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Resumen

El objetivo principal de esta tesis doctoral es el andlisis matematico y numérico de dos
problemas importantes en electromagnetismo; el primero de ellos esta relacionado con diversas
aplicaciones de la magnetohidrodindmica, mientras que el segundo tiene que ver con el estudio
de corrientes inducidas.

En lo que se refiere al primer problema, el estudio se centra en la aproximacién numérica
de los autovalores del operador rotacional, cuyas soluciones se denominan campos de Beltrami
y que surgen en diversas areas de la fisica.

Para llevar a cabo este estudio, primero se analiza matematicamente el problema espec-
tral, para lo cual se propone una formulaciéon variacional mixta mediante la que se obtiene
una caracterizacién completa de las soluciones del problema de autovalores. Ademads, se con-
sidera una formulacion primal la cual resulta ser “equivalente”, bajo ciertas hipodtesis, a dicho
problema. Para la aproximacién numérica del problema de autovalores se consideran esquemas
de elementos finitos asociados a cada una de estas formulaciones. En ambos casos se obtienen
aproximaciones espectrales con orden de convergencia 6ptimo, las cuales se corroboran mediante
ejemplos numéricos.

En la segunda parte de la tesis se aborda el andlisis matematico y numérico de diversos
problemas de corrientes inducidas en régimen transitorio, suponiendo dominios axisimétricos.
Los materiales considerados son no lineales y pueden presentar o no histéresis magnética.

Para ello, y motivados por las aplicaciones fisicas, se consideran dos tipos datos: el primero
de ellos se corresponde con una condiciéon de Dirichlet no homogénea en la frontera del dominio
(usualmente la intensidad de corriente), mientras que el segundo consiste en suponer conocido el
flujo magnético que atraviesa una seccién meridional del dominio. En ambos casos, se propone
una formulaciéon en términos del campo magnético, y se considera que la relacion entre este
campo y la induccién magnética esta dada bien mediante una funcion no lineal, o bien mediante
un operador de histéresis.

Inicialmente se estudia el problema no lineal de corrientes inducidas considerando el flujo
magnético como dato. Se demuestra la existencia y unicidad de solucién de la formulacién
variacional correspondiente mediante un resultado abstracto. Para la aproximacién numérica
se propone una discretizacién espacial mediante elementos finitos para la cual se demuestran
existencia de solucién y una estimacion de error. El esquema anterior se combina con un esquema
de Euler implicito para la discretizacién temporal y se demuestran estimaciones 6ptimas de error.

A continuacién, se analiza el problema de corrientes inducidas con condicién de Dirich-



let no homogénea. En este caso, la existencia y unicidad de soluciéon se basan en técnicas de
discretizacién temporal, estimaciones a priori y paso al limite mediante compacidad. La aproxi-
macién numérica de este problema se estudia considerando un esquema de Euler implicito para
la discretizacion temporal, que posteriormente se combina con un método de elementos finitos
en espacio. Al igual que en el problema anterior, se demuestran estimaciones 6ptimas de error
en las normas apropiadas, tanto para la semi-discretizacién temporal como para el problema
completamente discreto.

Para ambos problemas se muestran test de convergencia que confirman los resultados tedricos
obtenidos.

Finalmente, se estudia el problema axisimétrico de corrientes inducidas en el caso en que
la relacion entre el campo magnético y la inducién magnética viene dada mediante un opera-
dor de histéresis. Se demuestra la existencia de solucién del problema considerando un opera-
dor de histéresis general y las distintas condiciones de contorno. Al igual que en el problema
sin histéresis, el estudio de la existencia de solucién se basa en una discretizaciéon implicita
del tiempo; este procedimiento de aproximacién es utilizado con frecuencia en el andalisis de
ecuaciones que incluyen operadores con memoria. Para la aproximacion numeérica, se considera un
esquema completamente discreto mediante elementos finitos y Euler implicito, con una elecciéon
particular del operador de histéresis dada por el operador de Preisach clasico. Al contrario
que en los problemas sin histéresis, el analisis de convergencia del esquema utilizado se realiza
unicamente mediante ejemplos numéricos.
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Chapter 1

Introduccion

<1 happen to have discovered a direct relation between magnetism and light,
also electricity and light, and the field it opens is so large and I think rich.>
Michael Faraday, The Letters of Faraday and Schoenbein

1.1 Electromagnetismo y ecuaciones de Maxwell

El electromagnetismo es la rama de la Fisica que se ocupa del estudio conjunto de los
fendmenos eléctricos y magnéticos causados por cargas eléctricas en reposo o en movimiento.

Durante mucho tiempo los cientificos han tratado de comprender estos fenémenos y si bien
algunos efectos eléctricos y magnéticos se conocen desde la antigiiedad, no fue sino hasta el siglo
XIX cuando la relacion entre la electricidad y el magnetismo quedé patente. Hoy sabemos que
tanto electricidad como magnetismo son dos manifestaciones distintas de un mismo campo: el
electromagnético.

La vinculacién de ambos fenémenos mediante la teoria electromagnética fue uno de los prin-
cipales logros de la fisica matematica del siglo XIX y su importancia hoy en dia es incuestionable
para entender la mayoria de los fenémenos fisicos que nos rodean. Asi, la fuerza electromagnética
contribuye a que los electrones se mantengan cerca del nicleo formando los dtomos y, a su vez,
a que los nucleos se enlacen entre si mediante el intercambio de energia electromagnética cons-
tituyendo moléculas y cuerpos. Pero también es el origen de las fuerzas de contacto como el
rozamiento, la presion, la viscosidad,..., de la energia que las plantas absorben a través de la la
luz para poder realizar la fotosintesis,... Es el fundamento de gran parte de la tecnologia actual
basada en la produccién, transporte y utilizacion de corriente eléctrica.

Los estudios del electromagnetismo se remontan a la segunda mitad del siglo XVII cuando
empiezan a establecerse las bases de lo que hoy denominamos electromagnetismo clasico. En
1820, Oersted establecié la primera relacién experimental entre electricidad y magnetismo, al
observar que una aguja imantada (una brijjula) podia ser desviada por una corriente eléctrica.
Este descubrimiento fue desarrollado por Ampeére al estudiar las fuerzas entre cables por los que
circulan corrientes eléctricas, y por Arago, que magnetizé un pedazo de hierro colocdndolo cerca
de un cable recorrido por una corriente. Estos experimentos fueron completados y explicados por
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Faraday quien, en 1831, realiz6 el descubrimiento inverso al hallado por Oersted al comprobar
que el movimiento de un imén en las proximidades de un cable induce en éste una corriente
eléctrica transitoria.

Pero fue el escocés James Clerk Maxwell quien fundé la teoria moderna del electromagnetismo
con la publicacién de su obra A Treatise on FElectricity and Magnetism, en el ano 1873. Para
construir un conjunto de ecuaciones matematicamente consistente, que unificara los resultados de
electricidad y magnetismo conocidos hasta el momento, Maxwell tuvo que postular la existencia
de un nuevo efecto electromagnético, el cual era desconocido experimentalmente y conocido en
la literatura como corriente de desplazamiento. Pocos anos después de que Maxwell propusiese
la inclusién de este término, Hertz comprobé experimentalmente su acierto con los primeros
experimentos de telecomunicacién mediante ondas electromagnéticas.

Considerando este nuevo campo y recopilando las leyes experimentales obtenidas por Gauss,
Coulomb, Ampere y Faraday entre otros, Maxwell describié los efectos de la electricidad y
el magnetismo con un conjunto de ecuaciones en derivadas parciales de primer orden que se
aplicaban a todos los fenémenos electromagnéticos macroscépicos. Dichas ecuaciones muestran
que la electricidad y el magnetismo, junto con los fenémenos de la éptica, obedecen un conjunto
unico de leyes. A partir de este momento, todos estos fenémenos se engloban bajo el término

electromagnetismo

En medios continuos, y utilizando su forma diferencial, las ecuaciones de Maxwell se escriben
del modo siguiente:

881; —curlH = —-J (ley de Ampere-Maxwell),

88—? +curlE = 0 (ley de Faraday),
div B =0 (ley de Gauss del magnetismo),
div.D = p (ley de Gauss),

donde la notacién utilizada es la usual en electromagnetismo, es decir,
e D es el desplazamiento eléctrico (C/m?),
e H es el campo magnético (A/m),

J es la densidad de corriente (A/m?),

e E es la intensidad de campo eléctrico (V/m o N/C),

B es la induccién magnética (Wb/m? o T) y
e p es la densidad de carga eléctrica (C/m?).

Entre paréntesis se indican las unidades de cada una de estas magnitudes en el sistema interna-

cional.
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Estas ecuaciones relacionan la divergencia y el rotacional de los campos eléctrico y magnético,
que son los operadores que definen univocamente cualquier campo vectorial, con sus fuentes o
causas, que son las cargas eléctricas y las corrientes. La ley de Ampere-Maxwell coincide con la ley
de Ampére salvo por el término adicional 9D /0t introducido por Maxwell y que se corresponde
con las corrientes de desplazamiento. Ademads, todos los campos que aparecen son funciones
vectoriales que dependen de la variable espacial x = (1,22, 23) € R? y del tiempo t > 0.

El sistema anterior debe completarse con las denominadas leyes de comportamiento o rela-
ciones constitutivas ya que sin ellas el sistema es indeterminado. Dichas relaciones expresan
las propiedades del medio en que se propagaran los campos y su forma precisa depende de los
materiales que lo constituyen.

Las propiedades electromagnéticas de los materiales pueden definirse por medio de su per-
mitividad eléctrica €, su permeabilidad magnética u, y su conductividad eléctrica o.

La permitividad eléctrica de un material describe cémo un campo eléctrico afecta y es afec-
tado por un medio. El campo eléctrico tiende a polarizar las moléculas del interior del material,
constituyéndose un campo eléctrico neto que se opone al campo eléctrico aplicado. Como resul-
tado, el campo eléctrico total es menor de lo que seria en el vacio.

La permeabilidad magnética estd relacionada con la capacidad del material para atraer y
hacer pasar a través de él campos magnéticos y viene dada por la relaciéon entre la induccién
magnética existente y la intensidad de campo magnético que aparece en el interior de dicho
material. Dicho de otro modo, esta magnitud refleja el grado de magnetizacion que el material
adquiere bajo la accién de un campo magnético. A fin de comparar entre si los diversos mate-
riales se define la permeabilidad magnética relativa u, como el cociente entre la permeabilidad
magnética de un material y la del vacio, denotada por pg. Asi

H = Hrfo-

En el sistema internacional, po = 47 x 10~7 H/m.

Por ultimo, la conductividad eléctrica es una medida de la capacidad de un material para
conducir corriente eléctrica y normalmente depende de la temperatura y de la frecuencia.

Un material donde los pardmetros u, € y ¢ son independientes de la posicién se denomina
homogéneo; en caso contrario hablaremos de material no homogéneo.

Por otro lado, un material isétropo es aquel cuyas propiedades son independientes de la
direccién espacial en que son examinadas. En caso contrario, el material se denomina anisdtropo.
En medios is6tropos, los parametros i, € y ¢ toman valores escalares mientras que en medios
anisotropos se representan mediante tensores.

Finalmente, un material se dice no lineal si alguno de los pardametros u, € o ¢ depende de la
intensidad de los campos aplicados.

En esta tesis consideraremos materiales isétropos, lineales desde el punto de vista eléctrico
y no lineales desde el punto de vista magnético. Por tanto, las leyes constitutivas que relacionan
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los campos B, D, E y H se escriben

D =cE (1.1)
B(x) = B(x, H(x)), (1.2)

donde, en general, B es un operador no lineal. En el caso lineal e isétropo se tiene que
B =uH,

con [, constante.

En esta tesis se distinguen dos partes bien definidas y diferentes entre si, ambas relacionadas
con aplicaciones del electromagnetismo:

e La aproximacién numérica de campos de Beltrami, la cual guarda relacién con algunos
problemas de magnetohidrodindmica.

e El estudio de problemas de corrientes inducidas en materiales no lineales.

El objetivo es hacer una contribucién al andlisis matematico y numérico de cada uno de
estos problemas. En los siguientes apartados resumiremos en qué consisten y cudles seran las
aportaciones fundamentales de nuestro estudio.

1.2 Aproximaciéon numérica de campos de Beltrami

Los campos vectoriales u con divergencia nula que satisfacen curlu x v = 0 en una regién

Q C R? se denominan campos de Beltrami. Esta igualdad significa que curlw es paralelo a u en
Q) y se suele escribir como

curlu = \u, (1.3)

donde A es una funcién escalar desconocida. En el contexto del electromagnetismo, los campos
de Beltrami se llaman también campos libres de fuerza (force-free fields). La razén es que dichos
campos conllevan fuerzas de Lorentz nulas. En efecto, si en la ecuacién (1.3) u denota el campo
magnético, de dicha ecuacién se deduce que H y curl H tienen la misma direccién. Si ahora
suponemos que el término de desplazamiento en la ley de Ampere es despreciable, resulta que J
y H son paralelos. Si ademas el medio es lineal, H = uB, donde p es una constante y por tanto
J y B seran, también, paralelos. Como consecuencia, y en ausencia de densidades de carga, la
fuerza de Lorentz, F = J x B, serd nula.

El estudio de los campos de Beltrami tiene gran interés para la comprension de multitud
de fenémenos fisicos. En particular, en los problemas de magnetohidrodindmica (MHD), disci-
plina que estudia la dindmica de los fluidos que son buenos conductores de la electricidad vy,
especificamente, los efectos que aparecen por la interaccién entre el movimiento del fluido y un
campo magnético cualquiera que pueda estar presente. Para ello es preciso combinar las ecua-
ciones de Maxwell con las de Navier-Stokes de la dinamica de fluidos. Es un campo que abarca
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un gran abanico de problemas y, en particular, aquellos relacionados con fenémenos solares,
que se pueden aproximar por una solucién en régimen estacionario de las ecuaciones magne-
tohidrodindmicas. Asi, es posible estudiar el campo magnético en la corona solar, el cual esta
relacionado con las erupciones solares y la eyeccién de masa coronal (ver Figura 1.1). En efecto,
en la mayoria de las dreas de la corona solar las fuerzas magnéticas son dominantes, por lo que
las demés fuerzas como el gradiente de presiones y la gravedad pueden despreciarse. Asumiendo
ademads que el cociente entre la presion del plasma y la presién magnética es pequeno comparado
con la unidad (la denominada aproximacién low-f) podemos suponer que la fuerza de Lorentz
es nula y, por lo tanto, los campos resultantes seran libres de fuerza. En efecto, si J x B = 0,
suponiendo que el medio es lineal podemos escribir

J x (uoH) = 0. (1.4)

Teniendo en cuenta la Ley de Ampere despreciando el término de desplazamiento y la ley de
Gauss obtenemos

curl H = J, (1.5)
divH =0, (1.6)

y, por tanto, de (1.4)-(1.6) deducimos que H es un campo libre de fuerza.

Figure 1.1: Eyeccién de masa coronal, 24 de enero de 2007. Imégenes obtenidas de SOHO/LASCO
http://sohowww.nascom.nasa.gov/.

El estudio de los campos libres de fuerza en el &mbito de la dindmica de fluidos se remonta
a Beltrami [7], razén por la que estos campos llevan su nombre. Lakhtakia [59], en una breve
resena histoérica sobre este tema, sefiala que en ocasiones se les designa como campos Trkalianos
en honor a las contribuciones realizadas por el fisico y matemético checo Viktor Trkal [87]. En
la fisica de fluidos, los campos de Beltrami son soluciones particulares de la ecuacion de Euler

Vvv+Vp=0
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con p = —|v|?/2. En efecto, teniendo en cuenta la relacién
curlv x v =Vvv - V|v[?/2,

se deduce que el campo de velocidades correspondiente es un campo de Beltrami.

Los campos de Beltrami aparecen también relacionados con el estudio del equilibrio estatico
de cristales liquidos, asi como en problemas de superconductividad, o en estudios de turbulencia
en fisica de plasma, por citar algunos ejemplos; incluso el movimiento de particulas en tornados
y trombas marinas puede aproximarse por campos de Beltrami (ver, por ejemplo, [23] y las
referencias alli mencionadas).

Dependiendo de la eleccién del pardmetro A en la ecuacién (1.3) consideraremos diferentes
tipos de campos. Asi, los campos no lineales corresponden al caso en que A es una funcién
escalar mientras que los campos lineales son aquellos para los que A es constante. Distinguimos
el caso en que A = 0, cuyos campos asociados se denominan campos potenciales (en ese caso,
curlu = 0 y u = gradyp si el dominio es simplemente conexo).

Nosotros estamos interesados en el problema lineal. Obsérvese que, en este caso, la determi-
nacion de A y los campos asociados esta directamente relacionada con el calculo de los valores
propios del operador rotacional, para lo cual es necesario considerar restricciones sobre el do-
minio de cdlculo y condiciones de contorno adecuadas. Consideraremos u-n = 0 como condicién
de contorno, la cual corresponde a un campo confinado en el interior de un dominio acotado.
Asi, el problema a resolver se escribe

curlu = A\u en ), (1.7)
divu=0 en (2, (1.8)
u-n=>0 en Of). (1.9)

Noétese que la ecuacién (1.8) se obtiene inmediatamente de (1.7), salvo si A = 0.

Unicamente en dominios con ciertas simetrias pueden calcularse soluciones analiticas para
este problema. Por ejemplo, en el modelado de la corona solar considerando simetrias esféricas,
cabe mencionar los trabajos de Chandrasekhar y Kendall [27, 28]. Recientemente, Morse [69]
estudio el problema considerando simetrias cilindricas en dominio acotados.

En dominios generales, Boulmezaud, Maday y Amari [23] estudiaron diferentes problemas
de contorno cuyas soluciones son campos de Beltrami y demostraron existencia, unicidad y
regularidad de solucién. Basandose en estos resultados se han propuesto y analizado diferentes
aproximaciones utilizando el método elementos finitos para resolver tanto el problema lineal
([21]) como el no lineal ([22]) de campos de Beltrami.

En lo que respecta al andlisis matematico del problema de autovalores asociado a (1.7)—
(1.9) podemos mencionar a Yoshida y Giga [98], quienes estudiaron las propiedades espectrales
del operador rotacional en diferentes espacios funcionales. En particular, demostraron que si
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el dominio © es miiltiplemente conexo, el problema (1.7)—(1.9) tiene solucién para cualquier
nimero complejo A. Es decir, el problema de autovalores asociado tiene espectro continuo.

En el Capitulo 2 de esta tesis se aborda el andlisis matematico y numérico del problema
espectral (1.7)—(1.9), en el caso en que el dominio 2 es simplemente-conexo. En primer lugar, y
con el fin de caracterizar el espectro del problema de autovalores, se introduce una formulacién
mixta, que se demuestra es equivalente a la anterior.

Se demuestra también que dicha formulacién mixta es equivalente al problema espectral
de un operador autoadjunto compacto, lo cual nos permite caracterizar las soluciones del pro-
blema (1.7)—(1.9). Adems4s, se considera una formulacién primal y se demuestra que, bajo ciertas
condiciones, es equivalente al problema de autovalores.

Se estudia la aproximacién numérica del problema espectral considerando una discretizacién
mediante elementos finitos de Nédélec [72], de las formulaciones mixta y primal. La aproximacién
numérica del esquema mixto conduce a un problema degenerado de valores propios generalizado
que implica trabajar con dos matrices no invertibles, mientras que el esquema asociado al pro-
blema primal involucra una matriz Hermitiana definida positiva.

Por dltimo, se demuestran ordenes de convergencia éptimos para ambos esquemas utilizando
resultados cldsicos ([66, 33, 34]) y se presentan ejemplos numéricos que corroboran los resultados
tedricos obtenidos.

Los resultados contenidos en este capitulo se recogen en el articulo:

» R. RODRIGUEZ AND P. VENEGAS: Numerical approzimation of the spectrum of the curl
operator, Mathematics of Computation, to appear.

1.3 Problemas de corrientes inducidas en materiales no lineales

Uno de los problemas mas importantes a tener en cuenta en el andlisis y diseno de maquinas
eléctricas es el cédlculo de las pérdidas de energia. Estas pérdidas determinan en gran medida la
eficiencia del dispositivo e influyen en el coste operacional del mismo.

Por su importancia en ingenieria eléctrica, este problema ha atraido la atencién de numerosos
investigadores desde el siglo XIX; a partir de los fundamentos tedricos del electromagnetismo y
de experimentos en el laboratorio, se han propuesto diversas formulas analiticas que tratan de
dar una respuesta al problema, y las cuales son validas bajo supuestos que frecuentemente no
se cumplen en la préctica.

Las dificultades fundamentales del problema son dos: una de carécter fisico, el compor-
tamiento fuertemente no lineal de los materiales que incluye histéresis magnética, y otra de
caracter geométrico y matematico, dado que los materiales que componen el nticleo suelen ser
laminados para disminuir las pérdidas, y el pequenio espesor de las laminas frente a otras dimen-
siones caracteristicas del problema hace muy complicada la simulacién numérica tridimensional.

Estas dificultades son la causa de que el problema no se encuentre a dia de hoy satisfacto-
riamente resuelto y el origen de que todavia se publiquen un gran ndmero de articulos en los
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que se intenta mejorar las férmulas para calcular las pérdidas, con una metodologia que general-
mente no pasa por un analisis tedrico de los modelos sino por conseguir un “mejor” ajuste a los
resultados experimentales.

En efecto, esta metodologia olvida frecuentemente las bases tedricas del electromagnetismo,
por una parte, y, por otra, una herramienta reciente pero ya muy bien establecida: la simulacién
numérica, es decir, la posibilidad de resolver las ecuaciones de Maxwell y obtener a posteriori
las pérdidas a partir de sus expresiones tedricas exactas.

Inicialmente, desde mediados del siglo XIX, se distinguian tan sélo dos tipos de pérdidas: por
histéresis y por corrientes de Foucault, las cuales aparecen claramente en el balance de energia
que se obtiene a partir de las ecuaciones de Maxwell. La necesidad de ajustar adecuadamente los
resultados experimentales llevd, en la década de los 80 del siglo pasado, a introducir un tercer
tipo de pérdidas, las llamadas por exceso y a dar una justificacion fisica de su presencia.

El primer paso en el calculo de las pérdidas es la solucién numérica del problema de elec-
tromagnetismo asociado. Esto requiere resolver el modelo de Maxwell cuasi-estatico, también
denominado modelo de corrientes inducidas, que surge al despreciar el término del desplaza-
miento eléctrico en la ley de Ampére, obteniéndose asf el siguiente sistema de ecuaciones:

curlH = J, (1.10)
B
aat—l—curlE = 0, (1.11)
divB = 0, (1.12)

el cual debe resolverse teniendo en cuenta las leyes constitutivas de los materiales.

Dado que estas ecuaciones estan definidas en R3, para resolver el problema mediante un
método de elementos finitos es necesario restringirlas a un dominio acotado e imponer condiciones
de contorno adecuadas de tal forma que el problema tenga una tnica solucién, asi como también
una condicién inicial.

Pérdidas por corrientes inducidas

Las corrientes inducidas o eddy currents, son corrientes generadas en materiales conductores
que se producen cuando el material estd expuesto a un campo magnético variable con el tiempo.
Este fenémeno, y el correspondiente calentamiento de los conductores, fue observado y estudiado
por L. Foucault y es por ello que las corrientes generadas se conocen también como corrientes
de Foucault.

El calor generado por la corriente en el conductor viene dado por la Ley de Joule y es
proporcional al cuadrado de la corriente I que circula por el conductor, al tiempo ¢ durante el
que estd circulando y a la resistencia R del mismo, es decir,

Q=1I’Rt (J).

Recordemos que la resistencia de un conductor varfia inversamente con el drea de su seccién
transversal. Es por ello que, para disminuir las pérdidas por corrientes inducidas, los nicleos
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de las maquinas eléctricas estan constituidos por ldminas apiladas con espesor muy pequenio y
aisladas unas de otras por una fina capa de barniz (ver Figura 1.2).

-”;»,.'/7,44/’.'
VW
-

Figure 1.2: Nicleo magnético y bobinado (izquierda) y detalle del laminado (derecha).

Por otro lado, considerando la forma diferencial de la Ley de Joule, podemos calcular la
densidad de potencia (potencia por unidad de volumen) en un punto x y en un instante ¢ como

J(x,1) - E(x,1) = %IJ(Xﬂf)I2 =o|E(x,t)]> (W/m?),

donde se ha tenido en cuenta la ley de Ohm.

Por tanto, la determinacién de las pérdidas requiere el calculo previo del campo densidad de
corriente J(x,t) a lo largo del tiempo. Para ello, es necesario resolver numéricamente las ecua-
ciones (1.10)-(1.12). Sin embargo, en el caso de un material laminado se presentan dificultades
practicas severas debido a que el espesor de las laminas es demasiado pequeno (inferior a 1 mm)
frente a otras dimensiones del dispositivo, como para permitir un mallado del dominio de célculo
que “respete” la estructura en ldminas del medio (ver Figura 1.2). En efecto, para conseguir pre-
cisién en el calculo seria necesario introducir varias capas de elementos finitos tridimensionales
en cada lamina, lo que conduciria a mallas con gran cantidad de elementos, con el consiguiente
coste computacional.

Materiales magnéticos. Histéresis

Los materiales magnéticos son aquellos que presentan polarizacién magnética o magneti-
zacién cuando se someten a un campo magnético externo. El fenémeno de la magnetizacion
se produce por el alineamiento de los dipolos magnéticos del material al aplicar un campo
magnético. Un material magnético posee gran niimero de dipolos magnéticos que en ausencia de
un campo magnético se orientan de manera aleatoria por lo que, a escala macroscépica, el vector
suma de los momentos magnéticos correspondientes es nulo. Cuando el material se somete a un
campo magnético externo, representado por una densidad de flujo B, los dipolos tenderan a
alinearse en la direccién de B. De este modo el campo magnético resultante en cada punto del
material serd superior al valor que existiria en el mismo punto en ausencia de dicho campo.
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La densidad macroscépica de dipolos se representa por un campo vectorial M Illamado
densidad de magnetizacién o simplemente magnetizacién. Sus unidades son Am?/m?3 = A /m.
La relaciéon entre M, B y la intensidad del campo magnético H es

H = B_ M (A/m). (1.13)
Ko

En el caso de materiales magnéticamente isétropos, es decir,
B(x,t) = B(x,t)u(x), H(x,t)= H(x,t)u(x) (1.14)

para algin vector unitario u. Asumiendo ademas que son magnéticamente lineales, se tiene que
M es proporcional a H

M = xn,H,

donde el parametro adimensional ,, se llama susceptibilidad magnética del material. Con-
siderando esta ecuacién en (1.13), obtenemos

B
HZ*iXmHa
Ho

de donde
B = (1 + Xm)poH.

Se tiene ademas que
pr =1+ Xm.-

En funcién de su respuesta a los campos magnéticos externos aplicados, los materiales pueden
clasificarse en diamagnéticos, paramagnéticos y ferromagnéticos.

El diamagnetismo se caracteriza por una susceptibilidad magnética pequena y negativa. Esto
significa que los materiales diamagnéticos se magnetizan débilmente en direccién opuesta a la
del campo magnético aplicado.

Los materiales paramagnéticos tienen susceptibilidades pequenas pero positivas, asi que
también se magnetizan débilmente pero en la misma direccién del campo aplicado.

Los materiales ferromagnéticos se caracterizan por su fuerte magnetizacién remanente, es
decir, la magnetizacién que subsiste en ausencia de un campo magnético. En la mayoria de los
casos estos materiales presentan histéresis, lo que significa que el valor de la induccién magnética
B es una funcién, que no sélo depende del valor presente del campo magnético, sino también de
la historia magnética pasada de H. Por lo tanto los materiales ferromagnéticos no pueden ser
caracterizados por una relacién constitutiva univaluada simple. En consecuencia, la simulacién
numérica del comportamiento de dispositivos que poseen materiales ferromagnéticos es todavia
un desafio.

Para ilustrar la relacién B-H mediante un ejemplo, consideramos un material magnético
isétropo desmagnetizado que se somete a un campo magnético creciente comenzando por el
valor cero. Entonces en cada punto x los pares (H(x,t), B(x,t)) describen la curva nimero 1
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Figure 1.3: Ciclo mayor de histéresis.

de la Figura 1.3. De este modo, la induccién magnética también crece hasta un valor maximo
By, en el que se alcanza la saturacién. Esta curva se llama curva de magnetizacion inicial.
A continuacion se hace decrecer monétonamente la intensidad del campo magnético desde el
valor de saturacién H,, hasta el valor opuesto —H,,. Entonces los puntos (H(x,t), B(x,t)) no
recorren hacia atras la curva inicial sino la senalada con el nimero 2 en la Figura 1.3, hasta
que el campo magnético alcanza el valor —H,,. Si incrementamos de nuevo el campo magnético
los puntos (H(x,t), B(x,t)) describen la curva nimero 3. Con més generalidad, si el campo
magnético oscila monétonamente entre dos valores extremos opuestos Hy, and —H,, (es decir,
H(x,t) no tiene extremos locales aparte de los globales), entonces los pares (H(x,t), B(x,t))
siguen alternativamente las curvas 2 y 3 en el sentido indicado en la Figura 1.3, es decir, recorren
el llamado bucle mayor de histéresis.

Hay dos magnitudes importantes relacionadas con los materiales ferromagnéticos: la rema-
nencia y el campo coercitivo. La remanencia representa la magnetizacion que persiste después de
aplicar un campo magnético “grande” y suprimirlo a continuacién. Corresponde a la induccién
magnética remanente denotada por B, en la Figura 1.3. A su vez, el campo coercitivo es la
intensidad del campo magnético necesaria para llevar la magnetizacion desde el valor remanente
al valor cero, es decir, corresponde al valor denominado H,. en la Figura 1.3.

En relacion al area encerrada por el ciclo mayor de histéresis, los materiales ferromagnéticos
se clasifican en blandos (soft materials) y duros (hard materials). Los materiales ferromagnéticos
blandos son aquellos faciles de magnetizar y sus bucles de histéresis son delgados. Por el contrario,
el area encerrada por el ciclo mayor de histéresis de los materiales magnéticos duros es mayor
(ver Figura 1.4).

Pérdidas por histéresis

En los materiales ferromagnéticos no lineales, la presencia de la histéresis implica que (para
soluciones periédicas de las ecuaciones de Maxwell) la energia electromagnética disipada en
forma de calor durante un ciclo [t1, t2] no sélo depende de las pérdidas por efecto Joule generado
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Figure 1.4: Ejemplos de ciclos de histéresis en un material blando (izquierda) y duro (derecha).

por las corrientes inducidas, sino también de las denominadas pérdidas por histéresis. Haciendo
un balance de energia electromagnética puede deducirse que dichas pérdidas vienen dadas por

/sz< ,:2 %?(X’t)'ﬂ (x.1) dt) dx

la cual, en general, es no nula.

El campo escalar

2 9B
" E(X, t) . H(){7 t) dt

proporciona la llamada densidad de pérdidas por histéresis en el punto x durante un ciclo. En
el caso de histéresis isétropa, es decir, cuando H y B tienen la misma direccién (ver (1.14)),
los puntos (B(x,t), H(x,t)) describen curvas en el plano B-H. Ademds podemos reescribir la
ecuacion anterior de la siguiente forma

2 0B 2 0B

. ot (x,t) - H(x,t)dt = ; E(x,t)H(x,t) dt. (1.15)

En el caso periddico estas curvas son cerradas y estdn contenidas en el llamado bucle mayor de
histéresis. Ademds, en el caso periédico puede deducirse que la integral (1.15) corresponde al
area neta encerrada por la curva,

t€ [t ta] — (H(x,t), B(x,1)) (1.16)

la cual coincide con la densidad de pérdidas por histéresis en el punto x a lo largo de un ciclo.

Como hemos senalado anteriormente, un caso particular més sencillo se presenta cuando el
campo H (x,t) oscila periédica y monétonamente en el tiempo (es decir, sin extremos locales)
entre dos valores opuestos He(z) y —H¢(z). Entonces la correspondiente induccién magnética
también varia entre dos valores opuestos Be(z) y —B(x) y la curva (1.16) no se corta a si
misma, es decir, es una curva cerrada simple (bucle), en general un bucle interior al bucle
mayor de histéresis, denominado bucle menor (ver Figura 1.5). Bajo estas circunstancias, la
densidad de pérdidas por histéresis en cada punto x a lo largo de un ciclo coincide con el area de
dicho bucle, que se puede medir en el laboratorio para cada material ferromagnético particular.
Concretamente,

Wh(x) = A(Be(x))  (I/m?),
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donde A(B.(x)) es el drea encerrada en el ciclo debido a la oscilacién entre H(x) y —H,(x).
A modo de ejemplo, en la Tabla 1.1 se recogen los valores de estas pérdidas en tres materiales

B A
B.
A Be(x)
B —H, H. H
7BE
 /

Figure 1.5: Ciclo mayor y ciclo interior.

distintos.

Tabla 1.1: Pérdidas por histéresis en distintos materiales en funciéon de B, y H..

Material B, (T) H.(A/m) W;(J/m?)
Fe comercial (99.8% pureza) 2.2 80 250
Fe (99.95% pureza) 2.2 4 30
Supermalloy (aleacién compuesta de Ni, Mo y Fe) 0.8 0.3 2

De este modo, la densidad de potencia de las pérdidas por histéresis, promediada en el ciclo
y en el punto x es

Pr(x) = fA(Be(x)) (W/m?),

siendo f = 1/(t2 — t1) la frecuencia. Por tanto, la potencia de las pérdidas por histéresis en una
regién (), promediada en un ciclo, viene dada por

i /Q A(B.(x)) dx (W),

Noétese que la potencia de las pérdidas por histéresis depende linealmente de la frecuencia.

Por otra parte, de acuerdo con las férmulas anteriores, para determinar la densidad de
pérdidas en el caso periddico, es necesario conocer previamente el ciclo (H, B) en cada punto x.
Con este fin deben resolverse las ecuaciones de Maxwell (més en concreto, el modelo de corrientes
inducidas) lo que conduce, en principio, a la necesidad de disponer de un modelo matematico de
la histéresis. La complejidad de los modelos de histéresis que existen en la bibliografia, junto con
la dificultad de medir en el laboratorio los pardmetros que involucran, explicarian el hecho de que
los paquetes comerciales de simulacién electromagnética méas utilizados no posean actualmente
ningin médulo para calcular el campo electromagnético que incluya modelos de histéresis. La
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alternativa, valida para materiales ferromagnéticos blandos, consiste en despreciar la histéresis
estableciendo que la relacion entre el campo magnético y la induccién magnética es univoca y
dada por la curva de magnetizacién inicial o anisterética del material, que es, en general, no
lineal. De este modo, uno puede calcular el campo electromagnético resolviendo numéricamente
un modelo de corrientes inducidas transitorio y no lineal.

De los expuesto en esta seccién se deduce que el estudio de las corrientes inducidas es de
suma importancia en el calculo de pérdidas de energia, en el caso de materiales no lineales, sin
o con presencia de histéresis. Es por esto que en la tesis se abordan ambos problemas bajo la
hipétesis de simetria axial. Asi, los capitulos de la tultima parte de la tesis se organizan de la
siguiente forma.

En el Capitulo 3, se estudia un problema axisimétrico de corrientes inducidas no lineal,
en donde la relacion B-H (ver (1.2)) estd dada mediante una funcién no lineal fuertemente
mondtona. Se estudia una formulacién propuesta por Van Keer et al. en [89, 90] la cual estd
motivada por el cdlculo de pérdidas de energia en materiales laminados. Esta formulacién consiste
en el calculo del campo electromagnético en una seccién transversal del dominio tridimensional,
ortogonal a la direccién del flujo. Esto involucra un término no local, que, junto con el hecho de
que no existe flujo de corriente a través de la frontera, da lugar a un problema parabdlico no lineal
con una condicion de contorno no clasica. Esta condicién trae algunas complicaciones técnicas,
por ejemplo, requiere tratar con una forma bilineal que, en lugar de ser eliptica, satisface una
desigualdad de Garding. Se prueba la existencia de soluciéon de una formulacién débil de este
problema en términos del campo magnético mediante la aplicacién de un resultado abstracto
[52].

Para la resolucién numérica del problema, se supone, ademas, que la relaciéon no lineal B-
H es Lipschitz continua. En primer lugar se considera una discretizacion por elementos finitos
mediante funciones lineales a trozos en mallas triangulares, para la cual se demuestra existencia
de solucién. Después, se combina el esquema anterior con una discretizacién temporal utilizando
el método de Euler implicito. Bajo las hipétesis adecuadas, se deducen estimaciones de error de
orden 6ptimo tanto para el esquema semi-discreto espacial, como para el esquema completamente
discreto. Estas demostraciones se basan en argumentos de [82] y también se adaptan a nuestro
caso argumentos de la teorfa cldsica de problemas parabdlicos lineales (ver, por ejemplo, [86]).
Finalmente, se presentan resultados numéricos que confirman las estimaciones de error obtenidas
tedricamente.

Los resultados obtenidos en este capitulo se recogen en el articulo:

» A. BERMUDEZ, D. GOMEZ, P. SALGADO, R. RODRIGUEZ AND P. VENEGAS: Numerical
solution of a transient nonlinear axisymmetric eddy current model with non local boundary
conditions, Mathematical Models and Methods in Applied Sciences, to appear.

En el Capitulo 4 se estudia el problema axisimétrico de corrientes inducidas considerando
que la relacién B-H estd dada mediante una funcién de Carathéodory no lineal monétona. Como
dato fuente se considera el campo magnético en la frontera, es decir, una condicién de Dirichlet
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no homogénea. Esta condicion es fisicamente realista en el sentido de que hay aplicaciones
industriales en las que se puede obtener fiacilmente este dato a partir de cantidades medibles.
Este es el caso, por ejemplo, de la simulacién numérica de corrientes de Foucault en electrodos
metaldrgicos [8, 9, 54], sistemas de calentamiento por induccién [29] o pérdidas de corriente en
un ntcleo laminado toroidal [62, 70]. En todas estas aplicaciones la condicién Dirichlet puede
obtenerse a partir de la intensidad de corriente.

Para este problema, se demuestra la existencia de solucién de una formulacién débil en
términos del campo magnético. La técnica utilizada para este propésito (comunmente conocido
como método de Rothe [77]) consiste en introducir una discretizaciéon implicita del tiempo,
obtener estimaciones a priori y a continuacién, pasar al limite cuando el paso temporal tiende a
cero.

Para la solucién numérica, primero se discretiza temporalmente el problema mediante un
esquema de Fuler implicito para el cual se demuestra existencia y unicidad de solucién. A
continuacién se considera una discretizacion espacial mediante elementos finitos lineales a trozos.
Bajos los supuestos adecuados, se analizan ambos esquemas numéricos. En el primer caso nuestro
andlisis se basa en [82], mientras que el andlisis del esquema completamente discreto se adapta la
teoria cldsica de ecuaciones parabdlicas lineales y para hacer frente a la condicion de Dirichlet no
homogénea se recurre a argumentos de [5]. De esta forma para el problema totalmente discreto
se obtiene una estimacién tipo-L? sin asumir regularidad adicional de la solucién. Por otra
parte, bajo hipétesis de regularidad adecuadas, también se obtiene una estimacién de error con
orden éptimo. Por tdltimo, se presentan resultados numéricos que confirman las estimaciones
demostradas.

Los resultados obtenidos en este capitulo se recogen en el articulo:

» A. BERMUDEZ, D. GOMEZ, R. RODRIGUEZ AND P. VENEGAS: Mathematical and nu-
merical analysis of a transient non-linear axisymmetric eddy current model, submitted to
Numerische Mathematik.

Finalmente, en el Capitulo 5 se estudia el problema de corrientes inducidas con histéresis, es
decir, la curva de B-H estd dada por un operador de histéresis general. Como en los capitulos
anteriores, se consideran dos tipos de término fuente: bien el campo magnético en la frontera
(condicién de Dirichlet), bien el flujo magnético a través de una seccién transversal del dominio
(condiciones de flujo magnético). Se demuestra existencia de solucién para las formulaciones
variacionales obtenidas considerando los distintos términos fuente. Para ello, se introduce una
discretizacién implicita en tiempo, se obtienen estimaciones a priori y a continuacion, se hace
un paso al limite cuando el paso temporal tiende a cero (ver [77]). Este procedimiento de apro-
ximacién se utiliza a menudo en el andlisis de las ecuaciones que incluyen un operador de la
memoria (ver, por ejemplo, [42, 95]), ya que, en cada paso de tiempo se resuelve un problema
en el cual el operador de memoria se reduce a una funcién no lineal. En particular, en la
demostracién se recurre a argumentos de [95] donde se aborda un problema parabdlico con
histéresis, considerando una condicién de Dirichlet homogénea.
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Para la modelizacion de la histéresis y su posterior implementacién en el esquema numérico
se considera el operador de Preisach clésico [76], el cual se describe brevemente basdndonos en
los trabajos de Visintin [95] y Mayergoyz [63].

Para la resolucion numérica del problema se considera una discretizacién espacial mediante e-
lementos finitos lineales a trozos, y un esquema de Euler implicito para la discretizacién temporal.
También se propone un algoritmo iterativo para resolver el problema no lineal. Este algoritmo in-
troducido por Bermudez y Moreno [12] se basa en algunas propiedades de la regularizada Yosida
de operadores maximales mondtonos. En este caso no se ha estudiado analiticamente la conver-
gencia del esquema propuesto, pero se presenta un ejemplo con el fin de evaluar numéricamente
el orden de convergencia del mismo.

Con algunos de los resultados obtenidos en este capitulo se encuentra en preparacién el
articulo:

» A. BERMUDEzZ, D. GOMEZ, R. RODRIGUEZ AND P. VENEGAS: Numerical solution of a
transient non-linear axisymmetric eddy current model with hysteresis.



Chapter 2

Numerical approximation of the
spectrum of the curl operator

2.1 Introduction

The aim of this chapter is to study the numerical approximation of the spectrum of the curl
operator. More precisely, we focus on the following eigenvalue problem: find A € C and u # 0
such that

curlu = \u in (2.1)
diveu =0 inQ, (2.2)
u-n=0 onl, (2.3)

where  is a bounded domain with boundary I' and outer unit normal vector n. To analyze
this problem, Yoshida and Giga studied in [98] the spectral properties of the curl in various
functions spaces. In particular, they show that if €2 is multiply-connected, then the problem
above has a nontrivial solution for any complex A. Because of this, we restrict our analysis to
simply-connected domains.

The spectral problem for the curl operator has a longstanding tradition in mathematical
physics. A large measure of the credit goes to Beltrami [7], who seems to be the first who con-
sidered this problem in the context of fluid dynamics. This is the reason why the corresponding
eigenfunctions are called Beltrami fields (also Trkalian fields [87]; we refer to [59] for a brief
survey on the history of this subject). Such fields are useful in solar physics for testing theories
on flares and coronal heating, in fluid mechanics for the study of the static equilibrium of smectic
liquid crystals, and in superconducting materials, just to name a few; even particle movement
in tornadoes and waterspouts can be approximated by Beltrami fields.

On the other hand, the eigenfunctions of this spectral problem are particular cases of the
so-called force-free fields. These are vector fields which satisfy the first equation of the eigen-
value problem above, with A not necessarily a constant but a scalar function. The name arises
from magnetohydrodynamics, since a magnetic field H satisfying such an equation, induces a
vanishing Lorentz force: F := J x B = curl H x (uH) = 0. In [97], Woltjer showed that the

17
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lowest state of magnetic energy density within a closed system is attained when A\ is spatially
constant. In such a case H is called a linear force-free field and its determination is naturally
related with the spectral problem for the curl operator. The eigenfunctions of this problem are
also known as free-decay fields or Taylor fields and play an important role, for instance, in the
study of turbulence in plasma physics [85].

The boundary condition w - n = 0 is the most natural one for a bounded domain and
corresponds to a field confined within it. Analytical solutions of this problem are only known
under particular symmetry assumptions. The first one was obtained by Chandrasekhar and
Kendall for spherical domains in the context of astrophysical plasmas arising in modeling of
the solar crown [27] (see also [28, 97, 96]). More recently, Morse [69] studied the problem on
cylindrical bounded domains.

On general domains, Boulmezaud, Maday, and Amari studied in [23] different boundary
value problems whose solutions are linear force-free fields and they prove existence, uniqueness,
and regularity of the solution. Based on the analysis of that paper, Boulmezaud and Amari
proposed and analyzed finite element discretizations for numerically solving various linear [21]
and non-linear [22] force-free field problems.

In this chapter, we focus on the spectral problem (2.1)-(2.3). First we give a mixed weak
formulation and prove that it is equivalent to the spectral problem for a self-adjoint compact
operator. This allows us to give a thorough characterization of the solutions of (2.1)—(2.3). The
finite element discretization of this mixed formulation leads to a degenerate generalized eigen-
value problem involving two non-definite matrices. Although the resulting eigenvalue problem
is proved to be well-posed, its degeneracy prevents us from using standard eigensolvers for its
computer solution. We postpone to an appendix the analysis of such discretization, which relies
on using the spectral approximation theory for mixed methods derived in [66].

As an alternative, we derive another weak formulation more amenable for numerical purposes,
since it leads to a generalized eigenvalue problem involving two Hermitian matrices, that on the
right-hand side being positive definite. Therefore, standard software can be used to solve this
problem. We propose a discretization based on Nédélec finite elements of arbitrary order [72]. By
using the spectral theory for non-compact operators from [33, 34|, we prove spectral convergence
and establish optimal-order error estimates. We also prove that the method is free of spurious
modes.

The eigenvalues of this alternative formulation are the squares of the eigenvalues \ of (2.1)-
(2.3). The eigenfunctions associated to simple eigenvalues A? are Beltrami fields satisfying (2.1)-
(2.3). However, if A and —\ are both eigenvalues of (2.1)—(2.3), then A? is a multiple eigenvalue of
this alternative formulation and the corresponding eigenspace is the direct sum of the eigenspaces
of A and —A\ in (2.1)-(2.3). When this happens, the numerical solution of this alternative for-
mulation in general does not lead to an actual Beltrami field, but to a linear combination of
Beltrami fields associated to A and —A. In such a case, one can resort to the solution of the
degenerate generalized eigenvalue problem analyzed in the appendix.

The outline of the chapter is as follows. In Section 2.2, we introduce some function spaces
that will be used in the sequel. In Section 2.3, first we give a mixed weak formulation and use it
to obtain a spectral characterization of the solutions of the eigenproblem. Then, we propose an
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alternative weak formulation more amenable for numerical purposes. In Section 2.4, we introduce
a finite element discretization of the latter. We prove optimal-order spectral convergence and
absence of spurious modes. We describe how to efficiently implement this methods in Section 2.5.
In Section 2.6, we report the results of a couple of numerical tests, which allow us to check
the theoretical results and to assess the performance of the method. Finally, in an appendix,
we introduce and analyze a finite element discretization of the mixed weak form derived in
Section 2.3.

2.2 Preliminaries

Let Q € R? be a bounded simply-connected domain with a Lipschitz continuous boundary
I'. We assume that §2 is bounded and either I' is smooth or §2 is a polyhedron. Let I'g,...,I';
be the connected components of I', with I'y being the boundary of the only unbounded con-
nected component of R3/€). The remaining connected components, I'; ..., 'y, are in its turn the
boundaries of the bounded connected components of R3/Q and, hence, closed surfaces.

We consider the space L?(2) with its corresponding norm [[lo,q; for convenience, we denote
[[[lo,c the norm of L2(Q)3, too. As usual, for all s > 0, we consider the Hilbertian Sobolev space
H*(€2) with norm ||-[|; o; we also denote by |- o, the norm of the space H(Q)3.

Let D(Q) be the space of infinitely differentiable functions with compact support in €2 and

={¢la: ¢ € DR?)}.

Let H1/2( ) be the space of traces on I of functions in H'(Q), with dual space H~'/2(I") and
dual pairing (-, ).

Throughout the chapter, we will use the Hilbert spaces

H(curl; Q) := {v € L*(Q)* : curlv € L*(Q)*},
H(div; Q) := {v € L*(Q)* : divw € L*(Q)},

with their respective norms defined by ||'U||cur19 ||’vH0 Q+||curl’u||0 o and ||’u||le q: ||’U||0 o+

||d1V’UH079, and the followings closed subspaces:

Hy(div; Q) :={v € H(div; Q) : v-m=0o0nT},
Ho(curl; Q) := {v € H(cur;Q): v xn=0o0nT},
H(div%; Q) := {v € H(div; Q) : dive =0 in Q},
H(curl’; Q) := {v € H(curl; Q) : curlv =0 in Q},
Ho(div"; Q) := Ho(div; Q) N H(div"; Q),
Hy(curl’; Q) := Hy(curl; Q) N H(curl’; Q).

Notice that the conditions v-n = 0 and v x n = 0 on I', must be understood in the sense of
H-/2(T).

The spaces H(curl’; Q) N Hy(div’; Q) and Ho(curl’; Q) N H(div"; Q) will also appear often
in the sequel. Under the assumption of Q being simply-connected the former is trivial (see, for
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instance, [45, Remark 1.2.2]):
H(curl’; Q) N Ho(div’; Q) = {0} .

This is not the case for the latter. The following characterization can be found in [2, Proposi-
tion 3.18].

Lemma 2.2.1 The dimension of Ho(curl’; Q) NH(div%; Q) is equal to I. It is spanned by the
functions Vg;, 1 <1i < I, where each q¢; € H(Q) is the unique solution of the problem

—Ag; =0 in
¢ilr, =0 and gqilr, = constant, 1 <k <1,
(Ongis V), = —1 and  (Onqi, 1>Fk =0, 1<k<I.
Finally, we will also use the space
H*(curl; Q) := {v € H*(Q)? : curlv € HS(Q)3} , s> 0.
Let us recall that there exists s > 1/2, only depending on the domain 2, such that the inclusions
Hy(curl; Q) N H(div; Q) < H*(Q)3, H(curl; Q) N Hy(div; Q) — H¥(Q)3 (2.4)

are continuous (see, for instance, [2], Proposition 3.7, if Q is a polyhedron, and Theorems 2.9
and 2.12, if I" is smooth).
Throughout the chapter, C' will denote a generic constant, not necessarily the same at each

occurrence.

2.3 Spectral problem for the curl operator

We consider the following problem:
Problem 2.3.1 Find A € C and u € H(curl;Q2), u # 0, such that

curlu = A \u in €,
divu =0 1in €,

u-n=0 onT.

Notice that, for any solution of this problem, A # 0. In fact, A = 0 would imply u €
H(curl’; Q) N Ho(div’; Q) and this space is trivial in our case.
The following is a mixed formulation of this problem.

Problem 2.3.2 Find A\ € C and (u, ) € H(curl; Q) x HY(Q2)/C, (u, ) # 0, such that
/curlu-curl’t‘;+/V<p-'6:)\/u-cur1'5 Vv € H(curl; ),
Q Q Q

/ w-Vy=0 VyecH(Q)C.
Q
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In order to establish the equivalence of these two problems, first note that the last two
equations of the former are equivalent to the last equation of the latter. Hence, it is clear that if
(A, u) is a solution of Problem 2.3.1, then, (A, u,0) solves Problem 2.3.2. Conversely, if (A, u, ¢)
is a solution of Problem 2.3.2, by taking v = Vy in its first equation, we conclude that ¢ = 0.
Therefore, we only need to prove that curlu = Aw in €.

With this end, we test the first equation of Problem 2.3.2 with v € D(2)3 and integrate by
parts to conclude that

curl (curlu — Au) =0 in Q.

Then, taking v € H'(2)3, by integration by parts it follows that
(curlu — Au) xn =0 onl.

Thus, we have that curlu — Au € Ho(curl’; Q) N H(div’; Q). Therefore, from Lemma 2.2.1, it
follows that there exists ¢ € H'(Q), with ¢|r, = 0 and ¢|r, = Cj, (constant), 1 < k < I, such
that curlu — Au = Vq. Then, integrating by parts we have

HVqu Q= / (curlu — \u) - V§ = / curlu - Vg
' Q Q
I
= (curlu - n,q)p = Z Cr(curlu-n,1)p =0,
k=1
where the last equality follows from Stokes theorem, density arguments, and the fact that I'y
are closed surfaces. Whence, V¢ = 0 and consequently curl u = Au in ). Thus we conclude the
following equivalence result.

Proposition 2.3.1 If (A\,u) is a solution of Problem 2.3.1, then (\,u,0) is a solution of Prob-
lem 2.3.2. Conversely, if (A\,u,p) is a solution of Problem 2.3.2, then ¢ = 0 and (\,u) is a
solution of Problem 2.3.1.

For the analysis of Problem 2.3.2, we consider the following solution operator:

S : Ho(div’; Q) — Hy(div"; Q),
f—Sf:=w,

with w € H(curl; Q) such that there exists & € H!(Q)/C satisfying
/ curlw - curl o +/ VE-v = / f-curlv Vv € H(curl; Q2), (2.5)
Q Q Q

/ w-Vi=0 YyecH(Q)/C. (2.6)
Q

The Babuska-Brezzi conditions for this mixed problem are easy to check. In particular, the

ellipticity in the kernel follows from the fact that, since 2 is simply-connected, ||v|oy o <

C |lcurlv|, g for all v € H(curl;2) N Ho(div’; ©2); see [2, Corollary 3.16]). Consequently, (2.5)—
(2.6) has a unique solution (w,¢), which satisfies £ = 0 and ||w|| o < C|fllgq- Moreover,

(2.6) shows that w € Hy(div’; Q). Hence, the operator S is well-defined and continuous.
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Clearly, Su = pu, with p # 0, if an only if (A, u,0) is a solution of Problem 2.3.2, with
A= i Thus, we focus on characterizing the spectrum of S.

We note that S (Ho(div";Q)) € H(curl; Q) N Hy(div"; Q). Since, according to (2.4), there
exists s > 1/2 such that

H(curl; Q) N Ho(div’; Q) — H*(Q)3 N Hy(div"; Q) — Hy(div’; Q),

the first inclusion being continuous and the second one compact (cf. [45, Theorem 1.1.3]), we
conclude that S is compact.
Moreover, from (2.5), by proceeding as for Problem 2.3.2 we obtain

curl (curlw — f) =0 in Q and (curlw — f) xn =0 onl.

Hence, using Lemma 2.2.1 again, it is straightforward to show that curlw = f in Q. Thus w
belongs to the space

Z:={veH(cur;Q): curlv-n=0o0nT}.
We summarize these results in the following lemma.

Lemma 2.3.1 Operator S is compact. Moreover, S(Ho(diVO;Q)) C Z and, for oll f €
Ho(div%; Q), if w = Sf, then curlw = f in Q.

Next step is to establish some properties of the space Z that will be used in the sequel. The
first one is the following result, which has been proved in [98, Theorem 1] in a more general
setting (see also [65, Proposition 2.3]). We include here an elementary proof, for completeness.

Proposition 2.3.2 Forally,z € 2
/ (curly-zZ—y-curlz) =0.
Q

Proof. Let y € Z. Then curly € Hy(div®; Q). Since Q is simply-connected, we know (cf. [45,
Theorem 1.3.6]) that there exists a unique ® € Ho(curl; Q) N H(div’; ), such that

curly =curl® in
and, consequently, there exists a unique ¢ € H!(Q)/C, such that
y=V¢Y+& in Q.
Then, for z € Z, we have
/Q(curly -Z—y-curlz) = /Q (curl® -z — ®-curlz) —/QVz/J -curl z.
Now, since for all v € H}(Q)3

/ (curl® -7 — ® - curld) = (® xn,v) =0
Q
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and H'(Q)? < H(curl; Q) densely, we obtain
/ (curl® -z —®-curlz) =0.
Q
On the other hand, using integration by parts we have that

/ Vi -curlzZ = (curlz - n, ) = 0.
Q

Thus, we conclude the proof. O
A first consequence of the above proposition is the following density result for the smooth
functions of Z.

Proposition 2.3.3 Subspace D(Q)? N Z is dense in Z.

Proof. The proof is based on a classical property (see, for instance, [45, Section I, (2.14)]), which
in our case reads as follows: D(Q2)? N Z is dense in Z if and only if every element of Z’ that
vanish on D(Q)? N Z also vanishes on Z.

Let L € Z'. Since Z is a Hilbert space, there exists I € Z such that

(L,'v>:/(l-17+l~~curl17) Vv € Z,
Q

where (-,-) denote the duality pairing between Z’ and Z and ! := curll. Now, assume that L
vanishes on D(Q2)? N Z, namely,

(L,v>:/(l-17+l~-cur11_}):0 Yo e D(Q)?*NZ.
Q

We need to prove that L vanishes on Z, too. With this end, note that since D(Q)® C D(Q)3N Z,
it follows that

/l-ﬁ+/l~-cur1’5:0 Vv € D(Q)3

Q Q

and, hence, I = — curll. On the other hand, given that V (D(€2)) € D(Q)3 N Z too, we have

/l~V1/):0 Vi € D(9Q).
Q
Then, curll = -1 € Ho(div%; Q), so that I € Z. Therefore, using Proposition 2.3.2 we obtain
(L,v) :/ <l-17+l~-curl'z7) :/ (—curll~-’6+l~-cur16) =0 Vv € Z.
Q Q

This proves the claimed density. O
Another consequence of Proposition 2.3.2 is the self-adjointness of the operator S which,
together with its compactness, will allow us to obtain a thorough characterization of its spectrum.

Proposition 2.3.4 S is self-adjoint.
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Proof. Given f,g € Ho(div’;Q), let w := Sf and v := Sg. From Lemma 2.3.1, curlw = f
and curlv = g in Q. Hence, by using Proposition 2.3.2, we have that

/Q(Sf)-gz/Qw-gj:/Qw~cur16:/chrlw-z_;:/ﬂf-ﬁ:/gf-(Sg)

and we conclude the proof. O
Now, we are in a position to establish a spectral characterization of S.

Lemma 2.3.2 The spectrum of S is given by o(S) = {n},enU{0}, with {pn} being a sequence
of non-vanishing finite-multiplicity eigenvalues which converge to zero. Moreover, yu = 0 is not
an eigenvalue of S and there exists a Hilbertian basis {u,} of Ho(div; Q) of eigenfunctions

of S; i.e., such that Su, = ppu,, n € N.

neN

Proof. The result is a consequence of the classical spectral characterization of compact self-
adjoint operators. There only remains to prove that p, # 0 Vn € N. We proceed by contradic-
tion. Assume p, = 0. Hence, [, u, - curlv = 0 Yo € H(curl; Q). Then, u, € Hy(curl’; Q) N
Hy(div®; Q) = {0}. 0

The above lemma and the relation between the spectrum of S and Problem 2.3.2, yields a
thorough characterization for the solutions of the latter and, consequently, for the solutions of
Problem 2.3.1.

Theorem 2.3.1 Problem 2.3.1 has a denumerable set of solutions (An, un), n € N, and {u, }, oy
is a Hilbertian basis of Ho(div’; Q).

One way to approximate the solutions of Problem 2.3.1 is to consider an appropriate dis-
cretization of the variational form given in Problem 2.3.2. For the sake of clarity, we postpone
this approach to the appendix, where we propose and analyze a finite element method applied to
a convenient variant of this problem (cf. Problem 2.7.1). This leads to a generalized eigenvalue
problem involving two non-definite matrices. In spite of this fact, we prove in the appendix that
this degenerate matrix eigenvalue problem is well posed. However, because of this degenerate
character, standard eigensolvers cannot be used, which makes its computer solution significantly
more complicated.

In what follows we introduce an alternative formulation which overcomes this drawback.
This formulation will lead, after discretization, to a generalized eigenvalue problem involving
two Hermitian matrices, that on the right-hand side being positive definite. Thus, standard
software can be used for its numerical solution.

To derive this alternative formulation, notice that, for A # 0, Problem 2.3.1 is equivalent to
the following one: find A € C and u € H(curl; Q), u # 0, such that

curlu = Au  in €,

curlu- n=0 onl.

Clearly, the solution u of the above problem belongs to Z and satisfies

/curlu~cur16—)\/u-curlﬁ—/\/curlu-z_z—/\Q/u-TJ Yv € Z,
Q Q Q Q
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where we have also used Proposition 2.3.2. Therefore, we are led to consider the following
problem:

Problem 2.3.3 Find A € C and u € Z, u # 0, such that

/curlu-curlﬁ—/\Q/u‘T; Yv e Z.
Q Q

We have just proved the following result.
Lemma 2.3.3 If (\,u) is a solution of Problem 2.3.1, then it is a solution of Problem 2.3.5.

The converse is partially true. To prove it, we consider the solution operator:
T: L*(Q)° — L2(Q)3,
f—TFf =w,

with w € Z such that
/curlw-curlﬁ—l—/w-ﬁz/f'ﬁ Yv € Z. (2.7)
Q Q Q

The well-posedness of problem (2.7) is a direct consequence of Lax Milgram lemma, whence T’
is well-defined and continuous. Note that Tu = pu, with p # 0, if an only if (\, u) is a solution
of Problem 2.3.3, with A2 +1 = %

Clearly p = 1 is an eigenvalue of T' (correspondingly, A = 0 is an eigenvalue of Problem 2.3.3)
with associated eigenspace

K={veZ: curlv=0 inQ}=V(H(Q). (2.8)
Since T is clearly self-adjoint (cf. (2.7)), the orthogonal complement of IC,
ICh2@? = Hy(div%; Q)
is an invariant subspace for T". Therefore,
T := Tlhy(aiv®:0) Hy(div’; Q) — Ho(div%; Q)

is a well-defined bounded operator and o(T') = o(T)U{1}. Moreover, since T takes values in the
space Z C H(curl; Q) and, by virtue of (2.4) H(curl; Q) NHo(div®; Q) < Ho(div®; Q) compactly,
we derive the compactness of T.

The following theorem shows how the eigenpairs of T, with u # 1, are related with the
solution of Problem 2.3.1.

Theorem 2.3.2 The following properties hold true:

a) The spectrum of T" decomposes as follows:

o(T) = {1} U {pn}tyen U {0}

Moreover:
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o 1 =1 1is an eigenvalue of T with infinite-dimensional eigenspace IKC;

o {lin},en 15 a sequence of finite-multiplicity eigenvalues p, € (0,1), n € N, which
converge to 0;

e 11 =0 is not an eigenvalue of T'.

b) If X in an eigenvalue of Problem 2.3.1 with eigenspace E, then p = ﬁ s an eigenvalue
of T and &€ is an invariant subspace of T.

c) If w # 1 is an eigenvalue of T with eigenspace €, then there exists an eigenvalue \ of
Problem 2.3.1 such that p = ﬁ and € is an invariant subspace of Problem 2.5.1.

Proof. We have already proved that u = 1 is an eigenvalue of T" with corresponding eigenspace
IC and that o(T) = o(T) U {1}. Thus, the spectral characterization of T is a consequence of the
compactness of T. On the other hand, ¢ = 0 is not an eigenvalue of T'; in fact, if T'f = 0, then
it follows from (2.7) that f L Z D D(Q)? dense in L?(Q)3, so that f = 0. Moreover, for all the
eigenvalues p, # 1, it is also easy to show from (2.7) that u, € (0,1). Thus, we conclude (a).

In its turn, Lemma 2.3.3 and the arguments above lead to (b).

1
T+X2°
eigenvalue of Problem 2.3.1. In fact, according to Theorem 2.3.1, the sequence of eigenfunctions

of Problem 2.3.1 is a Hilbertian basis of Ho(div’; Q). Since we have already proved in (b) that all
of them are eigenfunctions of 7', this operator cannot have an additional eigenpair; otherwise,

It remains to prove that all the eigenvalues of T are of the form W= with A being an

since T is self adjoint, the additional eigenfunction would have to be orthogonal to the whole
Hilbertian basis, which cannot happen. Thus, we conclude (c). O

As a consequence of this theorem and the relation between the eigenpairs of Problem 2.3.3
and those of the operator T', we obtain the following result.

Corollary 2.3.1 Letv # 0 be an eigenvalue of Problem 2.3.3 and € the corresponding eigenspace.
Then, there exists an eigenvalue X of Problem 2.8.1 such that v = A2 and € is an invariant sub-
space of Problem 2.5.1.

Remark 2.3.1 Notice that the eigenfunctions of Problem 2.3.83 are not necessarily eigenfunc-
tions of Problem 2.3.1. In fact, if X\ and —\ were both eigenvalues of Problem 2.3.1, then \?
would be an eigenvalue of Problem 2.3.3, with multiplicity equal to the sum of those of A and — .
Moreover, an eigenfunction of Problem 2.3.3 corresponding to A\* would be a linear combination
of the eigenfunctions of Problem 2.8.1 associated to A and —\, but not necessarily an eigenfunc-
tion itself. In other words, in such a case, in general the eigenfunctions of Problem 2.3.3 are
not Beltrami fields satisfying carlu = +Au. At first glance one might think it would be very
unusual for X\ and —X to be both eigenvalues of Problem 2.3.1. Howewver, as will be shown in
Section 2.6.1, this is something that always happens when the domain ) is symmetric.

2.4 Finite element approximation

In this section, we introduce a Galerkin approximation of Problem 2.3.3 and prove some
convergence results. From now on, we assume that €2 is a polyhedral domain and {75}, is
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a regular family of partitions of ) in tetrahedra T, so that Q = UTeTh T; parameter h stands
for the mesh-size and we assume that any generic constant denoted by C' is independent of
h. We denote by ’7? the corresponding triangulation induced on the boundary of €2, namely,
TF ={F faceof T €T,: FCT}.

For any T € Ty, let N*(T) :=P,_1(T)® @ {p € Px(T)® : p(z)-x =0}, where Py, is the set
of polynomials of degree not greater than k and P, the subset of homogeneous polynomials of
degree k.

The corresponding global space to approximate H(curl; §2) is the space of functions that are
locally in A" k(T ) and have continuous tangential components across the faces of the triangulation
Tn. This is the well-known Nédélec space:

Nh = {Uh € H(Curl; Q) : Uh’T S Nk(T> VT € 771)}

(for further details see, for instance, [68, Section 5.5]). Whence, the natural approximation space
for Z is
Zp=NyNZ={v, e Ny: curlvy, - n=00nT}.

The Galerkin approximation of Problem 2.3.3 reads as follows:

Problem 2.4.1 Find \;, € C and up € 2y, up, # 0, such that
/ curluy - curl vy, = )\’21/ uy, - Up, Youy, € Zp,.
Q Q

Notice that Problem 2.4.1 leads to a well-posed generalized matrix eigenvalue problem, be-
cause the sesquilinear form on the right hand side is Hermitian positive definite. To solve this
problem, it is necessary to impose somehow the constraint curluy - n = 0 in the definition of
Z;,; we will address this point in Section 2.5.

Consider the corresponding discrete solution operator:

T, : L2(Q)? — L2(Q)3,

fr—="Thf = wy,

with wy, € Z}, such that

/curlwh-curlﬁh+/wh-ﬁh:/f-t‘)h Yoy, € Zyp,.
Q Q Q

As a consequence of Lax Milgram lemma, T}, is a well-defined bounded linear operator. Clearly
Ap, is an eigenvalue of Problem 2.4.1 if an only if ﬁ)‘i € o(Ty).

To prove convergence and error estimates for the proposed Galerkin scheme, we will use the
results on spectral approximation for non-compact operators from [33, 34]. With this aim, we
consider the restrictions of the operators T" and T}, to the respective invariant subspaces Z and
Z},. To avoid overburdening the notation, from now on 7' and 7}, will denote T'|z and Tj|z,,
respectively. Note that the spectral characterization of T' given in Theorem 2.3.2 remains the
same without the need of any modification.

In order to use the theory from [33, 34] we need to prove the following properties:
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PL: lim [|(T' = T3) |2, | = 0,
h—0
P2: Vv e Z }llli%vhlggh v = vhlleurro = 0-

Property P2 follows immediately from Proposition 2.3.3 and standard interpolation error es-
timates for Nédélec finite elements. In order to prove property P1, we establish some preliminary
results.

Let us define

T, = min {s, k}, (2.9)
where k > 1 is the degree of the Nédélec finite elements and s > 1/2 is a Sobolev exponent such
that (2.4) holds true.

Let us recall that IC C Z is the eigenspace of T associated with the eigenvalue ;= 1 and let
V := K12 It is immediate to show from (2.8) that V = Hy(div®; Q) N Z. Operator T restricted
to IC is the identity; instead, restricted to its orthogonal complement is a regularizing operator,
as shown in the following lemma.

Lemma 2.4.1 Let f € V and w :=Tf. Then, w € H%(curl; Q) and
[wllsq + leurlw|[, o <Cflloq-

Proof. From the definition of 7', w and f are related by (2.7). Taking v = w in this equation,
we have

Hchurl,Q < ”f ‘O,Q : (210)
Moreover, since V (H'(2)) C Z, taking in (2.7) v = V¢, ¢ € H(Q), it follows that

/w-vz/?_/f-v&_o Vi € HY(Q).
Q Q
Hence, for f € V C Hy(div?;Q), we have that w € Hy(div’;Q), too. Consequently, w &
H(curl; Q) N Ho(div%; Q) < H*(Q)3 (cf. (2.4)) and, using (2.10), it follows that
[wlls o < Cllwllego < ClFllog-
On the other hand, taking v € D(Q)3 C Z in (2.7), we obtain
curl (curlw) +w=f in Q. (2.11)

Hence, curlw € H(curl;Q) and, since w € Z, curlw € Hy(div’;Q), too. Then, the same
arguments as above allow us to conclude that curlw € H*(Q)3 and

leurlwl|, o < Clleurlw| oy o < Cllfllog

the last inequality because of (2.11) and (2.10). Thus, we conclude the proof. O
Clearly pp, = 1 is an eigenvalue of T}, with associated eigenspace

ICh = {’Uh € Zy, . curlvy, = 0} C ’C,
il
so that T}, restricted to ICy, is the identity, too. Let Vj, := IC, Zn_Notice that V), ¢ V. However,

the following lemma shows that the curl-free terms in the Helmholtz decomposition of Vy, are
asymptotically negligible.
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Lemma 2.4.2 For f;, € V;, there exist x € V and n € IC such that f;, = x +n and there
hold:

a) x € H(Q)? with |x]| o < C leurl 4]0 0.
b) |Inlloq < Ch™ [leurl 1 [lg . with 1 as defined in (2.9).

Proof. Since f;, € V), C Z, the decomposition f;, = x +n follows from the fact that V = K12,
Now, since V C H(curl; Q) N Ho(div’; Q), we have that x € H*(Q)3 (cf. (2.4), again). Moreover,
because of the definition of IC, curl x = curl f;,. Hence,

Ixlls.0 < CliXllewrro < Clleurl x|y o = C llcurl fillg g,

the last inequality because, for Q simply-connected, |[x[loq < Cllcurlx|lyq for all x €
H(curl; Q) N Ho(div%; Q) (cf. [2, Corollary 3.16]). Thus we conclude (a).

To prove (b), we will use the Nédélec interpolant 7. According to [68, Theorem 5.41(2)],
since curl x = curl f;, we have that

Ix = x|y < © (h” Ixll,.0+ h curl fhuw) < Wt feurl filloq-  (212)

On the other hand, let [ }? be the divergence-conforming Raviart-Thomas interpolant (see
68, Section 5.4]). Since curlx = curl f;, € H(Q)3 for all € € (0, 3), according to Remark 5.16
and Lemma 5.40 from [68], it follows that

curl (I,szx) = I (curl x) = I (curl f,,) = curl f,,. (2.13)

Now, we write

In 3,Q=/Qn-(fh—x)=/9n‘(fh—IéVx)Jr/Qn‘(Iévx—x)- (2.14)

By virtue of (2.13) we have that f; — I,]lvx € K, C IC, so that x L (fh — I}]lvx) in L2(Q)? and,
since f;, € V), = Kizh, it follows that

[ (=150 = [ £ (5010 = [ (5= 1) =0
Q Q Q
Hence, from (2.14) and (2.12), we conclude that

Il < [[12"x = xlo.q < OB lcurl f1loq -

Thus, we end the proof. O
Now we are ready to prove the following result, from which we will derive property P1.

Lemma 2.4.3 There exists C' > 0 such that, for all f; € Vy,

||(T - Th) .fh”curl,Q < Ch™ ”fh”CUI'LQ ’

with r1 as defined in (2.9).
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Proof. Given f;, € V,, let x € V and n € K be as in Lemma 2.4.2. Let z := T'x and zj, := Ty x.
The following Cea estimate follows immediately from the definitions of T" and Tj,:

Hz - zthurl,Q < thlggh ||Z - ’UthurLQ )

Then, using the Nédélec interpolant and standard error estimates (cf. [68, Theorem 5.41(1)]), it
follows that

12 = Zhllcunser < C 12 = I 2| g 0 < C0* (121l 0 + lleurt 2], 0)

curl,Q) —

Thus, from Lemma 2.4.1, and the fact that /IC L V in L2(€2), we have

(T = Th) Xlleurr,o = 12 = 2alleur,o < CA™ [Ixllo0 < CA™ [ Frlloq-

On the other hand, for n € IC, since T = n and Tyn is the Galerkin projection of 1 onto
Z}, using Lemma 2.4.2(b) we can write

T =) Mlewrr 2 < I leurro = [llog < CH™ £ llurt o

Therefore,

H(T - Th) fh”curl,Q < H(T - Th) Xchrl,Q + H(T - Th) anurl,Q < Ch" H-fh”curl,ﬂ

and we conclude the proof. O

Property P1 clearly follows from the above lemma and the fact that 1" and T} coincide on
ICh. As a first consequence, we have the next result, which was proved to follow from property
P1 in [33, Theorem 1].

Theorem 2.4.1 Let J C R be an open set containing o(T'). Then, there exists hy > 0 such that
O'(Th) C J Yh < hy.

As a consequence of the above theorem, we know that the proposed numerical method
does not introduce spurious modes (which would be the case, for instance, if Lagrangian finite
elements were used; see [18]).

Now, we are in a position to write the main result of this chapter related to the convergence
of the proposed scheme.

Theorem 2.4.2 Let pn € o(T) be an eigenvalue of finite-multiplicity m. Let € be the corre-
sponding eigenspace. There exists hg > 0 such that, for all h < hg, o(T},) contains m eigenvalues

ug), e ,ul(lm) (repeated accordingly to their respective multiplicities) such that
,u(i)—>u, 1=1,...,m.
h h—0

Let €}, be the direct sum of the corresponding eigenspaces. Then,

~

d (55 gh) < C’Yha
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and
(@) 2

max — <C

1<i<m ’/.L | = U
where

Yhi=0(E,2,) = sup  inf [[v—villeuun
veE VLEZ) ’
Hchurl,Qzl

and

~

5(8,8},) = max{5 (8,gh) ,5(£h,£)} .

Proof. Since we have already proved that properties P1 and P2 hold true, the results are direct
consequences of [33, Section 2] and Theorems 1 and 3 from [34]. O
To conclude spectral convergence with an optimal order of approximation from the previous

theorem, we only need an appropriate estimate for the term ~y.

Theorem 2.4.3 Let v, be as in Theorem 2.4.2. Then, there exists C > 0 such that
Y < Ch',

with ry as defined in (2.9).

Proof. Let v € € be such that [|v||.,, o = 1. Since Tv = pv, from Lemma 2.4.1 it follows that

v € H*(curl; Q) and
C C
0]l 0 + l[eurlol o < —lvflpq < —.

Let I }]LV v € N}, be the Nédélec interpolant of v; in what follows, we show that I ,]LV v € Z), (this
has been proved in [65, Proposition 4.3] and [13, Lemma 2.2], but only for lowest-order Nédélec
elements and under different topological assumptions). Let I }If be the divergence-conforming
Raviart-Thomas interpolant. Since v € € C Z, we have that curlv - n = 0 on I'. Hence,
curl (Iévv) ‘n = (If” curl v) -m =0 on I', too, the first equality because of [68, Lemma 5.40]
and the second one because of the well known property that the Raviart-Thomas interpolant
preserves vanishing normal components on the boundary. Thus, I }]LV vEZNNL=Z,.

Therefore, using again the standard error estimate for the Nédélec interpolant (cf. [68, The-
orem 5.41(1)]), we obtain

5(E.2Zp) < sup  |v—IMv
ve€
”’U”curl,Q:1

C
< O ([l + lewrtol o) <

curl,)

Thus, we end the proof. O
As a consequence of the two previous theorems we conclude that the eigenvalues and eigen-
functions of Problem 2.4.1 converge with optimal order to those of Problem 2.3.3.
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2.5 Implementation issues

For the implementation of Problem 2.4.1, it is necessary to impose the condition curl uy-n =
0 on I'. To do this, we follow a similar approach to that used in [65] and [13] for lowest-order
Nédélec elements.

Since we have assumed that the domain € is simply-connected, each connected component
of its boundary is simply-connected, too. In such a case, curlu, - n = 0 on I' if and only if the
tangential component of u; satisfies

nxu,xn=Vrp, onl, (2.15)

where ¢, € L], := {4, € C(T') : ¢p|r € Px(F) VF € T} and Vr denotes the surface gradient
(i.e., the two-dimensional gradient on each plane face of I'; see [25] for its proper definition). In
fact, it is shown in [25, Section 4] that curluy-n = curlp (n x uj, x n) on I', where curlp denotes
the scalar surface curl. Hence, from [25, Theorem 5.1], we know that there exists ¢;, € HY(T)
such that n x uw, x n = Vpgy, on I'. Moreover, by using [68, Remark 5.29], it is easy to show
that ¢y, € L] .
Let
Ly = {Yn €C() : Yu|lr € PR(T) VT € Ty} .

Let {p; }JKzl be the nodal basis of £;,. Without loss of generality we order these basis functions
so that the first J of them correspond to all the nodal values on the boundary I'. Therefore
{goj\p}‘j]:l is a basis of £} . Moreover, <{Vp<pj };.]:1> = Vr(L}). However, these functions are not
linearly independent. To obtain a basis of V(L}), we must choose one vertex on each connected
component I'g,...,I'; of I" and drop out the basis function corresponding to these vertices. Let
us assume for simplicity that these basis function are the last ones. Then, it is straightforward
to show that {Vpgoj}le (L:=J—1-1)is a basis of Vr(L}).

Let {qﬁm}%:l be the nodal basis of Nj,; without loss of generality we also assume that the
last ones, {Cbm}%: N1, are those corresponding to the degrees of freedom related to the faces
or edges on I'. Notice that all the other basis functions lie in Zj. Thus, we have the following
proposition that characterizes a basis of this space.

Proposition 2.5.1 The set {¢,,})_, U {V(pj}le is a basis of Zp,.

Proof. It is essentially identical to that of Proposition 4.2 from [65], where a similar result
is proved in the case that I' is connected for lowest-order Nédélec elements. We include it for
completeness.

First we prove that {(bm}%:l U{Vy; }JL=17 which is clearly a subset of Z},, spans this space.
Let ¢, € Zj,. Because of (2.15), n X ¢,|r Xn € Vp(ﬁg) and, hence, there exist 8;, j =1,...,L,
such that

L
n X ¢,lr x n = Zﬁijgpj.
j=1
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Then, the degrees of freedom of ¢; — Ele B;V; € Ny, corresponding to edges or faces lying
on the boundary vanish. Therefore,

L
br— D BiVej € (b1, by)
j=1

L

jo1 s a linearly independent set. Let us

It only remains to prove that {¢,,}>_, U {Vy;}
assume that

N L
Z Of7n¢’m + Z ijgpj = 0.
m=1 7=1

Since n x ¢,,|r x n vanish for all m = 1,...,N and n x Vyj|r x n = Vrpyp; is a basis of
Vp(ﬁg), we have that 51 = --- = B, = 0. Thus the result follows from the linear independence

of {¢,,}N_,. 0

Actually, the constraint curluy - = 0 on I' in the definition of Z} can be imposed without
the need of using the basis functions {Vgoj}le. We illustrate this in the case of lowest-order
Nédélec elements, which are the ones that we have implemented in the code used for the numer-
ical tests reported in the next section.

Let {e1,...,en} be the set of all edges in Tj, and {gbm}%:l be the associated nodal basis of

N,. Then, for any uy, € N,
M
uh - Z am¢m7
m=1

where o, 1= fem up, - t,,, with t,, a unit tangent to e,,,, m =1,..., M. We assume as above that
the edges lying on I' are the last ones: eny1,...,ep.

Let {Pj}jz1 be the set of vertices of 7, lying on I'. Also as above, each one of the last
I + 1 vertices has been chosen on a different connected component of I'. Let {apj};]:l be the
corresponding nodal basis of L’E. In such a case, according to the Proposition 2.5.1, for u, € 2,

there exist complex numbers o, ..., a/y and B, ..., s such that
N J
wp =Y ahd,+ Y BV,
m=1 j=1
where 41 = --- = 7 = 0. Then, from the definition of a,,, and the above relation, we obtain:
an, if e, NT =10,
Oz;nﬂ:ﬁj, ifemﬂF:{Pj},
« =
" aly £ (B — Br)s ifemNT ={Pj, P} (em ¢ T),
+(B5 — Br)» if e,, C I', with end points P;, P,

the signs above depend on the chosen orientation of the tangent vector t,,.

These relations allow us to define a matrix C € RM*WV+L) guch that @ = Ca&, where
a:= (a1,...,apn)" and @ := (of,...,d\, B1,...,BL)" Notice that most of the entries of this
matrix vanish and the others are £1.
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Let A := (A;;) and B := (B;;) be the M x M matrices defined by

Ajj = / curlg; - curl ¢, and B;; = / Q- ?;, i,7=1,..., M.
Q Q

Then, using the basis of Z} from Proposition 2.5.1, the matrix form of Problem 2.4.1 reads as
follows:

Aa = M Ba,
with Hermitian matrices A := C*BC and B := C'AC , which are positive semi-definite and
positive definite, respectively. Thus, this is a well-posed generalized matrix eigenvalue problem.

2.6 Numerical experiments

We have developed a MATLAB code based on lowest-order Nédélec elements (k = 1) to
solve Problem 2.4.1. We report in this section some numerical experiments which confirm the
theoretical results proved in the previous sections.

2.6.1 Validation

As a first numerical test, we have solved a particular problem with a known analytical
solution, which allowed us to validate the computer code and to check the performance and
convergence properties of the scheme. When the domain 2 is the unit sphere, the least positive
eigenvalue is the smallest positive solution of the equation A = tan A, namely, A = 4.493409...
Moreover, A is an eigenvalue of multiplicity three (for further details see [26, Theorem A]).

Because of the symmetry of the domain, it is easy to check that (A, u(x)) is a solution of
Problem 2.3.1 if and only if (—\,u(—x)) is a solution, too. Therefore, A? is an eigenvalue of
Problem 2.3.3 with multiplicity six. Whence, by virtue of Theorem 2.4.2, we know that, for h
small enough, there exist six eigenvalues )\%717 ceey )\}2176 of Problem 2.4.1 (repeated accordingly
to their respective multiplicities) such that

A2 A\ i=1,...,6.
7 h—0

The code has been used on several meshes 7, with different levels of refinement; we identify
each mesh by its respective number of tetrahedra Nj,. We have compared the average /):h =
(An1+ ...+ M) /6 with the analytical eigenvalue A. Table 2.1 shows the obtained results. The
table also includes an estimate of the order of convergence, the so-called experimental rate of
convergence:

108 (A= Jal/12 =)
log (Ni/Nw)
Since the domain is smooth, the theoretical order of convergence for the eigenvalues is in

this case O(h?™), with ry := min {s,1} = 1. It can be seen from Table 2.1 that the obtained
results show an estimated order of convergence close to the theoretical one. Figure 2.1 shows a

erc = —
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Table 2.1: Unit sphere. Computed and exact eigenvalues, errors, and experimental rates of

convergence. N N
N | A IA=An| | erc

53506 | 4.495885 4.493409 0.002475 | —
91286 | 4.495117 4.493409 0.001708 | 2.08
157765 | 4.494620 4.493409 0.001210 | 1.89
259404 | 4.494283 4.493409 0.000874 | 1.96

10°

—&—error
——0o(h?)

error
[
5]

10°

10

Figure 2.1: Unit sphere. Error |\ — Xh\ versus number of tetrahedra N}, (log-log scale).

log-log plot of the errors versus the number of tetrahedra Ny,. The slope of the line shows a clear
quadratic dependence on the mesh-size.

According to the theoretical results, the invariant subspace spanned by the six eigenfunctions
of Problem 2.4.1 corresponding to Ap 1,. .., Ap6 yields an approximation of the eigenspace of A2
in Problem 2.3.3. However, the latter is the direct sum of two three-dimensional eigenspaces of
Problem 2.3.1, those corresponding to A and —A. Therefore, the eigenfunctions of Problem 2.4.1
are not in general eigenfunctions of Problem 2.3.1 (and hence Beltrami fields), but linear com-
bination of eigenfunctions corresponding to both eigenvalues, A and —A\.

We have also solved this problem by using the finite element discretization of Problem 2.3.2
given in Problem 2.7.2. More details about this numerical method, including the corresponding
convergence analysis, are reported in the appendix. Figure 2.2 shows the vector field and some
integral curves for one of the eigenfunctions computed in this way. This minimum-eigenvalue
field is the well-known spheromak introduced in [27] and reported in [26] (see also [28, 97, 96]).

Moreover, we have applied our method to a problem in which the boundary of the domain
is not connected: a spherical shell {:1: ER3: a<|z| < b}. In this case, two basis functions of
Eg has to be eliminated for the implementation, each of them corresponding to a vertex on each
connected component.

We have compared the obtained results with the analytical ones reported in [26] for the
spherical shell {z € R?: 0.540183 < || < 1.05}. Table 2.2 shows results similar to those re-
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Figure 2.2: The spheromak.

ported in Table 2.1 for the eigenvalue of least absolute value of this problem. Once more, the
estimated rates of convergence are close to O(h?), as predicted by the theory.

Table 2.2: Spherical shell. Computed and exact eigenvalues, errors, and experimental rates of

convergence. N N
Ny, A A A=Al | erc
11875 | 6.369146 6.423856 0.054711 | —
31969 | 6.394034 6.423856 0.029823 | 1.84
63693 | 6.404705 6.423856 0.019151 | 1.92
131470 | 6.412565 6.423856 0.011291 | 2.19

2.6.2 Eigenvalues of the curl on a rectangular box

For the last test, we have chosen as domain a rectangular box. In particular, we have consid-
ered the hexahedron  := (—0.5,0.5) x (—0.4,0.4) x (—0.6,0.6). Notice that as in the previous
tests, because of the symmetry of the domain, A is an eigenvalue of Problem 2.3.1 is and only
if —) is another eigenvalue of the same problem. Therefore each eigenvalue A? of Problem 2.3.3
has multiplicity at least two.

We have used several regular meshes as those shown in Figure 2.3.

On each mesh we have computed the six smallest eigenvalues )\271 < ... < )\,21,6. In this
case, )‘i2l,2k—1 and )\i% converge to a same limit A7, k = 1,2, 3, which is a double eigenvalue of
Problem 2.3.3.

In this case, we have estimated the order of convergence by means of a least-squares fitting
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Figure 2.3: Meshes on the rectangular box.

of the model
)\h,k ~ )\ex + Cht;

where Xh,k = ()\h,2k—1 + >\h,2k) /2.

Table 2.3 shows the three smallest eigenvalues computed on several meshes. As in the previous
examples, Np denotes the corresponding number of tetrahedra. For each eigenvalue, the table
also includes the extrapolated more accurate approximation Ay and the estimated order of
convergence t obtained with this fitting. The obtained orders of convergence are again close to
O(h?), as predicted by the theory.

Table 2.3: Rectangular box. Computed and extrapolated eigenvalues and computed orders of

comveeemes | N, =10368 Nj, =34992 N;, =82944 Nj, =162000 | Aex | order
Xia | 7.4360 7.4337 7.4329 7.4325 7.4319 | 2.02
Mno | T7.7666 7.7724 7.7741 7.7751 7.7763 | 2.19
Xns | 8.0530 8.0726 8.0802 8.0836 8.0909 | 1.81

Figure 2.4 shows the eigenfunction corresponding to the third smallest positive eigenvalue
computed by solving Problem 2.7.2 as in the previous test. Those corresponding to the first
and the second one are essentially similar to rotations of this. Finally, the eigenfunctions corre-
sponding to the negative eigenvalues are obtained from those of the positive ones by means of a
symmetry.

Appendix

In this appendix, we consider a finite element approximation of Problem 2.3.2. The simplest
minded approach would consist of using the finite element spaces N C H(curl;Q) and £;, C
HY(Q) for a direct discretization of this problem. However, such a procedure leads to a spectral
problem for an operator which is not compact and a property analogous to P1 (typical for the
spectral approximation of non-compact operators) does not seem to hold, either. To circumvent
this drawback, we consider the following problem, which only differs from Problem 2.3.2 in that
the space H(curl; Q) has been substituted by Z.
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Figure 2.4: Eigenfunction of the curl on a rectangular box.

Problem 2.7.1 Find A € C and (u,p) € Z x HY(Q)/C, (u,p) # 0, such that
/curlu-curlz‘)—i—/V@-T):)\/u-curli) Vv € Z,
Q Q Q

/ w-Vi=0 Yy eHY(Q)/C.
Q
The following result shows that this is actually equivalent to Problem 2.3.2.

Proposition 2.7.1 Problems 2.3.2 and 2.7.1 have the same set of solutions.

Proof. Let (A, u, ) be a solution of Problem 2.3.2. By virtue of Proposition 2.3.1, curlu -n =
Au-mn=0onT, sothat u € Z. Hence, (A, u,¢) solves Problem 2.7.1.

Conversely, let (A, u, ) be a solution of Problem 2.7.1. Proceeding as done to prove Propo-
sition 2.3.1, we obtain ¢ = 0, u € Hy(div’;Q), and curl (curlu — Au) = 0 in Q. Hence, for
u € Z, we have that curlu—A\u € H(curl’; Q)NH(div%; Q) = {0}. Consequently, curlu = \u,
and, whence, (A, u, ) solves Problem 2.3.2. 0

Let Z, C Z and L, C HY(Q) be the finite element spaces defined in Sections 2.4 and 2.5,
respectively. We consider the following discretization of Problem 2.7.1:

Problem 2.7.2 Find A\, € C and (up, ppn) € 25 X L1,/C, (up, ¢n) # 0, such that
/ curluy, - curl vy, +/ Vo - 0p = )\h/ uy, - curl oy, Yo, € Zp,
Q Q Q

/uh-v¢h:0 V”l/}hE,Ch/(C.
Q
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Our aim is to prove that the eigenvalues and eigenfunction of Problem 2.7.1 are well approx-
imated by those of Problem 2.7.2. With this end, we will apply the classical theory for mixed
eigenvalue problems of the so-called type Q1 reported in [66, Section 3]. The first step is to
show that all the following properties, which correspond to assumptions (3.12)—(3.16) from this
reference, are fulfilled in our case:

e there exists ay > 0 such that
/ lcurlv|? > oy Hszurl,Q Vv ey, (2.16)
Q

where, we recall, ¥V = {v €eZ: [yv- V=0 Vi € Hl(Q)/C};
e there exists #1 > 0 such that

ap Ho 0 gy e em@c (2.17)
veEZ Hchurl,Q

e there exists as > 0, independent of h, such that
/ lcurlvy|* > oo th||(2mrl7ﬂ Yoy € Vp, (2.18)
Q

where, we recall, V), = {’Uh € Zy: fQ v -V, =0 Vi, € Eh/C};
e there exists B > 0, independent of A, such that

‘fnvh‘vw

sup > Balvnlig  Von € Ln/C; (2.19)
VREZ) thchrLQ
e for each (v,v) € Z x HY(Q)/C,
i - ( B _ ) —0. 2.20
hli% (vhywh)é%hX[«h/C H’U vh”curl,ﬂ + ’w ¢h‘1,9 ( )

The ellipticity in the kernels (2.16) and (2.18) follow from [2, Corollary 3.16] and [2, Propo-
sition 4.6], respectively. The inf-sup conditions (2.17) and (2.19) are easily checked by taking
v = Vi and v;, = Vi), respectively. Finally, the density result (2.20) follows immediately from
Proposition 2.3.3, the fact that for a smooth v € Z its Nédélec interpolant satisfies 1 ,]1\7 vEZ,
(cf. the proof of Theorem 2.4.3), and standard approximation properties of the Nédélec and the
Lagrange interpolants.

The solution operator for Problem 2.7.1 is defined as follows:

G: ZxH(Q)/C — ZxH(Q)/C,
(f.9) — G(f,9) == (w,§),
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with (w,€) € Z x HY(Q)/C such that
/curlw-curl’t_JJr/Vf-'l'J:/f-curl’z'; Yv € Z,
Q Q Q
/w.w;:o vy € HY(Q)/C.
Q

Once more, X\ is an eigenvalue of Problem 2.7.1 if and only if = % is a non-zero eigenvalue of
G, with the same eigenfunctions. An additional assumption needed to apply the approximation
results for mixed eigenvalue problems of type Q1 from [66, Section 3] is that G has to be compact.
This and other properties of this operator are established in the following lemma.

Lemma 2.7.1 Forall (f,g) € ZxHY(Q)/C, G(f,g) = (w,0), withw € Hy(div®; Q). Moreover,
w € H*(curl; ) and G is compact.

Proof. Let (f,9) € Z x H(Q)/C. Proceeding again as done to prove Proposition 2.3.1, we
obtain G(f,g) = (w,0), with w € Hy(div’; Q) and curl (curlw) = curl f in Q. Therefore,
w, curlw € H(curl; Q) N Ho(div’; Q) — H*(Q)3. Hence, w € H*(curl; Q), which is compactly
included in H(curl;?), and we end the proof. O

The spectral approximation theory for mixed problems of type Q1 from [66, Section 3|
also involves a formal adjoint operator G,. In the present case, this operator is defined for
(f,9) € ZxHYQ)/C by Gi(f,9) = (ws, &), with (ws, &) € Z x HY(Q)/C being the solution
of the adjoint problem:

/curlv-curlw*—l—/v-Vf*:/v-curlf Vv € Z,
Q Q Q

/w-w* =0 VyeH(Q)C.
Q

In general, for each eigenvalue p of G, [ is an eigenvalue of G, with the same ascent o« and with
invariant subspace £* := Ker ((il — G)“). In our case, 1 € R and, as an immediate consequence
of Proposition 2.3.2, we have that G, = G. However, since G is just a formal adjoint, we cannot
claim that G is self-adjoint. Nevertheless, we prove in the following lemma that its eigenvalues
are non-defective.

Lemma 2.7.2 The ascent of any non-zero eigenvalue of G is one.

Proof. By contradiction. Let (u, (u,y)) be an eigenpair of G, u # 0, and let us assume that
G has a corresponding generalized eigenfunction; namely, G(u, @) = p(u, ), (u,9) # 0, and
there exists (u,®) such that G(u, @) = pu(u, @) + (u, ). Hence, ¢ = ¢ = 0 and, by using the
definition of G for f = w with test function v = w and for f = u with test function v = u, we
respectively obtain

u/curlu-curla:/ucurl'ﬁ,
Q Q

u/curlﬁ'curlﬂ#—/curlu-curlﬁ:/ﬁ'curlﬁ.
Q Q Q
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Subtracting the conjugate of the first equation from the second one and using that u € R, we
have that

u/ ]curlu\Q—/(ﬂ-curlﬁ—ﬂ-curlﬁ)—O,
Q Q

the last equality because of Proposition 2.3.2. Therefore, for u # 0, by virtue of (2.16), u = 0.
Since ¢ = 0, too, this leads to a contradiction and we end the proof. O

Now, we are in a position to write the following convergence result, which is a direct conse-
quence of [66, Theorem 3.1].

Theorem 2.7.1 Let A be an eigenvalue of Problem 2.7.1 of finite-multiplicity m. Let € C Z X

H!(Q)/C be the corresponding eigenspace. Then, there exist evactly m eigenvalues )\21), ceey )\,(Zm)

of Problem 2.7.2 (repeated accordingly to their respective multiplicities) which converge to A as

h goes to zero.

Let €, be the direct sum of the eigenspaces corresponding to /\(1),...,A§Lm) and Ay =

(5(8,Zh X Eh/C) Then,

S(E,Ep) < CH
and

\A_Agﬁ <072, i=1,...,m.

Lemma 2.7.1 and the same arguments used in the proof of Theorem 2.4.3 allow us to show
that there exists C' > 0 such that 7, < Ch™, with r; as defined in (2.9). This, together with
Theorem 2.7.1, imply that the eigenvalues and eigenfunctions of Problem 2.7.2 converge to those
of Problem 2.7.1 with an optimal order.

The matrix form of Problem 2.7.2 is a generalized eigenvalue problem which involves two
non-definite matrices. However, in spite of this, it is well-posed. In fact, it is easy to check that
(An, wp, ¢n) is a solution of Problem 2.7.2 if and only if ¢, = 0 and (A, uy) is a solution of the
following one: find Ay, € C and wp, € Vy, up, # 0, such that

/ curluy, - curl v;, = Ah/ uy, - curl vy, Yvp € Vp. (2.21)
Q Q

The matrix form of the above problem involves two Hermitian matrices, that of the right hand
side being so because of Proposition 2.3.2. Moreover, the matrix on the left hand side is positive
definite because of (2.18). Therefore, the eigenvalues of this discrete problem are real and non-
defective.

Problem 2.7.2 is equivalent to the well-posed generalized eigenvalue problem (2.21). However,
since there is no basis available for Vj, its computer implementation requires dealing with
Problem 2.7.2, in spite of its degeneracy, rather than with (2.21).






Chapter 3

Numerical solution of a transient
nonlinear axisymmetric eddy current
model

3.1 Introduction

An important challenge to bear in mind in the analysis and design of electrical machines is
the accurate computation of the power losses in the ferromagnetic components of the core. These
losses determine the efficiency of the device and have a significant influence on its operating cost.

At the macroscopic level, two main types of losses can be distinguished: hysteresis losses,
which are related to the intrinsic nature of magnetic materials, and eddy current losses, due to
the Joule effect [15].

There are numerous publications devoted to obtain analytical simplified expressions to ap-
proximate the different losses, which are only valid under assumptions that often do not hold
in practice (see, for instance, [15] and [19]). Numerical modeling is an interesting alternative to
overcome these limitations and, thus, we can find several works focused on the computation of
hysteresis and eddy current losses (see [37, 75, 90] and references therein).

A first step in the computation of this kind of losses is the numerical solution of the underlying
electromagnetic problem. This requires solving the quasi-static Maxwell’s partial differential
equations, a well established subject, even in the three-dimensional (3D) case, where edge finite
elements are very useful (see [1, 20, 50] and references therein). This issue was studied in [80]
and [82] in terms of the magnetic field and in the absence of hysteresis effects. In these references
the 3D problem is posed on a bounded conducting domain and homogeneous Dirichlet boundary
conditions are assumed. Current sources are not taken into account, the only source term being
the initial condition. A time semi-discretization scheme is proposed and analyzed to approximate
this problem.

However, major difficulties arise from the fact that cores are laminated to reduce the eddy
current losses. Thus, to account for the detailed geometry, extremely fine meshes should be
needed, which becomes unaffordable. To overcome this difficulty, one can find different strategies

43



3.1 Introduction 44

based on the use of the so-called equivalent conductivity [11, 47, 53, 75] or on homogenization
techniques [36]. In this chapter, we are interested in an alternative approach proposed by Van
Keer et al. [89, 90], which consists in computing the electromagnetic field in a cross-section of
the laminated device, orthogonal to the direction of the enforced flux. This leads to a nonlocal
source term, which together with the fact that there is no current flux through the boundary
yield a nonlinear parabolic problem with a non-classical boundary condition. Such a condition
brings some technical complications; for instance, it involves dealing with a bilinear form which,
instead of being elliptic, satisfies a Garding inequality.

The aims of this chapter are to analyze the resulting problem, to propose a numerical method
for its approximate solution and to prove its convergence. We will address these issues in the
axisymmetric case without including hysteresis effects. The behavior of the material is defined
by a general pointwise continuous and strongly monotone nonlinear relation on the H-B curve,
which, unlike Refs. [80] and [82], allows us to deal with heterogeneous materials. Moreover,
we can also consider a time and space-dependent conductivity. This is important in practical
applications, because the conductivity is a function of temperature which, in its turn, is a time-
dependent field. We prove the existence of a solution of a weak formulation of this problem in
terms of the magnetic field by applying an abstract result [52]. We also prove uniqueness of
solution in the case of a time-independent conductivity.

For the numerical solution of the problem, we further assume that the nonlinear relation on
the H-B curve is Lipschitz continuous. First we consider a finite element discretization by using
piecewise linear functions on triangular meshes. By means of a suitable change of variables,
we reduce the semi discrete problem to a classical nonlinear ODE system and prove its well-
posedness. Then, we combine it with a backward Euler time-discretization. Under appropriate
assumptions, we prove optimal order error estimates for both, fully and semi-discretized schemes.
The proofs are based on arguments from [82] and adapting to our problem the classical theory
of linear parabolic problems (see, for instance, [86]). However, special care must be taken to deal
with the nonlocal boundary condition.

To the best of the authors’ knowledge, the numerical analysis of the fully and semi-discrete in
space schemes had not been previously performed. There are not many references for nonlinear
problems of this kind, even with more classical (homogeneous Dirichlet or Neumann) boundary
conditions. Some of them [55, 73] deal with the Stefan problem, so that the application of their
arguments to our framework would in principle even allow for a multivalued nonlinear H-B curve
(although this is not the kind of curve that appears in our problem). Other references [80, 82] deal
with a similar three dimensional eddy current problem as that of the present chapter, but provide
only error estimates for the semi-discrete in time scheme. None of all these references considers
neither the nonlocal boundary conditions of the present problem nor a pointwise defined H-B
curve.

The chapter is organized as follows. In Section 3.2, we describe the transient axisymmetric
eddy current model and introduce the nonlinear parabolic partial differential equation to be
solved. Next, in Section 3.3, we obtain a weak formulation of the problem. The existence of
solution is proved by applying results for abstract nonlinear parabolic equations. Section 3.4
is devoted to numerical methods. A space semi-discretization by finite elements is introduced
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and, then, a backward Euler scheme is applied for time discretization. Error estimates for both
schemes are obtained. Finally, numerical results that confirm the theoretical estimates are shown
in Section 3.5.

3.2 The transient nonlinear eddy current model

The eddy current model is an approximation of the full Maxwell system of equations obtained
by neglecting the displacement currents in Ampere’s law. This simplified model is suitable for
most electrical engineering applications (the so-called low-frequency regime), for instance, in
the numerical simulation of electrical machines working at power frequencies. The eddy current
model reads

curl H = J, (3.1)

B
8815 +curlE =0, (3.2)
divB =0, (3.3)

where we have used standard notation in electromagnetism: H is the magnetic field, J the
current density, B the magnetic induction and E the electric field. In order to obtain a closed
system we need to add constitutive laws. Assuming that the materials are electrically linear but
magnetically nonlinear, we have

J=0F,
B =B(H).

Equation (3.4) is Ohm’s law, where o denotes the electrical conductivity of the medium.
In the magnetic constitutive relation (3.5), B is in general a nonlinear mapping. Two extreme
cases are the following: linear isotropic materials, for which this mapping reduces to B(H) = uH
with u being the constant magnetic permeability, and ferromagnetic materials where hysteresis
phenomena may occur, in which case the H-B relation exhibits a history-dependent behavior.
Our analysis allows for a nonlinear magnetic material, that will be represented through an
anhysteretic H-B curve, which could have a very steep slope. This choice is a simplification
frequently used for soft magnetic materials by electrical engineers (see, for instance, [88]).

Equations (3.1), (3.2) and (3.4), lead to the following vector partial differential equation in
conductors:

ot o

Our aim is to solve this together with the nonlinear constitutive equation (3.5).

B 1
0B + curl < curl H) =0. (3.6)

3.2.1 Axisymmetric eddy current model with enforced magnetic flux

Let us consider a cylindrical coordinate system (r,6,z) and denote by e,, eg and e, the
corresponding unit vectors of the local orthonormal basis as sketched in Figure 3.1 (left). We
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Figure 3.1: Cylindrical coordinate system (left) and sketch of the domain (right).

suppose that the computational domain Q has cylindrical symmetry and that the current sources
are independent of the azimuth 6 and do not have azimuthal component, so that on each meridian
section these currents lie on this section. We denote by €2 one such section, which we assume is an
open connected domain with a Lipschitz boundary. In such a case, none of the electromagnetic
fields depend on 6 and, furthermore, from Faraday’s law (3.2), B has to be of the form,

B(r,z,t) = B(r, z,t)ey. (3.7)

Since we are assuming that the material is isotropic, the magnetic field H must be of the

same form as B, namely,
H(r,z,t) = H(r,z,t)ey, (3.8)

and the H-B relation reads
B(r,z,t) = B(r,z, H(r, 2, 1)), (3.9)

with B(r, z,-) being a nonlinear mapping in R for each (r, z). Dependence of B in coordinates (r, z)
is permitted to allow for computational domains including different materials. We notice that
any field of the form (3.7) is divergence-free, so that (3.3) is automatically satisfied. Moreover,
since

curl H(r, z,t) = —%H(r, z,t) e, + 1;(7“}[)(7’, z,t) e, (3.10)
2 ror

equation (3.6) leads to

OB 0 (10(rH)\ 0 (10HY
815_87“<m" ar >‘az<aaz>—0‘ (3:.11)

This equation holds in any meridian section € of the domain Q for all time ¢ € [0,7] (T > 0
fixed). To have a well-posed nonlinear parabolic problem we must add to equations (3.11) and
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(3.9) an initial condition
B(r,z,0) = By(r,z) in Q, (3.12)

and suitable boundary conditions on the boundary I" := 0.

The application that has motivated this chapter is the computation of eddy current losses in
laminated media. Thus, following the work of Van Keer et al. [89], we will impose the magnetic
flux b(t) flowing through the meridian section € of the domain (see Figure 3.1, (right)). This
leads to the nonlocal source condition

/Bm%wm@:mw (3.13)
Q

Moreover, we have also to impose that there is no current flux through the boundary of 2;
namely, curl H -n = J -n = 0 on I', where n is the unit normal to I". Hence, from (3.10), it is
straightforward to obtain that the tangential derivative of (rH) has to vanish on I'. Therefore,
provided I' is connected, for each ¢ € [0,7] (rH(t)) has to be a constant (which depends on t)
on the whole I'. Consequently, there exists an (unknown) function 1 (¢) which varies in time but
is space-independent on I' such that

rH(r, z,t) =¢(t) onl. (3.14)
All together, the resulting axisymmetric problem reads:

Problem 3.2.1 Find H(r,z,t) and B(r,z,t) such that

‘zf—;q(;,a(gf» _aaz (i%f) =f inQx(0,7T), (3.15)

B(r,z,t) = B(r,z, H(r, z,t)) in Q x (0,T), (3.16)

rH(r,z,t) =) onT x (0,7), (3.17)
/MW@wmzw)mmn, (3.18)
Q

B(r,z,0) = By(r,z) in Q, (3.19)

where o(r, z,t), f(r,z,t), b(t) and By(r, z) are given data and 1(t) is unknown.

Remark 3.2.1 We include in (3.15) a right-hand side f to consider a more general parabolic
problem, although in the case of the eddy current model f is zero. Moreover, we consider a space-
and time-dependent electrical conductivity o because in practical applications it is a function of
temperature which, in its turn, is a time-dependent field.

Problem 3.2.1 has been proposed and numerically solved in [89] in a more general setting
including hysteresis. The goal of the present chapter is to study the well-posedness and the
numerical approximation of this problem.
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3.3 Mathematical analysis

In this section, we derive a weak formulation for Problem 3.2.1 and prove that it is well-posed.

3.3.1 Functional spaces and preliminary results

We recall some weighted Sobolev spaces typical in axisymmetric problems. We refer to [67]
and [14] for more details. For the sake of simplicity, partial derivatives will be also denoted by
Oy, 0, and so on.

Let Q C {(r,2) € R?: r > 0} be a Lipschitz bounded simply connected open set. Let LY ()
denote the weighted Lebesgue space of all measurable functions u defined in 2 for which

HuHig(Q) = /Q |U|p7" drdz < oo 1 <p<oo.

The weighted Sobolev space H¥(Q) consists of all functions in L2(2) whose derivatives up to
order k are also in L2(£2). We define the norms and semi-norms in the standard way; for instance,

2 2 2
i = Opu|® + |0,ul” ) r drdz.
by = [ (10rul® + 0l

Let L2 /T(Q) denote the set of all measurable functions u defined in 2 for which

2
2 o |u|
H“HLT/T(Q) = /Q . drdz < oo.
We also define HY /T(Q) as before.

Finally, we introduce the function space H.(€2) defined by
HY(Q) = {u e L2(Q) : 9,(ru) € L%/T(Q), d,u € LA2(Q)},

which is a Hilbert space with the norm

1/2
el oy = (Iulz@ + 10-Gu)liEs @)+ 10:ultpe) -

Remark 3.3.1 For Q) being the meridian section of a 3D axisymmetric domain S~2, the space
HL(Q) can be considered as an azisymmetric version of the 3D space H(curl,§2). More precisely,
from the expression of the curl operator in cylindrical coordinates it is immediate to see that

G(r,z) € HY(Q) if and only if G(r, z,0) = G(r, z)es(h) € H(curl, Q).

3.3.2 Weak formulation

Before stating a weak formulation of Problem 3.2.1, we notice that if the boundary of 2
intersect the symmetry axis (r = 0), then ¢ (¢) should be identically zero because r vanishes there.
In such a case, (3.17) would become a homogeneous Dirichlet boundary condition. However, this
does not happen in the application that motivates this problem in which the domain is well
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separated from the symmetry axis (see [89]). This is the reason why, from now on, we will
assume that inf{r > 0: (r,2) € Q} > 0 and, hence, L2(Q) and L2, (Q) are both identical to

1/r
L2(2). Similarly, H:(Q) is identical to H(Q).
Let us introduce the following closed subspace of H!(Q):

W= {G € H(Q) : (rG)|r is constant}. (3.20)

Since I?I}«(Q) is densely and compactly included in L2(f2), the same is true for W (the density
because W D D(£)). Thus, if we identify L2(Q2) with its topological dual, we have that W C
L2(2) € W'. We denote by (-, ),y the corresponding duality paring.

In order to obtain a weak formulation, first we integrate (3.15) in © and use Gauss theorem

to write
4 B(r, z,t) drdz — / S <8(TH)nT + a(TH)nz> dl’ = / fdrdz,
dt Jo ror or 0z Q
where n = n,e, +ne, is the outward unit normal vector to I'. Hence, by using (3.18) we deduce
that
/Falr (8(gf) e + a(gf) n) dr = ' (¢) —/ﬂf drdz. (3.21)

Next, we multiply (3.15) by (rG), G being any test function in W, integrate in 2 and use a
Green’s formula. From the resulting expression and (3.21), we easily obtain the following weak
formulation for Problem 3.2.1:

Problem 3.3.1 Given b € HY(0,T), f € L2(0,T;W') and By € L2(Q), find H € L2(0,T; W)
and B € HY(0,T; W') such that

0B 1 (o(rH) 0(rG)  O(rH)0(rG)
< ot ’G>W,W’ * /Q or ( or or oz oz drdz

= (.Gl + ') = {fr Hhwor) (Gl VG €W, ae. t € (0,T),
B(r,z,t) = B(r,z, H(r, z,t)) a.e. in Qx (0,T),
B(r,z,0) = By(r,2) a.e. in ).

Notice that (f, 77 1)y is well defined because r—! € W.

3.3.3 Existence of solution

We introduce the following hypotheses and notations that will be used to prove the existence
of a solution to the above problem.

H.1: B(r,z,u) is the derivative with respect to u of a (differentiable) normal convex integrand
a defined in © x R (see, for instance, [4]); i.e.,

B(r,z,u) := Oya(r,z,u) Yu e R, V(r,z) €. (3.22)

Moreover, we assume that « satisfies the following conditions:
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e there exist 81 € L2(Q) and 32 € L1() such that
a(r,z,u) > Pi(r,z)u+ Pa(r,z) Yu e R Y(r,z) €
e for each w € L2(Q), a(:, -, w(-,)) € LY(Q).
H.2: There exist two positive constants N1 and Ns such that

|B(r,z,u)| < Nilu| + No Vu € R,¥Y(r,z) € .

H.3: B(r, z,u) is strongly monotone with respect to u uniformly in €2; i.e., there exists a strictly
positive constant w such that

(B(r,z,u) — B(r, z,v))(u —v) > wlu —v[*> Yu,v € R, VY(r,2) € Q.

H.4: ¢:(0,7) — L*°(f2) is measurable and there exist constants o, and ¢* such that

0<ox<o(rzt)<oc" V(rz)eQ, ae. te(0,T).

H.5: There exists Hy € W such that By(r,z) = B(r, z, Ho(r, z)) a.e. in Q.

Note that, as a consequence of H.5 and H.2, By € L2(f2).
Let us introduce the function ¢ : L2(2) — R defined by

w(H) = /Qa(r,z,H(r, 2)) rdrdz, H e L3(Q), (3.23)

which is well defined because of the last property in H.1. Then, from the assumptions on «, ¢
is a differentiable convex function in L2(£2) (see [3, Proposition 2.7]) and its differential, which

we denote Oy, satisfies
Op(H)(r, 2) = Oya(r, z, H(r,2)) = B(r, 2, H(r, 2)) (r,2) € Q, VH € L%(Q), (3.24)

the last equality because of (3.22).
On the other hand, for each ¢ € [0,T], let us denote by a;(-,-) the bilinear form defined by

o 1 19(rH) 19(rG) 0H 0G ~1
a(H, Q) '_/QU(-,t) (r 5 r o + 9% s rdrdz H,G € H;(Q). (3.25)

From H.4, we have the following result whose proof is straightforward.

Lemma 3.3.1 The bilinear forms a; : HL(Q) x HL(Q) — R, t € [0,T), are continuous uniformly
in t. Moreover, they satisfy the Garding’s inequality

with A=~y =1/c".
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Let us introduce R € L2(0,T;W') defined by

(R(t), Gywo = (f(t), Gy + (' () = (f(£), v wowr) (rG)lp,

for all G € W, ae. t € (0,T).
Now we are in position to prove that Problem 3.3.1 has a solution.

Theorem 3.3.1 Let us assume hypotheses H.1 to H.5. Then, Problem 3.3.1 has a solution.

Proof. We will derive this result as a consequence of Theorem 2 from [52]. With this aim, first
we rewrite Problem 3.3.1 as follows:

Find H € L2(0,T;W) and B € HY(0,T; W’) such that

%f(t) + A(t)H(t) = R(t), ae.te(0,T), (3.27)
B(t) = 0p(H(t)), a.e.te(0,T), (3.28)
B(0) = By, (3.29)

where, for a.e. t € (0,T), A(t) : W — W is the linear operator induced by a¢(-,); namely,
(AW H, Gy == ar(H,G) VH,G € W.

Notice that from H.5 and (3.24) we have By = dp(Hy). In order to apply Theorem 2 from [52]
to Problem (3.27)—(3.29), we must check all the hypotheses of this theorem. Some of them are
void (C.1 to C.4), or automatically satisfied (A.2, A.6) or consequence of the other hypotheses
in our case (A.3, A.4), mainly because ¢ is time-independent (cf. Remark 1 from [52]). In what
follows we check the remaining ones:

A.1: As stated above, in our case ¢ is differentiable and convex.

A.5: From H.3 and (3.24), ¢ is strongly monotone; namely,
(O (H1) — Op(Hs), Hy — Ha)r2(0) > w||Hi — Ha|[32q) VHi, Ha € L2(Q).
A.7: From H.2 and (3.24),
||090(H)||Lg(g) <N; ”HHLE(Q) 4+ Ny VH € L%(Q)
B.1: A(t) is maximal monotone in W, because it is a linear bounded operator and a;(G,G) > 0

for all G € W (see, for instance, [3, Theorem 2.4]). Moreover, we also have from the
definition of A(t) that

1
| Hlw < | Hlgyq) YHEW, ae.te(0.).
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B.2: It follows from the assumption that o : (0,7) — L°(Q) is measurable (cf. H.4) and the
fact that A(t) is a linear bounded operator.

B.3: It is a consequence of Garding’s inequality from Lemma 3.3.1.

Thus, all the hypothesis of Theorem 2 from [52] are fulfilled and we are allowed to apply it
to Problem (3.27)-(3.29) to conclude the proof. O

Remark 3.3.2 As a consequence of H.2, the solution of Problem 3.3.1 also satisfies B €
L?(0, T; L ().

Remark 3.3.3 The above existence result is independent of the slope of the H-B curve; even
an infinite slope is allowed.

Remark 3.3.4 The previous theorem yields the existence of solution to Problem 3.3.1. If the
electrical conductivity o does not depend on time, we can also conclude the uniqueness. Indeed,
let Hy and Hs be two solutions to Problem 3.3.1; then, for a.e. t € (0,T),

<3B(H1 (t)) OB(Ha(t))
ot ot

where a(-,-) denotes the bilinear form defined in (3.25) for o independent of t. By integrating
this equation with respect to time, choosing G = Hy(t) — Ha(t) as test function and using the

,G>WW+ a(Hy (1) — Ha(1),G) =0 VG e W,

monotonicity of B, we obtain

W[l Hy(t) — Ho(t)[}2q + a </0 (Hy — Hy)(s) ds, Hy(t) — Hg(t)> <0.

Thus, by integrating in (0,T"), using the equality
T ¢
2/ a (/ (Hy — Hy)(s) ds, Hy () — Hg(t)> dt
0 0
T T
=a (/ (H1 — Ha)(t) dt,/ (Hi — Hy)(t) dt) (3.30)
0 0

and taking into account that a(-,-) is positive semi-definite, we conclude that Hy = Hs.

3.4 Numerical analysis

In this section we propose a numerical method to approximate the solution to Problem 3.3.1.
In order to obtain error estimates for this numerical method, from now on we consider the
following additional assumptions:

H.6 o is time-independent and satisfies o € Wh*°(Q).

H.7 B(r, z,u) is uniformly Lipschitz continuous with respect to u, namely: there exists a positive
constant L such that

|B(r, z,u) — B(r,z,v)| < Llu —v| VYu,veRV(rz)e Q.
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Notice that H.2 immediately follows from H.7.

To impose the constraint of (rH) being constant on I' (cf. (3.14)) we proceed as in [89]: we
make a change of unknown and write the equations in terms of H:=rH and B :=rB.

With this end, we introduce some additional notation. First notice that G € ICI,{(Q) if and
only if G:=rGe H%/T(Q). Hence, G € W if and only if G belongs to the following space:

V= {Y € H%/T(Q) : Yipis constant},

which we endow with the H} /T(Q)—norm. Since, H} /T(Q) is densely included in L? /T(Q), if we

identify L2 /T(Q) with its dual space, we have

YcLi, (@) c)y.

We denote by (-, -) the duality pairing between )’ and ).
From now on, we fix the data of Problem 3.3.1: b € HY(0,7), f € L2(0,T;W') and By €
L2(Q2), and define R € L2(0,T;)") and By € L%/T(Q) by

(R(t), Q) == (f(),r™ Do + (V1) = (f(O),r hwwr) (Glr) G €V, ae. t € [0,T],

Eo(r, z):=rBy(r,z) (r,z)€ Q.
Moreover, let
B(r,z,u) :=rB(r,z,r ') (r,z)€Q,uck.

It is easy to check that B is also strongly monotone and Lipschitz continuous, namely: there
exists positive constants w and L (the same as in H.3 and H.7) such that

(B(r, z,u) — B(r, z,v))(u — v) > wlu —v|*> VYu,v €R, V(r,z) € Q (3.31)

and

|B(r, z,u) — B(r,z,v)| < Llu —v| Yu,veR,VY(r,z) €. (3.32)

Finally, let us introduce the bilinear form af(-,-) : H%/T(Q) x HI, () — R defined by

1/r

(G, G) = a6, r ) = [

Qor

1 (0G10Gy 0G10Gs
(87’ or + 0z 87“) drdz

for él, Gy € Hi/r(Q). Notice that now, because of H.6, a; actually does not depend on t. As a
consequence of Lemma 3.3.1 we have the following result.

Lemma 3.4.1 The bilinear form a is continuous and satisfies the Garding’s inequality
~ A )12 12 ~ 1
AG.C) + AIGI; o) 2GRy o VO € HLL(@),

with A=~y =1/0*.
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Under assumptions H.1 to H.5 we have shown that Problem 3.3.1 has a solution. Moreover,
under the same assumptions and H.6, it is easy to prove that (H, B) is the unique solution to
Problem 3.3.1 if and only if (H, B) is a solution to the following:

Problem 3.4.1 Find H € L%(0,T;Y) and B € H'(0,T;Y") such that

<%’é> +a(H,G) = (R,G) VG eV, ae te(0T),

B(r,z,t) = B(r,z, H(r,z,t)) a.e. in Q x (0,T),

B(r,z,0) = By(r,z) a.e. in Q.

3.4.1 Space discretization

We introduce in this section a space semi-discretization of Problem 3.4.1 and obtain an
optimal order error estimate in the L2(0, T, L% /T(Q))—norm. The following analysis is inspired in
[82] and on the classical numerical analysis of linear parabolic equations (see, for instance, [86]).

To begin with, from now on we assume {2 is a convex polygon. We associate a family of
partitions {7 }r~0 of Q into triangles, where h denotes the mesh size (i.e., the maximal length
of the sides of the triangulation). Let )}, := Vj, N Y, where V}, denotes the space of continuous
piecewise linear finite elements. By using this finite element space, we are led to the following

discretization of Problem 3.4.1.
Problem 3.4.2 Find Hy, € L2(0,T; V) and By, € HY(0,T;)"), satisfying

By ~ o
<8ath’Gh> +a(Hy, Gp) = (R, Gp) VG € Yy, ae. t €(0,T),

Eh(r,z,t) = g(r, z, f]h(r,z,t)) a.e. in Qx (0,7,
Eh(r,z,O) = th(r, z) a.e. in ),

where we assume that there exists E’oh € YV such that

EOh(T, z) = B(r,z,ﬁoh(r, z)) a.e. in Q. (3.33)

A convenient fIOh has to be used for the solution of Problem 3.4.2 to approximate that of
Problem 3.4.1. A possible (theoretical) choice is the Scott-Zhang interpolant of Hy := rHy (see
[79]) which preserves its constant values on I'.

The existence of solution to the above problem is given by the following lemma:

Lemma 3.4.2 There exists a unique solution to Problem 3.4.2

Proof. Let {$;}X | be a basis of YV, then for all ¢ € [0,7], a solution Hj, to Problem 3.4.2, can
be written as follows:

K
Hy(r,z,t) =Y a(t)@i(r,z)  (r,z) € Q. (3.34)
=1
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Similarly, we write

K
Hop(r, 2) = Za?@(r, z) (r,z) € L
i=1

We set Ol(t) = (ai(t))lgigKa t e [O,T], and op = (a?)lgiSK' By ChOOSil’lg éh = @j,j =

1,..., K, in Problem 3.4.2, we obtain the following nonlinear system of differential equations:
d
%C (a(t)) + Da(t) = R(t) a.e.te€][0,T], (3.35)
a(0) = ay, (3.36)
where the nonlinear function C : RX — RX, the matrix D := (Djj)1<ij<k and the vector

R(t) := (Ri(t))1<i<k are defined by

K
1~
Cl(a); ::/QB r,z,ZgEj(r,z)aj @i(r, z) drdz,
j=1

r

Diji=a(@i@) and Ri(t)=(R(t), ).
In order to prove the existence of solution to (3.35)-(3.36), we make a change of variable: we
define v¥;(t) := fot a;(s) ds, so that a; = dip;/dt. Then, integrating in time (3.35), we obtain

C (Ch’b(t)> + D(t) = /Ot R(s) ds— C(ag) ae te[0,T],

dt
¥(0) = 0,

were ¢ = (Y4)1<i<K-

Since B is strongly monotone and Lipschitz continuous (cf. (3.31) and (3.32)), it is straight-
forward to show that C is strongly monotone and Lipschitz continuous, too. Therefore, C is
invertible and C~! is also Lipschitz continuous. Hence, the system above has a unique solution
W € CH0,T;RE) (see, for instance, [30]), a = dap/dt is the unique solution to (3.35)-(3.36) and
Hj, given by (3.34) that to Problem 3.4.2. 0

In what follows we will prove error estimates for this semi-discrete problem. With this aim, let
us introduce the so-called elliptic projector Py, : Y NHS(Q) — Y, NHE(L2), defined for u € H ()

by
a(Ppu,wp) = a(u,wp) Ywp € Y N H(l)(Q)

The following lemma yields an error estimate for P,u. Its proof, based on Galerkin orthogonality
and a duality argument, is standard. From now on, we suppose that C' is a strictly positive
constant independent of h and At (the time step that will be introduced below).

Lemma 3.4.3 There exists C > 0 such that, for all u € H%/T(Q) NH(Q),

1Py — UHL%/T(Q) + h||Phu — ’LLHH}/T(Q) < ChQHUHHf/T(Q).
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Next, we define the operator ]Sh : Y = Yy by
Py = Py(v — (v|r) + (v|r) Vv e V.
It is easy to show that
a(Pyv,v) = a(v,vn)  Yop € Wh. (3.37)
Moreover, from Lemma 3.4.3 we have the following result.

Lemma 3.4.4 There exists C > 0 such that, for all u € H%/T(Q) ny,

| Pru — u||L§/T(Q) + h||Phu — U||H1/T(Q) <Ch ||U||H§/T(Q) :

Now we are in position to obtain an error estimate for the above semi-discrete problem.

Theorem 3.4.1 Let H and .FNIh be the solutions to Problems 3.4.1 and 3.4.2, respectively. If
H e LQ(O,T;H%/T(Q)), then there exists C > 0 such that

1, — Hll 2002, (@) < C{h2”ﬁ||L2(O,T;H§/T(Q)) + || Ho — ﬁOhHLg/T(Q)}- (3.38)

1/r

Proof. We proceed by means of a classical technique for parabolic equations. Let us write
H(t) — Hy(t) = (ﬁ(t) - ﬁhﬁ(t)) + (ﬁhﬁ(t) - ﬁh(t)) . (3.39)

Notice that the term H(t) — P,H(t) can be bounded as in Lemma 3.4.4. To estimate the other

one, we test Problem 3.4.1 with G, € )y, subtract from Problem 3.4.2 and integrate in time.
Thus we obtain, for ¢ € (0, 7]

/Q LB =BGy drdz+a </Ot(f~l ) (s) ds, éh> _ /Q %(EO — Bon)Gn drdz.

r

Hence, from (3.37) we arrive at

/ L BB 1)) - B 0)C drdz + ( / (B () ds, E;’h>
Q 0

r

= / 1(Eo — Boy)G), drdz +/ 1(lfS’v(lBhI;T(t)) — B(H(t)))G}, drdz.
Qr [ORA

Now we take Gj, := P H (t) — Hp(t). Integrating in time, using the strong monotonicity and
Lipschitz continuity of B (cf. (3.31) and (3.32)) and Cauchy-Schwartz and Young inequalities,
we obtain

v Tﬁfit H, (1) dt
2 [ IR0 - B0l o

+ /OTa (/Ot(ﬁhﬁ — Hy)(s) ds, PyH(t) — ﬁh(t)> dt

1/r

TL2 . . ) L2 T . )
< o - Aonlls o)+ /0 \BaE() — B2 o . (3.40)
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To estimate the right-hand side above we use Lemma 3.4.4, whereas, for the left-hand side
we use the following equality (analogous to (3.30))

/Ong (/Ot(ﬁhf] — Hy)(s) ds, PyH(t) — flh(t)) dt

_ %a </0T(ﬁhﬁ ~ () d, /OT(ﬁhﬁ _ 3 dt) (3.41)

and the fact that

2

w [T - - B T
S [ IR~ O o e 5| [P )0

0 1/r 0 H}/T‘(Q)

ce PLH() — Hy(D)|? dt

<5 [ IBAO - B0, o

1 T T
+ 55 </ (PnH — Hp)(t) dt,/ (PnH — Hp)(t) dt) , (3.42)
0 0

for some positive constant §, which follows from (3.41) and Lemma 3.4.1. Thus, from (3.40) and
(3.42) we obtain

~ ~ ~ T ~ ~ ~
|BuE — Fnlliaiomaz oy + \ JRGEE A

1/r

H, ()

< C{RNH vz, ) + 1o — Honllsz (o }- (3.43)

1/r

Therefore, (3.38) follows from (3.39), (3.43) and Lemma 3.4.4, and we conclude the proof. O

Remark 3.4.1 If ETO € H%/T(Q), then we can use the Lagrange interpolant of ﬁo as ﬁOh, and
in such a case, we have

| Hp, — ﬁ||L2(O,T;Lf/T(Q)) < ChQ{HfIHm(o,T;H?/T(Q)) + ||ﬁ0“H2/T(Q)}'

1 1

Remark 3.4.2 [t is straightforward to obtain from (3.39), Lemma 3.4.4 and (3.43) the following
error estimate:

sup
t€[0,7]

/ t(ﬁh — H)(s) ds
0

< C{Hffo - fNIOhHL%/T(Q) + Bl H || 20,712 (Q))} :

L2(0,T;HL, () v
Remark 3.4.3 The assumption on the convexity of the domain has been used to obtain an O(h?)
estimate in (3.38). For a non-convexr domain, a reduced-order error estimate can be proved, too.
In fact, the O(h?) in (3.38) follows from Lemma 3.4.4 and this from Lemma 3.4.3, which holds
true for any non-convex polygonal domain, but with a fractional power of h.
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3.4.2 Full discretization

In this section we introduce a time discretization of Problem 3.4.2 by means of a backward Eu-

ler scheme and prove its convergence. We consider a uniform partition {t' := iAt, i =0,..., M}
of [0, T], with time step At := T/M, M € N. The notation dz**! refers to the difference quotient
S Sl i

At

We consider the following further assumption on the data of the problem:
H.8 feHY (0, T;W).

A full discretization of Problem 3.4.1 stands as follows:

Problem 3.4.3 Fori=0,....,M —1, find H;"" € ¥}, and B;'" € 12 (Q) satisfying
) r@BZ“Gh drdz + a(H T, Gr) = (R GL) VG, € D, (3.44)
B}I’Ll(r,z) = B(r, z, E[;L+1(r,z)) a.e. in €, (3.45)
BY(r,z) = Bon(r,2) a.e. in Q, (3.46)

where th is as in (3.33). In the problem above, we have used Ritl e V', defined by
(RHG) = (F(E), e Chowowr + (B6EH) = (FEF), 7 wwr) (Glr) - G €,
to approzimate R(t"1), i =0,..., M — 1.
The existence of solution at each time step is guaranteed by the following lemma.
Lemma 3.4.5 There exists a unique solution to Problem 3.4.3.
Proof. For each i =0,..., M — 1, we rewrite (3.44) as follows:
Z(H*Y = Ry, + Y in ), (3.47)

with Z : )}, — Y, defined by

(Z(H), G

yh,yh : /Q B (r, z, lEV+ (r, z))Gh drdz+Ata(H2+1,C~¥h) G €

and Fitl € ) by
<]5i+17Gh yhvyh = /Q B (r,z Hh T, z))Gh drdz YGj € V.
Since B is strongly monotone and Lipschitz continuous (cf. (3.31) and (3.32)) and
o 1 A ~
a(GhaGh) > ;| Gh‘?{%/r(g) vGh S yh7

we have that Z : ), — y,; is a strongly monotone, Lipschitz continuous operator. Thus, applying
the Banach fixed-point technique, it can be shown that the equation (3.47) (i =0,...,M — 1)
has a unique solution (see, for instance, [78, Proposition 2.22]). O

The following theorem provides an error estimate for the fully-discrete problem.
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Theorem 3.4.2 Let H and f[};ﬂ be the solutions to Problems 3.4.1 and 3.4.3, respectively. If
H c HY(0,T; H%/T(Q)), then there exists C > 0 such that

M—1 1/2
(Z AtHH(t1+1) — H;’I+1’i2/T(Q)>

1
i=0
< C{(At + hZ)HHHHl(O,T;Hf/T(Q)) + |[Ho — HOhHLf/T(Q) + AL f 2 0,77) }
Proof. We write as in the proof of Theorem 3.4.1

At — Hit! = (ﬁ(ti“) - ﬁhﬁ(tiﬂ)) v (ﬁhﬁ(ti“) . ﬁf,g“) (3.48)

and focus on estimating the second term. First, by taking G= C~¥h in Problem 3.4.1, integrating
from 0 to t*+1 € (0, 7] and using (3.37), we obtain

’
0 i=0

—a </0 (Har — H)(0) dt,éh) + </0

1~ ~ -
+/ ; By Gy, drdz VG € Y, (3.49)
Q

l
LB (+1) Gy, drdz 4 At (Z B, éh>

tl+l tl+1

R(t) dt, éh>

with Ha; being the piecewise constant interpolant of H (i.e., Ha,(t%) := H(t%) and Ha,(t) :=

H(t"), t € (t*1,#']). Then, by summing up (3.44) for i = 0,...,l, with [ € {0,..., M — 1}, and
subtracting from (3.49), we have

l
/ 1(z§(15hﬁ(tl+1)) — B(HY)Gy, drdz + Ata (Z(ﬁhﬁ(tiﬂ) — HitY, éh>
or i=0

= / LBy — Bo)G drdz + / L BB — BUEEY))Cy drds
Qr Qfl

+a’</0

The last term above can be written as follows: for all éh eV,

tl+1 25l+1

l
(Har — H)(t) dt, éh> + < /O R(t) dt — At R, éh> : (3.50)

1=0

tl+1

tl+l " l . " "
< R(t) dt—AtZR”+1,Gh> :/ <Ef(t),G> dt,
0 = 0
where Ef € L2(0,T,)) is defined, a.e. t € (0,T), by

(Eg().G) = ((f = fs)0)r7'C)

~((F =S, (@)

ww’




3.4 Numerical analysis 60

for G € Y, with fa; being the piecewise constant interpolant of f defined as above. Notice that,

clearly,
HEfHL2(07T;y/) <C|f- fAtHLQ(O,T;W’) : (3.51)

Now, by choosing G, = P,H(t"!) — H ;LH in (3.50) and using the monotonicity and Lipschitz
continuity of B (cf. (3.31) and (3.32)) and Cauchy-Schwartz and Young inequalities, we obtain

l

(-U ~ o~ ~ — ~ o~ . ~ . ~ o~ ~

SIPHE) = B e (o) + Ata <§ (PLH(EHY) — HPY), Py H () — H;i“)
=0

2 - ~ 9 L? ~ -~ 1+1 7+ l+1y\12
< UHHO — HOhHL? () + UHPhH(t ) - H(t )HL%/T(Q)

+a</0 )

tl+1 o »
- < Ef(t) dt, P,H () — H,’j1> .
0

tl+1

(Hay — H)(t) dt, PyH(t7) — ﬁéﬂ)

Summing up the above equation for [ =0,..., M — 1, we obtain

M-1
At || P, H () — ﬁ,ﬂ“lli;/ @
=0

M—1 l
+A2 ) G (Z(ﬁhﬁ(tiH) — Hi*Y), PH(1) - f{r;jl>

| &

=0 \i=0
LT, ~  ~ ., L2AE N 141 Sl 2
< THHO - HOhHL%/T(Q) + w ; HPhH(t ) - H(t )HLf/r(Q)
M—1 g B o B
Ay a ( / (Fas — H)(t) dt, BH(E) — H;Lﬂ)
1=0 0
M-1 $l+1 o .
+ALY < Ey(t) dt, P, H (1) — Hé“> : (3.52)
1=0 \”0

First, we will deal with the left-hand side above. We rewrite its second term by using the
following identity, for [ > 1:

|
—

I I
Py HAHY) — HFY =N (P HEY) — HYY) =S (P H(EHY) — HITY. 3.53
h h h

=0 %

I
=)

Thus we obtain a discrete version of (3.41), namely,

M-1 l
APy @ (Z(ﬁhf?(t”l) — ), B () - ﬁffl)
=0 =0
1 . -
—~al At Z (P H(™Y) — HITY, At
2 1=0 =0
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Using this and Lemma 3.4.1, we obtain the following estimates for the left-hand side of (3.52)
there exists 8 > 0 (which depends on w, T and ¢*) such that

M-1
w o -
: AP H () = HP P2 g
=0
) M-1 _ M-1
+5a (At (P HAY) — HIY, ALY (P H(EY Hflfl))
1=0 =0
w M-1 "
> 1 At|| P H (1) H:j_lHi%/T(Q)
=0
M-1 o 2
+ BHAt (P H(tHY) — HI (3.54)
1=0 Hi (@)

Next, we estimate the right-hand side of (3.52). The second term will be easily bounded by
means of Lemma 3.4.4. For the third term we use (3.53) and summation by parts to obtain

M—-1 i1 _ " o "
At G (/ (Hpy — H)(t) dt, PyH(tH) — H;jl)
1=0 0

M—-1

( (Fas— )0 dt. A S () flﬁ“))
=0

M-2

NM

{2 l
( / (Hay — H)(t) dt, Aty (P H() - ﬁ,g+1)> :

=0

Hence, using the continuity of @ and Young’s inequality, we obtain that for all a > 0, there
exists C, > 0 such that

M-—1 $l+1 _ ~ o _
At G ( / (Hae — H)(t) dt, P,H(') - H,ljl) |
1=0 0
M— 2
7 17112 o S 7741 T+l
< CaHHAt - H||L2(O,T;H1/T(Q)) + 5 At Z (PhH(t ) — Hh )
1=0 H},,.(Q)
| M2 L _ 2
+ = Aty (P H(ET) — HY) (3.55)
2 =0 =0

H%/T(Q)
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For the last term of (3.52), we proceed analogously to obtain

M-1 {4
At > < E¢(t) dt, P,H(t"+1) —Er}jl>
1=0 \”0
M-1 2
< Ca”Ef”%?(o,T;y') + % H At Z (P H () = H)
=0 H, (@)
1 M—2 1 o o 2
+ 5 AL> (P H(ETY) — Hi (3.56)
1=0 i=0

By taking « := /2, replacing (3.54)-(3.56) in (3.52) and using (3.51) and the discrete
Gronwall’s inequality, we arrive at

2

M-1 M—
I+1 rrl+112 l+1 rri+1

At|| P,H(#) — HE ”L%/T Z P H(Y) — A
=0 1=0 H!, ()

<C {HﬁAt H||L2(0TH1 ay + I1F = fadlfa0 )

M-1
7 7 2 D Iy (4l+1 I7(l+1y 12
+ 1 Ho = Honllpz | o) + At ZZ; [ PhH () — H(t )IIL@T(Q)} : (3.57)

Thus, the result follows from (3.48), Lemma 3.4.4 and classical approximation results for the
piecewise constant interpolant. 0

Remark 3.4.4 As noted in Remark 3.4.1, if Hy € H 1r (Q), then the Lagrange interpolant of

Hy can be used as H()h and, in such a case, we conclude that

M1 1/2
(Z At H(t*) - H]7’1+1||12J§/T(Q)>
< C{(At + h2)||H||H1(OTH2 (@)t h? ||H0||H2 @) T At f e o, }
Remark 3.4.5 A result analogous to that of Remark 3.4.2 also holds true. In fact, from (3.48),
Lemma 3.4.4 and (3.57) it is straightforward to prove that

max tz+1 H}Z;H )

le{l,...,M}

< C{(At + h)HﬁHHl(O,T;Hf/T(Q)) + || Ho — ﬁOhHLf/T(Q) + At”f”Hl(O,T;W’)}'

Remark 3.4.6 The same arguments used in Remark 3.4.3, allow us to show that a reduced-
order form of Theorem 3.4.2 holds true for a non-convexr polygonal domain.
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Figure 3.2: Positive part of the H-B curve.

3.5 Numerical results

In this section we report some numerical results obtained with a Fortran code which imple-
ments the numerical method described above. In order to analyze the convergence properties
of the numerical scheme, we apply it to a test problem with a known analytical solution. The
main purpose of this test is to check that the orders of convergence are consistent with the
theoretical results. With this end, we have solved a problem which corresponds to a laminated
electromagnetic core, where the magnetic flux flowing through it is known [89]. The geometry
corresponds to the meridian section of such a device, whereas the physical parameters used in
the simulation are similar to those of nonlinear steels frequently used in its manufacture (see,
for instance, [88]).

We consider the eddy current Problem 3.2.1 defined in the meridian section 2 :=(0.06,0.18)
x (0,0.06), where the dimensions are given in meters. The right-hand side f is chosen so that

= erxp(t) sin (07?(7)06) sin (%)

is the solution to the problem. Notice that H = rH is constant (actually it vanishes) on the
boundary of the domain.

We consider a nonlinear material whose magnetization is given by its anhysteretic H-B curve
defined by

2J5 r— DpoH
B(H) := poH + 2, arctan <W> , (3.58)
™ s

where pig = 47 x 107"Hm™!, u, = 3000 and J;, = 1.89 T. This curve, whose positive part is
shown in Figure 3.2, is very similar to the first magnetization curve of laminated steels (cf. [88]).
The value of the electrical conductivity is o = 4 x 10 (Ohm m)~*.

The problem has been solved in the time interval [0,2] so that the values of the solution H
vary approximately between —12 x 10 and 12 x 10> A /m. Hence, the nonlinear part of the curve
is clearly attained (see Figure 3.2).
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The numerical method has been applied with several successively refined meshes and time-steps.
The nonlinear system arising at each time step has been solved with a Newton’s iteration. A
sufficiently small tolerance has been chosen (10~%), so that the error of this iteration be negligible.
The computed approximate solutions have been compared with the analytical one by calculating
the percentual relative error for H and grad H in the L(0, T; L2 /T(Q))—norm by means of

_ " 1/2
(2241 AtHH(tk) - Hilf”if/r(Q))

)

ELYH) =100 7
(Zgil AtHH(tk)Hif/T(QJ

_ _ 1/2
(S0, Al grad () - grad A ()

EPt(grad H) := 100 72
u _
(zkzl At || grad H (t*) IIif/r(Q)>

Table 3.1 shows the relative errors for H at different levels of discretization. We notice that by
taking a small enough time-step At one can observe the behavior of the error with respect to the
space discretization (see the row corresponding to At/128). On the other hand, by considering a
small enough mesh-size h, one can inspect the order of convergence with respect to At (see the
column corresponding to h/16). In this example, we observe an order of convergence O(h% + At)
for H, which is the one expected from the theoretical analysis (cf. Remark 3.4.4).

In Table 3.2 we show the percentual relative errors for grad H in the L2(0, T'; L2 /T(Q))—norm.
In this case, the space discretization error dominates the time discretization one, even for the
finest mesh. In fact, an order O(h) can be observed for both time steps. Let us remark that we
have not proved theoretically this experimental result (note that the estimates in Remark 3.4.5

are in a different norm).

Table 3.1: Relative error (%) for H: EAY(H).

h h/2  h/4  h/8  h/16
At 1385] 291 063 065 0.75
At/2 | 1404 314 061 030 0.38

At /4 14.14 0.70 0.15 0.8

At/8 14.19 332 077  0.15 0.08

At/16 | 14.21  3.36 0.17  0.04
At/32 | 1422 337 082 0.9  0.04
At/64 | 1421 338 0.83 0.04
At/128 | 1420 3.38  0.83  0.20

Once the order of convergence is checked, we report in one single figure the simultaneous
dependence on h and At for H in L2(0,T; L% /T(Q))—norm by proceeding in the following way:
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Figure 3.3: ShAt(ﬁ) versus number of d.o.f. (log-log scale), At = Ch?.
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Table 3.2: Relative error (%) for grad H: EM(grad H).

h h/2  h/4  h/8 h/16
At | 94.04 4988 2533 12.73 6.4l
At/2 | 94.13 49.95 25.36 12.73 6.38

we choose initial coarse values of h and At and, for each successively refined mesh, we take a
value of At proportional to h? (see the values within boxes in Table 3.1). Figure 3.3 shows a
log-log plot of the corresponding relative errors for H in the L%(0,T; Lf /T(Q))—norm versus the
number of degrees of freedom (d.o.f.). The slope of the curve shows an order of convergence
O(h?) = O(h? + At). In a similar way, Figure 3.4 shows an order O(h + At) for grad H in the

L2(0,T; L%/T(Q))—norm.



Chapter 4

Mathematical and numerical analysis
of a transient non-linear
axisymmetric eddy current model

4.1 Introduction

An important challenge in the analysis and design of electrical machines is the accurate
computation of power losses in the ferromagnetic components of the core due to hysteresis and
eddy-current effects. These losses determine the efficiency of the device and have a significant
influence on its operating cost. There are numerous publications devoted to obtain analytical
simplified expressions to approximate their different components, which are only valid under
certain assumptions that do not hold in many practical situations. Numerical modeling is an
interesting alternative to overcome these limitations (see [37, 90, 75]).

We focus on the eddy current losses. Their numerical computation requires solving the
Maxwell quasi-static partial differential equations, which is the aim of this chapter. For lin-
ear magnetic materials this is a well established subject, even for three-dimensional (3D) models
where edge finite elements are very useful (see, for instance, [1, 20, 50]). The non-linear case
was studied in [80, 82] in terms of the magnetic field, where a transient eddy current model is
considered on a 3D bounded conducting domain under homogeneous Dirichlet boundary condi-
tions. A time semi-discretization scheme to approximate this problem is proposed and analyzed
in these references; however, current sources are not taken into account, the only non vanishing
data being the initial condition.

More recently, a non-linear axisymmetric transient eddy current model was analyzed in [10]
under rather general assumptions on the non-linear constitutive relation between the magnetic
field H and the magnetic induction B (i.e., the so called H-B curve). In this case, the source
term enters in the model by setting the magnetic flux across a meridian section of the device.
Existence of solution was obtained by applying an abstract result which needs, in particular,
the strong monotonicity of the H-B curve. A full discretization to approximate this problem was
also proposed in this reference and error estimates were obtained.

67
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In the present chapter we also focus on the axisymmetric eddy current model defined in a
non-linear magnetic device. However, we consider the case in which the source term enters in
the model by setting the magnetic field on the boundary, which results in a non-homogeneous
Dirichlet boundary condition. This is shown to be a mathematically suitable condition for the
problem to be well posed and, at the same time, it is physically realistic in the sense that there are
industrial applications where it can be readily obtained from easily measurable quantities. This
is the case, for instance, of the numerical simulation of eddy currents in metallurgical electrodes
8, 9, 54], induction heating systems [29] or current losses in a toroidal laminated core [62, 70].
In all these applications the Dirichlet boundary data for the magnetic field can be obtained from
the current intensity. We notice that the non-homogeneous character of the boundary condition
brings some technical complications in both the mathematical and the numerical analysis with
respect to previous works on the subject [10, 80, 82].

In our case, the behavior of the material is defined by means of a general continuous and
monotone non-linear H-B curve which (unlike in references [80] and [82]) may also depend on the
position, what allows us to deal with heterogeneous media. Moreover, we also consider a time
and space dependent electrical conductivity. This is important in practical applications, because
this quantity is typically a function of temperature, which in its turn is a time dependent field.

By using classical weighted two-dimensional Sobolev spaces for axisymmetric problems, we
prove the existence of a solution to a weak formulation in terms of the magnetic field. The
technique used for this purpose (commonly known as the Rothe’s method, see [77]) consists of
introducing an implicit time discretization, obtaining a priori estimates and then passing to the
limit as the time-step goes to zero. Let us remark that, to the best of the authors’ knowledge, this
problem does not fit in other existing results because of the time dependence of the coefficients
as well as the non-homogeneous character of the boundary condition.

Under further assumptions, we also prove the uniqueness of solution and perform the nu-
merical analysis of the problem. For the numerical solution, first the problem is discretized in
time with a backward Euler scheme, which is proved to be well posed. Then, a full discrete ap-
proximation is introduced by using continuous piecewise linear functions on triangular meshes.
Under appropriate assumptions, we analyze both, the semi- and the fully discrete schemes. For
the former our analysis is based on [82]. For the latter we adapt the classical theory of linear
parabolic equations (see, for instance, [86]), whereas to deal with the non-homogeneous Dirichlet
boundary condition we resort to some arguments from [5]. Therefore, for the fully discrete prob-
lem, we obtain an L2-like estimate without assuming any additional regularity of the solution.
Moreover, under appropriate smoothness assumptions, we also obtain an optimal-order error
estimate.

The chapter is organized as follows. First, in Section 4.2, we describe the transient axisym-
metric eddy current model and introduce the non-linear parabolic partial differential equation
to be solved. In Section 4.3, we recall some functional spaces, establish a weak formulation of
the problem and study its well posedness. Section 4.4 is devoted to the numerical analysis of
the semi-discrete problem arising from a backward Euler time-discretization. In Section 4.5, we
combine it with a finite element method for space discretization and prove stability and error
estimates of the resulting full discretization. Finally, in Section 4.6, we report a numerical test
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which confirms the theoretical results.

4.2 The transient eddy current model

Eddy currents are usually modeled by the so called low-frequency Maxwell’s equations (see,
for instance, [1]):

curl H = J,
B
8—+curlE:0,

ot
div B = 0.

We have used above standard notations in electromagnetism: E is the electric field, B the
magnetic induction, H the magnetic field and J the current density. To obtain a closed system
we need to add constitutive laws. On one hand, assuming that the materials are electrically
linear, Ohm’s law in conductors reads

J=0F,

where o is the electrical conductivity, which is supposed to be bounded above and below away
from zero. On the other hand, assuming that the magnetic materials are soft and hysteresis
effects can be neglected, we may consider that B and H are related as follows:

B =B(H), (4.1)

where B is a non-linear mapping.
The above equations lead to the partial differential equation in conductors

0B 1
—— + curl ( curl H> =0, (4.2)
ot o

which has to be solved together with the non-linear equation (4.1) and appropriate boundary
and initial conditions.

4.2.1 Axisymmetric case

We restrict our attention to the case where a 3D conducting domain Q has cylindrical
symmetry and all fields are independent of the angular variable . Then, in order to reduce
the dimension and thereby the computational effort, it is convenient to consider a cylindrical
coordinate system (r,0, z). Let us denote by e,, ey and e, the corresponding unit vectors of the
local orthonormal basis.

We assume that the magnetic field is of the form

H(r,z,t) = H(r,z,t)ey.

Then, assuming an isotropic behavior of the material, the magnetic induction B will be of the
same form,
B(r,z,t) = B(r,z,t)ey,
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and hence automatically divergence-free. Therefore, a scalar non-linear model
B(r,z,t) = B(r,z, H(r, 2,1)),

with B(r, z,-) a non-linear mapping in R, may be used to describe the H-B relation.
Taking into account that

curl H(r, z,t) = —%H(r, z,t)e, + 188(7“}[)(1“, z,t)es, (4.3)
2 ror

it is straightforward to check that (4.2) is equivalent to the scalar partial differential equation
OB 0 (10GH)) 0 (100
ot  Or \or Or 0z \oc 0z )

which holds in any meridian section 2 of Q and for all time ¢ € [0,7]. In order to have a

well-posed problem, we add an initial condition
B(r,z,0) = By(r, z) in €,

and suitable boundary condition on the boundary I' := 9€). In view of applications, we consider
a non-homogeneous Dirichlet boundary condition

H(r,z,t) =g(r, z,t) on I' x [0, 7],

where g is a given function. For applications of this model, we refer for instance to [8, 29, 54],
where this kind of problem arises in the simulation of metallurgical heating processes. We also
refer to [62, 70], where it is shown how ¢ can be obtained from the current intensity along the
coil of a toroidal solenoid.

Altogether, the resulting axisymmetric problem consists of finding scalar fields H(r, z,t) and
B(r, z,t) such that,

%1:_% <01T‘9(gf)> Wai(i?j) _f in Q x (0,7), (4.4)
B = B(H) in Q x (0,7), (4.5)
H=g inI'x (0,7), (4.6)

Bli=o = Bo in Q,

where o(r, z,t), f(r, z,t), g(r, z,t) and By(r, z) are given data. Notice that although most of the
variables and coefficients are function of the space variables (r,z) and the time ¢, when there
is no possibility of confusion we will not write explicitly this dependence, as in the equations
above.

Remark 4.2.1 We have allowed a general right-hand side f in (4.4) in order to consider a
more general parabolic problem, although in the eddy current model f is null.
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4.3 Mathematical analysis

In this section, we make a precise statement of the problem to be solved by means of a
weak formulation suitable for its mathematical analysis. Then, we prove the existence and,
under additional assumptions, the uniqueness of a solution. First, we introduce some preliminary
results which will be used along the chapter.

4.3.1 Functional spaces and preliminary results

We define weighted Sobolev spaces appropriate for the mathematical analysis of the problem
and recall some of their properties. For compactness of notation, from now on, the partial
derivatives will be denoted by 0,, 0, and 0.

Let Q C {(r,z) € R*: r > 0} be a bounded domain with a Lipschitz boundary I'. We denote
by n = n.e, + n.e, and t = t,e, + t,e, (with ¢, := —n, and ¢, := n,) the outer normal and
tangent vectors to €. Let L2(£2) denote the weighted Lebesgue space of all measurable functions
u defined in ) for which

“U||1%g(g) = /Q \u|2r drdz < oo.

Given k € N, the weighted Sobolev space H¥(Q) consists of all functions in L2(2) whose
derivatives up to order k are also in L2(€2). We define the norms and semi-norms of these spaces

in the standard way; for instance,

2 2 2
U = Opu|® + [0,ul” ) r drdz.
ulfey = [ (100 +10.uf%)
Let
AL(©Q) = HY(Q) N L2, (),

where L2, (€2) denotes the set of all measurable functions v defined in €2 for which

1/r
lull72 = / ‘u7|2 drdz < oo
L2,@ = | :

1/r

H.(9) is a Hilbert space with the norm
2 2 2
Il ) = e +llulze @ -

Let H2(Q) := {u e HL(Q) : HuHﬁ%(Q) < oo}, where

2

+ HazuHIzTI%(Q)'

2 2 19
s : ~ — Oy
HuHHZ(Q) ”“HH;(Q) ‘r (ru) L)

Finally we recall from [46, Section 3] that functions in H2(£2) have traces on I'. We denote
HY2(T) = {v[r Lwe ﬁi(g)},
endowed with the norm
l9llg1/20y = inf {lollgy o v € HE(S) with vlr = g}

which makes the trace operator v — v|p continuous from HZ(£2) onto ~,1,/2(1“).
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4.3.2 Weak formulation

In order to establish a weak formulation of the above problem, we consider the following
subspace of H.(Q):
U= {Ge H(Q): GIr :o}.

We multiply equation (4.4) by rG, with G being a test function in U, integrate in  and use a
Green’s formula, to obtain the following weak formulation of (4.4)—(4.7):

Problem 4.3.1 Given g € LOO(O,T;ﬁim(F)), f € L>(0,T;U') and By € L(Q), find H €
L0, T; HL(Q)) and B € L°°(0,T;L2(Q)) with ;B € L>°(0,T;U"), such that

(:B,G) +a:(H,G) = (f,G) VG el, a.e inl0,T],
B =B(H) in Q x (0,7),
H=g in ' x (0,7),
Bli=o = Bo in .

In the first equation above, a; : H(€) x HL(Q) — R denotes the bilinear form defined by

0(G1, Go) = /Q U(_lt)r(@r(rGl)&q(rGg)+82(7‘G1)83(7'G2)> drdz

and (-,-) denotes the pairing between U and its dual space U’.

4.3.3 Existence and uniqueness

We introduce the following hypotheses that will be used to prove the existence of a solution
to the above problem:

H.1: The mapping B: © x R — R is a Carathéodory function, namely,

o B(,u): 2 — R is measurable for each u € R,

o B(r,z,-): R — R is continuous for each (r,z) € Q.

H.2: B(r,z,u) is monotone with respect to u, namely,
(B(r,z,u) — B(r,z,v)) (u —v) >0 Yu,v € R, a.e. (r,z) € Q.
H.3: There exist ap € L2(Q2) and by > 0 such that

IB(-,v)| < ao(-) +bolv|  VveR.

H.4: The electrical conductivity o : Q x (0,7) — R belongs to W1*°(0, T;L>°(€)) and there
exist strictly positive constants o, and ¢* such that

ox <o(rz,t)<oc* a.e. (r,z,t) € Q x (0,7).
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H.5: There exists Hy € ﬁ%(Q) such that
By(r,z) = B(r, z, Hy(r, 2)) a.e. (r,z) € Q.
H.6: There holds g € H2(0, T; HY?(I)) and f € HY(0, T;U0").
From the boundedness assumption on o, we derive the following result.

Lemma 4.3.1 The bilinear forms a; are continuous uniformly in t € [0, T]. Moreover, they are
elliptic also uniformly in t € [0,T]; namely,

at(G,G) 27|Glf VG EU,
where v is a positive constant depending only on o* and ).

Proof. For the continuity, it is immediate to check that, for all Gy,Gs € ﬁ}(Q), a;(G1,G2) <

U% ||G1||ﬁ%(9) ||G2||ﬁ}(ﬂ). The ellipticity follows from the fact that

1
g T 1/r Q

and

2/ G (0,G) drdz = / 9r(G?) drdz:/Gan dS=0 VGeuU.
Q Q r

Now, for each t € [0,T], let Hy(t) € H.(Q) be the unique solution of the Dirichlet problem

(I{g(t)fw)ﬁi(g) =0 Yw € U,
Hy(t) = g(t) on T,
where (-, ~)ﬁ1(Q) denotes the Hilbert product in H(€2). It is easy to check that HHg(t)||ﬁ1(Q) =
Hg(t)”ﬁ}”(r) for all ¢ € [0, T] and, by virtue of H.6, H, € H2(0,T; H:(2)) with
Wlls o iz = W9l raewy.  F=012 (48)

In order to prove that Problem 4.3.1 has a solution, we write H = H, + H,, with H, as
defined above. Clearly H, € U for all ¢ € [0,T]. Then, Problem 4.3.1 is equivalent to finding
H, € L°(0,T;U) and B € L>=(0,T;L2(Q)) with 9, B € L>°(0,T;U") such that

(0:B, G) + a;(H,, G) = (F(t),G) VG eU, ae. in[0,T], (4.9)
B = B(H,,1) in Q x (0,7), (4.10)
Hu|t:0 = HO - ]{g(O) in Q, (411)

where B: Q x R x [0,7] — R is defined by

B(r,z,v,t) := B(r, z,v + Hy(r, z,t)), (r,z) e, tel0,T], veR,
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and F: [0,T] = U by
(F(t),G) = (f(t),G) — ar(Hy(t),G) VG elU, tel0,T].

It easy to check that B satisfies a monotonicity property similar to H.2, namely,

(B(r,z,v,t) — B(r,z,w,t))(v —w) >0 Yv,weR V(r zt)eQx][0,T] (4.12)

Moreover, from the regularity of H,, we have that B~(-,t) is a Carathéodory function for all
t € [0,7] (cf. Hypothesis H.1) and that there exist by > 0 (the same as in H.3) and

ao(-t) = ao(-) + bo | Hy(-,t)| € LI (), te 0,7,
such that
‘B(~,v,t)‘ <Go(t) +bolv]  V(v,t) € R x [0,T). (4.13)

To prove the existence of solution, we proceed by classical arguments of time discretization, a
priori estimates and passing to the limit. First, we introduce the linear operators A(t) : H(€) —
H.(Q) induced by as(-,-) (i.e., A(t)G := a,(G,-), G € H:()), which by virtue of Lemma 4.3.1
are bounded uniformly in ¢ € [0, 7.

Time discretization

Let us fix m € N and set At := T/m. For i = 0,...,m, we define t' := iAt, H;(r, z) =
Hy(r, z,t"), f'(r,2) == f(r,2,t"), o' (r,2) := o(r, z,t"), A := A(t") and F* := F(t'). Notice that
all these terms are well defined because o, f and g are continuous in time, as a consequence of
H.4 and H.6. Moreover, there holds

(FL,G) = (f',G) — (A'H!,G) VG eU, i=0,...,m. (4.14)

A time discretization of (4.9)—(4.11) based on a backward Euler scheme reads as follows: find
HicUand B'cU',i=0,...,m, satisfying

OB 4 AT gitl — pitl iny, i=0,...,m—1, (4.15)
B = B(H!,1"), i=0,...,m, (4.16)
H) =H,— H) in Q, (4.17)

where B! denotes the difference quotient B! := (B! — BY) /At.
The existence of a weak solution to the problem above at each time step is guaranteed by
the following lemma.

Lemma 4.3.2 There exists a unique solution of (4.15)—(4.17).

Proof. First, for each j = 0,...,m, let us define B7 : L2(Q) — L2(Q) as follows: given G €
L2(Q), B/(G)(r,z) := B(r,z,G(r,z),t9), (r,z) € Q. From (4.13) and the fact that B(-,t) is a
Carathéodory function for all ¢ € [0,7], we have that B/ is continuous (see, for instance, [56,
Lemma 16.1]).
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Next, we notice that Hi™! is a solution of (4.15)—(4.16) if and only if it is a solution of the

following non-linear problem:
iy BT e e, BUED
A i+1 = \Vu ) Az+1 i+1 _ FH—I =t/ : M/

Since Bit! is monotone (cf. (4.12)), continuous and At : U — U’ is linear, bounded and
elliptic, it is easy to check that Z : U — U’ is strongly monotone, coercive and continuous.
Thus, from the theory of monotone operators, it follows that the equation above has a unique
solution (see, for instance, [78, Theorem 2.18]). O

A priori estimates

The next goal is to prove an a priori estimate for the solution of (4.15)—(4.17). Notice that
if B were strongly monotone and Lipschitz continuous, then the results from [83, Lemma 3.1]
could be applied with this purpose. Since this is not our case, the proof will follow an alternative
path.

Here and thereafter C' with or without subscripts will be used for positive constants not
necessarily the same at each occurrence, but always independent of the time-step At and, in the
following section, of the mesh-size h, too.

Lemma 4.3.3 There exists C > 0 such that, for alll =10,...,m —1,
2
N <C.

_ 2
Jo+l, + [,
u’ HL(Q)

Proof. We apply (4.15) to (HuiJrl - Hj) € U. From the monotonicity property H.2, it is straight-
forward to obtain for [ =0,...,m — 1,

!
Z<Ai+1Hj+1aHj+l — H)

i=0
< i(Fi“, H — gl — i / OB (H*Y — H}) r drdz. (4.18)
i=0 i=0 72
To bound the term on the left-hand side of the above equation, first we use the classical identity
2(p—q)p =p* + (p — 9)* — ¢* to write
QAT I i iy
> (AT ity AL
= (A HTT HTY) — (ATHy Hp) 4 (AT = A Hy, Hy). (4.19)

Now, for the last term on the right-hand side we have that

. 4 S i+l 4t . 4
(AT — A2, | = /" o (lo:ED|* + [0 ()| draz
Q

ocitlgi
1

< OT% ”({%UHLOO(O,T;LOO(Q)) At HHJH%}(Q) , (420)
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where we have used that o't — gt = ftz Gta ) ds and assumption H.4. Therefore, summing
up (4.19) and using (4.20) and Lemma 4.3.1, it follows that

l
i+l ppitl pritl i 7 it _L
z-z;@‘l H,™ B — Hy) H ‘Hl(ﬂ) 30, 10 o
10 lle 0, 00) 3, 115112 4.21
- 202 E;HFL‘HI?MQ)' (421)

On the other hand, for the first term on the right-hand side of (4.18), by summation by parts
and using Young’s inequality, we obtain for all n > 0

l
D (FTLH )
=0

-1
= [(FUHLHI) - (P ED) = ST (R P
=0

1 77
R I T
-1 ‘ 9 -1 . 2
+ Atz HHJHHﬁ;(Q) +C Hata”iOO(O,T;LOO(Q)) At Z |5y Hﬁ;(@)
i=0 =0
o S ) =1 9
—i—CAtZH@HgZHHﬁ;(Q)—i—CAtZHa]”H}u,, (4.22)
i=0 i=0

where the last three terms are derived by proceeding as in (4.20) from the following inequality
(cf. (4.14)):
loFT2ly, < far|

w +[ATPOH 4 (|0

Similarly, for the last term of (4.18), by summation by parts and using Young’s inequality
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and (4.13), it follows that for all n > 0

l
Z/ OB+ (ng‘+1 — ng) rdrdz
i=0 /<

l
Z/ (BH'1 — Bi) 5Hgi+1r drdz
i=0 /&

< / B0 1 drdz + / |BOGH | r drdz
Q Q

-1
s /Q B (GH? — I |7 drds
=0

n l+1‘2 H z+1’2 QH z+1’2
S2)H‘” ey T e T 198 (e
-1 -1
= i 2 i 2
+ HBOHL,%(Q) |05, | 2@ At; HHU—HHL%(Q) + CAtZ% HI{£J+1HL$(Q)
S 5git2 — I 2
+C+CAtY || N (4.23)
i=0 L2(Q)

Whence, by replacing (4.21)—(4.23) into (4.18), choosing 7 := /4 and using that the last terms

in (4.22) and (4.23) are respectively bounded by ||f||12{1(0,T;u/) and HgH?{Z(O T2 (T) (cf. (4.8)),
we obtain .

I g (il )2

4 ’ H ‘ fil(Q) = C+At§ 1 oy -

Therefore, using a discrete Gronwall’s lemma we arrive at

2
<,

I+1
o

HL(Q)

with a constant C' depending on ||H0||ﬁ;(g)a 111 0,720y ||g||H2(O7T;ﬁ7{/2(F)) and [[o|lyy1.00 (0,750 (02))-

Finally, to end the theorem, we bound HgBl“’

Z, by using (4.15) and the above inequality.
a

Convergence

The next step is to define approximate solutions to (4.9)—(4.11) and prove its weak conver-
gence to an actual solution of this problem. With this aim, we introduce some notation. Let
Bat 2 [0,T] = U’ be the piecewise linear continuous in time function given by

Bai(1°) := B(H?,1%);
Bay(t) := BH 7 7Y + (= 7Y OB(HL, &), te (11, i=1,...,m.
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Notice that, by virtue of (4.13), Ba; actually takes values in L2(2). We also consider the step
function Hyag @ [0,7] — U defined as follows:

Hyps (1Y) := HY; Hope(t) = HY, te (Lt i=1,....m.

Step functions By, HgAtv Ay, ?At and oa¢ are defined in a similar way.
Using the above notation and (4.14), we rewrite equation (4.15) as follows:

O Bat+ AneHunt = far — AncHgae  inlU',  ae. in (0,7). (4.24)
From Lemma 4.3.3, (4.13) and (4.8), we deduce that there exists C' > 0 such that
HEAtHLw(o,T;Lg(Q)) + ||atBAtHL°°(0,T;M’)
+ | Aac oo o iz yy + 1 Fust || o 1. 0y) < € (4:25)

This allows us to conclude that there exists H,, B and X such that

Hynt — H, in L°°(0, T;U) weakly star, (4.26)
Bay — B in L>(0, T; L2(Q)) weakly star, (4.27)
OBar — OB in L0, T;U’) weakly star, (4.28)
Apt(Hynt + Hyar) — X in L°(0, T;U’) weakly star. (4.29)
Hence, taking limit in (4.24), it follows that
oB+X=f inU', ae. in (0,7), (4.30)

because fa;, — f in L?(0,T;U’), for f € HY(0,T;U’). Next step is to derive that B = B(H, + Hy)
and X = A(H, + H;). With this end, first we prove the following.

Lemma 4.3.4 Ba; — B strongly in C([0, T};U’).

Proof. As a consequence of Lemma 4.3.3, it is easy to check that the family of functions
{Bat: [0,T] = U'} o, is equicontinuous. Moreover, {Ba(t)} A, is relatively compact in U’ for
each t € [0,7]. In fact, because of (4.25), {Bas(t)}, is a bounded set in L2(Q), which is
compactly included in 2’ (the latter because the inclusion HL(€) c L2() is compact; see, for
instance, [67]). Therefore, by applying the Ascoli’s theorem (see, for instance, [58]), we obtain
that {Ba¢ : [0,T] = U'} 5, is relatively compact in C([0, T];U"). This together with (4.27) allow
us to conclude that the convergence Bay — B is strong in C([0,T];U"). O
Now we are in a position to prove the following two lemmas.

Lemma 4.3.5 Let H, and B be the weak star limits defined in (4.26) and (4.27), respectively.
Then,
B = B(H, + Hy) a.e. in Q x [0,7T].
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Proof. From Lemmas 4.3.3 and 4.3.4, we have that
HEN - BHLOO(O,T;Z/{’) = HEN - BAtHLoo(o,T;u') + 1 Ba: - B”L‘”(O,T;M) — 0.

From the latter and the weak star convergence of H,ay, it follows that
T T
/ <BAt7 HuAt) dt — / <B, Hu> dt.
0 0

On the other hand, from the monotonicity of B and the fact that Ba; = B(Hua¢ + EN), we
have that

T
/ (Bar — B(G + Hyar), Huar — G)dt >0 VG € LX(0,T;1L2(Q)).
0

Since Hya; converges to H, in L2(0, T H.(Q)) and also a.e. in Q x [0, T], because of hypothesis
H.1 we have that B(G + Hyat) converges to B(G + H,) a.e. in Q x [0, T]. Hence, this convergence
also holds strongly in L2(0,7;L2(f2)) because of hypothesis H.3 and the Lebesgue dominated
convergence theorem. Thus, we obtain

T
/ /(B —B(G+ Hy))(H, — G)rdrdzdt >0 VG € L*(0,T;L2(Q)).
0 Q
Now, by taking G := H, + €U, for any U € L2(0,T;L2(2)) and € > 0, we arrive at
T
/ /(B—B(Hu—i-f[q—eU))Ur drdzdt < 0.
0 Q

By taking € — 0 and choosing U := B — B(H, + Hy), it follows that B = B(H, + H,) a.e. in
2 x [0,7T] and we obtain the result. O

Lemma 4.3.6 Let H, and X be the weak star limits defined in (4.26) and (4.29), respectively.
Then,
X = A(H, + Hy) a.e. in [0, 7).

Proof. First notice that for all G € LQ(O,T;ﬁ}(Q)) and all U e U

0 — OAt

(AnG — AG, U = / (900 2,61) + 2.(:C) &(rU))% drdz

Q OOAt

<Cs HU _EAtHLOO(Q) HGHﬁ;(Q) HUHﬁ;(Q) .

Moreover, since o € WL°(0,T;1°°(Q)), it follows that

o= Tatllieo om0 (@) < At0:0 |10 (0. 7:150 ()
and, therefore,

T 2 2 2
HAAtG - AGHL?(O,T;u') < CoAt? Ha75‘7HL“(O,T;L""(Q)) HGHL%O,T,I“{';(Q)) :
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Finally, from the above result, Lemma 4.3.3, (4.26) and the fact that Hya; — H, in L?(0, T} Iﬂ-ﬂ (Q)),
we obtain for all V' € L2(0, T;U)

T
/ (Aae(Huat + Hyar) — A(H, + Hy), V) dt'
0

< ||(Aae = A)(Hune + Hyae)|| 20,700 1V 20,251 02

T T
+ / (A(Hunt — Hy,), V) dt| + / (A(Hgae — Hy), V) dt| — 0.
0 0

Whence, from (4.29), X = A(H, + Hy) a.e. in [0,T] and we end the proof. O
Now we are in a position to conclude that Problem 4.3.1 has a solution.

Theorem 4.3.1 Under assumptions H.1-H.6, Problem 4.3.1 has a solution.
Proof. Let H := H, + H,. It follows from (4.30) and Lemma 4.3.6 that
(OB,GY+ a(H,G) = (f,G) VG elU, ae. in (0,7).

and, from Lemma 4.3.5, that B = B(H). On the other hand, since H, € U, we have that
H|r = g. Finally, as a consequence of Lemma 4.3.4 we have that Ba¢(0) — B(0) in U’. Hence,
since Bai(0) = B(H?,1%) = B(H? + H,(0)) = B(Hy) = By, we conclude that B(0) = By.
Therefore (H, B) is a solution to Problem 4.3.1. O

In order to prove that Problem 4.3.1 has a unique solution, we will assume from now on the
following strengthened forms of hypotheses H.2 and H.4:

H.2*: B(r,z,u) is strongly monotone with respect to u uniformly in ; namely, there exists
B > 0 such that

(B(r, z,v) — B(r, z,w)) (v —w) > B v — w|? Yo,w eR, a.e. (r,z) € Q.

H.4*: o does not depend on time and there exist strictly positive constants o, and o* such that
o« < o(r,z) <o* ae. in Q.

Hypothesis H.2* is a recurrent assumption in electromagnetism which covers a large number
of models of physical interest (see [10, 80, 81, 82]). On the other hand, notice that from H.4*
and the definition of a(-,-), it follows that this bilinear form is also time independent. Thus,
from now on, we will denote it a(-,-).

As a first consequence of these hypotheses we can prove further regularity of the solution to
Problem 4.3.1 and its uniqueness.

Theorem 4.3.2 Under assumptions H.1, H.2*, H .3, H./*, H.5 and H.6, Problem 4.3.1 has a
unique solution (H, B) and there holds H € H'(0,T;L2(%)).



4.4 Numerical analysis. Time semi-discrete problem 81

Proof. The existence of solution follows from Theorem 4.3.1. The uniqueness is a consequence
of [35, Theorem 4]. For the additional regularity, we notice that being B strongly monotone
(H.2*%), by applying (4.15) to (H'*! — H}?) it is straightforward to prove that

l
ALY OH o <€, 1=0,.m =1 (4.31)
=0

The rest of the proof consists of adapting the previous arguments and using the a priori estimate
above. Let us remark that this additional regularity result actually does not need of o being
time independent. O

4.4 Numerical analysis. Time semi-discrete problem

The aim of this section is to derive error estimates for the semi-discrete in time scheme
introduced in Section 4.3.3 to approximate Problem 4.3.1. With this end, we will use the following

T 5 T
(/0 el H/O Gt

Let us remark that a similar norm appears in the analysis of other nonlinear problems in elec-

norm:
2

/
) G e L0, T; HL(Q)). (4.32)
)

HL(Q

tromagnetism (see, for instance, [81]).

To obtain the estimates we will follow the techniques introduced in [82]. However, our ap-
proach is slightly different, mainly because of the presence of the non-homogeneous Dirichlet
boundary condition. With this aim, we will further assume that the dependence of B on H is
Lipschitz continuous. More precisely, from now on, we assume the following strengthened form
of hypothesis H.1:

H.1*: The mapping B: 2 xR — R is a Carathéodory function, uniformly Lipschitz continuous
with respect to the third variable; namely:

o B(,u): 2 — R is measurable for each u € R;
o AL >0: |B(r,z,u) — B(r,z,v)| < Llu—v| Yu,veR, V(rz)e.

Remark 4.4.1 For B satisfying hypotheses H.1* and H.2%, the a priori estimate (4.31) as well

as that from Lemma 4.3.3 hold true even for g € H(0, T} ItLln/2 (T")). Therefore, under assumptions

H.1*, H.2* H.3, H./* H.5 and a weaker form of H.6 with g € H(0,T; ﬁi/Q(F)) (instead
of g in H2(0,T;H71/2(F))), Problem 4.53.1 also has a unique solution (H,B) and there holds

H € HY(0,T;12(%2)). Indeed, all the forthcoming results remain valid for g € HY(0,T; IZI}«/Q(F)).

We consider the backward Euler time discretization of Problem 4.3.1 that we have introduced
in Section 4.3.3. We keep the notation defined therein. The resulting discrete problem written
now in terms of the main variable H*!, reads as follows:
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Problem 4.4.1 Fori=0,...,m—1, find H*' € HY(Q) satisfying

/ OB(H™) G r drdz + a(H™, G) = (£, G) VG e U,
Q
H T = g on T,
HY = Hy in Q.

The existence and the uniqueness of a weak solution at each time step follow from Lemma 4.3.2
by writing H® := H! + Hgi, i =0,...,m (with Hgi as defined in Section 4.3.3). The following
result yields an a priori estimate for the solution of the above problem.

Lemma 4.4.1 There exists C > 0 such that, for alll =10,...,m —1,

2
C.

IN

e, + 19 s+

Proof. Since H® := H' + Hgi, i = 0,...,m, the proof follows from Lemma 4.3.3, the a priori
estimate (4.31) (established in the proof of Theorem 4.3.2) and the regularity of H; (cf. (4.8)). 0
4.4.1 Error estimates for the time discretization

To derive an error estimate for the solution to Problem 4.4.1, first we notice that the piecewise
linear function Ba; written in terms of H* reads as follows:

Ba(t°) = B(Hy));
Bai(t) = B(H™Y + (t —t7HoB(HY), te (7], i=1,...,m.

Also we define the step function Ha, : [0, 7] — HX(Q) as in Section 4.3.3:
Hae(t%) := Hy;  Hae(t):=H', te @1 t), i=1,...,m, (4.33)

so that Hay = Hyay +ﬁg A¢- Using this notation we rewrite the first equation from Problem 4.4.1
as follows:

/ O BatGr drdz + a(Hay, G) = (fay, G) VG e U, a.e. in [0, 7], (4.34)
Q

and we identify the solution of Problem 4.4.1 with its piecewise constant interpolant Ha;. Now,
we are in a position to prove the following error estimate:

Theorem 4.4.1 Let H and Ha; be the solutions to Problems 4.3.1 and 4.4.1, respectively.
Under assumptions H.1%*, H.2*, H.3, H.4*, H.5 and H.6, there holds

2

T — o T _
/ |H - HAtHLZ(Q) dt + H/ (H — Hpg)dt||
0 0 H1(Q)

< CA {14 D912, vz ey * 1 R ozann | -
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Proof. First, we subtract (4.34) from the first equation of Problem 4.3.1 and integrate with
respect to time. Thus, we obtain for all G € U

/Q(B ~ Ba)(#)Grdrds + a(/ot(H ~Ta)(s) ds, G) _ </0t(f C ) (s) ds, G> |

Next, we take G = (e — ¢,) (t) in the above equation, with e := H — Ha; and e, := Hy — Hyaq,
and integrate in time. Thus, we arrive at

/OT /Q(B — Bat)(t) (e — eg) (t) r drdz dt + /[)Ta</0t e(s) ds, (e —eg) (t)) dt
- [{[r-D) @ s ) a
or, equivalently,

/ / HAt))erdrdzdt+/0Ta</0t(e—eg)(s) ds,e—eg> dt
:/ </t(f Tu)(s )ds,e—eg> dt—/OTa</0teg(s) ds,e—eg> dt

/ / Bat — HAt)) (e —eg) rdrdzdt

/ / HAt)) eqr drdzdt.

We rewrite the second term on the left-hand side above as follows

/OTa(/Ot(e—eg)(s) ds,e—eg> dtzéa(/oT(e—eg) dt,/OT(e_eg) dt).

Then, from the ellipticity of a(-, -) (cf. Lemma 4.3.1) and the strong monotonicity of B (cf. H.2%),
we have that

T 2 Y T ?
8 / lel2aqey dt + 2 / (c — eg) dt]|
0 T 2 |Jo

(@)

T</ (7 = Ta(e) ds.c ey ) ]+ /()Ta</0teg<s>ds,e_eg) q

BAt HAt)) (e —eg) rdrdz dt‘

<

B(Hat)) egr drdz dt‘ . (4.35)

The next step is to bound each term on the right-hand side of the above equation. First, from
the Lipschitz continuity of B (cf. H.1*) and Young’s inequality, the last term is easily bounded
as follows,

L T C T
/Q (B(H) — B(Hat)) egr drdz dt’ < 77/0 H6HL2 dt + — / HegHi%(Q) dt (4.36)
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for all n > 0. On the other hand, by using again the Lipschitz continuity of B, we have that
|Bae(t) — B(Ha(t))| < At|0B(H')| < LAt|0H!| for all t € (¢, ¢]. Then, from this and
Lemma 4.4.1, it follows that also for all n > 0

/OT /Q (Bar — B(Har)) (e — eg) v drdz dt‘

m e o
<IALY. [0 sy e = ol
=1

O T g 2
SgAt +1 ; HeHLg(Q) dt +mn ; ”egHLg,(Q) dt. (4.37)

Finally, for the two remaining terms on the right-hand side of (4.35), from integration by parts
and Young’s inequality we arrive at

/OT </0t(f ~Fa)(s) ds,e — eg> dt‘
- \</OT<f—fAt>dt, f (e ep)dt) - /OT<f —fm;/ot (e ex)(5) ds) at
/OT(e—eg)dt /Ot(e—eg)(s)ds

T
4
five)  Jo
T - 2
e /0 1f = Facl at (4.38)

dt
HL(Q)

<«

for all @ > 0 and, similarly,

/OTQ(/Oteg(s) ds,e—eg> dt

[feep 2

T
_|_ /

T

2

<« dt

HL(Q)

[ e as

for all @ > 0, too. Then, by replacing (4.36)—(4.39) into (4.35) with n = /4 and a = /8, we
obtain that there exists C' > 0 such that

B/T 2 Y H/T
— e dt + — e—eg) dt
3 ), lellf2q) 1/, (e —eg)

< C{AP+ gl oo rigizcay + I = Tailltoorae |

+2/0T /Ot(eeg)(s)ds 2

Since this inequality actually holds with T substituted by 7 for any 7 € (0, T}, the result follows
from Gronwall’s lemma, classical interpolation results and (4.8). O

2
HL(Q)

dt.
HL(Q)
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Remark 4.4.2 Under the same assumptions as above, but with B satisfying hypothesis H.2
instead of H.2* (namely, continuous instead of Lipschitz continuous), we have the following
error estimate:

2

< CAt.

T
/ (H — Hag) dt
0 Q)

T
-5 2
| =Ty e+

(See Theorem 3.2 from [82] for a similar result in a 3D problem.) In fact, the Lipschitz continuity
of B was only used to prove (4.36) and (4.37). Then, it is enough to bound the corresponding
left-hand sides without using the Lipschitz continuity. For that in (4.36), we notice that

/OT/Q (Bat — B(Hat)) (e — eg) r drdz dt'

< At <mz_1 At||0B(H™)|

i=1

) T 1/2
ul> </ He - eg”l%p(g) dt) .
O T

Hence, from Lemma 4.4.1, the fact that H € L*°(0, T IEI% (Q)) and the regularity of Hy (cf. (4.8)),
it follows that

T
/ / (Bat — B(Hat)) (e — eg) 7 drdz dt’ < CAt.
0o Jo

On the other hand, for the left-hand side in (4.37), we obtain from hypothesis H.3, Lemma 4.4.1,
a classical interpolation result and (4.8)

T
/O /Q (B(H) — B(Har)) ey r drdz dt‘ < A9l o i r

r

which allows us to conclude the remark.

4.5 Numerical analysis. Fully discrete problem

In this section, we will introduce a space discretization of Problem 4.4.1 and obtain error esti-
mates for the fully discrete approximation. First, we will estimate the error in the L2(0, T; L2(€2))-
norm without assuming any additional regularity of the solution. With this aim, we will derive
an estimate for the difference between the fully and the semi-discrete problems and will use the
results of the previous section (Lemma 4.4.1 and Theorem 4.4.1). Subsequently, by assuming
further regularity of the solution H, we will also derive error estimates in a discrete version of
the norm (4.32).

From now on, we assume that {2 is a polygonal domain. Let g be the intersection between I
and the symmetry axis (r = 0) and I'; :=I"\ I'g. We consider a family of regular, quasi-uniform
partitions {7, }n>0 of 2 into triangles, where h denotes the mesh-size (i.e., the maximal length of
the sides of the triangulation). Let £} be the space of piecewise linear continuous finite elements,

Ly :={GrLeC(): Gulr € PLVT € T},
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and V}, the subspace of functions vanishing on I'y:
Vi :={Gh € L}, : Gplr, =0}.
Notice that Vj, C ITI%(Q) We also consider the finite-dimensional subspace
Uy :=V,NU={G}, € L}, : Gip|lr =0}.
Finally, we denote by Vj(I") the space of traces on I' of functions in Vj:
Vi([) :=={Gplr : G, € Vi}.

Notice too that for all G}, € Vi ('), Gp|r, = 0.
In order to define a discrete approximation on I' for the Dirichlet boundary data, we introduce
the Sobolev space

L2(I) := {v:F—)R: /v2rd5'< oo}
r
and the orthogonal projector I : L(I") — V;,(T') defined for all v € L2(T") by

1

v € V() : / . (H{lv - v> vprdS =0 Yo, € V().
I

We propose the following Galerkin discretization of Problem 4.4.1 as the fully discrete ap-
proximation of Problem 4.3.1:

Problem 4.5.1 Fori=0,...,m—1, find H;LH € Vy, satisfying

/ OB(H™) Gy r drdz + a(H; ™, Gy) = (f,Gy) VG, € Uy,
Q
Hp e = TIfg™,
HY = Hgy,.
In principle Hyop € Vy is any arbitrary approximation of Hp; see Remarks 4.5.2 and 4.5.3
below for a discussion about a convenient choice. The existence and the uniqueness of solution

follow by applying similar techniques as those in the proof of Lemma 4.3.2. The following lemma
yields an a priori estimate for the solution of Problem 4.5.1.

Lemma 4.5.1 There exists C' > 0 such that, for alll =0,...,m —1,

< C.

l
_ 2 377 2 2
|oBED],, + 2632 Om Fy ey + |2 fi @)
=0 "

Proof. It follows by applying the same techniques as in the proof of Lemma 4.4.1. 0
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4.5.1 Finite element approximation properties

In order to derive error estimates for the proposed numerical scheme, first we will establish
several approximation properties of the finite element spaces.

We consider the Clément-type operator I, : HL(Q) — V), defined in [6, Eq. (36)]. In Theo-
rem 2 from this reference it is proved that, for all u € HL(Q),

lu— Inullyaqy + bl — Tyullgy gy < O llulliy o (4.40)
and, for all u € H2(Q) N HL(Q),
[u— IhUHLg(Q) +hu— Ihu”ﬁ}(g) < Oon? ||u||Hg(Q)mﬁ;(Q) : (4.41)

Let N be the set of all vertices of 7. For any P € N, wp denotes the union of all elements
sharing P and hp := suppc,, hr, with hy being the diameter of 7. Let {¢p : P € N} be the
standard nodal basis of Lj,.

Next, we establish a discrete lifting result that will be used in the sequel.

Lemma 4.5.2 For all u € HL(Q), there exists v, € Vy, which satisfies
vhzﬂlﬁu—fhu on I’

and
[onll ) < Cllullfyg) -

Moreover, if u € H2(Q) NHL(Q), then

[onllg1 ) < Chllullyz o)) -

Proof. We define v, := > pc v, (IThu—TI,u)(P) ¢p. Notice that suppvy, C J{T € T, : TNTy # 0}.

A straightforward computation allows us to show that th”ia(c@) < Chp HH{lu - IhuHi%(aanrl)

for all P € N'NI'y. Hence, using weighted inverse inequalities (see [6, Lemmas 3 & 4]), we obtain

=) 2 -1 h ?
< Chg? oy < O [1th = B,

2
thHf{%(wP)

Summing for all P € A/ NT; and using the quasi-uniformity of the meshes lead to

2

2 —
lonly ) < Ch [ — Ty . (4.42)
Moreover, since HH%UHLZ(IH) < g—* ullpz(r,) and A Tu = Ipu on T, we have
HHhu—I uH2 Ay 3~ Tyl (4.43)
r h L2(1) — \ O« P h* Lz (e) - :
1

Now, from [31, Lemma 4] it follows that

lu— Inulfzp < C {hEl lw = Inullf 2y + b |lu— Ih“”%{}(T)} 7 (4.44)
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where T € 7T, is such that ¢ € 9T If u € HL(Q), then, from the latter and (4.40), we obtain
Sl — Dl < Chlully g (1.45)
£CTy
Therefore, the first inequality of the lemma follows from (4.42), (4.43) and (4.45). On the other
hand, for u € H2(T) N HL(Q)) we proceed analogously but applying (4.41) instead of (4.40) to
bound (4.44). Thus, we conclude the proof. O
Let us introduce the elliptic projector P, : HL(Q) — V), defined for all u € HL(2) as follows:
Pou eV : a(Pyu,wp) = a(u, wp) Ywy, € Uy, (4.46)
Pyu=T%(ulr)  onT. (4.47)

To obtain an error estimate for this projector, first we prove the following lemma.

Lemma 4.5.3 Let p := (p,,p,) € HL(Q)? be such that p, € L%/T(Q) andp-t =0 on . Then,

there exists p;, € E% such that p, -t =0 on I', p;, - n is continuous on I', and
P = Prlliz2 + 2P — Pulur e < Ch {HPHH;(Q)Q + szHL';’/T(Q)} : (4.48)
Proof. We will us a Clément-type interpolant of p. We define its values at each node P € N
differently according to its location:
o If P ¢ T, then we set pp := |wp| " J, prdrdz.
o If P € I" is not a vertex of the polygon €2, then the two edges ¢1 and ¢» sharing P have the

same tangent and normal vectors which we denote tp and np, respectively. In this case,
we set pp 1= (pp - np) np, where pp := |wp]_l prpr drdz.

o If P is a vertex of 2, then we set pp := 0.

Finally, we define p;, := > pc\rPp@P-
By construction p;, € £2 and pj, -t = 0 on I'. To prove (4.48), first we notice that, since

> pen @p =1, we have

1 — a2 = / p—p) Y or(p—pp)r drdz.
Q PeN

Hence, by using Cauchy-Schwartz inequality, it is easy to check that

1/2
1P~ Pilliay: < C (Z Ip - ppnig(w},)z) - (4.49)
PeN
Similar arguments allow us to write
P — Prlip <C > Ver(p—pp) +> erVp
PeN L2(0)2%2 PeN L2(Q)2x2

1/2

<CHIplin@e + Y o' 1P = pplta@m: ¢ (4.50)

+(£2) = 7 (wp)
€
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where we have also used that, for regular meshes, ||V<pp||L2(Q)z < C’h;l.
Thus, there only remains to estimate ||p — pp HLQ(WP)Q for all P € N. To do this, we distinguish
again the same three cases as above:

o If P ¢T, since pp is the mean value of p in L2(wp)?, then, from [6, Lemma 6],

1P = Pplli2wye = qEIP’i(ﬁEP)Q 1P = alli2wpz < Chp [Pl wp)2 - (4.51)

o If P €T is not a vertex of ), since pp - tp = 0, it follows that

2 2 2
Ip = Prllizwp: = P trlizwy + (P —Pp) - mplizw, - (4.52)

Now, since ||(p — pp) - nrlli2wpy = I(P — Pp) - P12, With Pp being the mean value
of p in L2(wp)?, by proceeding as in (4.51) we obtain

I~ pp) - e lliagry < Che [Pl onye - (4.53)

To bound the other term on the right-hand side of (4.52), we use that p - tp vanishes on
{1 Uly C Owp and consider also three cases:

—If P €Ty and wpN Ty = 0, then max,,,r/ min,,r < C, with C' being a constant
which only depends on the regularity of the mesh. In such a case, from the classical
Poincaré inequality and a scaling argument we have

2 2
I+ ol <maxr [ lp-tof? drds

wp

wp

< Ch%maxr/ IV(p-tp)* drdz
wp

o MaXy,, T

< Chp / |Dp|?r drdz < Ch% |p|%{;(wp)2 . (4.54)
wp

ming,,r
— If P eIy and wpNTy # 0, then let Kp be the smallest closed parallelogram such
that wp C Kp C €, with one edge on I'g and other one on I';, as shown in Figure 4.1
(for the existence of such Kp, we may need to assume that the mesh is sufficiently
fine).
We use the notation from Figure 4.1. In particular, the slope of the edge AB is
m := L/R and the length of the edge AD is M. Notice that M < Chp, with C a
constant which only depends on the regularity of the mesh. For simplicity, we consider
a coordinate system (r, z) centered at the vertex A.
Given p € C®(Kp)?, let v:=p - tp. Then,
z

u(r,z) = d,v(r, s) ds, mr <z <mr+ M, 0<r<R.

mnr
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Figure 4.1: Parallelogram Kp of vertices A, B, C, D satis-
fying wp C Kp C .

Hence,

lo(r, 2)|? r drdz
P

R mr+M z
/ ' 0,v(r, s) ds

/ lv(r, z)|27‘ drdz <
wp

—

Il
S—

mr

R mr+M mr+M
{/ M {/ |0.v(r, 5) 2 ds] dz} rdr

2/ \Vo(r,z)|* r drdz.
Kp

2
dz] rdr

A
S—

IA
=

Therefore,
2
I - tPlE2( < ChB P - trlin ik, < Chp [Plh kp)2 (4.55)
for all p € C>°(Kp)?. Since this space is dense in H:(Kp)? (cf. [67, Theorem 4.3(ii)]),
the inequality above holds for all p € H.(Kp)?, too.
— Finally, if P € T'y (and is not a vertex of ), then ¢1,¢, C 'y and p - tp = p,. Since
p: € L%/T(Q) and hence p. € HL(Q), it is easy to check that r'/?p, € H'(wp). Now,
this last term vanishes on I'g D #1 U #o, so that we can apply a scaling argument and

the classical Poincaré inequality to write

2
1P tPlizwy) _/

wp

2 2
< Oh {[P:liy(on) + P12z oy } - (4.56)

2
V(rl/sz) drdz

(r1/2p2)2 drdz < Ch%/

wp

Therefore, by replacing (4.53) and (4.54), (4.55) or (4.56), as corresponds, into (4.52), we
have that

1

Ip = Ppltsme < Chb {IPRugn + -5 (un ) (4.57)

where wp := Kp, if P € I’y and wpN Ty # (), and Wp := wp, otherwise.
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o If P is a vertex of §2, then pp = 0 and the unit vectors ¢; and ¢9, tangent to the respective
edges /1 and /o on I sharing P, form a basis of R2. Therefore,

2 2 2 2
1P —PpllL2wye: = IPlL2wy2 < C {||P btz + P t2||Lg(wp)} :

Since p - t1]g, = 0 and p - ta]s, = 0, a similar analysis to that leading to (4.55) and (4.56),
yields

lp = Pplfze,y: < Che {‘p|%1}(wp)2 + szHiQ/T(wP)} : (4.58)

1

Whence, by replacing (4.51), (4.57) and (4.58) into (4.49) and (4.50), we obtain (4.48). On
the other hand, we notice that by construction p; vanishes at the vertices of €2, so that p;, - n
is continuous along the boundary I' and we end the proof. O

Now we are in a position to prove an error estimate for the projector Pj. This proof relies on a
duality argument for which we will need additional regularity of the solution of the corresponding
adjoint problem. This is the reason why, from now on, we also make the following assumption:

H.7: Given w € L2(€), the unique solution ¢ € U of the elliptic problem
a(v,p) = /var drdz Yoel (4.59)
satisfies ¢ € H2(Q) N H2(Q) and
lellu2 (@) + lellfz@) < Cllwllize) -

This assumption is fulfilled, for instance, when o is constant and € is a rectangle (cf. [46,
Theorem 4.1]).

Before proving an error estimate for the projector P, we establish the following auxiliary
result which follows easily from assumption H.7.

Lemma 4.5.4 Given w € L2(Q), let ¢ € U be the solution to (4.59). Then,

a(v,p) = —/ div <1V(rg0)> vr drdz +/ iV(rgp) -nourdS Yv e HLY(Q). (4.60)
Q ar r, or
Proof. First notice that both integrals on the right-hand side above are well defined. In fact,
on one hand, by testing (4.59) with v € D() it follows that — div(1/(or)V(rp)) = w € L3(Q).
On the other hand, for the last integral we use that for ¢ € H2(), there holds (1/r)V(ry) =
((1/7) 0y (re), 0,¢) € HE(Q)? and, hence, (1/(o7)) V(r¢) - n € L2(I'1), because of a trace result
(see, for instance, [31, Lemma 4]) and the fact that o is bounded below away from zero.

Therefore, to prove (4.60), it is enough to check it with v € C*°(2) vanishing in a neighbor-
hood of Ty, since the set of such functions is dense in H}(€2) (see [67, Theorem 4.3(ii)]). For such
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a function v, let € > 0 be such that suppv C 2, := {(r, 2) €N r> 6}. Then,
1
a(v,p) = / —V(ry) - V(rv) drdz
Qe

= —/ div <1V(rcp)> vr drdz —i—/ iV(T(p) -nurdS
Qe 0

or Q. OT
1 1

= —/ div (V(T(p)) vr drdz +/ —V(re) -novrdS.
Q ar r, or

Thus, we conclude the proof. 0
The following lemma provides an optimal-order error estimate for (u — Pyu).

Lemma 4.5.5 For all u € H2(Q) N HL(Q)
[lu— PhUHL,%(Q) < ch? HUHHg(Q)mﬁ;(Q) .

Proof. First, we prove an estimate in the norm induced by a(-, -). From the definition of P, we
have that
a(u — Pyu,u — Ppu) < C’Hu—Phu—th%}(Q) Yyn € Uy,.

Then, taking vy, := Ipu — Pru + vy, with v € Vj, as in Lemma 4.5.2, it follows that
a(u — Pyu,u — Ppu) < C’{Hu — IhuH%;(Q) + \\vhl\%}(g)} .

Hence, from (4.41) and Lemma 4.5.2 we obtain

a(u — Pyu,u — Pyu) < Ch? [lullf )i o) - (4.61)
Next, we resort to a duality argument. Let ¢ € U be the solution of
a(v, ) :/Qv(uPhu)rdrdz Yvel.
Hence, according to hypothesis H.7, ¢ € H2(Q) N H2(Q) and
lellszay + Iellz < € e — Prallpaey (4.62)

Moreover, by taking v € D(2) in the equation above, we have that

1
—div <V(rg0)> =u— Pyu in Q.
or

By multiplying this equation by (u — Pju) and using Lemma 4.5.4 and the definition of P}, (cf.
(4.46)—(4.47)), we obtain for all ¢, € Uy,

llu — Ph“”iz(g) = a(u — Ppu,p — pp) — / ;V(’FQD) ‘n (u - H{iu) rdS. (4.63)
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Next, we estimate the two terms on the right-hand side above. For the first one, we choose
Yn = Iggp, where Ig : U — Uy is another Clément-type interpolant operator defined in [6,
Eq. (37)]. Then, (4.61) and Theorem 2 from [6] lead to

a(u — Ppu,p — pp) < Ch? ||u|‘Hg(Q)mﬁ;(Q) ||¢||Hg(g)mﬁ;(g) . (4.64)

To estimate the other term, we define p = (p,,p:) := (1/r)V(rp). For ¢ € H2(Q2), p € HL(Q)?
and p, € L%/T(Q). Moreover, p-t = 0 on I'. In fact, since ¢ € U, we have p - t|r, = p:|r, =
(0:0)|r, =0, and p-t|r, = ((1/r)oty)|r, +(Ve-t)|r, = 0, too. Thus, p satisfies the hypothesis of
Lemma 4.5.3. Hence, let p, € L3 be as in that lemma. Let wy, be defined on I by wy|r, := p, - n
and wp|r, := 0. Since p, - n vanishes at the vertices of Q (because p;, -t =0 on I' and p;, - n is
continuous on I'), we have that wy, € V},(T'). Whence, from the definition of II% we have that

/ LYo n (u - Hl@u) rdS‘ -

/F Lipn—wp) (u—n’;u)rds‘

, 0

h
u—HFu‘

. (4.65)

1
< ;* Hp—thL2(F1)2 L2(T'1)

Now, by proceeding as in Lemma 4.5.2 (cf. (4.43), (4.44)) and using (4.41), we obtain

| S Cllu= Tyl < OR* (|l 2 i e - (4.66)
On the other hand, using again [31, Lemma 4], we write for all edges £ C T’y

Ip = PuliEae < C {hzt o = puliacrys + e o — palfisre }
with T € Tp, such that ¢ C 9T. Therefore, from Lemma 4.5.3, we obtain

lp = pullT2r,)> < Ch {”p”%l}(ﬂ)2 + szHi%/T(Q)} <Ch HﬁpHIZ:Ig(Q) : (4.67)
Then, the result follows from (4.63)-(4.67) and (4.62). O
Remark 4.5.1 Using similar arguments, it is straightforward to prove that

Ju— Prlizoy < Chllullgy g, Vu € Q)

In fact, the only differences are that we use a(u — Ppu,u — Ppu) < C Hu”%l(m instead of (4.61)
and, instead of (4.66), we use |u — H}ﬁu“Lg(Fl) < Chl/? ||u|]1~{1(ﬂ) (which follows by the same

arguments that (4.66), but using (4.40) instead of (4.41)).
4.5.2 FError estimates for the full discretization

The following auxiliary result yields an estimate for the difference between the fully and the
semi-discrete problems.
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Lemma 4.5.6 Let H! and H,ifl, i =20,...,m, be the solutions to Problems 4.4.1 and 4.5.1,
respectively. Then,

m
Atz HHzH - HszHHLg(Q) <C (h2 +[Ho — HOhHi%(Q)) :
i=1
Proof. We split the quantities to estimate into two terms:
Hi+1 HZ+1 (H2+1 PhHi+1) + (PhHi-l-l o H}ib+1) (4.68)

The first one is a projection error that can be bounded by using the results from the previous
section. The second one is a purely discrete term, which we denote

pitt = P H™ — HIT i=0,....,m—1.

Notice that pitt € Uy, because (P,H'™)|p = HR(H ™ |p) = Hi p (cf. (4.47) and the second
equation from Problem 4.5.1).
A calculation from the first equations of Problems 4.4.1 and 4.5.1 and (4.46) yields

/ (BB(H™Y) — BB(HIM)) Gy r drdz + a(pi™,Gr) =0 ¥Gy € U.
Q

Summing up the above equations, we obtain

/Q (B(Hl+1) — B(Hl+1)) G drdz + Ata(Z pz+1 )

=0

= /Q (B(Ho) — B(th)) Gh’F drdz

for [ =0,...,m — 1, or, equivalently,

/ <B(PhHl+1) - B(HIH)) Gprdrdz+ Ata <Z PG )
Q

=0

— / (B(Hy) — B(Hop)) G r drdz + / (B(PhHl“) — B(Hl“)) Gy drdz.
Q

Q

Hence, choosing G, = pijl, using the strong monotonicity and Lipschitz continuity of B (cf
H.2* and H.1*), Cauchy-Schwartz and Young’s inequalities, we obtain

B
sz+1‘

i+l I+1
Lz(g)+At“<Zp ’ph>

c
< 5 1 Ho — HonllE ) + thHz+1 Hm‘

L2(Q)
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Now, summing up the above equations multiplied by At and using Remark 4.5.1,

B~ I+1 2 i1 11
3P T SR, S o
1=0 L 1=0 i=0
cT 2 CAL'~ I+1
§7HH0 lLIOhHL,%(Q)Jr lz;hHH ‘ (@

On the other hand, writing le = ZZ 0 p}jl Zi ép}fl and using the identity 2(p — ¢)p =
p? + (p—q)? — ¢* and the ellipticity of a(-,-) (cf. Lemma 4.3.1), it is easy to obtain the following

inequality:

m—1 2

AtQ Z <Z p1+1’plh+l> >

=0

At Z lerl

Hence, substituting this inequality into the previous one, we have that

At Z pz+1

(4.69)

HL(Q)

[y

m—
At Hp1+1 ’
=0

L2(
HL(Q)

{HHO Hon[f2() + At Z h? HHHI‘

Hl(ﬂ)} '

Whence, from Lemma 4.4.1 we obtain

,_n

m—
At le+1’
1=0

2
y )<C{||H0—H0hHL2 +h}

Thus, the result follows from the decomposition (4.68), the above inequality, Remark 4.5.1 and
Lemma 4.4.1 again. O

Remark 4.5.2 If the initial data is taken as Hop = IpHo, with I, being the Clément-type
interpolant operator used in the previous section, then, because of (4.40),

m 1/2
(Atz }|Hz‘+1 _ Hfil“”i,%(ﬁ)) < Ch {1 + ||H0Hﬁ;(g)} .
i=1

The following result, whose proof follows immediately from Lemma 4.5.6 and Theorem 4.4.1,
yields an error estimate for the fully discrete problem.

Theorem 4.5.1 Let H and Hﬁl, 1 =0,...,m, be the solutions to Problems 4.5.1 and 4.5.1,
respectively. Let ﬁZt be the step function defined by

Ha,(t%) = HY  Hi,t):=H, te@ ¢, i=1,...,m.
Then, under hypotheses H.1*, H.2* H.3, H.4* H.5, H.6 and H.7,

=

< —_ -
L2(0,T5L2(Q)) — ¢ {h + At +[|Ho HOh”H}(Q)} '
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Notice that the above result does not require any additional regularity assumption on the
solution of the continuous problem H. However, the order O(h) in the error estimate is not
necessarily optimal for regular solutions. Our next goal is to show that this order can be improved
when the solution to Problem 4.3.1 is assumed to be more regular.

Theorem 4.5.2 Let H and H}ifl, 1 =0,...,m, be the solutions to Problems 4.5.1 and 4.5.1,

respectively. Under hypotheses H.1*, H.2* H.3, H.4* H.5, H.6 and H.7, if H € H'(0,T; H2(Q)N
HL(Q)), then

m—1 1/2
i i+11|2
(52 sty -

< O { A6+ 1) I s o3 iy

+ 1 Ho — Honlyz@) + Ot 1l o -
Proof. Once more, we split the error into two terms,
H(tHY) — Hptt = (H() = BH() + (BHE) — B, (4.70)

where the first one is a projection error that can be bounded by using Lemma 4.5.5 and the
second one is a purely discrete term that we denote

pitt = P H(E) — HIFY i=0,...,m—1.

Notice that pi! € Uy, because (P, H (t+1))|r = IR (g(t"+)) = H M| (cf. (4.47) and the second
equations from Problems 4.3.1 and 4.5.1).

To estimate this term, we integrate from 0 to t'*! the first equation of Problem 4.3.1 and
use (4.46) to obtain for all G}, € U,

l
/ B(H(t")) Gy r drdz + Ata (Z Py H(tTY), Gh>
Q 1=0
1

tl+1
= a(/ (Hat — H) dt,Gh) + < fdt, Gh> + / B(Hp) Gpr drdz,
0 0 Q

where H A+ denotes the step function defined by
Ha(®) = H(t®),  Halt) = HE), te @ Le). i=1,...,m.

(Notice that we have used a different notation this time, since Ha; was already used in (4.33)
for another step function.)

On the other hand, by summing up the first equation of Problem 4.5.1 for ¢ = 0,...,[, it
follows that for all G}, € U},

l
/ B(HI™) Gr drdz + Ata (Z H, Gh>
Q

1=0

l
= <At2fi+1,Gh> + / B(Hon) Gy r drdz.
Q

=0
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Subtracting this equation from the previous one, we obtain for all G}, € U,

l
/ (B(PhH(tl“)) - B(H,Q“)) Gprdrdz + Ata (Z Pt Gh>
Q

1=0

= /Q (B(Ho) — B(Hop)) G, r drdz

- / (B(PhH(tl“)) - B(H(tl“))) Gpr drdz
Q

+ a</0tl+l(ﬁ1m — H)dt, Gh) + </0

At this point we proceed as in the proof of Lemma 4.5.6. We choose G, = ﬁlh'H and use the

tl+1

(f = fae) dt, Gh> .

strong monotonicity and Lipschitz continuity of B (cf. H.2* and H.1*), Cauchy-Schwartz and
Young’s inequalities, to write

l
~+1 ~N+1
LQ(QSF Ata (Z P >

2
11 141
< EHHO_HOhHL%(Q)+EHPhH(t ) — H(t )‘L%(Q)

B H%l

tl+1 N o
+a</0 (Ha¢ — H)dt, Al“) + </0 (f = fae) dt, ﬁlh+1>-

Then, we sum up the above equations multiplied by At and obtain

2
L2 () Al Z (Z qH?ﬁhﬂ)

0
m—1
cT CAt 2
|Ho — Honl[? 2 + 5 > HPhH(tH—l) — H(#)
=0

tl+1

L2 (@)

A1 R m—1 L
+AEY a</ (Hay — H) dt, ﬁlh“) +AEY </ (f — Fay) dt Al+1> : (4.71)
0 0

1=0 =0

We estimate the second term on the left-hand side above also as we did in the proof of
Lemma 4.5.6 (cf. (4.69)):

m—1
At ~z+1 A1) S 0

On the other hand, it is easy to prove by summation by parts that

m—1 2

At Z ﬁ;‘jl

1=0

(4.72)

HL(Q)

m—1 i1

Atz a(/ (Hay — H) dt, Al“)

=0

— a</T(ﬁAt H)dt, At Z Al“)
0

= =0

m—2

142
a< (Hay — H) dt, AtZ“’“)
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and

s

m—1
A _F d 7/\l+1
tlzg</0 (f fAt) L, Dy, >
2

2
</ (f — fay) dt AtZ““> 2 </tz+1 f—fae) dt At2”+1>.

Now, by replacing these two equations and (4.72) into (4.71) and using the continuity of
a(-,-) and Young’s inequality, it follows that

m—1 m—1 2
Nl P S S
lz—; L2 (@) ! zz—; ph 1
= = HL(Q)

m—1
< C{I1Hy — HonllEzay + At > | PuH(E) = H(E)|
=0

L2(9)
9 9 m— l 2
—f 3 _ ~+1
+f = Falliz o HHM H‘ L2 @) 2 Atzph _
=0 1=0 HL(Q)

Hence, by using a discrete Gronwall’s lemma, classical interpolation results and Lemma 4.5.5,

we obtain
2

3

At Z Hitl

c%wﬁ—mmﬁ@+A#wﬁmmwm

2 4 2
HAL + ) H o rsnizian ) (1.73)

L%(Q -
HL(©)

T
=

Therefore, the result follows from (4.70), this estimate and Lemma 4.5.5. O

Remark 4.5.3 When Hy € H2(Q) N HL(Q), we can use, for instance, Hyy, := IHy, with I
being again the Clément-type interpolant operator used in the previous section. In such a case,

from (4.41) we have

m—1 1/2
i i+1(2
(Z At[|H () ~ Hh+1HL$(Q)>
=0
< C{(At+ 1) 1H s o razeiz @)
+ 12| Hollyayniis ey + At 1l o2 } -
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Remark 4.5.4 Let us further assume that Q) is a rectangle. In such a case, the following error
estimate holds:

-1
ZAt(H(tz+1) o H;L+1)
0

1=

max
1<I<m

HL(Q)
< C{(A+ 1) |1 H s o razcniizien)
+ [[Ho — Honll 2(q) + At HfHHl(o,T;Lz(Q))} :

In fact, a similar error estimate, but in the norm induced by a(-,-) holds for any convex do-
main as a consequence of (4.61), (4.70) and (4.73). Hence, the estimate above follows from the
equivalence between both norms in rectangles proved in [46, Proposition 3.1].

4.6 Numerical experiments

We have developed a Fortran code which implements the fully discrete numerical scheme
analyzed in the previous section. To solve the non-linear systems we have used Newton’s method.

In order to test the error estimate proved for the numerical scheme (cf. Theorem 4.5.2), we
have used a problem with a known analytical solution. Let € := (0,1) x (—=1,1), T"=1 and the
electrical conductivity ¢ = 1. We have considered a non-linear H-B curve given by

B(H) = H + arctan(H).

Finally, we have chosen the right-hand side f, the boundary condition g and the initial data By
so that the solution is
H(r, z,t) = e’ sin(nr/2) sin(nz/2).

The method has been used on several successively refined meshes and time-steps, both chosen
in a convenient way to analyze the convergence with respect to these discretization parameters.
The numerical approximations have been compared with the analytical solution by computing
the percentage error for H in a discrete L2(0, T'; L2(£2))-norm as follows:

4 . 1/2
. (" At|HE) = H [ q))
ERXY(H) =100 ST
- 112
(S AtIHE )y q)
We have also computed the percentage error for the eddy current J = curl H (cf. (4.3)) in the
analogous discrete L2(0, T'; L2(£2)?)-norm:

. , 9 1/2
(Z;n:o At||curl H(¢"+!) — curl H}™ HLg(Q)Q)

)

At -
EPYJT) := 100 : — 7
(gt At ourl H (#4125 02

where H;L'H = H;L'Heg.
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Table 4.1 shows the percentage errors Eﬁt(H ) for the magnetic field at different levels of
discretization. Taking a small enough time-step At, one can observe the behavior of the error
with respect to the space discretization (see, for instance, the last row of the table). On the
other hand, by considering a small enough mesh-size h, one can inspect the order of convergence
with respect to At (see, for instance, the last column). In this example, we observe an order
of convergence O(h? + At), which coincides with that predicted by the theoretical analysis
(cf. Remark 4.5.3).

Table 4.1: Percentage errors of the computed magnetic field: EX(H); At = 0.2, hg = v/2/2.

At ho ho/2 ho /4 ho/8 ho/16 ho/32

Aty 11.303186 0.649365  0.244530  0.244530  0.257269
Atg/2 11.319166 2.813540  0.672449  0.169753  0.122235 0.131386
Ato/4  11.327962  2.834780 0.161602  0.063345  0.065098
Atg/8 11.332618 2.846108  0.705389  0.167654  0.042866  0.031640
Ato/16  11.335037  2.852116  0.712470 0.040402  0.016118
Atg/32 11.336268 2.855402  0.716551  0.177379  0.042634  0.010994
Ato/64 11.336871  2.858055  0.720272  0.181395 0.013961

In Table 4.2 we report the percentage errors E,i‘t(J ) for the current density. As in the previous
table, one can observe the behavior of the error with respect to space and time discretization by
taking small enough time-step At and mesh-size h, respectively. In this case we observe an order
of convergence O(h+ At). Although such behavior has not been proved, the reported numerical
results agree with what can be expected from Remark 4.5.4.

Table 4.2: Percentage errors of the computed current density: EhAt(J ); Atg = 0.5, hg = v/2/16.

At ho ho/2 ho/4 ho/8 ho/16 ho /32

Aty 1460797  1.164167  1.077472  1.054695  1.048924
Atg/2  2.115802 0.763272  0.623870  0.583859  0.573421
Ato/4  2.055560  1.057179 0.391297  0.323992  0.304855
Ato/8  2.037246  1.024542  0.528749 0.198324  0.165304
Ato/16  2.031716  1.015408  0.511773  0.264467 0.099893
Ato/32  2.029951  1.012872  0.507225  0.255804  0.132270

Finally, we report simultaneous dependence on h and At for the errors in both quantities,
the magnetic field and the current density: EAY(H) and Eft(J), respectively. With this aim,
we proceed in the following way: first, in each case, we choose initial values of h and At so that
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the time and the space discretization errors are both of approximately the same size; then, for
each of the successively refined meshes, we take values of At proportional to h? in the first case
and to h in the second one (see the values within boxes in Tables 4.1 and 4.2, respectively).

Figure 4.2 shows log-log plots of the corresponding percentage errors. The slopes of the curves
show clear orders of convergence O(h?) = O(h? + At) for ESY(H) and O(h) = O(h + At) for
EALT).

1 --- O(hz) convergence
100 | — O(h) convergence E
—©— Percentage error H
—&— Percentage error J
o 0
= 10 E
o
)
g
2
p1o't 1
1072t 1
10° 107 107! 10°
h

Figure 4.2: Percentage errors E~Y(H) and E2Y(J) versus the mesh-size h (log-log scale), with
At proportional to h? for the former and to h for the latter.






Chapter 5

Numerical solution of transient
non-linear axisymmetric eddy
current models with hysteresis

5.1 Introduction

Electric machine is the generic name for devices that transform electric energy in mechanical
energy or vice versa. They are very important in all sectors of the modern society: for infrastruc-
ture, industry, transport service and for domestic and commercial appliances. They are used,
for instance, as large generators for producing the electric power we need. Most of them, how-
ever, are used as electric motors of different sizes and for all kind of applications: for driving
pumps in water-supply plants, as traction motors for electrical trains, in electric cars, elevators
and for many other infrastructure applications. The development has been fascinating and new
applications and requirements still continue to push technology further.

It is widely known that the performance of electric machines depend strongly on the power
losses. These losses are traditionally known as iron losses and are due to the fact that the
magnetic field variations in the ferromagnetic materials composing the core of the machine
produce energy dissipation.

The efficiency, the thermal behavior or the compactness are some of the design constrains
which are strongly influenced by the losses. Then, it is very important to predict them accurately
for an optimum design of the device.

The losses can be divided into three main components: eddy current (or classical) losses, due
to the Joule effect, hysteresis losses and excess losses, which are related to the intrinsic nature
of magnetic materials (see, for instance, [15]). In particular, unlike hysteresis, excess losses are
function of how quickly the magnetization varies with time.

In the literature there are numerous publications devoted to obtain analytical simplified ex-
pressions to approximate the different components of these losses (see, for instance, [84, 15, 19]),
which are only valid under certain assumptions that do not hold in many practical situations.

Numerical simulation is an interesting alternative in order to overcome these limitations and
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thus, in the last years, we can find several works focused on the computation of iron losses
(see [89, 38, 39, 75] and references therein). In this work we are only interested in computing
the eddy current and the hysteresis losses.

As mentioned before, the eddy current losses are caused by the currents induced in the
magnetic material by the time varying magnetic induction. These currents are dissipated as
heat due to the Joule effect. As illustrated in Figure 5.1, the cores are usually laminated to
reduce the eddy current losses. That is, the core consists of plates that are orthogonal to the
direction of the currents in the coils. Thus, the effective electrical conductivity becomes small
and hence the losses are highly reduced.

Hysteresis losses are heat losses caused by magnetic properties of the materials composing
the core. When the core is in a magnetic field, the magnetic particles of the core tend to line
up with the magnetic field. Then, if the applied magnetic field is variable along the time, the
continuous movement of the magnetic particles, which are trying to align themselves with the
magnetic field, produces a molecular friction, which, in its turn, produces heat. This heat is
referred to as magnetic hysteresis losses.

Figure 5.1: Laminated core.

A first step in the computation of this kind of losses is the numerical solution of the underlying
electromagnetic problem. This requires solving the quasi-static Maxwell’s model, which is the
aim of this chapter. In the framework of the non-linear eddy current model formulated in terms
of the magnetic field, a common assumption is to consider that the relation between the magnetic
field H and the magnetic induction B, the so-called B-H curve, is given by an univalued function
(see, for instance, [80, 82, 60] in a 3D setting), so the hysteresis phenomenon is a priori neglected.
In fact, this approach would only be valid for soft magnetic materials, i.e., those for which the
hysteresis loop is very thin (see Figure 1.4 (left)). Once the magnetic field has been computed,
the hysteresis losses are calculated a posteriori by using “analytical” approximated formulas.

Different models have been proposed to represent the magnetic hysteresis phenomenon. At
the macroscopic level, the most popular is the Preisach model [76]. This model is based on
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some hypotheses concerning the physical mechanisms of magnetization, and for this reason was
primarily known in the area of magnetics. It was not until fifty years later when a group of
Russian mathematicians developed the model into an abstract mathematical frame of hysteresis
operators which can be applied to a wide variety of hysteresis phenomena [57].

In the context of parabolic equations with hysteresis there are several publications devoted to
the mathematical analysis of the problem (see, [93, 94, 95, 49] and more recently [41, 44, 42]). In
particular, [44] deals with an abstract parabolic equation motivated by a two-dimensional (2D)
eddy current model with hysteresis but the numerical analysis and computer implementation of
the problem are not considered. Numerical approximation of parabolic problems with hysteresis
are considered, for instance, in [91, 92]. In the context of the computational methods for a 2D
eddy current model with hysteresis me mention [89, 90]. However, to the best of the author’s
knowledge, the parabolic problem presented in [89] has not been mathematically analyzed

In this chapter, we also focus on the axisymmetric eddy current problem with hysteresis,
namely, the B-H curve is given by a rather general hysteresis operator. Moreover, we also consider
a time and space dependent electrical conductivity, an important issue because this quantity is
typically a function of temperature which, in its turn, is a time dependent field. In view of
applications we consider that the source inputs are current intensities or voltage drops. With
this in mind, two source terms are considered: either the magnetic field on the boundary is given
(Dirichlet condition) or, motivated by [89], the magnetic flux across a meridian section of the
device (magnetic flux condition). These source terms are physically realistic in the sense that
there exist industrial applications where it can be readily obtained from measurable quantities
(see [40, 8, 9, 70, 62, 89]).

This work complements Chapter 3 and Chapter 4, where the mathematical and numerical
analysis of a 2D nonlinear axisymmetric eddy current model was performed without considering
hysteresis effects. These references deals with an eddy-current problem with different source
data: non-homogeneous Dirichlet boundary condition in Chapter 4 and meridian magnetic flux
in Chapter 3. In each case, existence of solution is shown and a full discretization is proposed,
for which an optimal error estimate is obtained. Here, we are interested in the mathematical
analysis and the numerical computation of a formulation including hysteresis effects.

By using classical weighted two-dimensional Sobolev spaces for axisymmetric problems, we
prove the existence of solution to a weak formulation in terms of the magnetic field. The method
used for this purpose consists of introducing an implicit time discretization, obtaining a priori
estimates and then passing to the limit as the time-step goes to zero (see [77]). This approxima-
tion procedure is often used in the analysis of equations that include a memory operator (see, for
instance, [42, 95]) because, at each time step we deal with a stationary problem where the mem-
ory operator is reduced to a nonlinear function. In particular, we base our proof on arguments
given in [95] where existence of solution to a homogeneous Dirichlet problem is achieved. Let
us remark that, to the best of the author’s knowledge, the problems addressed in this chapter
do not fit in this or other existing results because, on the one hand, in our case the coefficients
depend on time and, on the other hand, different boundary conditions are considered.

For the mathematical modeling of hysteresis, we consider the Preisach model as hysteresis
operator. For the numerical solution, a finite element discretization by piecewise linear functions
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on triangular meshes, and the backward Euler time-discretization are used. We also propose a
duality iterative algorithm to handle the nonlinearity at the discrete level which is based on some
properties of the Yosida regularization of maximal monotone operators. This algorithm, intro-
duced by Bermudez and Moreno [12], has been extensively used for a wide range of applications
with good numerical results.

The outline of the chapter is as follows: in Section 5.2 we introduce the concept of hysteresis
operator needed for the mathematical analysis of the problem. In Section 5.3 we introduce the
transient eddy current model with hysteresis to be analyzed. The axisymmetric case is considered
and two alternative source terms are introduced. In Section 5.4, after recalling some analytic
tools, weak formulations are obtained. Then existence of solution is proved for both formulations.
Section 5.5 is devoted to the numerical implementation of the fully-discrete problem arising from
a backward Euler time-discretization and a finite element method for space discretization. Then,
we introduce the classical Preisach model for which we give a detailed description. In particular,
we recall the method to identify, for a particular magnetic material, the function defining its
associated Preisach operator. Finally, in Section 5.6, we report a numerical test in order to assess
the order of convergence of the above numerical method.

The numerical results predict that we may expect a similar order of convergence as the one
proved for the problem without hysteresis in Chapters 3 and 4.

5.2 Hysteresis operators

The hysteresis phenomenon is present in different areas of science such as electromagnetism
(magnetic hysteresis, ferroelectric hysteresis) or mechanics, among others. Hysteresis early work
date back to 1935 and was proposed by the physicist F. Preisach [74] in the context of ferro-
magnetism. From the mathematical point of view, we refer to the monograph of mathematicians
M. Krasnoselkii and A. Pokrovskii [57] as well as to the books by Visintin [95] and Brokate [24]
and, from a physical point of view, to Mayergoytz [63] and Bertotti [15].

In this section we recall some basic background material on hysteresis operators which is
needed for the subsequent sections. The treatment of hysteresis operators is influenced by [95].

Most typical examples of hysteresis phenomena exhibit hysteresis loops, so we start by show-
ing a classical example of such loops. Let us consider a simple setting, namely, a system whose
state is characterized by two scalar variables, v and w, where w is determined by « and both of
them depending on time t. Let us suppose that the evolution of w is determined by the one of
u.

For instance, in Figure 5.2, if u increases from wu; to ug, the pair (u,w) moves along mono-
tone curve abc. Conversely, if u decreases from ug to up, then (u,w) moves along a different
monotone curve cda. Moreover, if u inverts its motion when u; < u(t) < ug, then (u,w) moves
in the interior of the hysteresis region, namely, the part of the (u,w)-plane that is bounded
by the major loop abcd. Here we assume that the pair (u,w) moves along continuous curves
so we speak of continuous hysteresis. Although most typical examples of hysteresis phenomena
exhibit hysteresis loops, the occurrence of loops should not be regarded as an essential feature
of hysteresis.
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Figure 5.2: Hysteresis loop.

According to [95], we can distinguish two main characteristics of hysteresis phenomena: the
memory effect and the rate independence.

To illustrate these concepts, we consider the (u,w) relation introduced above. The memory
effect means that, at any instant ¢, the value of w(t) depends on the previous evolution of u
rather than on only w(¢). On the other hand, rate independent means that, at any instant ¢,
w(t) depends just on the range of function w : [0,¢] — R and on the order in which the values of
u before t have been attained. In other words, w does not depend on the wvelocity of u.

We notice that, even in most typical hysteresis phenomena, like ferromagnetism, ferroelec-
tricity or plasticity, memory effects are not purely rate independent, as hysteresis is coupled
with viscous-type effects. However, in several cases the rate independent component prevails,
provided that evolution is not too fast.

In order to introduce a functional setting for hysteresis operators, we first notice that, at
any instant ¢, w(t) will depend not only on the previous evolution of u (i.e., on ulj ) but also
on the “initial state” of the system. Due to the memory dependence of hysteresis processes,
additional information is needed to make up for the lack of history when the process begins.
This initial information must represent the “history” of function u before ¢ = 0. Hence, not only
the standard initial value (u(0),w(0)) must be provided. In general, we consider a variable &
containing all the information about the “initial state”. For instance, we express this as follows:

F:C([0,T]) x Y — C([0,T)) (5.1)
(u,€) = w(t) = [F(u, )](t) (52)
with Y a suitable metric space.

Here F (+,€) represents an operator between suitable spaces of time-dependent functions, for
any fixed &. We can now make explicit the assumptions of causality and rate independence.
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F(,€) is causal: for any t € [0,T], the output w(t) is independent of u/j, 77, i.e.,

V(u1,€), (uz, ) € Dom(F),

.4 = [F(u1, () = [F(ug, §)I(t) Vit € (0,T].

Ul’[O,t] = U2

We require the path of the pair (u,w) to be invariant with respect to any increasing diffeomor-
phism ¢ : [0,7] — [0,T], i.e.,

Y(u,€) € Dom(F),
[F(uop,&)] = [F(u,§)] oy in[0,T].
This means that at any instant ¢, w(t) only depends on u|j, and on the order in which the
values of u have been attained before ¢ (rate independence). We characterize a hysteresis operator
as a causal and rate independent operator.
In what follows we shall deal with hysteresis operators that are continuous in the following
sense:
v{(whgw,elxmmﬁj} |+ if = uniformly in (0,7 and &, — & in Y

ne

then F(up,&n) — F(u, &) uniformly in [0, 7. (5.3)

Also, another property which may be fulfilled by hysteresis operators is order preservation, that
is

V(u1,&1), (ug, &), € Dom(F), if u; < ug and & < &,
then [[F(u1,&)]|(t) < [[F(uz, &)]|()  Vt € (0,T]. (5.4)

Moreover, for an operator F it is also natural to require the following property, usually named
piecewise monotonicity:

V(u,&) € Dom(F), V[t1,t2] C [0,T],

if u is either nondecreasing or nonincreasing in [t1, t2], then so is F(u, €). (5.5)

We notice that, the classical L2-monotonicity property

T ~ ~
| (P10 = 1P, 010)) (a6) ~wa(®)de >0 Vg, uz € Dom(F)

is a too strong requirement for hysteresis operators. Actually, a rate independent operator is
monotone with respect to the usual scalar product of L?(0, T') only if it is of the form F(u,&) =
@ o u for some function ¢ : R — R (see [16, Chapter IJ).

5.2.1 Space and time dependence

The hysteresis operators introduced in the above section work between spaces of continuous
functions, i.e.,

F:C([0,T)) x Y — C([0,T)).
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where Y is a suitable metric space containing all the information about the desired “initial
state”. These operators are usually employed in problems in which time is the only independent
variable, like in the case of ordinary differential equations (ODE). In the case of partial differ-
ential equations (PDE), these operators cannot be directly applied and it is necessary to extend
F to some suitable operator F acting between spaces involving the space variable.

To begin with, we first define appropriate Lebesgue spaces that will be used for the math-
ematical analysis of the problem (see [95, Section XII.2]). Let () be a Banach space and Q an
open subset of RV (N > 1) with Lipschitz continuous boundary. We define S ((AZ, Q) the family
of simple functions Q— @, namely, functions with finite range such that the inverse image of
any element of () is measurable. Then, we introduce the space of strongly measurable functions:

M(SAZ;Q) = {v Q- Q:3 {vn € S(Q;Q)} N such that
ne
v, — v strongly in @ a.e. in Q}

Now, we are in a position to introduce a space-time hysteresis operator. Given a hysteresis
operator F, we introduce, for any u : Q x [0,7] — R and any £ : Q@ — Y, the corresponding
space dependent operator F : M(Q; C([0,T]) x V) — M(2;C([0,T7])) as follows

F(u, ))(x,1) = [Flu(z,), E@)I(t)  V(x,t) € @ x[0,T].

We notice that operator F is here applied at each point x € 0 independently, hence, the output
[F(u,&)](z,t) depends on u(x, -)|j,q, but not on u(y, )|« for y # =.

Remark 5.2.1 Recall that the “initial state” £ contains the “history” information needed to
compute F.

We conclude by summarizing some properties that will be useful in the following sections.
In particular, given an “initial state” &, F can be

Causal

Yor,va € M(Q;C([0,T))), if vy =vy in [0, ae. in Q,
then [F(vi,8)](-,t) = [F(va,O)](-,t) Vit e[0,T], ae. in . (5.6)

Strongly continuous

v {vn e M(; C([O,T]))} N,if Un — v uniformly in [0, 7] a.e. in €,
ne

then F(vn,&) — F(v,€) uniformly in [0,7] a.e.in Q. (5.7)

Piecewise monotone

Vv e M(Q:C((0,T1)), Vltr, t2] C [0, 7]
if v(z,-) is affine in [t1, 5] a.e. in € then

([F (v, &)](z, t2) — [F(v,8)](x, t1)) (v(x, t2) —v(x,t1) > 0 a.e. in Q. (5.8)
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5.2.2 Magnetic hysteresis

Ferromagnetic materials are very sensitive to be magnetized. This means that whenever
magnetic flux passes through, they behave like a magnet. These materials are made up of small
regions known as magnetic domains. Domains are very small regions in the material structure,
where all the dipoles are paralleled in the same direction. In each domain, all of the atomic
dipoles are coupled together in a preferential direction (see Figure 5.3 (left)). In other words,
the domains are like small permanent magnets oriented randomly in the material.

Ferromagnetic materials become magnetized when the magnetic domains within the mate-
rial are aligned (see Figure 5.3 (right)). This can be done by placing the material in a strong
external magnetic field or by passing electrical current through the material. Some or all of the
domains can become aligned. The more the aligned domains, the stronger the magnetic field
in the material. When all of the domains are aligned, the material is said to be magnetically
saturated. When a material is magnetically saturated, no additional amount of external mag-
netization force will cause an increase in its internal level of magnetization. After removing this
external field, most of domains come again to random positions, but a few of them still remain
in their changed position. Because of these unchanged domains the substance becomes slightly
magnetized permanently. A similar process takes place if we consider a material magnetically
saturated but in the opposite direction. The phenomenon which causes B to lag behind H,
so that the magnetization curve for increasing and decreasing fields is not the same, is called
hysteresis and the loop traced out by the magnetization curve is called a hysteresis cycle or
hysteresis loop.

\/\ f/ o

74\

\ 2

Figure 5.3: Randomly oriented domains (left) and aligned domains (right).

Figure 5.4 shows an example of a hysteresis loop. In this loop we represent the relationship
between the induced magnetic flux density B and the magnetizing force H. It is often referred
to as the B-H loop.

The loop is generated by measuring the magnetic flux of a ferromagnetic material while the
magnetizing force is changed. We start at the demagnetized state, that is, when a ferromagnetic
material has never been previously magnetized or has been thoroughly demagnetized. As H is
increased the loop follows the dashed line. As this line shows, the greater the amount of mag-
netization, the stronger the magnetic induction. At point (H,,, By,) almost all of the magnetic



5.8 The transient eddy current model with hysteresis 111

domains are aligned and an additional increase in the magnetizing force will produce very lit-
tle increase in the magnetic flux. The material has reached the point of magnetic saturation.
At this point, when H decreases to zero, the curve will move from point (H,,, B;,) to point
(0, By,). Here, it can be seen that some magnetic flux remains in the material even though the
magnetizing force is zero. This point indicates the remanence or level of residual magnetism
in the material (some of the magnetic domains remain aligned but some others have lost their
alignment).

As the magnetizing force is increased in the negative direction, the material will again become
magnetically saturated but in the opposite direction (point (—H,,, —By,)). Reducing H to zero
brings the curve to point (0, —B,,). It will have a level of residual magnetism equal to that
achieved in the other direction. Increasing H back in the positive direction the curve will take
a different path from point (0, —B,,) back to the saturation point where it complete the loop.
Notice that, any (H, B) point is always inside the major hysteresis loop.

vI

Figure 5.4: B-H cycle. Major hysteresis loop.

5.3 The transient eddy current model with hysteresis

Eddy currents are usually modeled by the so called low-frequency Maxwell equations:

curl H = J,

0B
5 +curlE = 0,
div B = 0,

where we have used standard notation in electromagnetism: E is the electric field, B is the
magnetic induction, H is the magnetic field and J is the current density.
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In order to get a closed system we need constitutive laws. We have the Ohm’s law in con-

ductors,
J=0F,

where o is the electric conductivity and we consider the constitutive equation
B =y (H+ M),

where M is the magnetization and pg is the magnetic permeatibity of the vacuum. In ferro-
magnetic and ferrimagnetic materials, where hysteresis phenomena may occur, the dependence
between M and H exhibits a history-dependent behavior and must be represented by a suit-
able constitutive law accounting for hysteresis. We synthetically represent this dependence in

the form
M = F(H),

where F is a vector hysteresis operator (see [64, 63]). This dependence is nonlocal in time but
pointwise in space. We notice that a real ferromagnetic material may exhibit rate dependent
memory effects but they will not be considered in this analysis.

From the above equations we can easily obtain the following vector partial differential equa-
tion in conductors:

B 1
8((% + curl <J curl H) =0, (5.9)
which has to be solved together with
divB =0 (5.10)
and the constitutive equation
B = o (H + F(H)). (5.11)

5.3.1 Axisymmetric eddy current model

We restrict our attention to a case where source currents are axisymmetric and do not
have azimuthal component so that the magnetic field is also axisymmetric with only non-null
azimuthal component. Then, in order to reduce the dimension and thereby the computational
effort, it is convenient to consider a cylindrical coordinate system (7,0, z). Let us denote e,, ey
and e, the corresponding unit vectors of the local orthonormal basis. We suppose that the
computational three-dimensional (3D) domain Qis cylindrical and that all fields are independent
of the azimuth 0. Moreover, we assume that the magnetic field has only azimuthal component,
i.e., it is of the form,

H(r, z,t) = H(r,z,t)ep. (5.12)

Then, for isotropic behavior, B has only azimuthal component too:

B(r,z,t) = B(r, z,t)ey. (5.13)
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Therefore a scalar hysteresis model may be used to describe the B-H relation (cf. (5.11)), that
is,

B(r,z,t) = po (H(r, z,t) + [F(H)|(r, 2,1)) , (5.14)
where F is a scalar hysteresis operator. Moreover, in order to get a well-posed problem (cf.
Remark 5.2.1), we have to provide an appropriate “initial state” so that we can compute [F(H)]
a.e. in  x [0,T]. Dependence of B on coordinates (r, z) permit us to deal with different ma-
terials in domain €. We notice that any field of the form (5.13) is divergencefree so (5.10) is
automatically satisfied.

Accordingly, the current density is given by

J(r,z,t) = curl H(r, z,t) = —aéH(r, z,t)ep + lg(rH)(r, z,t)e,. (5.15)
z ror

Then it is straightforward to see that equation (5.9) is equivalent to the following scalar PDE

0B o0 (Lowm) o (1omy_
ot Or \or Or oz \oc 0z /)

This equation holds in a meridian section € of €, for all time ¢ € [0,7]. In order to write a
well-posed problem we add appropriate boundary conditions on the boundary I' := 9. In view
of applications, throughout this chapter we consider alternatively the two following ones:

BC1 Dirichlet:
H(r,z,t) =g(r, z,t) on I,

where g is a given function. For applications of this model, we refer for instance to [8, 9, 54],

where a Dirichlet problem arises in the simulation of metallurgical electrodes. In this case, the

Dirichlet boundary condition for the magnetic field can be obtained from the current intensity.
On the other hand, following [89] we consider the following non-local boundary condition

BC2 Magnetic flux:

/ B(r, 2.1) drds = b(1), (5.16)
Q
rH|r = ¥(t) on T, (5.17)

where b is a given function but ¢ is unknown. The above integral in (5.16) represents the
magnetic flux b(t) flowing through a meridian section 2 of the domain.

We notice that, in the problem of computing the eddy current losses in a toroidal laminated
core surrounded by an infinitely thin coil, the boundary conditions are different depending on
whether we know the current intensity or the voltage drop in the coil. For the former, a non-
homogeneous Dirichlet condition naturally appears (see [62, 70]), whereas for the latter we have
a magnetic flux condition (see [89]).

All together, the two resulting axisymmetric problems reads:



5.8 The transient eddy current model with hysteresis 114
Problem 5.3.1 Find Hp(r,z,t) and Bp(r,z,t) such that
OBp 0 (1 O(rHp) 0 (10Hp\ _ ,
Bp = po (Hp + F(Hp,§)) in Q2 x(0,T),  (5.19)
Hp=g onl x(0,T), (5.20)
HD’t:O = HQD in Q. (521)
Problem 5.3.2 Find Hy(r,z,t), By(r,2,t) and ¢¥(t) such that
O0Bn 0 1 O(rHy) 0 (10Hy _ .
615_87"<0r o) o2\o 8. )T x0T, (5:22)
By = po (Hy + F(Hy,§)) nQx(0,T), (5.23)
rHy(r,z,t) =¢(t) onI x(0,T), 5.24)
/ Bn(r,z,t) drdz = b(t) in (0,T), (5.25)
Q
Hyli—o = Hoy  in €, (5.26)

where o(r, z,t), f(r, z,t),9(r, z,t),b(t),&(r, 2), Hyp(r,z) and Hyn(r,z) are given functions.

Remark 5.3.1 For the sake of generality, in (5.18) and (5.22) we have considered a general
right-hand side f. Moreover, we consider a space and time dependent electrical conductivity o

because in practical applications it is a function of temperature which, in its turn, is a time

dependent field.

Remark 5.3.2 From a practical point of view, a physically realistic initial condition (cf. (5.21)
and (5.26)) is the so called demagnetized or virginal state of the material, namely, (B, H)|i—o =
(0,0). The demagnetized state can be achieved, for instance, by heating the material above its

Curie temperature. Another method that returns the material to a nearly demagnetized state is
to apply a magnetic field with a direction that changes back and forth while at the same time the

field amplitude reduces to zero (see Figure 5.5).

Figure 5.5: B-H curve (left) and magnetic field (right).
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5.4 Mathematical analysis

In this section, we derive weak formulations for Problems 5.3.1 and 5.3.2, and prove that they
are well posed. The techniques used for this purpose are based on [95, Chapter IX], where the
existence of solution to a non-axysimmetric version of Problem 5.4.1 with homogeneous Dirichlet
condition is proved (for a homogeneous Neumann condition we refeer to [43]). The presence of
time dependent coefficients, the different source terms (cf. (5.20) and (5.25)) and the symmetry
assumption brings some technical complication to the analysis with respect to previous works
on the subject. In particular, (5.24)-(5.25) yield a nonlinear parabolic term with a non-classical
boundary condition. Such a condition and a time dependent conductivity (cf. Remark 5.3.1),
lead us to deal with a time dependent bilinear form which, instead of being elliptic, satisfies
a Garding’s inequality. On the other hand, in order to deal with condition (5.20), we have to
introduce a lifting of the boundary data.

Firstly, we introduce some preliminary results to be used along the chapter.

5.4.1 Functional spaces and preliminary results

We define appropriate weighted Sobolev spaces that will be used for the mathematical analy-
sis of the problem and recall some of their properties. For the sake of simplicity, in this paragraph
the partial derivatives will be denoted by 0, and 9,.

Let Q C {(r, 2) ER2:p > O} be a bounded connected two-dimensional open set with a
connected Lipschitz boundary I'. Let L2(€2) denote the weighted Lebesgue space of all measurable
functions u defined in €2 for which

||U”ig(g) = /Q lul*r drdz < occ.

The weighted Sobolev space HL(£2) consist of all functions in L2(£2) whose first derivatives are
also in L2(92). We define the norms and semi-norms in the standard way; in particular,

|u]%11(9) = / (|0rul?® + |0.u|?) r drdz.
" Q

Let HL(Q) := HL(Q) N L%/T(Q), where L%/T(Q) denotes the set of all measurable functions u
defined in ) for which

lJu|? = E‘fdrdz < 00
H.(9) is a Hilbert space with the norm
2 2 2
Il ) = Nl +llulzz @
We recall from [46, Section 3] that functions in H(€2) have traces on I'. We denote

Eﬂ@p:{mﬂveﬁxm}
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endowed with the norm
lollor2 ey = mE{ollyq ¢ v € ), ol = g)

which makes the trace operator v — v|p continuous.
Also, let us introduce the function space H!(€2) defined by

HHQ) : {u € LA(Q) : 0, (ru) € L},(Q), d.u € LE(Q)}

which is a Hilbert space with the norm

1/2
2y 0y = (NulEagy + 10:wlE2 (@) + N0-ulByey) -

Clearly H(€) c HL().
Finally, given a Banach space @, we introduce L2(Q2; Q) the space of all function u: Q — Q
such that

1/2
e = ([ ol ards) " <.

Remark 5.4.1 For Q being a meridian section of a 3D axisymmetric domain Q, the space
ITI}"(Q) can be considered as an azisymmetric version of the 3D space H(curl, Q) := {u € L%(Q) :
curlu € L2(Q)}, with L2(Q) := L%(Q)3. That is to say, it is easy to see that G(r,z) € HX(Q) if
and only if G(r, z,0) = G(r, 2)eg() € H(curl, Q). Similarly, we deduce that G(r,z) € H:(Q) if
and only if G(r,z,0) = G(r, z)eg(0) € HL(Q) := HL(Q)3.

Moreover, given G of the form G(r,z,0) = G(r, z)eg, then divG =0 and G-n =0 on o0,
i.e., G belong to Hy(div; Q) := {u € L%(Q) : divu = 0, u-n = 0}. Thus ﬁ}n(Q) can be identified
with a closed subspace of H(curl, Q) NHy(div’; Q) continuously included in H*(Q) for s > 1/2,

which, in its turn, is compactly included in L?(Q) (see [45, Theorem 1.1.3]). Then,
fL(©Q) c L)
with compact inclusion and we deduce that HX(2) is also compactly included in L2(9).

5.4.2 Weak formulation

In order to build a weak formulation of the above problems, let us define the closed subspaces
of HL(Q) and H() :
U= {G cHY(Q): G|r = o},
W= {G € Ijl}"(Q) . rGlp is constant} .

Hence, for each ¢ € [0,T] a weak formulation of Problem 5.3.1 is given by:
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Problem 5.4.1 Given g € H2(0,T;HY*(T)), f € HY0,T;U'), Hop € L2(Q), and £ € Y a.e.
in Q, find Hp € L2(0,T;HL(Q)) N L>®(0,T;L2() and Bp € L2*(0,T;L2(Q)) with 0;Bp €
L2(0,T;U"), such that

<8BD G> +/ 1 <8(7‘HD) a(rG) N d(rHp) 0(rQ)
ot ’ uu Q or or 0z 0z

VG eU, a.e. in|0,T],

Bp = uo (Hp + F(Hp,&)) in Q2 x (0,7T),

Hpb=g onD x(0,7),

Hpli—g = Hyp in Q.

ar

> drdz = <f7 G)U,Zx[’

We use the classical notation of the duality product (-,-)z g between U and its dual space U’.

Before stating a weak formulation of Problem 5.3.2, we notice that if the boundary of Q2
intersect the symmetry axis (r = 0), then v (¢) should be identically zero because r vanishes
there. In that case, (5.24) would become a homogeneous Dirichlet boundary condition and
Problem 5.3.2 without condition (5.25) would be exactly Problem 5.3.1 with g = 0, so there is
no reason for (5.25) to hold for a given b(t). However, this does not happen in the application
that motivates this problem in which the domain is well separated from the symmetry axis (see
[89]). This is the reason why, from now on, we will assume that

inf{r >0:(r,2) €Q} >0 (5.27)

and, hence, L2(Q) and L%/T (€2) are both identical to L2(£2). Similarly, H(2) is identical to H(£2).
Straightforward computations lead to the following weak formulation for Problem 5.3.2 (see
Chapter 3):

Problem 5.4.2 Given b € H2(0,T), f € HY(0,T; W), Hyy € L2(Q) and £ €Y a.e. in Q, find
Hy € HY0,T; L2(Q)) NL>*(0,T; W) and By € L%(0,T;1L2(Q2)) with ;By € L2(0,T; W'), such
that

<8BN > / 1 (8(THN) d(rG) O(rHy) 0(rG)
—%,G + [ = +
ot WV Qor or or 0z or

+ '@ = (for Hww) rG)[r VG EW, a.e. in[0,T],
By = po (Hy + F(Hy,§)) in Q x (0,T),
HN|t:0 = HON in Q.

) drdz = (f, G)ww

We introduce the following assumptions that will be used to prove the existence of a solution
to problem 5.4.1 and problem 5.4.2:

H.1 F: L2(Q;C([0,T]) x Y) — L%(Q;C([0,T])) is causal, strongly continuous and piecewise
monotone (cf. (5.6)—(5.8)). Also we assume that F is affinely bounded, namely,
JLr > 0,37 € L2(Q): Vv € LA(Q;C([0,T))),
||[./—"(U,§)](T‘, 2, ')HC([QT]) <Lr ||U(T? 2, ')HC([(LT]) + 7’(’1", Z) a.e. in (. (528)
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H.2 0:(0,T) x  — R belongs to W1°(0, T; L>°(2)) and there exists non-negative constants
o and o* such that
o« <o(r,z,t) <o ae. in (0,T) x Q.

H.3 The initial functions Hyy and Hyp belong to W and ﬁi(Q), respectively.

We define the initial conditions of the hysteresis operator given by Wyn := F(Hy,&)(0) and
Wop := F(Hp, £)(0). Clearly, because of H.1 and H.3 it follows that Wyn, Wop € L2(9).
Also, for each t € [0,T], let us denote by a;(+,-) the bilinear form defined by

L 1 16(1”()1) 16(7“612) 8G1 8G2
a:(G1, G2) '_/QJ(-,t) <7‘ o r or | 0: 02

From H.2 we obtain the following result.

> rdrdz  Gy,Gy € HL(Q). (5.29)

Lemma 5.4.1 The bilinear forms a; : H1(Q) x ﬁ%(Q) — R, t € [0,T], are continuous uniformly
i t and they satisfy the Garding’s inequality

ar(G, G) + N|Gla ) = MGy, VG € HIQ), (5.30)
with A = v = 1/0*. Moreover, there exists v, > 0 such that

(G, G) > 7G| VG e U. (5.31)

2
HL.(Q)
Proof. The continuity and (5.30) follow directly from the definition of a;(-,-) and the H!(€)-
norm, and from the boundedness assumption on o (cf. H.2), whereas, (5.31) follows by easy
calculations (see Lemma 4.3.1, Chapter 4). O

Finally, we introduce the linear operator A(t) : ﬁi(Q) — ﬁ%(Q)’ induced by a(-,-). Clearly
A(t) is linear and continuous, namely, it belongs to £(HL(2), HL(Q)') for all t € [0,T].

Remark 5.4.2 From the definition of as(-,-), it follows that a; : HL(Q) x HX(Q) = R, t € [0, 7],
are continuous uniformly in t, and therefore, the linear operator A(t) : HL(Q) — HL(Q)' belongs
to L(HL(Q),HL(Q)) for all t € [0,T).

The next two sections are devote to study the existence of solution to Problems 5.4.1 and
5.4.2. The analysis is based on an implicit time discretization scheme. This approximation pro-
cedure is often used in the analysis of equations that include a memory operator as at any
time-step we solve a stationary problem in which this operator is reduced to a nonlinear map-
ping. We apply this technique to F. Then, the proof of an existence result is carried out through
three different steps: existence of solution to the time discretization scheme, a priori estimates
and passage to the limit by using compactness. From now on, when there is no possibility of
confusion we will omit to write the dependence on the “initial state”. Thus, we will write F(u)
instead of F(u,§) and so on.

5.4.3 Existence of solution. Magnetic flux problem

In this section we will prove that, under certain assumptions, there exist (Hy, By) solution
of Problem 5.4.2.
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Time discretization

Let us fix m € N and set At := T /m. Now, forn = 1,...,m, we define t" := nAt, b" := b(t"),
o™(r,2) == o(r, z,t"), f* := f(t") and A(t") := A™. Notation 02" refers to the difference quotient

n 1

— an

02" = Ar

A time discretization of Problem 5.4.2 based on backward Euler’s scheme reads as follows:

Forn=1,...,m, find H} € W and Wi € L%(Q) satisfying

poOHY + podWy' + A" Hyp = Ry inW, n=1,...,m, (5.32)
W = [I(HNAtnag)](tn)7 n = ]-a cee, M, (533)
HY = Hyy, WR =Won  in Q, (5.34)

where Hyaw : [0,t"] — W is the piecewise linear in time interpolant of {H]@ ™o gien by

Hyam (t°) := Hon; (5.35)
Hya (t) = Hiy P+ (=t oHy, te (@ Ht], i=1,...,n, (5.36)

and
(R, Gywor = (f™, Gywowr + (0" = (f*,r ")) (rG) |
We notice that, since for n € {1,...,m} we already know Hy,... ,Hﬁfl, then W'() =
[F(Hyagn, §)] (-, ") depends only on Hyagn (-, )] 1], which is known, and on Hy}, which must
be determined.
In order to analyze the discrete problem, we define F™ : 2 x R — R as follows: given s € R

Fn(T’,Z,S) = [f(UZtvg)](Tvzatn) a.e. in Q7

with U}, the piecewise linear in time function such that UX,(r, z, th = H]f[(r, 2),l=0,...,n—1
and U3, (r, z,t") = s. This allows us to introduce an operator F" : L2(Q) — L2(Q2) by F*(G)(-) :=
F"(-,G(-)) for all G € L(9). The following lemma gives us properties of F” that will be used
in the sequel.

Lemma 5.4.2 For alln = 1,...,m, F* : L2(Q) — L2(Q) is a continuous and non-decreasing
operator. Moreover,

/ F(G)Gr drdz > —Cy |Gllz@ — G2 VG € LA(Q), (5.37)
Q T

where C1,Co > 0 depend on {H]@}?:_Ol but are independent of G.

Proof. The continuity of F" follows from H.1 (cf. (5.7) and (5.28)) and the Lebesgue dominated
convergence theorem. Indeed, let {v,}, oy € L2(2) and v € L2(£2) be such that v, — v in L2(Q2).
From the strongly continuous property of F it follows that F"(v) — F™(v) a.e. in ©, then the
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convergence in L2(f2) follows from the affinely bounded assumption (5.28) and the Lebesgue
dominated convergence theorem. To prove the non-decreasing property, we consider that F
is piecewise monotone (cf. (5.8)). Let u,v € L2()). We define the piecewise linear functions
Unt - [0,17] — L2(Q) and Vs : [0,7] — L2(Q) satisfying

UAt(T,z,ti) = Vae(r, z,ti) = H]\i,(r, z) fori=0,...,n—1

and
Une(r, z, t") = u(r, z), Vae(r, z,t") = v(r, 2),

a.e. (r,z) € Q. From the definition of F” we have:
F*(u)(r, 2) = [F(Unar, O)](r; 2,t") and  F*(v)(r, 2) = [F(Var, I(r, z,1").
Now, let (r, z) € Q and suppose that
Hy ™ (r2) S o(r,2) < u(r,2),

then, there exist t* € [t"~1 #"] such that Ua¢(r, 2,t*) = v(r, z) and since F is rate independent
we have that F"(v)(r, z) = [F(Va)](r, 2,t") = [F(Uas)|(r, 2, t*). Therefore

(E* (u)(r, 2) = F*(v)(r, 2)) (u(r, 2) —o(r, 2))
= ([F(Ua))(r, 2,t") — [FUa)(r, 2,t%)) (Une(r, 2,t") = Ung(r, 2,£%)) > 0.

The same inequality holds if v(r, z) < u(r,z) < Hy~(r, 2).
Otherwise, if we suppose

o(r,z) < Hy ' 2) < u(r, 2), (5.38)
then

(F"(u)(r,2) —F"(v)(r,2)) (u(r, 2) — v(r, 2))
= ([}"(Um)](r,z,t”) — [F(Ua)](r, z,tn_l)) (Ua(r, z,t") — Vae(r, z,t™))
+ ([F(VAt)](r, z,t"il) — [F(Vag)](r, z,t")) (Unt(r, z,t") — Vag(r, 2, t™)) .

Then, since F is piecewise monotone, from (5.38) we have
([FUaI(r 2, t") = [F(Uar)](r, 2,8"71)) > 0
and also ([F(Vay)](r, z,t" 1) — [F(Vay)|(r, z,t™)) > 0. Then,
(F"™(u)(r, 2) = F"(v)(r, 2)) (u(r, z) — v(r, z)) >0,

and we conclude the non-decreasing property of F". On the other hand, to prove (5.37) we first
notice that from (5.28) it follows that

[F™*(G)(r, 2)| < Lrmax{|HY(r, 2)|, |Hy(r, 2)|, ..., |[H3 " (r, 2)|,|G(r, 2)|} + 7(r, 2) a.e. in Q.

(5.39)
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Moreover, from (5.8) and (5.33) we have
(F"(G)(r,2) — Wt (r, 2)) (G(r, z) — oy, z)) >0 a.e. in . (5.40)

Therefore, (5.37) follows from (5.39), (5.40) and the Cauchy-Schwartz inequality. O
The existence and uniqueness of a weak solution at each time step is guaranteed by the
following lemma.

Lemma 5.4.3 There exists a uniquely determined (Hy, W) solving (5.32)—(5.34) for any n =
1,...,m.

Proof. First, we rewrite (5.32)—(5.34) as follows:
Find H} € W forn =1,...,m such that
Z(HY) := poHY + poF"(HY) + AtA"H? = Ry in W/,
FO(HG) = Won  in Q,
where Ry = AtRY + poHY + poF L (HY ). From Lemmas 5.4.1 (cf. (5.30)) and 5.4.2 we

have that Z : W — W' is strongly monotone and continuous. Moreover, from (5.30) and (5.37)
it follows that Z is coercive, more precisely,

(Z2(G), Ghwwr _
IGlgL (@)= HGH}A[;(Q)

Hence, equation Z(Hy) = 1/?;\\]“ has a unique solution for n = 1,...,m (see, for instance, [78,
Theorem 2.18]). O

A priori estimates

The aim of this section is to prove an a priori estimate for the solution of (5.32)—(5.34).
Here and thereafter C' and ¢, with or without subscripts, will be used for positive constants
not necessarily the same at each occurrence, but always independent of the time-step At.

Lemma 5.4.4 There exists C' > 0 such that, for alll=1,...,m

C.

! _ 2 ! _
A YN0V [+ [ |y 28 2 IOHR g <
n=1 r n=1

Proof. Let us multiply (5.32) by (H — Hv"'). For n = 1,...,m, we obtain

2
HY — Hy !
At

Ho

At
Ho o At

+ (WA = W) (H = HY™") + (A" HY, B — Hy ™o

L3()

= (f", Hy — Hy ™ Yo + (06" — (" r Do) (rHY — rHY ') |p.
(5.41)
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First, we estimate the terms on the left hand side. From the piecewise monotonicity of F
(cf. (5.8)) we have that

1
[ R = Ry = ) drd > . (5.42)

On the other hand, in order to estimate the last term on the left-hand side of (5.41) we use the
identity 2(p — q)p = p? + (p — q)? — ¢* to obtain that

2(AMH, HY — HY Mo = (AHG, Hi )y — (A" HY ™ HY ™ Do
= (A"H3, i)y wowr — (A" P HE Y HE Dy + (A" = AMERH HY Dy (5.43)
where

n— n n— n— n—112
(A" = AMHG G Do | < Co |00l oo o riwoe () At Y 711 e - (5.44)

Summing up (5.41) forn=1,...,l with [ € {1,...,m}, from (5.42)—(5.44) we obtain

I
= 1
> oAt HaHﬁ”iz(Q) + §<A1H](,, H)wwr
n=1
I

1 _
< §<A0H0N, Honyww + 3 Co 010|100 (0 1100 () At || HY 1“%}(9)

n=1

! !
Y U HY = B Ywow + D (06" = (o o) (P — rHET) . (5.45)

n=1 n=1

Next, we estimate the last two terms on the right-hand side of (5.45). By summation by parts,
Young’s inequality and inequality (rG) |r < C HG”ﬁl(Q) ,YG € W, we have that

I
> (06" = (M Do) (rHF = rHY ) o

)

n=1

= ’ (5bl - <f’,r‘1>ww) (rH/V) I — (86" — (f1,7 1) (rHow) I
-1

=D (@0 = ab® — (fE = o) (PR [
n=1

-1 oo+l _ gpn

At

2 -1
+Atzuaf"+lniw}

n=1

<Ce {||bH2H2(O,T) + {111 o, vy + At

n=1

+€HH]<,

-1
2
|12 2
fil(0) + At; HHNHH;(Q) + HHONHH}‘(Q) : (5~46)
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In a similar way,

l
2
n n n—1 2 l
SR = H | < el oz & [y

-1
+ Atz HH]{}H%H(Q) + ||H0N"%;(Q) ’ (5'47)

n=1

for all € > 0. On the other hand, in order to deal with the second term on the left-hand side of
(5.45), we first notice that H}, = Hyy + At 25121 OHP and then

R, 1 HH]HiZ(Q) 2
Aty [0 a0y = 75 — [Howllz e

n=1

Therefore, from the latter and Lemma 5.4.1 (cf. (5.30)) we obtain that there exists 7 :=
min { £%, %} 7, such that

!
= 1
HoAty HaHJ\T;Hig(Q) + §<AZH]<I7H]<Z>W,W’

n=1

2
[ Hon |72

l
At/J'O arri |12 - 1 2
Z n; HaHNHLg(Q) +7 HHN‘ i MO o (5.48)
Then, by replacing (5.46)—(5.48) into (5.45) and choosing ¢ = % we get
! ~
poAt = rn|2 ¥l 112
2 ZHaH]GHLE(Q)—i—§HHAt‘ﬁl(Q)
n=1 T
o — Hpn—L 2

[
fary” Haf”Hiw}
n=1

l
<C {||bH2H2(O,T) + 1A o ron + ALY

n=1

At

(0spio +T)

I
1|2
—|—CAtZ”HN IH?I;(Q)JF 2T o,

n=1

2
HHONHﬁ;(Q) .
Hence, by using the discrete Gronwall’s lemma we obtain

<C l=1,...,m,

!
Aty HgHJGHiZ(Q) + HHlAt‘

n=1

2
HL(Q)
Wlth C > 0 depending on HbHHz(O,T)? ||H0N||ﬁ71‘(ﬂ)’ ||f||H1(O,T;W’) and ||0-HW1700(0,T;L°°(Q))‘ Finally,

we estimate me:l Héﬂ{\}"‘ by using (5.32) and the latter inequality. O

2
[
Convergence

Now, we will define a family of approximate solutions to Problem 5.4.2 and prove its weak
convergence to a solution. With this aim, we introduce some notation: let Wy a; : [0, 7] — L2(9)
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be the piecewise linear in time interpolant of {Wi'} (cf. (5.35)(5.36)). We also introduce the
step function Hyay : [0,7] — W by:

Hyae(t%) == Hyn; Hyar(t) == HP, te (™ 5", i=n,...,m, (5.49)
and define the step functions Ax; and Rya; in a similar way.

Using the above notation we rewrite equation (5.32) as follows:

OHnAt Warat
HO™5¢ ot

From Lemma 5.4.4 we deduce that there exists C > 0 such that

0
+ po

+ AneHyar = Byae - in W, ae.in (0,7). (5.50)

OVAN A
ot

+ HZAtFNAtHLOO(O,T;W’)
L2(0,T;W")

+ 1 Hvatllgg o mazopn=orie) T 1NA s o rir (o)) < - (5:51)

Moreover, since H!(0, T; L2(Q2)) = L2(; H'(0,T)) — L2(Q; C([0,T])) with continuous injection,
by using the affinely bounded assumption and (5.51) it follows that

IWaradllzoxory < VT IWadlizooqomy) < VT IHvadliz@o.cqomm) + VT Illz@) < C.

This allows us to conclude that there exists Hy, Wy and X such that,

Hyar — Hy  in HY(0,T;L2(Q)) N L>(0,T; H()) weakly star, (5.52)
Hyar — Hy  in L(0,T; H(Q)) weakly star, (5.53)
Wiar — Wy in L2(Q x [0,T]) weakly, (5.54)
%HNN — %HN in L2(0,T;W') weakly, (5.55)
%WM — %Wv in L2(0,T;W') weakly, (5.56)
AntHyay — X in L>(0,T;W') weakly star. (5.57)
Let Ry € H'(0,T; ') be such that
(Rv, Gywow = (f,G)wwr + (V') = (f,r ww) (kG [r VG €W, ae. in [0,7].

By passing to the limit in (5.50) we obtain

Moaa? + ,uoaa@ + X = Ry in W, ae.in (0,7), (5.58)

because Rya; — Ry in L2(0, T; W), for f € HY(0,T; ') and b € H2(0,T). The next step is to
prove that X = AHy and Wy = F(Hy, ). The first equality, follows from (5.53), (5.57) and H.2
(see, for instance, Lemma 4.3.6, Chapter 4). To prove the remaining one, we proceed by using
a compactness result and the strong continuity of F (cf. (5.7)). First, we recall that, given the
assumption on the domain (cf. (5.27)) L2(€2) and H!(2) are both identical to L2(€2) and H!(Q),
respectively.
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Lemma 5.4.5 Let Hy and Wy be the limits defined in (5.52) and (5.54), respectively. We have
Wy = F(Hn,€) a.e. in [0,T] x €.

Proof. From (5.51) we have that Hya; is bounded in H'(0, T; L2(9)) N L2(0, T; H (). On the
other hand, by using an interpolation result (see [61, Chapter 1, Theorem 5.1 and Remark 9.5])
we obtain, for s € (0,1/2).

H(0, 75 L2(Q)) N L2(0, T3 A (Q)) € HY(Q HI=*(0,7)) € LA(©: ([0, 7))
with continuous injection and compact inclusion, respectively. Hence, we have
Hya; — Hy in L2(Q;C([0,T])) strongly (5.59)

and therefore
Hyat — Hy uniformly in [0,77], a.e. in Q.

Using the strong continuity of F we obtain
F(Hyat, &) — F(Hy,&) uniformly in [0,77], a.e. in Q. (5.60)

On the other hand, since [F(Hyat,&)|(r,2,-) is uniformly continuous in [0,77] a.e. in © and
Wi ae(r, z,+) is the linear in time interpolant of

W\/At(rvzatn) — [.F(HNAt,é)](T,Z,tn) n= ]-a"'ama
it is straightforward to obtain that
[Wavae = F(Hy, Ol oo < 1Wae = F(Hvae, Olleory + I1F(Hyat §) = F(HN, o,y — 05
by using (5.60). Therefore, we have
Wyar — F(Hy,§) uniformly in [0,7], a.e. in. Q

Moreover, because the affinely bounded assumption (cf. (5.28)), Wiyas converges strongly in
L2(Q;C(0,T)). Then, from (5.54) we obtain the result. O
From the latter, we are in a position to obtain the following result.

Theorem 5.4.1 Let us assume hypotheses H.1, H.2 and H.3. Then Problem 5.4.2 has a solu-
tion.

Proof. From (5.58) and Lemma 5.4.5 it follows that

(%6) b al.G) = (1. Glwow
W
+ (V') = (f,r Hww) (rG) Ir VG €W, a.e.in 0,7,
By = po (Hv + F(Hy,€)) in Q2 x(0,7).

Moreover, as a consequence of (5.59), (5.60) and Lebesgue dominated convergence theorem it
follows that Hya:(0) — Hy(0) in L2(Q) and Wia¢(0) — F(Hy,£)(0) in L2(Q). Hence

Hy(0) = Hoxy  and  F(Hy,£)(0) = Won  in .
Therefore (Hy, By) is solution to Problem 5.4.2. O
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5.4.4 Existence of solution. Dirichlet problem

We prove the existence of solution to Problem 5.4.1 by using the same techniques as in the
previous section, namely, we approximate the continuous problem by using a time discretization,
prove error estimates for this discrete solution and then pass to the limit as the time step goes
to zero.

To prove that Problem 5.4.1 has a solution, we first consider a lifting of the boundary data.
We notice that, from the regularity of g, there exist H, € H%(0,T; ITI%(Q)) such that Hylp = ¢
with

HHgHHk(QT;ﬁ%(Q)) <C HgHH’@(O,T;ﬁi/Q(F)) ) k=12, (5.61)

being C' a constant independent of g (cf. Section 4.3.2, Chapter 4). Next, we write Hp = H,+ H,
and clearly H, € U. Hence, from the above, we rewrite Problem 5.4.1 as follows:

Find H, € HY(0,T;1L2(Q)) NL>®(0,T;U), such that

H, O0F(H, + H,,
,u,()/ LGT drdz + o F(H, + g f),G —i—a,t(Hu,G) = <%,G>uul VG eU,
Q at 8t u7u/ ’
(5.62)
Hyl¢=0 = Hop — Hy(0) in Q,
(5.63)

with Rp € H'(0,T;U’) such that
0H, .
(Rp, GYuu = (f,Gluw — ar(Hy, G) — ,uo/ WGT drdz VG €U, a.e.in [0,T].
Q

Time discretization

We consider the definitions and notations introduced in Section 5.4.3 and define H;'(r, z) :=
Hy(r,z,t"),n=0,...,m, a.e. in Q. We approximate (5.62)-(5.63) by an implicit time discretiza-
tion scheme and obtain the following problem:

Forn=1,...,m, find H € U and W}y € L%(Q) satisfying

poOH! + 11g0W}yy + A"H* = R} inU, n=1,...,m, (5.64)
WDn - [f(H';LAt" + M]At”?g)](tn) in Qv n= 17 cee, MM, (565)
H) = Hyp — H), WY =W in Q, (5.66)

where Hyam and Hyan are the linear in time interpolants of { Hi}? , and {H;}?:O, respectively
(cf. (5.35)—(5.36)), and R} e U',n=1,...,m, defined by

<R8, G>u7z,{/ = <fn, G>L{,L{’ - <AnHZ;, G>u7u/ — Mo /Q EH;'G’I“ drdz VG e U.

We notice that W/} depends on the known functions {H nn-t

S0 {Hgl}?zo and the unknown func-
tion H,'.
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The existence and uniqueness of solution of the discrete problem is guaranteed by the fol-
lowing lemma.

Lemma 5.4.6 For anyn = 1,...,m, there exists a unique solution H;' € U and W € L%(Q)
to (5.64)—(5.66).

Proof. First, we define F} : L2(Q) — LZ(Q) by F7(G)(r,z) = FJ(G(r, 2),7,2) a.e. in Q, with
Fg R x Q — R, such that

Fj(r,z,8) = [F(Uxs, §))(r, 2, ") ae. in €,

with UY, the piecewise linear in time function such that UZ,(r,z,t") = Hl(r,z) + Hl(r,z),
I =0,...,n—1and Ux(r,2,t") = s+ H'(r,z). As in Lemma 5.4.2, it follows that I} is
monotone and continuous and there exist constants Ci,Cy > 0 depending on {Hi};:ol and
{Hgl}?zo such that

/QIFZ(G)GT drdz > ~Cy |Gl — Co VG € LA(Q),

Hence, from Lemma 5.4.1 (cf. (5.31)), the result follows by using the theory of monotone
operators (cf. Lemma 5.4.3). O

A priori estimates
The following lemma gives us a priori estimates for the solution to (5.64)—(5.66).

Lemma 5.4.7 There exists C' > 0 such that, for alll=1,...,m

2

l
o F A Oy < C
n=1

1
H, HL(

2
|

l
Aty ||ow|
n=1

Proof. We multiply (5.64) by (H" — H""!) to obtain

2
Hy —Hy! MO/ -1 -1
Ap || —Tu + 20w — WY (HD — HY Yy dred
o H S L0985 )r drdz
+ (A"HP H — HY Ny = (B3, HY — H' Dy (5.67)

Now, we estimate each term of the above equation. First, we focus on the left-hand side. For the
second term on the left-hand side, by using the piecewise monotonicity property of F (cf. (5.8)),
we arrive at

5 [0 =W - s > [ —vg - WO s (568)

On the other hand, from the analysis of the previous section (cf. (5.43) and (5.44)), we
estimate the last term on the left-hand side of (5.67) as follows

1 1
(A"HP H — H Yy > §<A"H$7 H"Yuu — §<A"_1H17_17 H' Yy

~Co 1000 [l (071,00 0y A || H ™ H%}(Q) : (5.69)
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Then, summing up (5.67) for n = 1,...,1, with [ € {1,...,m}, by replacing (5.68) and (5.69)
into (5.67) and using Lemma 5.4.1 (cf. (5.31)) we obtain that

l
5 rm Yu 2
n=1 "

l
< O[5! Iy 0y + € 190 0,2 AtZ (25 T

l

+ D _(RDH = Hy ™y

n=1

(5.70)

+ po Z/ Wi — Wi~ (QH)r drdz|.

Finally, we estimate the last two terms on the right-hand side of (5.70) by Young’s inequality
and summation by parts. First, by proceeding like in (5.46) and (5.47) we obtain

l
> (BB H} — HY
n=1
l

<D U H = Y |+

n=1

l
oAt =
+ = > |oH;

n=1

l

D (ATH] H — Hi

n=1

!
ig(g) + oAty H&H;‘Hig(m

n=1

2 =1 At l a
n HO n||2
<e||H, 1(0) + Atnz::l | H, H%;(Q) + 4 nz::l HaHu HL%(Q)
+ C. {Hf“%—ll(o,T;u') + ||H9||12{2(0,T;ﬁ$(9)) + H}L?H%l(ﬂ)} ’ (5.71)

for all € > 0. For the last term, by summation by parts we obtain that

/ (Wi — Wi~ (0H,")r drdz

g/ ‘W[l)@Hglr drdz‘+/ (WopdHr drdz|
OHJ — OH
—I—AtZ/ Wy <t9> rdrdz

2
<7 HWDIHLE(Q) + Afzzl IWBI£20) + C Won T2

aHnJrl 5Hgn 2

N , (5.72)

+ Cy | Hylife o o2y + cmz

n=1

L2(Q)



5.4 Mathematical analysis 129

for all n > 0. In order to deal with the first two terms on the right-hand side of the above

equation, which depend on {W’} , we consider the following inequalities

=1

2 2
t 2 i i 9
|73 = 225 /Q (igé)??il{@Jer}) rdrdz + 27|z

2
<y [ (s {11} ) r drds 423 1 Ry qogom + 217 sy (573

and, for : =0,...,1

i 1/2
|HY| < |HO| + AtVi (Z \8HJ‘]2> a.e. in Q, (5.74)

n=1

where the first one follows from (5.28). Then, from (5.73)—(5.74) and the continuous inclusion
HY(0,T; L2(Q)) = L2(; HY(0,T)) C L2(Q; C([0,T))), we arrive at

l
2 =rrnll2
|95 |0 < BL3 BN 20y +STLEA S OB I3 ) + C Iy s o razca + 2l o)

n=1
(5.75)
-1 -1
ALY WS T2 < 8TLFALY (Atz HaHZHLZ(Q))
n=1 n=1 =1
+C <||H0N”i$(9) + 1 Hy 5 0 mzay + HTHiz(Q)) : (5.76)

Therefore, by replacing (5.75)—(5.76) into (5.72), and then (5.72)—(5.71) into (5.70), choosing
1
and € = 1—“, from the regularity of the data (cf. H.3 and (5.61)) it follows that

T 12T

At
Ho Z‘

l

9 -1 n o
i < oAty (HH:H%HQ) +AY HaHjHig(Q)> +C.
" n=1 i=1

(Q) +

Hence, by applying a discrete Gronwall’s lemma to {yj} 1» with Y = Zﬁlzl HéHu"HiQ @) +

]
HL(Q

we arrive at

Il=1,...,m,

l
At (08| o)
n=1

with a constant C' depending on ”HOD”ITI%(Q)7 1 e o,m20r) ”g”H2(0,T;ﬁi/2(F))’ 7]l 2(q) and

o llwree 0,710 (2))- Finally, we estimate 22:1 oW Z, by using the latter inequality and

(5.64). O
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Convergence

At this point we introduce some further notation. Let H,a; and Hya; be the linear and
piecewise constant in time interpolants of {H,'}™ ; (cf. (5.35)-(5.36) and (5.49), respectively).
Similarly, we introduce the linear and the piecewise constant interpolant of {H[}"}Z‘:O defined by
Hyn¢ and Hyag, respectively. The step function f,, is defined in a similar way.

From the above definitions, we rewrite (5.64) as follows:

OH, 0 OWf . .
140 At 140 Ay + 1o DAt Ani(Huns + Hynt) = fae inU' ae. in (0,7). (5.77)
ot ot ot
From Lemma 5.4.7, the regularity assumption on the data and the properties of F (cf. (5.28)),
we obtain,
OMMbas _
H 9t |lieorae + IWbacl zoxpory + [ AaeHuat oo g,

+ | Huaillr o rz@pnne 20 + [ Huatl oo g0 < € (5.78)

Therefore, we conclude that there exists H, and Wp such that,

Hoae — H,  in HY(0,T;L2(Q)) N L0, T;U) weakly star, (5.79)
Hynt — H, in L°°(0,T;U) weakly star, (5.80)
Woa: — Wp  in L2(0,T;L%(Q)) weakly, (5.81)
OMbac — oMb in L2(0,T;U') weakly star. (5.82)
ot ot
From the latter convergences, the regularity of H, (cf. (5.61)) and H.2 we obtain
Ane(Hune + Hyne) — A(H, + Hy)  in L*(0,T;U') weakly. (5.83)
Taking the limit in (5.77) and since f € H'(0,T;U"), it follows that
0(H, + H, oW . .
uou o2 + AH,+ Hy) = f inU', ae. in (0,7). (5.84)

ot ot

To prove that Wp = F(H, + Hy, &) a.e. on [0,T], we consider the following lemma based on
a compactness result. Unlike Problem 5.4.2, here we are dealing with weighted Sobolev spaces
with singular weight. Thus, we obtain the compactness result by identifying the axisymmetric
spaces with their respectives 3D versions.

Lemma 5.4.8 Let H, and Wp be the limits defined in (5.79) and (5.81), respectively. Then
Wp = F(H, + Hy, §) a.e. in [0,T] x Q.

Proof. From Remark 5.4.1, the space H!(0,T;L2()) N L>®(0, T; HX(Q)) can be identified to
HY(0,T;L2(Q)) N L*(0, T; HY(2)). Moreover by using an interpolation result we have

H' (0, T; L?(2)) N L0, T; HY(Q)) ¢ LA(Q;.C((0,T))),
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with compact inclusion. From this inclusion and the identification of the axysimmetric Sobolev
spaces, we obtain the compact inclusion: H!(0, T'; L2(£2)) N L°°(0, T; HL(Q2)) < L2(; C([0, T))).
By proceeding as in Section 5.4.3 with Hyas := H,a¢ + Hyar we get the result. O

Now we are in a position to prove that Problem 5.4.1 has a solution.

Theorem 5.4.2 Let us assume hypotheses H.1, H.2 and H.3. Then Problem 5.4.1 has a solu-
tion.

Proof. Let Hp := H, + H; and Bp := puo(Hp + F(Hp,§)). Then from (5.84) and Lemma 5.4.8
we get

B
<8D,G> + a:(Hp,G) = {f, Gy VG eU a.e. in (0,T).
8t MJ/{/ ’

Clearly Hp|p = g. Moreover, from the compact inclusion H(0,T;L2(€)) N L>°(0, T; HL(Q)) C
L2(Q; C([0,T])) and the strongly continuous assumption (cf. (5.7)) we have H,a:(0) — H,(0)
and Wpat(0) — F(H, + Hy,£)(0) in L2(2). From the definition of H,a¢ and Wpae, (5.66) and
H.3 it follows that

Hp(0) = Hop and  Wpa¢(0) = F(Hp,£)(0) in Q.
Hence, from the latter we conclude that (Hp, Bp) is a solution of Problem 5.4.1. 0

Remark 5.4.3 There is not a uniqueness result for a gemeric hysteresis operator satisfying
(5.6)—(5.8), even though it is possible to prove a uniqueness result by choosing a particular
operator, for instance, the Prandtl-Ishlinskii operator of play type (see, for instance, [49] and
more recently [42, Theorem 5.1]).

5.5 Numerical implementation

In this section we present a numerical implementation to solve a fully discretization of Prob-
lem 5.4.1. It is straightforward to extend the same procedure to solve Problem 5.4.2. In what
follows we drop subscript D for the sake of simplicity in notation.

From now on we assume {2 is a convex polygon. We associate a family of partitions {75 }r~0
of Q into triangles, where h denotes the mesh size (i.e., the maximal length of the sides of the
triangulation). Let V), be the space of continuous piecewise linear finite elements vanishing on
the symmetry axis (r = 0), so that V,, C ﬁ}a(Q) We also consider the finite-dimensional space
Up := V, NU and denote by V,(T') the space of traces on I' of functions in Vj,.

In order to analyze the fully-discrete problem, we define B" : L2(2) — L2(Q), n =1,...,m,
such that, given u € L2(£2)

B"(u)(r, z) :== po (u(r, z) + [F(Upae, £)](r, 2,t"))  ae. in Q, (5.85)

with Upag being the piecewise linear in time function such that Upasm(r, z,t)) = H ,ll(r, z),
l=0,....,n—1and Upa(r, z,t") = u(r,z). Under assumption H.1 and Lebesgue dominated
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convergence theorem it follows that B, n = 1,...,m is continuous and strongly monotone
(cf. Lemma 5.4.2), i.e.,

/Q(B"(U) — B"(v))(u = v)r drdz > po |u = v[|f2() -

By using the above finite element space for the space discretization and the backward Euler
scheme for time discretization, we are led to the following Galerkin approximation of Prob-
lem 5.4.1:

Problem 5.5.1 Find Hj} € V), and B} € L2(Q), n=1,...,m, such that

1 n 1 (O(rH})Oo(rGh)  O(rHp) O(rGy)
At/ﬂBhGhr drdz—l—/ﬂgnr< or or + s o drdz

1
=" Crluw + 1 /Q B 'Gyrdrdz VG € Uy,
By(r,2) = B (H!)(r.2) a.e. in O,
Hp =g, onl,
By = po (H +Wo) in Q,

where H) € V;, and g € V,(I') are convenient approximations of Hy € H(Q) (cf. H.3) and
g(t"), for n =1,...,m, respectively.

Since B™ is a maximal monotone operator, then, in order to solve the discretized problem
we can use the iterative algorithm proposed in [12]. This algorithm, based on the properties of
maximal monotone operators and their Yosida regularization, has been extensively used for a
wide range of applications with good numerical performance.

Before introducing the algorithm, let us first consider the following definitions. Let V be a
Hilbert space and G : V' — V' a maximal monotone operator. For § a positive number, we define

GFw) =Gv)—pv  VweV. (5.86)

Then we recall that the Yosida regularization of G# is defined by

_Jb
i) i= T (5.7
where Jf is the resolvent operator of G?, i.e.,
-1
W= (1+267) (5.88)

with A > 0 being a real parameter such that \g < 1.
A simple way to transform the nonlinearities is to use the following lemma, which is the
basis for the algorithm given below.

Lemma 5.5.1 Let V' be a Hilbert space and G : V — V' a mazximal monotone operator (possibly
multivalued). If A\B < 1, then the following statements are equivalent:
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i) v e GP(u),
iz’)v:g/\ﬁ(u—i—)\v), u,veV,BeR, A>0.

By using this lemma, Problem 5.5.1 can be reformulated as follows:

Find H € V}, and ¢! € L2(Q), n=1,...,m, such that

1 TH") d(rGp) n d(rH}) 0(rGp) drds
o o or 0z or

1 1
At/ g Gpr drdz = (f", Gh)uw + At/ BZ‘IGhr drdz VG € Uy,
g = BY’(Hj + \p) in O,
Bzfl = [fH;™ Ly a L inQ,
Hp =gp onT,
By = po (HY +Wy) in €,

1
At

/BHh pr drdz +

where Bf\“ﬂ is the Yoshida regularization of B™? := B — §1I.
The algorithm consists in a fixed-point iteration using this formulation of the problem.
Field H}' is computed as the limit of the sequence {H}’LL [s}} N which is obtained as follows:
’ se
e At the beginning, function qg,[o} is given arbitrarily in Vp,.
e Step s: g [s—1] is known

— Compute H}' (] &S the unique solution of the following linear problem:

0 (rH" ) o\rH!
n 1 hls] ) O(rGp) ( h,[s]) A(rGp)
AL / BH Ghr drdz + /Q gy o o + 92 g drdz

1 -~ 1 "
— <f”,Gh>M,u/ + At/QBZ lGhr drdz — AL /Q qh,[sq]GhT drdz YGp € Uy,

(5.89)
Byl =pBH !+ inQ, (5.90)
th[s} = gh on F, (591)
By = po (Hp +Wy) in Q, (5.92)

1

where ¢, is the limit of the sequence {qza}

SEN'
— Update qﬁ[sfl] by computing its values at the mesh nodes from the formula,

ap 5(r,2) = B;’B(H,Z[S] + Adpy s-17)(1, %) a.e.in Q. (5.93)

Convergence of this algorithm is proved in [12] in an abstract general setting when A\ < 1/2.
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Remark 5.5.1 Given that at each time step n € {1,...,m} B™ is a nonlinear mapping, then
from (5.93) it follows that (3] ¢ Vy. Hence, the last integral of (5.89) can not be computed
exactly, so we need to use numerical integration. Then, it is enough to compute (5.93) only in a
few points as the vertices or barycenters of the triangles in the mesh.

Remark 5.5.2 An interesting feature of the algorithm is that, in cases where the domain and
o are time independent, the matriz associated to the linear problem (5.89) is independent of n
and s, and then it can be assembled and factorized only once before the loop in time steps.

5.5.1 The Preisach model

The Preisach model was first suggested to describe ferromagnetism (see [76]). Nowadays it is
recognized as a fundamental tool for describing a wide range of hysteresis phenomena in different
subjects as physics, mechanics or superconductivity, among others. Here we briefly recall the
classical definition and some properties of this operator following the works of Visintin and
Mayergoyz (see [63, 95]).

The classical Preisach model is constructed from an infinite set of hysteresis operators called
relay operators. A relay operator is represented by elementary rectangular loops with “up” and
“down” switching values. Given any couple p = (p1, p2) € R?, with p; < po, the corresponding
relay operator h,, depicted in Figure 5.6, is defined as follows: for any u € C([0,T]) and & €
{1, -1}, hpy(u,§) is a function from [0, 7] to R such that,

-1 if u(0) < p1,
ho(u,€)(0) :== ¢ & if p1 <u(0) < p2,
1 if w(0) > po.
Then, for any t € (0,77, let us set X, (t) := {7 € (0,t] : u(7) = p1 or p2} and define

ho(u, §)(0) if Xy(t) =0,
ho(u, &)(t) := -1 if X, (t) # 0 and u(max X, (t)) = p1,
1 if X, (t) # 0 and u(max X, (t)) = po.
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< | A >
D Py 1 o u'
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\

Figure 5.6: Scalar relay.

We notice that h, = £1 with up-switch at p and down-switch at p;. The value of the relay
operator remains at the last value (£1) until u takes the value of one opposite switch, that is,
switch to value +1 when u attains the value p2 from below, and to —1 when it attains p; from
above. This operator is the most simple model of discontinuous hysteresis.

Let us now introduce the half-plane P := {p = (p1, p2) € R? : p; < po} called the Preisach
plane. Let us denote by Y the family of Borel measurable functions P — {—1,1}, and by &,
a generic element of Y. For any finite Borel measure y over P, let us then define the Preisach
operator

F:C(0,T]) x Y — L®(0,T),

(u,€) — [Fuw,€)](t) = /P (oo €(0)))(£) di(p). (5.94)

The Preisach model can be interpreted as the sum of a family of relays, distributed with a certain
density .
Let us recall the following results (see [95] Chapter IV, Theorems 1.2 and 3.2, respectively).

Proposition 5.5.1 For any finite Borel measure p over P, the operator F is causal and rate
independent, so it is a hysteresis operator. Moreover, if u > 0 then F is piecewise monotone and
order preserving.

Proposition 5.5.2 Let pu be a finite Borel measure over P such that
[lR > {r}) = |u[({r} xR) =0  VreR.

Then, for any & € S the operator F(-,€) : C([0,T]) — C([0,T)) is strongly continuous, where S
1s the family of relay configurations which can be attained by applying a continuous input to a
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system initially in the so-called virgin state, namely, a system which has never experienced any
hysteresis process:

8@%2{1 ot 2 <0, (5.95)

-1 if p1 4+ p2 > 0.

Remark 5.5.3 &Y represents an “initial state” from which it is possible to obtain the infor-
mation needed to compute the Preisach operator. Notice that the mathematical analysis of the
operator is valid for any choice of .

Geometric Interpretation

The understanding of the Preisach operator is considerably facilitated by its geometric in-
terpretation. This interpretation is based on the fact that there is a one-to-one correspondence
between relay operators h, and points (p1, p2) of the half plane P.

We notice that, given u € C([0,T]) and &, each relay h,(u,&(p)) is such that, for any ¢ € [0, 7]

ifu(t) <pi,  then [hy(u,€(p))](H) = —1
i ult) > ps, then [hy(u,(p))](8) = 1 (5.96)
if p1 <wu(t) < p2, then [h,(u,&(p))](t) depends on u|, and £(p).

That is, for a given wu(t), all the relays h, such that p; > u(t) are “switched down”. Similarly
the relays h, such that py < u(t) are “switched up” (see Figure 5.7).

po 4

[y (w)](t) = —1

[y (w))(t) = +1

(u(t), u(t))

[, ()](8) = 1 p1

-

Figure 5.7: Preisach domain. h,(u) := h,(u,&(p)).

In order to study the Preisach operator, we will make the following assumptions:
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H.4 We choose the measure i having a density, i.e.

du(p) = p(p) dp, (5.97)

with 0 < p € LY(P), usually known as Preisach function.

H.5 Let T C P be the right-angled triangle such that its hypotenuse is part of the line p; = po,
while the remaining vertex has coordinates (—pg, po). From now on, we consider that p
has support in 7T, i.e., p vanishes outside the triangle 7 C P (see Figure 5.8).

Both assumptions are reasonable with regard to physical systems in magnetism; the former

states that it is possible to consider a statistical distribution of the points in the Preisach plane

(see [15]), and the latter is consistent with the occurrence of negative and positive “saturation”.
From the latter assumptions and Propositions 5.5.1 and 5.5.2 we have the following result.

Lemma 5.5.2 Given £, under assumption H.4 it follows that the Preisach operador .7?(',5) :
C([0,T]) — C([0,T]), is a hysteresis operator, strongly continuous, piecewise monotone and
order preserving. If we further assume H.5, it follows that

1Fw,)](1)] < /T pp)dp  VueC(0,T).

Asin Section 5.2.1 it is possible to define the operator F : M(Q; C([0,T])xY) — M(Q; C([0,T1]))
as follows

[F(u,&)](r, 2z,t) == [f(u(r, z),&(r, 2))](t) a.e. in Q x [0, 7. (5.98)

Then, by using similar results as those stated in Propositions 3.1 and 3.2 in [95, Section XII.3],
but for the case of weighted Sobolev spaces, we can prove the following one:

Lemma 5.5.3 Let £ : Q — Y be an “initial state” and assume that H.4 and H.5 holds. Then,
the operator F(-,€) : L2(Q;C(0,T)) — L2(Q;C(0,T)) is causal, strongly continuous, piecewise
monotone and affinely bounded (cf. (5.6), (5.7), (5.8) and (5.28), respectively).

From the latter we obtain the following existence result.

Lemma 5.5.4 Let us assume H.2, H.3, H.4 and H.5. Then, by choosing as hysteresis operator
the classical Preisach operator F (cf. (5.98)) in the constitutive equations (5.19) and (5.23) it
follows that there exist (Hp, Bp) and (Hy, Bn) solution to Problems 5.4.1 and 5.4.2, respectively.
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Sy

Figure 5.8: Preisach triangle.

Now, to understand the geometrical interpretation of the Preisach operator, we consider a
simple setting. First we assume that u(¢) at some instant of time ¢° has a value less than —py.
Notice that, from the particular choice of u, all the relays are well defined in 7 without the need
of giving an “initial state” &, for ¢t > t°. Given that, u(t?) < —pg < p1 for all (p1,p2) € T, then
from (5.96) it follows that all the relay operators [h,(u)](t) := [h,(u,&)](t°) = —1 in T. Now,
we consider that u increases monotonically. From the definition of the relay operator, the relays
will only change to a positive state. Thus, triangle 7 is subdivided into two sets (one possibly

empty):

Sy () ={(p1,p2) € T : [hp(w)](t) = =1} and S (t) = {(p1,p2) € T : [hp(u)](t) = 1} .
(5.99)

Since the change to a positive state of the relay h, depends only on the value of ps, we obtain
that Ly (t) := 0S5, (t) N dS; () is orthogonal to py axis and moves up. This subdivision is made
by the line ps = u(t) (see Figure 5.9 (left)). Function u increases until it reaches some maximum
value —pg < u3 < po at time ¢! (see Figure 5.9 (right)).
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Figure 5.9: L, (t): u(t) is increasing (left) and attains a maximum at u; (right).

Now, we assume that u(t) decrease monotonically. Then, the relays will only change to a
negative state. Since the change to a negative state of the relay h, depends only on the value of
p1, we obtain that the line p; = u(t) moves from right to left (see Figure 5.10 (left)). Function
u decreases until it reaches at time t? some value —py < ug. At this point, the interface L,(t)

between S, (t) and S, () has now two segments, the horizontal and vertical ones depicted in
Figure 5.10 (right).

A

P2 A

Sy (1)

tt

P1 = P2

Sa (1)

u

p1 = u(t)

P1

A

p2 A

(’ILQ , U1 )

:p2

P1

Figure 5.10: Ly (t): u(t) is decreasing from u; (left) and attains a minimum at wus (right).

Now, we assume that u(t) increases again until it reaches at time > some maximum value
us that is less than u;. Geometrically, this increment produce a new horizontal segment in L, ()
which moves up. This motion is terminated when the maximum wus is reached. This is shown
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in Figure 5.11 (left). Finally we assume that u(t) decreases until it reaches at time t* some
minimum value ug > ug. This variation results in the formation of a new vertical line in L, ()
that moves from right to left as it is shown in Figure 5.11 (right). At this point, L, (t) has two
vertices (ug,u1) and (ug,us) (see Figure 5.12).

P2 A [N
(uz,u1) 5. (1) P1 = P2 (u2,u1) S (1) D1 = p2
| p2 = U3 L
St - S () .
) p1 pr = ta p1

Figure 5.11: L, (¢): u(t) attains a maximum at ug (left) and attains a minimum at us (right).

P2 A
(uz,ur) | Su(®) _
1 |(ua,us) p1=p2
S(t) Lu(t)
< >
P1
v

Figure 5.12: Staircase line L,, at t = t2.

A similar figure can be obtained if we consider a function v € C([0,7T]) such that, unlike u(t),
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at some instant of time t° has a value that is greater than pyg. We assume that v(t) decreases
to v1 > —pg, then increases to vo < pg, next decreases to v3 and finally increases to vy as is
depicted Figure 5.13 (right). L, (¢) is illustrated in Figure 5.13 (left); we notice that the first line
of L,(t) is a vertical line, because v(t) decreases from a value greater than pg.

P2 A

(v1,v2) |

(v, v4)

Sy (1)

A

-Po

Figure 5.13: Staircase line L, (t) (left) and input v(¢) (right).

We can summarize the above analysis as follows; for a given u € C([0,7]), and any instant ¢
of time, the triangle 7 is subdivided into two sets: S (¢) consisting of points (p1, p2) for which
the corresponding relay operators h,(u) are positive (in the “up” position), and S, (t) consisting
of points (p1, p2) for which the corresponding relay operators h,(u) take negative values (in the
“down” position). The interface L, (t) between S, (¢) and S, () is a staircase line whose vertices
have coordinates (p1, p2) coinciding respectively with the local minimum and maximum values
of u at previous instants of time. At time ¢, the staircase line L, (t) is attached to the line p; = po
in the current value of u, namely, L, (t) intersect the line p; = po in (u(t),u(t)). L,(t) moves
when u(t) changes, intersects the line p; = p2 horizontally and it moves up as u(t) increases.
Otherwise, L,(t) intersects the line p; = py vertically and it moves from right to left as wu(¢)
decreases (see Figure 5.14).
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P2 A P2 A

Ll 55 t)

ad P1 = p2
Sty <
B p1 = u(f)<— 1071 h

Figure 5.14: Staircase line L, (t) moving right to left (left) and moving up (right).

Hence, from the latter and the assumption on p we notice that, at any instant of time ¢ the
integral in (5.94) can be subdivided into two integrals, over S, (¢) and S;, (t), respectively:

wN%ﬂﬁM@zAWWWM@@z/%WWWM@

T

— [ il @pordo+ [ Inp(w]©p(e) do.

Sif(t) Su (t)

We recall that, because of the particular choice of the values of u we do not need an “initial
state” . Moreover, because of (5.99) and the latter equation we obtain that

wy(t) = / p(p)dp — / p(p) dp. (5.100)
i (t) Su ()
Remark 5.5.4 To compute the Preisach model in (0,T], in general it is enough to know u(0),
the Preisach function p and the history of u represented by S, (t) and S, (t), which contain the
minimum information to compute (5.100). Notice that for t = 0 the above sets are deduced from
the “initial state” €.

From expression (5.100), it follows that [F(u)](t) depends on the particular subdivision of the
limiting triangle, 7, into S; (¢) and S;, (¢). Therefore, it depends on the shape of the interface
L, (t), which in its turn is determined by the extremum values of u(t) at previous instants of time.
It turns out that not all extremum input values are accumulated by the model, in fact, given the
dependence of the staircase line L, (t) we can see that the Preisach operator has a wiping-out
property. This property states that each time the input reaches a local maximum u(t), L,(t)
erases, or “wipes out” the previous vertices whose ps value is lower than the current value u(t).
As a result, all previous dominate maxima values recorded in L, (¢) which have a value lower than
the current maxima are taken out. Similarly, each time an input reaches a local minimum w(¢),
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the memory curve erases all previous vertices whose p; value was higher than the current u(t)
value. To illustrate this property, we consider a simple setting. Let u € C([0,T]) characterized
by a finite decreasing sequence {ui,us,us,u7} of local maxima and an increasing sequence
{uga, ug,ug, ug} of local minima, with —py < u; < pg, i = 1,...,8 (see Figure 5.15). Now, let us
assume that u(t) is monotonically increasing until it reaches ug, such that us < ug < u;. This
increase of u(t) results in the formation of a new line in L, (t) which intersects the line p; = po
horizontally and moves up until the maximum value ug is reached. Then we obtain a modified
staircase line L, (t) where all vertices whose po-coordinates were below ug have been wiped out
(see Figure 5.16).

P2 4 u b

" Pot

1

us 21

U5 ug

ur wr

< us >
U2 Uy U6
1

P us

Ue

Uy

U2

—Po+
v v

Figure 5.15: Initial staircase line L, (left) and function u (right).

Pot

(5%

Uy
ug Ug

A

U2

i

U2
—PoT

Figure 5.16: L,, for increasing w until ug (left) and function w (right).
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Similarly, instead of assuming that u(t) is monotonically increasing, let us suppose that it
decreases until it reaches ug, such that ug < ug < u4. Function v and the corresponding staircase
line L, (t) are depicted in Figure 5.17.

P2 A

cat

A

U
2 Uy

Figure 5.17: L, for decreasing u until ug (left) and function w (right).

Another important property of the Preisach operator is referred to as the congruency prop-
erty. This property states that as the input is cycled between two extremum values, the minor
loop traced will have the same shape, independently of history (see Figure 5.18). However, the
position of the minor loop along the output axis will be determined by the history of past input
variations (for further details, see [63]).

—
?
y

Figure 5.18: Congruency property.
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Identification Problem

When using the Preisach operator to model a physical system it is necessary to find the den-
sity function p, that characterizes the phenomenon. Therefore, the identification of the measure
p is an important step for the effective use of this model in real applications.

There are many different analytical expressions to represent the Preisach distribution, e.g.,
Factorized-Lorentzian or Gauss-Gauss distribution functions (see [15]).

The Factorized-Lorentzian distribution function is

)

The Gauss-Gauss distribution function is defined as follows:

(232 —w)" - ())
)

2722

p(p1, p2) := Nexp (—

Parameter IV is the so-called normalization factor, and w and ~ are unknowns which can be
determined with only a few measurements. Examples of the distribution functions are shown
in Figures 5.19 and 5.20. The parameters are considered as in [48] to approximate the mayor
hysteresis loop of Co-coated FezOs.

1t

-2

-3t

Figure 5.19: Factorized-Lorentzian distribution function with v = 0.614152 and w = 0.427471.
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Figure 5.20: Gauss-Gauss distribution function with v = 0.582933 and w = 0.425094.

On the other hand, there are several methods to approximate the Preisach function based
on experimental data; for details see, for instance [17, 51, 71, 32].

Preisach implementation issues

Once we have the distribution function and an “initial state”, given u € C([0,T]) we can
compute wy(t) := [F(u)](t) by means of (5.94). Based on this feature, Mayergoyz [63] developed
another approach for the numerical implementation of the Preisach model that not require the
Preisach function p, but a function E called Everett function which describes the effect of p on
the hysteresis operator. To obtain the Everett function, first order transition curves are required.
To define a first order transition curve, we consider a function u € C([0,T7]), such that at time
0, u(t®) < —po. Then, u is monotonically increased until it reaches some value p} at time ¢'. We
denote by w,, = w, (t'). A first order transition curve is formed as the above monotonic increase
of u is followed by a subsequent monotonic decrease, namely, from p), u decreases monotonically
until it reaches some value p} at time t> and we denote by Wph ot = Wy (t?) (see Figures 5.21 and
5.22).
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Figure 5.21: Staircase line L,(t) at time ! (left) and at time > (right).
- - - >
| P2 U
\
Figure 5.22: First order transition curve.
We define the Everett function £ : T — R by
w, — W,
E(p}, ph) = —2—"201 (5.101)

2
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From (5.100), we notice that

Wy ) — W,y = pd—/ pd—/ pd—/ p(p)d
Py, — Wl (/5%2) (p) dp o ) (p) p) <Sﬁ[(t1) (p) dp . (p) dp

. / p(p) dp,
T(p},05)

with T (pl, py) the triangle such that its hypotenuse is part of the line p; = pa, while the
remaining vertex has the coordinate (p}, ). This is so because S, (t2) = S (t1) \ T (o}, pb) and
S, (%) = S, (tHUT (), ph) (see Figure 5.21 (right)). Therefore, we obtain the following relation
between the Preisach function p and the Everett function

E(p1, p2) =/ p(p)dp  V(p1,p2) €T. (5.102)
T(Pl,pQ)

To take into account this relation in the computation of the Preisach operator, first we rewrite
(5.100). By adding and subtracting the integral of p over S (¢), the expression (5.100) can be
represented in the form:

wy(t) =2 /S J(t)p(p) dp — /f p(p) dp,

where 7 is the limiting triangle. Moreover, from (5.102) and the definition of the limiting triangle,
namely, 7 = T (—po, po) it follows that,

w,(t) =2 /S o POV = B o). (5.103)

By assuming that the Preisach function p is known, then to obtain w,(t) we can compute the
first term on the right-hand side of (5.103). For this purpose we consider two cases: increasing
and decreasing arguments. For decreasing arguments, we subdivide S;' () into n trapezoids Qg (t)
(see Figure 5.23 (left)). We can perform this subdivision because, for decreasing arguments, the
staircase line L, (t) intersects the line p; = py vertically. Then we have

/Sj(t)p(p) dp = z_:/ p(p) dp, (5.104)

where n(t) is the number of local maxima of u up to time ¢, by taking into account the wiped-out
property.
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P2 A
— (,nk,l.]uk) S,,: (f)
(mu, My,)
u(t)
P1 T (M), u(t)) P1
St
) /
| \{

Figure 5.23: Staircase line for a decreasing input (left) and a increasing input (right).

Each trapezoid Q(t) depends on the local maximum M}, and on the local minima my and
my_1. Notice that, for k = 1, mg is equal to —pg. Moreover, each trapezoid can be represented
as the difference of two triangles T (my_1, M) and T (my, My):

/ p(p)dp = / p(p)dp — / p(p) dp. (5.105)
Qr(t) T (mp—1,My) T (my,My,)

Now, from (5.102), it follows that

E(mg-1, My) = /

p(p)dp and E(mg, My) = / p(p) dp.
T(mg—1,My)

T(mk7Mk)
Then, from the latter and (5.105), we rewrite (5.104) in terms of the Everett function as follows

n(t)
| plo)dp= Y (Bl M) ~ Bl M) (5.106)
S () k=1
Finally, from (5.106) and (5.103), we obtain

t)
wy(t) =2 ) (E(mg—1, My) — E(mg, My)) — E(—po, po)-
1

2

b
Il

Since we consider v monotonically decreasing, we obtain that the last minimum value m,, ) is
equal to the current value of u, namely, m,,;) = u(t). Then

n(t)—1

wu(t) = —E(—po, po) +2 > (E(mp_1, My) — E(my, My)) (5.107)
k=1
+2 (E(mn(t)fla Mn(t)) — E(u(t), Mn(t))) . (5.108)

Because of the decomposition of S; into trapezoids (see Figure 5.23), this expression is valid
only for u being monotonically decreasing. If u(¢) is monotonically increasing, then staircase line
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L, (t) intersects the line p; = py horizontally. Hence, we may decompose S, into trapezoids and
a triangle (see Figure 5.23 (right)). It follows that

n(t)—1
“ k=1

In this case, the last maximum value M,,; is equal to the current value of u, namely, M, =

u(t). Hence, from (5.109) we write (5.103) for a monotonically increasing u as follows:

n(t)—1
k=1
From (5.107) and (5.110) we obtain the following expression to compute the Preisach operator
in term of the Everett function
)—1
—E(=po,p0) +2 > (E(mp_1, My) — E(my, My))

+2 (E(mn(t)_l, Mn(;)) — E(u(t), Mn(t))) for u decreasing,

n(t)—1
—E(=po,po) +2 > (E(mg_1, My) — E(my, My))
k=1

| +2E(m, ,u(t)) for u increasing.

As an example, we compute w,(t) by using the Preisach function p given by the Factorized-
Lorentzian distribution with parameters N = 1,w = 0.8 and o = 0.6 (see Figure 5.24). Also,
the Preisach triangle 7 is characterized by pg = 5. Figures 5.25 to 5.27 show the w, — u loop,
the final staircase line L, (t) and the input u(t).

I I I I I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

P1

Figure 5.24: Everett function (left) and Factorized-Lorentzian distribution function (right).
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Figure 5.25: w,, — u curve (left) and function u (right).
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Figure 5.26: w,, — u curve (left) and staircase function (right).
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Figure 5.27: Function u.

Remark 5.5.5 In the previous examples we consider different inputs u, such that u(0) > po
or u(0) < —pg. Clearly, in both cases S, (0) and S, (0) are determined and because of that,
there is not need to consider additional information to compute wy(t), t > 0. In particular,
we have wy,(0) = E(—po, po) if w(0) > po, and —E(—po,po) if u(0) < —po. In the case of
—po < u(0) < po then, to compute w,(0) we must have an “initial state”. Depending on this
state we obtain different values of w,(0). For instance, if we consider the “initial states” given
by the staircase lines LL(0), L2(0) and L3(0) depicted on Figure 5.28 (left) to compute w,(0),

1

then we obtain different values w, w2 and wy, respectively (Figure 5.28 (right)) .

P2 4 2 Wu 4

Wy

L;(0)

L7(0)

—_

_______________ = A (u(0),u(0))

A
Y
o

- - >
P1 —ro u(0) PO

Figure 5.28: Staircase function (left) w, — u curve (right).

From a practical point of view, the Everett function is given at various points throughout the
limiting Preisach triangle 7 as depicted in Figure 5.29. The value of the Everett function at each
point can be obtained experimentally from the first order transition curves (cf. (5.101)). Using
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this discretization, the values of the Everett function on 7 are calculated by interpolation.

RS
v
>
>

A

\"l
Sy

Figure 5.29: Discretization of the Preisach triangle.

Updating procedure g; [s—1]

If the hysteresis phenomenon is not considered, that is, if the value of B at time ¢ is de-
termined by the value of H at the same time, the magnetic behaviour is characterized by a
monotone function, may be nonlinear. In this case, the computation of the Yosida regularization
(cf. (5.87)) involves simple algebraic operations. For instance, if we consider the B-H anhysteretic
curve given by B = G(H) = arctan(H), then, in order to compute the Yosida regularization we
need first to obtain J /{3 . Since

7 = (1420%) ().

for a given s we have to solve the following equation to compute y = Jf(s) (cf (5.86) and (5.88))

y + A (arctan(y) — fy) = s.

Therefore, given s, y = J f (s) is obtained by solving the nonlinear equation f(y) = 0, where

f(y) :==y(1 — A\B) + Xarctan(y) — s.

This equation can be solved, for instance, by the Newton-Raphson method.

In practical applications the B-H curve is obtained by means of physical experiments, then,
instead of an analytical representation of the B-H curve, a standard table of the anhysteretic
curve of the material is available. To compute the Yosida regularization, we interpolate the curve
and proceed as above.

Usually these curves may depend on the space variable but not on time. This is the case, for
instance, when we are dealing with heterogeneous media. In this case, each material has its own
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curve. However, presence of hysteresis implies that, at each time step n, due to the definition
of the hysteresis operator (cf. (5.85) and (5.98)) we have to deal with a nonlinear function B"
which also depends on the position in space.

Then, given n € {1,...,m}, to update p [s—q] D (5.93), because of Remark 5.5.1 it is enough
to compute a table for the B-H relation for each vertex or barycenter of the mesh, depending
on the quadrature formula that we use to compute the “mass matrix”. Notice that these tables
are different at each point and time step n € {1,..., m}. By using these tables, we compute the
Yosida regularization Bz’ﬁ and solve (5.93) pointwise.

Now, let us compute such a table at a specific point P := (r,z) € Q and n € {1,...,m}.
From the iterative algorithm, it follows that there exists {ug,...,un—1} C R which represent
the history of the fully-discrete problem at point P, namely, u; := Hj(P) ,i=0,...,n—1. We
assume that the B-H relation (cf. (5.19)) is given by a Preisach operator with Preisach function
p and “initial state” £. Because of the latter, we may define B% : R — R (cf. (5.85)) by

Bp(s) = [F(UAw, OI("), (5.111)

with UX;» the piecewise linear in time function such that UR;. Y = w, 1 =0,....,n—1
and UR,n(t") = s. Finally, the B-H table (H,B%:(H)), is computed by discretizing the interval
[—po, po] defined by the Preisach distribution. Figures 5.30 and 5.31 show the B-H curves for
different sequences {u;}!_o, I € {1,...,m} by computing (5.111) with a Preisach function p
defined by a Factorized-Lorentian distribution with parameters N = 1, w = 0.8 and v = 0.6
(see Figure 5.24). We consider “initial conditions” given by a Staircase function (see Figure 5.30
(left)) or a set of values (see Figure 5.31 (left)). Notice that, from the previous analysis it is
clear that we can associate a staircase function to the history data given in Figure 5.31 (left).

P2 A 2r
1.5}
1,
0.5¢
- - o <
P1
-05
-1 Y ll
1
_1_5, ,I
Y ] T v
-2t ‘
-6 -4 -2 0 2 4 6

Figure 5.30: History data L, (¢) (left) and B-H curve (right).
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Figure 5.31: History data for H (left) and B-H curve (right).

5.6 Numerical example

In this section we report a numerical result obtained with a Fortran code which implements
the numerical method described in Section 5.5 to approximate the solution to Problem 5.4.1.

We describe the problem of computing the eddy current model in a toroidal laminated core
surrounded by an infinitely thin coil. We will see that the eddy current model fits within the
axisymmetric setting described in the previous sections so we can apply the numerical method
proposed above. First, we will describe the problem to be solved in each sheet and deduce the
boundary conditions which are different depending on whether we know the current intensity or
the voltage drop in the coil.

To the best of the author’s knowledge there is not an analytical solution to Problem 5.4.1,
so we will asses the order of the method by comparing the computed results with those obtained
by computing the numerical solution on a very fine mesh and with a very small time step, which
will be taken as “exact” solution.

5.6.1 The eddy current model in a toroidal laminated core

Let us consider a toroidal laminated core consisting of N sheets of rectangular section and
thickness d (see Figure 5.32). Let us denote by R; and Rj the internal and external radius,
respectively, of the core.
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Figure 5.32: Toroidal domain (left) and meridian section (right).

Let n. be the number of turns of the coil and I(t) the current intensity at time ¢. The coil
will be considered as infinitely thin so it will be modelled as a surface current of surface density
(A/m) given by

B ne I(t)
Js(Ry,2,t) = 2R e (5.112)
ne I(t)
Lo ="t 11
JS(T) 7t) 2y € (5 3)
ne 1(t)
t) = — 2 114
Js(Ra, 2,t) RSN e (5 )
e I(t
Js(r,0,t) = _"2W§ ) e, (5.115)

on the interior, upper, exterior and lower surfaces, respectively. We neglect the thickness of the
dielectric between each two sheets so that L = Nd. Moreover, we use cylindrical coordinates in
order to exploit the cylindrical symmetry of the problem. In particular, the magnetic field only
has azimuthal component, namely,

H(r,z,t) = Hy(r, 2, t)eq,

and the current density in the sheets has the form given in (5.15).

By using Ampere’s law and the axisymmetry of the problem it is easy to see that the magnetic
field is null outside the core. Hence, since the jump through the boundary of its tangential
component is equal to the surface current density, we easily get the following Dirichlet boundary
condition for the magnetic intensity (we drop subscript 6 for simplicity):

ne I(t)
o2mr

H(r,z,t) =

(5.116)

In particular, H is independent of the z-coordinate on the boundary of the core. Moreover, on
the internal surfaces between sheets, the normal component of the current density has to be null
because they are isolated. Then, according to (5.15),

rH(r,z,t) = C(t)
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where C(t) depends, in principle, on the internal surface. However, since for r = Ry
RQH(RQ, Z, t) = nel(t),

then C(t) = n.I(t) and therefore the magnetic field is also given by (5.116) on these internal
surfaces. Hence, we can compute the magnetic field in one single sheet because we know the
Dirichlet boundary conditions on the whole surface of each sheet. This is extremely important
from the computational point of view.

Hence, if the current intensity in the coil is given, we arrive at a problem which is a particular
case of Problem 5.4.1 with Q := [R1, Rs] x [0, d], f =0 and

ne I(t)

,2,1) =
9(r 2,1) 2rr

However, sometimes the data is the potential drop at the ends of the coil along the time, V(¢).
By applying Faraday’s law in the radial section 2 we immediately deduce

gt (/ B drdz ) ;L/(j\)] (5.117)

because V' (t)/ne is the potential drop along one turn of the coil.

At this point it is interesting to write an energy conservation principle for the whole core.
For this purpose we choose in Problem 5.4.1 the test function

nel(t)
2rr

G(r,z) = H(r,z,t) —

i

and multiply the resulting equality by 27 IN. We get

2 2
27FN/HTdez+27rN Ll|eCHE) )" o ) |7 L
o Jar or 0z
0B nel _ P B
2 N/ 5 27T rdrdz = I(t)neNa (/Q Bdrdz) =I(t)V(t). (5.118)

The right-hand side represents the power supplied to the system at time ¢. The first term
on the left-hand side is the rate of energy stored by the magnetic field while the second one is
the dissipated power by the Joule effect in the laminate (the so-called “classical” eddy current
losses).

Then, if the data is the potential drop V(¢) instead of the current intensity, the problem to
be solved is a particular case of Problem 5.4.2 for f =0 and

V(t)
neN '~

V(t) = (5.119)

5.6.2 Numerical solution

Let us consider the eddy current Problem 5.4.1 in a toroidal laminated core consisting of
N sheets of rectangular section, thickness d and width D = Ry — R;. We compute (H, B) in
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Table 5.1: Geometrical and physical data for the test
Internal radius of the core, R;:  0.0825 m

External radius of the core, Ro: 0.0925 m
Thickness of the laminate, d: 0.00065 m
Number of turns of the coil, n.: 1

Electrical conductivity, o: 4x10% (Ohm/m)~*
Frequency, f: 50 Hz

the radial section 2 = [R1, Rs] X [0,d], with the non-homogeneous Dirichlet condition given by
g =nel(t)/(2nr). The geometrical and physical data have been summarized in Table 5.1.

Given that in practical applications the measurable data is the B-H curve, usually represented
by the Everett function, we assume that the B-H relation (cf. (5.19)) is given by the Preisach
operator characterized by the Everett function depicted in Figure 5.33 (left). With this Everett
function and the definition of the Preisach operator (cf. (5.94)), the major loop of the B-H curve
is illustrated in Figure 5.33 (right).
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Figure 5.33: Everett function (left) and the corresponding B-H curve (right).

To obtain the Dirichlet boundary condition (5.20), we solve Problem 5.4.2 without hysteresis
(see Chapter 3). We consider an anhysteretic B-H curve (see Figure 5.34 (left)) and input data
given by the voltage drop V (t) := dB,,,(R2—R1) cos (27 fyt) 27 fy with fyy = 50 Hz and B,,, = 1.5
T, and obtain rH (cf. (5.24)) depicted on Figure 5.34 (right).
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Figure 5.34: Anhysteretic B-H curve (left) and 7H on the boundary (right).

We solve the fully discrete Problem 5.5.1 with the above data, Hy = f = 0 and “initial state”
given by the a staircase line as depicted on Figure 5.30 (left). Given that there is no analytical
solution to this problem we asses the behavior of the method by comparing the computed results
with those obtained by computing the numerical solution on a very fine uniform mesh of size
ho/128 and time step Ato/64, where Aty = 0.004 and hg = 1.67 x 10~%. The solution to this
problem will be taken as the “exact” solution H.

The method has been used on several successively refined meshes and time-steps, both chosen
in a convenient way in order to analyze the convergence with respect to these discretization
parameters. The numerical approximations have been compared with the “exact” solution by
computing the percentage error for H in a discrete L2(0, T’; L2(£2))-norm as follows:

m— ] % 1/2
(Zz‘:ol At ||H@EH) — Hthl“i%(Q))

- . 172
(S0t At HE)2 )

We have also computed the percentage error for the eddy current J = curl H (cf. (5.15)) in the
analogous discrete L2(0, T; L2(2)?)-norm:

ESYH) := 100

(Z?:ol At||curl H(¢"+!) — curl H;™ HiQ(Q)2> i

EAYJT) :=100

)

_ , 1/2
(Zﬁol At ||curl H (ti+1) ||i%(ﬂ)2)

with HZH = Hlil+1e9.

Table 5.2 shows the percentage errors for the magnetic field, EhAt(H ), at different levels of
discretization. Taking a small enough time-step At, one can observe the behavior of the error
with respect to the space discretization (see, for instance, the last row of the table). On the
other hand, by considering a small enough mesh-size h, one can inspect the order of convergence
with respect to At (see, for instance, the last column). In this example, we observe an order of
convergence O(At) in time and an order a little greater than O(h) in space (see Figure 5.35),
but not quadratic which is the expected order in the case without hysteresis (see Chapter 4).
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Table 5.2: Percentage errors of the computed magnetic field: E,ft(H ).

At ho ho/2 ho /4 ho/8 ho/16

Aty 18.910304 18.358260 18.377855 18.401430 18.408941
Atg/2  11.127365 9.562454  9.534205  9.573410  9.583821
Atg/4  8.670993  5.300164  5.186250  5.233997  5.252391
Ato/8  9.267023  3.195960  2.466612  2.479539  2.500379
Atp/16  9.914650  2.764764  1.256052  1.147084  1.159387
Aty/32 10.372782 2.800711  0.828586  0.475372  0.461344
Aty/64 10.629753  2.891255  0.791227  0.254920  0.153066

In Table 5.3 we report the percentage errors for the current density, Eft(J ). As in the previ-
ous table, one can observe the behavior of the error with respect to space and time discretization
by taking small enough time-step At and mesh-size h, respectively. In this case we observe an
order of convergence O(h + At).

Table 5.3: Percentage errors of the computed current density: EhAt(J ).

At ho ho/2 ho/4 ho/8 ho/16

Aty 43.229227 34.719852 32.327732 31.710448 31.560407
Atg/2  38.705228 24.263115 18.982495 17.438602 17.036104
Ato/4  39.071419 21.515507 13.634777 10.679927  9.814513
Ato/8 40.087750 20.849198 11.243344  6.860906  5.225194
Aty/16  40.806282 21.000062 10.750589  5.635523  3.278034
Aty/32  41.251761 21.199471 10.720544 5.327327  2.567221

Aty/64 41.488977 21.320158 10.764578  5.287913  2.387532
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Figure 5.35: Percentage errors ER~(H) and E2(J) versus the mesh-size h (log-log scale).

Finally we present the evolution of the solution. Figures 5.37 and 5.38 show the magnetic
field and magnetic induction, respectively, at different times on a single sheet of the laminated
meridian section, whereas Figure 5.36 (left) shows the evolution of the B-H curve in a fixed
point of the mesh and Figure 5.36 (right) the waveforms in the middle and at the surface of the

laminate. In Figures 5.38 and 5.36 (right), we can see the presence of skin effect.
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Figure 5.36: B-H curve at the surface of the sheet (left) and B vs. time in the middle and at the
surface of the sheet (right).
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Figure 5.37: Magnetic field H (left) and level set (right) at times ¢ = 0.0025, 0.0050, 0.0100, 0.0200
.



5.6 Numerical example

163

s
| =
s
2L
ol
2l
I i I i I I
0.082 0.084 0.086 0.088 0.09 0.082
x10°
8l
2
I i . i 1 i
0.082 0.084 0.086 0.088 0.09 0.082

Figure 5.38: Magnetic

induction B

0.0025, 0.0050, 0.0100, 0.0200 s.

(left)

S

L
0.082

x10™
T

L
0.084

L
0.086

L
0.088

L
0.09

L
0.002

|

I
0.082

I
0.084

I
0086

I
0.088

L
009

I
0.092

x10™

0. O‘EZ o. D‘BA D.O‘EG 0. O‘BE 0.‘05 0. 0‘92
x10°

cosz cosr Gos Gom oo comz
and level set (right) at times






Chapter 6

Conclusiones y trabajo futuro

En este capitulo se presenta un resumen de los principales aportes de esta tesis y una des-
cripcion del trabajo futuro a desarrollar.

6.1 Conclusiones

La tesis recoge el andlisis matematico y numérico de dos problemas motivados por aplica-
ciones en electromagnetismo: el calculo de autovalores del operador rotacional y el problema de
corrientes inducidas en régimen transitorio en dominios axisimétricos, considerando materiales
no lineales con y sin histéresis.

A continuacion se enumeran los resultados més importantes alcanzados en cada uno de estos
problemas.

1. En el Capitulo 2 se caracterizé el espectro del operador rotacional mediante la equivalen-
cia del problema de autovalores y un problema mixto. Se propusieron dos formulaciones
para aproximar numéricamente el problema de autovalores, las cuales fueron analizadas
matematica y numéricamente. Para ambas formulaciones se obtuvieron estimaciones de
error. Se desarrollaron cédigos escritos en MATLAB que permiten resolver los esquemas
numéricos propuestos previamente. La convergencia de uno de los métodos numéricos ha
sido validada mediante un ejemplo académico con solucién analitica conocida.

2. Se estudio el problema evolutivo no lineal de corrientes inducidas en dominios axisimétricos
en términos del campo magnético. En el Capitulo 3 se abordé el problema considerando
como dato una condicién de flujo magnético. Para la formulacién obtenida se demostré
existencia y unicidad de solucién utilizando un resultado abstracto. En el Capitulo 4 se
resolvié un problema andlogo pero considerando como dato el campo magnético en la
frontera del dominio (condicién de Dirichlet). Se demostré la existencia de solucién de la
formulacién obtenida utilizando el método de Rothe. Para ambas formulaciones se pro-
pusieron esquemas numéricos basados en elementos finitos para la discretizacion espacial y
el método de Euler implicito para la discretizacién temporal. En ambos casos se demostré

165
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6.2

que el esquema completamente discreto resultante esta bien planteado y que genera apro-
ximaciones de orden 6ptimo, las cuales fueron validadas numéricamente.

. En el Capitulo 5 se estudié el problema evolutivo de corrientes inducidas en dominios

axisimétricos con presencia de histéresis. La diferencia con los problemas abordados en los
capitulos 3 y 4 reside en que la relacién no lineal entre el campo magnético y la induccién
magnética viene dada por un operador de histéresis. Se consideraron dos tipos de datos
fuente: condicién de flujo magnético en la seccién meridional del dominio y condicién de
Dirichlet no homogénea. Para las formulaciones obtenidas con cada uno de estos datos,
se demostré existencia de soluciéon. Para la modelizacion de la histéresis magnética se
utilizé el operador de Preisach clasico, y se describieron sus principales caracteristicas,
asi como su implementacion numérica. Utilizando este operador para describir la relacion
B-H, se propone un esquema numeérico que utiliza un método de elementos finitos para la
discretizacion en espacio y el método de Euler implicito para la discretizacién en tiempo.
Para resolver el problema no lineal en tiempo se utilizé el algoritmo de Bermudez-Moreno.

Se elaboraron diversos cédigos FORTRAN que permiten resolver los esquema numéricos de
los problemas analizados en los Capitulos 3, 4 y 5.

Trabajo futuro

. Estudiar el problema de autovalores en dominios multiplemente conexos. En este caso, y

como se menciona en el Capitulo 2, serd necesario modificar convenientemente las condi-
ciones de contorno.

. Estudiar la unicidad de solucién y analizar la convergencia del esquema numeérico propuesto

en el problema de corrientes inducidas con histéresis, considerando los dos tipos de datos.

Calcular las pérdidas por corrientes inducidas y por histéresis, y validar los resultados
obtenidos con férmulas analiticas y resultados experimentales. En este sentido, se contard
con la colaboracién del Prof. Luc Dupré del Department of Electrical Energy, Systems and
Automation de la Universidad de Gant (Bélgica) para la realizacién de medidas experi-
mentales sobre materiales ferromagnéticos.

Considerar el campo de densidades de potencia de las pérdidas por histéresis y corrientes
inducidas como fuente en un modelo de transmisién de calor con objeto de determinar la
temperatura del dispositivo.

. Realizar el analisis matematico y numérico del problema de corrientes inducidas utilizando

un operador de histéresis de tipo “Preisach dinamico”. Esto permitira tener en cuenta las
“pérdidas por exceso” en el modelo.
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