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Abstract

This doctoral thesis focuses on the numerical solution of Stochastic Differential Equations
(SDEs) with non-globally Lipschitz coefficients. It involves two independent investigations

that propose different procedures for the effective numerical simulation of these models.

The first investigation centers on the numerical solution of the non-linear stochastic
Schrodinger equation, which is a stochastic differential equation with locally Lipschitz con-
tinuous coefficients commonly used to model quantum measurement processes. We analyze
the rate of weak convergence of an exponential scheme that reproduces the norm of the de-
sired solution by using a projection onto the unit sphere. In particular, we prove that the
exponential scheme converges with weak-order one, and obtain the leading order term of
its weak error expansion. This justifies using the Talay-Tubaro extrapolation procedure in
the numerical simulation of open quantum systems. By employing this procedure, a second-
order method for computing mean values of smooth functions of the solution is obtained.
Furthermore, we prove that the exponential scheme under study has order of strong con-
vergence 1/2; validating its application in the Multilevel Monte Carlo method. Numerical
experiments involving a quantized electromagnetic field interacting with a reservoir showcase

the effectiveness of the proposed methods.

The second investigation introduces a new methodology for the effective pathwise nu-
merical simulation of stochastic differential equations with non-globally Lipschitz continuous
coefficients. Specifically, we focus on SDEs with linear multiplicative noise. We employ
a suitable invertible continuous transformation to establish a connection between the orig-
inal SDE and an auxiliary Random Differential Equation (RDE). This explicit conjugacy
enables the development of new pathwise numerical schemes for the studied SDE, utilizing
numerical approximations of the auxiliary RDE. In particular, we introduce two numerical
methods: one based on an exponential scheme and the other based on the Heun scheme.

In order to showcase the practical applicability of our approach, we implement it within a
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compartmental epidemic model, specifically the stochastic SVIR model. This SDE captures
the dynamics of a continuous vaccination strategy in the presence of environmental noise
effects. Through comparative analysis with commonly used numerical approximations, we
validate the effectiveness of our proposed numerical methods for simulating epidemiological

models.



Resumen

Esta tesis doctoral se centra en la solucion numérica de Ecuaciones Diferenciales Estocasticas
(EDE) con coeficientes no globalmente Lipschitz continuos. En esta se desarrollaron dos
investigaciones independientes que proponen procedimientos distintos para la simulacion

numérica efectiva de cada uno de estos modelos.

La primera investigacién se centra en la soluciéon numérica de la ecuacion estocastica no
lineal de Schrédinger, que es una ecuacion diferencial estocastica con coeficientes localmente
Lipschitz continuos, que es utilizada para modelar procesos de medida cudntica. Analizamos
la tasa de convergencia débil de un esquema exponencial que reproduce la norma de la solucion
deseada utilizando una proyecccion sobre la esfera unitaria. En particular, probamos que el
esquema exponencial converge con orden débil uno, y obtenemos el término de orden princi-
pal de su expansion de error débil. Esto justifica el uso del procedimiento de extrapolacion
de Talay-Tubaro en la simulacion numérica de sistemas cuanticos abiertos. Empleando este
procedimiento, se obtiene un método de segundo orden para calcular valores esperados de
funciones suaves de la soluciéon. Ademads, probamos que el esquema exponencial tiene orden
de convergencia fuerte 1/2, validando su aplicacién en el método Multilevel Monte Carlo. Ex-
perimentos numéricos que involucran un campo electromagnético cuantizado interactuando

con un reservorio muestran la efectividad de los métodos propuestos.

La segunda investigacion introduce una nueva metodologia para la simulacién numérica
trayectorial de ecuaciones diferenciales estocasticas con coeficientes no globalmente Lips-
chitz continuos. En concreto, nos centramos en las EDE con ruido multiplicativo lineal.
Empleamos una transformacion continua invertible adecuada para establecer una conexion
entre la EDE original y una Ecuacién Diferencial Aleatoria (EDA) auxiliar. Esta conju-
gacion explicita permite el desarrollo de nuevos esquemas numéricos para la EDE estudiada,
utilizando aproximaciones numeéricas de la EDA auxiliar. En particular, introducimos dos

métodos numéricos: uno basado en un esquema exponencial y otro basado en el esquema de
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Heun. Para demostrar la efectividad practica de nuestro enfoque, lo aplicamos a un modelo
epidémico compartimental, en concreto a un modelo estocastico SVIR. Este modelo cap-
tura la dinamica de una estrategia de vacunacién continua en presencia de efectos de ruido
ambiental. Mediante un analisis comparativo con aproximaciones numeéricas comunmente
utulizadas, validamos la eficacia de nuestros métodos numéricos propuestos para simular

modelos epidemioldgicos.
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Introduction

Motivation

Including random effects in mathematical modeling is a growing trend in scientific research.
This consideration arises when deterministic models need to be more efficient and relevant.
Such situations typically occur when the phenomenon under investigation is influenced by
numerous uncontrollable factors, when measurements exhibit erratic behavior, or when the
phenomenon is inherently random. Regardless of their source of randomness, these random
systems are frequently modeled by Stochastic Differential Equations (SDEs).

Stochastic Differential Equations investigate random systems as diffusion processes by
utilizing stochastic calculus. The foundation of stochastic calculus can be traced back to
the pioneering work of Kiyosi [t0 in the 1940s. 1to introduced the concept of the stochastic
integral, a generalization of the Riemann-Stieltjes integral in stochastic analysis. Specifi-
cally, the integrands and integrators of this new integral are stochastic processes that often
exhibit unbounded variation. These contributions provide a solid mathematical foundation
for studying SDEs, enabling researchers to rigorously investigate a wide range of problems
in various fields, including physics, finance, engineering, and biology.

In general, analytical solutions for stochastic differential equations are not available, and
even when they exist, their efficient computation is not always feasible. Therefore, numerical
approximations are necessary to investigate these systems. Traditional numerical methods
[13, 56, 65, 68] rely on convergence assumptions often unmet in practice. One of the most
restrictive requirements among these assumptions is the condition of global Lipschitz conti-
nuity. When this condition is not met, the SDE may become stiff, leading to divergence and
instability in standard numerical approximations (see, e.g., [49, 66, 70]). To address these
issues, alternative approaches have been proposed, including semi-implicit methods [55, 86],
balanced methods [2, 64, 69], tamed methods [41, 49, 96], and truncated methods [33, 34, 63].

12



List of Tables 18

However, these procedures still lack generality, leaving many equations unaddressed.

Related Work

A stochastic differential equation is considered stiff when its numerical integration becomes
challenging, and standard numerical methods (see, e.g., [13, 56, 65, 68]) fail to maintain
stability unless substantial computational effort is applied. The stability issues may arise
when one of the coefficients of the SDE exhibits oscillatory behavior or changes abruptly
fast to respect the other. In particular, SDE with non globally Lipschitz coefficient and
multiplicative noise SDE are often stiff (see, e.g., [70]). Examples include non-linear SDEs
and SDEs with linear multiplicative noise.

Explicit methods have been shown to diverge when applied to non-globally Lipschitz
SDE. In particular, the Euler-Maruyama method diverges for SDEs with super-linear growth
coefficients [40]. Even if the SDE satisfies the linear growth condition, the Euler-Maruyama
method necessitates small step-sizes to ensure almost sure exponential stability [38]. As an
alternative, semi-implicit methods (implicit only in the drift term) are well-suited for stiff
systems with small stochastic noise intensity or additive noise [24, 55]. In particular, the
stochastic Theta method guarantees almost sure exponential stability for non-linear SDEs,
provided that the drift coefficient satisfies a one-sided Lipschitz condition, and the diffusion
coefficient satisfies a linear growth condition [37, 38]. However, in cases where the stochastic
component plays a significant role in the dynamics, such as with large multiplicative noise,
the application of fully implicit methods, like balanced methods, becomes necessary [2, 69].
Although less restrictive in their assumptions, implicit methods (semi-implicit and fully im-
plicit) require higher computational effort due to their increased complexity. Alternative
numerical approximations are presented in [1, 16, 63, 78]. Nonetheless, these methods still
involve a trade-off between restrictive Lipschitz-type conditions and computational effort.

In summary, the numerical simulation of SDEs relies on assumptions regarding the Lips-
chitz continuity of the coefficients. By relaxing these assumptions, the numerical complexity
of the integrators increases, thus limiting their applicability. As a result, many non-linear and
multiplicative noise stochastic systems have not been adequately addressed. Two examples
worth mentioning are the non-linear stochastic Schrodinger equation (see, e.g., [11, 73]) and
a stochastic SVIR model presented in [99].

The non-linear stochastic Schrodinger equation describes the evolution of open quantum
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systems and is used, for instance, to describe the evolution of quantum measurement pro-
cesses. It is a stochastic differential equation with locally Lipschitz continuous coefficients,
and its main focus lies in the distribution of its solution. In a previous work [73], an ex-
ponential scheme was proposed to compute expected values for quantum observables of the
non-linear stochastic Schrédinger equation. Specifically, the exponential scheme is employed
to approximate the mean value of the function x — (z, Az) applied to the solution, where
A represents an observable of the system. Here, the exponential scheme exhibits linear con-
vergence whenever random variables with compact support simulate the increments of the
Brownian motion.

On the other hand, the stochastic SVIR model presented in [99] is a SDE with non-globally
Lipschitz continuous coefficients and linear multiplicative noise. This compartmental model
incorporates a continuous vaccination strategy and ambient white noise perturbations to
the classical SIR model formulated by Kermack and McKendrick [50]. Specifically, several
probabilistic properties of the continuous system have been proved, including ergodicity and
the existence of a stationary distribution. These remarkable properties, combined with the
lack of global Lipschitz continuity in the system, make the effective numerical simulation of
the stochastic SVIR model challenging.

Objectives and outline

The main objective of this PhD thesis is to develop efficient numerical methods for solv-
ing stochastic differential equations with nonglobally Lipschitz continuous coefficients. The
research focuses on two models: the non-linear stochastic Schrodinger equation and SDEs
with linear multiplicative noise. In particular, a stochastic SVIR model is considered for the
second model.

The main contents of this thesis are structured as follows:

e Chapter 1 provides a brief overview of the fundamental concepts necessary for devel-
oping this thesis. This review focuses on stochastic analysis, stochastic differential

equations, and their numerical approximation.

e Chapter 2 focuses on the numerical simulation of the non-linear stochastic Schrodinger
equation. The main goal of this investigation is to develop weak numerical solutions for

this equation. We specifically investigate an exponential scheme proposed in [73], which
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incorporates a projection onto the unit ball. To extend the numerical analysis provided
in [73], we consider a general class of smooth functions and remove the restrictions
of compact support on simulating the increment of the Brownian Motion. Two main
challenges arise in this error analysis. Firstly, due to the absence of a global Lipschitz
condition, We employ a localization procedure that enables us to address the non-linear
stochastic Schrodinger equation through the use of a globally Lipschitz SDE. In this
SDE, the drift and diffusion coefficients correspond to those of the nonlinear stochastic
Schrodinger equation within the unit ball. Secondly, the projection on the unit sphere
exhibits a singularity at 0. Consequently, we derive a short-time asymptotic expansion
for the projection concerning the step-size. Numerical simulations were conducted while
employing two numerical refinements of the method: the utilization of the Talay-Tubaro
extrapolation procedure and the application of the Multilevel Monte Carlo method to

the Exponential scheme.

The contents of this chapter originally appeared in the following paper:

[79] CARLOS M MORA AND MARIO MUNOZ, On the rate of convergence of an ex-
ponential scheme for the non-linear stochastic Schrodinger equation with finite-

dimensional state space. Physica Scripta, vol. 98, pp. 87-94, (2023).

e Chapter 3 is dedicated to the numerical simulation of non-globally Lipschitz SDEs with
linear multiplicative noise. The primary objective of this investigation is to compute
sample paths of the solution, which entails developing pathwise solutions for this specific
class of SDEs. To accomplish this, we establish a connection between the original SDE
and an auxiliary random differential equation incorporating an Ornstein-Uhlenbeck
process as the sole input parameter. This explicit conjugacy is established by utilizing
a suitable invertible continuous transformation. Subsequently, we introduce new path-
wise numerical methods for the original SDE; relying on numerical approximations of
the auxiliary RDE. Specifically, we formulate a conjugated exponential method and a
conjugated Heun method. These numerical approximations are then employed to sim-
ulate a stochastic SVIR model. Comparative analysis with commonly used numerical

approximations shows the practical applicability of the proposed numerical methods.

The contents of this chapter gave rise to the following paper:



List of Tables 16

[81] M. MuNoz, H. DE LA CRUZ, AND C. M. MORA, Pathwise methods for the
integration of a stochastic SVIR model. Mathematical Methods in the Applied
Sciences, (2023), pp. 1-15.

e Chapter 4 is dedicated to presenting the conclusions of this PhD thesis. Furthermore,

it outlines ongoing and future projects.



Introduccion

Motivacion

La inclusién de efectos aleatorios en la modelacion matematica es una tendencia creciente en
la investigacién cientifica. Esta consideracién surge cuando los modelos deterministas necesi-
tan ser mas eficaces y pertinentes. Estas situaciones suelen darse cuando el fenémeno inves-
tigado se ve influido por numerosos factores incontrolables, cuando las mediciones muestran
un comportamiento erratico o cuando el fenémeno es intrinsecamente aleatorio. Independi-
entemente de su fuente de aleatoriedad, estos sistemas aleatorios se modelan frecuentemente
mediante ecuaciones diferenciales estocasticas (EDE).

Las ecuaciones diferenciales estocasticas investigan los sistemas aleatorios como procesos
de difusién utilizando el calculo estocastico. Los origenes del calculo estocastico se remontan a
los trabajos pioneros de Kiyosi It0 en la década de 1940. Ito introdujo el concepto de integral
estocastica, una generalizacién de la integral de Riemann-Stieltjes en el andlisis estocastico.
En concreto, los integrandos e integradores de esta nueva integral son procesos estocasticos
que, en general, presentan una variacién no acotada. Estas aportaciones proporcionaron
una solida base matemaética para el estudio de las EDE, lo que permite a los investigadores
estudiar con rigor una amplia gama de problemas en diversos campos, como la fisica, las
finanzas, la ingenieria y la biologia.

En general, no se dispone de soluciones analiticas para las ecuaciones diferenciales es-
tocasticas, e incluso cuando existen, su cédlculo eficiente no siempre es factible. Por lo tanto,
se necesitan aproximaciones numéricas para investigar estos sistemas. Los métodos numéricos
tradicionales [13, 56, 65, 68] se basan en supuestos de convergencia que a menudo no se
cumplen en la practica. Uno de los requisitos mas restrictivos entre estos supuestos es la
condicion de continuidad global de Lipschitz. Cuando esta condicién no se cumple, la SDE

puede volverse rigida, lo que conduce a divergencia e inestabilidad en las aproximaciones
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numéricas estandar (véase, por ejemplo, [49, 66, 70]). Para hacer frente a estos problemas, se
han propuesto enfoques alternativos, incluyendo métodos semi-implicitos [55, 86], métodos
balanced [2, 64, 69], métodos tamed [41, 49, 96], y métodos truncados [33, 34, 63]. Sin
embargo, estos procedimientos atun carecen de generalidad, dejando muchas ecuaciones sin

abordar.

Trabajos Previos

Una ecuacién diferencial estocastica se considera rigida cuando su integraciéon numérica se
convierte en un reto, y los métodos numéricos estdndar (véase, por ejemplo, [13, 56, 65, 68])
no consiguen mantener la estabilidad a menos que se aplique un esfuerzo computacional
considerable. Los problemas de estabilidad pueden surgir cuando uno de los coeficientes de
la SDE exhibe un comportamiento oscilatorio o cambia abruptamente rapido con respecto al
otro. En particular, las EDE con coeficiente no globalmente Lipschitz y las EDE con ruido
multiplicativo suelen ser rigidas (véase, por ejemplo, [70]). Los ejemplos incluyen EDEs no
lineales y EDEs con ruido multiplicativo lineal.

Se ha demostrado que los métodos explicitos divergen cuando se aplican a EDE no glob-
almente Lipschitz. En particular, el método de Euler-Maruyama diverge para EDEs con
coeficientes de crecimiento super-lineal [40]. Incluso si la EDE satisface la condicién de
crecimiento lineal, el método de Euler-Maruyama requiere pequenos tamanos de paso para
garantizar la estabilidad exponencial casi segura [38]. Como alternativa, los métodos semi-
implicitos (implicitos s6lo en el término de deriva) son adecuados para sistemas rigidos con
pequena intensidad de ruido estocastico o ruido aditivo [24, 55]. En particular, el método
theta estocastico garantiza estabilidad exponencial casi segura para EDEs no lineales, siem-
pre que el coeficiente de deriva satisfaga una condicién de Lipschitz unilateral, y el coeficiente
de difusion satisfaga una condicién de crecimiento lineal [37, 38]. Sin embargo, en los casos
en que el componente estocastico desempena un papel significativo en la dindmica, como con
ruido multiplicativo grande, se hace necesaria la aplicacion de métodos totalmente implicitos,
como los métodos balanced [2, 69]. Aunque son menos restrictivos en sus supuestos, los
métodos implicitos (semi implicitos y totalmente implicitos) requieren un mayor esfuerzo
computacional debido a su mayor complejidad. En [1, 16, 63, 78] se presentan aproxima-
ciones numéricas alternativas. No obstante, estos métodos siguen implicando una concesion

entre las condiciones restrictivas de tipo Lipschitz y el esfuerzo computacional.
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En resumen, la simulaciéon numérica de las EDE se basa en supuestos relativos a la con-
tinuidad de Lipschitz de los coeficientes. Al relajar estos supuestos, aumenta la complejidad
numérica de los integradores, lo que limita su aplicabilidad. En consecuencia, muchos sis-
temas estocasticos no lineales y con ruido multiplicativo no se han abordado adecuadamente.
Dos ejemplos dignos de mencién son la ecuacion estocéstica no lineal de Schrodinger (véase,
por ejemplo, [11, 73]) y un modelo estocéstico SVIR presentado en [99].

La ecuacion estocédstica no lineal de Schrodinger describe la evolucion de los sistemas
cuanticos abiertos y se utiliza, por ejemplo, para describir la evolucion de los procesos de
medicién cuantica. Se trata de una ecuacién diferencial estocastica con coeficientes local-
mente Lipschitz continuos, y su principal interés radica en la distribucion de su solucion.
En un trabajo anterior [73], se propuso un esquema exponencial para calcular los valores
esperados de los observables cuanticos de la ecuacién estocastica no lineal de Schrodinger.
En concreto, un esquema exponencial se emplea para aproximar el valor medio de la funcion
r — (x, Az) aplicada a la solucién, donde A representa un observable del sistema. En este
caso, el esquema exponencial muestra una convergencia lineal siempre que variables aleatorias
con soporte compacto simulen los incrementos del movimiento browniano.

Por otro lado, el modelo estocastico SVIR presentado en [99] es una SDE con coeficientes
no globalmente Lipschitz continuos y ruido multiplicativo lineal. Este modelo compartimental
incorpora una estrategia de vacunacion continua y perturbaciones de ruido blanco ambiental
al modelo SIR cldsico formulado por Kermack y McKendrick [50]. En concreto, se han
demostrado varias propiedades probabilisticas del sistema continuo, incluida su ergodicidad
y la existencia de una distribucién estacionaria. Estas notables propiedades, combinadas
con la falta de continuidad Lipschitz global en el sistema, hacen que la simulacién numérica

efectiva del modelo estocastico SVIR sea todo un reto.

Objetivos y estructura

El objetivo principal de esta tesis doctoral es desarrollar métodos numéricos eficientes para
resolver ecuaciones diferenciales estocasticas con coeficientes que no son globalmente Lipschitz
continuos. La investigacion se centra en dos modelos: la ecuacién estocdstica no lineal de
Schrodinger y las EDEs con ruido multiplicativo lineal. En particular, para el segundo modelo
se considera un modelo estocéastico SVIR.

Los principales contenidos de esta tesis se estructuran de la siguiente manera:
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e El capitulo 1 proporciona una breve vision general de los conceptos fundamentales nece-
sarios para el desarrollo de esta tesis. Esta revisién se centra en el analisis estocéstico,

las ecuaciones diferenciales estocésticas y su aproximacion numérica.

e El capitulo 2 se centra en la simulacion numérica de la ecuacion estocéastica no lineal
de Schrodinger. El objetivo principal de esta investigacion es desarrollar soluciones
numéricas débiles para esta ecuacion. En concreto, investigamos un esquema expo-
nencial propuesto en [73], que incorpora una proyeccién sobre la bola unitaria. Para
ampliar el andlisis numérico proporcionado en [73], consideramos una clase general de
funciones suaves y eliminamos las restricciones de soporte compacto al simular el in-
cremento del movimiento browniano. En este analisis de errores surgen dos principales
retos. En primer lugar, debido a la ausencia de una condiciéon global de Lipschitz,
empleamos un procedimiento de localizacién que nos permite abordar la ecuacion es-
tocastica no lineal de Schrodinger mediante el uso de una SDE globalmente Lipschitz.
En esta EDE, los coeficientes de deriva y difusion corresponden a los de la ecuacion
estocastica no lineal de Schrodinger dentro de la bola unidad. En segundo lugar, la
proyeccion sobre la esfera unitaria presenta una singularidad en 0. En consecuencia,
derivamos una expansion asintotica de corto plazo para la proyeccion relativa al tamano
del paso. Se realizaron simulaciones numéricas empleando dos refinamientos numéricos
del método: la utilizacién del procedimiento de extrapolacién de Talay-Tubaro y la

aplicacion del método de Multilevel Monte Carlo al esquema exponencial.

El contenido de este capitulo aparecié originalmente en el siguiente articulo:

[79] CARLOS M MORA AND MARIO MUNOZ, On the rate of convergence of an ex-
ponential scheme for the non-linear stochastic Schriodinger equation with finite-

dimensional state space. Physica Scripta, vol. 98, pp. 87-94, (2023).

e El capitulo 3 estd dedicado a la simulacion numérica de EDEs no globalmente Lipschitz
con ruido multiplicativo lineal. El objetivo principal de esta investigacién es investigar
trayectorias de la solucién, lo que implica el desarrollo de soluciones trayectoriales para
esta clase especifica de EDEs. Para ello, establecemos una conexién entre la EDE orig-
inal y una ecuacién diferencial aleatoria (EDA) auxiliar que incorpora un proceso de
Ornstein-Uhlenbeck como tnico pardmetro de entrada. Esta conjugacién explicita se

establece utilizando una transformacién continua invertible adecuada. Posteriormente,
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introducimos nuevos métodos numéricos para la EDE original, basados en aproxima-
ciones numéricas de la EDA auxiliar. En concreto, formulamos un método exponencial
conjugado y un método de Heun conjugado. Estas aproximaciones numéricas se em-
plean después para simular un modelo SVIR estocastico. la aplicabilidad practica de
los métodos numéricos propuestos se muestran a través de un analisis comparativo con

aproximaciones numéricas comunmente utilizadas.

El contenido de este capitulo dio lugar al siguiente articulo:

[81] M. MuNoz, H. bE LA Cruz, AND C. M. MORA, Pathwise methods for the
integration of a stochastic SVIR model. Mathematical Methods in the Applied

Sciences, 1n/a.

e El Capitulo 4 esta dedicado a presentar las conclusiones de esta tesis doctoral. Ademas,

se mencionan los proyectos en curso y futuros.



Chapter 1
Preliminaries

This chapter provides a brief overview of the fundamental concepts necessary for developing
this thesis. For a more comprehensive review, we recommend consulting [6, 83, 104] for a
detailed understanding of stochastic analysis and [56, 70] for numerical approximations of
SDEs.

1.1 Stochastic Analysis and Stochastic Differential

Equations

A probability space is a tuple (€2, F,P) consisting of a set €2, a o-field F of Q and a probability
measure P defined on (2, F). A filtration on (2, F,P) is a family {F},., of time-indexed
sub-o-fields of F satisfying F; C F; for any 0 < s < t. A filtration {F }t>0_ satisfies the usual
conditions if for every ¢ in R, , F; contains all the P-negligible sets in ]-:, and Fy = (,o, Fs-
The collection (Q, F. {F} >0 ,IP’) is referred to as a filtered probability space.

A stochastic process Xy = (X¢)iejo,7] is a family of functions such that for every ¢ € [0, 77,
w +— Xy(w) is a measurable function (random variable) in a probability space (92, F,P), i.e.,
the pre-image of any Borel set under X is in F. The maps t — X;(w) are called trajectories
or the sample paths of X;, and it is said that X; is continuous if its trajectories are continuous
in a subset of probability one. Given a filtration {F;},., on (2, F,P), X, is called {F;},~o-
adapted if w — X;(w) is Fi-measurable for every ¢ in [0_, T]. )

Stochastic processes can take either real or complex values. Complex random variables

are functions whose real and imaginary parts are real random variables. Thus, the real

22
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and imaginary parts of a complex stochastic process are themselves real random processes.
Consequently, a complex stochastic process can be treated as a real one, albeit with increased

dimensionality.

Next, we provide a brief introduction to stochastic differential equations. We follow the
classical formulation by studying real-valued stochastic processes. Nonetheless, SDEs can be
used to investigate more general processes, including complex-valued stochastic processes.

For instance, the last can be achieved by analyzing the associated real system.

An It6 stochastic differential equation is defined by

dX, = b(t, X,)dt + Y op(t, X)dW} Ve[0T,

k=1 (1.1)

XO = Xy,
where b : [0, 7] x R? — R? is called drift coefficient, o = (o] - - |0y,) : [0, T] x RY — RI*™
is called diffusion term, W = (W', W2 ..., W™) is an m-dimensional Brownian motion

defined on a filtered complete probability space (€2, F, {F Heso ,P), and zo € R is the initial
value. Due to the non-differentiability of Brownian motion paths, (1.1) represents an integral

equation expressed as
t m t
Xt:azo—l—/ b(s,Xs)derZ/ on(s, X,)dWE  Vie[0,T). (1.2)
0 1 70

Here, the second term on the right-hand side corresponds to a stochastic integral, often called
the Ito integral, a generalization of the Riemann—Stieltjes integral in stochastic analysis.

Among its most notable properties, we emphasize that it is always a centered random variable,

t
E < / F dWs) =0
0
and satisfies the It6 isometry

E((/OtFSdWS)2>:E</OtF3ds>, (1.3)

ie.,
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asuming, for instace, F' € L*(Q x [0, 7)), i.e.,

T
1F||L2xpo == E (/ F? ds) < 00.
0

Note that the left-hand side of (1.3) corresponds to the variance of the It6 integral. The
stochastic integral is also applicable to broader integrators, specifically semimartingales (see,
e.g., [83]).

We have not yet discussed the conditions that the stochastic process X in equation (1.2)
must satisfy. Depending on these conditions, the coefficients of the SDE must meet specific
hypotheses. Assuming that these hypotheses are fulfilled, the It6’s lemma states that any
smooth bounded transformation of X also possesses a SDE with respect to the same Brownian
motion. Specifically, for any f € C*([0,T] x R%), we get

t d t
F(t, X)) :f(O,X0)+/O g—i(s,Xs)ds—l—Z/o bi(s,XS)g—i@,Xs)ds

a Co )
+ZZ/ (s, X2) 2L (5, X,) W

i=1 k=170

for t € [0,7]. This result is fundamental in the investigation of It6 processes. In particular,

this identity serves as the stochastic calculus counterpart of the chain rule.

There is no singular definition for a solution of a stochastic differential equation. SDEs
can be studied from a pathwise perspective, focusing on finding a stochastic process that
satisfies (1.2) for a given Brownian motion. Alternatively, they can be examined from a
distributional perspective by finding a suitable Brownian motion and stochastic process that
match the distribution of (1.2). The coefficients of the SDE must satisfy specific hypotheses

depending on the type of solution under investigation.

A strong or pathwise solution of (1.2) is a stochastic process X with continuous trajec-
tories, adapted to the filtration generated by zy and Wy for 0 < s < t, that satisfies:

t m t
P (Vt €0,7]: Xy = x +/ b(s, Xs)ds + Z/ ak(s,Xs)dW3> = 1. (1.4)
0 = Jo
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The SDE (1.2) has unique pathwise solution X if for any other strong solution X*,
P(X,(w) = X (w),Vte€[0,T]) =1.
A weak or distributional solution of (1.2) is a tuple
(X, W), (, F,P), {Fi} ;) (1.5)

such that (Q, FAF} =0 ,IP’) is a filtered probability space satisfying the usual conditions, W
is an m-dimensional {ﬁ}po—Brownian motion on (2, F,P), and X is a continuous {F;},- -
adapted process such thati(l.él) holds. The solution (1.5) of the SDE (1.2) is unique in law
if for any other weak solution ((X*, W*),(Q*, F*,P*) ,{F/},5,), the laws of X and X* are
equal, i.e., )

P (X, € Bi,..., Xy, € B,) =P*(X; € By,...,X; €B,)

holds for allm € N, tq,...,%, > 0, and Borel sets By, ..., B,. Note that any strong solution of
the Ito6 SDE (1.2) is a weak solution, and when the pathwise uniqueness holds, the uniqueness
in law also holds.

The standard hypothesis for the existence and uniqueness of strong solution for the Ito

SDE (1.2) are:

m The coefficients b and o are globally Lipschitz continuous, i.e., there is K > 0 such that

1b(t, @) = bt y)l| + D |Jo"(t,2) = " (8, )| | < Kllw =yl (1.6)

for any ¢t € [0,7] and z,y € R%

m The coefficients b and ¢ has at most linear growth, i.e., there is K > 0 such that
= 2
16t )17+ Y ||o*t2)||” < K (14 ]|=)%);
k=1

for any ¢ € [0,7] and z € R%

m For each # € R% the functions b(-,x),c'(-,x),...,0™(,x) : [0,T] — R are right

continuous with left limits.
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These hypotheses can be relaxed to locally Lipschitz continuous coefficients and one-side

Lipschitz continuous coefficients.

For many phenomena, studying the long-term behavior of the SDE (1.2) is essential.
Specifically, the stability of the system and its ergodicity. In essence, stability of a SDE
means insensitivity of its solutions to small changes in the initial value or the parameters of the
system. There are different stability criteria, with significant attention given to almost sure
stability and moment stability. In essence, almost sure stability (moment stability) implies
that the solution of the stochastic differential equation will decay towards the trivial solution

for any given initial value as time tends to infinity, almost surely (in terms of moments).

Ergodicity for an SDE can be described as the property where the long-time behavior
of the system can be studied by observing its sample paths. In essence, it implies that the
statistical properties of the system can be inferred from a single trajectory over a sufficiently
long period. For an accurate description, let us adopt the standard hypothesis and consider
X; the unique, strong solution of (1.1). Subsequently, The family of linear operators {P;}:>o
defined for any Borel measurable function ¢ : R? — R and t > 0 by

Pip(z) = E(p (X;) | Xo = o)

is a Markov semigroup (strong Markov whenever b and o are autonomous). A probability
measure £ in (Q, F,P) is said to be invariant for X, if it is invariant under the action of the

Markov semigroup, i.e.,
| Peot@rduto) = [ pla)duta),

for all bounded functions . Furthermore, X; is said to be ergodic on R" if for any initial

condition Xy = z,
17
fim 7 [ (X0 = [ (o) duto) (1.7)
0 n

for all ¢ € L*(R", u). Here we note that a SDE is called ergodic if its solution is ergodic.
In addition, the right-hand side of (1.7) is called the limit value of p, a useful quantity in

several random systems. For sufficient regularity conditions leading to (1.7), refer to [52].
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1.2 Numerical Approximation for Stochastic

Differential Equations

A numerical approximation of an SDE is an iterative rule that generates a sequence of
approximate values X2 = {XnA}iV:O for the solution of (1.1). These values are computed
over a partition {tn}nNzo of [0, T] characterized by the step-size A = maxg—o  n—1 (tkr1 — tk)-
Numerical methods can approximate the trajectories or the probability distribution of the
solution of SDE (1.1). Consequently, there are different notions of convergence. Namely, in
this work, we examine the strong, pathwise, and weak convergence, each with its rate, which

typically differs.

On the one hand, strong and pathwise convergences focus on the approximation of the
sample paths of the solution. The first considers the expected value of the error in the
approximation of the trajectories, while the second focuses on the error for a single sample
path. Specifically, a numerical approximation X converges strongly with order p > 0 at
time T if there exist K; > 0, which does not depend on A, and Ay > 0 such that

E ( sup | Xy, — Xﬂ) < KrAP, (1.8)

n=0,...,N

for every A € [0, Ag]. Alternatively, X2 converges pathwise with order v > 0 at time T if
there exist K7 > 0, which does not depend on A, and Ay > 0 such that

sup | Xy, (w) — XnA(w)‘ < KpA7, (1.9)
n=0,...,N
for every A € [0, Ay].

On the other hand, weak convergence focuses on approximating the law of the solution by
computing the error in the approximation of the expected value of any smooth mapping of
the solution. Specifically, a numerical approximation X converges weakly with order ¢ > 0
at time T if for each function ¢ € C?D(qul)(Rd, R) there exist K, > 0, which does not depend
on A, and Ay > 0 such that

|E (¢ (X1)) —E (¢ (XR))] < KprA, (1.10)

for each A € [0,A]. Here we said that ¢ : R? — R belongs to C5(R4, R) iff (t,2) —
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o(z) € CE([0,T] x R4, R), where C5([0,T] x R% R) denote the set of all the functions f :
[0,7] x RY — R such that

Oy f (8, 2)] < (1 l2]7)

for0<I<L,K>0,and q€N.

Besides the convergence rate of numerical methods, other stability properties are consid-
ered in the standard literature on stochastic numerics [14, 56, 70]. A stable numerical method
produces consistent and accurate results even when the step-size A increases. This can be
understood from (1.8), (1.9) or (1.10), where the constants K depend on the simulation time
T. That means that the results produced by the numerical approximations may deteriorate
for large values of T', requiring sufficiently small time-steps A to mitigate this effect. Many
numerical stability criteria have been considered to study the ability of numerical methods to
reproduce the long-term behavior presented by the SDE. In particular, almost sure stability
and moment stability for SDEs are among the most desirable properties to be replicated by

numerical approximations.

Several numerical integrators for SDEs have been studied under the hypothesis of global
Lipschitz continuity (1.6). The most classical method is the Euler-Maruyama scheme [65].
Namely, the Euler-Maruyama method for the SDE (1.1) is given by

X280 = X240 (1, X2) A+ VALY o (a, X2) AWE,
k=1

where A, = t,,.1—t, and AW;: =Wk

L., —WE. The Euler-Maruyama method is known for its

weak order of convergence of 1 and a strong order of convergence of 1/2. One limitation of this
method is its dependence on the discretization parameter A, which needs to be sufficiently
small to ensure a.s. exponential stability [15, 38]. This constraint is a recurring consideration
in explicit numerical methods.

In addition to the Euler-Maruyama method, several other noteworthy numerical methods
are commonly used for simulating stochastic differential equations. These methods, such as
the Milstein method [68], the It6-Taylor methods [53], and the Runge-Kutta methods [13, 89],
offer higher orders of convergence compared to the Euler-Maruyama method. However, these

explicit numerical methods may still require small step-sizes A to ensure stability.

Exponential schemes offer an alternative approach to standard methods and have shown
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promising performance in numerous numerical experiments [8, 46, 74]. In particular, when
dealing with SDEs involving additive noise, exponential schemes demonstrate good perfor-
mance, while standard explicit methods exhibit numerical instabilities. Exponential schemes
are explicit numerical approximations. Subsequently, they rely on the global Lipschitz con-
tinuity of the SDE to achieve convergence.

Explicit numerical methods can become highly unstable or even diverge if the global
Lipschitz condition is not satisfied. [40, 66, 70]. Alternatively, numerical methods such as
semi-implicit methods [55, 86|, balanced methods [2, 64, 69], tamed methods [41, 49, 96], and
truncated methods [33, 34, 63] may overcome these issues. These alternative methods are de-
signed to operate under less restrictive conditions, allowing for superlinear growth, one-sided
Lipschitz continuity, or global monotonicity. Nevertheless, these numerical methods involve
a greater numerical complexity, and their assumptions remain restrictive. As a consequence,

their applicability is limited to specific models.



Chapter 2

Rate of convergence of an exponential
scheme for the non-linear stochastic
Schrodinger equation with

finite-dimensional state space

2.1 Introduction

This work develops the numerical solution of the stochastic Schrodinger equation describing
the evolution of open quantum systems, also called the quantum state diffusion model and
the non-linear Belavkin equation. We consider a small quantum system with state space
h1®ha®- - -®b, that interacts with a heat bath. We focus on the case where b1, bo,--- , b, are
finite-dimensional Hilbert spaces, and so, to simplify notation, we represent h; @by ®---® b,
by C? equipped with the scalar product {-,-) inherited from h; ® by ® - -- ® b,,. The internal
dynamics of the small quantum system are determined by the time-dependent Hamiltonian
H (t) € C¥™4 which is a self-adjoint operator in C? for any time ¢ € [0, T]. The interactions
between the small quantum system and the environment are modeled by the time-dependent
linear operators Ly (t),..., L, (t) € C™9 So, we address the numerical solution of the

following Ito stochastic differential equation (SDE) on C¢:
t m t
X, = X, +/ (G (s) X+ g(s,X,))ds + Z/ or (s, X)) dWE  vie[0,T], (2.1)
0 = Jo
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where || Xo|| = 1, W, ..., W™ are independent real Brownian motions,

G(s):—iH(s)—%ZLk(s)*Lk(s),

=> (Re 2, Ly (s) 2) Ly (s )z——Re ((z, Ly (s)z))z),

k=1
and

0k (8,2) = Ly (s) z — Re(z, Li (s) 2) 2

(see, e.g., [7, 11, 97] for derivations of (2.1)). The complex SDE (2.1) has a unique strong
solution (see, e.g., [7, 73]), which satisfies || X;|| = 1 for all ¢ € [0, 7.

The evolution of quantum measurement processes is described by the operator | X;) (X,
which is written using Dirac notation. Namely, |X;)(X;| represents the density operator
conditioned on the measurement outcomes (see, e.g., [7, 11, 97] for some derivations). In
the homodyne or heterodyne measurement of the observable Ly (), for instance, the integral

from 0 to ¢ of the photocurrent is proportional to

t t
Wk 2/ Re (tr (L (s) | X.)(X.])) ds = W + 2/ Re(X., Ly (s) X.)ds.
0 0
On the other hand, the Gorini-Kossakowski-Lindblad-Sudarshan quantum master equa-

tion

d

describes the evolution of the density operator p;, which is the unit-trace positive operator
acting on h; ® hy ® - -+ ® b, that represents the quantum state of the physical system. We
have that p; = E (|X;)(X}]) (see, e.g., [7, 76] for details, and [23] for a recent development).
That’s why it is said that the quantum density operator p; is unraveled in the quantum
trajectories | X;)(X;|. If d is not small enough (in the range of tens), then the calculation of
the mean value of the quantum observable A (i.e., tr (Ap;)) by computing E ((X;, AX;)) via
Monte Carlo methods has great advantages over the numerical solution of (2.2) (see, e.g.,
[10, 11, 36, 82, 87, 97]), which involves d*> unknown complex functions. Hence, (2.1) is widely
used for the numerical solution of (2.2), together with the quantum-jump version of (2.1)
(see, e.g., [11, 97])).
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This paper deals with the computation of the mean value of ¢ (X;), when ¢ is smooth. We
focus on the following Euler-Exponential scheme developed by [73, 77] that solves accurately

(2.1) with low computational cost (see, e.g., [10, 11, 58, 77| for alternative schemes).

Scheme 1. Suppose that 0 = 19 < 7y < --- < 75y = T are real numbers, and take A, =
Tl —Tn. Let &l .. &0 €N, .., ER be independent and identically distributed (i.i.d.) real
random variables with variance 1, and moments of any order. Assume that the distribution
of &8 is symmetric with respect to 0. Let Yy be a random variable independent of the EFs

satisfying ||1A/0|| = 1. Then, we recursively define

Yo = eC(mn)An (ffn +9 <Tn, Yn> A, + VA, Z O (Tn, an) fﬁﬂ)
k=1

and

A

Yn+1 - Yn—i—l/ HYn—l—IH )
where n =0,..., N — 1.
First, we obtain that the rate of convergence of E (gp (YN>> to E (¢ (X7)) with respect to

the maximum step-size of (7,) v is equal to 1 for any function ¢ whose partial Wirtinger

n=0,..
derivatives up to order 4 have polynomial growth. An example of such ¢ is ¢ (z) = (z, Az)?,
which appears in the computation of both the variance of (X;, AX;) and the average of
the quantum variance of the observable A at time t, i.e., E ({X;, A2X})) — E ((X;, AX;)?).
Previously, [73] proved that E (<§>N, A ?N>> converges linearly to E ((Xr, A X)) whenever
the distribution of & 41 has compact support. This excludes to take 3 1= anﬂ - an ,
a choice used, for instance, in the Multilevel Monte Carlo methods (see, e.g., [28, 29]).
Here, we drop the assumption that the support of & 41 is compact. At the same time, we
establish that |E (¢ (X)) — E ((,p (?N>>

max,—o. ~N—1(Tnt1 — Tp) for a general class of functions . This allows us to select adequate

is less than or equal to a constant multiplied by

step-sizes 7,,.1 — T, for achieving a desired global error.

Second, we study for the first time, to the best of our knowledge, the application of
the Talay-Tubaro extrapolation procedure to the numerical solution of (2.1). In [92] the
Romberg-Richardson extrapolation method for ordinary differential equations is extended to
solve globally Lipschitz real SDEs by weak second-order schemes based on the Euler and
Milstein schemes (see, e.g., [31, 56, 70]). In this paper, we obtain the leading term of the
error E (¢ (X7)) — E (gp (?N>>, where Yy follows Scheme 1. Then, we prove that the rate
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of convergence of 2E (cp (fsz (%))) - E (gp (YN (T))) to E(p(X7)) is equal to 2, where

~

Y, (1) is as in Scheme 1 and Y, (7) is given by Scheme 1 with (Tn),—0 n replaced by the
discretization (7_—”)71:0‘..,2  obtained by halving the step-sizes of 7,,. This yields a weak second-
order approximation of E¢ (Xr) that inherits the good dynamical properties of Scheme 1 and

has a low computational cost.

We face two obstacles in the error analysis. Since the coefficients of (2.1) are not globally
Lipschitz, the techniques currently used to estimate the rate of weak convergence of the
numerical schemes for locally Lipschitz SDEs (see, e.g., [9, 35, 40, 78, 91]) do not apply to
(2.1), at least no directly. In Section 2.5.3.2 we overcome the first obstacle by introducing
a localization procedure that allows us to treat (2.1) by using a globally Lipschitz SDE
whose drift and diffusion coefficients coincide with those of (2.1) in the unit ball. To this

= 1 and || X¢|| = 1. Moreover, Scheme 1 involves

end, we exploit the fact that H}Afnﬂ ‘
the map Y, 11 — Y11/ ||Yns1]| that has a singularity at 0. In order to treat the singularity
appearing in the projection onto the unit sphere, we derive a short-time asymptotic expansion

of Yi1/ ||Yaa1]| with respect to the step-size.

Third, we study the strong convergence of Scheme 1, which ensures the convergence of
the trajectories of Scheme 1 with &8, = (W% — W¥)/y/A,. Namely, we prove that the

Tn+1

rate of strong convergence of Scheme 1 is equal+to 1/2. This, together with the linear order
of weak convergence of Scheme 1, provides a theoretical basis for the numerical solution of
(2.1) by the Multilevel Monte Carlo method (see, e.g., [28]) with Scheme 1 as integrator.
Other studies on the strong convergence of the numerical schemes for locally Lipschitz SDEs
are, e.g., [39, 95].

We organize the paper as follows. Section 2.2 sets up notation and basic definitions.
Section 2.3 addresses the rates of strong and weak convergence of Scheme 1. Section 2.4
provides a numerical experiment with a quantum oscillator in the interaction representation.

All proofs are deferred to Section 2.5.

2.2 Notation

The scalar product (-,-) is anti-linear in the first variable. The partial Wirtinger derivatives

are, by definition,
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1/ 0 .0 .

0.1 ()= (5 15 ) Flotin (232)
1/ 0 .0 :

0t ()= 5 (5 +ige ) £ @10 (2:3b)

where k =1,...,d, 2 =z +iy withz = (21,...,24),y = (y1,...,vq4) € R and the complex-
valued function (z,y) — f (x4 iy) has partial derivatives of first order (see, e.g., [48, 84]).

For each n € N we consider the multi-index set

2d
Pn = {(O&l;...,OéQd)3&kENU{O},Z‘0¢k‘:n}.

k=1
Then, for any z = (21,...,24) € C? and o € P, we define
a_ o ag —ao —a
z _le...Zd 21 d+1...zd2d
and

am aad aad+1 8a2d

0% = e . .
02?1 azgd aaad-s-l %ﬂgd

As usual Py = {0} and 9° stands for the identity operator.

Consider n, L € Z.. We denote by WC™* ([to, T] x C4, (C) (resp. WC* (Cd, C)) the set of
all f: [to, T] x C4 — C (resp. f: C?¢ — C) such that 9ff and 9°f are continuous functions
for any ¢ < n and |a| < L. By definition, a function f € WC™" ([ty, T] x C?,C) (resp.
fewc" (C4,C)) belongs to WC} ([to, T] x C%, C) (resp. WC} (C%,C)) iff

10%f (t,2)] < Ko (T) (14 []2]]*) Vt € [to,T] and z € C* (2.4)

whenever |a| < L. Here and subsequently, ||z|| = 1/(z, z), and we use the same symbols K (-),
K, and ¢ for different nonnegative increasing functions, real numbers, and natural numbers,
respectively. A family of functions f, € WCF ((Cd,C)), with # € O, belongs uniformly to
WCE (C4,C)) iff (2.4) holds uniformly for all fy, i.e.

0%fo (2)| < Ko (1+]|2]")  VzeC”



Chapter 2. Rate of convergence of an exponential scheme for the non-linear stochastic
Schrodinger equation with finite-dimensional state space 35

for all o] < L and 0 € ©.

2.3 Rates of strong and weak convergence

From Lemma 2.3.1, given below, we obtain that we can project Y, ; onto the unit sphere,

and so Scheme 1 is well-defined.
Lemma 2.3.1. Assume the setup of Scheme 1. Then, Y, 11 # 0 for alln =0,... N — 1.

Proof. Deferred to Section 2.5.2. O]

Next, we establish that the rate of weak convergence of Scheme 1 is equal to 1 provided
that ¢ and the partial Wirtinger derivatives of ¢ up to order 4 have polynomial growth.
From [35] we have that the Euler scheme could converge weakly with a rate slower than 1
when applied to SDEs with non-globally Lipschitz smooth coefficients. And worse still, the
Euler scheme diverges, in the weak sense with a fixed time horizon, in some cases where the

~

‘ Y"HH = 1 allows us to

SDE coefficients grow superlinearly (see, e.g., [40]). The property
use a regularized Kolmogorov equation, together with||X;|| = 1, to overcome the difficulties
caused by the fact that the coefficients of (2.1) are not globally Lipschitz. On the other hand,

we obtain ‘

YnHH = 1 by projecting Y,, 11 onto the unit ball, and so the map Y11 — }A/nﬂ

has a singularity at 0, which adds complexity to the convergence analysis.

Theorem 2.3.1. Let H, Ly, : [0,T] — C¥? be continuously differentiable. Suppose that X is
the solution to (2.1) with || Xo| = 1. Consider (Y,)n-1..n given by Scheme 1 with Yy = X,.
If o € WCh ((Cd, (C), then there exists an increasing function K () depending on ¢ such that

for any time discretization (1,),_o N we have

‘E(ap (Xr)) —E <¢ <YN>>‘ <K(T) max (Tupr— 7).

n=0,...,N—1
Here, K (-) does not depend on the time discretization (7,) and the natural number N .
Proof. The desired result follows from Proposition 2.5.2 given in Section 2.5.3. [

In Theorem 2.3.1 we use the partial Wirtinger derivatives —rather than the classical com-
plex derivative— to describe the regularity of ¢. This enables us to consider a wide range of
functions ¢. For example, ¢ (z) = (z, Ax), where A € C¥? is a non-null matrix, has con-

tinuous partial Wirtinger derivatives of any order, while z — (x, Az) is not a holomorphic
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function. Moreover, using the Wirtinger derivatives we re-write the Kolmogorov equation
corresponding to an SDE on C? as two Kolmogorov equations on R??, and so its regularity
properties follow from known results on the Kolmogorov equation with real variables.

Next, we modify the proof of Theorem 2.3.1 to obtain the leading term of the error
E(p(X1)) — E(¢(Yy)). To this end, we adapt the error analysis carried out in [92].

Theorem 2.3.2. Let X be the solution of (2.1) with | Xo|| = 1. Assume that the func-
tions H, Ly, : [0,T] — C%4 have continuous second derivatives. Consider (Yn)nzom,N given
by Scheme 1 with Yo = Xo. If o € WCY ((Cd,(C), then there exists a function U €
VVC(]);4 ([O,T] X (Cd,(C) and an increasing function K (-) depending on ¢ such that for any

time discretization (7,),_y  n we have
N-1 _— 2
_ — <
E(p (Xr) ~E (¢ (Y)) RZ:O A, / R (s, X,)ds| < K (T) (n:&%}]@_lAn)
where A, = Ty1 — Ty Here, K (+) and ¥ do not depend on (7,),_q .y and N
Proof. Deferred to Section 2.5.4. m

From Theorem 2.3.2 we deduce that the extrapolation procedure introduced by [92] ap-
plies to Scheme 1. i.e., in the notation of Corollary 2.3.1, we have that 2E (gp (fng (7"))) —

E (gp (YN (7’))) is a second-order approximation of E (¢ (X7)), which requires one and one-

half times the amount of evaluations of Scheme 1.

Corollary 2.3.1. Assume that X is the solution of (2.1) with || Xo| = 1. Suppose that
H,Ly : [0,T] — C™? have continuous second derivatives. Consider the discretization T =

(Tn)peo N> Where 0 =19 <11 <--- <7y =T, and define

Th ifn = 2k
(re+Tos1) /2 ifno=2k + 1

Tn =

i.e. the partition T = (7n),_o. on 0f [0,T] is obtained by halving the step-sizes of 7. Let
Y, (1) and Y, (T) be given by Scheme 1 with discretization T and T, respectively. ]fffo (1) =
Yo (7) = Xy, then for any time discretization (,)

n=0,...,

E (¢ (X2)) = (2E (¢ (Vox (1)) ~E (¢ (I (1) ))| < K@) _max_ (s —7)".

n=0,..., -
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-----

N.

Using the short-time asymptotic expansion of Y, obtained in the proof of Theorem 2.3.1

we now establish that Scheme 1 converges strongly with order 1/2.

Theorem 2.3.3. Let X be solution of (2.1) and Y given by Scheme 1 with Erg =Wk —
WE)/VA,. Assume that || Xol| =1, and Yo = Xo. Then, for any p € N we have

~

max [E HXT" -Y,
n=0,...,N

n=0,...,N—

2
p) < K,(T) max (Th41— )",

where K, (T') > 0 does not depend on the discretization 0 =19 <1 <--- <71y =T.
Proof. Deferred to Section 2.5.5. m

Remark 2.3.1. The implementation of Scheme 1 requires the computation of the matrix
exponential exp (G (1,) A,) times a vector (see, e.q., [72] for a review). This calculation
can be done by using Krylov subspace methods whenever G (1,,) is a sparse matriz, which is
common in many physical systems. If d is less than a few thousand, we compute exp (G (7,))
by means of Padé approrimations combined with a scaling and squaring strategy, and so we
calculate only one matriz exponential when we take a sample from each integration step of
Scheme 1.

2.4 Example

2.4.1 Physical system and previous results

We deal with the open quantum system with state space h = [*(Z,) described by the

Hamiltonian
H=i (aT—a) +a'a,

and the Gorini-Kossakowski-Sudarshan-Lindblad operators
L1 =0.2a, £, =0.01a?, L3 =0.1a'a, and £, = 0.1a",

where a' and a are the creation and annihilation operators. We recall that the domain of af

and ais {x € 1> (Z4) : Yook (e, r))? < +00}, where (€x)gez, is the canonical orthonormal
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basis for 12 (Z,). The creation operator a' is defined by a'e, = vk + 1egyy for all k € Z,,
and the annihilation operator a is given by ae, = Vkej,_, for any k > 0, and aey = 0. The
Number operator is equal to a’a. Thus, the evolution of the quantum system is described
by the mean values of functions of |X°)(X |, where we use the Dirac notation and X;® is
the solution of (2.1) with H = H and Ly = Ly for any k = 1,...,4. The existence and weak
uniqueness of the regular solution to (2.1) with an infinite-dimensional state-space is proved
in, e.g., [25, 80].

For instance, the model under consideration describes a single mode of a quantized elec-
tromagnetic field in interaction with a heat bath. In the Hamiltonian A, the term afa is
the Hamiltonian of the quantum harmonic oscillator, where the energy origin has been rede-
fined to eliminate the vacuum fluctuation energy, and i (aT — a) represents a linear pumping
produced by an electric field (see, e.g., [36]). Moreover, £; and Ls add the damping caused
by photon emissions, L3 induces pure dephasing, and £, models photon gain (see, e..g.,
[11, 21, 94]).

We approximate X;° by the solution X; of (2.1) with

XOIPngo/HPdXSOH, H:PdH, ande:PdEk
for all k = 1,...,4, where P; : I>(Z,) — C%! is the projection on the linear manifold
spanned by {ex : k =0,...,d}. The numerical experiment of Section 6 of [73] examines the

computation of E <Xt, aTaXt> by using Scheme 1, the explicit Euler scheme, and a version
of the implicit Euler method, the two later ones are projected onto the unit sphere in each
time integration step. In [73], the performance of Scheme 1 outshone that of the other two

numerical methods.
As in [73] we compute E (X;,afaX,) with X§° = es. We take d = 50. This selection
allows us to get ]E<Xt,aTaXt> by calculating the explicit solution 7; € C@HDx(d+1) of the

adjoint quantum master equation

d . ~ .

ZTi=G 7;+7;G+;Lkmk, To = Pya'a (25)
since E <Xt, ata Xt> = (Xo, T:Xo). In Figure 2.1 the solid line shows the interpolate values
of (eg, T; €g), which are the reference values for E <Xt, ata Xt>. It is worth pointing out that

the numerical solution of (2.5) has serious drawbacks if d is large (see, e.g., [11, 36, 82]), and



Chapter 2. Rate of convergence of an exponential scheme for the non-linear stochastic
Schrodinger equation with finite-dimensional state space 39

according to Proposition 6.1 of [75] we have that for any p € N,

|E (X, Piala X;) — E{(X;°, Pya'a X;*)| < K, (# + in_5) vd > 6.

2.4.2 The Talay-Tubaro extrapolation method

We illustrate the good behavior of the Talay-Tubaro extrapolation of Scheme 1 given by Corol-
lary 2.3.1. To this end, we compute E <XTj,aTaXTj> for T; = 0.94 5 with j = 1,...,10;from
Figure 2.1 we see that E<Xt, Pyata Xt> reaches a peak value at approximately T}y = 9.4.
We run Scheme 1 with two constant step-sizes 7,11 — 7, = 2A, and 7,41 — 7, = 4, where
A =9.4/N. Thus, according to Corollary 2.3.1 we have

E (X, alaXz,) ~ 2E <¢ (YQNj (%))) —-E (go (YNj (T))) ,

where 2 N; A = T; and ¢ (z) = (z,a’ax). Using sample-sizes of 10° we compute the sample
means of ¢ (%Nj (%)) and ¢ <1A/Nj (T)) Figure 2.1 illustrates the performance of the ex-
trapolation method based on Scheme 1 for the step-sizes A = 9.4/60,9.4/80,9.4/160. The

circles represent the estimated values of E (gp (YQNJ. (f))), and the crosses stand for the es-

timated values of 2IE (np <}>2 N, (7"))) —E (gp (YNJ. (7'))) We get more accurate estimations
of E <XT]., ala XTJ,> when we use smaller step-sizes A. In Figure 2.1 we see that both Scheme
1 and the Talay-Tubaro extrapolation method reproduce well the oscillatory behavior of the
quantum mean value of the number operator, even if we use large step-sizes. Moreover, Fig-
ure 2.1 highlights the very good accuracy of the extrapolation method described by Corollary
2.3.1.

Figure 2.2 and Table 2.1 provide the errors

€1 (8) = max JE (o (X7)) - % i e (i, (7)) ' , (2.6)
and .
@)= max B0 (Xn) -3 (20 (W, ) -0 (W M), @)

corresponding to the Monte Carlo simulation of Scheme 1 and the Talay-Tubaro extrap-
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Figure 2.1: Computation 0fE<Xt,aTaXt>, with X§° = eg and d = 50, by Scheme 1 (circles)
and the Talay-Tubaro extrapolation of Scheme 1 (crosses). Here, A = 0.1567,0.1175,0.0588, and
smaller step-sizes A yield better approximations. The solid line represents the reference values.
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0.5

-0.5

1.5

log ( error)

—©— Scheme 1
—*— Extrapolation

1 1 1 |
-2.5 -2 -1.5 -1 -0.5 0
log( step-size )

Figure 2.2: The base 10 logarithm of the errors €1 (A), indicated by circles, and €3 (A), indicated
by cross, as a function of the base 10 logarithm of the step-size A.

olation method, respectively. Here, the sample size is equal to 10% (i.e., M = 10%), and
YQINJ, (7),... ,}é%j (7) (respectively, Y]\lfj (1),... ,Y]\]}f (1)) are independent random variables
distributed according to the law of Y5 N; (T) (respectively, ?Nj (1)). A confidence interval for
E ((p (Yz N; (7"))) with the confidence level of 90 % is given by

E (o (P, ) - 17 Sy (Y, ()| < EL (),

1

where
B (4) = = LS (i, )’ - (%fgz) (¥, <r>)>

(see, e.g., Section 2.2.2 of [30]). Similarly, the endpoints of a confidence interval for the Talay-
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A 0.47 0.3133 0.2350 0.1567 0.1175 0.0588 0.0294 0.0147 0.0073 0.0037
N 20 30 40 60 80 160 320 640 1280 2560

€1 (A) 2.6799 1.9188 1.4931 1.0361 0.7959 0.4139 0.2113 0.1071 0.0533  0.0269
10*E; (A)  6.5405 7.2363 7.5933 7.9575 8.1427 8.4283 8.5746 8.65 8.6865  8.7062

€2 (A) 1.1120 0.3788 0.3078 0.1542 0.0967 0.0312 0.0100 0.0036 0.00085 0.00079
10*Ep (A)  9.7197  9.5701 9.4686 9.1625 9.0110 8.8164 8.7623 8.7451 8.7356  8.7309

Table 2.1: Errors (2.6) and (2.7) appearing in the computation of E <XTj,aTaXTj> with X§° = eg
and d = 50, by using Scheme 1 and the Talay-Tubaro extrapolation of Scheme 1. Here, T; = 0.94 j
with j =0,1,...,10.

Tubaro approximation 2E <g0 <Y2 N; (?))) —E (gp (?Nj (7’))) at the approximate confidence
level 90 % are 7 Zk 1 (2(,0 ( ) (A]\k,] (7’))) + EJ (A), where EJ} (A) is equal to
1.65 [ 1 & ko - 2 (1 d e - AN
2 (o (78, 0) - (3, 0)) = (532 (20 (585, ) - o (7, )
Table 2.1 also presents the values of
E,(A) = max EJ(A) (2.8)

§=0,1,...,10

with £ =1, 2.

According to Figure 2.2 and Table 2.1, we have that the extrapolation method, given
by Corollary 2.3.1, improves the accuracy of Scheme 1. Applying a non-linear regression
analysis, we find that the estimated convergence rates of the errors €; and ey are 0.88054
and 2.073, respectively, in good agreement with Theorem 2.3.1 and Corollary 2.3.1. This
motivates to apply the Talay-Tubaro extrapolation procedure in the numerical simulation of

open quantum systems.

2.4.3 Multilevel Monte Carlo method

We calculate E <XT],, ata XTJ.> by sampling Scheme 1 with the Multilevel Monte Carlo method

(MLMC), where j = 1,...,10. Let <Yng> denote Scheme 1 with constant step-size
n=0,...,Ny

Tnt1 — Tn = T10/Ng, where N, = 2!Ny. We take Ny = 20, and so the step-size of the level 0
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Tol 0.1 0.05 0.01 0.005

€3 0.0976 0.0619 0.0132 0.0053

L 7 8 11 11
Total number of steps  1.1335-107 2.2894 - 107 4.6357 - 10®  1.6346 - 10°

& (T/Np_s) 0.1165 0.0474 0.0309 0.0181

& (T/Np—1) 0.0766 0.0996 0.0234 0.0361

& (T/Ny) 0.1092 0.0766 0.0456 0.0361

Table 2.2: Errors appearing in the computation of E <XT]., ala XT],> with X§° = eg and d = 50 by
using the Multilevel Monte Carlo method with starting step-size 0.47.

is equal to 9.4/20 = 0.47. Since Tyer1; = 27 j L2 = 0.94 7,

1020F1
L
By (X1,) ~ By (Yarnsn) =B (Vaso) + 3 (B (Voorse) — Bop (Yaryen ))
=1
1 My L 1 M,
~ Or-u,0 Sru,l Cru,l
~ M, 2~ (YzypO> + Z M, Z (90 <Y2@+1aye> — 7 (Yﬂ%f—l)) ’
u=1 (=1 u=1
where j = 1,...,10, and }72“]77%, (%szlj,ﬁ’%ifé—1> are independent random variables dis-

tributed according to the laws of Vs .05 (YQEJrlj,g,}A/Qéjj_l), respectively. We automatically
adjust the parameters L, My,..., M by using the MLMC described in Section 3 of [28],
with the Euler-Maruyama scheme replaced by Scheme 1. We define the cost function at level
¢ with ¢ > 1 (resp. £ = 0) to be the number of steps taken by Y., and Y.,_; (resp. Y.,).
Table 2.2 provides the error €3 defined by

1 ol oru,0 - 1 o O, o,
0%5%)1(0 E (<P (XTJ>) - ﬁo ; ¥ (Y;Lj,o> - — E ; (()0 (Y’;’Jrlj’g) — ¢ (Y;Z;"g_1>> ‘ )

together with the total number of steps taken by Scheme 1, which is equal to My N +

i;ol (My + Mj.1) Np. Moreover, Table 2.2 presents the error € (T'/N;) obtained by us-
ing the same total number of steps taken by Scheme 1 in the MLMC, i.e., by sampling
(MLNL + Zﬁ;& (Mg + Myyq) Nk> /Np-times Scheme 1 with step-size T19/Ny. According to
Table 2.2 we have that the MLMC achieves the global error specified by the user. To this
end, the MLMC finds the appropriate number of levels L and sample-sizes M,.
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A 0.47 0.3133 0.2350 0.1567  0.1175  0.0588  0.0294  0.0147 0.0073
N 20 30 40 60 80 160 320 640 1280

e (A) 1.11 0.3641 0.3062  0.1491  0.1055  0.042 0.0136  0.0119 0.0057

es (A) 47456  8.8647 13.3929 21.9222 30.0058 44.0654 44.0172 0.1577 0.0362

Table 2.3: Errors appearing in the computation of E <XTj,aTaXTj> with X§° = e, d = 50, and
T; =0.94j with j =0,1,...,10. We use the Talay-Tubaro extrapolation of Scheme 1 (e3(A)), and
the QuTiP library (4 (A)).

2.4.4 The QuTip toolbox

In this section we compute E <XTJ., aTaXTj> using the current version of the open-source soft-
ware Quantum Toolboz in Python (see, e.g., [47]). We use version 4.7.1 of the QuTiP library,
which can be found at https://qutip.org. We solve (2.1) using the QuTiP routine ssesolve
with the solver option ‘platen’, as we present in Code 2.3. Thus, we run an implementation of
the stochastic Runge-Kutta method stated in the equation (7.47) of [11], which was designed
by Platen (see, e.g., [56] for a version of this scheme that achieves the second weak order of

convergence for globally Lipschitz real SDEs).

In Table 2.3 we compare the Talay-Tubaro extrapolation of Scheme 1 with the QuTiP
function ssesolve. We restrict the sample-size to 4-10° and the step-size to 9.4/1280, because
the intensive memory usage of Code 2.3 results in the Pyton reboot in more computationally
demanding cases (we use a computer with an Intel Xeon E5-2699 v4 (44) processor and 64
GB of RAM). In Table 2.3, €4 (A) is defined by (2.6) with - S e (Y;}VJ (%)) replaced
by the expectation values provided by Code 2.3. As in Table 2.1, the error e; (A) is given
by (2.7). The highest estimated deviation of the values of €; (A) presented in Table 2.3 is
maxa Es (A) = 0.0153, where E; (A) is given by (2.8).

According to Table 2.3 we have that the method given by Corollary 2.3.1 outperforms
the QuTiP function ssesolve in terms of accuracy. In this example, Table 2.3 suggests that
the stochastic Runge-Kutta method designed by Platen shows numerical instabilities when
A > 0.0294.
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from qutip import *

import numpy as np

if __name__ == ’__main__"’:

Set the Hamiltonian H

= 50

= destroy(d+1)

= 1jx(a.dag() - a) + a.dag(O)* a

==R Ao R |

# Set the initial state

x0 = np.zeros ([d+1,1])

x0[5] =1

State0 = Qobj(x0) # Initial state.

# Set the uniform time discretization of [0,T]
T = 9.4

N = 1280

times = np.linspace(0.0, T, N+1)

# Set the stochastic colapse operators L_k
sc_ops = [0.2xa, 0.0l1*axa, O.l*a.dag()*a, O0.1*xa.dag()]

e_ops = [a.dag()*a] # Number operator

ntraj = int (0.4*1e5) # Number of trajectories

num_cpus = 22 # Number of cpus used by ssesolve function.

Data = ssesolve( H, StateO, times, sc_ops= sc_ops,
e_ops=e_ops, method="homodyne", solver=’platen’,
ntraj=ntraj, map_func=parallel_map,
map_kwargs={’num_cpus’ : num_cpusl})

Figure 2.3: The Python module that computes E <XT]. , aTaXT].> using the routine ssesolve of QuTiP
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2.5 Proofs

2.5.1 Preliminaries

For completeness, we present the extension of two classical theorems to the framework of the
Wirtinger calculus. For instance, the following Taylor’s formula is used in complex-valued

signal processing.

Theorem 2.5.1. Suppose that f € WC* (Cd, C) with k € C. Let 2y, 2 € C*. Then

flootz)= > 0°f(z) —+/<:Za'/ (1= "0 (o +tz)dt.  (2.9)

o] <k—1 ’ lo]=k

Proof. Using the chain rule for Wirtinger’s derivatives (see, e.g., [48, 84]) we get

—f zo+tz)= 280‘ (20 +t2)2

laf=1

and so f (20 + 2) = f (20) + 2 j0j=1 2 fol 0% f (29 +t z) dt. Asin the derivation of the classical
Taylor’s formula, using induction and applying integration by parts formula we obtain the

theorem. ]

Applying (2.3) gives

1 0? 0? i 0? 0?
0. - — — = + , 2.10a
| (&Uj xp 0y yk) 4 <8mj Y 0y, xk) ( )
1 0? 0? i 0? 0?
O = — 4+ = < + ) , 2.10b
R4 (ain e Oyj ykz) 4 \O0xjyr  Oyj g ( )
1 0? 0? ) i ( 02 0? )
Oyzr = — + + - — : 2.10c
7 4 (8@ . O0Y; Yk 4 \Oxjyr, Oy, ( )

The following It6 formula for complex-valued semimartingales has been used in the study of

conformal martingales.

Theorem 2.5.2. Let Z; = (Ztl, N Zf) with ZF = XF+1Y[F, where XF, Y are continuous
real semimartingales. Assume that f € WC™? ([to, T] x C*,C). Then, for all t € [toy, T] we
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have

f(t, Z) =f (to, Zs,) /at f(s,Z) ds+ /azkst )dzZ*
to+

—|—Z/ %f S, Z dZ ‘|—— Z azjzkf(sﬂzs)d[zj7zk}s

G k=1 to+

W1 Z / O=:f (5, 2.)d | 27, 77|
2 to+
d t

+Z/to+azjzkf(s,zs)d[zjﬁ} .

s
7,k=1

S

Proof. Applying the It6 formula to (¢, X;,Y;) — f (¢, X; +1Y;) we get

F.2) = £z + [ 0f (s 2)ds+ Y / L (s 20 dXE
0+

to

k=
LN e, 1 02 —_—
+ / —f(s,Z5)dY + - f(s,Zy)d | X7, X
S [ szt 3 [ G2z
1L [t o2 -
4o / F(s, Z)dYIY
2]’,%;1 to+ 0Y5 Yr ( ) [ ]S
d t 82 ) .
+ / J(s,Zs)d | X7, Y],
J',k‘zzl to+ 0% Y | ! L

where X; = Re (Z;) and Y; = Im (Z;) (see, e.g, [83, 85]). Replacing X/ and Y,* by (Zf + Zf) /2

and i (Zé — Z!) /2, respectively, we obtain the desire formula after basic algebraic manipu-

lations involving (2.3) and (2.10). O

2.5.2 Proof of Lemma 2.3.1

Proof. Let

Vier = Yot g (7, Vo) Au + /A Zak (7 ¥2)) €611 (2.11)



Chapter 2. Rate of convergence of an exponential scheme for the non-linear stochastic
Schrodinger equation with finite-dimensional state space 48

Since Re(z, 0y, (s, 2)) = 0 whenever ||z|| = 1, using ||Y,|| = 1 yields
. . . JANLN .
Re(Va, Vat) = 1+ AuRe(Vo,g (7, V2 )) = 14 55 37 Re* (Vo Li (7) Vo).
k=1
Therefore, Re(Y,,, }7”+1> > 1, and so Y,,1 # 0. This gives eC0mAnY, | =£ 0, O

2.5.3 Proof of Theorem 2.3.1
2.5.3.1 Asymptotic behavior of Scheme 1

In Scheme 1 the preliminary approximation Y, ,; is projected onto the unit sphere. The

following lemma allows us to treat theoretically the singularity at 0 of the function z — 2/ ||2]|.

Lemma 2.5.1. For any non-zero z € C* we have

3
e (e - S 1 < g

Proof. Let r > 0. Since

1 1 1—r2?% /1 1
LS S Ui + !
r 2 27 I+r  (1+7)

(see, e.g., proof of Lemma 5.4 of [78]),

1 1 3 s (1—12) 1 1 3
Sl (1= =2 (1-r¥)"= - 2.
r =) -5 =) 2 \r(+n) ratr? 4
This gives
1 1 3 1—72)° [ 6+3 2
Loy Loy 3oyl T)( oy Q.
r 2 8 8r (1+r) (1+7")

Applying elementary calculus, we get (6 +37)/(1+7)° 42/ (1+7)* < 8. Hence, taking
r=||z| yields

3
IS

1 1 2 3 2\ 2
] ey g
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and the lemma follows. O

Next, we study the short-time asymptotic behavior of ||Y,,41]|.
Notation 1. By &, we mean the o-algebra generated by Yo. For a gwen discretization

-----

=1,...

E([Onnal” ] 6,) < K, (T)  ¥n=0,...,N -1,

for any p € N, where K, (-) > 0 is a nonnegative increasing function that does not depends

.....

some moments of the £¥’s, and the supremum on [0,T] of |G (t)|| and || L (s)]|-

Lemma 2.5.2. Assume that H, Ly : [0,T] — C%< are continuous. Consider (Yn)nzl,,,,N

~ N

defined by Scheme 1, and set G, = G(7,,), gn = 9(Tn, Yn), and o, = 0%(Tn, Yn). Then,

||YN+1||2 _ 1 = An <Z ||O-k’,n||2 (( T]§+1) - 1) + Z<O-j7n7 O-k,n>€7‘1+1§7]2+1)
k=1

i#k
+ 28323 (Re(Ya, (G + G3) k) + Relgn, 01n) ) i
k=1

+ A2 (HGnYn

2 N ~ ~
L 2Re(T, (G + G ga) + Re(G2T,, Vi) + ||gn||2)

m 9 . A
+ AEL (Z 2Re<Gn0k7na Uk,n) (€§+1) + Z<Uj’"’ (Gn + Gn) O-k,n>§]1+1§,]i+1>
k=1 Jj#k

3

+ 20723 (Re(GaYo, Guin) + Relgn, (Gu+ Ga) o)) €61

k=1

+ AV Re((Gr + (G1)") Yas 0n)hin + Onni A,

k=1

where the sum over j # k means the sum over all j,k =1,... ,m with j # k.

Proof. Since

Yi1 = (1 + G, + %GiAi +0 (A;”;)) (Yn + gnln+ VALY ak,n£Z+1> :
k=1
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1Y

~ 112 ~ N ~
_ ‘(1 + G Yol + 28, Re((I 4+ GoA) Vi, (I 4+ GodAy) gn) + A2 Re(Y,, G2Y,,)

+ 3 2V ARe((T+ Gnldy) Vo, (I + Grldn) )by, + A3 Z Re (Yo, Gaokn)h

k=1
+AL(I+GuA,) gnH2 + Z 2A2/2 Re((I + GnAn) gn, (I + GnAy) 0k,n>§£+1
k=1
m 2 m
+ AL D T+ Goln) okn G| + AN Re(GrY,, 04n)Eh sy + Onia A
k=1 =

More precisely, here the random variable O, ;1 is equal to
Re(Y,, G%g,) + Z Re(opp, G2opn) (E5.1)? + 2Re(g, + G WY, = GQY + Gngn)
k=1

‘f‘QZHG Ukn” n+1) +A1/22Re Ukn7Gngn> n+1
k=1

: i Loy
+ AL (Z Re{gn + Gu¥o, Grokn)enin + ) 2Re(Gronn, 5GoYa + Gngn>€5+1>

k=1 k=1

. i 1 .-
+A, (Re(gn + GoYn, Gaga) + Y Re(Gropn, Grown) (6h,)* +2 H§GiYn + Gun
k=1

2)
m m 1 ~
n Ai/Q (Z Re(G o, Gign>f§+1 + Z Re(§GiYn + Gngn, Gi%,n)fﬁﬂ)

k=1 k=1

1 ..

A5/2 Z Re G nOkn, GngTL) n+1

k=1

2
k
n

(S 29 (5o na Vi)

k=0

+ A3 HGngnH +
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Using Re(Y;,, 05.) = 0 and 2Re(Y;, G Yy + o) + S0, llokal” = 0 we obtain
2 > 12 2 Sk 2 ¥ *
Wil = ||+ a2 || Gu¥a||” + 222 Re(¥,, (G + G3) 90)
+2)° (Ag/ZRe<?n, (G + G=) pon) + AY?Re (G, Y, Gnak,n>) ¢
k=1
+ A2 (Re(G2Y0, o) + ll9all?) + A2 Y- Re{ (G2 4 (G2)) Yo 0a)hn
k=1
+2)  (AY2Re(gn, 0kn) + A Relgn, (Gu + G}) 0km)) £y
k=1
= 2 = 2
+ A okl (( ) — 1) + 202 "Re(Goin, okn) (E541)
k=1 k=1
+ Z (An<0j,m Okn) + A2(0jn, (Gn + G) Uk,n>) ££+1£5+1 + On1).
7k
As ||Y,|| = 1, collecting terms we get the lemma. O

Using Lemmata 2.5.1 and 2.5.2, together with careful algebraic manipulations, we estab-

lish the short-time asymptotic behavior of Ynﬂ.

Lemma 2.5.3. Let (ffn)

n=1...,

~ ~

are continuous, and choose G, = G(T,,), gn = 9(Tn, Yn), and oy, = 0k (70, Yn). Then,

be given by Scheme 1. Suppose that H, Ly, : [0,T] — C%*4
N

m 4
}A/n-i-l - Yn + (Gnifn + gn) An + V An Z O-k,ngrkz;-i-l + Z Ag—’_l)/QF]}nﬁ-l + On-‘rlAi) (212)

k=1 Jj=1

..........

1 (& , |
F17n+1 = §€GnAnYn (Z ||O-k,n||2 (1 - ( 7’;3+1) ) - Z(Uj,nagk‘,n>fgz+1€'rli+l> 3
k=1

JF#k
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Fopnr = ZG Uknfnﬂ eCnin ZUMHUIMLH (( n-H) - ) £+1

{,k=1

< —|— G:L) Uk,n> + Re<gn7 Uk,n>> é-l;Jrl

Eqs

1

4
g Ot UJ n; Okn €n+1€n+1£n+17
£k

[\D|’—‘
“Msw

and

1 A oom
F3,n+1 - Gn In + §G31Yn - eGnAnYn Z Re<G”0k:n7 Jk7n> (524-1)2

k=1

=<

2
(Z o, n|| < n+1> - 1> + Z(Uj,nagk,n>ffi+1€§+l>

j#k

Gy (‘

i (Z (Tjms (G + G3) 01n)) € 416841 + N9l
J#k

<Zuomn ((ghn)*~ )+Z<aj,n,ak,n>5£;+lgs+l>

i#k

(V. (G + G*) gr) + Re(G2Y,, m)

wl»—t [\DI»—* Ooloo

— Gnfin Z <Re<Yn, (Gn + G Okn) + Re(gn, 0k,n>) Tonéniinr-
koi=1

Proof. Using
Y1 = (1 + G, + %GiAfL +0 (Af;)) (ffn + gl + VA, Em: ak,n£§+l) :
P
gives
Vier =V o A (GaVo 4 90) + V/Bs i Oknbnsr + A/ i Grknérp

LAz (Gngn+ Loy, )+ A5/ZZG%M£W+OWA
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Applying Lemma 2.5.2 we obtain

2
(Yo l* = 1)
m 2
2 .
= O A + A2 (Z lonall® ((654)" = 1) + D405 Oka) i )
k=1 j#k
5/2 - 2 % % E\2 ¢
432 ol (Re(Va, (G + G ) + Relgn, oen) )((6511)" = 1) €
k=1
+ 4A2/2 ZZ(Uj,m Uk,n><Re<Yna (Grn + G,) o0n) + Re(gn, U€,n>> gz-s-l Z+1££+1'
j£k =1

Since

Yn+1 = (] +0 (An)) (an + gnAn + V An Z Uk,nff;-‘,—l) )
k=1

Yo (1= [Yaid|P)

m 2
- On—HAi + YnAfL (Z ||0'k,nH2 <(€ﬁ+1)2 - 1) + Z<Uj,n7 Uk,n>§7i+1§z+1>

k=1 j#k

+ 4}Aanfl/2 Z ||<7k,7n||2 (Re(ffn, (Gn+ G}) 00) + Re(gn, 047n>> ((5S+1)2 — 1) £+1

k=1
T+ AVLAY2 S (i k) (Re(Fas (G + Go) Gn) + Re{gn, 0en) ) Err €€
j#k 0=1

Using Lemma 2.5.2, together with

k=1
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94

we get
(Y ll* = 1) Yo

= AneG”A"Y (Z ||Uk n|| (( n+1)2 - 1) + Z(Uj,n»akmﬁiﬂ ZH)

k=1 £k

+ 273 2eCnbny, Z (Re(ffn, (G, + G}) 0kn) + Re(gn, 0k7n>> &
k=1
2
8823 oy o ((€50)7 - 1) €
k=1

m
3/2 Gnln gk et
+ An/ (& ZZO'Z,n<0-j,n70-k,n>€%+1€n+l n+1

(=1 j#k

+ AieG”A”Yn <

2 GnAny
+ Aze Y,

i

[(\)
NE

1 j#k

(5"~ 1) + Sl

1 j#k

+ AieG”A” In

i

frgs

L 2AZ G

= 7=
NE

x>

1

N
k

Il
—_

Ms

+ 20820 g, (Re(Y (G + G3) 01n) + Relga, 1)) 6.

(les

T A2

||M3

14

+ Af/ 2Gnfn

NgE

k=1

m
+A5/2 Gnln Zzam Ojn, (Gn+G}) Uk,n))ffwl 7’i+1 £L+1
(=1 j#k

+ AzﬂeG"A"ffn Z Re((Gi + (GZ)Q) }A/n; Uk,n>§rli+1 + On-l—lA?z'
k=1

(T (G + G2) g} + Re(G2T, T2 + [lgn )

Re<Gn0k,n7 Uk,n) (§5+1)2 + Z (<Uj,n7 (Gn + G:L) Uk,n>) gngrlng»l

(Re (¥, (G + G3) 01n) + Relgu, 0kn) ) Ttn€hy6hnn

(Re(Go¥a, Goin) + Relg, (Go+ G onn) ) €51

(Vo (G + G2 ga) + ||gn||2) oot

(Z 2R€<G Ok, Uk,n> (fﬁ+1)2 + Re(Giffm Yn>> Ué,n££+1

)
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From Lemma 2.5.2 it follows that ||V, 1]> =1 = On41A,, and hence (||Yn+1||2 - 1)3 =
0,123, According to Lemma 2.3.1 we have that Y;,,; # 0, and so applying Lemma 2.5.1

yields

3 2
= (1= [[Yaral?) + g Vot (1= [[Yosa|?)” + OnyaA3. (2.13)

Y.
2

Yn—l—l - Yn+

In (2.13) we collect the terms with coefficients Ay UTD/2 50 the asymptotic development of
Yor1, Your (1= || You| )/2 and 3Y, 11 (1 — [|Yu1]| ) /8, where j = 1,...,4. This yields
(2.12) with

—_

Tyt = 3 Z Soy, nan Z (Re (G WY, Goy, n) + Relgn, (G, + G, )ak7n>) £§+1
k=1

k=1

(Rem, (G + G2) On) + Relgn, o) ) €6

(T (G + C2) ) + HgnHQ) Gl

e
D
2
l>
VRV
VN

1 - -
- _eGnAn (Z 2Re<Gn0-k,n’ Jk,n> (554-1)2 + Re<GiYna Yn>> 04,n§fz+1
=1 \k=1
1 “ . ,
- §€GnAn Z Z 0o ((Ojn, (Gn + G,) Okn)) §i+1§7’i+1 fL+1
=1 j;ék
1 N
—5e eCnd ZRe (G +(G2)?) Yo, 0km) o
3 “ . 2
# 5% 2 ol (Re(Va, (G + i) 91 + Relgn,oen)) ((€50)" = 1) €b
L3y - \
5 Z Z Tjns Okn <Re(Y (Gn + GL,) 0en) + Re{gn, UE,n)) Eniibniini:
ik =1
Since the distribution of the £¥’s is symmetric about 0, E ('y,,41 | &,) = 0. O

2.5.3.2 Localization procedure

We will associate (2.1) with a globally Lipschitz SDE whose coefficients coincide with the
drift and diffusion coefficients of (2.1) in the (closed) unit ball. According to the smooth



Chapter 2. Rate of convergence of an exponential scheme for the non-linear stochastic
Schrodinger equation with finite-dimensional state space 56

Urysohn lemma we have that there exists a function p € C* (R, [0, 1]) such that p(r) = 1
for all » € [0,1], and p (r) = 0 whenever |r| > /2. Then, we set

p(z)=p(l-l?)  vzect

As a smooth cutoff function p we can take, for instance, p = x(_p4 * 0., Where x[_py is the
characteristic function of the ball centered at 0 with radius 1 < b < v/2, and o.(r) = 1 (r/€) /e
with 0 < € < min{b — 1,2 — b} and

nm:{ Cexp (57 ) ¢ st
0 if | >1

Here, C' is the normalizing constant of the the standard mollifier 7.

Since z — ||z||* belongs to WC* (C%,C), p e WC> (C4,C). In this section, we consider
the globally Lipschitz SDE

t m t
Z3 =(+ / a(r,Z3%) dr+) / by, (1, 27¢) dWy Yt e [s,T], (2.14)
s k=1Y%

with ¢ being §,-measurable,
a(t,z)=(G({t)z+g(t 2)p(2), and b, (t,2) = 0% (t,2) p(2), (2.15)

where g, G, o are as in (2.1) and Theorem 2.3.1. The solution of (2.14), with || Xo|| = 1,
satisfies || X¢|| = 1 for all ¢ € [0, T].Therefore, using the uniqueness of the solution to (2.14)
we deduce that ZP** = X, for all t € [s,T], because p(z) =1 for any ||z|| < 1.

Applying classical results on the real-valued Kolmogorov equations (see, e.g., [57, 73, 90,

92]) we study the complex-valued Kolmogorov equation associated to (2.14).

Proposition 2.5.1. Suppose that H, L, : [0,T] — C¥? are continuous functions. Let the
functions g, with 0 € ©, belong uniformly to WCH ((Cd, (C), where L € Z. Take

ug (s,2) =E(po (Z77)) Vs €[0,T],
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where Z3° is given by (2.14). Then, uy € WC};HL ([O,T] x C4, (C),
10%uqg (t, 2)] < Ko (T) (1+|2]]%) Vz € C* and Vt € [0,T] (2.16)
for any 0 € © and |a| <2+ L, and

Osug (5,2) = —Lug (s,2) ifs€[0,T] and z € C*
ug (T, z) = @9 (2) ifz€C

Y

where

ﬁzzaaau%ZZbg .

acPy (=1 a€P2

Moreover, for all o € Py, with k < L we have that 0,03y is a continuous function, and

0,0% 1y = —0*L (up) .

Proof. Throughout the proof, for every z € C? we define z' to be (Re(z),Im (z))T € R,
Then, the SDE (2.14) is equivalent to

=5+/ (nz:) dr+Z/be (rzet)awe  viels,),

where @ (r, 2) = a (r, 2) and by (r,2) = by (r, 2). Since
ug (s,2) = E(Re (o) (Z77)) + i E (Im (o) (Z77))

we consider

ug (s,2) = upt (s,2) +iup (s, 2), (2.17)

Ric 7\ — 5k I(e ) — 5t
where uy' (s, 2) = E(Re(pg)(Z77)), and uy(s, 2) = E(Im(pg)(Z57)). Here, by abuse of nota-
tion, f(2) = f (2).
Let f € WC? (C%,C). Replacing 9 f (z) by the right-hand side of (2.3) yields

d

f(w+iy)+ZIm(ak(t,z)) 8iykf($+iy)

U

Z a® (t,z)0%f (z) = ZRe (a* (t,2)) 8i:n'k
acPy k=1 k=1
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for all z = x + ¢y. Similarly, using (2.10) we obtain

d 2
Z bg (t,2)9°f (2) = Z Re (b) (t,2)) Re (bf (t,2)) 85 xkf (x+1y)
acPo Gk=1 j
d ' o2
+ MZI Im (b) (¢, 2)) Im (bﬁ? (t,2)) 0, ykf (x+iy)
d 2
+2%%Rq@@¢»mqw@¢»8%%f@+¢w.
Hence,
Li(:)=Ef(3), (219
where

Ef()=a(rn9) Y/ (D5

with H f (Z) being the Hessian matrix of f ().

Since a, by and all the partial derivatives of @, l;g (with respect to the state variables) are
continuous functions with compact support, classical results on Kolmogorov’s equation (see,
e.g., [57, 73, 90, 92]) ensure that: (i) uf, u} belong to Cp*™* ([0,T] x R* R), and for any
0 € © and |a] < 2+ L we have

max { ’8§u§ (t,2)

0%y (t,2)]} < Ko (T) (1 +112]*)
for all 7€ R and t € [0,T); (i) for all 7€ R and t € [0, 7], duul? (t,7) = —Lul? (t,7) and
Ol (t,2) = —Eué (t,7); and (iii) for any standard multi-index « satisfying |a| < L we have

that ,02ull, 9;02u} are continuous functions, and 8,0%ull = —82Luf, 8,0%ub = —92Lul.
Combining (ii), (2.17), and (2.18) yields

Oyug (t,2) = Oyug (t,2) = —Lug (t,7) = —Luy (L, 2) .

From (i) and (2.17) we obtain (2.16), and (iii) completes the proof.
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2.5.3.3 Proof of generalized version of Theorem 2.3.1
First, we compare the main conditional moments of the increments of Scheme 1 with those

of the Euler scheme. For this purpose, we apply Lemma 2.5.3.

Lemma 2.5.4. Let H, L, : [0,T] — C%9 be continuously differentiable functions. Let
(Yn)nzl_._vN be as in Scheme 1. Consider

~

Bl =Y+t (G (1) Vi 4 g <Tn, Yn)> st — 7o) + i O <Tn, An) (WE  —Wh).
k=1
Then, for any |a| < 5 there exist ¢, € WCE™ ([0,T] x C4,C) such that
E ((YW . f/n)a | qsn) _E ((E" - f/n)a | c5n) = ca (rn,ffn) A2 L E(Opyr | 8,) A
Proof. Since E((Sn +1)2) =1 and the distribution of £ is symmetric around 0,
E(M1n41]®n) =E[opns1 | 6,) =0.

Using Lemma 2.5.3 we get

E (Virr = Vo | 8,) = GV + 90) A+ E(Dypin | 8,) A2+ E(Oniy | 8,) A
because E (I'y 41 | ,) = 0. Hence,

T+1

E(YnH Y, | &, ) ]E(E" ¥, ®n> —E(Taps1 | ,) A2 + E (O, | &,) A3

Let |a] = 2. Then, o = o + g, with |ay| = |az| = 1. Lemma 2.5.3 leads to

E ((YnJrl - }A/n)a ‘ ®n> = (anfn + gn>a Ai + An Z (Ok,n)a
k=1

+ Aiz (Ug,lnE (an+1€7]§+1 | & ) + Ug E (an+1€n+1 | (’5n))
k=1

+E (I, | 6,) A2+ E(Opi1 | 8,) A
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Therefore,

()" 10) - 2((en, ) o)

= AZZ Ukn FSQn—Q—l n+1 | & ) + 01?2 E (F;lnﬂfsﬂ | QSn))

=1

+E ( st | 60) AL+ E (O | 8,) A

Assume that |a| = 3. Thus, @ = oy + as + as, with |a;| = |az| = |asz| = 1. Applying

Lemma 2.5.3 gives

N NN " ~ B
E((Vori—%) 16 =a2% 3 (Ghatg) (00)” (0ra)”
k=1 {B1,82,8s}={a1,a2,03}

m

2 k ;
- A” Z Z I (Ukn 12 Ff3n+15n+1 7J1+1 ’ @n)
k,j=1{p1,82,83}={a1,02,03}

+ E (On-‘rl | an) Ag

This yields

(1) 10) -5 (52, ) o)

m

a2y Y E(olertagha g | 8) HE (O | 6,) A
k,j=1{p1,62,03}={c1,a2,a3}

If |a| = 4, then

(1) e

) =E ((Z“knfnﬂ) (’5n> A2+ E(Oni1 | 6,) A

E ((E” - Y/n) | @n) FE (O, | 6,) A3

In case |a| = 5, from Lemma 2.5.3 we obtain

E ((ffnﬂ . Yn>a | esn) —E (O | &,) A3
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and so
E ((YM - Yn)a | @n) _E ((E’;W . ffn)a | ®n> —E(O,,, | 6,) A%
O

The following proposition is an extension of Theorem 2.3.1, which considers only one

function ¢y.

Proposition 2.5.2. Let the assumptions of Theorem 2.3.1 hold. If the functions pg, with
6 € O, belong uniformly to WCh ((Cd, C), then

sup [E (0 (X1)) = E (0 (V) ) | < K (7)

Sup max (Tas1 — Tn) -

n=1,...,

.....

Proof. We use the methodology introduced by Milstein and Talay that obtains the global
rate of weak convergence of the numerical schemes for SDEs by means of the Kolmogorov

equations. To this end, we define
ug (8,2) = E g (Z37) Vs €10,7T],

where z € C? and Z;* is the solution of (2.14). From the definition of (2.14) it follows that
7z = X, for all t € [0, 7] in case | Xy = 1. Therefore,

Eug (0, Xo) = E (ug (0, Xo) | Xo) = E g (Xr).

Since YO = Xy,

E oy (YN) —Ey (Xr) =Eug <T, N) — Eug (0, Xo)
—Eu (o, Ao) — By (0, Xo)
N-—1
+ (E Ug (Tn+1> Yn-i—l) - EU@ (Tn7 Yn))
n=0
N—-1
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where @ = wuy (Tn+1, EZLH) — Uy (Tn, Yn>,

A

n Y Y n
CI)Q = Ug (Tn—‘rl; Yn-l—l) — Ug <7—n+17 Yn) + Up (Tn—‘rly Yn) — Ug (Tn—f—la E7n+1) )

and .
E} = Y, + (G (Tn) Y, +g <7‘n, Yn>> (t —7,) + Zok <7’n, n) tk — Wfl)
k=1

for all ¢ € [7,, Tny1]. This gives

N—
Ego (V) — B (Xr)| < Z!M’fH!E@SD- (2.19)
n=0

By Proposition 2.5.1, ug € WC5 ([0, T] x C4, C). Combining Theorem 2.5.2 with Propo-

sition 2.5.1 we obtain

Tn+1 a
E (] | &,) = / E (%u (t, E}') + ETnyn (w) (t, E}) | 05”) dt

_ / E (=L () (6B + £, 5, () (LE}) | 6,) dt,

where

L.y = Z (Tn, )(9a + = Z Z by (Tn, n)

acPy E 1 aeP2
Combining (2.15) with ||§7n|| = 1 we deduce that b, <7’n, An) = oy (Tn, An> and a <7’n, An) =
G (1) Y, + g (Tn, Yn> Hence,

Emffn = Z (G (Tn) Y, +g (Tn, n)) Z Z oy (Tm An)

acPy E 1 a€Py

A

Since £Tnyn(u)(7'n,§>n) = L(u)(7,,Y,), applying first Theorem 2.5.2 and then Proposition
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2.5.1 we get
Tn+1
E(®7 | &,) / / u) (s, EY) + L7 (u) (s, EY) | &) dsdt

/ / £ 5, W) (s, B = 2£Tn,Yn(£(u))(5,E§)!@n)dsdt,

where

From (2.16) it follows that
E(®7 | &,)| < K (T)(Thps —)>  ¥n=0,...,N—1 (2.20)

for all 8 € ©.

We now turn to E®}. Since ug € WCH ([O, T] x C4, (C), applying Theorem 2.5.1 gives

Ug <Tn+17Yn+1> — Ug (Tn+17 ) Z Z —3 Ug (Tn+1, ) ()A/n-&-l - Yn) + Rn+1€ (Y/nﬂ)

k=1 aE'Pk

and
. 3 1 . .
wp (Tusr, BT ) —ug <¢n+l, Yn> =3 —ou (ml, Yn) (E: - Yn> R, (B ),

where
—k E ( A ) /1(1—t)k 1(9 U <7 { —|—t<Z—§ >>dt
n+10 o o 2 %0 | Intls In n .

According to (2.16) we have that

~

(ml,f/n +t (z - Yn))‘ <K@T) 1+ VeOn<N-1  (221)
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for any ¢ € [0,1], and |a| = 4. Therefore,
‘E (Rn+19 ( n+1> | & >

By Lemma 2.5.3, }Afnﬂ — }A/n = V/Tnt1 — TnOns1, which implies

5 (%) )

Combining (2.21) with the Cachy-Schwarz inequality for conditional expectations we obtain

<K1Y ‘E(( 1 — Y)a|e5n> .

|a|=4

< K(T) (Tapa — 7).

E (B (B, 60 <K (0) Y 2B (|(Br, %) [ llEs, ) T e.)

al
6n))1/2 <1+E (H " Hqu | ®n>)1/2

a|=4

(x|

<K (T) (Tn+1 - Tn) )

because E” -~ — Y, = Thi1 — 7uOny1. Then,

E(®} | 6,) Z g (71, )

=1 acP

K(T ) (Tnt1 — Tn)2 3

(s =32) = (B - 72) )

and so (2.21) implies

IE (08 | &,)] <K (T ZZ‘ (P =Ya) 100) —E((Br, - ¥) | &)

k=1 a€Py

+ K (T) (Tny1 — Tn)2 )

Lemma 2.5.4 leads to
E((Tar %) = (Fr - 7)1 @)

[E (25 | ,)] < K (T) (Tas — 7). (2.22)

< K(T) (o1 — Tn)2 .

Hence,
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Combining (2.19), (2.20) and (2.22) we obtain the desired result. O

Remark 2.5.1. In the proof of Proposition 2.5.2 we obtain that the rate of convergence of
E(po(Yn)) to E(py (X)) is equal to 1 for any reqularizing function p. On the other hand,
the constant K (T') obtained in the proof of Proposition 2.5.2 is not optimal, because depends

of p.

2.5.4 Proof of Theorem 2.3.2

Proof. For every z € C¢ we set
u(s,2) =Ep(Z37) Vs e[0,T],

where Z77 is the solution of (2.14). Proceeding as in the proof of Proposition 2.5.2 we obtain
that

N—1
E¢ (Yv) —E¢(Xr) = Y (E(@}) +E(2})),
n=0
where
Tn+1
E (27| &) / / u) (s, EM) + L2 (u) (s, ET) | &,,) ds dt
Tn+1
/ / Tn Yn (S E”) 2 ‘CT,“}A/" (E (U)) (Sa Eg) | an) ds dt,
and

~

q)g = U <Tn+17}>n+l) —Uu <Tn+1,Yn) +u <Tn+1,Yn> —Uu (Tn+1, E;_ln_’_l) .

According to Proposition 2.5.1 we have that u € WC};Q ([0, T] x C4, C). By applying first
Theorem 2.5.2 and then Proposition 2.5.1 we obtain

1 R Tn41 t s
E (27 | G5n)=§<rn+1—m>2¢fl (Tn,Yn) + / / / E (Uy,, (r, E") | &,,) drds dt,
where

Uy (s,2) = =Ly (u) (s,2) + L% (u) (s,2) + ﬁg,z (w) (8,2) =2 L. (L(w))(s,2),
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and

Wy =2L1L(u) =Ly (u) —3L, 3 L1(u) — 3£3n v £(u) + Ein g (u)+3 ETnynEQ (u)
+ LLy (u) — L3 (u)

with

o= () 2 I ()

a€ePy (=1 a€P2

Combining u € WC3’ ([0, T] x C%,C) with ||Y,|| = 1 gives

< K (T)A?, (2.23)

1
E@116,)—  (ruvs =l i (. 12)

where A, = T,,01 — Tp-

Theorem 2.5.1 leads to

S () () () e ()

k= laE'Pk
- R?H—l (E:}nle) )
where
() s
RIS S8 o) N RS PO ARS Y
0

|al=k

An analysis similar to that in the proof of Proposition 2.5.2 shows that

E (R (Vo) | ©4)

Applying Lemma 2.5.4 gives

+|E (R}, | &,)| < K (T)AS.

(E7.)

< K(T) A,

E(®% | 8,) — (The1 — Tn)2 25: otu (Tn+1, ffn> Ca (Tn, Yn>
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where ¢, € WC™ ([0,T] x C4,C). Since 0%u € WCp" ([0, T] x C%,C) for any |a| = 5,

E(@g’ | & ) Tn-‘rl Z Z _@a (Tna An) (TnaYn> < K(T) An
k=1 aEPk .
Then, using (2.23) yields
‘E ((P? + (I)g | an) - (Tn-i-l - Tn)2 v <Tna }A/n> S K (T> A?ﬂ

where

(¢, ):—\Ifl (t,2) +ZZ—'0’” (t,2)ca(t, 2).

k=1 a€Py,

Since ¥ € WC* ([0,T] x C4,C), the family {¥ (¢,-) : t € [0,T]} belongs uniformly to
WCH (Cd, C). Applying Proposition 2.5.2 we deduce that
‘]E (qf <Tn,ffn)) _E(V (Tn,xm))‘ < K(r,) max A;<K(T) max A,

7j=1,...,n—1 7j=1,..,.N

forallm=1,..., N. Hence,

n

IE (D] + ®F | &,,) — (Tu1 — 70) BV (7, X, )| < K (T) AL
As the first derivative of t — EW (¢, X;) is continuous we have

Tn+1
E (CI)? + (I)g | Q5n) - (Tn-‘rl - Tn)/ Ew (t, Xt) dt‘ S K (T) Ai

2.5.5 Proof of Theorem 2.3.3

Proof. Using Lemma 2.5.3 yields

m 2
?n—&-l = Yn + (Gnyn + gn) An + V An Z Uk,ngs-t,-l + Z A7(%]'—"_1)/2Fj,n-‘r1 + On-i—lA?Q—p

k=1 j=1
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and so
Vo1 — B  =Apl + Ai/QFZnH + On1AL,

where E7  is as in Lemma 2.5.4, and I'; ;.4 is given by Lemma 2.5.3. Therefore,

IE(‘

o (=2, 182

where (§;),5, stands for the filtration generated by W', ... , W™,

Counsider

A

Vi1 — EP

Tn+1

“ s) < K, (T) A2, (2.24)

and

‘ < K (T) A2, (2.25)

t m t
X :Yn—l—/ (G (s)Xg—i-g(S,Xg))ds%—Z/ oy (s, X™) dWF Vt € 10, T] .
Tn k=1YTn

Since ||Y,|| = 1 and || X?|| = 1, applying classical arguments yields

[E (X7, = B 18| < K (D) AL

Tn+1 Tn+1

and
B([xn,, - B 18n) < K, (1) A2

Tn4+1 Tn+1

(see, e.g., Section 1.1.5 of [70]). Then, using (2.24) and (2.25) yields

N 2q
(|, —You]150.) < 0y a2

and
|E (X0, = Va5 || < K (D a2,

Tn+1

The proof is completed by using an analysis similar to that in the proof of the fundamental
theorem on the mean-square order of convergence (see, e.g., [95] and Section 1.1 of [70]),
together with ||V, =1 and || X7| = 1. O



Chapter 3

Pathwise methods for the integration
of locally Lipschitz SDE with linear

multiplicative noise

3.1 Introduction

Stochastic Differential Equations (SDEs) [53, 83, 104] have become a fundamental tool for
the mathematical modeling of many phenomena in which noise plays an important role.
This is the case, for instance, in Biology [18, 62], Engineering [27, 88|, Physical sciences
[12, 20] and many other areas. In particular, SDEs are widely used for stochastic modeling
in epidemiology [3, 4, 71], where models based on SDEs are typically built by incorporating
randomness into deterministic models to obtain a better mathematical description of the
system [17, 51, 61, 93]. In general, no exact solution can be found for these stochastic equation
models. Therefore, numerical integration methods are essential for properly studying the
modeled phenomena.

Currently, a wide variety of stochastic numerical methods are available for the computa-
tional integration of stochastic systems, many of which have been motivated by the need to
integrate particular types of SDEs in applications [8, 13, 44, 68]. However, results on impor-
tant issues related to convergence, stability, and long-time behavior of widely used standard
methods are typically obtained assuming some restrictive assumptions that may not be satis-
fied by many SDEs. The standard literature in stochastic numerics concentrates on numerical

integrators for SDEs under the hypothesis of globally Lipschitz continuous coefficients, and

69
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when this condition is violated, the method can diverge and show a high instability, see
[49, 66, 70]. Therefore, these methods cannot be reliably applied to several epidemiological
models that do not meet these conditions. This is the case, for example, of the stochastic
SVIR epidemic model (3.15) describing a continuous vaccination strategy with environmental
noise effect, see [99]. These deficiencies have recently motivated the search for new numerical
methods for SDE with non global Lipschitz coefficients. As a result, sophisticated improve-
ments of standard integrators, including tamed versions of classic numerical schemes, have
been proposed for specific SDEs systems under less restrictive conditions. However, some
additional conditions (e.g. superlinearity growth, one-side Lipschitz, and global monotone
condition) must still be assumed to guarantee convergence. This can limit its use in specific
models, see for instance [41, 63, 78, 96] . The low performance of numerical approximations
becomes even more severe when the stochastic component significantly influences the dynam-
ics, particularly in cases involving multiplicative noise. These types of equations often appear
in epidemic models, see e.g., [5, 42, 102, 103] . Here, the simulation of the system can be
required on long-time intervals, thus it is desirable that the numerical integrator replicates, as
best as possible, the main long-term properties of the modeled system, even in the presence

of large random fluctuations.

This investigation proposes new numerical methods for effectively simulating non-globally
Lipschitz SDEs with linear multiplicative noise. In particular, we provide new pathwise nu-
merical approximation for the stochastic SVIR model (3.15) proposed in [99]. The key idea in
the derivation of the numerical integrators introduced in this investigation consists in finding
a continuous mapping that allows transforming the SDE defining the SVIR model into a
suitable Random Differential Equation (RDE) having an Ornstein-Uhlenbeck process as the
only random input parameter of the equation. In this way, the solution of the underlying
SDE can be numerically obtained by first computing a numerical approximation to the so-
lution of this auxiliary RDE and then performing an explicit inverse transformation to the
numerical map used to integrate the RDE. Based on this, two specific numerical schemes are
proposed in this work. Specifically, a numerical method based on an exponential method for
RDE, and the other based on the Heun method for RDE. The advantage of this approach is
that this conjugacy between the SDE and the auxiliary RDE essentially allows to devise inte-
grators without the need to assume global Lipschitz conditions. Remarkably, this framework
applyied to the stochastic SVIR model presented in [99], allows to devise integrators capable

to outperform other extant integrators in the literature and able to approximate, with high
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stability, meaningful probabilistic features of the continuous system, including its stationary
distribution and ergodicity.

This chapter is organized as follows: Section 3.2 presents the approach we have adopted
to devise pathwise numerical approximations for SDEs with linear multiplicative noise, along
with proposing two new numerical schemes. In Section 3.3, we introduce the stochastic
SVIR model and describe its main properties. Furthermore, we provide a simulation study
to illustrate the practical performance of the methods introduced and conduct a comparative

analysis with conventional integrators for the SVIR model.

3.2 Numerical methods based on RDE for the integra-

tion of SDE with linear multiplicative noise

In this section, we first introduce an approach to construct an invertible continuous trans-
formation that allows us to express the solution of a SDE with linear multiplicative noise in
terms of the solution of a suitable RDE. We then utilize this conjugacy between the SDE

and the RDE to develop new pathwise numerical integrators for the original SDE.

3.2.1 Explicit conjugacy between SDEs and RDEs

Random differential equations, in contrast to SDEs, are a type of equations that can be
studied pathwise without the need for stochastic calculus in their formulation. Consequently,
deriving numerical methods for RDEs primarily relies on specialized tools from deterministic
calculus. This distinction allows for the design of numerical integrators for RDEs not subject
to the same restrictive convergence and stability conditions as those required for SDEs. This
aspect significantly motivates exploring an invertible transformation between non-globally
Lipschitz SDEs and RDEs.

Our focus is on autonomous SDEs with linear multiplicative noise. Specifically, we con-

sider the following autonomous SDE system:
dX} = b;(X;)dt + o X} dW{  t€[0,T), (3.1)

for i = 1,...,d, where the drift b : R — R? is smooth, W, is a d-dimentional standard

Brownian motion, zy € R? is the initial value, and o = (04,...,04)" € R? . To link the SDE
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(3.1) with a RDE, we use a continuous invertible map X; — ®(X;) =: ¥; depending on an
Ornstein-Uhlenbeck process U, by the relation

vi=e"X! t>0, (3.2)

where the Ornstein-Uhlenbeck process is given by

t t
U;':uo—/ U;’ds—/ o dW! t>0, (3.3)
0 0
forv=1,...,d. Thus, by Ito’s formula, we conclude that
Y =Y +/ eV XL dU! +/ e’s dX! +/ eV d[ X', U, + %/ Vs XU, U,
0 0 0 0
=Yy —/ eV XUl ds — ai/ eV XL dW? +/ eV b;i(X,) ds
T o
+ O'i/ eV XdW! — 0?/ eV X' ds + %03/ eV X' ds
0 0 0

t t
i+ [ ety ds— [ (U o) vias
0 0

where the initial value is Yy = e’ X, et denotes a vector with components eVi for i =
1,...,d, and b is the drift coefficient of (3.1). Hence, the auxiliary stochastic process Y; fulfill
the following RDE system:

dY;
- = F0LU) = (e77Y) = (Ui + 30%) Vi, >0, (3.4)
Now, we can numerically integrate equation (3.1) by using a numerical method for solving
the RDE (3.4). In fact, let us consider a uniform partition 0 =, < t; < ... <ty =T of the
time interval [0, T], with h = t,41 —t, < 1forn=0,..., N — 1, and a numerical integrator
Y,, for the RDE (3.4). In view of (3.4) we can construct the numerical approximation X, for
(3.1), defined by

Xi—e Uyl p=1,...,N, i=1,...,d (3.5)
where U, is a sample of the Ornstein-Uhlenbeck process (3.3) in ¢, and the starting value
U¢ is selected from the stationary distribution of the Ornstein-Uhlenbeck process (3.3), i.e.,

Ui ~N(0,02/2), fori=1,...,d.
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It is important to note that, since RDEs are analyzed pathwise by means of deterministic
calculus, the derivation of numerical methods for RDEs is essentially carried out with spe-
cialized tools from deterministic calculus, similar to how numerical methods for deterministic
equations are obtained. Therefore, convergence can typically be ensured by assuming a less
stringent local Lipschitz condition on the vector field of the equation (3.4) than the global
Lipschitz condition generally required for the convergence of numerical integrators for SDEs.
In the sequel, two numerical methods for solving (3.4) are considered and, based on them,

numerical schemes for the SDE (3.1) are proposed utilizing the strategy developed above.

3.2.2 Conjugated numerical methods

Based on the presented conjugacy between SDEs and RDEs, we propose new numerical
approximations for the SDE (3.1). This is achieved by numerically integrating the conjugated
RDE (3.4) using suitable numerical methods designed for RDEs. Specifically, we utilize a
local linearization scheme for RDEs and the Heun method for RDEs. Henceforth, we will
refer to these numerical approximations as conjugated methods.

Let Y,, be a numerical approximation for the auxiliary RDE (3.4), and let X, represent
the conjugated method for the SDE (3.1), which is obtained from the relationship described
by equation (3.5). We then observe that

X, — X, | =|e VY, —eVnY, |=e V|V, -V, |, n=1,...,N. (3.6)

Subsequently, the pathwise convergence of the conjugated method X, arises from the path-
wise convergence of Yy, given that e V! is bounded for all t < T'. Furthermore, the conjugated
method inherits the order of pathwise convergence from the RDE integrator.

However, over an extended period T', the quantity e~V has the potential to grow sig-
nificantly large, possibly compromising the accuracy of the approximation. To avert this
scenario, we initialize Uy with values drawn from the stationary distribution of the Ornstein-
Uhlenbeck process (3.3), specifically U§ ~ N(0,02/2) for i = 1,...,d. By adopting this
approach, each U} becomes a stationary Gaussian process, ensuring that

E (Utz) =0, and Var (Ut’) = %0-2 t>0.

77

Then, no matter how large ¢ is, the distribution of U; is very concentrated, and therefore
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Figure 3.1: Probabilities of bounding eVt by considering different bounds K and noise intensities
0.

there exists a constant K such that e=Ut

o

< K with high probability. In particular, 99.74% of
the distribution is bounded by e31/2, Here, the probability depends on the bound K = K (o).
To investigate this dependence, we note that for any K > 0,

P < K) =P (U] = ~log(K))
=P (U} <log(K))

:% <1+erf<\/§lo—§(K)>>.

where erf refers to the error function. Using this, we calculate the probability values obtained
for various bounds K and noise intensities 0;. The results are shown in Figure 3.1, revealing
that small values for the bound K emerge when the noise intensity is low. Notably, from
Figure 3.2, we observe that for any intensity noise o € [0, 5], there is an approximate 1/2
probability that e~V is bounded by values equal to or less than 1. Moreover, we also notice

that for any intensity noise o € [0, 5], there is an approximate 0.4 probability that e=Y* is
bounded by values equal to or less than 0.1.
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Figure 3.2: Probabilities of bounding e~ Ut by considering different bounds K < 1.01 and noise
intensities o; € [0, 5].

3.2.2.1 Conjugated Exponential Scheme

Among the numerical methods for RDE, the local linearization scheme proposed in [19]
emerges as a suitable option for reproducing the stability of the system. The capability
of local linearization schemes to reproduce the stability and dynamics of linear ODEs is
well-known and is also hold for RDE. Additionally, numerical simulations in [19] illustrate its
effectiveness even in equations with complicated noisy dynamics where conventional methods
fail. Therefore, the local linearization method becomes an appealing choice for numerically
solving the RDE system (3.4). Specifically, the local linearization method applied to the
RDE (3.4) yields to

h % A
n+l = Yn + / eJyf(Y"’Utn)(h_s)f(Yn’ Utn)dS
' (3.7)
" F(¥n,Uty, ) (h—s5) 3 Utir — Ut
+ e Juf(Yna Utn)TdeS,
0 0

where f is the vector field of the RDE, and J,f and J,f denote the Jacobian matrix of
f = f(y,u) with respect to y and u, respectively. According to [45], the iterative rule (3.7)
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can be computed by

~

Yo = Yn =+ Q(Yna Un; h)

where the vector g(Y,, Uy,; h) is defined by the block matrix

GOOA/mUn;h) Gl(?mUn;h) g(YnaUmh)

0 1 Go(Yy, Upi h) | = exp(hC),
0 0 1
with R . X
Ty f Ve, Un)  Juf (Yo, Uy, ) 2230 f(Y; UL
0 0 0

Therefore, from (3.4), we obtain the following numerical approximation for the SDE (3.1):

A~

Xpp1 =e Uy,

A

Yn+1 = Yn + Q(Ym Un7 h)a

(3.8)

Notice that the Jacobian matrices J, f(y,u) and J,f(y,u) in (3.2.2.1) can be computed

directly in terms of the Jacobian J,b(x) of the drift coefficient b of the SDE (3.1):

ob; , _., .
exp(u; — u])a— (6 y) ) i # J,
0%y, u) = " (39
ayj (%1 (e_u ) s — 0_12 i— i
a‘%z y (1 2 ) - .]7
and
ob; , _., ,
9 —exp(uz’—uj)?/ja— (e™y), ]
Ji () = v 3.10
B, W) = o (3.10)
J Uj —Uu K3 —Uu .
e“b; (e y)—yiax_(e y) — v, 1=,
where e denotes a vector with components e, for i = 1,...,d. Furthermore, from (3.9) and

(3.10), the computation of g does not require the numerical approximation Y,, of the auxiliary
RDE (3.4). Instead, g can be directly computed from Xn, U,i1, and U,. Thereafter, the
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numerical approximation (3.8) for the SDE (3.1) can be explicitly formulated as follows:

A~

Xn+1 = eiAUan + eiUn-Hg(Xna Un; h)> (311)

where AU,, = U,,1 — U,. Henceforth, we shall refer to the numerical method (3.11) as the

conjugated exponential scheme or the conjugated LL scheme.

3.2.2.2 Conjugated Heun Scheme

The Heun method for ODE is a multistep numerical approximation that is a Runge-Kutta
method characterized by its order of convergence of two. This numerical method was adapted
for RDE systems (see, e.g.,[32, 54]), performing a pathwise convergence error close to 1 for

smooth vector fields. In particular, the Heun method for the RDE system (3.4) is given by

Vucs = Vot 5 {100 0+ 004 BJ (Vo U, Ui} (312)

where f is the vector field of (3.4), and U, is a sample of the Ornstein-Uhlenbeck process
(3.3) in t,. From this, we can compute a numerical approximation for the SDE (3.1) as

X1 = e Unt1Y, . Specifically, from (3.4) we get an explicit formulation of (3.12),
¥% ¥ h U, Unt17, 2\ ¥
Yopr =Y, + E {6 "b, + e ", — (Un +Upq1 +0 ) Yn}

B2 2 2\
+3 <Un+1 + %) { <Un + %) Y, — eUnbn} :

where e denotes a vector with components eV, for i = 1,...,d, b, = b (e_U"Yn>,

b= b ({1 = h (U +02/2) } Y, 4 e Gt )

and b is the drift coefficient of (3.1). Hence, the conjugated Heun scheme for the SDE (3.1)

is given by

h2 - 0_2 0_2 R (313)
+ ?6 Al (Un—l—l + ?) {(Un + 7) Xn - bn} ;
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where AU,, = U,,1 — U,. Note that in the computation of b, and Z;n, it is unnecessary to
numerically approximate the auxiliary RDE (3.4). Instead, they can be directly computed
from X, Uns1, and U,. Specifically, b, = b(Xn) and

b= b ({1 = h (U +02/2) } X+ he om0, )

3.3 Pathwise numerical simulation for the stochastic
SVIR model

In this section, we address the numerical simulation of the stochastic SVIR model by employ-
ing the conjugated numerical approximations formulated in Section 3.2.1. First, we describe
the stochastic SVIR model. Subsequently, we conduct a simulation study to illustrate the

practical performance of the proposed methods.

3.3.1 The stochastic SVIR model

The basic compartmental model in epidemiology is the SIR model formulated by Kermack
and McKendrick [50]. Thenceforth, several models have been proposed [26, 43, 60, 98]. A very
remarkable adaptation of the SIR model which includes a continuous vaccination strategy

was proposed in [59]. This Model is described by the following system of ODEs

( dS
dt
dV

it =aS—0VI—(n+pV,

t (3.14)

dI
£:531+51VI—(’7+M)I,
dR
— = I — uR.

| NV 4+~ — R

Individuals are classified as susceptible, vaccinated, infected, or recovered, and their densities
in time t are S(t), V(t),1(t), and R(t) respectively. Because of the recovered population R
has no effect on the dynamics of S, V', and I, the system (3.14) is reduced to its three first
equations. Since (3.14) monitors human populations, this model is studied on the region
R: = {(@1, 22,3, 24) € R* : ; > 0, for all i = 1,2,3,4}, its parameters, described in Table

1, are positive and it is assumed that §; < . Moreover, the system (3.14) has a unique
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Parameters Description

0 Recruitment rate and natural death rate

« Vaccination rate

15} Disease transmission rate

o3t Disease transmission rate for vaccinees before obtaining immunity
vy Recovery rate of infected individuals

0%t Recovery rate of vaccinated individuals

Table 3.1: SVIR model parameters description

solution that remains on R?, for all ¢ > 0.
As long as the disease does not spread, the disease-free equilibrium always exists and can
be explicitly computed. However, when the disease spreads, the endemic equilibrium takes

on an implicit form. The basic reproductive ratio R§ given by

C: ﬁ/vb + ﬁl,uoc
O (ta)(pty) ()t a)(p+a)

is a threshold parameter that ensures that the SVIR Model’s disease-free equilibrium is
globally asymptotically stable if RS < 1. Meanwhile, the endemic equilibrium is globally
asymptotically stable if RS > 1.

In [99] was investigated the dynamic behavior of the SVIR model (3.14) in random en-
vironments. Equation (3.14) is stochastically perturbed with environmental white noise and
it is assumed that this perturbation is directly proportional to S(t), V(¢), I(t), and R(t),
yielding the stochastic SVIR model:

dS = (u— BSI — (a+ p)S) dt + o1.SdW},
dV = (OéS — BIVI — (’71 + M)V) dt + O'QVthQ, (315)
dI = (BST + BV I — (v + p)I) dt + o5 [dW?,

where o; > 0, for any i = 1,2, 3, and W} with i = 1,2, 3 are independent Brownian motions.
For this non-globally Lipschitz SDE system, several remarkable properties are established in
[99]. First, system (3.15) has a unique solution X = (S;, Vi, ;) € R3 for all ¢ > 0 almost
surely, provided an initial value (Sy, Vo, Iy) € Ri. This solution has the following asymptotic
properties ‘ '

X/ log X}

lim =X =0, a.s.; limsup
t—oo t—00

<0, a.s.,
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for all = 1,2,3, and, when p > maxy—;230%/2,
t

1 ) ,
lim — [ X{dW!=0, as. Vi=1,23.

t—oo t 0
Furthermore, two critical values can be introduced, namely,

Bu n B
(m+a)(p+y+03/2)  (p+7)(p+a)(p+y+03/2)

R; =

and

RS B
O (utat0l/2)(u+y +03/2)

i Pipa
(bt a+of/2)(p+7 +03/2)(n+a)(u+ v+ 03/2)

which determines the spread of the disease. On the first hand, under the assumption p >

maxy—1 2303 /2, it is proved that

log I, 2
lim sup Ogt; L < (,u-l—7+ ﬁ) (R — 1), a.s..

t—o00 2

This implies that the disease will die out with probability one whenever R§ < 1.

On the other hand, it has been proven that

L (ol (R— 1)
lim su —/ Ids > 3 0 , a.s.,
e e N R
where a; = Bu/(u + a+ 01/2),
Brpcr Bipc

by =

by =

(n+a+0i/2)*p+1+03/2) (n+a+03/2)(p+7 +03/2)%

i.e., the disease will prevail if RS > 1.

(3.16)

Furthermore, when Fzg > 1, system (3.15) has a unique stationary distribution, and its

solution is ergodic. It is important to note that Ry < R, so the effect of environmental noise

can suppress the outbreak of the epidemic. These results were tested by numerical simulation

using the Milstein scheme which, despite being a method devised to integrate systems under
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global Lipschitz conditions of the coefficients, it is commonly used for the study of stochastic
epidemiological models, see for instance [17, 42, 51, 100, 101, 103].

3.3.2 Numerical-simulation results

In this section, we will illustrate the practical performance of the conjugated methods in-
troduced in Sect. 3.2 through computer simulations. To accomplish this, we will conduct a
comparative analysis with the Milstein method, as it has been considered in the literature for
integrating the SVIR model [99]. Additionally, we will examine the Tamed Milstein schemes,
which represent a direct enhancement of the Milstein method for integrating SDEs under

non-globally Lipschitz assumptions.

3.3.2.1 Conjugated pathwise numerical approximation for the SVIR model

For the numerical simulation of the stochastic SVIR model, we utilize the conjugated pathwise
numerical method proposed in Section 3.2.1. Specifically, we apply the exponential scheme
(3.11) and the Heun scheme (3.13), considering the drift coefficient from (3.14), i.e.,

bi(x) = p— Brizs — (o + p)ay,
bo(x) = axl — Brzaws — (11 + p)ze, (3.17)
bg(SC) = 5.1’1563 + ﬁlxgﬂig — (’)/ + ,u)xg

From (3.9) and (3.10), we note that the only necessary input for computing the iterative rule

of the conjugated LL method (3.11) is the Jacobian matrix Jb. In particular, from (3.17),
the Jacobian matrix Jb for the drift coefficient of the stochastic SVIR model is given by

—Prs — (a+p) 0 —Pa
Jb(z) = « —pres — (71 + ) —B1xo
B prrs Bay + Pras — (v + p)

3.3.2.2 Numerical consideration

Let us set some quantities that will be considered, for comparison purposes in the numerical
experiments below. To assess the performance of the different integrators, we will measure the

average results using two metrics: the trajectory error (TE), which quantifies the accuracy of
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the approximation for a single trajectory, and the ergodic limit error (ELE), which measures
the accuracy of the approximation for the ergodic limit. In addition, we also measure the
relative results using the relative trajectory error (RTE) and the relative ergodic limit error
(RELE).

Let (t), = {t, : n = 0,1,..., N} be a uniform partition of the time interval [0, T
with stepsize h, defined as a sequence of times 0 = ¢ty < t; < ... < ty = T such that

h=ty1—ty,<1lforn=0,...,N—1. For a numerical approximation X = [S, V. I] to the
solution of (3.15), the TE is defined by

L T/h / 3 ) 1/2
TEX,T) =73 (Z X (b5 7) = Xt ) ) , (3.18)
k=1 =1

and the RTE for the components of X is given by

TIh | o A 2
1 h Xl(tlﬁx) _Xéxact<tk;'r)
RTE(X ’T) B T ; Xéxact(tk; iL') <319)

Here X'(ty; ) denotes the i-th component of the numerical approximation X, with initial
value X (0; ) = z, at time tj,. Similarly, X __,(tx;2) denotes the i-th component of the exact

solution of (3.15), with initial value X, (0; ) = x, at time .

On the other hand, the ELE is defined by

i=1

R 3 g A
ELE(p, X) = [ Y [¢(X) = 09Xl o) : (3.20)
and the RELE is given by

Soerg (XZ) — (perg (Xézpact)
gDerg (Xz

exact )

RELE(p,X") = i=1,2,3. (3.21)

Y

Here ¢9(X) is the ergodic limit, defined by

o) = [ pla)duta) = im Bo(X0)

for a smooth function ¢, where p(z) is the unique invariant measure of the ergodic process
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X [67]. This quantity can be approximated via Monte Carlo method by

P9 = Z ), (3.22)

where X™ for m = 1,..., M are independent simulated trajectories of X. Besides, the

ergodic limit ¢ 9(X) also can be approximated based on a single simulated trajectory of X

by
T/h

P9 = Z (X (kh; z) (3.23)

for a large value of T, provided that (3.15) is an ergodic system. Here ¢ (X p00) iS com-
puted by (3.23) for a long simulation time 7', where the reference exact solution X,,qc is
computed using the Tamed Milstein scheme with a finer stepsize hegaer = 2713, We will refer
to ELE(p, X) as Monte Carlo ELE when (3.20) is computed by mean of (3.22) and we will
call it trajectorial ELE when (3.20) is computed by means of (3.23). Analogously, We will
refer to RELE(yp, X) as Monte Carlo RELE when (3.21) is computed by means of (3.22),
and we will refer as trajectorial RELE when (3.21) is computed by means of (3.23).

To make the results of the simulation with each of the numerical methods and stepsizes
comparable, the trajectories computed with the methods must be generated from the same
Wiener realization. Consequently, the Wiener process paths and the Ornstein-Uhlenbeck
processes paths should be simultaneously generated from the same source of randomness.
For this, we use results from [22] to simulate each independent component of the Ornstein-

Uhlenbeck process (3.3) and the underlying Wiener process by

4 0
fz+1 =U, + [0 1} <M13 [1

T
Wz 1_Wl+PD1/2 [Nzn Nzn] ’

o) o i ]

for i = 1,2,3, where Nf” and /\/’2’” are independent samples from the standard normal
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distribution and the matrices P and D are given by PDPT = M, M|, where M satisfies

My Mg M
M=|0 - — |=ep(Ch),
0 0 —
with
BoA 0 0 1
C=1]0 —B" 0| € R®F B = ,and A= 7
0 -1 o; o2
0 0O O

3.3.2.3 Numerical Experiments

For the numerical tests below, based on example 1 in [99], we use the following parameters for
the SVIR system: =1, =15, a =15, f; = 10, v = 1.5, 74 = 0.4, and an initial value of
(S0, 1o, Vo) = (0.4,0.4,0.2). We then evaluate the performance of the numerical methods for
two possible scenarios that depend on the noise intensities o,: the free disease case and the
endemic one (see Sec. 3.3). For both cases, we calculate the relative trajectory errors (3.19).
Additionally, for the first case, we compute the value of lim sup,_, . log I;/t to evaluate if the
diseases free bound (3.16) is reproduced by the numerical integrators. For the second case,
we compute the Trajectory RELE (3.21)-(3.23) and MC RELE (3.21)-(3.22). From now on,
we say that the simulated trajectory is meaningful when the densities generated by S;, V,
and [, are positive, and S; +V; + I; < 1 for all simulation time ¢t € [0,T]. Otherwise, we refer

to it as a bad trajectory.

Case 1

We take noise magnitudes o1 = 03 = 03 = 0.825, so that p =1 > 0.3403 = maxj—; 3 0,3/2,

and

B Bipcr

B = (14 a)(p+v+03/2) " (A7) (o + @) + (4 + 03/2)

= 0.99021.

Therefore, the disease will die out in this case. For this disease free scenario, the simulations
were carried out in the interval [0, 10%]. The numerical results are presented in Table 3.2 and
Table 3.3, as well as in Figure 3.3 and Figure 3.4.

In Figure 3.3, are shown the TEs of the four numerical schemes for different stepsizes.



Chapter 3. Pathwise methods for the integration of locally Lipschitz SDE with linear

multiplicative noise 85

Scheme Individuals h =22 h=23 h=21 h=2° h=2F6

S - - 1.1599-10~2 1.6824-10=3 3.3999-10*%

Milstein 1% - - 4.2159-1073  7.3388-10"* 1.5996-10~*

I - - 9.5612-10"* 8.5973-10"! 3.5899-10!

S 3.5537-10"1 3.5537-10"T 1.1100-10~% 1.6638-10~° 3.3855-10*

T. Milstein \% 4.4040 9.4655-1072  4.0282-10"% 7.2640-10* 1.5934-10*

I 1.0024 9.9720-10"1 2.5315-10'  7.3266-10°  3.7205-10°

S 1.6400-10~2 5.3065-10~3 1.5885-10"% 4.2230-10~%* 1.0728-10*%

Exponential 1% 1.0836-1072 3.9868-1073 1.2641-10"3 3.5465-10"* 9.4673-10~°

I 9.9806 - 10~*  9.9744-10~' 9.9646-10~"' 9.9490-10~' 9.9180-10!

S - - 2.3738 103 4.3263-10~% 1.0244-10~4

Heun 1% - - 7.9706 - 10~* 1.5693-10~* 3.7338-107°

I - - 9.2981-10~" 7.2606-10~' 1.9437-10!

Table 3.2: RTFEs for the four numerical methods with different integration times h. Results have
been taken by a single trajectory with reference solution simulated by the Tamed Milstein scheme
with step-size h = 2713, The random variables used in the simulation of the numerical methods, for
the different step-size h, are taken by the same simulated trajectory of the random process used in
the reference solution

Detailed results can be found in Table 3.2, which provides the RTEs (3.19) for the same
simulation. From these results, we observe that all the numerical methods yield meaningful
trajectories for the time-steps h = 276 and h = 275. Of all of them, the Heun and Expo-
nential schemes exhibit the most accurate results. Despite the small error produced by the
numerical methods for the stepsize h = 27, only the Exponential scheme achieves meaning-
ful trajectories. Additionally, the Exponential scheme also computes meaningful trajectories
for the stepsize h = 273. In contrast, for h = 273,272, 27! the Milstein and Heun schemes
exhibit explosive trajectories, while the Tamed Milstein method yields negative densities or
violates the condition S;, + V;, + I;, < 1.

The erroneous results resulting from the Tamed Milstein scheme for the Infected density
I; are produced by the normalization involved in the RTE (3.19). This because the disease
does not spread out, and the numerical schemes do not converge at the same rate to zero.
This behavior is also shown by the other numerical schemes where different noise magnitudes
o are chosen. Besides, for this example, when we compute the trajectory error without
normalization, the Tamed Milstein scheme gives similar results to the Milstein scheme.

In Figure 3.4, are presented simulation results of the evolution of the densities S;, V;, and
I, for the different numerical methods with stepsize h = 273. Here, the exponential scheme
shows a meaningful trajectory, and the Milstein and Heun schemes show explosive trajectories

before t = 2.5. In addition, we observe that although the Tamed Milstein scheme provides
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Precision diagram for the TE
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Figure 3.3: Trajectory errors (TEs) of the numerical methods for Case 1, with Ry < 1, are
evaluated using different stepsizes h. In the simulations, the Tamed Milstein scheme with a stepsize
h = 2713 is used as the reference solution.
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Milstein scheme Tamed Milstein scheme
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Figure 3.4: A single trajectory of the evolution of the densities S, Vy, and I; simulated for the
Milstein, Tamed Milstein, Exponential, and Heun schemes, using an integration time h = 273,

bounded trajectories with regular dynamics, it gets meaningless values several times.

In table 3.3 the reproduction by the numerical schemes of the property (3.16) is tested.
To this end were simulated 10% trajectories for each of the different numerical methods and
computed the trajectory ¢ — log I;/t in the entire simulation interval [0,10%]. When the
upper bound is reached in times ¢t = 1000, 2500, 5000, 7500, 10000, we take the average
in the 10® independent trajectories. Here, all the trajectories were selected so as to ensure
that for given simulated random processes W and U, the trajectories obtained from the four

numerical methods are meaningful.

From table 3.3, we note that for the stepsize h = 27¢ and h = 277 all the trajectories
for the four methods show meaningful densities. However, For the stepsize h = 27* the
Milstein, the Tamed Milstein, and the Heun scheme show 121,19 and 10 bad trajectories,
respectively. In addition, we observe that for A = 273 the exponential scheme gives only
one bad trajectory and all of the 1000 trajectories match the upper bound. In contrast, for
h = 273, the other numerical methods do not achieve any meaningful trajectory. Even worst,

the Milstein scheme and Heun scheme have explosive behavior for all the trajectories.
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Scheme h t=1000 t=2500 ¢=5000 ¢=7500 ¢= 10000
2-6 0.709 0.641 0.618 0.604 0.579
Milstein 275 0.724 0.665 0.632 0.586 0.596
24 0.752 0.701 0.684 0.671 0.686
26 0.700 0.630 0.598 0.580 0.531
T. Milstein 272 0.707 0.634 0.571 0.519 0.525
24 0.714 0.636 0.566 0.538 0.535
26 0.910 0.938 0.976 0.988 0.994
Exponential 272 0.979 0.997 1.000 1.000 1.000
24 0.999 1.000 1.000 1.000 1.000
2-6 0.710 0.642 0.620 0.608 0.580
Heun 275 0.722 0.670 0.634 0.586 0.597
24 0.754 0.697 0.661 0.650 0.664

Table 3.3: Proportion of trajectories that fulfill the upper bound (3.16). Results are obtained from
the simulation of 103 independent meaningful trajectories

Case 2

For the endemic scenario, we take noise magnitudes o; = g9 = 03 = 0.625, so that y =1 >
0.1953 = maxg—1__30%/2, and

Bu n B
(H+a+o0/2)(p+v+03/2) (n+m0}/2)(n+a+03/2)+ (n+7+03/2)

= 1.0051.

Thereby, the disease will spread out in this case. For this scenario, the simulations were
carried out in the interval [0,10°]. The numerical results are summarized in Tables 3.4-3.6,
as well as in Figures 3.5-3.8.

In Figure 3.5, are shown the TEs of the four numerical schemes for different stepsizes.
Detailed results can be found in Table 3.4, which provides the RTEs (3.19) for the same
simulation. From these results, we observe that all the numerical methods yield meaningful
trajectories for h = 275 and h = 27°. Among them, the Heun method exhibits the most
accurate results. However, for the slightly larger h = 274, both the Milstein method and the
Tamed Milstein method fail to produce meaningful trajectories. In contrast, the methods
proposed in this work demonstrate good performance, with the Heun method yielding the
most accurate results. Additionally, we observe that for the stepsize h = 273, only the
exponential scheme computes significant densities. This pattern also occurs for h = 272 and
h = 27! although for these stepsizes, negative density values are encountered at certain
points in the time partition. It is worth noting that this behavior can be expected due to

the larger value of h. All the other methods yield adverse results in this case.
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Precision diagram for the TE
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Figure 3.5: Trajectory errors (TEs) of the numerical methods for Case 2, with R§ > 1, are
evaluated using different stepsizes h. In the simulations, the Tamed Milstein scheme with a stepsize

h = 2713 is used as the reference solution.

Scheme Individuals h=22 h=2"3 h=2"1 h=2"° h=2°6
S - - 6.5336- 103 9.6731-10~% 1.9643-10~*
Milstein 1% - - 2.3434-1073 4.1112-10~* 8.9752-107°
I - - 1.4412-10"2 3.7335-10"3 8.2579-10*
S 1.8073-107  2.6998-10~T 9.5983-10"3 9.5910-10-*% 1.9593 101
T. Milstein 1% 3.9202 7.1679-1072  2.2690-10~%  4.6605-10~* 9.0099 - 10~°
I 1.0026 1.7401 .10~ 2.1580-10"2 5.6254-10"3 1.1117-1073
S 7.7647-1073  3.1076-10~2 9.8935-10~% 2.6853-10~% 6.8702-107°
Exponential 1% 1.6388-1072 4.6673-10"3 1.6460-10"3 4.6605-10~* 1.1977-10~*
I 9.3508-10~'  6.6040-10~' 3.8426-10~' 1.9443-10"! 8.3732-10"2
S - - 1.3698 -10~2 2.5031-10~% 5.9304-10°
Heun 1% - - 4.5113-10~* 9.0506-107° 2.1682-107°
I - - 4.1470-1073 8.2586-10~* 1.8080-10~*

Table 3.4: RTEs for the four numerical methods with different integration times h. Results have
been taken by a single trajectory with reference solution simulated by the Tamed Milstein scheme
with step-size h = 2713, The random variables used in the simulation of the numerical methods, for
the different step-size h, are taken by the same simulated trajectory of the random process used in

the reference solution
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Figure 3.6: A single trajectory of the evolution of the densities S, Vy, and I; simulated for the
Milstein, Tamed Milstein, Exponential, and Heun schemes, using an integration time h = 273,

Figure 3.6 shows the simulation results of the evolution of the densities S;,V;, and I,
for the different numerical methods with stepsize h = 273. This clearly shows that the
exponential scheme produces a meaningful trajectory, while the Milstein and Heun schemes
give explosive trajectories in times ¢t = 70 and t = 6. We also note that, although the Tamed
Milstein scheme provides bounded trajectories with regular dynamics, the involved densities

get several meaningless values.

In Figure 3.7, we present the trajectorial ELEs for the functional p(x) = 22 of the four
numerical schemes using different stepsizes. Detailed results can be found in Table 3.5,
which provides the trajectorial RELEs (3.21) for the same simulation. From these results,
we observe that for the stepsizes h = 27, 275 274 the most accurate results are obtained
by the Heun scheme and the exponential scheme. In addition, we note that the exponential

scheme has a good performance even for h = 273,272 271,

In Figure 3.8, are shown the MC ELEs for the functional ¢(z) = 2% of the four numerical
schemes using different stepsizes. Detailed results can be found in Table 3.6, which provides
the MC RELEs (3.21) Here, the Monte Carlo simulations for the time steps h = 27, 275,
274 were performed with 10* independent trajectories simulated on the interval [0, 500]. All

the trajectories in the Monte Carlo simulations were selected ensuring that for the simulated
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Precision diagram for the trajectorial ELE
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Figure 3.7: Trajectorial ergodic limit errors (ELEs) of the four numerical methods with different
time-steps h. Results have been taken by a single trajectory with reference solution simulated by the

Tamed Milstein scheme with stepsize h

— 913

. The random variables used in the simulation of the

numerical methods, for the different time-steps h, are taken by the same simulated trajectory of the
random process used in the reference solution.

Scheme Individuals h=22 h=23 h=21 h=27° h=27°6
S, - - 1.4025-10~2 4.6483-10~2% 1.9770-1073
Milstein v - - 1.3367-1072 5.5448-10~2 2.5653 - 1073
I, - - 3.5185-10"2 1.3905-10"2 6.1128-1073
S, 1.5902-107  2.4997-10~1 1.3994-10-2 4.6867-10~3 1.9880- 103
T. Milstein Vi 3.0811 8.7237-1072 1.4787-1072 6.1537-1073 2.8484-1073
I 9.8497-10~' 1.8823-10"' 1.0262-10"2 3.0001-10"2 1.1339.-103
S 3.8741-1072 1.0224-10"2 8.9471-10~%* 9.3803-10~* 8.5324-10~*
Exponential v 1.0678-1072 1.2786-10~2 9.5170-103 5.8052-10"3 3.2129-1073
I, 9.4910-10~* 6.9907-10~' 4.5736-10~! 2.0988-10~' 1.4380-10""
Sy - - 3.3744-1073 8.3828-10~* 1.9850-10~*
Heun v - - 2.7725-1075 4.9906-107° 1.6254-107°
I; - - 1.1056 - 1072 2.8941-10"3 4.4879-10*

Table 3.5: Trajectory RELE with ¢(x)

= 22, for the four numerical method and different integra-
tion times. Results have been taken by the same simulations of Table 3.4.
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Precision diagram for the MC ELE

- |—©—Milstein method

- |—+—Tamed Milstein Method
10" Exponential method

- |——Heun method

107 3

MC ELE

1074 TR ‘
102 107! 100

time-step

Figure 3.8: Monte Carlo ergodic limit errors (MC ELFEs) of the four numerical methods with
different time-steps h. Results have been taken by a single trajectory with reference solution simulated
by the Tamed Milstein scheme with stepsize h = 2713, The random variables used in the simulation
of the numerical methods, for the different time-steps h, are taken by the same simulated trajectory
of the random process used in the reference solution.

random processes, W and U, the four numerical methods produce meaningful densities. The
Monte Carlo simulations for the stepsize h = 273 and h = 272 were also performed with 10*
independent trajectories.

In the results presented in Figure 3.8 and Table 3.6, no wrong trajectories were observed
for the stepsize h = 27% and h = 27° for all numerical methods. Of all these methods, the
Heun method yields the most accurate results. However, for the slightly larger stepsize h =
2~4 Milstein, Tamed Milstein, and Heun methods produce 352, 31, and 47 bad trajectories,
respectively. When the stepsize is h = 272, the Tamed Milstein method fails to produce any
significant trajectory, all them having negative densities. On the other hand, the Milstein
method exhibits explosive behavior in most of the trajectories. Notably, the exponential
scheme stands out from the other methods producing a few wrong trajectories. Furthermore,

for the stepsize h = 272, the exponential scheme also demonstrates a very good performance.
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Scheme Individuals h=272 h=2"3 h =21 h=27° h=27°6

S - - 1.4924-10~2 4.9064-10~3 2.3249-103

Milstein 1% - - 1.2605-1072 1.2371-10"2 9.7841-1073

I - - 1.7056 - 1072 4.6864-10"2 8.7476-103

S 2.4437-108 2.5659-10~1 1.4788-1072 4.9344-10"3 2.3447-10°

T. Milstein Vv 1.6442-10°  8.5393-102 1.4023-10"2 1.3080-10"2 1.0093-102

I 7.6586-107  2.4083-10~! 1.2905-10"2 3.6488-10"2 3.8245-103

S 4.1337-1072 6.3373-10~° 1.0503-10° 1.0777-10% 1.2327-10"°

Exponential 1% 6.6725-1073 1.5180-1072 1.0831-10"2 1.2003-10"2 1.0476-1072

I 9.0361-10~' 7.1401-10"' 4.7201-10"' 2.9110-10~' 1.4207-10!

S - - 4.0355-1073 5.9218-10~% 1.3320-107*

Heun 1% - - 5.7697-10~* 6.5261-10% 6.8951-10~°

I - - 1.3498 .10~  3.5550-10"2 3.5347-103

Table 3.6: MC RELE with ¢(x) = 22, for the four numerical method and different integration
times. Results have been taken by 10* trajectories in the time interval [0, 500] and reference solution
simulated by Tamed Milstein scheme with step-size h = 2713
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Conclusions

4.1 Conclusions and future work

This thesis has addressed two investigations on the numerical approximation of stochastic
differential equations with non-global Lipschitz continuous coefficients.

Firstly, we have successfully solved the non-linear stochastic Schrodinger equation with
finite state space by using the Talay-Tubaro extrapolation procedure. We provided theoret-
ical support for this method by obtaining the first-order asymptotic expansion of the weak
error produced when applying the Euler-Exponential scheme to the non-linear stochastic
Schrodinger equation. To achieve this, we derived a new short-time asymptotic expansion
with respect to the step-size and utilized a localization procedure. We demonstrated that the
Euler-Exponential scheme converges with weak-order 1 and strong-order 1/2. Furthermore,
we employed the Multilevel Monte Carlo method in combination with the Euler-Exponential
scheme to numerically solve the non-linear stochastic Schrodinger equation. A numerical ex-
periment involving a quantized electromagnetic field interacting with a reservoir showcased
the effectiveness of the weak second-order method and the satisfactory results achieved by
the Multilevel Monte Carlo method acting on the Euler-Exponential scheme.

Secondly, we focused on constructing an explicit conjugacy between the non globally
Lipschitz SDE with linear multiplicative noise and a suitable auxiliary RDE. This approach
allowed us to systematically devise numerical integrators for analyzing the original SDE with-
out relying on the global Lipschitz condition assumption. We successfully constructed two
new integrators: one based on an exponential method and the other on the Heun method. To

assess the performance of these new numerical methods, we apply the proposed approach to a

94



Chapter 4. Conclusions 95

stochastic SVIR model. Thereafter, the numerical approximations were tested and compared
with existing methods in the literature through various numerical simulations. Our analysis
revealed that the methods devised using this approach outperformed commonly used meth-
ods such as the Milstein and Tamed Milstein methods. Specifically, the exponential-based
method proved to be suitable for integrating the SVIR model over large time intervals. In
contrast, the Heun method exhibited higher accuracy when a small step-size could be uti-
lized. It is worth noting the potential application of this framework to other epidemiological

models with similar noise structures in the diffusion coefficient of the equation.

In summary, our investigations have developed effective numerical methods for solving
SDEs with non-globally Lipschitz coefficients. Specifically, the numerical analysis was per-
formed on the non-linear stochastic Schrodinger equation and the stochastic SVIR model.
The proposed methods offer improved convergence and stability compared to existing ap-
proaches. Furthermore, the conducted numerical analysis holds significant potential for
studying other SDEs.

The methods developed and the results obtained in this thesis have motivated several

ongoing and future projects. Next, we described some of them.

In the first investigation, the numerical analysis presented in Chapter 2 establishes the
mathematical foundation for implementing scalable Euler-Exponential methods. These scal-
able methods emerge from approximations, such as the use of Padé approximants of orders
1 and 2, for the exponential matrix involved in Scheme 1. Furthermore, we are exploring the
extension of the numerical analysis from Chapter 2 to investigate SDEs evolving on compact

manifolds.

Regarding the second investigation, we are currently working on various generalizations
and numerical improvements for conjugate methods. Firstly, we may consider alternative
mappings to (3.2) that define the conjugacy between SDEs and RDEs. Second, we are ex-
ploring potential numerical improvements for the presented conjugated LL and Heun meth-
ods. Specifically, we are considering the exploration of their averaged versions. Next, various
numerical methods for RDEs and ODEs can be explored to develop potential conjugated
versions and assess their practical applicability. Finally, we are investigating several general-

izations for the linear noise present in (3.1).
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4.2 Conclusiones y trabajo futuro

Esta tesis ha abordado dos investigaciones sobre la aproximacion numérica de ecuaciones

diferenciales estocasticas con coeficientes no globalmente Lipchitz continuos.

En primer lugar, hemos resuelto con éxito la ecuacién estocastica no lineal de Schrodinger
con espacio de estados finito mediante el procedimiento de extrapolacion de Talay-Tubaro.
Hemos proporcionado apoyo tedrico a este método obteniendo la expansién asintotica de
primer orden del error débil producido al aplicar el esquema Euler-Exponencial a la ecuacion
estocastica no lineal de Schrodinger. Para lograrlo, derivamos una nueva expansién asintética
de corto plazo con respecto al tamano del paso y utilizamos un procedimiento de localizacion.
Demostramos que el esquema Euler-Exponential converge con un orden débil de 1 y un orden
fuerte de 1/2. Ademads, empleamos el método de Monte Carlo multinivel en combinacién con
el esquema Euler-Exponencial para resolver numéricamente la ecuacion estocastica no lineal
de Schrodinger. Un experimento numeérico en el que interviene un campo electromagnético
cuantizado que interactia con un depdsito mostrd la eficacia del método de segundo or-
den débil y los resultados satisfactorios obtenidos por el método de Monte Carlo multinivel

actuando sobre el esquema Euler-Exponencial.

En segundo lugar, nos centramos en construir una conjugacioén explicita entre la SDE no
globalmente Lipschitz con ruido multiplicativo lineal y una RDE auxiliar adecuada. Este
enfoque nos permitié idear sisteméticamente integradores numéricos para analizar la SDE
original sin depender del supuesto de la condiciéon de Lipschitz global. Construimos con
éxito dos nuevos integradores: uno basado en un método exponencial y otro en el método
de Heun. Para evaluar el rendimiento de estos nuevos métodos numéricos, aplicamos la
aproximacién propuesta a un modelo SVIR estocéstico. Posteriormente, las aproximaciones
numéricas se probaron y compararon con los métodos existentes en la literatura mediante
diversas simulaciones numéricas. Nuestro analisis revelé que los métodos ideados utilizando
este enfoque superaron a los métodos comunmente utilizados, como los métodos Milstein y
Tamed Milstein. En concreto, el método basado en la exponencial demostrd ser adecuado
para integrar el modelo SVIR a lo largo de grandes intervalos de tiempo. En cambio, el
método de Heun mostré una mayor precisiéon cuando se pudo utilizar un tamano de paso
pequeno. Cabe destacar la posible aplicacion de este marco a otros modelos epidemiolégicos

con estructuras de ruido similares en el coeficiente de difusion de la ecuacidn.

En conclusion, en esta investigacion se desarrolld dos métodos numéricos eficaces para
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resolver EDEs con coeficientes no globalmente Lipschitz. En concreto, el analisis numérico se
ha realizado sobre la ecuacion estocastica no lineal de Schrodinger y un modelo estocéstico
SVIR. Los métodos propuestos ofrecen una convergencia y estabilidad mejoradas en com-
paracién con los enfoques existentes. Ademas, el analisis numérico realizado encierra un
importante potencial para el estudio de otras EDE.

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios
proyectos en curso y futuros. A continuacion, describimos algunos de ellos.

En la primera investigacion, el analisis numérico presentado en el Capitulo 2 establece
las bases matematicas para la implementacion de métodos escalables Euler-Exponencial. Es-
tos métodos escalables surgen de aproximaciones, como el uso de aproximantes de Padé de
6rdenes 1 y 2, para la matriz exponencial involucrada en el Esquema 1. Ademads, estamos
explorando la extensién del analisis numérico del Capitulo 2 para investigar SDEs que evolu-
cionan en variedades compactas.

En cuanto a la segunda investigacion, actualmente estamos trabajando en varias gener-
alizaciones y mejoras numéricas para los métodos conjugados. En primer lugar, podemos
considerar transformaciones alternativas a (3.2) que definan la conjugacién entre EDEs y
EDAs. En segundo lugar, estamos explorando posibles mejoras numéricas para los métodos
conjugados LL y Heun presentados. En concreto, estamos considerando sus versiones pro-
mediadas. Ademas, podemos desarrollar y evaluar la aplicacion practica de nuevos métodos
conjugados, basado en métodos numéricos para EDA y EDO. Por ultimo, estamos estudiando

varias generalizaciones al ruido lineal presente en (3.1).
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