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Abstract

In this thesis, we define a new parameter for studying Boolean networks, called the “independence
number”. We establish that a Boolean network is k-independent if, for any set of k variables and any
combination of binary values assigned to them, there exists at least one fixed point in the network
that takes those values at the given set of k indices. In this context, we define the independence
number of a network as the maximum value of k such that the network is k-independent.

This definition is closely related to widely studied combinatorial designs, such as “k-strength cov-
ering arrays”, also known as Boolean sets with all k-projections surjective. Our motivation arises
from understanding the relationship between a network’s interaction graph and its fixed points,
which deepens the classical paradigm of research in this direction by incorporating a particular
structure on the set of fixed points, beyond merely observing their cardinality.

Specifically, we focus on studying interaction graphs that admit k-independent networks and show
that the complete graph without loops with linear-type activation functions achieves maximum
nontrivial strength. Furthermore, we present constructions that demonstrate the existence of k-
independent networks on n variables with disconnected, connected and strongly connected interac-
tion graphs. We also study necessary conditions for a network to be k-independent.

Finally, we observe that computational simulations failed to find examples of monotone k-independent
networks. This observation motivates Section 4.1 of this thesis, where we use another classical
combinatorial design, called a Steiner system, to construct monotone k-independent networks with
complete loopless interaction graphs.
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Resumen

En esta tesis, definimos un nuevo parámetro para estudiar redes Booleanas, denominado “número
de independencia”. Establecemos que una red Booleana es k-independiente si, para cualquier
conjunto de k variables y cualquier combinación de valores binarios asignados a estas, existe al
menos un punto fijo en la red que tome esos valores en dicho conjunto de k índices. En este
contexto, definimos el número de independencia de una red como el máximo valor de k tal que la
red es k-independiente.

Esta definición está estrechamente relacionada con diseños combinatorios ampliamente estudiados,
como los “Covering arrays” de fuerza k, también conocidos como conjuntos Booleanos con todas
las k-proyecciones sobreyectivas. Nuestra motivación surge de comprender la relación entre el
grafo de interacción de una red y sus puntos fijos, lo que ayuda a profundizar en el paradigma
clásico de las investigaciones en esta dirección al incorporar una estructura particular sobre el
conjunto de puntos fijos, más allá de simplemente observar su cardinalidad.

Específicamente, nos centramos en estudiar grafos de interacción que admiten redes k-independientes,
y mostramos que el grafo completo sin bucles con funciones de activación lineales alcanza la máx-
ima fuerza no trivial. Además, presentamos construcciones que demuestran la existencia de re-
des k-independientes en n variables con grafos de interacción disconexos, conexos y fuertemente
conexos.

Finalmente, observamos que las simulaciones computacionales no lograron encontrar ejemplos de
redes monótonas k-independientes. Esta observación motiva la sección 4.1 de esta tesis, donde uti-
lizamos otro diseño combinatorio clásico, llamado sistema de Steiner, para construir redes monó-
tonas k-independientes con grafo de interacción completo y sin bucles.
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Chapter 1

Introduction

1.1 Motivation

As an applied motivation, consider a group of n individuals who aim to reach a consensus on a
decision, such as expressing their position as “In favor” or “Against”. These participants share
their opinions in successive rounds, having access only to the opinions of their friends. Updates
to their opinions for the next round are based on a predefined function. A fixed point is deemed
to be achieved when the participant’s opinions stabilize, meaning that from that point onward, no
further changes occur. For a fixed parameter 1 ≤ k ≤ n, we analyze systems where any group
of k individuals can make any of the 2k possible configurations of choices, and for each of these
decisions, there should exist a fixed point of the system with these states. We will term this property
as k-independence.

This conceptualization will enable the modeling of systems whose dynamics exhibit a specific
degree of local robustness in terms of achieving a stable state. This, in turn, opens up a broad array
of pending questions regarding the characterization of these systems. In this work, we will focus on
studying the characteristics of “decision” functions and the structure of the network that represents
the interaction among entities in a k-independent system from a theoretical perspective.

In more specific terms, we will consider that the dynamics of these systems can be modeled with
a Boolean Network, which is a system of n variables interacting with each other and evolving dis-
cretely over time according to a predefined rule. Boolean networks (BN) were originally introduced
by Kauffman in 1969 [15] and have been widely used in various areas such as gene-regulatory net-
works, cryptography, and social systems [28], [30], [12]. Moreover, Boolean networks are an
interesting combinatorial object in their own right, leading to numerous investigations into under-
standing their dynamic properties and their relationship with properties of their interaction graph.
Furthermore, a discrete structure that will naturally emerge from our study are the so-called cov-
ering arrays (also studied as sets of vectors with all k-projections surjective, s-piercing sets of the
hypercube and families of k-independent sets). The definition of k-independence presented in this
work allowed us to connect these structures and incorporate a new perspective for the study of these
topics, contributing to the state-of-the-art by laying the foundation for a new research subject.
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1.2 Related work and contribution

As we will see in the following chapters, the notion of k-independence that we have defined is
equivalent to establishing that the set of fixed points of a Boolean network forms a covering array
of strength k. In other words, this set consists of vectors in {0, 1}n such that for any subset of k
variables and any assignment of zeros and ones, there is at least one fixed point of the network that
assumes that configuration in that subset.

It is of interest to understand, at a theoretical level, the configurations that lead a Boolean network
to stabilize, that is, periodic points [29, 10], meaning the states x ∈ {0, 1}n such that f ℓ(x) = x for
some ℓ. Fixed points (case ℓ = 1) are particularly interesting for inferring information about the
activation functions of the network [19]. However, most works in this direction study the relation-
ship between the number of fixed points of a BN and the properties of the local activation functions
[2, 4] or of its interaction graph. The information that can be obtained about the architecture of a
Boolean network from structural properties of its fixed points has not been thoroughly explored.
A first step in this direction is the work carried out in [24], where the VC dimension in Boolean
networks is defined in terms of their fixed points.

As we mentioned previously, this work primarily focuses on the concepts of covering arrays and
Boolean networks. Our aim is to dive deeper into the fixed points of a Boolean network, not
only examining their quantity, but also endowing this set with a specific structure. An interesting
contrast lies in the fact that the central question in the study of covering arrays is predominantly
quantitative. It involves determining, given n and k, the covering array with the minimum number
of rows that achieves strength k.

Our contribution begins by demonstrating that the complete graph without loops can serve as the
interaction graph of a k-independent network for all 1 ≤ k < n. Following this, we identify nec-
essary conditions to achieve k-independence, focusing on local activation functions, the number of
fixed points, and the properties of the interaction graph. Subsequently, we demonstrate the exis-
tence of k-independent networks with graphs belonging to certain classical families, including one
connected family and another strongly connected. In the next chapter, we present several general
constructions to study how various parameters of a k-independent network relate when some are
varied while others are kept fixed. In chapter four, we first study specific families of graphs that ad-
mit k-independent networks for three specific functions: linear, minority, and majority. We observe
that the only monotone network studied thus far is the majority, which faces challenges in achieving
high degrees of k-independence within the previously examined families of graphs. This observa-
tion motivates the specific study of the existence of k-independent networks in the monotone case.
In the final section of chapter four, we prove a result on the existence of k-independent networks
(but not (k + 1)-independent) with monotone activation functions over a complete graph without
loops, based on the existence of a classical combinatorial design known as the Steiner system.
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Chapter 2

Definitions and basic concepts

In this section, firstly, we will review basic definitions of some concepts in discrete mathematics.
Subsequently, we will delve into two central concepts of this work: Covering arrays and Boolean
networks. Finally, this chapter will include some elementary propositions and lemmas that will be
used in the following chapters.

2.1 Discrete mathematics concepts

Given an integer n ≥ 1 we denote by {0, 1}n the set of n-length vectors consisting of ones or zeros.
We denote 0⃗ as the vector with all components being zero and 1⃗ as the vector with all components
being one. In addition, we establish the notation [n] := {1, . . . , n} and given x ∈ {0, 1}n and J =
{j1, . . . , jt} ⊆ [n], we define the projection of x into J as the vector xJ = (xj1 , . . . , xjt) ∈ {0, 1}|J |.
Given x ∈ {0, 1}n we define the Hamming weight wH(x) (or simply weight) as the number of ones
it contains.

Definition 1. A function f : {0, 1}n → {0, 1} is said to be a Boolean function on n variables. It
is worth mentioning that every Boolean function can be described as a logical expression in the
variables x1, . . . , xn, utilizing conjunction (represented by the symbol ∧), disjunction (represented
by the symbol ∨), and negation (represented by a bar above the variable, e.g., x). Moreover, we
define:

• A literal is a variable or its negation.

• A clause is a set of literals connected by the symbol ∨ or ∧.

• A Conjunctive Normal Form (CNF) of f has disjunctive clauses connected by ∧, and a Dis-
junctive Normal Form (DNF) has conjunctive clauses connected by ∨.

Definition 2. A graph G is a pair (V,E), where V is a non-empty finite set and E is a subset of
{e ∈ 2V : |e| = 2}. The elements of V are usually called vertices or nodes, and the elements of E
edges. We say that a sequence of distinct vertices v1, . . . , vk is a path if for every consecutive pair
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of vertices vivi+1 is an edge of G. A graph G is connected if for every pair of vertices vi, vj , there
is a path connecting them.

Definition 3. A directed graph (or digraph) D consists of a pair (V,A), where V = {v1, . . . , vn}
is a non-empty finite set of nodes or vertices, and a set A ⊆ V × V containing ordered pairs of
vertices, known as arcs. For a given vertex v ∈ V , we introduce the concepts of in-neighborhood
N−(v) and out-neighborhood N+(v). These are defined as follows:

N−(v) = {u ∈ V : (u, v) ∈ A}, N+(v) = {u ∈ V : (v, u) ∈ A}.

Furthermore, we define the out-degree of the vertex v as d+(v) = |N+(v)| and the in-degree as
d−(v) = |N−(v)|. Also, we define the minimum in-degree as δ−(D) = min{d−(v) : v ∈ V } and
similarly δ+(D) = min{d+(v) : v ∈ V }.

Definition 4. Given a graph G = (V,E) and v ∈ V , we define the neighborhood of v as N(v) =
{u ∈ V : uv ∈ E}. We also define d(v) = |N(v)|, δ(G) = min{d(v) : v ∈ V }, and we say that
G is k-regular if every vertex has degree k.

12 3

4

56

7

1 2

3
4

5

8
6

7

Figure 2.1. Examples of a digraph (left) and graph (right).

Remark 1. As we can see in the left digraph in Figure 2.1 there can also be arcs from a vertex
to itself. We will refer to such arcs as loops. On the other hand, it is also possible to have an arc
(i, j) and simultaneously an arc (j, i). In such a case, we say that the interaction between i and j
is symmetric and we may draw the line without an arrowhead. In such a case, we will also refer to
the arcs as “edges”. In this work, when we refer to graphs, we will be talking about digraphs in
which all interactions are symmetric.

Definition 5. A path in a digraph D = (V,A) is a sequence of distinct vertices v1, . . . , vk such
that for every i = 1, . . . , k − 1, (vi, vi+1) is an arc of D. Additionally, we define the fundamental
graph of D, denoted as DF = (V,E), where {u, v} ∈ E if (u, v) ∈ A or (v, u) ∈ A. Subsequently,
we state that D is connected if DF is connected, and we declare D to be strongly connected if, for
every pair of vertices vi, vj ∈ V , there exists a path P from vi to vj and a path P̃ from vj to vi.

We define the complete graph (without loops) on n vertices as a graph Kn = (V,A) such that
|V | = n and A = V ×V \{(i, i) : i ∈ V }. In other words, the complete graph is one that includes
all possible edges, for example, see Figure 3.2. Also, given an integer n, we will denote by Qn

the graph that can be described by the vertices V (Qn) = {0, 1}n, where two vertices are adjacent
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if they differ in exactly one component. This graph is known as the n-cube or n-dimensional
hypercube.

000 100

110010

001 101

111011

0

1 00 01

1110

Figure 2.2. Q1, Q2 and Q3

2.2 Covering arrays

In this section, we will introduce a combinatorial concept that naturally emerges from the concept
of k-independence that we want to study. Let us suppose that we have an algorithm A(x1, . . . , xn)
with n binary inputs and that we know that this algorithm fails due to the interaction of k unknown
variables. So, our objective is to test the algorithm to identify these faulty parameters. A naïve
approach would be to test every possible combination of these k parameters, resulting in

(
n
k

)
2k tests.

Unfortunately, this number can be too large for reasonably small values of n and k, making this
solution impractical. To address this, a covering array of strength k is defined as a set of Boolean
vectors from {0, 1}n such that for every subset I of k indices, and for every a = (a1, . . . , ak) ∈
{0, 1}k, there exists a vector x in the set such that xI = a. Also, we denote CA(m,n; k) as the set
of all covering arrays with m vectors of size n and strength k. When we do not need to refer to
the number of rows, we simply denote it by CA(n; k). For example, the following is an element of
CA(5, 4; 2) :

B =

0 0 0 0
1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

.

Since we want to perform as few tests as possible, we are looking for covering arrays with the
minimum number of rows. We denote by CAN(n; k) the minimum number of elements of a
CA(m,n; k). It is worth mentioning that determining CAN(n; k) for arbitrary values of n and k
remains an open problem; we can see some of the known values in Table 2.1. Various efforts have
been made to find approximations to this minimum. However, the case of k = 2 is the only one
that has been completely solved [18].

Theorem 1 (Minimal construction for strength 2, [18]). Let n be an integer. Then CAN(n; 2) is



16 CHAPTER 2. DEFINITIONS AND BASIC CONCEPTS

the minimum number m such that (
m− 1

⌈m
2
⌉

)
≥ n

and it is possible to construct a covering array with these parameters by adding as columns all
possible vectors from {0, 1}m−1 of weight ⌈m/2⌉ and adding the zero vector.

In a more general case, from [18], [19] and [26] we know the bounds:

Ω(2k log n) ≤ CAN(n; k) ≤ k

log
(

2k

2k−1

) log n. (2.1)

In other words, for a fixed k, CAN(n; k) = Θ(log n), justifying the use of covering arrays as testing
objects and the search for those with the least possible number of rows. For this reason, various
methods for their construction have been studied. Some of them include incremental construction
methods [27], using error-correcting codes [1], derandomized algorithms [7, 6], and other heuristic-
based methods [23].

s\t 1 2 3 4 5 6

0 2 4 8 16 32 64
1 2 4 8 12 32 64
2 2 5 10 21 42 85
3 2 6 12 24 48-52 96-108
4 2 6 12 24 48-54 96-116
5 2 6 12 24 48-56 96-118
6 2 6 12 24 48-64 96-128
7 2 6 12 24 48-64 96-128
8 2 6 12 24 48-64 96-128
9 2 7 15 30-32 60-64 120-128

10 2 7 15-16 30-35 60-79 120-179

Table 2.1. Some known values of CAN(s+ t; t) [20].

For a fixed k, as we increase n, CAN also increases, as seen in Table 2.1. We can understand that
this happens because given an element in CA(n + s; k), we can eliminate s columns and obtain
an element in CA(n; k). On the other hand, it is important to note that the lower bound of (2.1)
is a necessary but not sufficient condition. To see this consider any set of vectors with more than
Ω(2k log n) elements but with the i-th component equal to zero in every vector. In such a case, this
array would have strength zero.

Regarding the complexity of combinatorial problems associated with covering arrays, there are still
mostly open problems, and the state of the art is somewhat immature as there have been several
instances of incorrectly formulated or misinterpreted propositions concerning the NP-hardness of
generating such sets. However, some closely related problems, being NP-complete suggest that
finding a minimal covering array is a tough optimization challenge. In [14], a review of the state of
the art in the complexity of these problems is presented.
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2.3 Some different formulations

Recall that the n-dimensional hypercube, often referred to as the n-cube (or cube, when n is clear),
is a graph where the vertices are labeled with vectors from {0, 1}n, and there is an edge connecting
every pair of vertices that differ in exactly one component. This concept allows us to characterize
covering arrays in terms of the structure of the cube.

Definition 6. Given an hypercube graph Qn, S ⊆ V (Qn) is a s-piercing set if Qn − S does not
contain Qs as a subgraph. Then we have

S ⊆ V (Qn) is a s-piercing set ⇐⇒ S ∈ CA(|S|, n;n− s)

Example 1. Consider n = 3, s = 1, and let S = {000, 110, 101, 011} be a covering array of
strength 2. In this particular example, it is observed that Q3 − S has no edges, corresponding to
Q1 copies. Therefore, it is a 1-piercing set.

000 100

110010

001 101

111011

100

010

001

111

Figure 2.3. Q3 and Q3 − S, with S ∈ CA(4, 3; 2)

The previous formulation facilitates deriving clearer upper bounds for CAN(n; k), along with
describing elementary cases where CAN(n; k) is known exactly. An illustrative example of this is
provided by the following proposition from [11].

Proposition 1. [11] For n > k > 1, denote m := n− k and ℓ ∈ {0, 1, . . . ,m}. Then,

CAN(n;m) ≤
∑

j≡ℓ mod m+1

(
n

j

)
On the other hand, we will now review a characterization of covering arrays by considering sets
defined from interpreting columns as indicator vectors. These families of subsets, previously studied
as k-independent families (see, e.g., [18]), explaining why we use this terminology in the case of
Boolean networks.

Definition 7. A family F = {F1, . . . , Fn} of subsets of [m] is said to be k-independent if for every
pair of disjoint subsets S1, S2 ⊆ [n] such that |S1|+ |S2| = k, we have that(⋂

i∈S1

Fi

)
∩
(⋂

j∈S2

Fj

)
̸= ∅
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Example 2. The family F = {{4, 6, 7, 8}, {3, 5, 7, 8}, {2, 5, 6, 8}, {1, 5, 6, 7}} is 3-independent.
As we will see in the following proposition, one way to check that this family is 3-independent, is to
check that rows of the following matrix forms a covering array of strength 3:

1 2 3 4
1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0
5 0 1 1 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 0

Proposition 2. Let A = {x1, . . . , xm} be a set of m Boolean vectors from {0, 1}n, and denote by
FA = {F1, . . . , Fn} the family of subsets from [m] given by Fi = {j ∈ {1, . . . ,m} : xi

j = 1}.
Then, A ∈ CA(m,n; k) if and only if FA is k-independent.

Proof. First let A be a covering array of strength k, and consider the family F already defined. Let
S1, S2 disjoint subsets of [n] such that |S1| + |S2| = k. Let us suppose without loss of generality
that |S1| = ℓ, and denote S1 = {1, . . . , ℓ} and S2 = {ℓ + 1, . . . , k}. Also, denote I = {1, . . . , k}.
Now we consider the configuration a = (a1, . . . , ak) ∈ {0, 1}k such that a1 = · · · = aℓ = 1 and all
the components between positions ℓ + 1 and k are zero. Then, since A has strength k, there exists
x ∈ A such that xI = a. This implies

(⋂
i∈S1

Fi

)
∩
(⋂

j∈S2
Fj

)
is nonempty and therefore, FA is

k-independent.

Conversely, suppose FA be a k-independent family of subsets, and define A = {x1, . . . , xm} such
that xℓ

i = 1 if and only if ℓ ∈ Fi. Now let I = {i1, . . . , ik} ⊆ [n] and a = (a1, . . . , ak) ∈ {0, 1}k,
and define S1 = {ij ∈ I : aj = 1}, S2 = {ij ∈ I : aj = 0}. Then, |S1| + |Sj| = k, and since
FA is k-independent, there exists j ∈ {1, . . . ,m} such that for every i ∈ S1, x

j
i = 1 and for every

i ∈ S2, we have xj
i = 0. In other words, xj takes the values given by a in the components indexed

by I . Since both of them are arbitrary, we conclude A is a covering array of strength k.

Remark 2. If we have a covering array A = {x1, . . . , xm} and we represent it through the follow-
ing array:

A =


x1

x2

...
xm

 =


x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

...
...

...
...

xm
1 xm

2 · · · xm
n


Then, it is clear from Proposition 2 that we can perform permutations by rows and columns, as well
as switches (changing ones to zeros and zeros to ones) by columns, and still have a covering array
with the same parameters. Thus, two covering arrays A and B are said to be isomorphic if one
can be obtained from the other using these three operations. Since we are working with covering
arrays as sets, we do not care about the order of the rows. Finally, it is worth noting that the size
of the equivalence class of a covering array is n!2n, considering the n! column permutations and
2n column switches.
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2.4 Boolean networks

On the other hand, as mentioned earlier, a Boolean network is a system of n variables that interact
with each other and evolve discretely over time according to a predefined rule. Boolean Networks
(BNs or simply networks) were originally introduced by Kauffman in 1969 [15]. In a formal
sense, a Boolean network can be expressed as a function f : {0, 1}n → {0, 1}n, where f(x) =
(f1(x), . . . , fn(x)) for x ∈ {0, 1}n. Here, each Boolean function of the type fi : {0, 1}n → {0, 1}
is referred to as a local activation function of the network.

The following are some examples of families of Boolean networks:

• Linear networks (XOR networks): Boolean networks where each local activation function
is the sum modulo two of some variables.

• Majority networks: Networks where each local activation function take the value of the
majority of the variables they depend on.

• Monotone networks: Given x, y ∈ {0, 1}n, denote x ≤ y if xi ≤ yi for every i ∈ [n]. A
Boolean network f is said to be monotone if it is increasing with respect to the relation ≤.

• AND-OR networks: Boolean networks in which each local activation function is either a
disjunction or a conjunction of the variables they depend on.

Boolean networks are a particular case of a discrete dynamical system, and we can understand their
dynamics as described by successive iterations. In this context, the iteration digraph of a Boolean
network f over the vertices {0, 1}n is defined such that the arcs are of the form (x, f(x)) for
x ∈ {0, 1}n. Each iteration digraph fully represents a BN; however, their utilization becomes
impractical due to their large number of nodes. For this reason, associated with any Boolean
network f , we can define the interaction (or dependency) digraph G(f), with vertices {1, . . . , n}
and arcs (i, j) indicating that fj “depends” on variable i, i.e., there exists x ∈ {0, 1}n such that

fj(x1, . . . , xi = 0, . . . , xn) ̸= fj(x1, . . . , xi = 1, . . . , xn).

It is important to note that G(f) may have loops, i.e., arcs from a vertex to itself. A fixed point
of f is a vector x ∈ {0, 1}n such that f(x) = x. We will denote the set of fixed points by
FP (f) = {x ∈ {0, 1}n : f(x) = x}. The set of fixed points in a BN is an intriguing subject of
study for various reasons. One of them is its significance in applications within biological systems,
as they can be interpreted as stable patterns of gene expression [16]. However, as previously men-
tioned, there are very few studies that address the set of fixed points from a qualitative perspective.
Therefore, we propose the following definition:

Definition 8. Given two integers 1 ≤ k ≤ n, we say that a Boolean network f : {0, 1}n → {0, 1}n
is k-independent if for every I ⊆ [n] of size k and for all a = (a1, . . . , ak) ∈ {0, 1}k, there is some
fixed point x ∈ {0, 1}n such that xI = a. It is easy to see that f is k-independent if and only if
FP (f) ∈ CA(m,n; k) with m = |FP (f)|. We define the independence number of f , denoted as
i(f), as the maximum k for which f is k-independent.



20 CHAPTER 2. DEFINITIONS AND BASIC CONCEPTS

Example 3. The Boolean network f : {0, 1}3 → {0, 1}3 defined by

f1(x) = x1 ∧ (x2 ∨ x3)

f2(x) = x2 ∧ (x1 ∨ x3)

f3(x) = x3 ∧ (x1 ∨ x2)

1

2 3

G(f) :

Figure 2.4. Example of a BN with i(f) = 2.

has fixed points FP(f) = {000, 010, 110, 101, 111} which forms a covering array of strength 2.
So f is 2-independent. Moreover, since f is not the identity map, it cannot be 3-independent.
Therefore, i(f) = 2.

In order to explore the family of digraphs that allow some k-independent Boolean networks to be
compatible with it as its dependency graph, we propose the following definition:

Definition 9. Let k ≤ n be an integer and G a (possibly) directed graph on n vertices. We say
that G is k-admissible if there exists a k-independent Boolean network f such that G(f) = G. For
example, the graph from Figure 2.4 is 2-admissible.
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Chapter 3

About the interaction graph of
k-independent Boolean networks

3.1 General results

In this section, we will establish the basic results on the k-admissibility of graphs and the k-
independence of arbitrary Boolean networks. To do this, first, we will review some classical results
from the literature concerning fixed points of Boolean networks. As we have already mentioned,
a significant motivation in this area is to answer the question: What can we infer about the fixed
points of f based on G(f), and vice versa? The results we will present initially compare the num-
ber of fixed points of f with properties of G(f). Perhaps the most referenced result in this field is
the feedback bound.

Let us recall that, given a directed graph G = (V,A), we define a set S ⊆ V as a feedback vertex
set if the subgraph G[V \ S] is acyclic. Furthermore, we introduce the transversal number of G,
denoted by τ(G), as the minimum cardinality of a feedback vertex set for G.

Theorem 2 (Feedback bound; Aracena 2008, [2]). For any Boolean Network f we have:

|FP (f)| ≤ 2τ(G(f))

This result establishes a necessary condition for the k-admissibility of graphs. Specifically, for
a graph G to be k-admissible, it must be the interaction graph of a Boolean network, where the
fixed points form a covering array of strength k. This necessitates having at least 2k fixed points.
Furthermore, we require that

CAN(n; k) ≤ 2τ(G) ⇐⇒ τ(G) ≥ logCAN(n; k)

It is important to note that for some values of n and k, as seen in Table 2.1, logCAN(n; k) > k,
and therefore in such situations, k-admissible graphs require k < τ(G).

Example 4. Consider a complete bipartite graph Kn,2. In this case, τ(Kn,2) = 2. Then, the
feedback bound allows us to establish that for any Boolean network f with interaction graph
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Kn,2, |FP (f)| ≤ 22 = 4. Later, as we have already seen in Table 2.1, for all n ≥ 4 we have
CAN(n; 2) > 4, we can conclude that for n ≥ 4, Kn,2 is not k-admissible for any 1 < k ≤ n.

A1 A2 An

B1 B2

· · ·

Figure 3.1. Complete bipartite graph Kn,2 with a partition of size 2.

It might be intuitive to think that for a graph G to be k-admissible, it is necessary that τ(G) > k.
However, there are examples where for all n ≥ 3 and k = 1, . . . , n − 1, G is k-admissible with
k ≤ τ(G) = n− 1. This is the case when G is a loopless complete graph.

Lemma 1. Let G = Kn be the complete graph without loops. Then G is (n − 1)-admissible.
Moreover, for every 1 ≤ k ≤ n − 1, there exists a Boolean network f such that G(f) = Kn and
i(f) = k.

Proof. Assume linear functions in every node, then we can compute that the set of fixed points is
the set of every vector in {0, 1}n with an even number of ones. This is a known covering array of
strength n− 1 (See, e.g, [11]).

Consider 1 ≤ k < n− 1, and let

Sk := {x ∈ {0, 1}n : wH(x) = j ≤ k and j = 0 mod 2},
Tk := {x ∈ {0, 1}n : wH(x) = j ≤ k and j = 1 mod 2}.

We claim that if k is even, Sk ∈ CA(n; k)\CA(n; k+1), and if k is odd, Tk ∈ CA(n; k)\CA(n; k+
1). Additionally, there exist Boolean networks f, g : {0, 1}n → {0, 1}n such that FP (f) = Sk and
FP (g) = Tk. We will prove the case for even k; the proof for odd k is analogous.

Let I = {i1, . . . , ik} ⊆ [n] and a = (a1, . . . , ak) ∈ {0, 1}k. Clearly, a has at most k ones. If a
has an even number of ones, consider x ∈ {0, 1}n such that xI = a and xi = 0 for every i ̸∈ I .
Then x ∈ Sk. Now suppose a has an odd number of ones. Consider x ∈ {0, 1}n such that xI = a.
Choose j ∈ [n] \ I and let xj = 1, while for every i ̸∈ I ∪ {j}, xi = 0. Therefore, x has at most
k+1 ones, and an even number of them, i.e., x ∈ Sk. Thus, Sk ∈ CA(n; k). If k is even, then k+1
is odd. For every I = {i1, . . . , ik, ik+1} ⊆ [n], there is no x ∈ Sk such that xI = 1⃗. Therefore,
Sk ∈ CA(n; k) \ CA(n; k + 1)

Now define f : {0, 1}n → {0, 1}n such that for every x = (x1, . . . , xn) ∈ {0, 1}n, fi(x) = 1 iff
wH(x \ xi) ≤ k and wH(x \ xi) is odd. Here we denote x \ xi := (x1, . . . , xi−1, xi+1, . . . , xn) and
recall that wH(x) denotes the amount of ones of x. From this definition, fi does not depends on xi.
Then, it is easy to see that G(f) = Kn and FP (f) = Sk. As a final remark, for the case where
k is odd, we define g : {0, 1}n → {0, 1}n such that gi(x) = 1 if and only if wH(x \ xi) ≤ k and
wH(x \ xi) is even.
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Figure 3.2. K16 is 15-admissible.

Remark 3. The Boolean networks constructed in the previous proposition are non monotone. In-
deed, for k even, let f be the network constructed such that FP (f) = Sk. Let x ∈ {0, 1}n such that
wH(x) = k+1, and let y ∈ {0, 1}n such that x ≤ y. We observe an index i ∈ [n] such that xi = 1.
Since x ≤ y, we have yi = 1, and wH(y) ≥ k + 2. Therefore, fi(y) = 0, as wH(y \ yi) ≥ k + 1.
This implies that f(x) = x, and hence, f(x) ̸≤ f(y).

In order to find examples of k-admissible graphs for different values of k, we used the following
procedure:

1) Generate a random matrix A (i.e., selecting every entry to be 0 or 1 with probability 1/2)
until it is a covering array of strength k. The number of rows is manually set based on the
computation time of the generation since CAN(n; k) is not known in the general case.

2) Randomly, fill the table of a Boolean Network that only has A as the set of fixed points. If
another fixed point is generated, then repeat the random assignment.

3) Return the Boolean Network.

Using this procedure, we observed that for k ≥ 2 the resulting interaction graph is (almost) always
the complete graph. This led us to believe that k-independence required a complete interaction
graph. However, we discovered counterexamples that refute this statement, as illustrated in Exam-
ple 5.

Through extensive brute-force computational simulations, we found that identifying k-independent
networks poses a considerable challenge. As a result, we conjecture that the proportion of networks
exhibiting k-independence is very small. Supporting this conjecture is the fact that the expected
number of fixed points in a Boolean network, whose Boolean functions are drawn from probability
distributions not necessarily uniform or identical, is one. In contrast, we know that k-independent
networks require at least 2k fixed points.

It is worth noting that the conjecture that k-independence for k ≥ 2 implied a complete interaction
graph (including loops) stemmed from the bias of randomly and independently completing the
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entries of the boolean network’s table. Indeed, let’s assume that f is a BN whose table was chosen
for each entry with a probability of 1/2. Let Aij denote the event “fj does not depends on xi”, i.e.,
the arc (i, j) does not exists in G(f). Then, we can establish the following estimate:

Pr(Aij) = Pr (∀x ∈ {0, 1}n : fj(x : xi = 0) = fj(x : xi = 1))

=
∏

x∈{0,1}n
Pr(fj(x : xi = 0) = fj(x : xi = 1))

=
∏

x∈{0,1}n

1

2

=
1

22n

Therefore,

Pr(Aij) = Pr[(i, j) ∈ A(G(f))] = 1− Pr(Aij) = 1− 1

22n

In consequence,

Pr(G(f) is complete) =
n∏

i=1

n∏
j=1

Pr(Aij) =

(
1− 1

22n

)n2

n→∞−−−→ 1.

Example 5. The following are examples of 3-admissible graphs that are not the complete graph.

1

2

3

4

5

6

7

8

a) A 3-admissible graph with linear functions

1

2

3

4

5

6

7 8

b) 3-cube graph, 3-admissible with linear
functions

Figure 3.3. Two examples of 3-independent BNs with interaction graph non complete

Example (a) was discovered by combining 3 copies of K4 in a way that preserved fixed points with
strength 3. Conversely, example (b) emerged during the exploration of classical graphs while im-
posing linear interaction. There are two primary reasons for concentrating on scenarios where all
local activation functions are of the linear type. The first reason is that we already know cliques
with linear functions generate the maximum possible force without trivializing the network. Fur-
thermore, networks of this kind typically exhibit a higher number of fixed points compared to others,
such as AND-OR networks [3].

While we have already seen that k-admissible graphs, with k ≥ 2, are not necessarily complete,
it is true that they tend to become denser for larger values of k. In fact, to prove this, let us first
consider the following definition.
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Definition 10 (k-set canalizing functions [13]). We say that h : {0, 1}n → {0, 1} is k-set canalizing
if there exists a set I = {i1, . . . , ik} ⊆ {1, . . . , n} and values a1, . . . , ak, b ∈ {0, 1} such that

∀x ∈ {0, 1}n, xI = (a1, . . . , ak) =⇒ h(x) = b

In this context, we say that the input a1, . . . , ak canalizes h to b. Moreover, we denote by IC(h) the
minimum k such that h is k-set canalizing.

Proposition 3. Let h be a Boolean function. Then, IC(h) = k if and only if the minimum number
of literals in a clause of a dnf-formula of h is k.

Proof. Let h be a Boolean function such that we can write one of its dnf-formula as

h(x1, . . . , xn) =
ℓ∨

i=1

Ci

where each clause Ci = (yi1 ∧ yi2 ∧ · · · ∧ yik(i)) involves k(i) literals and every yiℓ is xiℓ or
its negation. Also, suppose k = min{k(i) : i = 1, . . . , ℓ}. Therefore, there exists a clause
Ci = (yi1 ∧ yi2 ∧ · · · ∧ yik). Now define a = (a1, . . . , ak) ∈ {0, 1}k by aj = 1 if yij = xij and
aj = 0 if yij = xij . Then, h is k-set canalizing and canalizes to 1 in the input a.

Conversely, suppose h is k-set canalizing and w.l.o.g. that I = {1, . . . , k} ⊆ [n] is the set of
indexes of the canalizing variables. Then, if we construct the dnf-formula of f from its table, we
can write

h(x1, . . . , xn) = g(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xk)

So, IC(h) ≤ k. By contradiction if we suppose there is a smaller clause, with ℓ < k literals, h
would be ℓ-set canalizing, which is a contradiction. Finally, we conclude IC(h) = k.

Example 6. The following are examples of k-set canalizing functions:

• The function g : {0, 1}n → {0, 1}, defined as f(x1, . . . , xn) =
∧n

i=1 xi, is 1-set canalizing.
It canalizes to zero whenever any variable takes the value zero. Similarly, disjunctions are
1-set canalizing, canalizing to one when any variable takes the value one.

• The function bkn : {0, 1}n → {0, 1}, defined as bkn(x1, . . . , xn) = 1 if and only if wH(x) = k,
is known as a belt function with m = 1 (See, e.g., [22]). Then it is easy to see that IC(bkn) =
max{n− k, k}+ 1.

• The majority function Maj : {0, 1}n → {0, 1}, defined as

Maj(x1, . . . , xn) = 1 ⇐⇒ wH(x) ≥ ⌈n/2⌉

is such that IC(Maj) = ⌈n/2⌉.

With this setting, we are now ready to establish the following result:
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Theorem 3. Let f = (f1, . . . , fn) be a k-independent Boolean networks such that G(f) has no
loops, then for all i, IC(fi) ≥ k.

Proof. By contradiction, let’s assume that f is k-independent, and that there exists a local activation
function fi that canalizes into Ĩ = {i1, . . . , iℓ} ⊆ N−(i) with ℓ < k, on inputs a = (a1, . . . , aℓ) ∈
{0, 1}ℓ to the value b ∈ {0, 1}. Since there are no loops, we may assume that i /∈ Ĩ . Then,
|Ĩ ∪{i}| = ℓ+1 ≤ k, and since f is k-independent (and thus (ℓ+1)-independent), there exist two
fixed points x, y ∈ FP (f) such that:

xi = 0, yi = 1, xĨ = a = yĨ

Therefore, fi(x) = fi(y) = b, but fi(x) = xi = 0 and fi(y) = yi = 1, which is a contradiction.

Corollary 3.1. If G is a loopless k-admissible digraph, then its minimum indegree is at least k.

Corollary 3.2. There is no AND-OR Boolean network f with i(f) ≥ 2 if G(f) has no loops.

The preceding result underscores that there exist networks with an exponential number of fixed
points, all the while maintaining i(f) = 1. In [3], we encounter the following compelling example.

2n+ 1

1 2

n+ 1 n+ 2

· · ·

· · ·

n

2n

AND

OR OR OR

a) n odd.

1 n+ 1

2 · · ·

· · · · · ·

· · ·n
2

n
2 + 1 n

n+ 2 3n
2

3n
2 +1 2n

AND ORAND

OR OR AND AND

b) n even.

Figure 3.4. AND–OR networks realizing the maximum number of fixed points.

We denote by m the number of nodes of the network. The above example achieves 2(m−1)/2 fixed
points for m odd and 2(m−2)/2 + 1 for the even case. This is the maximum number of fixed points
that an AND-OR Boolean network can have and for both cases τ(G(f)) = ⌊m

2
⌋. However, since

disjunctions and conjunctions are 1-set canalizing, the set of fixed points cannot have strength
greater than 1.

Remark 4. It is worth mentioning that the hypothesis of having no loops is necessary to conclude
the previous results. For instance, let’s consider network f : {0, 1}n+1 → {0, 1}n+1 defined by
fi(x) = xi, for i = 1, . . . , n; and
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fn+1(x) = xn+1 ∨
(

n∧
i=1

xi

)
, 3

1

2

n

n+ 1

···

G(f) :

Figure 3.5. Example where loops are present, and the previous results are not valid.

Then, it is easy to see that the set of fixed points of f is {0, 1}n+1 \ {⃗0}, and this set is a covering
array of strength n− 1. However, G(f) has minimum indegree 1, and for every i, IC(fi) equals 1.

Remark 5. As we have seen before, it is known that for n ≥ 4, CAN(n; 2) > 4. On the other
hand, the bound CAN(n; k) ≥ 2k0CAN(n − k0; k − k0), for k0 ≤ k, is also known [20]. Using
k − k0 = 2, we can conclude that CAN(n; k) > 2k for all n > k + 1. This allows us to see
that for all k > 1, the conditions τ(G) ≥ k, δ−(G) ≥ k, and that G has no loops are necessary
but not sufficient. Consider n = k2 + k > k + 1, and a complete bipartite graph G, with one
set of size k and the other of size k2. For this graph, τ(G) = k and δ−(G) = k. However, since
CAN(n; k) > k, G is not k-admissible.

A1 A2 Ak

B1 B2 B3 Bk2

· · ·

· · ·

Figure 3.6. Construction from Remark 5.

3.2 Two families of k-admissible graphs

We have already reviewed some necessary conditions for k-admissibility in terms of the interaction
graph and its local activation functions. On the other hand, from Lemma 1, we observed that the
complete graph is a suitable architecture for achieving high degrees of k-admissibility when con-
sidering linear networks. In this section, we will present two explicit constructions of k-admissible
graphs for different values of k, inspired by the (n−1)-admissibility of the complete graph without
loops.
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Lemma 2. Let r, s be two integers and define ξ := min{r, s}−1. Then, there exists a ξ-admissible
connected digraph on n = r + s vertices.

Proof. Let Kr and Ks denote the cliques on r and s vertices, respectively. Now we define G
composed by these two cliques and select i ∈ V (Kr), and add all the arcs of the form (i, ℓ) for
ℓ ∈ Ks. Let f : {0, 1}n → {0, 1}n be a linear Boolean network with G(f) = G. Now, we see that
for every x ∈ FP (f), if xi = 0 the number of ones in both cliques should be even. So there are
2r−22s−1 fixed points. On the other case, if xi = 1, every vector with an odd number of ones on the
variables given by Ks, and an odd number of ones in Kr \ {i}, is a fixed point of f . In this case
there are also 2r−22s−1 options. In total, there are 2r+s−2 fixed points and by previous lemmas this
set is a covering array of strength ξ.

i Kr \ {i} Ks

0 even even
1 odd odd

Table 3.1. Fixed points of the construction of Lemma 2.

Kr Ks

i

Figure 3.7. G = Km

→∪Kn

It is worth mentioning that the previous construction only allows us to construct digraphs that are,
at most, n/2-admissible. Moreover it provides examples of ξ-admissible graphs G with n vertices,
τ(G) = n− 2 and δ−(G) = ξ. In the following construction, we generalize this result and manage
to show a family of strongly connected k-admissible graphs.

Lemma 3. For any integer m ≥ 2 and odd k ≥ 1, there is a strongly connected graph that is
(m− 1)-admissible, with n = (m− 1)k + 1 vertices.

Proof. We know that cliques achieve high k-independence with linear functions. Our next con-
struction is built upon this idea. Let Wm,k = (V,E) be a graph with n = (m − 1)k + 1 vertices,
comprising a central vertex and k copies of Km, each sharing only the central vertex. Examples of
these graphs are shown in Figure 3.8.
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We claim that for every m, k with odd k, the linear Boolean network with interaction graph Wm,k is
(m−1)-independent. To prove this, we will first characterize the set of fixed points of this network.
To do so, we denote by f the XOR BN with G(f) = Wm,k, by 1 the central vertex of the graph,
and let x ∈ FP (f). Now, we distinguish the following two cases:

• If x1 = 0, then we need that the central vertex observes an even number of ones.

• If x1 = 1, then we need for it to observe an odd number of ones.

On the other hand, each of the cliques of size m must have an even number of ones; otherwise,
the configuration would be unstable. We denote by K1

m−1, . . . , K
k
m−1. Then, the set of fixed points

of f is given by the configurations that have x1 = 0 and for every ℓ ∈ {1, . . . , k}, wH(x
ℓ
Km−1

) is
even or x1 = 1 and for every ℓ ∈ {1, . . . , k}, wH(x

ℓ
Km−1

) is odd. Here we note that if k is even,
the central vertex cannot take the value 1 on a fixed point, because it will always observe an even
number of ones. We can summarize the set of fixed points in the following table:

1 K1
m−1 K2

m−1 · · · Kk
m−1

0 even even even even
...

...
...

...
...

0 even even even even
1 odd odd odd odd
...

...
...

...
...

1 odd odd odd odd

Table 3.2. Fixed points of Wm,k with linear interaction, k odd.

Considering that for each Kℓ
m−1 there are 2m−2 possible configurations with even (or odd) weight,

we have 2(m−2)k fixed points with x1 = 0 and the same amount with x1 = 1. Thus, f has 2(m−2)k+1

fixed points. Moreover, this set has strength m− 1. Indeed, let I be a subset of m− 1 vertices from
Wm,k and let a = (a1, a

K
i1
m−1 , . . . , aK

it
m−1) ∈ {0, 1}m−1, with t ≤ k. We know that the set of fixed

points, for x1 = 0 (or x1 = 1) restricted to any Kℓ
m−1 is a covering array of strength m− 2. Then,

there exists a fixed point x such that xI = a, so FP (f) is a covering array of strength m− 1.

Figure 3.8. Windmill graphs with (m, k) ∈ {(5, 5), (7, 9), (9, 5), (11, 7)} (left to right).
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3.3 Constructions

From the results of the previous section, we can observe a trade-off between the parameters m, n,
and k in an element of CA(m,n; k). We aim to understand how to grow one of these parameters
in terms of another, focusing on the context of a k-independent Boolean network on n variables,
with m fixed points and i(f) = k. In addition, we will translate these results into constructions of
k-admissible graphs.

The following result allows us to increase n by one while maintaining strength in a certain sense.

Lemma 4 (See e.g. [20]). Let A ∈ CA(m1, n− 1; k) and B ∈ CA(m2, n− 1; k − 1). Then,

C =

[
A 0⃗

B 1⃗

]
∈ CA(m1 +m2, n; k).

Proof. Let I = {i1, . . . , ik} ⊆ [n] and a = (a1, . . . , ak) ∈ {0, 1}k. Now there are two possible
cases. If n ̸∈ I since A is a covering array of strength k, there is a vector x ∈ C such that
xI = a. In the other case n ∈ I , and we write without loss of generality I = {i1, . . . , ik−1, n}
and a = (ai1 , . . . , aik−1

, an). If an = 0, since A has strength k there exists x ∈ C such that
xI = a. Otherwise, if an = 1, as B has strength k − 1, there is a vector y ∈ C such that
yI\{n} = (ai1 , . . . , aik−1

), and therefore yI = a.

Remark 6. In the previous lemma, if we also assume B ̸∈ CA(m2, n − 1; k), then C is not an
element of CA(m1+m2, n; k+1). Indeed, let I ⊆ [n− 1] and a ∈ {0, 1}k be such that there is no
x ∈ B with xI = a. Consider Ĩ = I ∪ {n} and ã ∈ {0, 1}k+1 such that ãI = a and an = 1. Then,
there is no x ∈ C with xĨ = ã, and therefore, C does not have strength k + 1.

Corollary 3.3. Let f be a Boolean network on n−1 variables with i(f) = k−1. Then, there exists
a Boolean network g on n variables, with i(g) = k such that FP (g)[n−1] := {(x1, . . . , xn−1) ∈
{0, 1}n−1 : (x1, . . . , xn−1, xn) ∈ FP (g)} contains the set of fixed points of f .

Proof. Let f̃ : {0, 1}n−1 → {0, 1}n−1 such that i(f) = k (exists by Lemma 1). Now, define

gi(x) = (xn ∧ fi(x)) ∨ (xn ∧ f̃i(x)), i ∈ {1, . . . , n− 1},

and gn(x) = xn. Note that if xn = 0, then g(x) = f̃(x), while if xn = 1, then g(x) = f(x). So,
the set of fixed points of g is

FP (g) =

[
FP (f̃) 0⃗

FP (f) 1⃗

]
And by Lemma 4 and Remark 6, FP (g) ∈ CA(n; k) \ CAN(n; k + 1) and therefore i(g) = k.
Moreover, if we suppose FP (f) and FP (f̃) are disjoint we can avoid the loop in n by repeating
the previous argument with gn(x) as the indicator function of FP (f), i.e., gn(x) = 1 if x ∈ FP (f)
and gn(x) = 0 if x ∈ FP (f̃).
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Remark 7. We can also state the previous proposition in the following manner: Given G1, G2

to graphs on V = [n], such that G1 is k-admissible and G2 is (k − 1)-admissible, then we can
construct G̃ = (Ṽ , Ẽ), where Ṽ = [n + 1] and Ẽ = E(G1) ∪ E(G2). Thus, by the previous
proposition, we can define the same network and conclude that G̃ is a k-admissible graph on n+1
vertices. In Figure 3.9, we observe an example of this construction considering the Maj network in
G1, being 2-independent, and the linear network in G2 achieving 3-independence. In this case, G̃
is the resulting graph, which turns out to be 3-admissible with the network defined in Proposition
3.3.

G1

1 2

3 4

5 6

7 8

G2

1 2

3 4

5 6

7 8

G̃

1 2

3 4

5 6

7 8

9

Figure 3.9. Construction from Proposition 3.3 using G1 with Maj and G2 with linear interaction.

The following remark shows that by adding an isolated loop, we can increase n by one while
maintaining the strength. This, in turn, implies doubling the value of m, i.e., the number of fixed
points.

Remark 8. Given a k-admissible graph on n vertices, G, the addition of an isolated loop would
return a k-admissible graph on n+1 vertices. Indeed, let f be a k-independent BN with interaction
graph G. Now we define f̃ : {0, 1}n+1 → {0, 1}n+1 as f̃(x) = (f1(x), . . . , fn(x), xn+1). So
G(f̃) = G̃, and also

FP (f̃) =

[
FP (f) 0⃗

FP (f) 1⃗

]

Now, by Lemma 4, FP (f̃) ∈ CA(2|FP (f)|, n + 1; k). This construction also allows us to use
cliques with linear functions and isolated loops to construct, for any n and k, Boolean networks
with i(f) = k, and non-complete interaction graph. Additionally, if n is a multiple of k, incor-
porating disjoint copies of cliques of size k into this construction results in a (k − 1)-regular,
(k − 1)-admissible graph on n vertices.
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Figure 3.10. A 7-regular 7-admissible graph with 48 vertices.

After recognizing that the inclusion of loops doubles the number of fixed points, we wonder: Can
we construct examples of networks with i(f) = k and the maximum number of fixed points without
increasing the strength? To advance in this direction, we first prove the following upper bound.

Proposition 4. Let A ∈ CA(n; k)\CA(n; k+1). Then, an upper bound for the number of elements
of A is

2n−1(2− 2−k)

Proof. Since A has no strength k + 1, there exists a = (a1, . . . , ak+1) ∈ {0, 1}k+1 such that for
any vector we select as a completion b = (bk+2, . . . , bn) ∈ {0, 1}n−k−1, the concatenation ab =
(a1, . . . , ak+1, bk+2, . . . , bn) ∈ {0, 1}n is not an element of A. Therefore, there are at least 2n−k−1

elements that are not part of the rows of A, so the upper bound is 2n−2n−k−1 = 2n−1(2−2−k).

The following result demonstrates that, for a fixed strength k, we can approach this bound closely
(up to a constant).

Proposition 5. For every k ≤ n, there is a Boolean network with i(f) = k and 2n−1 fixed points.

Proof. Let us consider a graph G composed by a clique of size k + 1 and n − k − 1 isolated
loops. Suppose we have a linear Boolean network with this interaction graph. Then, by the pre-
vious results, we know that i(f) = k. The inclusion of loops does not increase the strength, as
the configuration 1⃗ ∈ {0, 1}k+1 remains unstable for the isolated clique. Then, since every loop
duplicates the set of fixed points, we conclude that f has 2n−k−12k = 2n−1 fixed points.

Example 7. Let us consider n = 8 and k = 3. Then, a covering array of strength 3 and 8 columns
has at most 7

4
27 = 224 vectors, while the following graph with linear functions achieves 27 = 128

fixed points.
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Figure 3.11. Construction from Example7.

By using a different approach, the following result allows us to significantly increase n while
keeping the strength controlled.

Lemma 5. Let A ∈ CA(ms, ns; s) and B ∈ CA(mr, nr; r). We denote by A ⊗ B the set of all
possible concatenations between a vector of A and a vector of B:

A⊗B = {aibj ∈ {0, 1}ns+nr : i, j ∈ {1, . . . , s} × {1, . . . , r}}.
Then, A⊗B ∈ CA(msmr, ns + nr; t), where t = min{r, s}.

Proof. Without loss of generality, assume t = s. Let I = {i1, . . . , is} ⊆ [ns + nr]. Consider the
partition of I into IA and IB, where IA contains the ℓA indices between 1 and ns, and IB contains the
ℓB indices between ns + 1 and ns + nr. Let a = aAaB ∈ {0, 1}ns+nr , where aA = {aA1 , . . . , aAℓA}
and aB = {aB1 , . . . , aBℓr}. Since t = min{s, t}, we know that A and B are covering arrays of
strength s. Thus, there exist x ∈ A and y ∈ B such that x|A = aA and y|B = aB. As A ⊗ B
contains all possible concatenations of elements between A and B, we conclude that xy ∈ A⊗ B
and, therefore, A⊗B ∈ CA(msmr, ns + nr; t).

Corollary 3.4. Let {Aℓ}Lℓ=1 be a collection of sets of Boolean vectors such that for every ℓ, Aℓ is
an element of CA(mℓ, nℓ; tℓ). Then,

L⊗
ℓ=1

Aℓ = ((A1 ⊗ A2)⊗ A3)⊗ · · · ⊗ AL) ∈ CA(m,n; t)

Where m =
∏L

ℓ=1 mℓ, nℓ =
∑L

ℓ=1 nℓ and t = min{tℓ ℓ = 1, . . . , L}.

Remark 9. Consider a family of Boolean networks {fℓ}Lℓ=1 such that for each ℓ, G(f ℓ) = Gℓ and
i(f ℓ) = tℓ. Define the graph G =

⋃L
ℓ=1 Gℓ by

V (G) =
L⋃

ℓ=1

V (Gℓ), E(G) =
L⋃

ℓ=1

E(Gℓ).
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Then, there exists a Boolean network f such that G(f) = G and i(f) = k, where k = min{tℓ :
ℓ = 1, . . . , L}. Indeed, since G is a disjoint union, we can define f locally as f ℓ for each Gℓ. Thus,
the set of fixed points is of the form:

FP (f) =
L⊗

ℓ=1

FP (f ℓ)

where each FP (f ℓ) is a covering array of strength tℓ. Then, by Lemma 5, this set is a covering
array of strength k = min{tℓ : ℓ = 1, . . . , L} with

∏L
ℓ=1 |FP (f ℓ)| elements.

Example 8. We can construct a 3-admissible graph with 20 vertices, by the previous proposition,
using K6, K4, two copies of K5 and linear local activation functions.

Figure 3.12. A 3-admissible graph with 20 vertices.

The preceding Remark shows that we can use Corollary 3.4 to, from a family of networks with
certain degrees of k-independence, construct another one (increasing n and m, and controlling k),
with a disconnected interaction graph. The following result demonstrates that we can also carry out
a similar construction, but while maintaining the interaction graph strongly connected.

Proposition 6. Let {fℓ}Lℓ=1 be a family of Boolean networks such that for each ℓ, G(f ℓ) = Gℓ

and i(f ℓ) = tℓ. Then, there is Boolean network f with a strongly connected interaction graph
G(f) = G and i(f) = k, where k = min{tℓ : ℓ = 1, . . . , L}.

Proof. Define G with vertex set V :=
⋃L

ℓ=1 V (Gℓ), n = |V | and consider a Boolean network
f : {0, 1}n → {0, 1}n such that for every i ∈ G1, fi is defined by

fi(x) = f 1
i (xG1) ∧ C2(xG2) ∧ · · · ∧ CL(xGL

),
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where Cℓ(x) = 1 if and only if xGℓ
∈ FP (f ℓ). We also define for every ℓ ∈ {2, . . . , L}, and for

every j ∈ Gℓ,

fj(x) = f ℓ
j (xGℓ

) ∧ C1(xG1)

Then, it is easy to see that

FP (f) =
L⊗

ℓ=1

FP (f ℓ) ∈ CA(n; k).

Finally, recall that we assume i(f ℓ) = tℓ for every ℓ. Suppose, for contradiction, that i(f) = k+ 1.
Consider I = {i1, . . . , ik+1} ⊆ V (Gℓ). For every a ∈ {0, 1}k+1, there would exist x ∈ FP (f ℓ)
such that xI = a, implying i(f ℓ) ≥ k + 1 > tℓ, which contradicts our assumption.
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Chapter 4

Families of k-independent networks

This chapter is divided into two sections. In the first, we will review the k-admissibility of families
of graphs already studied in previous chapters, but incorporating a comparison with three different
activation functions: linear, minority, and majority. This is interesting for two reasons: first, to
highlight the fact that k-independence is related to the type of local activation function; and second,
to deepen the understanding of specific k-admissible graphs.

In the next section, we will finally focus on studying the following problem: Given an integer
k, does there exist a monotone Boolean network with i(f) = k? This question is intriguing for
several reasons, one of the main ones being that the previous chapters provide existence results and
constructions that do not yield monotone k-independent networks, as we have already mentioned
in Remark 3, and as will be seen in the results of Section 4.1 on majority function networks.

4.1 Comparison between three types of interaction

In this section, we will explore various families of k-independent networks for different values of
1 ≤ k < n. We will focus on homogeneous Boolean networks (i.e., all local activation functions are
of the same type), delving deeply into three of them: XOR (i.e., linear), Minority, and Majority. As
mentioned earlier, the XOR function potentially leads to the emergence of numerous fixed points,
which is why we selected it for this chapter. On the other hand, the motivation behind choosing the
other two functions arises entirely from the applied scenario described in the introduction. Since
our interest lies in studying k-independence and understanding it within the context of a system of
individuals trying to reach a decision, it is natural to assume the existence of friends and enemies.
Given a Boolean network f with an undirected interaction graph G, we will say that two adjacent
vertices i and j are friends if the function fi is monotonically increasing to xi, and vice versa.
Conversely, if the local activation function is monotonically decreasing, we will refer to them as
enemies. In this context, a network with Maj activation functions represents a case where all
interactions are “friendly”. On the contrary, the Min function allows modeling a scenario in which
all interactions are “unfriendly” (enemies). Additionally, we incorporate the XOR function in the
analysis to contrast with the constructions presented in the previous chapter.
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Definition 11. Let XOR,Min,Maj : {0, 1}n → {0, 1} be the Boolean functions defined by:

XOR(x) = 1 ⇐⇒ wH(x) = 1 mod 2

Min(x) = 1 ⇐⇒ wH(x) ≤ ⌊n/2⌋
Maj(x) = 1 ⇐⇒ wH(x) ≥ ⌈n/2⌉

One reason why these functions are interesting for us is due to IC(XOR) = n, IC(Min) = ⌊n/2⌋
and IC(Maj) = ⌈n/2⌉

Also, we remark that we will explore k-independence from the perspective of functions rather
than the interaction graphs. Up to the previous chapter, we have established that employing XOR
interactions, combined with various constructions, enables the construction of diverse k-admissible
graphs. In this regard, the philosophy of this chapter is to focus on XOR, Min, and Maj for different
fixed graphs. We pose the question: What degree of k-independence do different families of graphs
allow when considering these functions? The first result is on the complete graph and proves that
this is an architecture that allows various degrees of k-independence for different local activation
functions.

Proposition 7. Let XOR,Min,Maj : {0, 1}n → {0, 1}n denote the three homogeneous Boolean
networks with their respective local activation functions and interaction graph G = Kn. Then,

i(XOR) = n− 1, i(Min) =
⌊n
2

⌋
, i(Maj) = 1.

Proof. The proof for the XOR function is Lemma 1. For the Min network, we claim that

FP (Min) =
{
x ∈ {0, 1}n : wH(x) =

⌈n
2

⌉}
Indeed, every vector of weight ⌈n/2⌉ is a fixed point, since every zero will be looking at more
ones than zeroes so it will remain as a zero. Similarly, everyone in the vector looks at ⌈n/2⌉ − 1
others. Given the absence of loops (no self-interactions), each one observes more zeroes than
ones, resulting in a stable configuration. To see there are no more fixed points, we can suppose by
contradiction that x ∈ FP (Min) with at least ⌊n/2⌋+1 ones. Consequently, there must be an index
i ∈ [n] such that xi = 1, and it observes at least ⌊n/2⌋ ones. As a result, it will change to zero,
presenting a clear contradiction. A similar argument can be used with the case wH(x) < ⌊n/2⌋.

Now we will prove that FP (Min) has strength t = ⌊n/2⌋. Consider, without loss of generality
I = {1, . . . , t} ⊆ [n] and a = (a1, . . . , at) ∈ {0, 1}t. Then, wH(a) ≤ t = ⌊n/2⌋, so we
can concatenate a vector b ∈ {0, 1}n−t to a, in order to complete its weight up to t, i.e., with
wH(b) = ⌈n/2⌉ − w(a). Thus, ab ∈ {0, 1}n and w(ab) = ⌈n/2⌉, so ab ∈ FP (Min) and abI = a.
Since I and a are arbitrary, FP (Min) ∈ CA(n; t). Also, it is easy to see that this set does not have
strength t+ 1 because for every I ⊆ [n] of size t+ 1 = ⌈n/2⌉, the configuration 0⃗ is not possible.
This is because there would be ⌊n/2⌋ free positions, making it impossible to achieve a weight of
⌈n/2⌉, in order to be a fixed point.

Finally, for the Maj function, it is easy to see that {⃗0, 1⃗} ⊆ FP (Maj). We will prove that there are
no more fixed points. In fact, suppose there exists x ∈ FP (Maj) and i, j ∈ [n] such that xi = 1
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and xj = 0. We define J = [n] \ i, j and emphasize that the component i must observe at least
⌈n/2⌉ ones from J , while j must observe at least ⌈n/2⌉ zeroes from J , so J should have at least n
elements. This is a contradiction because |J | = n− 2.

1

3

2

4

5

6 7

a) A 2-admissible graph with XOR

7 8

65

3 4

21

b) A 2-admissible graph with Maj

1

3

2

6

5

8

7

4

c) A 2-admissible graph with Min

Figure 4.1. Examples of 2-independent BNs with non complete interaction graph.

It is worth mentioning that, just like with the XOR function, in the case of Min and Maj, there exist
non-complete k-admissible graphs, as illustrated in Figure 4.1.

Before delving into explicit families, let us review a general result that imposes a restriction on
G(f) when aiming to achieve a certain k-independence in a homogeneous network f .

Proposition 8. Let G be a directed loopless graph such that there exist two vertices with the same
in-neighborhood of size t. Then there does not exist a homogeneous 2-independent Boolean net-
work f with G(f) = G.

Proof. Suppose, by contradiction, that there is a homogeneous Boolean network f such that G(f) =
G and f is 2-independent. Now let i, j ∈ V (G) such that N−(i) = N−(j) = {1, . . . , t} and take
I = N−(i) ∪ {i, j}. Then, the configuration a = (a1, . . . , at, ai, aj) with ai = 0 and aj = 1 is
impossible, since the values fi and fj are the same.

Remark 10. We want to emphasize that, although the XOR function generally allows for a greater
number of fixed points, it does not always achieve a higher strength for certain graphs compared
to the minority or majority functions. Figure 4.2 shows examples where XOR and Maj are 1-
independent while Min is 2-independent.
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Figure 4.2. Examples of 2-independent BNs with non complete interaction graph, see Table 6.1.

Proposition 9. For the (m, k)-directed windmill Wm,k with n = (m− 1)k + 1 vertices, we denote
by XOR,Min,Maj the Boolean networks on n variables with interaction graph Wm,k.

• If k is odd, XOR is (m− 1)-independent.

• Min is ⌊m
2
⌋-independent.

• Maj is 1-independent.

Proof. The XOR case is already proved in Lemma 3. Therefore, we will prove first the Min case.
As we did before, we will denote V (Wm,k) by 1, K1

m−1, . . . , K
k
m−1, where 1 is the central vertex,

and for each ℓ, Kℓ
m−1 denotes a clique without the central vertex. Let x ∈ FP (Min), if x1 = 0, we

observe that necessarily for each ℓ, wH(K
ℓ
m−1) = ⌈m/2⌉. On the other hand, if x1 = 1, we need

wH(K
ℓ
m−1) = ⌊m/2⌋ for each ℓ. In summary, the set of points is represented in Table 4.1, where

⌈m/2⌉ denotes any possible configuration of that weight (similarly for ⌊m/2⌋). A completely
analogous argument to the Min case in Proposition 7 can be used to prove that this set has strength
⌊m/2⌋. Moreover, there are

(
m−1
⌊m

2
⌋

)k
possible vectors x ∈ {0, 1}n with x1 = 1 and ⌊m

2
⌋ ones in

every clique of size m − 1, while there are
(
m−1
⌈m

2
⌉

)k
vectors with ⌈m

2
⌉ ones in every clique of size

m− 1.

1 K1
m−1 K2

m−1 · · · Kk
m−1

0 ⌈m/2⌉ ⌈m/2⌉ ⌈m/2⌉ ⌈m/2⌉
...

...
...

...
...

0 ⌈m/2⌉ ⌈m/2⌉ ⌈m/2⌉ ⌈m/2⌉
1 ⌊m/2⌋ ⌊m/2⌋ ⌊m/2⌋ ⌊m/2⌋
...

...
...

...
...

1 ⌊m/2⌋ ⌊m/2⌋ ⌊m/2⌋ ⌊m/2⌋

Table 4.1. Fixed points of Wm,k with Min interaction.
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Finally, for the Maj case, we just need to remember that, for the same reason as Proposition 7, in
every fixed point of Maj, each set of indexes Kℓ

m−1 is either 0⃗ or 1⃗.

4.2 The monotone case

As we saw in Remark 3, the general construction of Boolean networks with n variables and
i(f) = k does not guarantee the existence of monotone k-independent networks. Similarly, the
other constructions presented in the previous chapter do not provide results on the existence of
k-admissible graphs with monotone networks. There have been previous studies on fixed points
in monotone networks, but they do not consider the structure of the set of fixed points [4]. This
theoretically motivates us to question whether monotone networks can be k-independent for some
1 < k < n. Additionally, this question is interesting from an applied perspective, as networks mod-
eling binary opinion exchange systems are often monotone. Therefore, we dedicate this section to
studying the relationship between monotonicity and k-independence.

Anecdotally, it is worth mentioning that, in order to find more examples of k-independent networks,
we used the “Graph Atlas” database [25] available in the Python library Networkx. The exhaustive
search, with graphs up to 7 vertices, did not yield in any k-admissible graphs for the Majority
function (which is monotone), for any k ≥ 2, as we can see in 6.1. The absence of explicit examples
with the majority function, and the fact that none of the general constructions already presented
in the previous chapters use monotone functions, led us to conjecture that k-independence is a
property somewhat incompatible with monotonicity. However, this reasoning was false, since we
found out that Q3 is 2-admissible with Maj interaction, as we can see in the following example.

Example 9. The Maj Boolean network with interaction graph Q3 has fixed points

FP (Maj) =

00000000
00001111
00110011
01010101
10101010
11001100
11110000
11111111

∈ CA(8, 8; 2).

7 8

65

3 4

21

As mentioned earlier, there is a vast literature regarding covering arrays, generalizations, and re-
lated combinatorial designs. The quest for monotonous k-independent networks, with k ≥ 2, led
us to discover the Steiner systems, which as we will see later, are structures that under certain
conditions form covering arrays, and in turn allow a representation as fixed points of a monotone
network.
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Definition 12. Let A = {x1, . . . , xm} ⊆ {0, 1}n. We say that A is a Steiner system with parameters
(n, k, t) if wH(x

i) = k for i = 1, . . . ,m, and for every subset of indices I = {i1, . . . , it} there is
an unique vector xj ∈ A such that xj

iℓ
= 1 for ℓ ∈ {1, . . . , t}.

Given a set of indices I = {i1, . . . , it} and values a = (a1, . . . , at) ∈ {0, 1}t, we say that a vector
x ∈ {0, 1}n such that xI = a is a completion of a (or that x completes a in positions I). In
this context, a Steiner system guarantees the uniqueness of the completion of the configuration
1⃗ ∈ {0, 1}t for any subset of t indices.

Example 10. The following is a Steiner system with parameters (8, 4, 3):

A =

11010001
01101001
00110101
00011011
10001101
01000111
10100011
00101110
10010110
11001010
11100100
01110010
10111000
01011100

The existence of a Steiner system with given parameters is an old problem in combinatorics [9]. In
a more general context, divisibility conditions were deduced: for the existence of a (n, q, r) Steiner
system, a necessary condition is that

(
q−i
r−i

)
divides

(
n−i
r−i

)
for every 0 ≤ i ≤ r − 1. For many years,

it was conjectured that the divisibility conditions were also sufficient, and this was proved in 2014,
for large values of n [17].

Lemma 6. Let A be a Steiner system with parameters (n, t + 1, t) such that 2t < n. Then, A ∈
CA(n; t) \ CA(n; t+ 1).

Proof. Let I be a subset of [n] of size t, we will assume without loss of generality that I =
{1, . . . , t}. We aim to prove that for every a = (a1, . . . , at) ∈ {0, 1}t, there exists x ∈ A such
that xI = a. We will proceed with the proof by induction on the number of zeros in a.

First, observe that there exists xℓ ∈ A such that xℓ
I = 11 · · · 1, due to the property of Steiner

systems. As the vectors have weight t + 1, there exists a unique w ∈ {t + 1, . . . , n} such that
xℓ
w = 1. Let i0 ∈ I and let ei0 ∈ {0, 1}t be the vector that has a single zero at position i0 and

define Ki0 = ({1, . . . , t} \ {i0})∪ {w}. Notice Ki0 is a subset of t indices, so there exists a vector
xℓ1 ∈ A that has ones in the components Ki0 . Suppose xℓ1

i0
= 1. In such case, xℓ and xℓ1 would be

two vectors in A that has ones in I , which contradicts the definition of a Steiner system. Therefore,
xℓ1
i0

must be zero, and hence xℓ1
I = ei0 . With this, we proved that given a subset of t indices, all

configurations with one zero and t− 1 ones appear.
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Now, suppose that all configurations with s zeros appear, and let us prove that those with s+1 zeros
also appear. Let a = (a1, . . . , at) ∈ {0, 1}t such that a1 = · · · = as+1 = 0 and as+2 = · · · at = 1.
We will prove that there exists an element of the Steiner system that takes the values of a at the
indices I . Consider the vector xs that completes the configuration b = (b1, . . . , bt) with values
b1 = · · · = bs = 0, bs+1 = · · · = bt = 1 (which exists by the induction hypothesis). Now,
let J = {ℓ ∈ t+ 1, . . . , n : xs

ℓ = 1}. As the vectors of the Steiner system have weight t + 1,
|J | = s+ 1. We denote J = {j1, . . . , js, js+1}, and consider w ∈ {t+ 1, . . . , n} \ J , which allows
us to define Ki = ({j1, . . . , js} ∪ {w}) ∪ {s + 2, . . . , t}, which is a subset of [n] of size t, so
there exists y ∈ A that takes the value one in the components indexed by Ki, and also has another
component with value one. Note that if ys+1 = 1, we would have two different completions for
{s+ 1, . . . , t} ∪ J \ {js+1}, which is a contradiction. Now, if there exists ℓ ∈ {1, . . . , s} such that
yℓ = 1, we can consider, instead of xs, the vector ξs such that ξsℓ = 1, ξss+2 = · · · = ξst = 1, and
define J based on ξs, and thus repeat the same argument as before. We thus conclude that there
must exist ζ ∈ {t+ 1, . . . , n} \Ki such that yζ = 1, and therefore yI = a.

Finally, it is easy to see that A cannot be a covering array of strength t + 1. Indeed, suppose it is,
and let I = {1, . . . , t+ 1}. The existence of a configuration x that has all its ones in I and a vector
y that has t ones in I implies two different completions for {j ∈ I : xj = yj = 1}, which leads to
a contradiction.

Theorem 4. Given a Steiner system A with parameters (n, t + 1, t), where 2 ≤ t < n/2, there
exists a Boolean network f such that i(f) = t and G(f) = Kn, with fixed points that include A.

Proof. Let A = {y1, . . . , ym} be a (n, t + 1, t)-Steiner system. By the previous lemma, we know
that A is a covering array of strength t. Now for every i ∈ [n] we define the Boolean function

fi(x1, . . . , xn) =
∨

{k : yki =1}

∧
{j ̸=i : ykj =1}

xj.

Now we will prove that A ∪ {⃗0, 1⃗} ⊆ FP (f). Indeed, it is clear that 0⃗ and 1⃗ are fixed points of f .
Let yℓ ∈ A, and let us prove that f(yℓ) = yℓ. Let i ∈ [n], and suppose initially that yℓi = 0. By
contradiction, suppose fi(y

ℓ) = 1, and therefore there exists k ∈ [m] where yki = 1 and for every
j ̸= i such that ykj = 1, we have that yℓj = 1. Notice that the above would imply that the index set
I = {j ̸= i : ykj = 1}, which has size t, has two different completions, one by yℓ and the other by
yk. This contradicts the uniqueness of the definition of Steiner systems. On the other hand, suppose
now that yℓi = 1. In this case, within the expression for fi(yℓ), the following conjunction appears:∧

{j ̸=i : yℓj=1}

yℓj

Therefore, fi(yℓ) = 1. This implies that for any yℓ in A, f(yℓ) = yℓ, which is equivalent to
A ⊆ FP (f), and therefore i(f) ≥ t. Moreover, by definition IC(fi) = t for every i ∈ [n]. Using
the contrapositive of Theorem 3, we can conclude that i(f) < t+ 1, and thus i(f) = t.

Now we will prove that G(f) = Kn. To do this, we first notice that since fi can be written as a
DNF formula without negated variables, fi depends on the variable xj if it appears in any clause.
That is, (j, i) is an arc in G(f) if and only if there exists yk ∈ A such that yki = 1 and ykj = 1,
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with j ̸= i. Indeed, if i ̸= j ∈ [n], then we can consider any completion T ⊆ [n] \ {i, j} with
|T | = t− 2. Then, by considering T ∪{i, j}, we have a subset of t indices in [n], and by definition,
there exists a unique yk ∈ A ⊆ FP (f) such that yki = ykj and yT = 1⃗. Therefore, (j, i) ∈ G(f),
and as these are two arbitrary vertices, we conclude that G(f) = Kn.

Remark 11. Example 9 shows that there exists a k-independent monotone Boolean network, whose
set of fixed points is not a Steiner system with parameters (n, k + 1, k).

Example 11. The set A = {1101000, 0110100, 0011010, 0001101, 1000110, 0100011, 1010001} is
a Steiner system with parameters (7, 3, 2). The previous construction gives us the network

f1(x) = (x2 ∧ x4) ∨ (x5 ∧ x6) ∨ (x3 ∧ x7)

f2(x) = (x1 ∧ x4) ∨ (x3 ∧ x5) ∨ (x6 ∧ x7)

f3(x) = (x2 ∧ x5) ∨ (x4 ∧ x6) ∨ (x1 ∧ x7)

f4(x) = (x1 ∧ x2) ∨ (x3 ∧ x6) ∨ (x5 ∧ x7)

f5(x) = (x2 ∧ x3) ∨ (x4 ∧ x7) ∨ (x1 ∧ x6)

f6(x) = (x3 ∧ x4) ∨ (x1 ∧ x5) ∨ (x2 ∧ x7)

f7(x) = (x4 ∧ x5) ∨ (x2 ∧ x6) ∨ (x1 ∧ x3)

Example 12. In 1908, Barrau [5] proved the uniqueness of the (8, 4, 3) Steiner system described
by the matrix A:

A =

11010001
01101001
00110101
00011011
10001101
01000111
10100011
00101110
10010110
11001010
11100100
01110010
10111000
01011100
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Using this we can construct the following monotone Boolean network with i(f) = 3:

f1(x) = (x2 ∧ x4 ∧ x8) ∨ (x5 ∧ x6 ∧ x8) ∨ (x3 ∧ x7 ∧ x8) ∨ (x4 ∧ x6 ∧ x7) ∨ (x2 ∧ x5 ∧ x7)

∨ (x2 ∧ x3 ∧ x6) ∨ (x3 ∧ x4 ∧ x5)

f2(x) = (x1 ∧ x4 ∧ x8) ∨ (x3 ∧ x5 ∧ x8) ∨ (x6 ∧ x7 ∧ x8) ∨ (x1 ∧ x5 ∧ x7) ∨ (x1 ∧ x3 ∧ x6)

∨ (x3 ∧ x4 ∧ x7) ∨ (x4 ∧ x5 ∧ x6)

f3(x) = (x2 ∧ x5 ∧ x8) ∨ (x4 ∧ x6 ∧ x8) ∨ (x1 ∧ x7 ∧ x8) ∨ (x5 ∧ x6 ∧ x7) ∨ (x1 ∧ x2 ∧ x6)

∨ (x2 ∧ x4 ∧ x7) ∨ (x1 ∧ x4 ∧ x5)

f4(x) = (x1 ∧ x2 ∧ x8) ∨ (x3 ∧ x6 ∧ x8) ∨ (x5 ∧ x7 ∧ x8) ∨ (x1 ∧ x6 ∧ x7) ∨ (x2 ∧ x3 ∧ x7)

∨ (x1 ∧ x3 ∧ x5) ∨ (x2 ∧ x5 ∧ x6)

f5(x) = (x2 ∧ x3 ∧ x8) ∨ (x4 ∧ x7 ∧ x8) ∨ (x1 ∧ x6 ∧ x8) ∨ (x3 ∧ x6 ∧ x7) ∨ (x1 ∧ x2 ∧ x7)

∨ (x1 ∧ x3 ∧ x4) ∨ (x2 ∧ x4 ∧ x6)

f6(x) = (x3 ∧ x4 ∧ x8) ∨ (x1 ∧ x5 ∧ x8) ∨ (x2 ∧ x7 ∧ x8) ∨ (x3 ∧ x5 ∧ x7) ∨ (x1 ∧ x4 ∧ x7)

∨ (x1 ∧ x2 ∧ x5) ∨ (x2 ∧ x3 ∧ x4)

f7(x) = (x4 ∧ x5 ∧ x8) ∨ (x2 ∧ x6 ∧ x8) ∨ (x1 ∧ x3 ∧ x8) ∨ (x3 ∧ x5 ∧ x6) ∨ (x1 ∧ x4 ∧ x6)

∨ (x1 ∧ x2 ∧ x5) ∨ (x2 ∧ x3 ∧ x4)

f8(x) = (x1 ∧ x2 ∧ x4) ∨ (x2 ∧ x3 ∧ x5) ∨ (x3 ∧ x4 ∧ x6) ∨ (x4 ∧ x5 ∧ x7) ∨ (x1 ∧ x5 ∧ x6)

∨ (x2 ∧ x6 ∧ x7) ∨ (x1 ∧ x3 ∧ x7).
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Chapter 5

Conclusions and Future work

In this thesis, we introduced a new parameter to define families of Boolean networks based on the
structure of their set of fixed points, rather than just their quantity. In this sense, the introduction of
the concept of k-independence provides a tool for identifying graphs with a high number of fixed
points and a particular structure. Moreover, the perspective from k-admissibility allows us to extend
these concepts to generate a family of graphs that behave well when seeking k-independence.

Regarding the achievement of the objectives of this research, we have made significant progress
in understanding the existence of k-independent networks for a given k. Furthermore, we have
identified necessary conditions in terms of the interaction graph for k-independence in Boolean
networks. However, given the difficulty in finding patterns to elucidate a sufficient condition, we
decided to restrict ourselves to the linear and monotone case. From this restriction, we were able
to infer the existence of monotone k-independent networks based on Steiner systems.

It is notable that the attainment of k-independence does not necessarily mandate a high degree of
symmetry, contrary to intuitive expectations. For instance, in the context of the windmill Lemma
3, a central vertex assumes the role of a coordinator to facilitate k-independence. Likewise, the
presence of a clique of size k as a subgraph is not an obligatory condition, as exemplified by the case
of the 3-cube. Nevertheless, these observations retain significance within the framework of binary
decision systems delineated in the introduction. They imply, for instance, that the establishment
of k-independent coordination does not inherently hinge upon the existence of a fully connected
group of k individuals.

For the applied case, we could understand that an individual represents a vertex without a loop
within the network if they decide their opinion solely based on the opinions of their friends, with-
out taking into account their previous opinion. On the other hand, an individual represents a vertex
with a loop if they always consider their previous opinion in the decision-making process. It is
debatable if loops are relevant for the applied situation. We will refer to nodes with loops as “self-
reliant” individuals. We can translate the necessary conditions for a k-independent network in this
context. Thus, corollary 3.1 implies that each individual within a k-independent network must con-
sider the opinion of at least k other individuals, provided that none of them are “self-reliant”. On
the other hand, Theorem 3 indicates that k-independence is heavily influenced by how individuals
make decisions within these systems; there cannot be an individual whose opinion is automat-
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ically influenced by fewer than k individuals; they must always consider at least k individuals
(again, without “self-reliant” individuals). Furthermore, how individuals make decisions is crucial
to achieving k-independence, as the same graph (i.e., the same configuration of individuals) can
show three different levels of k-independence depending on the decision-making functions used.
For example, considering the complete graph, where there are no loops and each individual consid-
ers the opinion of all other n−1 individuals, if each individual follows the majority opinion, only a
1-independence is achieved. On the other hand, if each individual follows the minority opinion, we
proved that the system is ⌊n/2⌋-independent. Additionally, considering the linear function, which
may not sound as natural in applied terms, achieves (n− 1)-independence. In particular, the exam-
ple of the complete graph was interesting because it showed us that the majority function, which is
perhaps the most natural one in decision-making, did not achieve a high number of independence.
This was further reinforced after conducting an exhaustive search for examples. Therefore, we fi-
nally wondered if monotonic networks, i.e., decision-making systems in which all interactions are
“friendly”, could exhibit an arbitrary number of k-independence, and we were able to resolve this
through the use of Steiner systems. Consequently, we assert that these findings possess consider-
able applicability to real-world problems and, therefore, represent an initial step towards leveraging
this concept in applied research.

There are several directions for further research on this issue. One natural area of inquiry would be
to understand the nature of Boolean functions h with IC(h) ≥ k. Solving this would enable the
identification of families that could potentially serve as local activation functions for k-independent
networks. For these families, it would be valuable to explore whether there are sufficient conditions
that can be imposed on the interaction graph for them to be k-admissible. Additionally, questions
regarding complexity remain open, as we have chosen to focus on other topics within the scope of
this undergraduate thesis, and many complexity problems in covering arrays are still unresolved.

On the other hand, it is noteworthy that the definition of k-independence presented in this work
differs from the VC-dimension notion studied in [24] in the sense that we now demand that for any
subset of k indices and assigned values, there exists a fixed point whose projection onto this set of
indices coincides with those values. In contrast, VC-dimension requires the existence of a subset
of size k with this property. As a natural extension of this idea, we propose considering Covering
Arrays on graphs [21] or Covering Arrays avoiding Forbidden Edges [8], where certain subsets of
size k of indices must satisfy this aforementioned property.
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Chapter 6

Appendix

6.1 Computational elements.

For the computational simulations conducted, we used the following Python libraries.

1 import os
2 import pandas as pd
3 from sympy import *
4 import itertools
5 import random
6 import networkx as nx
7 import matplotlib.pyplot as plt

We also defined the following functions, which proved to be versatile utilities for experimenting
with k-independent networks.

Listing 6.1. Function to generate a list with every element from {0, 1}n.
1 def get_Bk_2(n):
2 b_N = []
3 for i in range(2**n):
4 value = bin(i)[2:].zfill(n)
5 b_N.append([int(elem) for elem in value])
6 return b_N

Listing 6.2. Function to generate a random Boolean vector of n variables as a string.
1 def rand_vec(n):
2 key1 = ""
3 for i in range(n):
4 temp = str(random.randint(0, 1))
5 key1 += temp
6 return(key1)
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Listing 6.3. Function that generates every subset from 1,..., n of size k.
1 def find_subsets(n, k):
2 set_n = set(range(n))
3 return list(itertools.combinations(set_n, k))

Listing 6.4. Function that gives 1 if the projection of a into L is equal to v.
1 def compare_indxed_vec(a,v, L):
2 new_a = []
3 for i in L:
4 new_a.append(a[i])
5 if new_a == v:
6 return True
7 else:
8 return False

Listing 6.5. This function computes a clause associated to a vector in a dnf or cnf formula.
1 def get_clause_expression(values_string, truth_value):
2 expression = ’(’
3 for k in range(len(values_string)):
4 if truth_value == ’1’:
5 if values_string[k] == ’1’:
6 expression = expression + ’x’+str(k+1) + ’&’
7 else:
8 expression = expression + ’!x’ +str(k+1) + ’&’
9 elif truth_value == ’0’:

10 if values_string[k] == ’0’:
11 expression = expression + ’x’+str(k+1) + ’|’
12 else:
13 expression = expression + ’!x’ +str(k+1) + ’|’
14 return(expression[:-1]+’)’)

Listing 6.6. This function computes a dnf-formula from the truth table.
1 def get_local_activation_expression(X, Fx, j):
2 local_exp = str()
3 for i in range(len(X)):
4 if Fx[i][j] == ’1’:
5 local_exp = local_exp+get_clause_expression(X[i],’1’)

+ ’|’
6 return(local_exp[:-1])
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Listing 6.7. This function generates a random Boolean vector as a list.
1 def rand_vec_vec(n):
2 key1 = ""
3 for i in range(n):
4 temp = str(random.randint(0, 1))
5 key1 += temp
6 return([int(elem) for elem in key1])

Listing 6.8. This function generates an array of m random Boolean vectors of n variables.
1 def gen_random_vec(m, n):
2 if m>2**n:
3 return False
4 temp_set = set()
5 while len(temp_set)<m:
6 vector = rand_vec(n)
7 temp_set.add(vector)
8 temp_list = list(temp_set)
9 output = [[int(elem) for elem in temp_list[i]] for i in range

(len(temp_list))]
10 return output

Listing 6.9. This function checks whether the set A is a covering array of strength k.
1 def is_CA_vec(A,k):
2 n = len(A[0])
3 if n<k:
4 return False
5 for I in find_subsets(n,k):
6 for v in get_Bk_2(k):
7 val = False
8 for a in A:
9 if compare_indxed_vec(a,v,I) == True:

10 val = True
11 if val == False:
12 return False
13 return val

Listing 6.10. This function computes the maximum strength of the set A.
1 def maximumstrength(A):
2 if len(A)== 0:
3 return(0)
4 cA = [list(a) for a in A]
5 actual_best = 0
6 for i in range(1,len(A[0])+1):
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7 if is_CA_vec(cA, i):
8 actual_best = i
9 else:

10 return(actual_best)
11 return(actual_best)

Listing 6.11. This function provides, when feasible, a covering array of strength k comprising m
vectors with n variables.

1 def gen_one_CA_vec(m,n,k):
2 isCA = False
3 while isCA == False:
4 random_matrix = gen_random_vec(m,n)
5 if is_CA_vec(random_matrix, k):
6 isCA = True
7 return random_matrix

Listing 6.12. This function removes a fixed number of elements from a set randomly.
1 def remove_random_rows(CA, num):
2 new_array = CA.copy()
3 total_rows = len(new_array)
4 indx_rows_to_remove = reversed(sorted(random.sample(range(

total_rows),num)))
5 for row_indx in indx_rows_to_remove:
6 del new_array[row_indx]
7 return(new_array)

Listing 6.13. This function tries to reduce the amount of rows of a Covering array, by removing
random rows and keeping the strength.

1 def reduceCA(CA,k, maxiter):
2 min_actual = CA.copy()
3 for t in range(len(CA)-2**k):
4 for iteration in range(maxiter):
5 new_CA = remove_random_rows(CA,t)
6 if is_CA_vec(new_CA, k):
7 print(’Lo logramos reducir a ’, len(new_CA), ’

filas’)
8 min_actual = new_CA
9 break

10 return(min_actual)
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Listing 6.14. This function takes a list of fixed points, FixP, and generates a random Boolean
network that only has these fixed points.

1 def random_complete_withoutmoreFP(FixP):
2 n = len(FixP[0])
3 X = [tuple(vector) for vector in get_Bk_2(n)]
4 IncompleteTable = dict.fromkeys(X, None)
5 for vector in IncompleteTable:
6 for element in FixP:
7 if vector == tuple(element):
8 IncompleteTable[vector] = vector
9 a = tuple(rand_vec_vec(n))

10 for vector in IncompleteTable:
11 if IncompleteTable[vector] == None:
12 a = tuple(rand_vec_vec(n))
13 while a == vector:
14 a = tuple(rand_vec_vec(n))
15 IncompleteTable[vector] = a
16 exprs = []
17 variables = [’x’+ str(i) for i in range(1,n+1)]
18 for j in range(n):
19 temp_mat = []
20 for element in IncompleteTable.keys():
21 if IncompleteTable[element][j] == 1:
22 temp_mat.append(element)
23 boolean_expr = str(SOPform(variables, temp_mat, [])).

replace(’~’,’!’)
24 exprs.append(boolean_expr)
25 return(IncompleteTable, exprs)

Listing 6.15. Belt, Xor, Min and Maj functions.

1 def belt(x,k):
2 n = len(x)
3 zeros = tuple([0]*n)
4 weight = distance(x, zeros)
5 if weight == k:
6 return(1)
7 else:
8 return(0)
9 def xor(x):

10 n = len(x)
11 zeros = tuple([0]*n)
12 weight = distance(x, zeros)
13 return(int(weight%2))
14
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15 def majo(x):
16 n = len(x)
17 zeros = tuple([0]*n)
18 weight = distance(x, zeros)
19 amount_of_zeros = n - weight
20 if amount_of_zeros > weight:
21 return(0)
22 else:
23 return(1)
24
25 def mino(x):
26 n = len(x)
27 zeros = tuple([0]*n)
28 weight = distance(x, zeros)
29 amount_of_zeros = n - weight
30 if amount_of_zeros < weight:
31 return(0)
32 else:
33 return(1)

1 diccionario_con_todos_los_grafos = dict()
2 for i in range(1252):
3 G = nx.graph_atlas(i+1)
4 n = len(G)
5 Bn = [tuple(a) for a in get_Bk_2(n)]
6 relabel = dict(zip(G.nodes(), list(range(len(G)))))
7 G = nx.relabel_nodes(G, relabel)
8 D = {node: list(G[node]) for node in G}
9 Fxor = build_from_graph_and_functions(D,xor)

10 Fmin = build_from_graph_and_functions(D,mino)
11 Fmajo = build_from_graph_and_functions(D,majo)
12 fpxor = [x for x, y in zip(Bn, Fxor) if x == y]
13 fpmin = [x for x, y in zip(Bn, Fmin) if x == y]
14 fpmajo =[x for x, y in zip(Bn, Fmajo) if x == y]
15 temp_tuple = maximumstrength([list(a) for a in fpxor]),

maximumstrength([list(a) for a in fpmin]), maximumstrength([
list(a) for a in fpmajo])

16 diccionario_con_todos_los_grafos[i+1] = temp_tuple
17 print(i+1, ’xor, min, maj: ’,temp_tuple)

Listing 6.16. Code to iterate over atlas of graphs.
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6.2 k-admissible graphs on at most 7 vertices.

The following graphs are part of the 1252 graphs with n ≤ 7 vertices listed in [25]. We specifically
chose these 20 graphs because for each of them, at least one of the three functions (XOR, Min,
Maj) achieves an independence number greater than or equal to two.

Graph #7. Graph #18. Graph #52.

Graph #106. Graph #187. Graph #195.

Graph #208. Graph #551. Graph #581.

Graph #582. Graph #878. Graph #1008.
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Graph #1009. Graph #1038. Graph #1151.

Graph #1186. Graph #1188. Graph #1227.

Graph #1238. Graph #1252.

Figure 6.2. Some graphs following the enumeration by [25].



6.2. K-ADMISSIBLE GRAPHS ON AT MOST 7 VERTICES. 57

Maximum k-independency
Graphs from Fig. 6.2 XOR Min Maj
7 2 1 1
18 3 2 1
52 4 2 1
106 2 1 1
187 1 2 1
195 1 2 1
208 5 3 1
551 2 1 1
581 2 1 1
582 2 1 1
878 0 2 1
1008 0 2 1
1009 0 2 1
1038 2 1 1
1151 1 2 1
1186 0 2 1
1188 1 2 1
1227 1 2 1
1238 1 2 1
1252 6 3 1

Table 6.1. Maximum strength achieved for graphs with n ≤ 7 vertices and XOR, Min, Maj.
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