · · ≤
∑
j∈Z

∣∣ρn+1
j+1 − ρ

n+1
j

∣∣ ≤∑
j∈Z

∣∣ρ0
j+1 − ρ0

j

∣∣.
�

Remark 4.8 A consequence of Lemma 4.7 is that under CFL conditions (4.27) and (4.28) if

ρ0 ∈ L1(R), the numerical solution of scheme (4.44) converges in L∞([0, T ], L1
loc) to a weak solution

of (4.5), see [56].

4.4.4 The multi-species case (N ≥ 1) and CFL condition

For N species we can apply formula (4.44) in a component-wise manner for each species as

follows:

ρn+1
i,j = ρni,j − λ

(
ρn+1,−
i,j+1/2v

n
i,j+1 − ρ

n+1,−
i,j−1/2v

n
i,j

)
, i = 1, . . . , N, j ∈ Z, n ∈ N0. (4.48)

With respect to the CFL condition, inequalities (4.27) and (4.28) are conditions to guarantee

positivity, TVD property and maximum principle for numerical solution of scalar conservation laws

by is not generally hold in the system case. Below we derive the form of a CFL condition by

requiring that a certain invariant region be preserved. This invariant region is defined as

Dρmax :=
{

(ρ1, . . . , ρN )T ∈ RN : ρ1 ≥ 0, . . . , ρN ≥ 0, ρ = ρ1 + · · ·+ ρN ≤ ρmax

}
.
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Theorem 4.9 Consider the numerical scheme (4.48) where the velocities function are defined as

(4.3) with vmax
1 < · · · < vmax

N and the hindrance factor V (ρ) satisfies (4.4). If ρnj ∈ Dρmax for j ∈ Z
and the CFL conditions

λvmax
N ≤ 1, λρmaxv

max
N max

0≤ρ≤ρmax

|V ′(ρ)| ≤ 1 (4.49)

are satisfied at level time n, then ρn+1
j ∈ Dρmax for j ∈ Z.

Proof. Suppose that ρnj ∈ Dρmax . Then, as a consequence of Lemmas 4.1 and 4.7, we obtain that

ρn+1
i,j ≥ 0 for i = 1, . . . , N and j ∈ Z. On the other hand,

ρn+1
i,j ≤ ρ

n
i,j + λρn+1,−

i,j−1/2vi
(
ρnj
)

≤ ρni,j + λρn+1,−
i,j−1/2v

max
N V

(
ρnj
)
, i = 1, . . . , N, j ∈ Z,

where summing over i gives

ρn+1
j ≤ ρnj + λ

N∑
i=1

ρn+1,−
i,j−1/2v

max
N V

(
ρnj
)
≤ ρnj + λρmaxv

max
N V

(
ρnj
)

=: G
(
ρnj
)
,

where we have use the hypothesis that under CFL conditions (4.49) and by Lemmas 4.1 and 4.7,

we have ρn+1,−
1,j−1/2 + · · ·+ ρn+1,−

N,j−1/2 ≤ ρmax. Assumption (4.4) implies that G(ρmax) = ρmax, and as

G′(ρnj ) = 1 + λρmaxv
max
N V ′(ρnj ), the second CFL condition in (4.49) implies that G is a decreasing

function of ρnj . Thus, max0≤ρnj ≤ρmax G(ρnj ) = ρmax, implying that ρn+1
j ≤ ρmax. �

The CFL conditions (4.49) can be simplified, as in the case of linear velocity (4.16), to

λvmax
N ≤ CCFL, CCFL = 1. (4.50)

4.5 Statistically conservative schemes

We now introduce an alternative for solving the remap step in the one-species or multi-species

cases to recover updated values of the unknown on the initial mesh.

4.5.1 Integral remap

For the scalar case (N = 1), if {ρn+1,−
j }j∈Z is the numerical solution given by (4.26), we set

ρn+1,−(x) :=
∑
j∈Z

ρn+1,−
j χ[x̄j−1/2,x̄j+1/2](x).

To define the new approximation ρn+1
j on the uniform mesh with cells [xj−1/2, xj+1/2] at time tn+1,

we then may apply an integral remap

ρn+1
j :=

1

∆x

∫ xj+1/2

xj−1/2

ρn+1,−(x) dx, j ∈ Z.
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After some calculations one obtains

∆xρn+1
j = (x̄j−1/2 − xj−1/2)ρn+1,−

j−1 + (xj+1/2 − x̄j−1/2)ρn+1,−
j ,

which yields

ρn+1
j = λvnj ρ

n+1,−
j−1 +

(
1− λvnj

)
ρn+1,−
j . (4.51)

According to the definition (4.26), a completed scheme for Lagrangian step plus remap step can be

written in the form

ρn+1
j = ρnj − λ

(
vnj+1ρ

n+1,−
j − vnj ρ

n+1,−
j−1

)
. (4.52)

As consequence of (4.51) and Lemma 4.1, under a CFL condition (4.27) and (4.28), the numerical

scheme (4.52) is conservative, TVD, L∞-stable and satisfies the maximum principle; however, (4.51)

produces a diffusive numerical solution.

4.5.2 Random sampling remap, scalar case (N = 1)

In order to define ρn+1
j without introducing numerical diffusion, we follow a Glimm-type random

sampling strategy [55]. More precisely, for given well-distributed random sequence {an}n∈N taking

values in (0, 1) (e.g. the Van der Corput sequence), we simply set

ρn+1
j =

ρ
n+1,−
j−1 if an+1 ∈ (0, λvnj ),

ρn+1,−
j if an+1 ∈ (λvnj , 1).

(4.53)

A CFL condition obtained from (4.53) is λv(ρ) ≤ 1, 0 ≤ ρ ≤ ρmax.

4.5.3 Random sampling remap, multiclass case (N > 1)

For the multi-species cases, first, we use a multi-Lagrangian approach to calculate from {ρni,j}i,j
the numerical solution of equation (4.8) after an evolution over a time interval of length ∆t for

each species

ρn+1,−
i,j

[
∆x+

(
vni,j+1 − vni,j

)
∆t
]

= ρni,j∆x, i = 1, . . . , N. (4.54)

Let us set ρn+1,−
j = (ρn+1,−

1,j , . . . , ρn+1,−
N,j )T. One first idea to define the new approximation ρn+1

j is

using a multi-species version of formula (4.53), but numerical experiments show that this strategy

generates spurious oscillations and instabilities that do not disappear with the refinement. The

strategy to avoid this undesirable behaviour is to use the approximate HLL Riemann solver to

locally obtain an intermediate value limited by the curves generated for the extremal maximum

velocities. It consists in redefining the numerical solution ρ̃(x, t) of the Lagrangian step in the region
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[xj−1/2, xj+1/2]× [0,∆t] by

ρ̃(x, t) =


ρn+1,−
j−1 if

x− xj−1/2

t
< σL,

ρ∗j if σL <
x− xj−1/2

t
< σR,

ρn+1,−
j if

x− xj−1/2

t
> σR,

where (x, t) ∈ [xj−1/2, xj+1/2]× [0,∆t].

(4.55)

Here σL = vmax
1 V (ρnj ) and σR = vmax

N V (ρnj ) are the extremal maximum velocities and the state ρ∗j
is calculated according to the following consistency relation:

vi(ρ
n
j )
(
ρn+1,−
i,j − ρn+1,−

i,j−1

)
= σL

(
ρ∗i,j − ρ

n+1,−
i,j−1

)
+ σR

(
ρn+1,−
i,j − ρ∗i,j

)
, i = 1, . . . , N.

(4.56)

This relation is consistent with the integral form of the system of equations

∂tρi + vi(ρ)∂xρi = 0, i = 1, . . . , N (4.57)

over the control volume [xL, xR]× [0,∆t] where xL ≤ ∆tσL and xR ≥ ∆tσR, see [111].

Remark 4.10 We could have defined the new approximation ρn+1
j as

ρn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ̃
(
x, tn+1,−) dx.

As in the scalar case, after some calculations we obtain

∆xρn+1
j = ∆tσLρ

n+1,−
j−1 + ∆t(σR − σL)ρ∗j + (∆x− σR∆t)ρn+1,−

j . (4.58)

Now, replacing ρ∗j according to (4.56) we obtain

ρn+1
i,j = λρn+1,−

i,j − λvi
(
ρnj
)(
ρn+1,−
i,j − ρn+1,−

i,j−1

)
, i = 1, . . . , N. (4.59)

According to the definition (4.54), the system (4.59) is equivalent to

ρn+1
i,j = ρni,j − λ

(
vni,j+1ρ

n+1,−
i,j − vni,jρ

n+1,−
i,j−1

)
, i = 1, . . . , N,

which is a multi-species version of scheme (4.52).

Here, we use relation (4.55) to define an anti-diffusive scheme to update the numerical value

ρn+1
j , namely we set

ρn+1
j =


ρn+1,−
j−1 if an+1 ∈ (0, λσL),

ρ∗j if an+1 ∈ (λσL, λσR),

ρn+1,−
j if an+1 ∈ (λσR, 1).

(4.60)

A CFL condition obtained from (4.60) is λvmax
N V (ρ) ≤ 1, 0 ≤ ρ ≤ ρmax, i = 1, . . . , N .
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4.5.4 Lagrangian-random sampling (L-RS) scheme

We now summarize the Lagrangian-Random Sampling (L-RS) scheme for (4.1). Assume we have

a numerical solution {ρnj }j∈Z for time t = tn and wish to advance the solution to t = tn+1 = tn+∆t,

where ∆t is subject to the CFL-type restriction (4.50). To this end the following two steps are

performed successively:

1. Lagrangian step. Suppose that {ρnj }j∈Z is an initial solution for

∂tρi + ρi∂xvi(ρ) = 0, i = 1, . . . , N.

Then we obtain a numerical solution {ρn+1,−
j }j∈Z by the Lagrangian scheme (4.54).

2. Random sampling remap step. For N = 1, we use the two-state-per-cell random sampling step

(4.53) to advance the solution to tn+1. For N > 1, we approximately solve equation (4.57) with

initial data {ρn+1,−
j }j∈Z by reconstructing a solution via (4.55) using the HLL approximate

Riemann solver. After that, we perform the three-state-per-cell random sampling step (4.60)

to obtain a numerical solution {ρn+1
j }j∈Z for t = tn+1.

4.6 Numerical results

4.6.1 CFL condition, errors, and entropy test

For N = 1 and a given value of ∆x, we choose ∆t so that (4.50) is satisfied with CCFL = 0.95

for the LR schemes and CCFL = 0.8 for Schemes 4 and 10, in agreement with the CFL condition

stated in [24]. For N > 1, we use CCFL = 0.9 for all schemes. Furthermore, to measure the efficiency

of the new schemes, we present plots of total (approximate) L1 error versus CPU time. For N = 1,

numerical solutions at moderately fine discretizations are compared with the exact entropy solution,

while for N > 1, where no exact solution is at hand, we employ a reference solution obtained by a

high-resolution spectral WENO scheme (WENO-SPEC; see [50]) with ∆x = 1/Mref = 1/25600.

We emphasize that for N > 1 we only include numerical tests that turned out non-oscillatorty

results. In fact, numerical tests with multiclass versions of the L-UBee and L-rUBee schemes pro-

duced bounded strongly oscillatory numerical solutions. For this reason, for the multiclass case

N > 1, only the L-NBee version of L-AR schemes has been selected for further study and numeri-

cal tests.

For the total L1 error, let us denote by {ρMi,j(t)}Mj=1 and {ρref
i,l (t)}Mref

l=1 the numerical and reference

solution for the i-th component at time t calculated with ∆x = 1/M and ∆x = 1/Mref using

M = ML andMref = MrefL cells, respectively. We use cubic interpolation from the reference grid

to the M cells grid to compute ρ̃ref
i,j (t) for j = 1, . . . ,M. We then calculate the approximate L1

error in species i by

ei(t) :=
1

M

M∑
j=1

∣∣ρ̃ref
i,j (t)− ρMi,j(t)

∣∣, i = 1, . . . , N.
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Figure 4.3: Example 4.1: numerical solution at t = 10 for ∆x = 0.01 and schemes (a) L-NBee, (b)

L-UBee, (c) L-rUBee, (d) L-RS.

The L-RS scheme described in Section 4.5 it is clearly non-conservative, since the remap step

is based on random sampling. To measure the relative mass error as a function of time and ∆x for

the numerical solution for each species i, we evaluate

Ei(∆x; t) :=
1

mi(0)

∣∣∣∣∣mi(t)−∆x
M∑
j=1

ρni,j

∣∣∣∣∣, mi(t) :=

∫ L

0
ρi(x, t) dx,

where n = bt/∆tc and Ei(∆x; t) is the relative conservation of mass error of species i at time t in

the interval [0, L]. In this way we define the total relative mass error by E(∆x; t) = E1(∆x; t) +

· · ·+ EN (∆x; t). Note that E(∆x; t) overestimates the relative mass error in ρ = ρ1 + · · ·+ ρN .

Finally, in some cases we wish to test numerically whether the scheme under consideration

possibly approximates an entropy solution. To this end, we define

E∆(∆x, t) := ∆x
M∑
j=1

U
(
ρnj
)
, where n = bt/∆tc. (4.61)



108 Chapter 4

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

ρ

 

 

L−RS
L−NBee
L−UBee  
L−rUBee
Scheme 4
Scheme 10
exact solution  

(a)

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

70

75

80

85

90

95

100

105

110

115

120

x [mi]

ρ
 [
c
a
rs

/m
i]

 

 

L−NBee
L−RS
L−UBee
L−rUBee
Scheme 4  
Scheme 10  
exact solution  

(b)

Figure 4.4: Enlarged views of (a) Example 4.1 at t = 10 (cf. Figure 4.3), (b) Example 4.2 at t = 12.7

(cf. Figure 4.7), calculated with ∆x = 0.01 and including solutions by Schemes 4 and 10.

Here U(ρ) is a convex entropy function. For N = 1 we choose U(ρ) = ρ2/2, and for N > 1

we choose U(ρ) = E(ρ), where E(ρ) is defined in (4.15). In this form, for a given value of ∆x the

function t 7→ E∆(∆x, t) must be non-increasing.

4.6.2 Example 4.1: N = 1, linear velocity

We consider the conservation law (4.5) with v(ρ) given by (4.6) with vmax = 1 and V (ρ) defined

by (4.16) with ρmax = 1, along with the initial condition

ρ(x, 0) = ρ0(x) :=


0.2 for x < 2,

0.9 for 2 ≤ x ≤ 9,

0.1 for x > 9.

For this test, the flux f(ρ) = ρv(ρ) is concave (f ′′ ≡ −2 < 0), so according to the Lax entropy

condition, the discontinuity in ρ0 sitting at x = 2 evolves as a shock propagating at speed (f(0.9)−
f(0.2))/(0.9−0.2) = −0.1, while the jump in ρ0 at x = 9 gives rise to a rarefaction wave centered at

that position. Figure 4.3 shows numerical results at simulated time t = 10, at which the backward-

propagating shock of the exact solution has reached the position x = 1 and the shock and the

rarefaction wave do not yet interact, i.e., on a short interval the solution value ρ = 0.9 is still

present.

We observe that the shock and the rarefaction wave are adequately approximated by the L-RS,

L-rUBee and L-NBee schemes, while Figure 4.3 (b) indicates that the scheme L-UBee generates

“stairs” in the rarefaction wave. An enlarged view around x = 1 is shown in Figure 4.4 (a), where

numerical solutions are compared with those produced by Schemes 4 and 10. It appears that results

by LR schemes are less diffusive those produced by other schemes.
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Figure 4.5: Example 4.1: (a) numerical entropy test for ∆x = 1/200, (b) L1 error versus CPU time

at t = 10. Here and in Figure 4.8, CCFL = 0.95 for LR schemes and CCFL = 0.8 for Schemes 4

and 10.

M error cr cpu [s] error cr cpu [s] error cr cpu [s]

L-rUBee L-UBee L-NBee

100 130.5 — 0.1 197.9 — 0.13 44.6 — 0.1

200 71.7 0.86 0.4 186.5 0.08 0.56 24.2 0.88 0.5

400 37.3 0.94 2.5 179.2 0.05 2.32 12.9 0.90 2.4

800 20.4 0.86 10.3 163.7 0.13 9.43 7.0 0.88 9.9

1600 10.7 0.92 47.5 159.2 0.04 38.78 3.6 0.92 40.9

3200 5.6 0.93 210.3 146.4 0.12 166.41 1.9 0.89 173.0

6400 2.9 0.94 747.6 134.8 0.11 709.00 1.0 0.90 753.9

L-RS Scheme 4 Scheme 10

100 57.6 — 0.03 168.1 — 0.1 70.0 — 0.2

200 35.5 0.61 0.14 91.2 0.88 0.4 35.0 1.00 1.1

400 18.2 0.96 0.59 49.2 0.89 1.8 17.5 0.99 4.6

800 9.9 0.87 2.38 26.4 0.89 7.8 8.7 0.99 19.3

1600 5.4 0.86 9.77 14.1 0.90 33.3 4.3 1.00 81.6

3200 3.2 0.85 37.49 7.5 0.90 142.2 2.2 0.99 361.3

6400 1.5 1.08 170.43 3.9 0.91 660.8 1.1 1.00 1691.3

Table 4.1: Example 4.1: L1-errors (“error”, to be multiplied by 10−5), convergence rates (cr), and

CPU times (cpu) at t = 10 for three LR schemes and Schemes 4 and 10.

Table 4.1 and Figure 4.5 (b) show the error history, namely the approximate total L1 error, con-

vergence rates cr and CPU time cpu for Example 4.1 for different schemes. According to Table 4.1,

for the L-NBee and L-RS schemes, the error goes to zero when the mesh is refined. Furthermore, for

a fixed relative error, say 9.9×10−5, LR schemes require less CPU time than Schemes 4 and 10, but

L-RS require less levels of refinement than Scheme 4, L-NBee require less than L-RS and Scheme 10

requires less than L-NBee, L-rUBee require as CPU time as Scheme 4. In this example the values

of the convergence rates cr for LR schemes lie between those of Schemes 4 and 10.

As consequence of Lemma 4.7, each scheme converges to a weak solution of (4.5). To determine
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Figure 4.6: Numerical solution by scheme L-UBee with ∆x = 1/12800 and CCFL = 0.95 for (a)

Example 4.1, (b) Example 4.2.

Example 4.1 Example 4.2 Example 4.4 Example 4.5

M t = 10 t = 12.7 t = 0.03 t = 0.11 t = 0.03 t = 0.14

100 3.45E-4 9.27E-3 2.82E-3 3.16E-3 6.65E-3 7.83E-3

200 8.72E-5 3.46E-3 2.34E-3 2.61E-3 2.32E-3 2.82E-3

400 8.60E-5 1.89E-3 1.81E-3 2.19E-3 6.07E-4 7.26E-4

800 3.37E-5 1.63E-3 7.60E-4 9.00E-4 3.48E-4 3.87E-4

1600 6.41E-6 1.59E-3 6.70E-4 8.50E-4 8.73E-5 1.04E-4

3200 4.22E-6 1.47E-3 5.40E-4 6.30E-4 2.11E-5 8.82E-5

Table 4.2: Relative mass error E(∆x; t) in dependence of ∆x = 1/M for the L-RS scheme at the

indicated simulated times t.

whether this weak solution is an entropy solution, in Figure 4.5 (a), we plot the total entropy

(4.61) as a function of t for each LR scheme, using ∆x = 1/200. We observe that E∆(∆x, t) is a

non-increasing in t. This behaviour is maintained with the mesh is refined.

For the statistically conservative L-RS scheme, we display in Table 4.2 the relative mass error

at simulated time t = 10 for different levels of discretization. For Example 1 we observe that the

conservation error is small already for a coarse grid and decreases with the refinement of the mesh.

In Figure 4.6 (a) we observe that when the mesh is refined, the numerical solution obtained

with the L-UBee scheme produces “staircaising” that does not disappear upon refinement and the

L1-error does not appreciably go to zero when ∆x→ 0. This phenomenon is due to the particular

choice of the anti-diffusive scheme (UBee scheme) and has also been reported elsewhere for the

linear advection, transport, and other equatios [46, 15, 14, 47, 67, 69, 72].

4.6.3 Example 4.2: N = 1 exponential velocity

In this numerical test, we use a velocity function v(ρ) given by (4.6) with vmax = 1 and

V (ρ) = exp
(
−(ρ/50)2/2

)
, (4.62)
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Figure 4.7: Example 4.2: schemes (a) L-NBee, (b) L-UBee, (c) L-rUBee, (d) L-RS at t = 12.7 with

∆x = 0.01.

which is the hindrance function proposed by Drake [53], and an initial condition

ρ(x, 0) = ρ0(x) :=

120 cars/mi for 1 ≤ x ≤ 7,

0 otherwise

for x ∈ [0, 10], where we employ the boundary conditions ρ(0, t) = ρ(20, t) = 0 for t > 0. For this

test, the flux f(ρ) = ρv(ρ) is not concave, so the entropy solution for this initial condition contains

a shock and a rarefaction wave followed by a shock. Results at t = 12.7 are displayed in Figure 4.7.

In Figures 4.7 (a) and (b) we observe that the L-NBee and L-RS schemes adequately approximate

the shock and the rarefaction wave, while Figure 4.7 (c) indicates that the L-UBee scheme produces

staircasing in the rarefaction wave (as in the linear velocity case). The “stairs” do not disappear

under refinement, as is shown in Figure 4.6 (b). For the L-RS scheme in Table 4.2 we observe that

the relative mass error at simulated time is small with a coarse grid and decreases with refinement

of the mesh. Table 4.3 and Fig 4.8 (b) show approximate total L1 error, convergence rates cr and

the CPU time cpu for Example 4.2 for different schemes. According to Table 4.3, the LR schemes

are almost as efficient as Scheme 10. In Figure 4.8(a) we display the total entropy as a function
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Figure 4.8: Example 4.2: (a) numerical entropy test for ∆x = 1/200, (b) L1 error versus CPU time

at t = 12.7.

L-rUBee L-UBee L-NBee

M error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 110.9 — 0.4 202.7 — 0.4 141.9 — 0.4

200 67.2 0.72 1.8 170.1 0.25 1.5 78.5 0.85 1.6

400 40.0 0.74 6.9 143.6 0.24 6.5 39.9 0.97 6.6

800 25.2 0.66 28.2 133.3 0.10 25.9 23.4 0.76 27.1

1600 15.2 0.72 121.3 126.7 0.07 105.2 13.1 0.83 111.8

3200 8.5 0.83 510.5 122.1 0.05 443.2 7.1 0.88 494.4

6400 4.9 0.80 2441.6 119.6 0.02 1883.5 3.9 0.84 2181.2

L-RS Scheme 4 Scheme 10

100 191.0 — 0.1 440.0 – - 0.6 72.2 — 1.2

200 98.9 0.94 0.5 258.0 0.76 2.6 35.6 1.02 5.4

400 51.2 0.95 2.2 147.6 0.80 11.0 15.2 1.22 23.1

800 33.0 0.63 8.9 85.9 0.78 45.4 8.4 0.84 103.6

1600 15.4 1.10 35.9 49.7 0.79 208.0 4.5 0.91 510.0

3200 9.1 0.75 144.0 28.1 0.81 973.9 2.2 1.03 1892.0

6400 4.9 0.87 575.9 16.0 0.80 4230.3 1.1 1.00 7831.7

Table 4.3: Example 4.2: approximate L1-errors (“error”, to be multiplied by 10−5), cr, and CPU

times for three LR schemes and Schemes 4 and 10 of [24] at simulated time t = 12.7.

of t. We observe that the function (4.61) is non-increasing in the time.

4.6.4 Example 4.3: N = 5, linear velocity

We consider the model (4.1) with the hindrance function (4.16), vmax
i = i/N , and the initial

datum

ρ(x, 0) =

(0.2, . . . , 0.2)T for 0 ≤ x ≤ 1,

0 for x < 0 and x > 1.
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Figure 4.9: Example 4.3: numerical solution at simulated time t = 7, calculated with ∆x = 0.01

and schemes (a) L-RS, (b) L-NBee.
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Figure 4.10: Example 4.3: (a–c) enlarged views of parts of Figure 4.9 for selected species, including

numerical solutions by Schemes 4 and 10; (d) approximate total L1 errors versus CPU time.

In Figures 4.9 (a) and (b) we display the numerical solution obtained with the L-RS and L-NBee

scheme, respectively, at simulated time T = 7 with ∆x = 1/100. The solution produced by L-NBee
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L-NBee L-RS Scheme 4 Scheme 10

M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 63.1 — 0.09 78.1 — 0.04 132.2 — 0.06 46.4 — 0.18

200 35.4 0.83 0.40 28.7 1.44 0.17 76.2 0.79 0.36 23.9 0.95 0.91

400 20.1 0.81 1.71 18.8 0.61 0.68 43.0 0.82 1.57 12.4 0.94 3.78

800 9.8 1.02 7.34 10.1 0.89 2.74 23.0 0.90 6.95 5.5 1.16 16.6

1600 5.1 0.93 34.1 7.4 0.55 10.9 12.6 0.86 34.9 2.7 0.98 78.3

3200 2.6 0.95 129.2 5.4 0.44 42.8 6.8 0.87 164.9 1.3 1.02 362.1

Table 4.4: Example 4.3: total approximate L1 errors etot(t) (“error”, to be multiplied by 10−6), cr,

and CPU times for two LR schemes and Schemes 4 and 10 at simulated time t = 7.

L-NBee L-RS Scheme 4 Scheme 10

T M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 684.9 — 0.05 1124.4 — 0.03 1197.7 — 0.04 670.7 — 0.09

200 414.3 0.72 0.2 582.8 0.94 0.09 938.4 0.55 0.16 449.5 0.60 0.36

0.03 400 192.1 1.10 1.0 567.1 0.59 0.39 708.2 0.70 0.74 224.2 1.00 1.58

800 83.7 1.19 4.7 360.7 0.75 1.58 507.9 0.77 3.50 110.4 1.02 6.96

1600 47.0 0.83 20.4 254.9 0.60 6.85 321.3 0.86 16.91 51.4 1.10 34.23

3200 31.4 0.68 89.3 170.8 0.77 30.72 185.1 0.89 74.70 29.8 0.78 152.58

100 217.2 — 0.1 817.8 — 0.04 1477.1 — 0.02 444.9 — 0.2

200 100.5 1.11 0.7 755.4 1.14 0.17 926.3 0.67 0.37 208.2 1.09 0.9

0.11 400 53.4 0.91 3.1 414.6 0.86 0.70 555.6 0.73 1.57 103.6 1.00 4.0

800 28.3 0.91 12.7 220.4 0.91 2.94 313.1 0.82 6.58 50.8 1.02 17.6

1600 15.3 0.88 53.5 102.1 1.10 13.31 168.2 0.89 32.20 24.6 1.04 90.7

3200 9.4 0.70 230.1 50.1 1.02 63.42 89.7 0.90 181.60 12.8 0.93 445.2

Table 4.5: Example 4.4: total approximate L1 errors etot(t) (“error”, to be multiplied by 10−5), cr,

and CPU times for two LR schemes and Schemes 4 and 10.

scheme appears to be less affected by numerical diffusion than the one corresponding to the L-RS

scheme. In Figures 4.10 (a–c) enlarged views of the relevant parts for individual species are shown.

Observe that L-NBee produces fairly sharp solutions in each individual species. Furthermore, note

carefully that the numerical results of Figure 4.9 show that jumps in the total density ρ only occur

“upwards”, i.e. from smaller to higher values. This is in agreement with the entropy jump condition

(4.17) valid for the present case.

4.6.5 Examples 4.4 and 4.5: N = 9, exponential velocity

We consider the MCLWR model (4.1), where we utilize the hindrance function (4.62) proposed

by Drake [53]. We present numerical test proposed in [113], where the initial density distribution is

given by an isolated platoon in the congested regime for the Drake model with optimal car density

ρ∗ = 50 cars/mi and maximum velocities vmax
i = (52.5 + 7.5i) mi/h, i = 1, . . . , 9. We consider

a circular highway of length L = 10 mi, i.e. we set I := [0, 10] with periodic conditions in the

boundary. As initial condition, a platoon is considered. Specifically we set

ρ(x, 0) = p(x)ρ0(0.04, 0.08, 0.12, 0.16, 0.2, 0.16, 0.12, 0.08, 0.04)T,
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Figure 4.11: Example 4.4: schemes (a, b) L-RS, (c, d) L-NBee at (a, c) t = 0.03 h, (b, d) t = 0.11 h,

and ∆x = 1/200.

where the “shape function” p(x) is given by

p (x) =

 10x for 0 < x ≤ 0.1,

−10(x− 1) for 0.9 < x ≤ 1,

1 for 0.1 < x ≤ 0.9,

0 otherwise.

In Example 4.4 we set ρ0 = 120 cars/mi, which is well over the optimal density ρ∗ of the

model, and leads to a congested regime. In Example 4.5 we set ρ0 = 40 cars/mi, which leads to a

non-congested regime.

For Example 4.4, in Figures 4.11 (a) and (b) we display the numerical solution obtained with the

L-RS scheme and in Figures 4.11 (c) and (d) those obtained with the L-NBee scheme at simulated

times t = 0.03 h and t = 0.11 h with ∆x = 1/200 mi. The traffic phenomenon is represented

adequately by each scheme. Observe that L-NBee is more anti-diffusive than the L-RS scheme.

This behaviour is maintained for long simulated times. Enlarged views of relevant parts of the

numerical solutions of Figure 4.11 for some selected species are shown in Figures 4.12 and 4.13. We

compare the numerical solution for each species with a reference solution obtained by a fifth-order

WENO-SPEC scheme [50].
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Figure 4.12: Example 4.4: enlarged views of relevant parts of the numerical solutions of Figure 4.11

for t = 0.03 h and selected species, including numerical solutions obtained by Scheme 10.

The numerical tests indicate that for several species, the numerical solution obtained by the

L-NBee scheme are anti-diffusive in each species and this behaviour is maintained during a long

percentage of the simulated time, see Figures 4.12, 4.13 and 4.16 for Example 4.4 and Figures 4.17

and 4.18 for Example 5. However, the L-RS scheme is more diffusive than Scheme 10, and in

Figure 4.13 we observe a delay in the approximation of the shock wave. This behaviour is observed

for several individual species. As in another Examples, in Table 4.2 we observe that the percentage

relative mass loss at simulate times decreasing with the refinement of the mesh.

In Figures 4.14 and 4.19 we display the efficiency of the numerical schemes in comparison with

that of Schemes 4 and 10. We observe that the efficiency of the L-RS scheme is comparable with

that of the first-order accurate Scheme 4, while the L-NBee scheme is even more efficient than the

second-order accurate Scheme 10. In Figure 4.15 we display the total entropy as a function of t, we

observe that the function (4.61) is non-increasing in the time.
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Figure 4.13: Example 4.4: enlarged views of relevant parts of the numerical solutions of Figure 4.11

for t = 0.11 h and selected species, including numerical solutions obtained by Scheme 10.
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Figure 4.14: Example 4.4: approximate total L1 versus CPU time at simulated time (a) t = 0.03 h,

(b) t = 0.11 h.
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Figure 4.15: Numerical entropy with ∆x = 1/200: (a) Example 4.4, (b) Example 4.5.
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Figure 4.16: Example 4.5: schemes (a, b) L-RS, (c, d) L-NBee, (a, c) t = 0.03 h, (b, d) t = 0.14 h,

and ∆x = 1/200.
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Figure 4.17: Example 4.5: enlarged views of relevant parts of the numerical solutions of Figure 4.16

for t = 0.03 h and selected species, including numerical solutions obtained by Scheme 10.

L-NBee L-RS Scheme 4 Scheme10

T M error cr cpu [s] error cr cpu [s] error cr cpu [s] error cr cpu [s]

100 178.9 — 0.05 567.2 — 0.02 1037.8 — 0.04 386.3 — 0.09

200 89.4 0.99 0.2 329.6 0.78 0.08 714.3 0.53 0.1 194.8 0.98 0.3

0.03 400 45.98 0.96 1.0 190.6 0.79 0.3 440.3 0.69 0.6 96.5 1.01 1.5

800 20.7 1.14 4.1 92.3 1.04 1.3 243.3 0.85 2.9 45.6 1.08 6.9

1600 8.9 1.21 18.5 47.3 0.96 5.5 126.1 0.94 13.5 20.2 1.17 33.9

3200 4.4 1.01 80.7 28.3 0.74 23.8 65.3 0.94 60.5 10.1 1.00 150.4

100 115.4 — 0.2 499.8 — 0.07 931.9 — 0.1 340.2 — 0.2

200 56.9 1.01 0.9 302.4 0.72 0.29 635.7 0.55 0.4 168.6 1.01 1.2

0.14 400 25.7 1.14 4.0 175.0 0.78 1.15 406.6 0.64 1.9 81.1 1.05 5.0

800 12.2 1.06 16.5 101.6 0.78 4.63 242.8 0.74 8.2 38.9 1.05 23.8

1600 5.7 1.08 71.2 58.7 0.79 18.51 138.6 0.80 38.4 18.6 1.06 114.1

3200 2.3 1.27 307.3 31.6 0.89 77.33 76.6 0.85 194.5 8.8 1.07 503.4

Table 4.6: Example 4.5: total approximate L1 errors etot(t) (“error”, to be multiplied by 10−5), cr,

and CPU times for two LR schemes and Schemes 4 and 10.
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Figure 4.18: Example 4.5: enlarged views of relevant parts of the numerical solutions of Figure 4.16

for t = 0.14 h and selected species, including numerical solutions obtained by Scheme 10.
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Figure 4.19: Example 4.5: approximate total L1 error versus CPU time at simulated time (a)

t = 0.03 h, (b) t = 0.14 h.
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4.7 Conclusions of Chapter 4

We have investigated in this paper a new class of numerical schemes for the challenging issue of

approximating the solutions of the strongly coupled MCLWR models. These schemes are based on

a Lagrangian-Projection decomposition for each car density, and the use of anti-diffusive techniques

for solving the projection step. The proposed strategies turn out to be very easy and competitive

with respect to existent schemes, especially for large values of N(the number of densities or equi-

valently the size of the system), where not characteristic decomposition of the eigenstructure are

needed and are stables up to a CFL number 1.0. In the case N = 1, the strategy is supported by a

partial numerical analysis since an L∞ bound and a T.V.D. property are established. Proving the

validity of an entropy inequality an still an open problem at this stage but numerical experiments

show the convergence to entropy solution.

In this first investigation we focus on traffic flow models for which velocities vi(ρ) = vmax
i V (ρ)

are assumed to be positive and such that v′(ρ) ≤ 0. An interesting extension of this work could

be envisaged to the polydisperse sedimentation models with sing variable velocity. Extension to

second or high order accuracy is a much more involved issued to be considered in the near future

(even if the LR scheme are shown to be already competitive with second-order scheme “Scheme

10”).





Discusión

En este caṕıtulo presentamos una discusión de los principales resultados de esta tesis y una

descripción del trabajo futuro a desarrollar.

4.8 Conclusiones

La tesis aporta diferentes esquemas numéricos para modelos de flujo cinemático multi-especies

incluyendo aquellos modelos que contienen un término fuente difusivo, además se generaliza y se

analiza a múltiples especies un modelo para problemas de tráfico vehicular en los que se tienen en

cuenta tiempos de reacción y distancias mı́nimas para cada una de las especies.

La propuesta de nuevos esquemas numéricos para resolver modelos de flujo cinemático multi-

especies se motiva a partir del hecho que actualmente los esquemas numéricos que generan mejor

resolución en la solución de dichos problemas, esquemas shock-capturing de alto orden, requieren

del uso de toda la información caracteŕıstica del Jacobiano del flujo, la cual en la mayoŕıa de los

modelos no se encuentra disponible debido a su complejidad, además los hace más costosos desde el

punto de vista computacional. Por ello, con el fin de motivar el uso de esquemas numéricos requieran

menor esfuerzo computacional y/o esquemas sencillos de implementar y que no requieran del uso

de la información caracteŕıstica del modelo, en la tesis se han estudiado diferentes alternativas de

esquemas numéricos para la resolución de este tipo de modelos.

A continuación se enumeran los resultados más importantes divididos en tres grandes tópicos.

1. Esquemas numéricos para modelos de flujo cinemático multi-especies.

Se aplicó un algoritmo de refinamiento de malla adaptativo (AMR) para ahorrar el es-

fuerzo computacional en memoria y tiempo de ejecución, en la simulación de modelo de

sedimentación polidispersa a dos esquemas shock-capturing de alto orden. Las simulaciones

para N = 4 y N = 7 mostraron que los esquemas numéricos con AMR requieren menor

esfuerzo computacional que los esquemas sin refinamiento adaptativo. Además, los esquemas

que utilizan toda la información caracteŕıstica son mucho más eficientes que los esquemas que

no hacen uso de esta información.

Se propusieron esquemas numéricos de dos pasos para la resolución de problemas de tráfico

vehicular multi-especies que combina en un primer paso la solución de ecuaciones en coor-

denadas Lagrangianas, y el segundo paso consistente en resolver una ecuación de transporte.
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Para el segundo paso se consideraron dos diferentes estrategias, una basada en recientes y

novedosos esquemas anti-diffusivos los cuales son sencillos de implementar y con la propiedad

T.V.D., tales esquemas se denominaron “L-AR”. La segunda estrategia se basa en el clásico

método aleatorio de Glimm, tales esquemas se denominaron “L-RS”. Para el caso N = 1 se

demostró que los esquemas L-AR son conservativos, tienen la propiedad T.V.D. y satisfacen

el principio del máximo, con lo cual se muestra que convergen a una solución débil de la ley

de conservación. Ambas esquemas L-AR y L-RS se generalizaron para el caso N > 1. Los

resultados numéricos indicaron que estos esquemas resultan competitivos con respecto a otras

variedad de esquemas, aparte de que no requieren del uso de la información caracteŕıstica del

flujo.

2. Esquemas impĺıcitos-expĺıcitos para modelos de flujo cinemático multi-especies

con corrección difusiva.

Se propuso resolver un problema de flujo cinemático multi-especie con termino fuente difusivo

y de carácter (posiblemente) fuertemente degenerado mediante una discretización temporal

expĺıcita para el término convectivo y una discretización temporal impĺıcita para el término di-

fusivo el avance temporal se realiza mediante un método Runge-Kutta. Si bien la formulación

IMEX-Runge-Kutta requiere de resolver problemas altamente no lineal, tienen la principal

ventaja que la condición de estabilidad CFL depende exclusivamente de la estabilidad re-

querida por el término convectivo, lo cual lo hace mucho más eficiente respecto a usar un

método totalmente expĺıcito.

Se propuso una estrategia para resolver el problema altamente no lineal que resulta después

de discretizar de manera impĺıcita el término difusivo la cual está basada en la aplicación

del método de Newton-Raphson junto con una regularización del coeficiente discontinuo de

la matriz de difusión, de manera que el carácter fuertemente degenerado del término difusivo

se vea afectado.

La discretización espacial se hace mediante un esquema shock-capturing de alto orden y

los resultados numéricos para diferentes modelos muestran que comparando con respecto a

esquemas expĺıcitos, los esquemas IMEX-Runge-Kutta tienen un rendimiento de hasta un

orden de magnitud en niveles de discretización moderada.

3. Modelo de tráfico vehicular multi-especies con corrección difusiva.

Se propuso una generalización del modelo LWR de tráfico vehicular difusivamente corregido

que considera un tiempo de reacción y distancia mı́nima de anticipación a un modelo multi-

clase LWR difusivamente corregido en el que individuos de cada clase se caracterizan por tener

una velocidad máxima preferencial y un tiempo de reacción en el que ajustan su velocidad. Se

analizó la estabilidad del modelo desde el punto de vista de la información caracteŕıstica solo

de la matriz de difusión, lo cual requiere que tenga valores propios positivos. Esto conduce a

una relación entre las velocidades máximas y los tiempos de reacción que permite al sistema

sea estable.

Numéricamente se analizó para N = 2 la estabilidad del sistema completo que incluye los
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términos convectivo y difusivo, esto permitió identificar configuraciones (velocidad máxima y

tiempos de reacción) en las cuales el sistema completo es inestable aun cuando la matriz di-

fusión tenga valores propios positivos. Esto genera que pequeñas perturbaciones en la densidad

total del tráfico generen soluciones oscilatorias, algunas de ellas que permanecen controladas

en relación a amplitud y frecuencia. Estas están relacionadas a tiempos de reacción grandes

o distancias de anticipación muy pequeñas.

4.9 Trabajo Futuro

1. Aplicar un algoritmo de refinamiento de malla adaptativo (AMR) a los esquemas IMEX-

Runge-Kutta para resolver problemas de flujo cinemático multi-especies con término fuente

difusivo.

2. Se demostró para N = 1 que los esquemas L-AR convergen a una solución débil, adicional-

mente los resultados numéricos muestran que tales esquemas convergen a la solución de en-

troṕıa. Con lo cual, demostrar que los esquemas LR convergen a la única solución de entroṕıa

es aun un problema abierto.

3. Extensión de los esquemas LR para problemas de sedimentación polidispersa en la cual la

velocidad puede variar en signo. Esto puede ser logrado aplicando esquemas anti-diffusivos

para resolver la ecuación de transporte con velocidad variable en signo.

4. Obtener versiones de segundo o alto orden de exactitud para los esquemas LR. Aqúı también

se considera una extensión a problemas cinemático multi-especies donde la función de flujo

varia espacialmente.

5. Para el caso del modelo de tráfico vehicular multi-especies con corrección difusiva, el análisis

de estabilidad aplicado al sistema completo se realizó desde el punto de vista numérico.

Sin embargo, se requiere de un análisis teórico que permita determinar relaciones entre las

velocidades máximas y los tiempos de reacción con las inestabilidades del modelo.
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