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Abstract

This thesis is concerned with the mathematical and numerical analysis of partial differential equations

(PDE)-based models for the coupling of flow equations and transport arising from problems related

with the simulation of transport phenomena and chemical interactions within saturated porous media.

This framework is encountered in a vast variety of engineering applications such as polymer flooding in

petroleum extraction, wastewater treatment, food and chemicals processing, chromatography and oth-

ers. Among the applications mentioned, those that motivated the development of this work are mainly

related to the design of equipment used in water treatment. This includes settlers, clarifiers/thickeners,

and filtration equipment. However, we point out, that other applications where envision and devel-

oped during the work on the general models. In fact, this dissertation also includes some results

related to traffic flow, bioconvection and thermohaline circulation. Other extensions which require

more extensive modifications or additions, such as fluid-structure interactions are briefly discussed in

the ”current and future works” section, at the end of this thesis.

As a quick overview, in Chapter 2 we begin by studying the phenomenon of sedimentation, in the

first instance, through polydisperse sedimentation models, considering from the numerical point of view

a finite volume method with entropy conservation properties. In Chapter 3, we introduce models for

the coupling of flow and transport equations motivated by the study of double-diffusive flows. Here

we change the approach of the numerical approximation, to focus on the finite element method, with

divergence-free approximations for velocity. The analysis and numerical scheme designed for the non-

stationary setting is then extended, to develop a second approach for the sedimentation phenomenon,

which in turn, motivated Chapter 4. It is a complete three-dimensional model for clarifiers, where we

incorporate the one-dimensional Kynch density function describing hindered settling, used in the first

approach, in a transport equation coupled with a Navier-Stokes-Brinkman model for the flux. Finally

Chapter 5, discuss the application to the modelling of soil-based water filters of a similar scheme

adapted to the context of an axisymmetric domain and a non-stationary system.

The main contents of this thesis are structure as follows:

In Chapter 1, we briefly introduce the topics that will be addressed in this thesis. We also discuss

the relevant literature and related papers and present a summary of the main contributions of this

thesis work. The chapter closes by introducing the notation that will be used regularly in the following

chapters.

Chapter 2 discusses entropy conservative schemes for diffusively corrected multiclass kinematic

flow models. As a new contribution, we demonstrate, firstly, that these schemes can naturally be ex-

tended to initial-boundary value problems with zero-flux boundary conditions in one space dimension,
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including an explicit bound on the growth of the total entropy. Secondly, it is shown that the model

assumptions are satisfied by certain diffusively corrected multiclass kinematic flow models of arbitrary

size that describe traffic flow or the settling of dispersions and emulsions, where the latter application

gives rise to zero-flux boundary conditions. Numerical examples illustrate the behaviour and accuracy

of entropy stable schemes for these applications.

In Chapter 3 we present our model for double-diffusive flows, which adopts the form of the incom-

pressible Brinkman-Navier-Stokes equations for the viscous flow of an incompressible Newtonian fluid

in a porous medium, coupled to a pair of advection-diffusion equations with cross-diffusion that de-

scribe the diffusion of heat and solute. The solvability analysis of these governing equations results as

a combination of compactness arguments and fixed-point theory. Also, an H(div)-conforming discreti-

sation is formulated by a modification of existing methods for Brinkman flows. The well-posedness of

the discrete Galerkin formulation is also discussed, and convergence properties are derived rigorously.

Computational tests confirm the predicted rates of error decay and illustrate the applicability of the

methods.

Then in Chapter 4 we take this model as a basis for the development of the non-stationary setting

model, applied to the simulation of sedimentation-consolidation of solid particles in an incompressible

fluid under the effect of gravity and in the presence of a slowly rotating arm assisting the removal of

sediment on the bottom of clarifier-thickener units. The governing equations now include an initial-

boundary value problem for the Navier-Stokes equations describing the flow of the mixture coupled

with a nonlinear parabolic equation describing the volume fraction of solids. The novelty of the

treatment consists in the inclusion of terms that account for the influence of the rake motion on the

momentum balance and the removal of solids. We also adopt techniques of the immersed boundary

finite element method (see e.g. [34]) for the analysis and numerical approximation of those terms. An

H(div)-conforming method for the coupled problem is proposed, a rigorous proof of convergence is

provided, and the validity of the new model and the performance of the scheme are demonstrated

numerically by several computational tests. Our aim after completing the presentation of these two

approaches is to have complementary models that can help in gaining a better understanding of the

sedimentation process inside clarifiers/thickeners.

In Chapter 5 a related model, but in an axisymmetric domain is developed with an explicit ap-

plication to the modelling of soil-based water filtering devices. The governing equations are the

Brinkman-Navier-Stokes equations for the flow of the fluid through a porous medium coupled with

a convection-diffusion equation for the transport of the contaminants plus a system of ordinary dif-

ferential equations accounting for the degradation of the adsorption properties of each contaminant.

These equations are written in meridional axisymmetric form and the corresponding weak formula-

tion adopts a mixed-primal structure. As in the previous cases, a second-order, (but axisymmetric)

divergence-conforming discretisation of this problem is introduced and the solvability, stability, and

spatio-temporal convergence of the numerical method are analysed.

Chapter 6 is devoted to discuss the conclusions of this work. We also describe the new topics

that we are addressing as an extension of the models presented in this thesis. In this regard, we

place special emphasis on a fluid-structure model for the study of blood coagulation in veins. The

purpose of the investigation initiated in this subject is to study the effects of platelet count, shear rate

and injury size on the initiation of blood coagulation. The model consists of a system of advection-
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diffusion-reaction equations describing the spatio-temporal distributions of blood coagulation factors

and platelet subtypes during thrombus development, coupled with Navier-Stokes equations to describe

the dynamics of blood flow in the vessel. We address the problem of the fluid-structure interaction

within the blood vessel using the immersed boundary method that was briefly introduced in Chapter

4. We describe the spatio-temporal discretisation, including a semi-implicit scheme for time integration

and show some qualitative preliminary results. We conclude this chapter by discussing some of the

problems we would like to address in the future.



Resumen

El objetivo de esta tesis es el análisis matemático y numérico de modelos basados en ecuaciones di-

ferenciales parciales (PDE) para el acoplamiento de ecuaciones de flujo y transporte, que surgen de

problemas relacionados con la simulación de fenómenos de transporte e interacciones qúımicas dentro

de medios porosos saturados. Este marco teórico se encuentra en una gran variedad de aplicaciones

de ingenieŕıa tales como la inyección de poĺımeros en extracción de petróleo, tratamiento de aguas

residuales, procesamiento de qúımicos y alimentos, cromatograf́ıa, entre otros. De entre estas aplica-

ciones, las que motivaron el desarrollo del presente trabajo, son aquellas relacionadas con el diseño de

equipos para el tratamiento de agua, tales como sedimentadores, clarificadores/espesadores y filtros.

Sin embargo, hacemos notar, que a lo largo de este trabajo se identificaron muchas otras aplicaciones

para los modelos matemáticos generales. Es por esto, que se incluye además resultados concernientes a

fenómenos de tráfico vehicular, bioconvección y circulación termohalina. Otras extensiones más com-

plejas de los modelos estudiados, tales como interacciones fluido-estructura se discuten brevemente en

la sección de trabajos en marcha y a futuro, al final de la tesis.

Haciendo una vista rápida de la tesis, comenzamos estudiando el fenómeno de sedimentación, en

primera instancia, a través de modelos de sedimentación polidispersa, considerando desde el punto

de vista numérico, un método de volúmenes finitos con propiedades de conservación de entroṕıa.

Este desarrollo y aplicaciones adicionales de los modelos más generales de flujo cinemático multiclase

corregido por difusión se presentan en el Caṕıtulo 2. En el Caṕıtulo 3, introducimos modelos para

el acoplamiento de ecuaciones de flujo y transporte motivados por el estudio de flujos doble difusivos.

Aqúı cambiamos el enfoque de la aproximación numérica, para centramos en el método de elementos

finitos, con aproximaciones de divergencia libre para la velocidad. Luego, el análisis y el esquema

numérico diseñados para el caso no estacionario se extienden para tratar un segundo enfoque para el

problema de sedimentación, el cual motiva el Caṕıtulo 4. Este corresponde a un modelo tridimensional

para clarificadores/espesadores, donde incorporamos la función de densidad unidimensional de Kynch

que describe sedimentación obstaculizada, en una ecuación de transporte acoplada con el modelo de

flujo incompresible de Navier-Stokes-Brinkman. El Caṕıtulo 5, trata sobre la aplicación al modelado

de filtros de agua basados en suelos de un esquema similar adaptado al contexto de un dominio

axisimétrico y un sistema no estacionario.

Los contenidos principales de la tesis se estructuran como sigue:

En el Caṕıtulo 1, introducimos brevemente los tópicos que serán abordados en esta tesis. También

discutimos la literatura relevante y los trabajos relacionados, y presentamos un resumen de las prin-

cipales contribuciones de este trabajo de tesis. El caṕıtulo se cierra introduciendo la notación que se

usará de forma recurrente en los siguientes caṕıtulos.
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En el Caṕıtulo 2 abordamos los esquemas que conservan entroṕıa para flujo cinemático multiclase

corregido por difusión. Como nueva contribución, demostramos, primero, que estos esquemas se pueden

extender de forma natural a problemas de valores iniciales y de frontera con condiciones de borde de

flujo cero en una dimensión espacial, incluyendo una cota expĺıcita sobre el crecimiento de la entroṕıa

total. Segundo, se muestra que las suposiciones del modelo, son satisfechas por modelos de flujo

cinemático multiclase corregidos por difusión de tamaño arbitrario, tales como los que describen el

flujo de tráfico o la sedimentación de dispersiones y emulsiones. Esta última aplicación es la que requiere

el uso de condiciones de borde tipo flujo cero. Los ejemplos numéricos que acompañan ese caṕıtulo,

ilustran el comportamiento y la precisión de los esquemas de entroṕıa estable para las aplicaciones

mencionadas.

En el Caṕıtulo 3 presentamos nuestro modelo para flujos doble-difusivos, el cual adopta la forma

de las ecuaciones para el flujo en un medio poroso de un fluido viscoso no Newtoniano incompresible de

Navier-Stokes-Brinkman, acoplado a un par de ecuaciones de advección-difusión con difusión cruzada

que describe la transferencia de calor y de masa de un soluto. El análisis de existencia y unicidad de las

ecuaciones gobernantes resulta de una combinación de argumentos de compacidad y teoŕıa de punto

fijo. Adicionalmente, se formula una discretizaciónH(div)-conforme, partiendo de una modificación de

métodos existentes para flujos de Brinkman. También discutimos la existencia y unicidad de soluciones

para la formulación discreta de Galerkin, y las propiedades de convergencia de la misma se derivan de

forma rigurosa. Los ensayos computacionales confirman las tasas de convergencia del error e ilustran la

aplicabilidad de los métodos para la simulación de problemas de bio-convección bacteriana y circulación

termohalina.

Después, en el Caṕıtulo 4 tomamos este modelo y desarrollamos su extensión natural al contexto

no-estacionario, aplicado a un modelo macroscópico para la simulación de sedimentación-consolidación

de part́ıculas sólidas en un fluido incompresible bajo el efecto de la gravedad y en presencia de un

brazo que gira lentamente, asistiendo con la remoción de sedimentos del fondo de una unidad de

clarificación-espesamiento. El modelo gobernante es un problema de valores iniciales y de contorno

para las ecuaciones de Navier-Stokes describiendo el flujo de una mezcla acoplado con ecuaciones no-

lineales parabólicas que describen la fracción en volumen de sólidos. La novedad de nuestro tratamiento

consiste en la inclusión de términos que modelan la influencia del movimiento rotatorio de la rastra,

tanto en el balance de momento como en el balance de masa de la fase sólida. Además, adaptamos

técnicas del método de elementos finitos con frontera inmersa (ver por ejemplo [34]) para el análisis

y aproximación numérica de los términos mencionados. Se propone un método H(div) conforme

para el problema acoplado, junto con una prueba rigurosa de convergencia, y se demuestra mediante

varios ensayos numéricos la validez del nuevo modelo y su rendimiento. Nuestro objetivo al completar

la presentación de estos dos enfoques, es que sean modelos complementarios, que puedan ayudar a

adquirir un mejor entendimiento del proceso de sedimentación en clarificadores/espesadores.

En el Caṕıtulo 5, presentamos un modelo relacionado, pero en el dominio axisimétrico con aplica-

ción expĺıcita al modelado de equipos de filtrado de agua basados en suelos. Las ecuaciones gobernantes

son las de Navier-Stokes-Brinkman para el flujo de fluido, acoplados con una ecuación de convección-

difusión para el transporte de contaminantes, más un sistema de ecuaciones diferenciales ordinarias

para la degradación de las propiedades de adsorción de cada contaminante. Estas ecuaciones están

escritas en forma axisimétrica meridional y la correspondiente formulación débil adopta una estructura
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mixta-primal. Como en los casos anteriores, desarrollamos un esquema discreto de segundo orden (pero

axisimétrico) y se analiza la existencia de soluciones, estabilidad y convergencia espacio-temporal del

método numérico.

En el Caṕıtulo 6 discutimos las principales conclusiones de este trabajo. También describimos los

nuevos temas que estamos abordando como una extensión de los modelos presentados en esta tesis.

Ponemos especial énfasis en un modelo de fluido-estructura para el estudio de coagulación en venas.

El propósito de esta investigación es el estudio de los efectos del conteo de plaquetas, velocidad de

corte y tamaño de la herida en la iniciación de la coagulación. El modelo consiste de un sistema de

ecuaciones de advección-difusión-reacción describiendo la distribución espacio-temporal de los factores

de coagulación y subtipos de plaquetas durante el desarrollo tromboso, acoplados con las ecuaciones de

Navier-Stokes para la descripción de la dinámica del flujo sangúıneo en el vaso. Abordamos el problema

de la discretización del modelo fluido-estructura haciendo uso del método de frontera inmersa, que se

presentó brevemente en el Caṕıtulo 4. Describimos además un método discreto semi-impĺıcio para la

integración temporal y mostramos algunos resultados cualitativos preliminares. Cerramos este caṕıtulo

discutiendo algunos de los tópicos que nos interesa investigar en el futuro.
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CHAPTER 1

Introduction

The simulation of transport phenomena and chemical interactions within saturated porous media is a

framework encountered in a vast variety of scientific and engineering applications, including the flow

of chemical pollutants in saturated soil, subsurface drilling and petroleum extraction, crystal growth,

chemical and food processing, polymer flooding as part of the process of enhanced oil recovery in

petroleum engineering [46], chromatography [141], or water decontamination and removal of pollutants

such as heavy metals or radioactive ions [160], and numerous other applications [24, 86, 88, 119, 136,

139,150,166].

The aim of this thesis work is the mathematical and numerical analysis of partial differential equa-

tions (PDE)-based models for the coupling of flow equations and transport. Challenges in these

physico-mathematical problems concern the strong nonlinearities involved, as well as a dynamical be-

haviour characterised by very different time scales. Among the applications mentioned, those that

motivated the development of this thesis are mainly related to the design of equipment used in wa-

ter treatment. This includes settlers, clarifiers/thickeners, and filtration equipment. We begin by

studying the phenomenon of sedimentation, firstly, through polydisperse sedimentation models, con-

sidering from the numerical point of view, a finite volume method with entropy conservation proper-

ties. The numerical scheme showed errors and errors rates comparable with the other tested methods

(Kurganov-Tadmor and component-wise Global Lax-Friedrichs) and it seemed to have some computa-

tional performance advantages for some applications, however, we also identified some shortcomings of

the method, including explicit requirements over the form of the diffusion term, and the need of fine-

tuning stabilization parameters. We remark also that the method is a one-dimensional simplification

of the sedimentation process. All of this motivated us to explore complementary approaches.

The second approach to sedimentation modelling, which motivates Chapter 4, is a complete three-

dimensional model for clarifiers/thickeners, where we incorporate the one-dimensional Kynch density

function in a transport equation coupled with the Brinkman-Navier-Stokes equations for incompress-

ible flow. We also consider the presence of a rotating rake assisting the sedimentation. Previously,

in Chapter 3, we discuss a double-diffusive flow model that will be used as the basis for the devel-

opment of the scheme. We believe that the two approaches, studied here, can help to gain a better

understanding of the operation of clarification units.

The other research line of this work involves the study of finite element formulations for partial

1
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differential equations modelling the coupling of flow and transport. As we mentioned earlier, the first

model studied in this line, takes as a motivational problem the more general double-diffusive phe-

nomena in a stationary setting. Double-diffusive flows originate in combining heat and mass transfer

interacting with flow within porous structures. The model adopts the form of the incompressible

Brinkman-Navier-Stokes equations for the viscous flow of an incompressible Newtonian fluid in a

porous medium, coupled to a pair of advection-diffusion equations with cross-diffusion that describe

the diffusion of heat and solute.

We then extend the previous model and its analysis to an axisymmetric domain with an explicit

application to the modelling of soil-based water filtering devices. The governing equations are the

Brinkman-Navier-Stokes equations for the flow of the fluid through a porous medium coupled with a

convection-diffusion equation for the transport of the contaminants plus a system of ordinary differen-

tial equations accounting for the degradation of the adsorption properties of each contaminant. These

equations are written in the meridional axisymmetric form and the corresponding weak formulation

adopts a mixed-primal structure. Under this model, it is assumed that each site has a maximum

capacity for each contaminant, which we take to be uniform across the two layers of filter media. In

this way, the adsorption is noncompetitive and the saturation of a site by one contaminant does not

prevent adsorption of the other contaminants at the same site. It is also assumed that the adsorption

process is irreversible for all contaminants and all filter layers, so that once adsorbed the contaminants

remain attached to the filter media with no desorption back into the fluid.

Note that an important component of this thesis work is devoted to the solvability of the associated

PDEs using fixed-point theories. We also work in the construction of accurate, robust and reliable

methods for the discretisation of these equations, and special emphasis is placed in H(div)-conforming

formulations for the flow equations, whereas for the formulation of the transport problem (resulting

in a scalar or vectorial advection-diffusion equation) we study entropy stable schemes for stand-alone

systems as well as finite element primal formulations when coupled with the flow equations. The main

advantage of an H(div)-conforming formulation is that it produces exactly divergence-free velocity

approximations, which are of particular importance in ensuring that solutions to the flow equations

remain locally conservative as well as energy stable (see e.g. [62]). Moreover, the error estimates of

velocity can be derived in a pressure-robust manner (see [100]).

The H(div)-conforming discretisation is introduced in Chapter 3 by a modification of existing

methods for Brinkman flows. The well-posedness of the discrete Galerkin formulation is also discussed,

and convergence properties in space are derived rigorously. In Chapter 4, we extend this analysis

to the non-stationary case, and in consequence, we derive spatio-temporal convergence properties. In

Chapter 5, this analysis is modified to account for the axisymmetric domain, which involves the work

with weighted spaces. In all cases, the validity of the models and the performance of the schemes are

demonstrated numerically by several computational tests.

Finally, in Chapter 6, we discuss the main conclusions derived from each chapter. Moreover, we

present our current and ongoing investigation, which incorporates fluid-structure interactions to the

framework developed through this thesis, aimed at addressing problems with biological applications.

Our motivation is to study the effects of platelet count, shear rate and injury size on the initiation

of blood coagulation. The work is an extension of the mathematical model for clot growth dynam-

ics proposed in [39], to which we add fluid-structure interactions through the use of the immersed
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boundary method with Lagrange multiplier introduced in [37]. The base model consists of advection-

diffusion-reaction equations describing the spatio-temporal distributions of blood coagulation factors

and platelet subtypes during thrombus development, coupled with the Navier-Stokes equations to

describe the dynamics of blood flow in the vessel. We describe the spatio-temporal discretisation, in-

cluding a semi-implicit scheme for time integration and show some qualitative preliminary results. The

chapter concludes by discussing some perspectives regarding future work, motivated by our results,

and suggestions/proposals from collaborators we met during the course of this thesis work.

1.1 Related Work

To put this work further into the proper perspective, we mention that a large number of references

to the well-posedness and numerical analysis of degenerate convection-diffusion equations are provided

in [99]. However, the existence and uniqueness of entropy solutions, and the convergence of numerical

methods have so far only been established in the scalar case (N = 1); important contributions in this

direction include [57, 73, 103–106, 110] (this list is far from being complete). This state of matters

is in agreement with the well-known lack of corresponding results for general first-order systems of

conservation laws (2.4) considering that (2.1) reduces to (2.4) wherever K = 0. That said, we mention

that degenerate convection-diffusion systems (2.1) arise in a number of applications such as multiclass

vehicular traffic [29,30,38,53,54,158], settling of polydisperse solid-liquid suspensions [38,43,54,151],

settling of dispersions of droplets and emulsions [1,51,146], and chromatography [52,70]. In particular,

in these applications systems of convection-diffusion equations (rather than scalar equations) arise

because one wishes to describe the segregation of different classes of units of the disperse phase (cars,

particles, droplets, etc.), with the consequence that the number of species N in these applications can

be arbitrarily large. These applications motivate the interest in developing efficient solvers for the

numerical solution of (2.1), (2.2) or (2.1)–(2.3) even if there is no closed well-posedness theory for

these systems. Common numerical schemes are based on a space discretisation which can be finite

volumes or discontinuous Galerkin methods [127], while the time discretisation could be fully explicit

or implicit-explicit (IMEX; see for example [38, 51, 54]). On the explicit side, a well-known scheme

is the Kurganov-Tadmor high-resolution central difference scheme [116]. The original KT scheme

was proposed alongside high-order convex combinations of Runge Kutta time stepping. The latter

concept was developed further on, resulting in the so called Strong Stability Preserving Runge-Kutta

(SSPRK) methods. These schemes allow for a high-order time discretisation while preserving the

strong stability properties of first-order Euler time stepping, which makes them attractive for solving

hyperbolic partial differential equations by the method of lines [85].

In other hand, concerning the well-posedness of double diffusive systems (under suitable assump-

tions), we first restrict the discussion to classical Boussinesq-type equations. The solvability of the

associated PDEs goes back to Lorca and Boldrini [125,126]. These works include existence, regularity,

and conditions for uniqueness addressing both stationary and non-stationary cases. These results hold

for temperature-dependent viscosity and thermal conductivity. Related to the context of our specific

problem, the analysis of solutions to double-diffusive problems has been addressed e.g. in [88,124].

A diversity of numerical methods is available for classical Boussinesq equations as well as for their

generalisations to temperature-dependent coefficients. We mention for instance the stabilised finite
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elements (using projection-based techniques) proposed and rigorously analysed in [6, 59], the mixed

formulations analysed in [5, 9, 10, 63], but also the stability of splitting schemes (for discontinuous

Galerkin, spectral, and vorticity-based finite element formulations) and some more applicative exam-

ples have been explored in [2,8,46,119,120,136,149,150,163]. Mixed-primal and fully-mixed schemes

using H(div)-conforming velocity approximations have been studied in [137,138].

One advantage of including a diffusion matrix in the model is that it allows us to study cross-

diffusion effects, such as the Soret and Dufour effects. Even when in some applications these can be

neglected as their contributions can be orders of magnitude smaller than those described by terms

arising from Fourier’s or Fick’s law, these effects can be significant when species are introduced at a

surface in a fluid domain and have different densities in comparison to the surrounding fluid. These

mechanisms are important as well in applications related to the transport of moisture in fibrous

insulations or grain storage insulations and the dispersion of contaminants through water-saturated

soil, bio-chemical contaminants transport in environmental problems, and underground disposal of

nuclear waste and crystal growth processes [24].

Other contributions to this area include the finite volume discretisations for thermal and solutal

buoyancy within Darcy-Brinkman flows introduced in [86], the error analysis for spectral methods

applied to bioconvection in [66], or the vorticity-based Brinkman and nonlinear advection-reaction-

diffusion system analysed via fixed-point and compactness arguments in [14], that also includes a

mixed-primal scheme featuring divergence-free discrete velocities. Penalty Petrov-Galerkin methods

were used for the solution of double-diffusion convective problems in [93]. In [155] the authors introduce

least-squares schemes specifically tailored for Rayleigh-Bénard convective flows, and the averaging

finite element method has been employed in [165] for solidification problems having the same structure

as the models we examine here.

On the side of numerical schemes that provide divergence-free velocity fields approximations for

incompressible flows, the work of V. Jhon et al [100] provides a good review of the different approaches

that have been proposed and the importance of the divergence-free property for the computation of

pressure robust velocity approximations. Some of the methods currently available include conforming

finite element pairs obtained using exterior calculus techniques [74] or by enriching H(div)-conforming

elements locally [91], discontinuous Galerkin (DG) methods with postprocessing [25] and hybridizable

DG finite-element methods (HDG) with and without postprocessing [60, 143]. In [96], the authors

present a space-time HDG method for the Navier-Stokes problem on time-dependent domains that

results in pointwise divergence-free and H(div)-conforming velocity fields. It is shown that the scheme

is momentum conserving, energy-stable, and pressure-robust. The study of more efficient schemes for

the numerical approximation of the problems developed in this thesis, keeping the good properties of

the numerical method currently used, is a topic that we want to address in the future.

Early models for the clarifying process with and without swirl effects are reviewed in [152], where

mainly axisymmetric configurations were employed. More recently, a fairly complete model can be

found in [65], where the authors couple the momentum equations for fluid flow with a transport

equation for solids. The realisable k − ε model, in conjunction with scalable wall functions, is used

to model turbulence. The removal of sludge from the clarifier floor by means of a spinning rake

is modelled through a rotating sink term added to the right-hand side of the transport equation.

References that are related to the rake mechanism in applications of mineral processing include [61,
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84,89,90,121,147,156,167].

In the model studied in Chapter 4, we also include appropriate drag terms, much as in [161],

that account for the indirect effects of the rake on the flow patterns. This consists basically in

penalising the moving structure and computing (or as we do here, simply imposing) its velocity and

its reconfiguration in an adequate manner. Volume penalisation techniques can be frequently found

in the relevant literature. See for instance [108], where the authors propose high-order methods for

the modelling of solid obstacles as porous structures whose permeability tends to zero and the flow is

regarded in a unified domain, and the momentum on the obstacle is simply obtained from integration

of the penalised velocity over the obstacle domain. Other modelling and numerical approaches one

could use to incorporate the interaction between the rake and the flow include immerse boundary and

fictitious domain finite elements [35], level set methods and their variants [69,135], other unfitted finite

element schemes [22]; or formulations based on remodelling, such as the arbitrary Lagrangian-Eulerian

(ALE) setting [164].

A time dependent Boussinesq model with nonlinear viscosity depending on the temperature is

proposed in [4]. The authors analyze first and second order numerical schemes based on finite element

methods and derive an optimal a priori error estimate for each numerical scheme. A related non-

stationary phase-change Boussinesq model is presented in [163], where a second order finite element

method for the primal formulation of the problem in terms of velocity, temperature, and pressure is

constructed, and conditions for its stability are provided.

The coupling of advection-diffusion-reaction systems with Brinkman equations in their velocity-

vorticity-pressure formulation, is studied in [120]. The equations are discretised in space using mixed

FE methods on unstructured meshes, whereas the time integration hinges on an operator splitting

strategy that uses the differences in scales between the reaction, advection, and diffusion processes.

The authors compare several coupling strategies in terms of memory usage, iteration count, speed of

calculation, and dynamics of the energy norm.

Regarding our axisymmteric model applied to the study of filtration equipment, we mention that

several studies treat the axisymmetric formulation of the Stokes and Navier-Stokes flows, including

the discretisation employing spectral, mortar, and stabilized finite elements (see e.g. [18,26,27,31,72],

and references cited in these works). More recently, mixed formulations of Brinkman flow including

the numerical analysis of finite element (FE) approximations were studied. Anaya et al. [15] presented

an augmented finite element approximation for the Brinkman equations based on an extension of the

vorticity-based Stokes problem. A related recent model in [16] incorporates a stream function and

vorticity formulation of axisymmetric Brinkman flow, for which a conforming mixed FE approximation

is employed.

The numerical analysis of the axisymmetric Darcy and Stokes-Darcy flow using Raviart-Thomas

(RT) and Brezzi-Douglas-Marini (BDM) finite elements was presented in [71,72]. In [71], the authors

established the stability of the RT and BDM approximations for an axisymmetric Darcy flow problem

by extending the Stenberg criteria, and they also derive a priori error estimates.

Other contributions to the design of numerical methods for axisymmetric formulations of coupled

flow and transport problems include [12,55]. Furthermore, in [47] a semi-discrete discontinuous finite

volume element (FVE) scheme is proposed and the unique solvability of both the nonlinear continuous
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problem and the semi-discrete counterpart is discussed. An FVE method is also proposed in [55] to

discretise a Stokes equation for flow coupled with a parabolic equation modelling sedimentation. The

method is based on a stabilized discontinuous Galerkin formulation for the concentration field, and a

multiscale stabilized pair of P1-P1 elements for velocity and pressure, respectively. A mixed variational

formulation of a Darcy-Forchheimer flow coupled with a energy equation is semi-discretised in [12]

using Raviart-Thomas elements for fluxes and piecewise constant elements for the pressure, a posteriori

error estimates are also established.

The technological application behind the water filter model goes back to the observation that it

is possible to remove arsenic from water by passing it through iron-rich laterite soil [131, 132]. The

arsenic is removed through an adsorption process, which may be enhanced by chemically treating the

laterite to increase its porosity and surface area, improving the adsorption efficiency [130]. Clearly,

the formulation of accurate mathematical models of these filters, in addition to their efficient compu-

tational solution, would greatly aid in the development of improved filters and guidelines for their safe

operation. The development and analysis of such a model forms the basis of the work [134], where

the authors examined the removal of a single contaminant (arsenic; case m = 1 in our notation) in

a cylindrical filter of uniform media. The authors utilised a Darcy-Brinkman equation, coupled with

an advection-diffusion-adsorption equation to model the flow of the contaminated water through the

filter and the removal of the arsenic through adsorption. In practice, however, there are likely m > 1

contaminants present, which calls for a filter consisting of multiple (up to m) layers in order to allow

for their removal. In this work we attempt to study the filtration process in a soil-based water filter

consisting of two distinct layers of differing media, in the presence of multiple contaminant species.

Problems of a similar nature abound in the literature. For example, [86] considers the numerical

solution, via a finite volume method, of a double diffusive problem within a porous medium. The

paper [150] considers a similar double diffusive problem, however, much like our proposed layered

filter, the authors allow for the possibility of heterogeneous stratified porous media. While many of

the studies concerning double diffusive problems consider entirely closed domains filled with porous

media, a large number of application cases, such as our filter, feature partial enclosures with openings or

infiltrations. The article [154] introduces such a feature, with the addition of ‘free ports’ to their model

domain. Considering other potential variants, the authors of [166] extend the usual double diffusive

problem by a first-order reaction process between the diffusing species and the fluid. This reaction

process necessitates the addition of a sink term to the equation governing the species concentration

that plays a role similar to that on the right-hand side of (5.1c).

1.2 Contributions of this thesis

In Chapter 2, we extend the analysis of a class of entropy stable schemes for the numerical solution

of initial value problems of nonlinear, possibly strongly degenerate systems of convection-diffusion

equations, recently proposed in [S. Jerez, C. Parés, Entropy stable schemes for degenerate convection-

diffusion equations, SIAM J. Numer. Anal. vol. 55 (2017) pp. 240–264]. As a new contribution, we

demonstrate, firstly, that these schemes can naturally be extended to initial-boundary value problems

with zero-flux boundary conditions in one space dimension, including an explicit bound on the growth

of the total entropy. Secondly, it is shown that the model assumptions are satisfied by certain diffusively
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corrected multiclass kinematic flow models of arbitrary size that describe traffic flow or the settling of

dispersions and emulsions. The contents of this chapter gave rise to the following paper:

[48] Bürger, R., Méndez, P. E., Parés, C., On entropy stable schemes for degenerate

parabolic multispecies kinematic flow models. Numer Methods Partial Differential

Eq. 1– 26; (2019)

In Chapter 3 we propose a model for double-diffusive flows, that includes possible cross-diffusion

terms. The main differences between the available well-posedness results and analysis of H(div)-

conforming methods for classical Boussinesq equations and the double-diffusive equations (3.1) are,

of course, caused by the vector-valued nature of the quantities (the components of ~m) that diffuse

in (3.1) while in the classical Boussinesq formulation there is only one scalar diffusive quantity (for

instance, solely temperature). Some of the arguments related to the well-posedness analysis of the

continuous problem, in particular those related to handling non-homogenous Dirichlet data by a lifting

argument [125, 137], carry over almost verbatim from the scalar to the vectorial case. However, the

bilinear form associated with the term −div(D∇~m) must be coercive so that stability is ensured.

This requirement, in turn, imposes restrictions on the choice of the diffusion matrix D; this matrix

must be positive definite (though not necessarily symmetric). These properties are essential for the

proof of existence of a discrete solution, however, it is still possible to study cross-diffusion effects,

such as those of Soret and Dufour. In addition, an H(div)-conforming discretisation is formulated by

a modification of existing methods for Brinkman flows. The well-posedness of the discrete Galerkin

formulation is also discussed, and convergence properties in space are derived rigorously. The contents

of this chapter gave rise to the following paper

[49] Bürger, R., Méndez, P.E., Ruiz-Baier, R., On H(div)-conforming methods for double-

diffusion equations in porous media. SIAM Journal on Numerical Analysis, 57, 1318–

1343 (2019)

In Chapter 4 we introduce a new model for the simulation of sedimentation-consolidation of solid

particles in an incompressible fluid under the effect of gravity and in the presence of a slowly rotating

arm assisting the removal of sediment on the bottom of clarifier-thickener units. The governing model

is now an initial-boundary value problem for the Navier-Stokes equations describing the flow of the

mixture coupled with a nonlinear parabolic equation describing the volume fraction of solids. The

novelty of the treatment consists in the inclusion of terms that account for the influence of the rake

motion on the momentum balance and the removal of solids. We also adapt techniques of the immersed

boundary finite element method (see e.g. [34]) for the analysis and numerical approximation of those

terms. We derive rigorously the spatio-temporal convergence properties of the divergence conforming

numerical scheme, and demonstrate its properties through several numerical tests. The contents of

this chapter gave rise to the following preprint

[50] Bürger, R., Méndez, P.E., Ruiz-Baier, R., A second-order H(div)-conforming scheme

for the simulation of sedimentation and flow in circular clarifiers with a rotating rake.

Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Preprint 2019-39, Uni-

versidad de Concepción, Chile 2019.
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In Chapter 5 we extend the previous model to an axisymmetric domain with an explicit application

to the modelling of soil-based water filtering devices. Furthermore, we derived an optimal a priori

error estimate for the H(div)-conforming second-order numerical scheme in time and space, where

the main difficulty is the fully discrete analysis verifying that each of the terms is bounded optimally

in the corresponding weighted spaces. Some numerical examples illustrate the main features of the

problem and the properties of the numerical scheme. The contents of this chapter gave rise to the

following preprint

1.3 Notations

From Chapter 3 and onward we will consider the following notations:

Let Ω be an open and bounded domain in Rd, d = 2, 3 with Lipschitz boundary Γ = ∂Ω. We

denote by Lp(Ω) and W r,p(Ω) the usual Lebesgue and Sobolev spaces with respective norms ‖·‖Lp(Ω)

and ‖·‖W r,p(Ω). If p = 2 we write Hr(Ω) in place of W r,p(Ω), and denote the corresponding norm

by ‖·‖r,Ω, (‖·‖Ω for H0(Ω) = L2(Ω)). The space L2
0(Ω) denotes the restriction of L2(Ω) to functions

with zero mean value over Ω. For r ≥ 0, we write the Hr-seminorm as |·|r,Ω and we denote by (·, ·)Ω
the usual inner product in L2(Ω). In addition, H1/2(Γ ) is the space of traces of functions H1(Ω) and

H−1/2(Γ ) is its dual. Spaces of vector-valued functions (in dimension d) are denoted in bold face, and

we denote by L the corresponding tensorial counterpart of the scalar variable or functional space L.

Next, we denote by Ls(0, T ;Wm,p(Ω)) the Banach space of all Ls-integrable functions from [0, T ] into

Wm,p(Ω), with norm

‖v‖Ls(0,T ;Wm,p(Ω)) =


(∫ T

0 ‖v(t)‖sWm,p(Ω) dt
)1/s

if 1 ≤ s <∞,

esssupt∈[0,T ]‖v(t)‖Wm,p(Ω) if s =∞.

Let us denote by Th a regular partition of Ω into simplices K (triangles in 2D or tetrahedra in 3D)

of diameter hK . The mesh size will be denoted by h = max{hK , K ∈ Th}, and for any interior edge

e in Eh (the set of faces in Th), we will label K− and K+ the elements adjacent to it, while he will

stand for the maximum diameter of the edge. We suppose that v, w are smooth vector and scalar

fields defined over Th. Then, by (v±, w±) we will denote the traces of (v, w) on e being the extensions

from the interiors of the elements K+ and K−, respectively. Let ne denote the outward unit normal

vector to e on K, we define the tangential component of u on each face e as uτ = u− (u ·ne)ne. We

introduce the average {{·}} and jump J·K operators as follows:

{{v}} = (v− + v+)/2, {{w}} = (w− + w+)/2,

JvK = (v− − v+), JwK = (w− − w+),

whereas for boundary jumps and averages we adopt the convention that {{v}} = JvK = v, and {{w}} =

JwK = w. In addition, we will use the symbol ∇h to denote the broken gradient operator and εh to

denote its symmetrised counterpart. Finally, given a positive integer k and a set O ⊂ Rn, Pk(O)

stands for the space of polynomials of degree ≤ k defined on O.
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Introducción

La simulación de fenómenos de transporte e interacciones qúımicas dentro de medios porosos saturados

es un marco que se encuentra en una amplia variedad de aplicaciones cient́ıficas y de ingenieŕıa, inclu-

yendo el flujo de contaminantes qúımicos en suelo saturado, perforación sub-superficial y extracción de

petróleo, crecimiento de cristales, procesamiento de qúımicos y alimentos, inundación con poĺımeros

como parte de procesos de recuperación mejorada de petróleo en ingenieŕıa de petróleos [46], croma-

trograf́ıa [141], o saneamiento de agua y remoción de contaminantes tales como metales pesados o

iones radioactivos [160], entre otras aplicaciones [24,86,88,119,136,139,150,166].

Este trabajo de tesis tiene como objetivo analizar modelos de ecuaciones diferenciales parciales

(EDP) para el acoplamiento de ecuaciones de flujo y transporte. Algunos de los retos que implica el

trabajo en estos problemas f́ısico-matemáticos, incluye las fuertes no-linealidades y el comportamien-

to dinámico caracterizado por escalas de tiempo diferentes. De entre las aplicaciones anteriormente

mencionadas, las que motivaron el desarrollo de esta tesis son aquellas relacionadas con el diseño de

equipamiento usado en el tratamiento de agua. Esto incluye sedimentadores, clarificadores/espesadores

y equipo de filtrado. Comenzamos con el estudio del fenómeno de sedimentación, analizando en pri-

mera instancia modelos de sedimentación polidispersa. Consideramos desde el punto de vista del

método numérico, un esquema de volúmenes finitos con propiedades de conservación de entroṕıa. Los

errores y la tasa de convergencia, para este esquema, resultan comparables a los otros métodos eva-

luados (Kurganov-Tadmor y Lax-Friedrichs global por componentes), y el esquema muestra ventajas

en cuanto a rendimiento computacional para algunas aplicaciones, sin embargo, también se pudieron

identificar algunas desventajas, tales como las restricciones sobre las propiedades del término de di-

fusión y la necesidad de calibrar los parámetros de estabilización. Notemos además que el método es

una simplificación en una dimensión del proceso de sedimentación. Todo esto nos motivó a explorar

enfoques complementarios para la modelación de este fenómeno.

El segundo enfoque para el problema de sedimentación, que motiva el Caṕıtulo 4, es un modelo

tridimensional para clarificadores/espesadores, donde incorporamos la ecuación unidimensional para

la densidad de Kynch, usada anteriormente, en una ecuación de transporte acoplada con las ecuaciones

para flujo incompresible de Navier-Stokes-Brinkman, considerando además la presencia de una rastra

giratoria. Previamente, en el Caṕıtulo 3, discutimos un modelo el flujo doble-difusivo que será usado

como base para el desarrollo del esquema. Creemos que los dos enfoques, aqúı estudiados, pueden

ayudar a adquirir un mejor entendimiento de la operación de unidades de clarificación.

La otra ĺınea de investigación de este trabajo involucra el estudio de formulaciones de elementos

finitos para las ecuaciones diferenciales parciales que describen el modelamiento de flujo acoplado

con transporte. El primer modelo estudiado, está motivado por el fenómeno de flujo doble-difusivo

estacionario. El flujo doble-difusivo se origina cuando combinamos transferencia de masa y calor in-

teractuando con flujo dentro de una matriz porosa. El modelo adopta la forma de ecuaciones de flujo

viscoso incompresible de Navier-Stokes-Brinkman en un medio poroso, acoplado con un par de ecua-
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ciones de advección-difusión con términos de difusión cruzada, para describir la difusión de masa de

un soluto y enerǵıa.

En el Caṕıtulo 5, extendemos el modelo anterior y su análisis a un dominio axisimétrico con

aplicación expĺıcita al modelado de equipos de filtración basados en suelos. Las ecuaciones gobernantes

son la ecuación de Navier-Stokes-Brinkman para el flujo a través del medio poroso, acopladas con las

ecuaciones de convección-difusión para el transporte de contaminantes, más un sistema de ecuaciones

diferenciales ordinarias para las propiedades de adsorción de cada contaminante. Estas ecuaciones se

escriben en forma axisimétrica meridional y la formulación débil correspondiente adopta una estructura

mixta-primal. Bajo este modelo, se asume que cada sitio tiene una capacidad máxima para cada

contaminante, la cual se toma uniforme a lo largo de las dos capas de medio filtrante. De esta forma,

el proceso de adsorción es no competitivo y la saturación de un sitio para un contaminante no previene

la adsorción de otros contaminantes en el mismo sitio. También se asume que el proceso de adsorción

es irreversible para todos los contaminantes y capas de filtrado, y una vez que un contaminante es

adsorbido permanece adherido al medio filtrante.

Señalamos que un importante componente de esta tesis se dedica a estudiar la existencia de solu-

ciones de las EDP asociadas, usando teoŕıas de punto fijo. También trabajamos en la construcción

de métodos numéricos precisos, robustos y confiables para la discretización de estas ecuaciones, con

especial énfasis en formulaciones H(div)-conformes para las ecuaciones de flujo, mientras que para la

formulación del problema de transporte (resultando en ecuaciones de advección-difusión escalares o

vectoriales) estudiamos esquemas de entroṕıa estable para sistemas sin acoplamiento con una ecuación

de flujo y formulaciones primales de elementos finales para el caso de sistemas acoplados. La principal

ventaja de una formulación H(div)-conforme radica en que esta produce aproximación de la velocidad,

libres de divergencia, las cuales son de gran importancia, ya que permiten asegurar que las ecuaciones

de flujo permanezcan localmente conservativas y estables en enerǵıa (ver v.g. [62]). Además, permite

derivar estimaciones de error de la velocidad que son robustas a los errores en la presión (ver [100]).

La discretización H(div) conforme se introduce en el Caṕıtulo 3 como una modificación de métodos

existentes para flujos de Brinkman. También se discute, el análisis de existencia y unicidad de soluciones

para la formulación discreta de Galerkin, y se deriva de forma rigurosa sus propiedades de convergencia.

En el Caṕıtulo 4, extendemos este análisis al caso no estacionario, y en consecuencia, derivamos

propiedades de convergencia espacio-temporal. En el Caṕıtulo 5, modificamos el análisis considerando

una formulación axisimétrica, que involucra el trabajo con espacios con peso. En todos los casos, la

validez de los modelos y su rendimiento computacional se muestra numéricamente a través de varios

ensayos computacionales.

Finalmente, en el Caṕıtulo 6, discutimos las conclusiones principales de cada sección. Adicional-

mente, presentamos el trabajo de investigación actualmente en curso, que añade a la base de los

modelos que se presentan a lo largo de esta tesis, interacciones fluido-estructura, para abordar proble-

mas con aplicaciones biológicas. El trabajo es una extensión del modelo matemático para la dinámica

de la coagulación, propuesto en [39]. Proponemos la adición de interacciones fluido-estructura al mo-

delo original, utilizando el método de frontera inmersa con multiplicador de Lagrange que se introdujo

en [37]. El modelo base consiste de un sistema de ecuaciones de advección-difusión-reacción que des-

criben la distribución espacio-temporal de los factores de coagulación y los subtipos de plaquetas

durante el desarrollo tromboso, acoplado con las ecuaciones de Navier-Stokes para la descripción de
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la dinámica de flujo sangúıneo en los vasos. Describimos la discretización espacio-temporal del mode-

lo, incluyendo un esquema semi-implicito usado para la integración termporal y mostramos algunos

resultados cualitativos preliminares. Cerramos el caṕıtulo discutiendo las perspectivas con respecto al

trabajo futuro, motivadas a partir de nuestro resultados, pero también de sugerencias/propuestas de

colaboradores que conocimos a lo largo del desarrollo de esta tesis.

1.4 Trabajos relacionados

Con el fin de poner este trabajo en perspectiva, mencionamos que una gran cantidad de referencias

con respecto a la existencia de soluciones bien puestas y el análisis numérico de ecuaciones de convec-

ción-difusión degeneradas se pueden encontrar en [99]. Sin embargo la existencia y unicidad de solucio-

nes de entroṕıa, y la convergencia de los métodos numéricos solo ha sido establecida hasta el momento

para el caso escalar (N = 1); contribuciones importantes en esta dirección incluyen [57,73,103–106,110]

(esta lista está lejos de ser completa). El estado del tema está en acuerdo con la bien conocida falta

de resultados correspondientes a los sistemas más generales de primer orden de leyes de conserva-

ción (2.4), considerando que (2.1) se reduce a (2.4) cuando K = 0. Dicho esto, mencionamos que

los sistemas de convección-difusión degenerados (2.1) surgen en un gran número de aplicaciones tales

como tráfico vehicular multiclase [29,30,38,53,54,158], sedimentación de suspensiones sólido-ĺıquidas

polidispersas [38,43,54,151], sedimentación de dispersiones de gotas y emulsiones [1,51,146], y croma-

tograf́ıa [52,70]. En particular, estas aplicaciones de las ecuaciones de advección-difusión (en lugar de

las escalares) surgen dado que se desea describir la segregación de diferentes clases de unidades de una

fase dispersa (autos, part́ıculas, gotas, etc.), con la consecuencia de que un número de especies N en

estas aplicaciones puede se arbitrariamente grande. Estas aplicaciones motivan el intéers en desarrollar

métodos eficientes para la solución numérica de (2.1), (2.2) o (2.1)–(2.3) incluso si no existe teoŕıa

cerrada repecto a la existencia y unicidad de soluciones para estos sistemas.

Algunos esquemas numéricos comunes son basados en una discretización espacial que puede ser por

medio del método de volúmenes finitos o Galerkin discont́ınuo [127], mientras que la discretización en

espacio puede ser totalmente expĺıcita o impĺıcita-expĺıcita (IMEX; ver por ejemplo [38, 51, 54]). Por

el lado expĺıcito, un esquema bien conocido es el de diferencias centradas de Kurganov-Tadmor (KT)

[116]. El esquema KT original fue propuesto junto con combinaciones convexas de el método de paso

temporal de Runge Kutta. Este concepto fue luego desarrollado, resultando en los esquemas llamados

Strong Stability Preserving Runge-Kutta (SSPRK). Estos esquemas permite una discretización de

alto orden en tiempo mientras preservan las propiedades fuertes de estabilidad del método de Euler

de primer orden. Esto los hace atractivos para la resolución por el método de ĺıneas de ecuaciones

diferenciales parciales hiperbólicas [85].

Por otro lado, con respecto a la existencia de soluciones bien puestas para sistemas doble difusi-

vos (bajo suposiciones razonables), primero nos restringimos a la discusión de ecuaciones clásicas de

tipo Boussinesq. La existencia de soluciones asociadas a estas EDPs se remonta a Lorca and Boldri-

ni [125,126]. Estos trabajos incluyen existencia, regularidad, y condiciones para la unicidad abordan-

do tanto el casos estacionario como el no estacionario. Estos resultados se cumplen para viscosidad

y conductividad térmica dependientes de la temperatura. Relacionados con el contexto de nuestro

problema en espećıfico, el análisis de soluciones de problemas doble-difusivos ha sido abordado por
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ejemplo en [88,124].

Existe una diversidad de métodos numéricos disponibles para las ecuaciones de Boussinesq y sus ge-

neralizaciones con coeficientes dependientes de la temperatura. Mencionamos por ejemplo los elementos

finitos estabilizados (usando técnicas basadas en proyección) propuestas y rigurosamente analizadas

en [6, 59], formulaciones mixtas analizadas en [5, 9, 10, 63], y la estabilidad de esquemas de particion

(para Galerkin discontinuo, espectral y formulaciones de elementos finitos basadas en la vorticidad)

y más ejemplos de aplicación han sido explorados en [2, 8, 46, 119, 120, 136, 149, 150, 163]. Esquemas

Mixto-primales y totalmente-mixtos usando aproximaciones de la velocidad H(div)-conformes se han

estudiado en [137,138].

Una de las ventajas de incluir una difusión matricial en el modelo es que esto permite el estudio

de efectos tales como el de Soret y Dufour. Incluso cuando en algunas aplicaciones estos se pueden

despreciar dado que sus contribuciones son algunos órdenes de magnitud inferiores que aquellos des-

critos por términos que surgen de las leyes de Fick y Fourier, estos efectos pueden ser significativos

cuando se introducen especies en la superficie de un dominio fluido y tienen diferentes densidades en

comparación al fluido circundante. Estos mecanismos son importantes también en aplicaciones rela-

cionadas con el transporte de humedad en aislamiento fibroso o almacenamiento de granos, transporte

de contaminantes qúımicos, deposito subterráneo de desperdicio nuclear y procesos de crecimiento

cristalino [24].

Otras contribuciones en esta área incluyen discretizaciones de volúmenes finitos para la flotación

térmica y por concentración de un soluto dentro de los flujos de Darcy-Brinkman introducidos en

[86], el análisis de error para métodos espectrales aplicados a bioconvección en [66], o los sistemas

basados en vorticidad de Brinkman y sistemas no lineales de advección-reacción-difusión analizados v́ıa

punto fijo y argumentos de compacidad en [14], esto incluye un esquema mixto-primal con velocidad

libres de divergencia. En [93] se usaron métodos de Petrov-Galerkin Penalizados para la solución

de problemas convectivos de doble difusión. En [155] los autores introducen esquemas de mı́nimos

cuadrados espećıficamente diseñados para flujos convectivos de Rayleigh-Bénard, y en [165] se emplea

el método de elementos finitos promediados para abordar problemas de solidificación que tienen una

estructura similar a los modelos examinados aqúı.

Por el lado de los esquemas numéricos que resultan en aproximaciones libres de divergencia del

campo de velocidad, el trabajo de V. Jhon et al [100] provee un buen resumen de los diferentes

enfoques que han sido propuestos y la importancia de la propiedad de divergencia libre para el cálculo

de aproximaciones de la velocidad robustas a errores en la presión. Algunos de los métodos actualmente

disponibles incluyen pares de elementos finitos conformes obtenidos usando técnicas de cálculo exterior

[74] o enriqueciendo elementos localmente H(div)-conformes [91], métodos de Galerkin discontinuo

(DG) con post-procesamiento [25] y de elementos finitos DG hibridizables (HDG) con y sin post-

procesamiento [60, 143]. En [96], los autores presentan un método HDG en espacio-tiempo para el

problema de Navier-Stokes en dominios dependientes del tiempo que resulta en campos de velocidad

H(div)-conformes y libres de divergencia punto a punto. Se demuestra además que este esquema

conserva momento, es estable en enerǵıa y robusto respecto a la presión. El estudio de esquemas

numéricos eficientes para la aproximación de las soluciones de los problemas presentados en esta tesis,

de forma que se mantengan las buenas propiedades del método actualmente usado, es un tema que

queremos abordar en investigaciones futuras.
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Modelos tempranos para el proceso de clarificación con y sin efectos de agitación se revisan en

[152], donde se emplean configuraciones principalmente axisimétricas. Más recientemente, un modelo

bastante completo puede encontrarse en [65], deonde los autores acoplan las ecuaciones de momento

para el flujo de fluido con las ecuaciones de transporte para sólidos. Se utiliza el modelo realizable k−ε
junto con funciones escalables de pared, para modelar la turbulencia. La remoción de lodo del piso del

clarificador por medio de una rastra rotativa se modela a través de un término de sifón rotativo añadido

al lado derecho de las ecuaciones de transporte. Referencias adicionales, relacionadas con el mecanismo

de rastra y sus aplicaciones el procesamiento de minerales incluyen [61,84,89,90,121,147,156,167].

En el modelo estudiado en el Caṕıtulo 4, también incluimos términos de arrastre apropiados,

similares a los utilizados en [161], que capturan los efectos indirectos de la rastra en los patrones de

flotación. Esto consiste básicamente en penalizar el movimiento de la estructura y calcular (o como

realizamos aqúı, simplemente imponer) su velocidad y su configuración de una manera adecuada. Las

técnicas de penalización de un volumen pueden encontrarse frecuentemente en la literatura relevante.

Ver por ejemplo [108], donde los autores proponen métodos de alto orden para la modelación de

obstáculos sólidos como estructuras porosas con una permeabilidad que tiende a cero, el flujo se

maneja en un dominio unificado, y el momento del obstáculo se obtiene simplemente d la integración

de la velocidad penalizada sobe el dominio del obstáculo. Otros enfoques numéricos que pueden ser

utilizados para incorporar la interacción entre la rastra y el flujo incluyen los métodos de elementos

finitos de frontera inmersa y dominio ficticio [35], métodos de conjunto de nivel y sus variantes [69,135],

otros esquemas de elementos finitos no ajustados [22]; o formulaciones basadas en remodelar, tales como

el esquema arbitrario Lagrangiano-Euleriano (ALE) [164].

Un modelo de Boussinesq con viscosidad no lineal dependiente de la temperatura se propone en [4].

Los autores analizan esquemas numéricos basados en métodos de elementos finitos de primer y segundo

orden y derivan estimaciones de error a priori óptimas para cada esquema. Un modelo relacionado de

Boussinesq para cambio de fase se presenta en [163], donde un método de elementos finitos de segundo

orden para la formulación primal del problema en términos de la velocidad, temperatura y presión se

construye y se discuten las condiciones para su estabilidad.

El acoplamiento de sistemas de advección-difusión-reaccion con las ecuaciones de Brinkman en

su formulación de velocidad-vorticidad-presión, se estudia en [120]. Las ecuaciones se discretizan en

espacion usando métodos de elementos finitos en mallas no estructuradas, mientras que la integración

en tiempo se basa en una estrategia de partición de operado que usa diferencias en las escalas entre los

procesos de advección, difusión y reacción. Los autores comparan varias estrategias de acoplamiento

en términos de usos de memoria, número de iteraciones, velocidad de cómputo y dinámica de la norma

de enerǵıa.

Con respecto a nuestro modelo axisimétrico aplicado al estudio de equipo de filtración de agua,

mencionamos que varios estudios han tratado la formulación axisimétrica de flujos de Stokes y Navier-

Stokes, incluyendo la discretización empleando métodos espectrales, mortero, y elementos finitos es-

tabilizados (ver por ejemplo [18,26,27,31,72], y las referencias citadas en estos trabajos). Más recien-

temente, se estudiaron formulaciones mixtas de flujos de Brinkman incluyen el análisis numérico de

aproximaciones de elementos finitos (FE). Anaya et al. [15] presentó una aproximación aumentada de

elementos finitos para las ecuaciones de Brinkman desarrollada como una extensión de la formulación

basada en vorticidad para el problema de Stokes. Un modelo relacionado fue recientemente presentado
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en [16] e incorpora una función de corriente y una formulación de vorticidad para el flujo axisimétri-

co de Brinkman, además se emplea una aproximación mixta conforme de elementos finitos, para la

solución numérica del problema.

El análisis numérico de problemas de flujo axisimétrico de Darcy y Stokes-Darcy usando elementos

finitos de Raviart-Thomas (RT) y Brezzi-Douglas-Marini (BDM) fue presentado en [71,72]. En [71], el

autor establece la estabilidad de las aproximaciones RT y BDM para el problema de flujo axisimétrico

de Darcy, extendiendo el criterio de Stenberg, y además se derivan estimaciones de error a priori.

Otras contribuciones al diseño de métodos para formulaciones axisimétricas de problemas de flujo

y transporte acoplados incluyen [12, 55]. Además, en [47] se propone un esquema semi-discreto de

volúmenes-elementos finitos discontinuos (FVE) y se discute la existencia y unicidad de soluciones para

los casos no lineal continuo y su contraparte semi-discreta. Un método FVE también se propone en [55]

para discretizar la ecuación de Stokes para el flujo acoplado con una ecuación parabólica modelando

sedimentación. El método se basa en una formulación de Galerkin discontinuo estabilizado para el

campo de concentración, y un par estabilizado multi-escala de elementos P1-P1 para la velocidad y

presión, respectivamente. Una formulación variacional mixta del flujo de Darcy-Forchheimer acoplado

con una ecuación de enerǵıa es semi-discretizado en [12] usando elementos finitos de Raviart-Thomas

y elementos constantes por pedazos para la presión, también se establecen estimaciones de error a

posteriori.

La aplicación tecnológica detrás del modelos de los filtros de agua, se remonta a la observación de que

es posible remover arsénico de agua, haciéndola circular a través de suelo de laterita enriquecido con

hierro [131,132]. El arsénico se remueve a través de un proceso de adsorción, el cuál se puede mejorar

por medio del tratamiento qúımico de la laterita para incrementar su porosidad y área superficial,

aumentando la eficiencia de adsorción [130]. Claramente, la formulación de modelos matemáticos

precisos para estos filtros, además de su eficiencia computacional, ayudaŕıa de forma importante al

desarrollo y mejora de estos filtros y a desarrollar gúıas para su operación segura. El desarrollo y

análisis de estos modelos forma la base del trabajo [134], donde los autores examinan la remoción de

un contaminante (arsénico, caso m = 1 en nuestra notación) en un filtro ciĺındrico con medio uniforme.

Los autores utilizan un ecuación de Darcy-Brinkman, acoplado con la ecuación de advección-difusión-

adsorción para el modelamiento del flujo de agua contaminada a través del filtro y la remoción de

arsénico por adsorción. En la práctica, sin embargo, existen m > 1 contaminantes, los cual induce a

usar filtros consistentes de múltiples (hasta m) capas con el fin de permitir su remoción. En este trabajo

nosotros intentamos estudiar el proceso de filtración en filtros de agua basados en suelos consistentes

de dos capas de medios distintos, en la presencia de múltiples especies contaminantes.

Problemas con una naturaleza similar abundan en la literatura. Por ejemplo, [86] considera la solu-

ción numérica, v́ıa un método de volúmenes finitos, de un problema doble-difusivo dentro de un medio

poroso. La publicación [150] considera un problema doble-difusivo similar, sin embargo, a semejanza

del filtro en capas que proponemos, los autores permiten la posibilidad de medio poroso estratificado

heterogéneo. Mientras muchos estudios concernientes a problemas doble-difusivos consideran dominios

cerrados llenos con medio poroso, un gran número de aplicaciones, tales como nuestro filtro, presentan

confinamientos parciales con aberturas o infiltraciones. El art́ıculo [154] introduce esta propiedad, con

la adición de ’puertos libres’ al dominio de su modelo. Considerando otras variaciones potenciales,

los autores de [166] extienden el problema doble-difusivo usual con un proceso de reacción de primer
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orden entre la especie que se difunde y el fluido. Este proceso de reacción necesita adicionalmente la

adición de un término de sifón a la ecuación que gobierna la concentración de especies y que juega un

rol similar al lado derecho de (5.1c).

1.5 Contribuciones de esta tesis

En el Caṕıtulo 2, extendemos el análisis de una clase de esquemas de entroṕıa estable para la

solución numérica de problemas no lineales de valor inicial, recientemente propuestos en [S. Jerez, C.

Parés, Entropy stable schemes for degenerate convection-diffusion equations, SIAM J. Numer. Anal.

vol. 55 (2017) pp. 240–264]. Como nueva contribución, demostramos, primero, que estos esquemas

pueden extenderse de forma natular a problemas de valores iniciales y de frontera con condiciones de

borde de flujo cero en una dimensión espacial, incluyendo una cota expĺıcita para el crecimiento de la

entroṕıa total. Segundo, mostramos que las suposiciones del modelo se satisface para ciertos modelos

de flujo cinemático multiclase corregidos por difusividad de tamaño arbitrario, que describen el flujo

vehicular o la sedimentación de dispersiones y emulsiones. Los contenidos de este caṕıtulo dieron origen

a la siguiente publicación:

[48] Bürger, R., Méndez, P. E., Parés, C., On entropy stable schemes for degenerate para-

bolic multispecies kinematic flow models. Numer Methods Partial Differential Eq. 1–

26; (2019)

En el Caṕıtulo 3 proponemos un modelo para flujos doble-difusivos, que incluye la posibilidad de

difusión cruzada. Las principales diferencias entre el análisis de métodos para las ecuaciones clásicas

de Boussinesq y las ecuaciones doble-difusivas están, por supuesto, en la naturaleza vectorial de las

cantidades a difundirse mientras que en la formulación clásica de Boussinesq solo se considera una

cantidad escalar (por ejemplo temperatura). Algunos de los argumentos relacionados con el análisis de

existencia y unicidad de soluciones, en particular aquellos relacionados con el manejo de condiciones

de frontera tipo Dirichlet no homogéneas por argumentos de lifting [125, 137], se trasladan casi sin

cambios del caso escalar al vectorial. Sin embargo, la forma bilineal asociada al término de difusión

debe ser coerciva de forma que se garantice la estabilidad. Este requerimiento, a su vez, impone

restricciones sobre la elección de la matriz de difusión D; esta matriz debe ser positiva definida (aunque

no necesariamente simétrica). Estas propiedades son esenciales para la prueba de existencia de una

solución discreta. A pesar de esto, aún es posible estudiar efectos de difusión cruzada, tales como

los de Soret y Dufour. Adicionalmente, formulamos una discretización H(div)-conforme modificando

métodos conocidos para flujos de Brinkman. Discutimos, la existencia de soluciones para la formulación

de Galerkin y derivamos de forma rigurosa propiedades de convergencia en espacio. Los contenidos de

este caṕıtulo dieron lugar a la siguiente publicación:

[49] Bürger, R., Méndez, P.E., Ruiz-Baier, R., On H(div)-conforming methods for double-

diffusion equations in porous media. SIAM Journal on Numerical Analysis, 57, 1318–

1343 (2019)

En el Caṕıtulo 4 introducimos un nuevo modelo para la simulación de sedimentación-consolidación

de part́ıculas sólidas en un fluido incompresible bajo los efectos de la gravedad y en presencia de un
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brazo rotatorio que gira lentamente asistiendo con la remoción de sedimento del fondo de unidades

de clarificación/espesamiento. El modelo gobernante es ahora un problema de valores iniciales y de

frontera para las ecuaciones de Navier-Stokes describiendo el flujo de una mezcla acoplados con ecua-

ciones no lineales parabólicas describiendo la fracción en volumen de sólidos. La novedad de nuestro

tratamiento consiste en la inclusión de términos que modelan la influencia del movimiento de la rastra

en el balance de momento y en la remoción de sólidos. Además, adaptamos técnicas del método de

elementos finitos de frontera inmersa (ver v.g. [34]) para el análisis y aproximación numérica de esos

términos. Derivamos rigurosamente las propiedades de convergencia espacio-temporal del método y

demostramos estas propiedades a través de varios ensayos computacionales. Los contenidos de este

caṕıtulo dieron origen a la siguiente pre-publicación:

[50] Bürger, R., Méndez, P.E., Ruiz-Baier, R., A second-order H(div)-conforming sche-

me for the simulation of sedimentation and flow in circular clarifiers with a rotating rake.

Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Preprint 2019-39, Uni-

versidad de Concepción, Chile 2019.

En el Caṕıtulo 5 extendemos el modelo previo a un dominio axisimétrico con aplicación expĺıcita

al modelado de equipos de filtración basados en suelos. Además, derivamos estimaciones de errores a

priori óptimas para el esquema numérico de segundo orden H(div)-conforme en tiempo y espacio. La

principal dificultad en este caso, está dada por el análisis discreto donde es necesario verificar que cada

término este acotado de forma óptima en los espacios con peso correspondientes. Algunos ejemplos

numéricos ilustran las propiedades principales del problema y del esquema numérico. Los contenidos

de este caṕıtulo dieron origen a la siguiente pre-publicación:

[23] Baird, G., Bürger, R., Méndez, P.E., Ruiz-Baier, R., Second-order schemes for

axisymmetric Navier-Stokes-Brinkman and transport equations modelling water filters.

Centro de Investigación en Ingenieŕıa Matemática (CI2MA), Preprint 2019-23, Uni-

versidad de Concepción, Chile 2019.

1.6 Notación

Desde el Caṕıtulo 3 y en adelante consideraremos la siguiente notación: Sea Ω un dominio acotado

y abierto en Rd, d = 2, 3 con frontera Lipschitz Γ = ∂Ω. Denotamos por Lp(Ω) y W r,p(Ω) los espacios

usuales de Lebesgue y Sobolev con sus normas respectivas ‖·‖Lp(Ω) y ‖·‖W r,p(Ω). Si p = 2 escribimos

Hr(Ω) en lugar de W r,p(Ω), y denotamos la norma correspondiente por ‖·‖r,Ω, (‖·‖Ω para H0(Ω) =

L2(Ω)). El espacio L2
0(Ω) denota la restricción de L2(Ω) a funciones con valor medio cero sobre Ω.

Para r ≥ 0, escribimos la seminorma Hr como |·|r,Ω y denotamos por (·, ·)Ω el producto interior usual

en L2(Ω). Adicionalmente, H1/2(Γ ) es el espacio de trazas de funciones H1(Ω) y H−1/2(Γ ) es su dual.

Los espacios de funciones con valores vectoriales (en dimensión d) se denotan en negrita, y denotamos

por L sus correspondientes contrapartes tensoriales. A continuación, denotamos por Ls(0, T ;Wm,p(Ω))
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el espacio de Banach de todas las funciones Ls-integrables de [0, T ] en Wm,p(Ω), con norma

‖v‖Ls(0,T ;Wm,p(Ω)) =


(∫ T

0 ‖v(t)‖sWm,p(Ω) dt
)1/s

if 1 ≤ s <∞,

esssupt∈[0,T ]‖v(t)‖Wm,p(Ω) if s =∞.

Denotamos por Th una partición regular de Ω compuesta por elementos triangulares K en dos di-

mensiones, tetrahedros en tres dimensiones de diámetro hK . El tamaño de malla será denotado por

h = máx{hK , K ∈ Th}, y para cualquier cara interior e en Eh (el conjunto de caras en Th), etiqueta-

remos como K− y K+ sus elementos adyacentes, mientras he corresponderá al diámetro máximo de

la cara.

Asumimos que v, w con campos escalares y vectoriales suaves definidos sobre Th. Entonces, por

(v±, w±) denotaremos las trazas de (v, w) en e correspondiendo a las extenciones desde los interiores

de los elementos K+ y K−, respectivamente. Sea ne el vector normal unitario exterior a e en K,

definimos la componente tangencial de u en cada cara e como uτ = u− (u · ne)ne. Introducimos los

operadores promedio {{·}} y salto J·K como sigue:

{{v}} = (v− + v+)/2, {{w}} = (w− + w+)/2,

JvK = (v− − v+), JwK = (w− − w+),

mientras que para los saltos y promedios en las fronteras adoptamos la definición {{v}} = JvK = v, y

{{w}} = JwK = w. Además, usaremos el śımbolo ∇h para denotar el operador de gradiente a trozos y εh
para denotar su contraparte simétrica. Finalmente, dado un entero positivo k y un conjunto O ⊂ Rn,

Pk(O) corresponde al espacio de polinomios de grado ≤ k definidos en O.



CHAPTER 2

On entropy stable schemes for degenerate parabolic multispecies

kinematic flow models

In this chapter we analyse entropy stable schemes for the numerical solution of initial value

problems of nonlinear, possibly strongly degenerate systems of convection-diffusion equations,

recently proposed in [S. Jerez, C. Parés, Entropy stable schemes for degenerate convection-

diffusion equations, SIAM J. Numer. Anal. vol. 55 (2017) pp. 240–264]. These schemes extend

the theoretical framework by [E. Tadmor, The numerical viscosity of entropy stable schemes

for systems of conservation laws. I, Math. Comp. vol. 49 (1987) pp. 91–103] to convection-

diffusion systems. As a new contribution, we demonstrate, firstly, that these schemes can

naturally be extended to initial-boundary value problems with zero-flux boundary conditions in

one space dimension, including an explicit bound on the growth of the total entropy. Secondly, it

is shown that these assumptions are satisfied by certain diffusively corrected multiclass kinematic

flow models of arbitrary size that describe traffic flow or the settling of dispersions and emulsions,

where the latter application gives rise to zero-flux boundary conditions. Numerical examples

illustrate the behavior and accuracy of entropy stable schemes for these applications.

2.1 Introduction

2.1.1 Scope

This chapter concerns numerical schemes for systems of degenerate convection-diffusion equations

in one space dimension of the form

ut + f(u)x =
(
K(u)ux

)
x
, x ∈ I ⊂ R, t ∈ R+, (2.1)

where I = R or I is a bounded interval, u = (u1, . . . , uN )T : I×R+ → Ω ⊂ RN is the vector of unknown

functions of position x and time t, f = (f1, . . . , fN )T is a given flux vector, and K(u) ∈ RN×N is

a positive semidefinite diffusion matrix defined in Ω. We allow that K(u) = 0 on a set of u-values

of positive N -dimensional measure, so (2.1) is, in general, strongly degenerate. Equation (2.1) is

equipped with the initial condition

u(x, 0) = u0(x), x ∈ I; (2.2)

18
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if I is bounded, that is I = [0, L] with L > 0, then we impose, in addition, the zero-flux boundary

condition (
f(u)−K(u)ux

)∣∣
x=0

= 0,
(
f(u)−K(u)ux

)∣∣
x=L

= 0. (2.3)

For the problem (2.1), (2.2), whose solutions are in general discontinuous, Jerez and Parés [99] de-

vised so-called entropy stable finite difference schemes. These schemes extend the concept of entropy

stable methods for systems of conservation laws due to Tadmor [153]. Such schemes are obtained by

adding an adequate amount of artificial dissipation to an entropy conservative method so that the

entropy satisfies a system of differential equalities arising from a spatially discrete but continuous in

time entropy inequality. Entropy conservative methods capture correctly the appearance and prop-

agation of shocks but they may may produce oscillations around shocks, which are handled by the

artificial dissipation. It was shown in [99] that a necessary condition for such a method to be feasible

for (2.1) is that the first-order system of conservation laws

ut + f(u)x = 0 (2.4)

has a convex entropy function η = η(u) and entropy flux g = g(u), for which the entropy inequality

η(u)t + g(u)x ≤ 0 (2.5)

is valid (in the sense of distributions) for solutions of (2.4) [118]. It is well known that for N ≥ 3, the

existence of an entropy pair (η, g) for the first-order system (2.4) is an exceptional property since the

gradient of g, denoted by gu and which we assume to be a column vector, the gradient of the entropy

function, ηu, and the Jacobian of f , denoted by fu, must satisfy the compatibility condition

gT
u = ηT

ufu. (2.6)

Such an entropy pair exists, however, in the exceptional case fu is symmetrizable. In fact, the existence

of an entropy pair and the computation of an entropy-conservative flux is a general limitation for the

application of entropy-stable methods in the context of systems of conservation laws. Nevertheless,

there are many real-world models for which entropy pairs and entropy conservative numerical fluxes

are available, including Euler and related systems, shallow water and related systems, and some

multiphase fluid models (see, e.g., [58, 75–77, 94]). In fact, an application to the shallow water model

was also considered in [99]. To highlight the principal advantage of entropy stable schemes for (2.1),

we may follow the reasoning of [77] (which is expressed in similar form in many other works) advanced

for the first-order system (2.4). Namely, convergence results for numerical schemes (even first-order

schemes) approximating solutions of (2.4) are difficult to obtain since a global well-posedness theory

for (2.4) is currently not available. Thus it is reasonable to require that numerical schemes be entropy

stable, i.e., satisfy a discrete version of the entropy inequality (2.5). In particular, such a scheme

satisfies a discrete form of a bound of the total entropy (as will be specified in Section 2.2.1 below

in the context of the more general equation (2.1)), and will be stable in a suitable Lp space. As

Fjordholm et al. [77] further point out, no entropy stability results for high-order numerical schemes

for approximating (2.4), based on the total variation diminishing (TVD), essentially non-oscillatory

(ENO), weighted essentially oscillatory (WENO), and discontinuous Galerkin (DG) procedures are

available (however, entropy stable streamline diffusion finite element methods were proposed in [97]).
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This underlines the interest in the construction of schemes that have entropy stability “built in”, which

will be achieved in this work for the initial(-boundary) value problems (2.1), (2.2) and (2.1)–(2.3).

As was derived in [99], the specific limitation in the case of problems with a diffusion term is the

additional requirement of positive definiteness of the matrix K(u)η−1
u,u, where η−1

u,u is the inverse of the

Hessian ηu,u of η(u). Thus, the class of convection-diffusion problems to which the scheme developed

in [99] can actually be applied seems fairly narrow, but it does include a class of diffusively corrected

applicative kinematic flow models [38, 53, 54], for instance of vehicular traffic or of polydisperse sedi-

mentation. These models can be expressed by (2.1) on a bounded interval I with an arbitrarily large

number N of species. It is therefore the purpose of this chapter to demonstrate that the entropy stable

schemes of [99] can successfully be applied to these models, under modifications due to the presence

of boundary conditions but maintaining the principal property of entropy stability.

2.1.2 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 2.2 we summarize from [99] the

construction of entropy stable schemes for (2.1) and extend the discussion to the zero-flux initial-

boundary value problem (IBVP) (2.1)–(2.3). Specifically, we discuss in Section 2.2.1 properties of the

continuous problem, and motivate a global entropy inequality for solutions of (2.1)–(2.3). With the

goal to design numerical methods for (2.1), we treat in Section 2.2.2 the spatial discretisation of that

equation in the interior of the domain and derive an entropy-conservative numerical flux. The result-

ing semi-discrete scheme is equipped with a small amount of extra viscosity to prevent oscillations,

as is detailed in Section 2.2.3. Then, in Section 2.2.4, we outline the numerical scheme that arises

from the previous discussion if we wish to solve the zero-flux IBVP (2.1)–(2.3). Results include a

time-continuous, spatially discrete entropy inequality. The treatment of Sections 2.2.2 to 2.2.4 pre-

supposes that an entropy conservative numerical flux is given, for which we provide in Section 2.2.5 a

sample definition that follows Tadmor [153], and which is utilized in the numerical examples. In Sec-

tion 2.3 we outline two applicative models to which the entropy stable schemes are applied, namely in

Section 2.3.1 a diffusively corrected multi-class version of the well-known Lighthill-Whitham-Richards

model (DCMCLWR model) that gives rise to the initial value problem (2.1), (2.2), and in Section 2.3.2

a model of settling of dispersions of droplets and colloidal particles that motivates the IBVP (2.1)–

(2.3). Both problems are introduced along with the corresponding entropy conservative numerical

flux. Numerical examples for both applicative models are introduced in Section 2.4, starting with

a description of the time discretisation and the computation of approximate numerical errors for all

cases (in Section 2.4.1). Examples 2.1 to 2.4 (Sections 2.4.2 to 2.4.5) deal with the DCMCLWR traffic

model, and Examples 2.5 and 2.6 (Sections 2.4.6 and 2.4.7) are related to the settling model.
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2.2 Entropy stable schemes

2.2.1 Preliminaries

If there exists a vector-valued function K : Ω → RN such that Ku = K, where Ku denotes the

Jacobian of the function K, then the system (2.1) can be written in the form

ut + f(u)x = K(u)xx.

This is always the case for scalar equations with K(u) = K(u) if we define

K(u) :=

∫ u

0
K(ξ) dξ.

Let us suppose that the system of conservation laws obtained by dropping the viscous term, i.e., (2.4),

is equipped with an entropy pair (η, g) consisting of an entropy function η and an entropy flux g such

that η, g : Ω → R, η is strictly convex, and (2.6) holds. We then define the so-called entropy variables

v as in [116], namely v(u) := ηu(u). Then, in order to study the evolution of the entropy for a solution

of (2.1), let us first express the diffusion term in terms of the entropy variables. Clearly,(
K(u)ux

)
x

=
(
K̂(v)vx

)
x
, (2.7)

where we define

K̂(v) := Kη−1
u,u, (2.8)

where ηu,u is the Hessian matrix of η. The matrix on the left-hand side of (2.7) is evaluated at

u = η−1
u (v). Once the diffusion term is rewritten, we multiply (2.1) by the vector of entropy variables

v to obtain

0 = vTut + vTfu(u)ux − vT
(
K̂(v)vx

)
x

= η(u)t + g(u)x −
(
vTK̂(v)vx

)
x

+ vT
x K̂(v)vx.

Therefore, if the matrix K̂ is positive semidefinite, i.e.

wTK̂(v)w ≥ 0 for all w ∈ RN , (2.9)

the following entropy inequality is satisfied:

η(u)t + g(u)x −
(
vTK̂(v)vx

)
x
≤ 0. (2.10)

In the case that I = R and we consider the initial value problem (2.1), (2.2) under the additional

assumption that u→ 0 when x→ ±∞, then the total entropy decreases, i.e.,

d

dt

∫
R
η(u) dx ≤ 0.

(This also includes the case of a finite interval I with solution u that is compactly supported in I

at all times.) On the other hand, considering the IBVP (2.1)–(2.3) and assuming that u and v have

well-defined traces at the boundaries x = 0 and x = L, which we denote by u(0, t) and u(L, t), as well
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as that the boundary condition (2.3) is well defined in the sense of traces, we can argue as follows.

Integrating (2.10) over I, utilizing that K̂(v)vx = K(u)ux and the boundary condition (2.3), we get

d

dt

∫
R
η(u) dx+ g

(
u(L, t)

)
− g
(
u(0, t)

)
≤
(
vTK̂(v)vx

)∣∣
x=L
−
(
vTK̂(v)vx

)∣∣
x=0

=
(
vTK(u)ux

)∣∣
x=L
−
(
vTK(u)ux

)∣∣
x=0

= v(L, t)Tf
(
u(L, t)

)
− v(0, t)Tf

(
u(0, t)

)
.

In terms of the so-called entropy potential function ϕ := vTf − g, we get

d

dt

∫
R
η(u) dx ≤ ϕ

(
u(L, t)

)
− ϕ

(
u(0, t)

)
. (2.11)

Note that the function ϕ, and therefore the right-hand side of (2.11), do not depend on the particular

choice of the diffusion matrix K(u).

Remark 2.1. We emphasize that the requirement that the matrix K̂ defined by (2.8) should be positive

semidefinite is the most severe restriction of the applicability of the approach. In fact, for a general

positive semidefinite matrix K = K(u), the product Kη−1
u,u is, in general, not positive semidefinite

unless K and η−1
u,u or equivalently, K and ηu,u possess the same set of eigenvectors. That latter

property is, however, valid if the diffusion term can be expressed as K(u) = k(u)I, where k(u) ≥ 0 is

a scalar function and I is the N ×N identity matrix. Then

K̂(v) = k(u)η−1
u,u (2.12)

is indeed positive semidefinite, since ηu,u is positive definite. Therefore, in this case, (2.10) holds.

2.2.2 Entropy conservative numerical method

We first consider the case of the initial-value problem (2.1), (2.2) on a standard spatial mesh defined

by cells Ij := [xj−1, xj), where xj = j∆x, ∆x = L/M for some integer M , and uj(t) denotes the cell

average of u(·, t) on Ij . We will first discretize (2.1) in the interior of the computational domain, and

handle the boundary conditions in Section 2.2.4. To this end, we first consider an entropy-conservative

(EC) numerical flux Fj+1/2, i.e. a numerical flux satisfying

JvKT
j+1/2Fj+1/2 = JϕKj+1/2, (2.13)

where we employ the following notation to denote the average and jump of any variable ω:

JωKj+1/2 := ωj+1 − ωj , {{ω}}j+1/2 := (ωj + ωj+1)/2.

Tadmor [153] showed that if the numerical flux Fj+1/2 satisfies (2.13), then the solution of the semidis-

crete method for (2.4),

u′j(t) = − 1

∆x
(Fj+1/2 − Fj−1/2),

where ·′ ≡ d · /dt, satisfies the equality

η(u)′j(t) = − 1

∆x
(Gj+1/2 −Gj−1/2)
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for some numerical entropy flux Gj+1/2 consistent with g. Once an EC numerical flux (for (2.4)) has

been chosen, we propose the following semidiscrete method for (2.1):

u′j(t) = − 1

∆x

(
Fj+1/2 − Fj−1/2

)
+

1

∆x2

(
K̂j+1/2JvKj+1/2 − K̂j−1/2JvKj−1/2

)
, (2.14)

where

K̂j+1/2 = K̂({{v}}j+1/2). (2.15)

Let us show that a semidiscrete counterpart of (2.10) is satisfied. Multiplying (2.14) from the left by

vT
j yields

η(u)′j(t) = − 1

∆x
vT
j (Fj+1/2 − Fj−1/2) +

1

∆x2
vT
j

(
K̂j+1/2JvKj+1/2 − K̂j−1/2JvKj−1/2

)
.

The following identities are obtained by straightforward algebraic manipulations:

vT
j Fj+1/2 = {{v}}Tj+1/2Fj+1/2 −

1

2
JvKT

j+1/2Fj+1/2,

vT
j Fj−1/2 = {{v}}Tj−1/2Fj−1/2 +

1

2
JvKT

j−1/2Fj−1/2,

vT
j K̂j+1/2JvKj+1/2 = {{v}}Tj+1/2K̂j+1/2JvKj+1/2 −

1

2
JvKT

j+1/2K̂j+1/2JvKj+1/2,

vT
j K̂j−1/2JvKj−1/2 = {{v}}Tj−1/2K̂j−1/2JvKj−1/2 +

1

2
JvKT

j−1/2K̂j−1/2JvKj−1/2.

(2.16)

From (2.13) we now conclude that

vT
j

(
Fj+1/2 − Fj−1/2

)
= {{v}}Tj+1/2Fj+1/2 − {{v}}Tj−1/2Fj−1/2 −

1

2

(
JϕKj+1/2 + JϕKj−1/2

)
= {{v}}Tj+1/2Fj+1/2 − {{v}}Tj−1/2Fj−1/2 + {{g}}j+1/2 − {{g}}j−1/2

−
{{
vTf

}}
j+1/2

+
{{
vTf

}}
j−1/2

,

while in light of (2.9) we get

vT
j

(
K̂j+1/2JvKj+1/2 − K̂j−1/2JvKj−1/2

)
≤ {{v}}Tj+1/2K̂j+1/2JvKj+1/2 − {{v}}Tj−1/2K̂j−1/2JvKj−1/2.

(2.17)

We arrive at the semi-discrete entropy inequality

η(u)′j(t) +
1

∆x
(Gj+1/2 −Gj−1/2)

− 1

∆x2

(
{{v}}Tj+1/2K̂j+1/2JvKj+1/2 − {{v}}Tj−1/2K̂j−1/2JvKj−1/2

)
≤ 0,

(2.18)

where the following numerical entropy flux is obviously consistent with (2.10):

Gj+1/2 = {{g}}j+1/2 + {{v}}Tj+1/2Fj+1/2 −
{{
vTf

}}
j+1/2

. (2.19)
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2.2.3 Additional numerical diffusion

In regions where the diffusion matrix K vanishes, the numerical methods (2.14) or (2.29) reduce

to entropy conservative methods whose solutions may exhibit strong oscillations near discontinuities.

So to prevent these oscillations some extra numerical diffusion has to be added, either in conservative

variables or in entropy variables. Hence the complete scheme is given by

u′j(t) = − 1

∆x

(
Fj+1/2 − Fj−1/2

)
+

1

∆x2

(
K̂j+1/2JvKj+1/2 − K̂j−1/2JvKj−1/2

)
+

ε

∆x2

(
JvKj+1/2 − JvKj−1/2

)
,

(2.20)

where we choose the extra viscosity

ε = α∆x (2.21)

with a suitable constant α > 0.

It can be checked easily that the numerical method (2.20) (with the extra viscosity given by (2.21))

satisfies an entropy inequality similar to (2.18) if the numerical entropy flux is replaced by

G̃j+1/2 = Gj+1/2 − α{{v}}Tj+1/2JvKj+1/2, (2.22)

with Gj+1/2 given by (2.19).

2.2.4 Discretisation of the initial-boundary value problem with zero-flux bound-

ary conditions

The zero-flux IBVP (2.1)–(2.3) is discretized in space by the following variant of (2.20):

u′j(t) = − 1

∆x
(J j+1/2 − J j−1/2), j = 1, . . . ,M, (2.23)

where we implement (2.3) by setting the total numerical flux to zero at the boundaries,i.e., we utilize

J j+1/2 =

Fj+1/2 −
1

∆x

(
(K̂ + α∆xI)JvKj+1/2

)
for j = 1, . . . ,M − 1,

0 for j = 0 and j = M .
(2.24)

Then the scheme (2.23), (2.24) satisfies the semi-discrete entropy inequality (2.18) for j = 2, . . . ,M−1.

On the other hand, for j = 1 we obtain by calculations similar to (2.16)–(2.17), and utilizing (2.13)

for j = 1, from

η(u)′1(t) +
1

∆x
vT

1 F3/2 −
1

∆x2
vT

1 K̂3/2JvK3/2 = 0

the inequality

η(u)′1(t) +
1

∆x

(
{{v}}T3/2F3/2 −

1

2
JϕK3/2

)
− 1

∆x2
{{v}}T3/2K̂3/2JvK3/2 ≤ 0.
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A straightforward calculation and taking into account (2.22) for j = 1 reveal that

{{v}}T3/2F3/2 −
1

2
JϕK3/2 = G̃3/2 − g1 + vT

1 f1 = G̃3/2 + ϕ
(
u1(t)

)
,

hence we obtain

η(u)′1(t) +
1

∆x

(
G̃3/2 + ϕ

(
u1(t)

))
− 1

∆x2
{{v}}T3/2K̂3/2JvK3/2 ≤ 0. (2.25)

For j = M we deduce by analogous arguments from

η(u)′M (t)− 1

∆x
vT
MFM−1/2 +

1

∆x2
vT
MK̂M−1/2JvKM−1/2 = 0

the inequality

η(u)′M (t)− 1

∆x

(
G̃M−1/2 + ϕ

(
uM (t)

))
+

1

∆x2
{{v}}TM−1/2K̂M−1/2JvKM−1/2 ≤ 0. (2.26)

Let us now define

η(u)tot(t) := ∆x
M∑
j=1

η(u)j(t).

Then, summing (2.25), (2.18) for j = 2, . . . ,M − 1, and (2.26), and multiplying the result by ∆x, we

obtain the inequality

η(u)′tot(t) ≤ ϕ
(
uM (t)

)
− ϕ

(
u1(t)

)
, (2.27)

which is a discrete analogue of (2.11).

2.2.5 Construction of an entropy conservative (EC) numerical flux

Following Tadmor [153], we may obtain an entropy conservative (EC) numerical flux by solving the

following integral:

Fj+1/2 =

∫ 1

0
f
(
u (vj + s (vj+1 − vj))

)
ds. (2.28)

Remark 2.2. An alternative way of constructing entropy stable schemes could be the following. Sup-

pose that, given uL and uR, there exists an approximation of ηu,u, denoted by H(uL,uR), that satisfies

the Roe-like property vR − vL = H(uL,uR)(uR − uL). We may then consider the numerical method

u′j(t) = − 1

∆x

(
Fj+1/2 − Fj−1/2

)
+

1

∆x2

(
Kj+1/2JuKj+1/2 −Kj−1/2JuKj−1/2

)
, (2.29)

where Kj+1/2 = K̂j+1/2Hj+1/2. Here, K̂j+1/2 is given by (2.15) and Hj+1/2 = H(uj ,uj+1). The

equality

Kj+1/2JuKj+1/2 = K̂j+1/2JvKj+1/2

allows one to prove the entropy inequality (2.18) reasoning as in the previous case.



2.3. Applicative models 26

2.3 Applicative models

2.3.1 A diffusively corrected multi-class traffic model (DCMCLWR model)

We consider the system (2.1) with a flux function defined by

f(u) = V(u)
(
V max

1 u1, . . . , V
max
N uN )T, (2.30)

where V max
i is the preferential (maximum) velocity of species i (driver class i); u = u1 + · · · + uN is

the total density; and V is a hindrance function that is usually assumed to satisfy

V(0) = 1, V(umax) = 0, V ′(u) < 0 for 0 < u < umax,

where umax is a maximum density. We assume, furthermore, that V max
1 > V max

2 > . . . > V max
N .

Under these assumptions on f , the first-order system (2.4) corresponds to the multiclass extension,

introduced in [29, 162], of the well-known Lighthill-Whitham-Richards (LWR) single-class kinematic

traffic model [123,144]. An entropy pair (η, g) for this multiclass model is given by [30]

η(u) =

N∑
i=1

ui(log(ui)− 1)

V max
i

, g(u) = V(u)

N∑
i=1

ui log(ui)− Ṽ(u), (2.31)

where Ṽ(u) is any primitive of V(u). Using v(u) := ηu(u) (see Section 2.2.1) we then obtain the

entropy variables v = (v1, . . . , vN )T given by

vi =
log(ui)

V max
i

⇔ ui = exp(V max
i vi), i = 1, . . . , N.

In addition, the following notation will be used:

v :=
N∑
i=1

exp(V max
i vi).

Notice that the transformation u → v is one-to-one from (0,∞)N to RN , but is not defined when

ui = 0. Now we associate the behavior of drivers with an anticipation distance Lmin. Then the reaction

of a driver at (x, t) depends on u(x+ Lmin, t). Using a Taylor expansion of V(u(x+ Lmin, t)) around

u(x, t), we obtain

V
(
u(x+ Lmin, t)

)
= V(u) + V ′(u)(Lmin∂xu) +O(L2

min),

where all quantities on the right-hand side are evaluated at (x, t). Neglecting the O(L2
min) term and

inserting the remaining expression into (2.1), we have

∂tui(x, t) + ∂x
(
ui(x, t)V

max
i V(u)

)
= ∂x

(
−LminV ′(u)ui(x, t)V

max
i ∂xu(x, t)

)
.

To further simplify the model we remove the dependencies on individual driver classes. Hence, we

propose to use the positive semidefinite diffusion matrix

K(u) = β(u)I, (2.32)
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where I denotes the N × N identity matrix and β(u) ≥ 0 is a scalar function. Since we define the

diffusion term based on the entropy variables form, following (2.12), the diffusion matrix is given by

K̂(v) = K(u)ηu,u(u)−1 = β(v) diag
(
V max

1 exp(V max
1 v1), . . . , V max

N exp(V max
N vN )

)
.

Consequently, in terms of the driver class densities we have

K̂j+1/2Jv(u)Kj+1/2

= K̂{{v(u)}}j+1/2Jv(u)Kj+1/2

= β

(
N∑
i=1

√
ui,jui,j+1

)
diag

(√
u1,ju1,j+1, . . . ,

√
uN,juN,j+1

) log u1,j+1 − log u1,j

...

log uN,j+1 − log uN,j

 .

(2.33)

In agreement with the definition above, the extra viscosity term is given by

ε

∆x2

(
Jv(u)Kj+1/2 − Jv(u)Kj−1/2

)
, (2.34)

where the ith component of Jv(u)Kj+1/2 is given by Jvi(u)Kj+1/2 = 1/V max
i (log(ui,j+1)− log(ui,j)).

On the other hand, we will use the hindrance function V(u) = 1 − u due to Greenshields [87].

Replacing this function in (2.30),from (2.28) we obtain that

Fj+1/2,i =

∫ 1

0
V

(
N∑
k=1

uk (vk,j + s (vk,j+1 − vk,j))

)
V max
i ui (vi,j + s (vi,j+1 − vi,j)) ds

=

∫ 1

0

(
1−

N∑
k=1

uk (vk,j + s (vk,j+1 − vj))

)
V max
i ui (vi,j + s (vi,j+1 − vi,j)) ds. (2.35)

Since

ui
(
vi,j + s(vi,j+1 − vi,j)

)
= exp

(
log(uj,i) + s

(
log(uj+1,i)− log(uj,i)

))
= uj,i

(
uj,i+1

uj,i

)s
,

we can rewrite (2.35) as

Fj+1/2,i =

∫ 1

0

(
1−

N∑
k=1

uj,k

(
uj,k+1

uj,k

)s)
vmax
i uj,i

(
uj,i+1

uj,i

)s
ds.

Evaluating the integral in closed form, we get the entropy stable numerical flux

Fj+1/2 = (Fj+1/2,1, . . . , Fj+1/2,N )T (2.36)

where

Fj+1/2,i = vmax
i

(
uj+1,i − uj,i

log(uj+1,i)− log(uj,i)
−

N∑
k=1

uj+1,kuj+1,i − uj,kuj,i
log(uj+1,kuj+1,i)− log(uj,kuj,i)

)
, i = 1, . . . , N.

(2.37)

Equations (2.33), (2.34) and (2.37) complete the definition of the semi-discrete numerical scheme

(2.20).
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Remark 2.3. In order to get rid of the singularity of the entropy variables when one of the terms in

the log differences in (2.37) is zero or the difference is zero, we use the following third-order approach:

log(u)− log(v) ≈ u− v
0.5(u+ v)

.

which means the logarithmic mean on (2.37), is replaced by

u− v
log(u)− log(v)

≈ 1

2
(u+ v)

when appropriate. An alternative stable numerical algorithm used to compute the logarithmic mean is

given in [98, App. B].

Remark 2.4. Although we considered other forms for the hindrance function, the integral (2.28)

is difficult to compute in general or can result in a numerically unstable flux [78]. Indeed equation

(2.28) results in a closed form only for a limited selection of functions, such as functions of the form

V(u) = (1 − u)n with n ∈ N. We are aware that the development of entropy stable flows for more

general forms of flow functions in multispecies kinematic flow models needs more extensive study.

2.3.2 Settling of dispersions of droplets and colloidal particles

The settling of a dispersion of droplets or that of a suspension of colloidal solid particles dispersed

in a fluid can be modeled by system of convection-diffusion equations of the form (2.1) for I = [0, L],

where t is time, x is depth, and u(x, t) is the vector of volume fractions of particles ui of class i,

i = 1, . . . , N [51]. The problem (2.1), (2.2) is completed with the zero-flux boundary condition (2.3).

Particles are characterized by their diameter di and settling velocities V1 > V2 > . . . > VN . More-

over, we assume that the flux vector f(u) has the form

f(u) = V(u)(V1u1, . . . , VNuN )T,

where again u := u1 + · · ·+ uN . According to [1], the Stokes terminal velocities Vi are given by

Vi =
(ρd − ρc)gd

2
i

18µc
, i = 1, . . . , N,

where ρ and µ, respectively, denote density and viscosity, and the indices d and c respectively, refer to

the disperse or continuous phase, and in this formula g = 9.81 m/s2 is the acceleration of gravity. A

common choice for the so-called hindered settling function V(u) is given by the Richardson-Zaki [144]

expression:

V(u) =

{
(1− u)nRZ if u ≤ 1,

0 if u > 1.

The diffusion matrix is again defined by (2.32), where β(u) = D0V(u) for some constant D0 > 0.

For the numerical examples we choose nRZ = 2, and follow the same procedure as in the previous
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application. The numerical diffusion is given by (2.33) and the numerical flux function, obtained from

(2.28), is now given by (2.36) with

Fi,j+1/2 = Vi

(
uj+1,i − uj,i

log(uj+1,i)− log(uj,i)
− 2

N∑
k=1

uj+1,kuj+1,i − uj,kuj,i
log(uj+1,kuj+1,i)− log(uj,kuj,i)

+
N∑
k=1

u2
j+1,kuj+1,i − u2

j,kuj,i

log(u2
j+1,kuj+1,i)− log(u2

j,kuj,i)

+
N∑

k,l=1
k 6=l

uj+1,kuj+1,luj+1,i − uj,kuj,luj,i
log(uj+1,kuj+1,luj+1,i)− log(uj,kuj,luj,i)

)
, i = 1, . . . , N.

(2.38)

2.4 Numerical examples

2.4.1 Preliminaries

For the time integration in all examples, we use a second-order strong stability preserving Runge-

Kutta scheme (SSPRK2, also known as Heun’s method), i.e., for a given spatial discretisation h(U)

such as the semidiscrete form (2.20) along with definitions (2.33), (2.34) and (2.37) or (2.38) and

where U(t) represents the vector of numerical solutions at all spatial positions at time t, i.e., U(t) =

(u1(t), . . . ,uM (t))T, the integration scheme for the system U ′(t) = h(U) is given as follows, where

we assume that we wish to advance the solution from Un ≈ U(tn) to Un+1 ≈ U(tn+1), where

tn+1 = tn +∆t:

U (1) = Un +∆th(Un),

U (2) = U (1) +∆th(U (1)),

Un+1 =
1

2
(Un +U (2)), n = 0, 1, 2, . . . .

We choose the time step ∆t at each iteration tn according to the following CFL condition:

∆t

∆x
max

1≤j≤M
ρ
(
fu(unj )

)
+

∆t

2∆x2
max

1≤j≤M
ρ
(
K(unj )

)
= CCFL (2.39)

where ρ(·) is the spectral radius. In all cases, we calculate the approximate total L1 error at a given

time t as follows. We assume that the spatial computational domain is subdivided into M equal-sized

cells of width ∆x, and that we calculate approximate errors by utilizing a reference solution defined

on a mesh with Mref > M cells, where we assume that R := Mref/M is an integer. Then we calculate

the projection of the reference solution onto the coarser grid,

ũref
j,i (t) =

1

R

R∑
k=1

uref
R(j−1)+k,i(t), j = 1, . . . ,M, i = 1, . . . , N,

and then calculate the total approximate total L1 error by summing the corresponding errors of each

species, that is,

etot
M =

1

M

N∑
i=1

M∑
j=1

∣∣ũref
j,i (t)− uMj,i(t)

∣∣.
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Figure 2.1: Example 2.1 (traffic model, non-degenerate diffusion, N = 4): (left) initial condition

(2.41), (right) reference numerical solution at simulated time t = 0.1 h obtained by the ES scheme

with α = 1.5 and Mref = 12800 (figure produced by the author).

Figure 2.2: Example 2.1 (traffic model, non-degenerate diffusion, N = 4): numerical solution at

simulated time t = 0.1 h obtained by the entropy stable scheme with M = 100 and (left) with zero

extra viscosity, (right) with extra viscosity (2.21) with α = 1.5 (figure produced by the author).

The corresponding (approximate) convergence rate between successive grids with discretisations M/2

and M is given by

θM := log2(etot
M/2/e

tot
M ).

2.4.2 Example 2.1 (traffic model, non-degenerate diffusion, N = 4)

First, we test the entropy conserving scheme on a regular grid. We consider a circular road of

length L = 10 mi and N = 4 driver classes with the velocities V max
1 = 60 mi/h, V max

2 = 55 mi/h,

V max
3 = 50 mi/h, and V max

4 = 45 mi/h, along with a uniform anticipation length of Lmin = 0.03 mi

and the non-degenerate diffusion term defined by (2.32) and

β(u) =
Lmin

N
(V max), V max :=

1

N

N∑
i=1

V max
i . (2.40)
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Figure 2.3: Example 2.1 (traffic model, non-degenerate diffusion, N = 4): total entropy Etot
n of the

numerical solution at different mesh sizes (left) without extra viscosity and (right) with extra viscosity

(2.21) with α = 1.5 (figure produced by the author).

KT LLF ES (α = 1.5)

M etot
M θM etot

M θM etot
M θM

100 4.024e-2 — 1.445e-1 — 3.140e-2 —

200 1.524e-2 1.401 8.830e-2 0.711 1.379e-2 1.188

400 5.881e-3 1.374 5.119e-2 0.786 6.857e-3 1.008

800 4.232e-3 0.475 2.868e-2 0.836 3.212e-3 1.094

1600 3.637e-3 0.219 1.574e-2 0.866 1.369e-3 1.230

3200 3.350e-3 0.055 8.718e-3 0.853 5.476e-4 1.322

Table 2.1: Example 2.1 (traffic model, non-degenerate diffusion, N = 4): approximate total L1 errors

(etot
M ) and convergence rates (θM ) at simulated time t = 0.1 (table produced by the author).

The initial traffic platoon (see Figure 2.1 (left)) is given by

u0(x, 0) = p(x)(0.2, 0.3, 0.2, 0.3)T, p(x) = 0.5 exp(−(x− 3)2). (2.41)

Numerical approximations are computed with CCFL = 0.25 at simulated time t = 0.1 h using

the method of lines of the semidiscretisation given by the numerical flux (2.37) combined with the

numerical diffusion (2.33). The performances of the entropy stable (ES) scheme without and with

extra viscosity are compared in Figure 2.2. Here and in Examples 2.2 to 2.4 we also verify that the

method is indeed entropy stable by plotting the following total entropy for t = tn = n∆t:

Etot
n :=

M∑
j=1

η(uj(tn))∆x,

see Figure 2.3 for this example.We observe that Etot
n decreases for the base scheme without extra

viscosity (corresponding to α = 0), as expected from (2.18). It is also clear from Figures 2.2 and

2.3, that the extra viscosity helps to prevent oscillations while preserving the general entropy decay
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Figure 2.4: Example 2.2 (traffic model, continuous degenerate diffusion, N = 4): reference numerical

solution at simulated time t = 0.1 h obtained by the ES scheme with α = 1.5 and Mref = 12800 (figure

produced by the author).

of the solution. It is important to note that nonphysical negative values due to oscillations preclude

the computation of meaningful total entropy values for coarser grids. Moreover, in this example

the approximate total L1 errors were computed by using a numerical reference solution (ES scheme

with Mref = 12800, α = 1.5), and are shown in Table 2.1. For comparison solutions obtained with

Kurganov-Tadmor (KT) scheme [116] and local Lax-Friedrichs (LLF) scheme [122], augmented by the

expression (2.33) to handle the degenerate diffusion, are also presented. The KT and LLF schemes are

known for the simplicity of their Riemann-solver-free approach, which makes them a computationally

efficient universal tool for a wide variety of applications [115]. The main disadvantage of the LLF

scheme lies in its large numerical dissipation, an issue that KT schemes try to solve by using more

accurate information of the local propagation speeds [116]. From a point of view of finding a balance

between computational cost while controlling the amount of numerical dissipation, we find these

methods constitute a good reference point to compare the ES method against. As will be presented in

this and the following examples, in general the ES scheme matches the reference methods with respect

to the absolute error obtained, and performs better regarding computational cost, while preserving

a numerical equivalent of entropy inequality (2.10). The disadvantage are the strong requirements

necessary for its application, and the experimentation-based adjustment of the viscosity parameter.

With respect to the error table, we observe that the ES scheme exhibits convergence rates that are

consistently slightly larger than one.

2.4.3 Example 2.2 (traffic model, continuous degenerate diffusion, N = 4)

In Example 2.2, under the same initial conditions as in Example 2.1, we test the model with the

diffusion matrix (2.32), where we define
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Figure 2.5: Example 2.2 (traffic model, continuous degenerate diffusion, N = 4): numerical solution

at simulated time t = 0.1 h obtained by the entropy stable scheme with M = 100 and (left) with zero

extra viscosity, (right) with extra viscosity (2.21) with α = 1.5 (figure produced by the author).

KT LLF ES (α = 1.5)

M etot
M θM CPU[s] etot

M θM CPU[s] etot
M θM CPU[s]

100 7.846e-2 — 0.76 1.722e-1 — 0.52 6.108e-2 — 0.36

200 4.327e-2 0.859 3.00 1.166e-1 0.562 2.09 3.254e-2 0.908 1.41

400 1.749e-2 1.306 11.50 8.042e-2 0.537 8.19 1.5425e-2 1.078 5.56

800 7.710e-3 1.182 46.51 5.284e-2 0.606 32.82 9.020e-3 0.773 22.23

1600 4.011e-3 0.943 197.69 3.225e-2 0.712 134.94 5.433e-3 0.731 91.72

3200 2.707e-3 0.567 863.22 1.884-2 0.775 626.73 2.466e-3 1.139 413.56

Table 2.2: Example 2.2 (traffic model, continuous degenerate diffusion, N = 4): approximate L1 errors

(etot
M ), convergence rates (θM ), and CPU times (CPU) at simulated time t = 0.1 (table produced by

the author).

β(u) =

0 if u ≤ uc,

LminV max

N
(u− uc) if u > uc,

where V max is defined as in (2.40), and we choose uc = 0.2. The new diffusion matrix now depends

on the total density u = u1 + · · · + uN and vanishes when u ≤ uc, but is still a continuous function

of u. Note that since β(u) = 0 for u ≤ uc, for these u-values the method (2.14) is reduced to an

entropy conservative method for first-order systems of conservation laws that exhibits oscillations. The

resulting model is strongly degenerate. Figure 2.6 confirms that also this example exhibits a decrease

in approximate total entropy. Approximate L1-errors for u computed by a numerical reference solution

(ES scheme with Mref = 12800, α=1.5) are shown in Table 2.2. That table also shows CPU times. It

is worth noting that the ES scheme is the one that executes most rapidly and produces errors that are

only slightly larger in some instances that those of the KT scheme at the same discretisation. Thus,

we can say that the ES scheme is the most efficient (in terms of error reduction versus CPU time) in

this case.
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Figure 2.6: Example 2.2 (traffic model, continuous degenerate diffusion, N = 4): total entropy Etot
n of

the numerical solution at different mesh sizes, based on the extra viscosity (2.21) with α = 1.5 (figure

produced by the author).

2.4.4 Example 2.3 (traffic model, discontinuous degenerate diffusion, N = 4)

Under the same initial conditions of Examples 2.1 and 2, now we test the model with the diffusion

matrix (2.32) with

β(u) =

{
0 if u ≤ uc,

LminV max/N if u > uc,

where V max is still defined as in (2.40) and we choose uc = 0.2. The resulting model is strongly

degenerate, and an additional complication comes from the fact that β, and therefore K, are now

discontinuous functions of u. Figure 2.7 shows the reference solution obtained for this case, and

Figure 2.8 displays numerical solutions with M = 100. Entropy stability still holds, as depicted in

Figure 2.9. The approximate L1-errors for u computed by using a numerical reference solution (ES

scheme with Mref = 12800, α = 1.5) are shown in Table 2.3.

2.4.5 Example 2.4 (traffic model, continuous degenerate diffusion, non-smooth

initial datum, N = 4)

Under the assumptions of Example 2.2, we replace the smooth initial condition (2.41) by the fol-

lowing function, corresponding to a “platoon” of traffic:

u0(x, 0) = p(x)(0.2, 0.3, 0.2, 0.3)T, p(x) =


10x for 0 < x ≤ 0.1,

1 for 0.1 < x ≤ 0.9,

−10(x− 1) for 0.9 < x ≤ 1,

0 otherwise.

(2.42)
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KT LLF ES (α = 1.5)

M etot
M θM CPU[s] etot

M θM CPU[s] etot
M θM CPU[s]

100 4.742e-2 — 0.78 1.486e-1 — 0.53 3.796e-2 — 0.37

200 2.053e-2 1.207 2.97 9.143e-2 0.701 2.26 1.814e-2 1.065 1.41

400 9.797e-3 1.069 12.83 5.348e-2 0.774 8.92 9.037e-3 1.005 6.06

800 6.752e-3 0.535 55.48 3.130e-2 0.773 38.36 4.301e-3 1.071 26.06

1600 4.941e-3 0.450 350.13 1.793e-2 0.804 233.55 2.102e-3 1.033 168.91

3200 4.536e-3 0.123 1452.28 1.043e-2 0.781 984.89 1.333e-3 0.656 656.21

Table 2.3: Example 2.3 (traffic model, continuous degenerate diffusion, N = 4): approximate L1 errors

(etot
M ), convergence rates (θM ), and CPU times (CPU) at simulated time t = 0.1 (table produced by

the author).

KT ES (α = 1.5) CU

M etot
M θM CPU[s] etot

M θM CPU[s] etot
M θM CPU[s]

100 1.365e-1 — 1.92 32.053* — 97.43 1.216e-1 — 1.78

200 7.765e-2 0.814 3.34 7.408-2 — 2.22 6.948e-2 0.807 4.49

400 3.751e-2 1.050 14.67 3.931e-2 0.914 10.09 3.417e-2 1.024 20.34

800 1.843e-2 1.025 59.91 2.157e-2 0.866 42.54 1.707e-2 1.001 81.32

1600 1.030e-3 0.840 219.62 1.142e-2 0.918 151.49 9.736e-3 0.811 298.57

3200 8.006e-3 0.363 963.64 6.921-3 0.722 785.65 8.562e-3 0.185 1362.84

Table 2.4: Example 2.4 (traffic model, continuous degenerate diffusion, non-smooth initial datum,

N = 4): approximate L1 errors (etot
M ), convergence rates (θM ), and CPU times (CPU) at simulated

time t = 0.2 (table produced by the author).
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Figure 2.7: Example 2.3 (traffic model, discontinuously degenerate diffusion, N = 4): reference

numerical solution at simulated time t = 0.1 h obtained by the ES scheme with α = 1.5 and Mref =

12800 (figure produced by the author).

i 1 2 3 4 5 6 7 8

20% glycerol di[µm] 201.430 140.2 99.751 68.986 48.391 34.185 23.810 6.101

φ0
i [%] 0.0859 0.6410 4.4309 7.928 4.7065 1.5710 0.5720 0.1758

50% glycerol di[µm] 417.819 291.590 202.854 143.384 100.118 68.629 48.259 33.886

φ0
i [%] 0.329 11.380 25.010 9.921 2.305 0.821 0.502 0.183

Table 2.5: Example 2.5 and 2.6 (settling model, discontinuous degenerate diffusion, N = 8): droplet

particle diameters di and initial concentrations φ0
i (table produced by the author).

Figure 2.10 shows the initial condition and the reference solution for this case, and Figure 2.11 shows

the numerical results for the ES and KT schemes with M = 100 and M = 800. As is shown in

Figure 2.11 (top), this set of initial conditions causes strong oscillations near the transition between

hyperbolic and parabolic regimes. On the M = 100 mesh, these oscillations produce artefacts that

remain through time iterations even with high extra viscosity. In order to avoid these artefacts, a finer

mesh was required; Figure 2.11 (bottom) compares the entropy conservative scheme solution against

a solution by the KT scheme with M = 800. In Table 2.4 we show L1-errors for u computed by a

numerical reference solution (ES scheme with α = 1.5, Mref = 12800). The large value of the M = 100

entry for the ES scheme in that table indicates that additional numerical viscosity was not sufficient

to prevent strong oscillations (see Figure 2.11). A numerical solution obtained with the less diffusive

central-upwind (CU) scheme by Kurganov et al. [115] is also presented for comparison.Central-upwind

schemes improve further on the projection step if one is looking for a less dissipative scheme that

could behave closer to the upwind alternatives. This usually results in improvements of the resolution

of nonsmooth parts of the solution [113]. However, for this particular case, we could not observe

significant differences in the total error with respect to the more simple KT scheme. Entropy stability

also holds for this case, see Figure 2.12.
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Figure 2.8: Example 2.3 (traffic model, discontinuous degenerate diffusion, N = 4): numerical solution

at simulated time t = 0.1 h obtained by the entropy stable scheme with M = 100 and (left) with zero

extra viscosity, (right) with extra viscosity (2.21) with α = 1.5 (figure produced by the author).

KT COMP-GLF ES (α = 1× 10−12)

M etot
M θM etot

M θM etot
M θM

100 2.877e-4 — 9.554e-5 — 2.187e-4 —

200 1.345e-4 1.097 4.694e-5 1.025 1.027e-4 1.090

400 6.869e-5 0.969 2.872e-5 0.709 5.313e-5 0.951

800 3.882e-5 0.823 2.215e-5 0.375 2.202e-5 1.270

1600 2.332e-5 0.735 1.880e-5 0.237 8.378e-6 1.394

Table 2.6: Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8): approximate L1

errors (etot
M ) and convergence rates (θM ) at simulated time t = 50 (table produced by the author).

2.4.6 Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8)

In this example we consider the settling of dispersions of glycerol droplets of total initial concen-

tration 50% in a column of biodiesel of depth L = 20 mm according to the experimental setup of [1].

The density of biodiesel is ρc = 880 kg/m3 and that of glycerol is ρd = 1090 kg/m3. Other parameters

are the viscosity µc = 6.5 mPa and the diffusivity D0 = 10× 10−7 m2/s. We consider N = 8 droplet

size classes. The corresponding droplet diameters di and initial concentrations u0
i have been recon-

structed from droplet size histograms [51], see Table 2.5. We also introduce a discontinuous diffusion

function β(u), namely

β(u) =

{
0 if u ≤ uc,

D0V(u) if u > uc,

where uc is a critical density, or gel point, accounting for the onset of compression effects when entities

of the disperse phase start forming permanent contact, for which we choose uc = 0.1 in this example.

Numerical results are obtained by the entropy stable (ES), component-wise global Lax-Friedrichs

(COMP-GLF, a component-wise WENO scheme with a Lax-Friedrichs-type flux splitting, see [44]
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Figure 2.9: Example 2.3 (traffic model, discontinuous degenerate diffusion, N = 4): total entropy Etot
n

of the numerical solution at different mesh sizes, based on the extra viscosity (2.21) with α = 1.5

(figure produced by the author).

Figure 2.10: Example 2.4 (traffic model, continuous degenerate diffusion, non-smooth initial datum,

N = 4): (left) initial condition (2.42), (right) reference numerical solution at simulated time t = 0.1 h

obtained by the ES scheme with α = 1.5 and Mref = 12800 (figure produced by the author).
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Figure 2.11: Example 2.4 (traffic model, continuous degenerate diffusion, non-smooth initial datum,

N = 4): numerical solution at simulated time t = 0.2 h (top) obtained by the entropy stable scheme

with M = 100 and (left) with zero extra viscosity, (right) with extra viscosity (2.21) with α = 8,

(bottom) with M = 800 and (left) with the KT scheme, (right) with the entropy stable scheme with

extra viscosity (2.21) with α = 1.5 (figure produced by the author).

Figure 2.12: Example 2.4 (traffic model, continuous degenerate diffusion, non-smooth initial datum,

N = 4): total entropy Etot
n of the numerical solution of the ES scheme (left)without extra viscosity

and (right) with extra viscosity (2.21) with α = 1.5 at different mesh sizes (figure produced by the

author).
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Figure 2.13: Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8): reference

solution at simulated time t = 50 calculated by the COMP-GLF scheme with Mref = 6400 (figure

produced by the author).

Figure 2.14: Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8): comparison

of numerical solutions computed using COMP-GLF, KT and ES (α = 1× 10−12) schemes, M = 800

(figure produced by the author).

for more information) and Kurganov-Tadmor (KT) schemes. Comparisons are made with results

produced by the COMP-GLF Scheme, the reference solution is computed on a fine grid Mref = 6400

(see Figure 2.13) and all methods are integrated in time by a SSPRK22 method with CCFL = 0.3.

Observe that the numerical errors presented in Table 2.6 seem to indicate that the methods are not

converging to the same solution. Qualitative results comparing the state of the system at end time,

computed with each of the three methods are displayed in Figure 2.14.

For the present problem with its zero-flux boundary condition the growth of the total entropy is

bounded by inequality (2.11), whose analogy for the semi-discrete entropy stable scheme is (2.27). To

study whether the latter inequality is also valid in the fully discrete case, we plot for this example

(Figures 2.15 and 2.16) and the next one (Figure 2.20) the quantity

Ẽtot,′
n :=

∆x

∆t

M∑
j=1

(
η
(
unj
)
− η
(
un−1
j

))
+ ϕ(un1 )− ϕ(unM ). (2.43)
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Figure 2.15: Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8): Ẽtot,′ for ES

scheme at different values of M (left) without extra viscosity, corresponding to α = 0, and (right)

with extra viscosity (2.21) with α = 1× 10−12 (figure produced by the author).

Figure 2.16: Example 2.5 (settling model, discontinuous degenerate diffusion, N = 8): Ẽtot,′ for (left)

COMP-GLF and (right) KT Schemes at different values of M (figure produced by the author).

Note that, since ϕ = vTf − g after replacing (2.30) and (2.31), we have

ϕ(u) = v(u)Tf(u)− g(u) =

N∑
i=1

V(u)
log(ui)

vi
viui −

(
V(u)

N∑
i=1

ui log(ui)− Ṽ(u)

)
= Ṽ(u).

It is interesting to observe(in Figure 2.16) that contrary to the other two schemes, the component-

wise global Lax-Friedrichs (COMP-GLF) scheme presents problems to preserve non-positivity of the

quantity (2.43) at early stages of the time evolution process.This means that the GLF scheme does

not satisfy general entropy stability, a property only the ES schemes have “built in”. On the other

hand, as in the previous examples, the additional dissipation has little effect on the general behavior

of the total entropy of the ES schemes, moreover considering that in this case (with α = 1× 10−12)

the amount of extra viscosity added is minimal.
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Figure 2.17: Example 2.6 (settling model, continuous diffusion, N = 8): (left) initial conditions and

(right) reference solution computed with COMP-GLF Scheme and M = 3200 at T = 200 (figure

produced by the author).

KT COMP-GLF ES(α = 1× 10−12)

M etot
M θM etot

M θM etot
M θM

50 3.5472e-4 — 3.7022e-4 — 2.7353e-4 —

100 2.4303e-4 0.546 2.8147e-4 0.395 2.3220e-4 0.236

200 1.9425e-4 0.322 2.1254e-4 0.405 2.1183e-4 0.132

400 1.7688e-4 0.136 1.7031e-4 0.320 2.0561e-4 0.043

800 1.7687e-4 0.000 1.5841e-4 0.105 2.0409e-4 0.011

Table 2.7: Example 2.6 (settling model, continuous diffusion, N = 8): approximate L1 errors (etot
M )

and convergence rates (θM ) for Example 2.6 at simulated time t = 200 (table produced by the author).

2.4.7 Example 2.6 (settling model, continuous diffusion, N = 8)

Now we consider the settling of a dispersion of 20% glycerol with a continuous diffusion function β.

We suppose the initial concentration (scaled by a factor 1.5) is present only in the top half of the column

as is shown in the left plot of Figure 2.17. Numerical approximations where computed using COMP-

GLF, KT and ES schemes. In all cases CCFL = 0.1 is used, and for the ES scheme a value α = 1× 10−12

is chosen. Qualitative results comparing results for different times are shown in Figures 2.18 and 2.19.

For this example the appearance of thin layers of particles at the bottom of the vessel poses severe

difficulties for the numerical schemes to capture them. In fact for large times, a few oscillations at

high concentrations start to appear which is the reason why a lower CFL constant value than the ones

used on previous examples was required. However, non-smooth artefacts still could be observed in the

high-concentration region at simulated time T = 300 in Figure 2.19, especially for the COMP-GLF

scheme.

Numerical errors and convergence ratescomputed against a numerical reference solution obtained

by the COMP-GLF scheme, CFL = 0.01 and a mesh of Mref = 3200 can be found in Table 2.7. Here
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Figure 2.18: Example 2.6 (settling model, continuous diffusion, N = 8): numerical solutions at

different times, M = 200 (figure produced by the author).

the stabilization of the total error for KT and ES schemes seems to suggest that the methods are not

converging to the same solution. From Figure 2.20, despite an initial peak, we can see that ES scheme

preserves non-positivity of the quantity (2.43), as expected.
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Figure 2.19: Example 2.6 (settling model, continuous diffusion, N = 8): numerical solutions at

different times, M = 200 (figure produced by the author).

Figure 2.20: Example 2.6 (settling model, continuous diffusion, N = 8): Ẽtot,′(t) for ES (α =

1× 10−12) at different values of M (figure produced by the author).



CHAPTER 3

On H(div)-conforming methods for double-diffusion equations in

porous media

In this chapter we study a stationary Navier-Stokes-Brinkman problem coupled to a system of

advection-diffusion equations, which serves as a model for so-called double-diffusive viscous flow

in porous media in which both heat and a solute within the fluid phase are subject to transport

and diffusion. The solvability analysis of these governing equations results as a combination of

compactness arguments and fixed-point theory. In addition an H(div)-conforming discretisation

is formulated by a modification of existing methods for Brinkman flows. The well-posedness

of the discrete Galerkin formulation is also discussed, and convergence properties are derived

rigorously. Computational tests confirm the predicted rates of error decay and illustrate the

applicability of the methods for the simulation of bacterial bioconvection and thermohaline

circulation problems.

3.1 Introduction

3.1.1 Scope

Double-diffusive flows arise in the flow chemical pollutants in saturated soil, subsurface drilling and

petroleum extraction, crystal growth, chemical and food processing, and numerous other applications

[24,86,88,119,136,139,150,166]. This class of models originates in combining heat and mass transfer

interacting with flow within porous structures. One of its particularities is the formation of boundary

layers due to coupled thermal and compositional mechanisms [59]. This occurs (at least in the case

known as augmenting flows) since mass transfer increases the effect of buoyancy due to heat transfer.

The difference in the diffusivities of the two fluid components then contributes to redirecting the flow

away from the vertical density gradient [155]. Another characteristic phenomenon of double-diffusive

flows is cross-diffusion [129, 139], where the flux of the solute is influenced by temperature gradients.

This so-called Soret effect usually co-exists with the reciprocal phenomenon, known as the Dufour

effect.

The governing equations are posed on a open and bounded spatial domain Ω ⊆ Rd, d = 2 or d = 3,

with boundary conditions imposed on the boundary Γ = ∂Ω that is assumed to be Lipschitz. The

45
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model adopts the form of the incompressible Brinkman-Navier-Stokes equations for the viscous flow

of an incompressible Newtonian fluid in a porous medium, where the velocity u and the pressure p

are the unknowns, coupled to a pair of advection-diffusion equations with cross-diffusion that describe

the diffusion of heat and solute. Specifically, we assume that a given species (e.g. salt) has a slight

solubility within this fluid, and that S denotes its concentration (i.e., weight of solute per unit weight

of solution), while T is temperature, and ~m := (T, S)T. The stationary behaviour of this system can

be expressed as follows:

K−1u+ (u · ∇)u− div(ν(T )∇u) +∇p− F (~m) = 0 in Ω,

divu = 0 in Ω,

−div(D∇~m) + div(u⊗~m) = 0 in Ω;

~m = ~mD, u = 0 on Γ ,

(3.1)

where K(x) > 0 is the permeability matrix rescaled with viscosity, F (~m) is a given function modeling

buoyancy, D is the 2×2 constant matrix of the thermal conductivity and solutal diffusivity coefficients

(possibly with cross-diffusion terms), and ν is a temperature-dependent viscosity function. (Precise

assumptions on the model functions and problem data are stated in Section 3.2.)

It is the purpose of this chapter to propose a divergence-conforming finite element method for

the double diffusive problem, considering temperature-dependent viscosity and possible cross-diffusion

terms subject to the restriction of maintaining the coercivity of the diffusion operator. The formulation

includes the Navier-Stokes/Brinkman flow description, which makes this model suitable for the study

of flow in saturated porous media and interfaces between porous media and free flow. The numerical

scheme is based on H(div)-conforming Brezzi-Douglas-Marini (BDM) elements of order k for the

velocity, discontinuous elements of order k−1 for the pressure, and Lagrangian finite elements of order

k for temperature and the concentration of a solute. In particular this formulation produces exactly

divergence-free velocity approximations, which are of particular importance in ensuring that solutions

to the flow equations remain locally conservative as well as energy stable (see e.g. [62]), and moreover,

the error estimates of velocity could be derived in a pressure-robust manner (see [100]). Another

consequence of local conservation is that the coupled systems (in the present case, of temperature and

reactive concentrations) can be written, at the discrete level, in exact divergence form.

3.1.2 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 3.2 we introduce some recurrent

definitions of functional spaces (Section 3.2.1), specify the assumptions on the model coefficients

and problem data and state the problem in variational form (Section 3.2.2), and establish auxiliary

properties of the bilinear and trilinear forms involved (Section 3.2.3). Section 3.3, which follows closely

the analysis of [137], is devoted to the well-posedness analysis of the continuous problem (3.1). The

basic idea consists in utilizing the correspondence of solutions (u, p,y) of the variational formulation

of (3.1) with solutions (u,y) of a problem in which the pressure does not appear. The main results

of Section 3.3 are Theorems 3.1 and 3.2, stating the existence and uniqueness, respectively, of a

variational solution of (3.1) under appropriate assumptions. The H(div)-conforming method for (3.1)

is then introduced and analyzed in Section 3.4, which is at the core of this chapter. Specifically, in
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Section 3.4.1 the method is formulated (based on an appropriate choice of the underlying discrete

spaces), and in Section 3.4.2 discrete stability properties of the bilinear and trilinear forms at discrete

level are provided. These properties allow us then, in Section 3.4.3, to establish existence of a discrete

solution. This follows from the main result of that section, Theorem 3.3, which is based on a fixed-

point argument. Finally, in Section 3.4.4 we conduct an a priori error analysis, and in particular

establish orders of convergence (in terms of the meshsize) of the discrete solution to the continuous

one. In Section 3.5 we present results of three different numerical experiments, namely an accuracy test

for a two-dimensional manufactured solution that confirms that the experimentally observed orders

of convergence are consistent with those predicted in Section 3.4.4 (Example 3.1, Section 3.5.1), an

illustration of the Soret and Dufour effects in a two-dimensional porous cavity setup that validates

the method against benchmark data from literature (Example 3.2, Section 3.5.2), and simulations of a

non-stationary problem on a three-dimensional domain describing bioconvection of oxytactic bacteria

that evaluates the extension of the proposed methods to nonlinear cross-diffusion and reaction terms

in the diffusion-advection equations.

3.2 The model problem

3.2.1 Preliminaries

Let Ω be an open and bounded domain in Rd, d = 2, 3 with Lipschitz boundary Γ = ∂Ω. We will

use the vector-valued Hilbert spaces

H(div;Ω) :=
{
w ∈ L2(Ω) : divw ∈ L2(Ω)

}
,

H0(div;Ω) :=
{
w ∈H(div;Ω) : w · n∂Ω = 0 on ∂Ω

}
,

H0(div0;Ω) :=
{
w ∈H0(div;Ω) : divw = 0 in Ω

}
,

were n∂Ω denotes the outward normal on ∂Ω; and we endow these spaces with the norm

‖w‖2div,Ω := ‖w‖20,Ω + ‖divw‖20,Ω.

3.2.2 Assumptions and weak form of the governing equations

We assume boundary data regularity ~mD = (TD, SD) ∈ [H1/2(Γ )]2, as well as Lipschitz continuity

and uniform boundedness of the kinematic (temperature dependent) viscosity, i.e.,∣∣ν(T1)− ν(T2)
∣∣ ≤ γν |T1 − T2| and ν1 ≤ ν(T ) ≤ ν2, (3.2)

where γν , ν1, ν2 are positive constants. Moreover, we assume Lipschitz continuity of the function F (y)

defining the buoyancy term, i.e. there exist γF , CF > 0 such that∣∣F (~m1)− F (~m2)
∣∣ ≤ γF |~m1 − ~m2| and

∣∣F (~m)
∣∣ ≤ CF |~m|. (3.3)

The d × d permeability matrix K is assumed symmetric and uniformly positive definite, hence its

inverse satisfies vTK−1(x)v ≥ α1|v|2 for all v ∈ Rd and x ∈ Ω, for a constant α1 > 0. We also require

D to be positive definite, i.e., ~sTD~s ≥ α2|~s|2 for all ~s ∈ R2, for a constant α2 > 0.
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The variational formulation of problem (3.1) is obtained by testing against suitable functions and

integrating by parts, and can be formulated as follows:

Find (u, p, ~m) ∈H1
0 (Ω)× L2

0(Ω)× [H1(Ω)]2 satisfying ~m = ~mD on Γ and

a(~m;u,v) + c(u;u,v) + b(v, p) = d(~m,v) for all v ∈H1
0 (Ω),

b(u, q) = 0 for all q ∈ L2
0(Ω),

a~m(~m,~s) + c~m(u; ~m,~s) = 0 for all ~s ∈ [H1
0 (Ω)]2,

(3.4)

where the involved forms are defined as

a(~s;u,v) := (K−1u,v)Ω +
(
ν(~s)∇u,∇v

)
Ω
, c(w;u,v) :=

(
(w · ∇)u,v

)
Ω
,

b(v, q) := (q,div v)Ω, d(~s,v) :=
(
F (~s),v

)
Ω
,

a~m(~m,~s) := (D∇~m,∇~s)Ω, c~m(v; ~m,~s) :=
(
(v · ∇)~m,~s

)
Ω

for all u,v,w ∈ H1(Ω), q ∈ L2(Ω), and ~m,~s ∈ [H1(Ω)]2, where ν(~s) is understood as the kinematic

viscosity depending only on the first component of the vector ~s.

3.2.3 Stability properties

First, note that due to (3.2)-(3.3), the following continuity properties hold for all u,v,∈ H1(Ω),

q ∈ L2(Ω), and ~m,~s ∈ [H1(Ω)]2:∣∣a(·,u,v)
∣∣ ≤ max

{
ν2, ‖K−1‖∞

}(
‖∇u‖0,Ω‖∇v‖0,Ω + ‖u‖0,Ω‖v‖0,Ω

)
(3.5a)

≤ Ca‖u‖1,Ω‖v‖1,Ω,∣∣a~m(~m,~s)
∣∣ ≤ Ĉa‖~m‖1,Ω‖~s‖1,Ω, (3.5b)∣∣b(v, q)∣∣ ≤ Cb‖v‖1,Ω‖q‖0,Ω, (3.5c)∣∣d(~m,v)
∣∣ ≤ CF ‖~m‖1,Ω‖v‖1,Ω. (3.5d)

In addition, and due to the Lipschitz continuity of ν (stated in (3.2)) and Hölder’s inequality, the

following property holds for all ~m1, ~m2 ∈ [H1(Ω)]2 and u ∈W 1,∞(Ω):∣∣a(~m1;u,v)− a(~m2;u,v)
∣∣ ≤ γν‖u‖W 1,∞(Ω)‖~m1 − ~m2‖1,Ω‖v‖1,Ω. (3.6)

On the other hand, standard Sobolev embeddings indicate that for r ≥ 1 if d = 2 or r ∈ [1, 6] if

d = 3, there exists C∗r > 0 depending only upon |Ω| and r such that ‖w‖Lr(Ω) ≤ C∗r ‖w‖1,Ω for all

w ∈ H1(Ω). Then taking u,v,w ∈ H1(Ω) and ~m,~s ∈ [H1(Ω)]2, and applying this inequality along

with Hölder’s inequality with 1
r + 1

r∗ = 1
2 , gives the following bounds∣∣c(w;u,v)

∣∣ ≤ C∗rC∗r∗‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω = Cv‖w‖1,Ω‖u‖1,Ω‖v‖1,Ω,∣∣c~m(w; ~m,~s)
∣∣ ≤ C∗6‖w‖1,Ω‖~m‖1,Ω‖~s‖[L3(Ω)]2 = C̄v‖w‖1,Ω‖~m‖1,Ω‖~s‖[L3(Ω)]2 , (3.7)∣∣c~m(w; ~m,~s)
∣∣ ≤ C∗6C∗3‖w‖1,Ω‖~m‖1,Ω‖~s‖1,Ω = Ĉv‖w‖1,Ω‖~m‖1,Ω‖~s‖1,Ω.

Next, Poincaré’s inequality together with the properties stated in Section 3.2.2 implies that the

bilinear forms a(·; ·, ·) (for a fixed temperature), and a~m(·, ·) are coercive, that is

a(·;v,v) ≥ min{ν1, α1}
(
‖∇v‖20,Ω + ‖v‖20,Ω

)
≥ αa‖v‖21,Ω for all v ∈H1

0 (Ω), (3.8a)

a~m(~s,~s) ≥ α2|~s|21,Ω ≥ α̂a‖~s‖21,Ω for all ~s ∈ [H1
0 (Ω)]2. (3.8b)
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Using the definition and characterisation of the kernel Z of b(·, ·), namely

Z :=
{
v ∈H1

0 (Ω) : b(v, q) = 0 ∀q ∈ L2
0(Ω)

}
=
{
v ∈H1

0 (Ω) : div v = 0 in Ω
}
,

and using integration by parts we can readily observe that

c(w;v,v) = 0 and c~m(w;~s,~s) = 0 for all w ∈ Z,v ∈H1(Ω), ~s ∈ [H1(Ω)]2. (3.9)

Remark 3.1. Note that (3.8a) together with (3.9) implies the H1
0 (Ω)-ellipticity of the bilinear form

a(~m, ·, ·) + c(w, ·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R for any given ~m ∈ [H1(Ω)]2 and w ∈ Z. A similar result

holds for the bilinear form ~am(·, ·) + c~m(w, ·, ·) : [H1
0 (Ω)]2 × [H1

0 (Ω)]2 → R

Moreover, the bilinear form b(·, ·) satisfies an inf-sup condition:

sup
v∈H1

0 (Ω)\{0}

b(v, q)

‖v‖1,Ω
≥ β‖q‖0,Ω for all q ∈ L2

0(Ω)

(see [157] for this well-known property). Finally, for u ∈W 1,∞(Ω) and ~s ∈ [H1(Ω) ∩ L∞(Ω)]2 there

exists an embedding constant C∞ > 0 such that

‖u‖1,Ω ≤ C∞‖u‖W 1,∞(Ω) and ‖~s‖[L3(Ω)]2 ≤ C∞‖~s‖[L∞(Ω)]2 . (3.10)

3.3 Well-posedness analysis of the continuous problem

We start by stating a well-known equivalence result (see [41, Chapter II, Theorem 1.1], [82, Chapter

I, section 4]), adapted to the context of our problem.

Lemma 3.1. If (u, p, ~m) ∈ H1
0 (Ω) × L2

0(Ω) × [H1(Ω)]2 solves (3.4), then (u, ~m) ∈ Z × [H1(Ω)]2

satisfies ~m|Γ = ~mD and

a(~m;u,v) + c(u;u,v)− d(~m,v) = 0 for all v ∈ Z,

a~m(~m,~s) + c~m(u; ~m,~s) = 0 for all ~s ∈ [H1
0 (Ω)]2.

(3.11)

Conversely, if (u, ~m) ∈ Z × [H1(Ω)]2 is a solution of the reduced problem (3.11), then there exists

p ∈ L2
0(Ω) such that (u, p, ~m) is a solution of (3.4).

In order to deal with the non-homogeneous Dirichlet data appearing in the thermal energy and

concentration equation, we utilise a lifting argument adapted from [137]. We write ~m as ~m = ~m0 + ~m1,

where ~m0 ∈ [H1
0 (Ω)]2 and ~m1 is such that

~m1 ∈ [H1(Ω)]2 with ~m1|Γ = ~mD. (3.12)

Lemma 3.2. If ~sD ∈ [H1/2(Γ )]2, then for any ε > 0 and 1 ≤ r ≤ 6 if d = 3 or any r ≥ 1 if d = 2,

there exists an extension ~s1 ∈ [H1(Ω)]2 of ~sD with ‖~s1‖[Lr(Ω)]2 ≤ ε.

Proof. It follows similarly as for its scalar counterpart, proven in [125, Lemma 4.1].
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Lemma 3.3. Let (u, ~m) be a solution to (3.11). Then there exist positive constants C̃u, C̃~m such that

‖u‖1,Ω ≤ C̃u‖~m1‖1,Ω and ‖~m0‖1,Ω ≤ C̃~m‖~m1‖1,Ω.

Proof. If one takes v = u and ~s = ~m0 in (3.11), then we can assert that

a(~m0 + ~m1;u,u) + c(u;u,u)− d(~m,u) = 0,

a~m(~m0 + ~m1, ~m0) + c~m(u; ~m0 + ~m1, ~m0) = 0.

Using Remark 3.1, conditions (3.3), (3.5d), and Hölder’s inequality, yields the estimate

αa‖u‖21,Ω ≤ CF
(
‖~m0‖1,Ω + ‖~m1‖1,Ω

)
‖u‖1,Ω. (3.13)

Similarly as above, from (3.8b), (3.9), (3.5b) and (3.7) we can derive the relation

α̂a‖~m0‖21,Ω ≤ Ĉa‖~m1‖1,Ω‖~m0‖1,Ω + C̄v‖u‖1,Ω‖~m1‖[L3(Ω)]2‖~m0‖1,Ω. (3.14)

Then, substituting (3.14) back into (3.13), we obtain

‖u‖1,Ω ≤
CF
αa

(
Ĉa + α̂a
α̂a

‖~m1‖1,Ω +
C̄v
α̂a
‖u‖1,Ω‖~m1‖[L3(Ω)]2

)
,

which in turn implies that

‖u‖1,Ω
(

1− C̄v
α̂a
‖~m1‖[L3(Ω)]2

)
≤ CF (Ĉa + α̂a)

αaα̂a
(‖~m1‖1,Ω).

In view of Lemma 3.2, we may assume that C̄v
α̂a
‖~m1‖[L3(Ω)]2 ≤ 1/2. Then we have

‖u‖1,Ω ≤
2CF (Ĉa + α̂a)

αaα̂a
‖~m1‖1,Ω. (3.15)

Inserting (3.15) into (3.14), we are then left with

|~m0|1,Ω ≤
Ca
α̂a
‖~m1‖1,Ω +

2C̄vCF (Ĉa + α̂a)

αaα̂a
‖~m1‖[L3(Ω)]2‖~m1‖1,Ω

≤
(
Ca
α̂a

+
CF (Ĉa + α̂a)

αa

)
‖~m1‖1,Ω.

Theorem 3.1. Assume that the conditions of Section 3.2.2 hold. Then there is a lifting ~m1 ∈ [H1(Ω)]2

of ~mD ∈ [H1/2(Γ )]2 satisfying (3.12) and such that problem (3.11) has a solution (u, ~m = ~m0 + ~m1) ∈
H1

0 (Ω) × [H1(Ω)]2. Furthermore, there exist constants Cu, C~m > 0 only depending on the stability

constants of Section 3.2.3 such that ‖u‖1,Ω ≤ Cu‖~m1‖1,Ω and ‖~m0‖1,Ω ≤ C~m‖~m1‖1,Ω.

Proof. The result follows as an adequate modification of the proof in [125, Section 4], after applying

Lemma 3.3 and Brouwer’s fixed-point theorem.

The assumption of additional regularity (justified for velocity in e.g. [157, Sect. 1.3], and for

temperature and concentration in [64,112,126], for example), along with a smallness condition allows

us to establish uniqueness of solution, stated as follows.
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Theorem 3.2. Let (u, ~m) ∈
[
Z ∩W 1,∞(Ω)

]
×[H1(Ω) ∩ L∞(Ω)]2 be a solution of the reduced problem

(3.11), and assume that

max
{
‖u‖W 1,∞(Ω), ‖~m‖[L∞(Ω)]2 , γF

}
≤M, (3.16)

for a sufficiently small constant M > 0. Then such solution is unique.

Proof. Let (u, ~m), (ũ, ~̃m) be two solutions of problem (3.11), both satisfying assumption (3.16). Sub-

tracting the corresponding variational formulations, we have

a(~m,u,v)− a( ~̃m, ũ,v) + c(u,u,v)− c(ũ, ũ,v)−
(
d(~m,v)− d( ~̃m,v)

)
= 0, (3.17a)

a~m(~m,~s)− a~m( ~̃m,~s) + c~m(u; ~m,~s)− c~m(ũ; ~̃m,~s) = 0 (3.17b)

for all v ∈ Z, ~s ∈ [H1
0 (Ω)]2. One next notices that in (3.17) one can write

a(~m,u,v)− a( ~̃m, ũ,v) = a(~m,u− ũ,v) + a(~m, ũ,v)− a( ~̃m, ũ,v),

c(u,u,v)− c(ũ, ũ,v) = c(u,u− ũ,v) + c(u, ũ,v)− c(ũ, ũ,v),

c~m(u; ~m,~s)− c~m(ũ; ~̃m,~s) = c~m(u; ~m− ~̃m,~s) + c~m(u; ~̃m,~s)− c~m(ũ; ~̃m,~s),

and then we can choose as test function v = u− ũ ∈ Z, and exploit (3.9) to obtain

a(~m,u− ũ,u− ũ) +
(
a(~m, ũ,u− ũ)− a( ~̃m, ũ,u− ũ)

)
+
(
c(u; ũ,u− ũ)− c(ũ; ũ,u− ũ)

)
−
(
d(~m,u− ũ)− d( ~̃m,u− ũ)

)
= 0.

Applying the coercivity of the bilinear form a(·, ·) in (3.8), we readily get

αa‖u− ũ‖21,Ω ≤
∣∣a(~m, ũ,u− ũ)− a( ~̃m, ũ,u− ũ)

∣∣
+
∣∣c(u; ũ,u− ũ)− c(ũ; ũ,u− ũ)

∣∣
+
∣∣d(~m,u− ũ)− d( ~̃m,u− ũ)

∣∣. (3.18)

Analogously, we can take ~s = ~m − ~̃m ∈ [H1
0 (Ω)]2 in (3.17b), and employ the coercivity of the form

a~m(·, ·, ·) in (3.8), to eventually obtain

α̂a‖~m− ~̃m‖21,Ω ≤
∣∣c~m(u− ũ; ~̃m, ~m− ~̃m)

∣∣.
On the other hand, from relation (3.6) and assumption (3.16) it follows that∣∣∣a(~m, ũ,u− ũ)− a( ~̃m, ũ,u− ũ)

∣∣∣ ≤ γνM‖~m− ~̃m‖1,Ω‖u− ũ‖1,Ω, (3.19)

and hence replacing (3.19) in (3.18) and taking into account the continuity of the forms c(·; ·, ·) (stated

in (3.7)) and the Lipschitz condition (3.3), we arrive at the bound

αa‖u− ũ‖21,Ω ≤ γνM‖~m− ~̃m‖1,Ω‖u− ũ‖1,Ω + Cv‖ũ‖1,Ω‖u− ũ‖21,Ω
+ γF ‖u− ũ‖1,Ω‖~m− ~̃m‖1,Ω.

Proceeding in a similar manner, we can also derive the estimate

α̂a‖~m− ~̃m‖21,Ω ≤ Ĉv‖u− ũ‖1,Ω‖ ~̃m‖[L3(Ω)]2‖~m− ~̃m‖1,Ω.
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Now employing (3.10) in combination with Young’s inequality, we have

αa‖u− ũ‖21,Ω ≤M
(
γν
2

+ CvC∞ +
1

2

)
‖u− ũ‖21,Ω +

M

2
(γν + 1)‖~m− ~̃m‖21,Ω,

α̂a‖~m− ~̃m‖21,Ω ≤
1

2
C̄vC∞M

(
‖u− ũ‖21,Ω + ‖~m− ~̃m‖21,Ω

)
.

Adding these inequalities and defining C̃ := (1 + γν + C̄vC∞)/2, we get(
αa −M(CvC∞ + C̃)

)
‖u− ũ‖21,Ω + (α̂a −MC̃)‖~m− ~̃m‖21,Ω ≤ 0,

and thus uniqueness holds as long as M < min{αa/(CvC∞ + C̃), α̂a/C̃}.

3.4 Finite element discretisation

3.4.1 Formulation of the H(div)-conforming method

Let us consider a family of regular partitions, denoted Th, of Ω into simplices K (triangles in 2D or

tetrahedra in 3D) of diameter hK . For k ∈ N0 and a mesh Th on Ω, we consider the discrete spaces

(see e.g. [40])

Vh :=
{
vh ∈H0(div;Ω) : vh|K ∈ [Pk(K)]d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th
}
,

Mh :=
{
~sh ∈ [C(Ω̄)]2 : ~sh|K ∈ [Pk(K)]2 ∀K ∈ Th

}
, Mh,0 :=Mh ∩ [H1

0 (Ω)]2,

which in particular satisfy divVh ⊂ Qh (cf. [109]). Here Vh is the space of divergence-conforming BDM

elements. Associated with these finite-dimensional spaces, we state the following Galerkin formulation

for problem (3.1):

Find (uh, ph, ~mh) ∈ Vh ×Qh ×Mh such that ~mh|Γ = ~mD
h

and for all (vh, qh, ~sh) ∈ Vh ×Qh ×Mh,0,

ah(~mh;uh,vh) + ch(uh;uh,vh) + b(vh, ph) = d(~mh,vh),

b(uh, qh) = 0,

a~m(~mh, ~sh) + c~m(uh; ~mh, ~sh) = 0.

(3.20)

Here ~mD
h := IΓ ~mD and IΓ is the nodal interpolation operator defined in Section 3.4.4, the discrete

versions of the trilinear forms a(·; ·, ·) and c(·; ·, ·) are defined using a symmetric interior penalty and

an upwind approach, respectively (see e.g. [19, 46,109]):

ah(~sh;uh,vh)

:=

∫
Ω

(
K−1uh · vh + ν(~sh)∇huh : ∇hvh

)
−
∑
e∈Eh

∫
e

(
{{ν(~sh)∇huhne}} · JvhK− {{ν(~sh)∇hvhne}} · JuhK +

a0

he
ν(~sh)JuhK · JvhK

)
,

ch(wh;uh,vh) :=

∫
Ω

(wh · ∇uh) · vh +
∑
K∈Th

∫
∂K\Γ

ŵup
h (uh) · vh,



3.4. Finite element discretisation 53

where the fluxes are defined as ŵup
h (uh) := 1

2(wh · nK − |wh · nK |)(ueh − uh), and ueh is the trace of

u taken from within the exterior of K. As in the continuous case, we define the discrete kernel of the

bilinear form b(·, ·) as

Zh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh } = {vh ∈ Vh : div vh = 0 in Ω } .

3.4.2 Discrete stability properties

For sake of the subsequent analysis, we introduce the following, parameter and mesh dependent

broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖∇v‖20,K +
∑
e∈Eh

1

he
‖JvK‖20,e,

‖v‖21,Th := σ‖v‖20,Ω + ν2‖v‖2∗,Th for all v ∈H1(Th),

‖v‖22,Th := ‖v‖21,Th +
∑
K∈Th

h2
K |v|22,K for all v ∈H2(Th),

where σ = ‖K−1‖∞,Ω and ν2 is defined in (3.2). We also recall the broken version of the well-known

Sobolev embedding result (see e.g. [83, Lemma 6.2], [102, Prop. 4.5] or [67, Th. 5.3]): for any r > 1 if

d = 2 or 1 ≤ r ≤ 6, if d = 3 there exists a constant Cemb > 0 such that

‖v‖Lr(Ω) ≤ Cemb‖v‖1,Th for all v ∈H1(Th). (3.21)

Moreover, we will use the broken space

C1(Th) :=
{
u ∈H1(Th) : u|K ∈ C1(K̄),K ∈ Th

}
,

equipped with an appropriate norm ‖u‖W 1,∞(Th) := maxK∈Th‖u‖W 1,∞(K). Finally, we will also use an

augmented H1-norm defined as

‖~s‖1,Eh := ‖~s‖21,Ω +
∑
e∈Eh

1

he
‖~s‖20,e for all ~s ∈ [H1(Ω)]2.

Using these norms, and the local trace inequalities

‖v‖0,∂K ≤ C(h
−1/2
K ‖v‖0,K + h

1/2
K |v|1,K) for all v ∈H1(K),

‖p‖0,∂K ≤ Ch
−1/2
K ‖p‖0,K for all p ∈ Pk(K),

we can establish continuity of the trilinear and bilinear forms involved, stated in the following lemma

that can be proved following [137, Section 3.3.2] and [19, Section 4]:

Lemma 3.4. The following properties hold:∣∣ah(·,u,v)
∣∣ ≤ C‖u‖2,Th‖v‖1,Th for all u ∈H2(Th), v ∈ Vh, (3.22a)∣∣ah(·,u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th for all u,v ∈ Vh, (3.22b)∣∣b(v, q)∣∣ ≤ C̃b‖v‖1,Th‖q‖0,Ω for all v ∈H1(Th), q ∈ L2

0(Ω), (3.22c)
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and for all u,v,w ∈H1(Th) and ~s, ~m ∈ [H1(Ω)]2,∣∣d(~m,v)
∣∣ ≤ CF ‖~m‖1,Ω‖v‖1,Th , (3.23a)∣∣c~m(w; ~m,~s)
∣∣ ≤ C̃1‖w‖1,Th‖~s‖1,Ω‖~m‖1,Ω, (3.23b)∣∣c~m(w; ~m,~s)
∣∣ ≤ C̃2‖w‖1,Th‖~m‖[L3(Ω)]2‖∇~s‖0,Ω. (3.23c)

Moreover, for ~s1, ~s2 ∈ [H1(Ω)]2, u ∈ C1(Th) and v ∈ Vh, there holds∣∣ah(~s1;u,v)− ah(~s2;u,v)
∣∣ ≤ C̃Lipγν‖~s1 − ~s2‖1,Eh‖u‖W 1,∞(Th)‖v‖1,Th , (3.24)

where the constant C̃Lip > 0 is independent of h (cf. [137, Lemma 3.3]). A related result follows for

ch(·; ·, ·) as in [137, Lemma 3.4]. Let w1,w2,u ∈ H2(Th) and v ∈ Vh. Then there exists C̃v > 0

independently of h such that∣∣ch(w1;u,v)− ch(w2;u,v)
∣∣ ≤ C̃v‖w1 −w2‖1,Th‖u‖1,Th‖v‖1,Th . (3.25)

While the coercivity of the form a~m(·, ·) in the discrete setting is readily implied by (3.8), there also

holds (cf. [109, Lemma 3.2])

ah(·,v,v) ≥ α̃a‖v‖21,Th for all v ∈ Vh, (3.26)

provided that a0 > 0 is sufficiently large and independent of the meshsize.

Let w ∈H0(div0;Ω), then, according to [137] we can write

ch(w;u,u) =
1

2

∑
e∈Eih

∫
e
|w · ne||JvK|2 ≥ 0 for all u ∈ Vh, (3.27)

as well as the following relation

c~m(w;~sh, ~sh) = 0 for all ~sh ∈Mh, (3.28)

which arises from integration by parts and holds at the discrete level since the produced discrete

velocities are exactly divergence free. Finally, we recall from [109] the following discrete inf-sup

condition for b(·, ·), where β̃ is independent of h:

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω for all qh ∈ Qh. (3.29)

3.4.3 Existence of discrete solutions

Due to the discrete stability properties stated in the previous section, a discrete analogue of Lemma

3.1 holds.

Lemma 3.5. If (uh, ph, ~mh) ∈ Vh ×Qh ×Mh is a solution of (3.20), then uh ∈ Zh, and (uh, ~mh) is

a solution of the discrete reduced problem

ah(~mh;uh,v) + ch(uh;uh,v)− d(~mh,v) = 0,

a~m(~mh, ~s) + c~m(uh; ~mh, ~s) = 0 for all (v, ~s) ∈ Zh ×Mh,0.
(3.30)

Conversely, if (uh, ~mh) ∈ Zh × Mh,0 is a solution of (3.30), then there exists a unique pressure

ph ∈ Qh such that (uh, ph, ~mh) is a solution to (3.20).
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As in the continuous case, we also perform a boundary lifting of ~mh by setting ~mh = ~mh,0 + ~mh,1

with ~mh,0 ∈Mh,0, and

~mh,1 ∈Mh, ~mh,1|Γ = ~mD
h . (3.31)

Lemma 3.6. Let (uh, ~mh) be a solution of (3.30) with ~mh = ~mh,0 + ~mh,1 as in (3.31). Assume that

Cdep‖~mh,1‖[L3(Ω)]2 ≤
1

2
, where Cdep =

C̃F C̃2

α̃aα̂a
. (3.32)

Then there exist constants C̃u, C̃~m > 0 only depending on the stability constants from Section 3.4.2,

such that

‖uh‖1,Th ≤ C̃u‖~mh,1‖1,Ω and ‖~mh‖1,Ω ≤ C̃~m‖~mh,1‖1,Ω. (3.33)

Proof. We choose (v, ~s) = (uh, ~mh,0) in (3.30) and use (3.27)–(3.28) to obtain

ah(~mh;uh,uh) = d(~mh,uh), a~m(~mh,0, ~mh,0) + a~m(~mh,1, ~mh,0) = −c~m(uh; ~mh,1, ~mh,0).

Invoking the coercivity of the forms ah(·; ·, ·) and a~m(·, ·) in (3.26), (3.8b) and the boundedness of

c~m(·; ·, ·), d(·, ·) stated in (3.23c), (3.23a), we have

α̃a‖uh‖1,Th ≤ C̃F
(
‖~mh,0‖1,Ω + ‖~mh,1‖1,Ω

)
, (3.34a)

α̂a‖~mh,0‖1,Ω ≤ Ĉa‖~mh,1‖1,Ω + C̃2‖~mh,1‖[L3(Ω)]2‖u‖1,Th . (3.34b)

Substituting equation (3.34b) into (3.34a) then leads to

α̃a‖uh‖1,Th ≤ C̃F
(
‖~mh,1‖1,Ω +

Ĉa
α̂a
‖~mh,1‖1,Ω +

C̃2

α̂a
‖~mh,1‖[L3(Ω)]2‖u‖1,Th

)
,

‖uh‖1,Th ≤ Cdep‖~mh,1‖[L3(Ω)]2 +
CF
α̃a

(
1 +

Ĉa
α̂a

)
‖~mh,1‖1,Ω ≤ C̃u‖~mh,1‖1,Ω,

where C̃u = 2CF
α̃a

(1 + Ĉa
α̂a

). Finally, the definition of the discrete liftings and an application of triangle

inequality imply that

‖~mh‖1,Ω ≤
Ĉa
α̂a
‖~mh,1‖1,Ω +

C̃2

α̂a
‖~mh,1‖[L3(Ω)]2‖uh‖1,Th + ‖~mh,1‖1,Ω

≤ Ĉa + α̂a
α̂a

‖~mh,1‖1,Ω +
C̃2

α̂a
‖~mh,1‖[L3(Ω)]22CF

Ĉa + α̂a
α̃aα̂a

‖~mh,1‖1,Ω

≤ 2
Ĉa + α̂a
α̂a

‖~mh,1‖1,Ω ≤ C̃~m‖~mh,1‖1,Ω.

Theorem 3.3. Let ~mh,1 be a discrete lifting satisfying (3.32). Then there exists a discrete solution

(uh, ~mh) ∈ Zh ×Mh to (3.30) satisfying the stability bound (3.33).
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Proof. We shall make use of Brouwer’s fixed-point theorem in the following form: Let K 6= ∅ be

a nonempty compact convex subset of a finite dimensional normed space, and let L : K → K be a

continuous mapping. Then L has at least one fixed point in K. Let us then start by defining the

following finite-dimensional set, where C̃u is the constant from (3.33):

K1 =
{
wh ∈ Zh : ‖wh‖1,Th ≤ C̃u‖~mh,1‖1,Ω

}
,

Note that K1 is convex and compact. Next we define the mapping T : K1 → K1, wh 7→ T (wh) = uh,

where uh is the first component of the solution of the following linearised version of problem (3.30):

Find (uh, ~mh) ∈ Zh ×Mh such that for all (v, ~s) ∈ Zh ×Mh,0:

ah(~mh;uh,v) + ch(wh;uh,v)− d(~mh,v) = 0,

a~m(~mh,0, ~s) + c~m(wh; ~mh,0, ~s) = −a~m(~mh,1, ~s)− c~m(wh; ~mh,1, ~s).

(3.35)

Clearly, we have the equivalence

T (uh) = uh ⇐⇒ (uh, ~mh) ∈ Zh ×Mh satisfies (3.30),

and owing to Lemma 3.5, we also get

T (uh) = uh ⇐⇒ (uh, ~mh, ph) ∈ Vh ×Mh ×Qh satisfies (3.20).

In order to prove that the discrete fixed-point operator T is well-defined, we define the following

sets, where C̃u and C̃~m are the constants from (3.33):

K :=
{

(wh,ϕh) ∈ Zh ×Mh : ‖wh‖1,Th ≤ C̃u‖~mh,1‖1,Ω, ‖ϕh‖1,Ω ≤ C̃~m‖~mh,1‖1,Ω
}
,

K2 :=
{
ϕh ∈Mh : ‖ϕh‖1,Ω ≤ C̃~m‖~mh,1‖1,Ω

}
,

and introduce the discrete operator R : K → K1, (wh,ϕh) 7→ R((wh,ϕh)) = uh, where uh is the

unique solution to the problem

Find uh ∈ Zh such that for all v ∈ Zh,

ah(ϕh;uh,v) + ch(wh;uh,v)− d(ϕh,v) = 0.
(3.36)

and similarly define the discrete map S : K1 → K2, wh 7→ S(wh) = ~mh, where ~mh ∈Mh is the unique

solution of the problem

Find ~mh ∈Mh such that for all ~s ∈Mh,0,

a~m(~mh,0, ~s) + c~m(wh; ~mh,0, ~s) = −a~m(~mh,1, ~s)− c~m(wh; ~mh,1).
(3.37)

Clearly, T can be rewritten as T (wh) = R(wh,S(wh)), so to prove its well-definiteness, it suffices

to show that R and S are well-defined. We begin with operator R. Since for any wh ∈ Zh and

ϕh ∈ [H1(Ω)]2 the bilinear form ah(ϕh; ·, ·) + ch(wh, ·, ·) is Vh-elliptic (thanks to (3.26) and (3.27)),

existence and uniqueness follow from the Lax-Milgram lemma. Moreover, selecting v = uh in (3.36),

we can appeal to the coercivity of ah(·; ·, ·), the positivity of ch(·; ·, ·) (3.27), condition (3.32), the

bound for d(·, ·) stated in (3.23a), and the bounds within the definition of K to deduce that

‖uh‖21,Th ≤
CF
α̃a
‖ϕh‖1,Ω‖uh‖1,Th ,

‖uh‖1,Th ≤
CF C̃~m

α̃a
‖~mh,1‖1,Ω ≤ 2CF

α̃a + Ĉa
α̃aα̂a

‖~mh,1‖1,Ω ≤ C̃u‖~mh,1‖1,Ω,
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which implies that uh ∈ K1.

Analogously, for S we note that thanks to (3.8b) and (3.28), the bilinear form a~m(·, ·) + ch(wh, ·, ·)
is Mh,0-elliptic, hence for a fixed discrete lifting ~mh,1, the homogeneous counterpart to the linear

problem (3.37) has a unique solution. Proceeding as done above for (3.35), we use once more the

coercivity of a~m(·, ·) (3.5b), (3.28), condition (3.32), the bound (3.23c) for c~m(·; ·, ·), and the definition

of K1 to find that

‖~mh,0‖21,Ω ≤
C̃a
α̂a
‖~mh,1‖1,Ω‖~mh,0‖1,Ω +

C̃2

α̂a
‖~mh,1‖[L3(Ω)]2‖wh‖1,Th‖~mh,0‖1,0,

‖~mh,0‖1,Ω ≤
Ĉa
α̂a
‖~mh,1‖1,Ω +

C̃2

α̂a
‖~mh,1‖[L3(Ω)]22CF

α̃a + Ĉa
α̃aα̂a

‖~mh,1‖1,Ω

≤ 2
α̂a + Ĉa
α̂a

‖~mh,1‖1,Ω.

We then employ triangle inequality to obtain

‖~mh‖1,Ω ≤ 2
α̂a + Ĉa
α̂a

‖~mh,1‖1,Ω + ‖~mh,1‖1,Ω ≤ C̃~m‖~mh,1‖1,Ω,

hence establishing that ~mh ∈ K2.

In order to apply Brouwer’s theorem, it remains to show that R and S are continuous operators.

Let us assume we are given (w,ϕ) ∈ K and a sequence {(wl,ϕl)}l∈N ⊂ K such that ‖wl−w‖1,Th → 0

and ‖ϕl −ϕ‖1,Ω → 0 as l→∞.

From the definition of R (cf. (3.36)) the following relations can be derived:

ah(ϕl;ul,v) + ch(wl;ul,v)− d(ϕl,v) = 0,

ah(ϕ;u,v) + ch(w;u,v)− d(ϕ,v) = 0 for all v ∈ Zh.

Subtracting these two systems from each other and rearranging terms yields

ah(ϕl;u− ul,v) + ch(wl;u− ul,v) = − ah(ϕ;u,v) + ah(ϕl;u,v)− ch(w;u,v)

+ ch(wl;u,v) + d(ϕl,v)− d(ϕ,v)

for all v ∈ Zh. We can take in particular v = u− ul, and exploit the coercivity of ah(·; ·, ·), the fact

that ch(·,u− ul,u− ul) > 0, the boundedness of ch(·; ·, ·) (3.25) in combination with the bounds for

d(·, ·), as well as property (3.24), to eventually get

‖u− ul‖1,Th ≤
1

α̃a

(
C̃Lipγν‖ϕ−ϕl‖1,Eh‖u‖W 1,∞(Th)

+ C̃v‖w −wl‖1,Th‖u‖1,Th + γF ‖ϕ−ϕl‖1,Ω
)

≤ C
(
‖ϕ−ϕl‖1,Eh‖u‖W 1,∞(Th) + ‖w −wl‖1,Th‖u‖1,Th + ‖ϕ−ϕl‖1,Ω

)
,

and hence ‖u− ul‖1,Th → 0 as l→∞.

Next we consider the definition of S (3.37) and again we consider the relations

a~m(~ml, ~s) + c~m(wl; ~ml, ~s) = 0, a~m(~m,~s) + c~m(w; ~m,~s) = 0 for all ~s ∈Mh,0.
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Subtracting the second system from the first leads to

a~m(~ml − ~m,~s) + c~m(wl; ~m− ~ml, ~s) = −c~m(w; ~m,~s)− c~m(wl; ~m,~s).

Now we take ~s = ~m− ~ml ∈ Mh,0 and immediately note that c~m(wl; ~m− ~ml, ~m− ~ml) = 0, thanks to

(3.28). Using the coercivity of a~m(·; ·, ·) in (3.5b) together with the boundedness of c~m(·; ·, ·), we have

‖~m− ~ml‖21,Ω ≤
C̃2

α̂a
‖w −wl‖1,Th‖~m‖[L3(Ω)]2‖~m− ~ml‖1,Ω,

hence ‖~m− ~ml‖1,Ω ≤ C‖w −wl‖1,Th‖~m‖[L3(Ω)]2 and thus ‖~m− ~ml‖1,Ω → 0 as l→∞.

Remark 3.2. The application of Theorem 3.3 relies on the particular choice of the discrete bound-

ary datum and the associated discrete liftings. Furthermore, the construction of the liftings may be

computationally expensive. As in [137], we focus mainly on nodal interpolation of the boundary data,

however, the discussion of other alternatives and its shortcomings in [137, Section 4.2] is still of great

relevance for this work.

Remark 3.3. Unlike conforming discretisations, one cannot directly establish a discrete version of

Theorem 3.2. In fact we were not able to control the augmented norm ‖·‖1,Eh in a way reciprocal to

that used to prove that theorem. However, even when uniqueness of the discrete counterpart remains

an open problem, our non-exhaustive selection of numerical examples did not present any difficulties

in this regard.

3.4.4 A priori error analysis

Let us denote by Ih : [C(Ω̄)]2 → [Mh]2 the classical nodal interpolation operator with respect to a

unisolvent set of Lagrangian interpolation nodes associated to the conforming space Mh and by IΓ
the restriction of Ih to the boundary nodes. By Πh u we denote the BDM projection of u, and Lh p is

the L2−projection of p onto Qh. Under adequate regularity assumptions, the following approximation

properties hold (see [41,109]):

‖u−Πh u‖2,Th ≤ C(
√
σhk+1 +

√
ν2h

k)‖u‖k+1,Ω,

‖~m− Ih ~m‖1,Ω ≤ Chk‖~m‖k+1,Ω,

‖p− Lh p‖0,Ω ≤ Chk‖p‖k,Ω.
(3.38)

The following preliminary trace result can be proven as in [137, Lemma 4.3].

Lemma 3.7. Assume that ~mD ∈ [C(Γ̄ )]2 and ~mD
h = IΓ ~mD. Then there is a lifting ~mh,1 ∈ Mh such

that ~mh,1|Γ = ~mD
h and

‖~mh,1‖1,Ω ≤ Clift‖~mD
h ‖1/2,Γ , (3.39)

where the constant Clift > 0 is independent of the meshsize.

Remark 3.4. If one assumes that CdepCembClift‖~mD
h ‖1/2,Γ ≤ 1/2 with CLip, Cemb, and Cdep defined

by (3.39), (3.21), and (3.32), respectively; then, by Theorem 3.1, there exists a solution (uh, ~mh) to

(3.11) with ~mh = ~mh,0 + ~mh,1 satisfying the stability bounds

‖uh‖1,Th ≤ C̃uClift‖~mD
h ‖1/2,Γ and ‖~mh‖1,Th ≤ C̃~mClift‖~mD

h ‖1/2,Γ . (3.40)
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If we assume additional regularity of the exact solution ~m ∈ [H2(Ω)]2, then ‖~mD
h ‖1/2,Γ is bounded

independently of h (cf. [137, Lemma 4.7 and Remarks 4.8 and 4.9]).

Theorem 3.4. Let us consider liftings satisfying (3.31), and let us assume the data are sufficiently

small (3.32). Let also (u, p, ~m), (uh, ph, ~mh) be the solutions of (3.4) and (3.20), respectively. Assume

the condition

max{‖u‖W 1,∞(Ω), ‖~m‖[L∞(Ω)]2 , γF } ≤ min(M,M̃), (3.41)

with M sufficiently small as specified in (3.16), and M̃ is bounded by the data of the problem in a way

that will be made explicit in the proof. Furthermore, suppose that for k = 1, u ∈ C1(Ω̄)∩H2(Ω)∩Z,

p ∈ H1(Ω), and ~m ∈ [L∞(Ω)]2 ∩ [H2(Ω)]2, and that for k ≥ 2 there holds u ∈ Hk+1(Ω) ∩ Z,

p ∈ Hk(Ω), and ~m ∈ [Hk+1(Ω)]2. Then there exist constants C > 0 independent of the meshsize such

that

‖u− uh‖2,Th + ‖~m− ~mh‖1,Ω ≤ Chk
(
‖u‖k+1,Ω + ‖~m‖k+1,Ω

)
, (3.42)

‖p− ph‖0,Ω ≤ Chk
(
‖p‖k,Ω + ‖u‖k+1,Ω + ‖~m‖k+1,Ω

)
. (3.43)

Proof. An application of integration by parts together with the assumed velocity regularity readily

implies that the exact solution (u, p, ~m) satisfies:

ah(~m;u,vh) + ch(u;u,vh)− b(vh, p)− d(~m,vh) = 0 for all vh ∈ Vh (3.44)

(see for example [109, Lemma 3.1]). We then write a discrete analogue of (3.44) and subtract the

result, leading to the following Galerkin orthogonality

ah(~m;u,vh)− ah(~mh;uh,vh) + ch(u;u,vh)− ch(uh;uh,vh)

−b(vh, p− ph)− d(~m− ~mh,vh) = 0.
(3.45)

In addition, it is not difficult to verify that

b(u− uh, qh) = 0, a~m(~m− ~mh,ϕh) + c~m(u, ~m,ϕh)− c~m(uh, ~mh,ϕh) = 0 (3.46)

for all (qh,ϕh) ∈ Qh ×Mh,0. Let us define the errors

eu := (u−Πh u) + (Πh u− uh) = Eu + ξu,

ep := (p− Lh p) + (Lh p− ph) = Ep + ξp,

e~m := (~m− Ih ~m) + (Ih ~m− ~mh) = E~m + ξ~m,

so after testing (3.45) against vh = ξu and rearranging terms we end up with

ah(~mh, ξu, ξu) + ch(uh, ξu, ξu) = I0 + I1 + I2,

where,

I0 := d(~m, ξu)− d(~mh, ξu),

I1 := [ah(~mh,u, ξu)− ah(Ih ~m;u, ξu)]

+ [ah(Ih ~m;u, ξu)− ah(~m;u, ξu)]− ah(~mh;Eu, ξu),

I2 := [ch(uh;u, ξu)− ch(Πh u;u, ξu)]

+ [ch(Πh u;u, ξu)− ch(u;u, ξu)]− ch(uh;Eu, ξu).

(3.47)
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The rest of the proof will be devoted to finding appropriate bounds for these terms. Starting with

I0, we combine (3.3) and the triangular inequality to get

I0 ≤ γF ‖~m− ~mh‖1,Ω‖ξu‖1,Th ≤ γF
(
‖ξ~m‖1,Ω + ‖E~m‖1,Ω

)
‖ξu‖1,Th .

Next, from (3.24), the continuity of ah, and the small data assumption in (3.41) we get

I1 ≤ C̃LipγνM̃
(
‖ξ~m‖1,Ω‖ξu‖1,Th + ‖E~m‖1,Ω‖ξu‖1,Th

)
+ C̃a‖Eu‖1,Th‖ξu‖1,Th .

Moreover, from (3.25), (3.25), (3.10), (3.40), and again assumption (3.41), we obtain

I2 ≤ C̃v‖ξu‖21,Th‖u‖1,Ω + C̃v‖Eu‖1,Th‖u‖1,Th‖ξu‖1,Th + C̃v‖uh‖1,Th‖Eu‖1,Th‖ξu‖1,Th
≤ C̃vC∞M̃

(
‖ξu‖21,Th + ‖Eu‖1,Th‖ξu‖1,Th

)
+ C̃vC̃uClift‖~mD

h ‖1/2,Γ ‖Eu‖1,Th‖ξu‖1,Th .

Inserting the bounds on I0, I1 and I2 into (3.47), also using the coercivity of the left-hand, thanks

to (3.26)-(3.27); and applying Young’s inequality we arrive at

α̃a‖ξu‖21,Th ≤
(
(1 + CLip)M̃‖E~m‖1,Ω + (C̃a + C̃vC̃u‖~mD

h ‖H1/2(Γ )

)
‖Eu‖1,Th)‖ξu‖1,Th

+

(
M̃

(
1 + C̃Lipγν

2
+ C̃vC∞

))
‖ξu‖21,Th +

1 + C̃Lipγν
2

M̃‖ξ~m‖21,Th . (3.48)

We handle (3.46) in a similar way and take ϕh = ξ~m as test function. This leads to

a~m(ξ~m, ξ~m) + c~m(~mh; ~mh, ξ~m) = −a~m(E~m, ξ~m)− c~m(ξu; ~m, ξ~m)

− c~m(Eu; ~m, ξ~m)− c~m(uh;E~m, ξ~m).

In addition, on the left-hand side we use the coercivity of a~m, properties (3.9), (3.23b), (3.40), the

embedding (3.10), as well as assumption (3.41) to get

α̂a‖ξ~m‖21,Ω ≤ Ĉa‖E~m‖1,Ω‖ξ~m‖1,Ω + C̃1C∞M̃
(
‖ξu‖1,Th‖ξ~m‖1,Ω + ‖Eu‖1,Th‖ξ~m‖1,Ω

)
+ C̃1C̃vClift‖~mD

h ‖1/2,Γ ‖E~m‖1,Ω‖ξ~m‖1,Ω,

and after applying Young’s inequality and regrouping terms, we have

α̂a‖ξ~m‖21,Ω ≤
(
(Ĉa + C̃1C̃uClift‖~mD

h ‖1/2,Γ )‖E~m‖1,Ω + C̃1C∞M̃‖Eu‖1,Th
)
‖ξ~m‖1,Ω

+
1

2
C̃1C∞M̃

(
‖ξu‖21,Th + ‖ξ~m‖21,Ω

)
. (3.49)

Adding (3.48) and (3.49) and defining Č := (1 + C̃Lipγν + C̃1C∞)/2 we obtain(
α̃a − M̃(Č + C̃vC∞)

)
‖ξu‖21,Th + (α̂a − M̃Č)‖ξ~m‖21,Ω

≤ C
(
‖E~m‖1,Ω + ‖Eu‖1,Th

)(
‖ξu‖1,Th + ‖ξ~m‖1,Th

)
.

Hence, if we choose M̃ such that M̃ < min{α̃a/(Č + C̃vC∞), α̂a/Č} (note that this constant depends

only on the data of the problem), then we readily obtain ‖ξu‖1,Th+‖ξ~m‖1,Ω ≤ C(‖E~m‖1,Ω + ‖Eu‖1,Th).

Using now the approximation properties in (3.38), we straightforwardly get (3.42).
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For the pressure estimate we consider the discrete inf-sup condition (3.29) as well as (3.22c). It

follows that

‖ξp‖0,Ω ≤
1

β̃
sup

vh∈Vh\{0}

b(vh, ξp)

‖vh‖1,Th
≤ 1

β̃
sup

vh∈Vh\{0}

b(vh, ep)

‖vh‖1,Th
+

1

β̃
sup

vh∈Vh\{0}

b(vh, Ep)

‖vh‖1,Th

≤ 1

β̃
sup

vh∈Vh\{0}

b(vh, ep)

‖vh‖1,Th
+
C̃b

β̃
‖Ep‖0,Ω. (3.50)

Now for any vh ∈ Vh, (3.45) implies the bound b(vh, ep) ≤ I3 + I4 + I5, where

I3 = |d(~m,vh)− d(~mh,vh)|,
I4 = |ah(~m;u,vh)− ah(~mh;u,vh)|+ |ah(~mh, eu,vh)|,
I5 = |ch(u;u,vh)− ch(uh;u,vh)|+ |ch(uh; eu,vh)|.

Hence we can use property (3.3) to deduce that I3 ≤ γF ‖e~m‖1,Ω‖vh‖1,Th . From (3.24), (3.22a), and

assumption (3.41), it then follows that

I4 ≤ C̃Lipγν‖e~m‖1,Ω‖u‖W 1,∞(Ω)‖vh‖1,Th + C‖eu‖2,Th‖vh‖1,Th ,
≤ C̃LipγνM̃‖e~m‖1,Ω‖vh‖1,Th + C‖eu‖2,Th‖vh‖1,Th .

Now we use (3.25), (3.10), (3.40) and the bound in (3.25) to get

I5 ≤ C̃v‖uh‖1,Th‖eu‖1,Th‖vh‖1,Th + C̃v‖u‖1,Th‖eu‖1,Th‖vh‖1,Th
≤ C̃vC∞M̃‖eu‖2,Th‖vh‖1,Th + C̃vC̃uClift‖~mD

h ‖H1/2(Γ )‖eu‖2,Th‖vh‖1,Th .

The estimates on I3, I4 and I5 therefore yield∣∣b(vh, ep)∣∣ ≤ C(‖e~m‖1,Ω + ‖eu‖2,Th
)
‖vh‖1,Th . (3.51)

Hence (3.43) follows by replacing (3.51) in (3.50) and using the approximation properties (3.38).

Notice that, thanks to the divergence-free property of the discrete velocities, the bound (3.42)

confirms that the family of methods proposed here is pressure-robust (see also the discussion in [100]).

This can be also observed numerically, for instance in Table 3.3 where the magnitude of the pressure

errors does not affect the magnitude of the velocity errors.

3.5 Numerical tests

The following set of examples provides numerical confirmation of the convergence rates anticipated

in Theorem 3.4. We further validate the proposed method by comparing our produced results against

benchmark solutions found in the literature, and we present one test oriented to applications inherent

to doubly-diffusive flows in porous media. The linearisation of the system of equations associated with

the assembled form of (3.20) is carried out by Newton’s method, setting a relative tolerance of 1E-8

on the residuals. In turn, the solution of the resulting linear systems present at each Newton step is

conducted using the bi-conjugate gradient stabilised Krylov solver (BiCGStab). In the implementation
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k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 0.6798 – 1.5670 – 0.3498 – 0.2721 – 1.33E-15

707 0.3779 0.847 1.1370 0.563 0.1975 0.824 0.1385 0.974 4.88E-15

2691 0.1873 1.012 0.6614 0.787 0.1019 0.954 0.0696 0.992 9.77E-15

10499 0.0923 1.021 0.3485 0.925 0.0513 0.988 0.0348 0.998 2.13E-14

41475 0.0459 1.007 0.1771 0.977 0.0257 0.997 0.0174 0.999 4.62E-14

2 523 0.3258 1.657 1.7741 1.243 0.1221 1.101 0.0338 1.767 9.03E-14

1971 0.0847 1.943 0.6826 1.378 0.0326 1.905 0.0089 1.928 2.23E-13

7651 0.0179 2.237 0.2159 1.661 0.0083 1.968 0.0023 1.979 4.82E-13

30147 0.0038 2.238 0.0587 1.877 0.0021 1.991 0.0006 1.994 9.96E-13

119683 0.0008 2.108 0.0151 1.964 0.0005 1.998 0.0001 1.998 2.01E-12

Table 3.1: Example 3.1 (accuracy test): experimental errors and convergence rates for the approximate

solutions uh, ph, Th and Sh; and `∞-norm of the vector formed by the divergence of the discrete velocity

computed for each discretisation. Values are displayed for the first and second order schemes for a

flow regime with ν2 = σ = 1 (table produced by the author).

k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 2.1490 – 14.352 – 0.3498 – 0.2721 – 1.55E-15

707 1.2041 0.835 10.710 0.429 0.1975 0.824 0.1385 0.974 4.00E-15

2691 0.5958 1.015 6.3981 0.749 0.1019 0.954 0.0696 0.992 8.88E-15

10499 0.2925 1.026 3.4170 0.904 0.0513 0.988 0.0348 0.998 2.31E-14

41475 0.1453 1.010 1.7461 0.968 0.0257 0.997 0.0174 1.000 4.26E-14

2 523 1.0380 1.652 17.152 1.119 0.1221 1.101 0.0338 1.767 9.24E-14

1971 0.2688 1.949 6.7861 1.338 0.0326 1.905 0.0089 1.928 2.29E-13

7651 0.0568 2.241 2.1562 1.654 0.0083 1.968 0.0023 1.979 4.87E-13

30147 0.0121 2.239 0.5875 1.876 0.0021 1.991 0.0006 1.994 1.01E-12

119683 0.0028 2.108 0.1507 1.963 0.0005 1.998 0.0001 1.998 2.00E-12

Table 3.2: Example 3.1 (accuracy test): errors and convergence rates under a Stokes regime with

ν2 = 10, σ = 0 (table produced by the author).

of the method, the normal component of the velocity is fixed in the form of an essential boundary

condition, whereas its tangential component is incorporated as a natural boundary condition and

imposed à la Nitsche (see e.g. [92]). Moreover, the condition of zero mean value for the pressure

approximation is implemented using a real Lagrange multiplier. All tests were implemented using the

open-source finite element library FEniCS [7].

3.5.1 Example 3.1: accuracy test

In our first computational test we examine the convergence of the Galerkin method (3.20), taking

as computational domain the square Ω = (−1, 1)2, and considering a sequence of uniformly refined

meshes {Th,l}l of mesh size hl = 2−l
√

2. We take a buoyancy term of the form F (~m) = (T +NrS)g,

where Nr is the solutal to thermal buoyancy ratio; and choose an exponential form for the viscosity

ν(T ) = ν2 exp(−T ), g = (0, 1)T , K−1 = σI, D = 1000I, a0 =
√
σ10k. Following the approach

of manufactured solutions, we prescribe boundary data and additional external forces and adequate
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k DoF eu rate ep rate eT rate eS rate ‖divuh‖∞,Ω

1 195 5.3102 – 287.42 – 0.3498 – 0.2721 – 1.78E-15

707 1.6182 1.715 148.01 0.958 0.1975 0.825 0.1385 0.974 4.44E-15

2691 0.4303 1.911 72.992 1.021 0.1019 0.954 0.0696 0.993 1.07E-14

10499 0.1324 1.701 36.721 0.991 0.0514 0.988 0.0348 0.998 2.13E-14

41475 0.0516 1.359 18.472 0.992 0.0257 0.997 0.0174 1.000 4.26E-14

2 523 1.9250 2.483 270.41 2.175 0.1221 1.101 0.0338 1.767 9.49E-14

1971 0.5142 1.905 51.930 2.38 0.0326 1.905 0.0089 1.928 2.27E-13

7651 0.1364 1.914 11.504 2.175 0.0083 1.968 0.0023 1.979 4.94E-13

30147 0.0389 1.808 3.1610 1.863 0.0021 1.991 0.0006 1.994 9.99E-13

119683 0.0104 1.900 1.0190 1.633 0.0005 1.998 0.0001 1.998 2.03E-12

Table 3.3: Example 3.1 (accuracy test): errors and convergence rates for the approximate solutions

for a Darcy regime, with ν2 = 1, σ = 10000 (table produced by the author).

source terms so that the closed-form solutions to (3.1) are given by the smooth functions

u(x, y) =
(
sin(πx) cos(πy),− cos(πx) sin(πy)

)T
, p(x, y) = cos(πx) exp(y),

T (x, y) = 0.5 + 0.5 cos(xy), S(x, y) = 0.1 + 0.3 exp(xy).

Relative errors in their natural norms, along with the corresponding convergence rates computed as

eu = ‖u− uh‖1,Th/‖u‖1,Th , ep = ‖p− ph‖0,Ω/‖p‖0,Ω, eT = ‖T − Th‖1,Ω/‖T‖1,Ω,
eS = ‖S − Sh‖1,Ω/‖S‖1,Ω, rate = log(e(·)/ẽ(·))[log(h/h̃)]−1,

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respectively; are listed

in Table 3.1 for k = 1, 2, where the model constants are chosen as stated above. We can observe

that the total error is dominated by the pressure approximation, and that the discrete velocities are

divergence free. The tabulated values also indicate an optimal O(hk) convergence, consistently with

the theoretical bounds stated in Theorem 3.4. We also conduct two additional series of accuracy tests

focusing on the cases where the viscosity and permeability coefficients scale differently, changing from

Stokes to Darcy regimes. These values are collected in Tables 3.2 and 3.3, respectively. Apart from

an increase of the pressure error, we can see that the experimental rates of convergence remain close

to the optimal behaviour.

3.5.2 Example 3.2: Soret and Dufour effects in a porous cavity

Using the following dimensionless variables: x = x∗/H, y = y∗/X,u = uH/ν, p = p∗H/ρν, T =

(T ∗ − T0)/(T1 − T0) and C = (C∗ − c0)/(C1 −C0) (where H is the cavity height and ν the kinematic

viscosity of the fluid), we can write the equations describing transport phenomena in a square porous

cavity with thermal and concentration diffusion in the form (3.1). We set K = Da I, ν(T ) = 1 and

F (y) = (GrT T + GrC C)g, where g = (0,−1)T points in the direction of gravity, ~m = (T,C)T, and

the diffusion coefficients are given by

D =

[
Rk/Pr Du

Sr 1/Sc

]
.
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Ra 100 200 400 1000 2000

Nu Present Study 3.10 4.97 7.84 13.72 20.31

Ref. [59] 3.15 5.02 7.83 14.01 20.00

Ref. [86] 3.11 4.96 7.77 13.47 19.90

Sh Present Study 13.58 20.73 30.91 49.42 66.80

Ref. [59] 13.54 20.11 27.96 48.01 71.25

Ref. [86] 13.25 19.86 28.41 48.32 69.29

Table 3.4: Example 3.2 (porous cavity): (left) sketched domain with boundary conditions, (right)

comparison of average Nusselt and Sherwood numbers for N = 0, Le = 10 with thermal Rayleigh

numbers on Darcy’s regime (table produced by the author).

Here, Rk is the thermal conductivity ratio, GrT ,GrC are the thermal and solutal Grashof numbers

respectively, Da = κ/H2 is the Darcy number, Pr = ν/α the Prandtl number, Sc = ν/DC the Schmidt

number, and the ratio Le = Sc/Pr the Lewis number.

For a preliminary validation we conduct a series of computational tests using a buoyancy ratio

N := GrC/GrT = 0. The computational domain is the unit square Ω := (0, 1)2, considering no-

slip velocity conditions on Γ . Temperature and concentration are kept at T0, C0 and T1, C1 at the

right and left walls respectively, where T0 < T1 and C0 < C1. Horizontal walls are adiabatic and

impermeable, as depicted on the left of Table 3.4. In this subsection we will use k = 2 and a mesh

with 20000 elements. We compute Nusselt and Sherwood numbers and compare these outputs against

well-known benchmark data from [59] and [86]. The average values of Nu and Sh values on the left

vertical wall are, respectively

Nu =

∫ 1

0

∂T

∂x

∣∣∣∣
x=0

dy, Sh =

∫ 1

0

∂C

∂x

∣∣∣∣
x=0

dy.

For the values Rk = 1.0, Da = 10−7, Le = 10, Sr = 0, Du = 0, and Pr = 10, results for different

thermal Rayleigh values are computed and summarised on the right panel of Table 3.4 along with the

results from [59,86]. For Ra ≤ 1000, the values of Nu and Sh are within a relative error of 3%, for the

last value Ra = 2000, within 6%.

Keeping the remaining parameters fixed, we now set Ra = 100, Le = 0.8 and N = 1. The effect

of Dufour parameter on the flow, thermal and concentration fields are portrayed in Figure 3.1 for

Du ∈ {0.1, 1}. The velocity field and isotherms are in qualitative agreement with those in [24, Fig. 2].

In Figure 3.2 we repeat the plots keeping Du = 0 and with Soret values of Sr ∈ {0.1, 1}. As expected,

the result is almost symmetric with an exchange of behaviour between temperature and concentration.

Moreover, in both cases an increment of Sr or Du drives an increase of velocity in the recirculation

patterns. Finally, in Figure 3.3 we fix Du = 0.5, Sr = 0.5 and test the effect of buoyancy by setting

N = −5 and alternatively, N = 5. We can see the reversion of flow direction caused by the difference

in buoyancy of the species. Note that in the last case D is not positive definite and solvability

of the coupled problem cannot be guaranteed. Nevertheless, convergence of the Newton iterations
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Figure 3.1: Example 3.2 (porous cavity): (left) velocity field, (middle) isotherms and (right) concen-

tration contours for (top) Du = 0.1, (bottom) Du = 1 (figure produced by the author).

was observed for a broad range of parameters (Sr,Pr ∈ [10−3, 103], N ∈ [1, 10], Da ∈ [10−7, 1],

Ra ∈ [100, 2000]). The convergence of Newton iterates is lost only when the Soret number Sr takes

values greater than 5 (and provided that N ≥ 0 and Du = 0).

3.5.3 Example 3.3: bioconvection of oxytactic bacteria

With the notation ~m = (c1, c2)T the oxytactic bacteria bioconvection phenomenon (see [119, 120]),

can be modelled by (3.1), with diffusion, reaction, and remaining concentration-dependent coefficients

given by

D(~m) =

[
D1 −αr(c2)c1

0.0 D2

]
, g(~m) = βr(c2)

(
0

−1

)
, F (~m) = γc1g

g =

(
0

−1

)
, r(c2) =

1

2

(
1 +

c2 − c∗2√
(c2 − c∗2)2 + ε2

)
.
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Figure 3.2: Example 3.2 (porous cavity): (left) velocity field, (middle) isotherms and (right) concen-

tration contours for (top) Sr = 0.1, (bottom) Sr = 1 (figure produced by the author).

We consider a rectangular prism with square base [0, 1] × [0, 1] and height 0.75, discretised into a

tetrahedral mesh of 48000 cells. Fixing the parameters β = 0.1, D1 = 0.01, D2 = 0.2, γ = 5000,

α = 0.25, Sc = 10−2, and µ = 2, we use a pseudo timestep, using ∆t = 0.1 to compute intermediate

state solutions, starting from a distribution of bacteria packed in a ball of radius 0.2 and placed near the

top of the vessel. Snapshots (at advanced time) of the numerical solution are displayed in Figures 3.4

and 3.5. We observe how the bacteria propagate downwards, producing recirculating zones as indicated

by the velocity field. The first snapshot shows that the oxygen concentration has more variation

on the top layers due to the competition between consumption of the high bacterial concentration,

recirculating flow, and diffusion. Later on, oxygen concentration follows the flow direction, showing

higher values downwards in the centre of the recirculating zones. The pressure distributes from low

on the top, to high on the bottom, also decreasing its magnitude as the bacteria reaches the vessel’s

bottom.
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Figure 3.3: Example 3.2 (porous cavity): (left) velocity field, (middle) isotherms and (right) concen-

tration contours for (top) N = −5, (bottom) N = 5 (figure produced by the author).
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Figure 3.4: Example 3.3 (bioconvection): patterns generated by the bacterial chemotaxis towards

oxygen concentration. Snapshots of the obtained solutions at times (top) t = 0.1, (middle) t = 0.3

and (bottom) t = 0.5 (figure produced by the author).
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Figure 3.5: Example 3.3 (bioconvection): patterns generated by the bacterial chemotaxis towards

oxygen concentration. Snapshots of the obtained solutions at times (top) t = 0.1, (middle) t = 0.3

and (bottom) t = 0.5 (figure produced by the author).



CHAPTER 4

Convergence of H(div)-conforming schemes for a new model

of sedimentation in circular clarifiers with a rotating rake

In this chapter we introduce a macroscopic model for simulating the sedimentation-consolidation

of solid particles in an incompressible fluid under the effect of gravity and in the presence of

a slowly rotating arm assisting the removal of sediment on the bottom of clarifier-thickener

units. The governing model is an initial-boundary value problem for the Navier-Stokes equations

describing the flow of the mixture coupled with a nonlinear parabolic equation describing the

volume fraction of solids. The rotating structure is accounted for by suitable drag laws on the

momentum balance of the mixture and on the mass balance of the solid phase. An H(div)-

conforming method for the coupled problem is proposed, a rigorous proof of convergence is

provided, and the validity of the new model and the performance of the scheme are demonstrated

numerically by several computational tests.

4.1 Introduction

4.1.1 Scope

We advance a phenomenological model of solid-fluid interaction in a continuously operated clarifier-

thickener, which is an equipment widely used in the mining industry, wastewater treatment plants,

and other applications. The new approach accounts for the effect of the rotating rake structure, the

influence of the settling solid particles, and the three-dimensional incompressible flow of the mixture.

A large variety of these devices are used in industry, but most clarifier-thickeners are circular tanks

of 1, 50 m to 150 m in diameter equipped with a feed inlet and overflow and discharge outlets for

continuous operation. In many devices, a pair of rotating rake arms that move over the gently sloped

bottom help to move the concentrated slurry toward the centre of the tank, where it is removed.

Clear liquid overflows the top of the tank and is collected through a circumferential launder (see

Figure 4.1). Although there are many main types of thickeners or clarifiers such as bridge support,

column support, and traction devices, for the purpose of the present modelling framework these are

all considered equivalent.

The mathematical modelling and numerical simulation of this kind of processes is challenging due to

70
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Figure 4.1: Schematic view of the clarifier unit, indicating height H, maximal radius R, and the

location of the rotating rake; as well as the separation of the boundary into the walls, the outlet, the

feedwell inlet, and the overflow weir (figure produced by the author).

the intrinsic multiscale and highly nonlinear nature of the sedimentation-consolidation mechanisms,

complicated geometries and boundary conditions, as well as the feedback interaction between the

mixture flow and the motion of the rake (the fluid applies a load on the solid structure, implying a

deformation, generating stresses, and eventually modifying the flow). For instance, simplified models

that would be based on geometrical symmetry are in this case of very restricted applicability, since

the settling of the particles occurs in the vertical direction while the rotation of the rake acts in two

horizontal directions, and the velocity distribution under typical operating conditions is quite far from

unidirectional.

We consider process of sedimentation and transport of a suspension consisting of a phase of finely

divided solid particles dispersed in a viscous fluid. This mixture is contained in a clarifier tank with

a moving rake. For the sedimentation-consolidation of the suspension we assume that the particles

are relatively small with respect to the tank size and possess the same density. It is assumed that the

mixture is composed of incompressible solid and liquid phases, that the mixture velocity is relatively

small, and that the suspension is already flocculated before the process starts (see [56, 148]). The

motion of the mixture is governed by the incompressible Navier-Stokes equations coupled with the

transport equation for the solids as follows,

ρf

(
∂u

∂t
+ div(u⊗ u)

)
− div

(
ν(c)ε(u)

)
+∇p = fg(c) + fr(u,x, t), (4.1a)

divu = 0, (4.1b)

∂c

∂t
− div

(
D(c)∇c− cu− fbk(c)k

)
= −gr(c,x, t) in Ω × (0, T ). (4.1c)

Here the sought quantities are the mixture velocity u, the pressure p and the local solids fraction c as

functions of time t ∈ [0, T ] and spatial position x ∈ Ω ⊂ R3, where the spatial domain Ω represents

the interior of the clarifier-thickener. Moreover, ρf is the fluid density, ε(u) = 1
2(∇u + ∇uT) is the

strain rate tensor, and k is the upwards-pointing unit vector. The material behaviour is described by

the concentration-dependent viscosity ν, the Kynch batch flux density function fbk, and the diffusion

function D. These three quantities are nonlinear given functions of c that are specified in Section 4.2.1.
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The term fg(c) represents the body force and is given by fg(c) = g (ρs − ρf) c as in [65], where

g = −gk and g is the acceleration of gravity. The terms fr(u,x, t) and gr(c,x, t) describe the action

of the rotating rake, and are specified in Section 4.2.2. The system (4.1) is supplied with initial and

boundary conditions that are made precise in Section 4.2.3.

It is the purpose of this chapter to advance a novel discretisation for the resulting initial-boundary

value problem that is of second-order in space and time. The discretisation employs divergence-

conforming BDM elements of order k for the approximation of the velocity, discontinuous elements

of order k − 1 for the pressure, and continuous Lagrange elements of order k for the volume fraction.

We use an interior penalty discontinuous Galerkin technique in order to enforce H1-continuity of the

velocity (similarly as done in [49]); and employ the second-order backward differentiation formula

(BDF2) for the discretisation in time. Our analysis includes the stability of solutions of the associated

Galerkin scheme and the derivation of optimal error estimates in time and space for problems with

small and sufficiently smooth solutions. These properties constitute a proof of convergence of the

fully discrete scheme as the meshwidth and the time step tend to zero. The novelty of the treatment

consists in the inclusion of terms that account for the influence of the rake motion on the momentum

balance and the removal of solids. We also adapt techniques of the immerse boundary finite element

method (see e.g. [34]) for the analysis and numerical approximation of those terms.

4.1.2 Outline of the chapter

We have organised the contents of this chapter in the following manner. Section 4.2 describes the

general governing equations, the constitutive relations, and the interaction terms. It also specifies

the boundary and initial conditions, and it outlines the weak formulation of the problem for a fixed

time. In Section 4.3 we introduce the Galerkin discretisation and define the fully discrete method,

briefly addressing stability and convergence properties. Section 4.4 is devoted to the computational

results, including parameter calibration, accuracy verification, as well as the simulation of clarifier

performance under different operation scenarios.

4.2 Preliminaries

4.2.1 Constitutive functions

The viscosity ν is supposed to be given by the following nonlinear function of c:

ν(c) = ν0 + ν0(1− c/cmax)b, (4.2)

where ν0 is the viscosity of the pure fluid, b > 0 is a parameter, and cmax is a (nominal) maximum

solids volume fraction. We do not consider here the high-order terms that account for microstructural

arrangement of the granular material as e.g. in [148].

Moreover, the one-dimensional Kynch batch flux density function describing hindered settling [117],

fbk; and the sediment compressibility, D(c); are non linear functions of the concentration c, which can
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Figure 4.2: Schematic representation of the mapping Xr from the rake reference domain B to the

moving domain Ωr(t) in a longitudinal section of the clarifier unit (figure produced by the author).

be taken as follows [47]:

D(c) = D0 +
fbk(c)σ′e(c)

(ρs − ρf)gc
, fbk(c) = V∞

[
c

(
1− c

cmax

)ηF ]
, (4.3)

where V∞ is the Stokes velocity, ηF a material-dependent exponent, D0 > 0 is the constant of hy-

drodynamic self-diffusion, ρs and ρf are the solid and fluid mass densities, respectively, and σe(c) is

the so-called effective solid stress function, which characterises sediment compressibility in the case

of flocculated particles. The function σe is assumed to satisfy σ′e(c) = dσe(c)/dc ≥ 0 for all c, which

ensures that D(c) ≥ D0 > 0.

4.2.2 Rotating rake

To include the rotating rake into the computational model, we follow Das et al. [65] using a simplified

approach that only takes into account the area of influence of the rake, and characterises the details

of its geometry through parameters. The rake area of influence (hereinafter we will refer to it only as

rake) Ωr(t) can be represented as the image of a mapping Xr(·; t) from a reference domain B ⊂ Rd (see

figure 4.2). We denote by s the coordinates in B, then Xr(s; t) represents the position of a point in

the current domain Ωr(t). That is, x ∈ Ωr(t) if and only if there exists s ∈ B such that x = Xr(s; t).

For simplicity we will consider a constant angular velocity ω for the rake, then the rake velocity ur(s),

depends only on the distance to the rake centre. Further, we suppose fr depends on the difference

between the fluid velocity and the rake velocity ur; and gr depends on the difference between the

concentration in front of the rake and a concentration after removal cr, which is linked to the rake

geometry. To express fr(u,x, t) in compact form, it is useful to define the function ζ : R → R given

by ζ(x) = x2 sgnx = x|x|. Then we define

f r(u,x, t) :=

{
βρrζ

(
(ur(X

−1
r (x; t))− u(x, t)) · nr

)
nr if x ∈ Ωr(t),

0 otherwise,

gr(c,x, t) :=

{
α
(
c(x, t)− cr

)
if x ∈ Ωr(t),

0 otherwise,



4.2. Preliminaries 74

where α is a removal coefficient, β is the drag coefficient that includes the contact surface to volume

ratio, ρr the rake density and nr the vector pointing towards the tangential direction with respect

to the circular motion of the rake in the (x1, x2)-plane. Following the approach of the immersed

boundary method [34, 35] as well as a recently proposed model arising in the context of flow-canopy

interaction [161], we rewrite these expressions as

fr(u,x, t) = βρr

∫
B
ζ
(
ur(s)− u(Xr(s, t); t)) · nr

)
nrδ
(
x−Xr(s; t)

)
ds,

gr(c,x, t) = α

∫
B

(
c(Xr(s, t); t)− cr

)
δ
(
x−Xr(s; t)

)
ds for all x ∈ Ω and t ∈ (0, T ).

(4.4)

Here, δ is the Dirac delta function. Even if the presence of the rotating arm through (4.4) does not

resolve stress localisation on the structure, it already represents an extension over the model in [65].

4.2.3 Initial and boundary conditions

The set of governing equations is furnished with the following initial and boundary conditions:

u(0) = 0, c(0) = c0 in Ω, (4.5a)

u(x, t) = uin on Γin, t ∈ [0, T ], (4.5b)

c(x, t) = cin on Γin, t ∈ [0, T ], (4.5c)

u(x, t) = 0 on Γwall, t ∈ [0, T ], (4.5d)

[ν(c)ε(u)− pI]n = 0 on Γout ∪ Γofl, t ∈ [0, T ], (4.5e)

(D(c)∇c− fbk(c)k) · n = 0 on Γwall ∪ Γin, t ∈ [0, T ], (4.5f)

D(c)∇c · n = 0 on Γout ∪ Γofl, t ∈ [0, T ], (4.5g)

which represent that at the inlet we impose velocity and volume fraction of solids, on the walls we set

no-slip velocity and zero-flux for c, and on the outlet and effluent overflow regions we set zero normal

total stress, and zero total flux. The disposition of domain boundaries is exemplified in Figure 4.1.

4.2.4 Weak formulation

The weak formulation of problem (4.1) is obtained by testing against suitable functions and inte-

grating by parts, and can be stated as follows:

Find (u(t), p(t), c(t)) ∈H1(Ω)× L2(Ω)×H1(Ω) satisfying

the boundary conditions (4.5b) and (4.5c) and for all v ∈H1
0 (Ω), q ∈ L2(Ω) and l ∈ H1(Ω):(

∂tu(t),v
)
Ω

+ a1

(
c(t);u(t),v

)
+ c1

(
u(t);u(t),v

)
− b
(
v, p(t)

)
= Fg(c(t),v) + Fr(u(t),v),

b
(
u(t), q

)
= 0,(

∂tc(t), l
)
Ω

+ a2

(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr

(
c(t), l

)
.

(4.6)
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Using [34, Lemma 1], we can consider Fr ∈ H−1(Ω), Gr ∈ H−1(Ω), and the variational forms that

are defined as follows for all u,v,w ∈H1(Ω), q ∈ L2(Ω), and c, l ∈ H1(Ω):

a1(c;u,v) :=
(
ν(c)ε(u), ε(v)

)
Ω
, b(v, q) := (q,div v)Ω, c1(w;u,v) :=

(
(w · ∇)u,v

)
Ω
,

Fg(c, v) =
(
g (ρf − ρs) c,v

)
Ω
,

Fr(u,v) = βρr

∫
B
ζ
(
(ur(s)− u(Xr(s; t), t)) · nr

)
nrv

(
Xr(s; t)

)
ds,

a2(c; c, l) :=
(
D(c)∇c,∇l

)
Ω
, c2(v; c, l) := (v · ∇c, l)Ω ,

d2(c, l) =
(
fbk(c)k,∇l

)
Ω
− 〈fbk(c)k · n, l〉Γout∪Γofl

, Gr(c, l) := α

∫
B

(
c(Xr(s; t), t)− cr

)
l
(
Xr(s; t)

)
ds.

Although some related results are available from the literature, for instance the existence of strong and

weak solutions for the periodic motion of a rigid body in an incompressible fluid [80], the solvability

analysis of (4.6) is still an open problem. We will proceed to the semidiscrete analysis under the

assumption that the continuous problem is well-posed and that the weak solutions are regular enough.

4.3 Numerical method

4.3.1 Definition of the discrete problem

For the space discretisation, we will consider a family of regular partitions, denoted Th, of Ω ⊂ Rd

into simplices K (triangles in 2D or tetrahedra in 3D) of diameter hK . For k ≥ 1 and a mesh Th on

Ω, let us consider the discrete spaces (see e.g. [40, 49])

Vh :=
{
vh ∈H(div;Ω) : vh|K ∈ [Pk(K)]d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2(Ω) : qh|K ∈ Pk−1(K) ∀K ∈ Th

}
,

Mh :=
{
sh ∈ C(Ω̄) : lh|K ∈ Pk(K) ∀K ∈ Th

}
,

which in particular satisfy divVh ⊂ Qh (cf. [109]). Here Pk(K) denotes the local space spanned by

polynomials of degree up to k and Vh is the space of divergence-conforming BDM elements. Associated

with these finite-dimensional spaces, we state the following semi-discrete Galerkin formulation for

problem (4.1):

Find (uh, ph, ch) ∈ Vh ×Qh ×Mh such that for all (vh, qh, lh) ∈ Vh ×Qh ×Mh:

(∂tuh,vh)Ω + ah1(ch;uh,vh) + ch1(uh;uh,vh)− b(vh, ph) = Fg(ch, vh) + Fr(uh,vh),

b(uh, qh) = 0,

(∂tch, lh)Ω + a2(ch; ch, lh) + c2(uh; ch, lh)− d2(ch, lh) = −Gr(ch, lh).

(4.7)
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Here the discrete versions of the trilinear forms ah1(·; ·, ·) and ch1(·; ·, ·) are defined using a symmetric

interior penalty and an upwind approach, respectively (see e.g. [19, 109]):

ah1(ch;uh,vh) :=

∫
Ω

(
ν(ch)εh(uh) : εh(vh)

)
+
∑
e∈Eh

∫
e

(
−{{ν(ch)εh(uh)ne}} · JvhK

− {{ν(ch)εh(vh)ne}} · JuhK +
a0

he
ν(ch)JuhK · JvhK

)
,

ch1(wh;uh,vh) :=

∫
Ω

(wh · ∇)uh · vh +
∑
K∈Th

∫
∂K\Γ

ŵup
h (uh) · vh,

where the upwind flux is defined as ŵup
h (uh) := 1

2(wh · nk − |wh · nK |)(ueh − uh), and ueh is the trace

of uh taken from within the exterior of K.

Let us introduce a partition of the interval [0, T ] into N subintervals [tn−1, tn] of length ∆t. We

will use an implicit, BDF2 formula. That is, all first-order time derivatives are approximated using

the centred operator

∂tuh(tn+1) ≈ 1

∆t

(
3

2
un+1
h − 2unh +

1

2
un−1
h

)
,

(similarly for ∂tc) whereas for the first time step a first-order backward Euler method is used from t0

to t1, starting from the interpolates u0
h, c

0
h of the initial data. The resulting set of nonlinear equations

is solved with an iterative Newton-Raphson method with exact Jacobian.

4.3.2 Spatio-temporal accuracy of the discretisation

For sake of the subsequent analysis, we assume Lipschitz continuity of the concentration-dependent

viscosity

ν ∈ Lip(R+); ∃νmin, νmax : ∀c ∈ R+ : νmin ≤ ν(c) ≤ νmax.

Moreover, the flux fbk(c) is assumed to be Lipschitz continuous, and the diffusion coefficient D = D(c)

is supposed to be a nonlinear function satisfying

D ∈ Lip(R+); ∃D1, D2 > 0 : ∀c ∈ R+ : D1 ≤ D(c) ≤ D2. (4.8)

For simplicity, we impose the following modified boundary conditions:

u(x, t) = 0, c(x, t) = 0, (D(c)∇c− fbk(c)k) · n = 0 on Γ , t ∈ [0, T ],

and we emphasise that the analysis can be extended to the non-homogeneous case following, for

instance, lifting arguments.

We utilise the following mesh dependent broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖∇v‖20,K +
∑
e∈Eh

1

he
‖JvK‖20,e, ‖v‖21,Th := ‖v‖20,Ω + ‖v‖2∗,Th for all v ∈H1(Th),

‖v‖22,Th := ‖v‖21,Th +
∑
K∈Th

h2
K |v|22,K for all v ∈H2(Th).
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We also recall the broken version of the well-known Sobolev embedding result (see e.g. [83, Lemma

6.2], [102, Prop. 4.5] or [67, Th. 5.3]): for any r > 1 if d = 2 or 1 ≤ r ≤ 6, if d = 3 there exists a

constant Cemb > 0 such that

‖v‖Lr(Ω) ≤ Cemb‖v‖1,Th for all v ∈H1(Th). (4.9)

Furthermore, we will use the broken space

C1(Th) :=
{
u ∈H1(Th) : u|K ∈ C1(K̄),K ∈ Th

}
,

equipped with an appropriate norm ‖u‖W 1,∞(Th) := maxK∈Th‖u‖W 1,∞(K). Using the discrete norms,

embedding (4.9) and local trace inequalities, we can establish continuity of the trilinear and bilinear

forms involved, stated in the following lemma that can be proved following [19, Section 4]:

Lemma 4.1. The following properties hold:∣∣ah1(·,u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th for all u,v ∈ Vh, (4.10a)∣∣b(v, q)∣∣ ≤ C̃b‖v‖1,Th‖q‖0,Ω for all v ∈H1(Th), q ∈ L2

0(Ω), (4.10b)∣∣c2(w; c, l)
∣∣ ≤ C̃1‖w‖1,Th‖l‖1,Ω‖c‖1,Ω for all w ∈H1(Th) and l, c ∈ H1(Ω). (4.10c)

Moreover, for c1, c2 ∈ H1(Ω), c ∈W 1,∞(Ω), u ∈ C1(Th) ∩H1
0 (Ω) and v ∈ Vh, there holds∣∣ah1(c1;u,v)− ah1(c2;u,v)

∣∣ ≤ C̃Lip‖c1 − c2‖1,Ω‖u‖W 1,∞(Th)‖v‖1,Th ,∣∣a2(c1, c, l)− a2(c2, c, l)
∣∣ ≤ ĈLip‖c1 − c2‖1,Ω‖c‖W 1,∞(Ω)‖l‖1,Ω, (4.11)

where the constant C̃Lip > 0 is independent of h (cf. [49]). A related result follows for ch1(·; ·, ·) as

in [137, Lemma 3.4]. On the other hand, let w1,w2,u ∈ H2(Th) and v ∈ Vh. Then there exists

C̃u > 0 independently of h such that∣∣ch1(w1;u,v)− ch1(w2;u,v)
∣∣ ≤ C̃u‖w1 −w2‖1,Th‖u‖1,Th‖v‖1,Th . (4.12)

Moreover, while the coercivity of the form a2(·, ·, ·) is readily implied by (4.8),

a2(·, c, c) ≥ α̂a‖c‖21,Ω for all c ∈ H1(Ω), (4.13)

there also holds (cf. [109, Lemma 3.2])

ah1(·,v,v) ≥ α̃a‖v‖21,Th for all v ∈ Vh, (4.14)

provided that a0 > 0 is sufficiently large and independent of the meshsize.

Furthermore, based on the assumptions on D, we have∣∣a2(·; c, l)
∣∣ ≤ Ĉa‖c‖1,Ω‖l‖1,Ω for all c, l ∈ H1(Ω). (4.15)

In addition, if we let w ∈H0(div0;Ω) := {w ∈H(div, Ω) : w · n = 0 on ∂Ω,divw = 0 in Ω}, then

according to [137] we can write

ch1(w;u,u) =
1

2

∑
e∈Eih

∫
e
|w · ne|JuK2 ≥ 0 for all u ∈ Vh, (4.16)
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as well as the relation

c2(w; lh, lh) = 0 for all lh ∈Mh, (4.17)

which arises from integration by parts and holds at the discrete level since the produced discrete

velocities are exactly divergence free. Based on the assumptions on fbk, it is also clear that∣∣d2(c1, l)− d2(c2, l)
∣∣ ≤ Cd‖c1 − c2‖0,Ω‖l‖1,Ω. (4.18)

Finally, we recall from [109] the following discrete inf-sup condition for b(·, ·), where β̃ is independent

of h:

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖0,Ω for all qh ∈ Qh. (4.19)

Remark 4.1. Using the definition and characterisation of the kernel Z of b(·, ·), namely

Z :=
{
v ∈H1

0 (Ω) : b(v, q) = 0 ∀q ∈ L2
0(Ω)

}
=
{
v ∈H1

0 (Ω) : div v = 0 in Ω
}
,

and using integration by parts, we can readily observe that

c1(w;v,v) = 0 and c2(w; s, s) = 0 for all w ∈ Z, v ∈H1(Ω), and s ∈ H1(Ω).

It is also well known (see for instance [41]) that if (u, p, c) ∈ H1
0 (Ω) × L2

0 × H1 solves (4.6), then

u ∈ Z is a solution of the following reduced problem:

For all t ∈ (0, T ], find (u, c) ∈ Z ×H1 such that(
∂tu(t),v

)
Ω

+ a1

(
c(t);u(t),v

)
+ c1

(
u(t);u(t),v

)
= Fg(c,v) + Fr(u,v) for all v ∈H1

0 (Ω),(
∂tc(t), l

)
Ω

+ a2

(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr(c(t), l) for all l ∈ H1(Ω).

(4.20)

Conversely, if (u, c) ∈ Z ×H1 is a solution of (4.20), then there exists a pressure p ∈ L2
0 such that

(u, p, c) is a solution of (4.6). As in the continuous case, we define the discrete kernel of the bilinear

form b(·, ·) as

Zh := {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh } = {vh ∈ Vh : div vh = 0 in Ω } ,

and relying on the inf-sup condition (4.19), we can introduce an equivalent discrete reduce problem.

Let us denote by Ih : C(Ω̄) → Mh the classical nodal interpolation operator with respect to a

unisolvent set of Lagrangian interpolation nodes associated with the conforming space Mh. By Πh u

we denote the BDM projection of u, and Lh p is the L2-projection of p onto Qh. Under adequate

regularity assumptions, the following approximation properties hold (see [109]):

‖u−Πh u‖1,Th ≤ C
∗hk+1‖u‖k+1,Ω,

‖c− Ih c‖1,Ω ≤ C∗hk‖c‖k+1,Ω, ‖p− Lh p‖0,Ω ≤ C∗hk‖p‖k,Ω.
(4.21)

The following development follows the structure adopted in [4].
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Lemma 4.2. Assume that u ∈H2(Ω), p ∈ L2(Ω) and c ∈ H1(Ω). Then we have

For all v ∈ Vh, q ∈ Qh and l ∈Mh:(
∂tu(t),v

)
Ω

+ ah1
(
c(t);u(t),v

)
+ ch1

(
u(t);u(t),v

)
− b(v, p(t))− Fg

(
c(t),v

)
− Fr

(
u(t),v

)
= 0,

b(u(t), q) = 0,(
∂tc(t), l

)
Ω

+ a2

(
c(t); c(t), l

)
+ c2

(
u(t); c(t), l

)
− d2

(
c(t), l

)
= −Gr

(
c(t), l

)
.

Proof. Since we assume u ∈H2(Ω), integration by parts yields the required result. See also [19]. The

third equation is a straightforward result from the continuous form.

Now we decompose the errors as follows:

uh − u = Eu + ξu = (Πh u− u) + (uh −Πh u),

ph − p = Ep + ξp = (Lh p− p) + (ph − Lh p),
ch − c = Ec + ξc = (Ih c− c) + (ch − Ih c).

Assuming that u0
h = Πh u(0) and c0

h = Ih c(0), we will use also the notation Enu = (u(tn)−Πh u(tn))

and ξnu = (Πh u(tn) − unh), and similar notation for other variables. Note that for the first time

iteration of the fully discrete form of system (4.7) we adopt a backward Euler scheme, and so we

require error estimates for this step.

In what follows we assume a simpler form for the drag term fr such that for all u1,u2,v ∈H1(Ω)

we have the following Lipschitz continuity:∣∣Fr(u1,v)− Fr(u2,v)
∣∣ ≤ γ̃1‖u1 − u2‖0,B‖v‖0,B. (4.22)

Since Xr(s, t) is a rigid motion, (4.22) can be achieved, for instance, if we consider

fr(x, t) = β∗ρr

∫
B

(
(ur(s)− u(Xr(s, t), t)) · nr

)
nrδ(x−Xr(s, t)) ds. (4.23)

Furthermore, since B ⊂ Ω, we have that ‖·‖0,B ≤ ‖·‖0,Ω and∣∣Fr(u1,v)− Fr(u2,v)
∣∣ ≤ γ1‖u1 − u2‖0,Ω‖v‖0,Ω. (4.24)

By Hölder’s inequality for all c, c1, c2, l ∈ H1(Ω) and v ∈H1(Ω) there also hold

Fg(c,v) ≤ γ2‖c‖0,Ω‖v‖0,Ω, (4.25)

Gr(c1, l)−Gr(c2, l) ≤ γ3‖c1 − c2‖0,Ω‖l‖0,Ω. (4.26)

The following algebraic relation will be useful in the sequel: for any real numbers an+1, an, an−1

and defining Λan := an+1 − 2an + an−1, we have

2(3an+1 − 4an + an−1, an) = |an+1|2 + |2an+1 − an|2 + |Λan|2 − |an|2 − |2an − an−1|2. (4.27)



4.3. Numerical method 80

Theorem 4.1. Let (unh, c
n
h) in Xh×Mh be a solution of problem (4.7), using the second-order backward

differentiation formula with initial data (u1
h, c

1
h) and (u0

h, c
0
h). Then there exist constants C̄u > 0 and

C̄c > 0 that are independent of h and ∆t such that

sup
2≤n≤N

‖unh‖20,Ω + sup
2≤n≤N

‖2unh − un−1
h ‖20,Ω +

N∑
n=2

‖Λun−1
h ‖0,Ω +

N∑
n=2

∆tα̃a‖unh‖21,Th

≤ C̄u(‖c1
h‖20,Ω + ‖2c1

h − c0
h‖20,Ω + ‖u1

h‖20,Ω + ‖2u1
h − u0

h‖20,Ω + ‖ur‖20,B + |cr|2),

sup
2≤n≤N

‖cnh‖20,Ω + sup
2≤n≤N

‖2cnh − cn−1
h ‖20,Ω +

N∑
n=2

‖Λcn−1
h ‖0,Ω + 4

N∑
n=2

∆tα̂a‖cnh‖21,Ω

≤ C̄c(‖c1
h‖20,Ω + ‖2c1

h − c0
h‖20,Ω + |cr|2).

Proof. It suffices to take vh = 4∆tun+1
h and lh = 4∆tcn+1

h in system (4.7), using BDF2 differentiation

formula, Sobolev inequalities, summing over n from 1 to n ≤ N − 1, and applying Gronwall’s lemma,

with ∆t sufficiently small. Note that by Remark 4.1, all terms containing the bilinear form b are

simply removed from the system.

Theorem 4.2. Assume that u ∈ L∞(0, T ;Hk+1
0 (Ω)), u′ ∈ L∞(0, T ;H1(Ω)), u′′ ∈ L∞(0, T ;L2(Ω)),

p ∈ L∞(0, T ;Hk(Ω)), c ∈ L∞(0, T ;Hk+1
0 (Ω)), c′ ∈ L∞(0, T ;Hk(Ω)), c′′ ∈ L∞(0, T ;L2(Ω)), with

γ2
2 ≤ 1

32 α̂aα̃
2
a, k ≥ 1 and also that

max
{
‖u‖L∞(0,T ;W 1,∞(Ω)), ‖c‖L∞(0,T ;W 1,∞(Ω))

}
< M,

for a sufficiently small constant M > 0 (a precise condition for M, can be found on Theorem 4.5).

Then there exist positive constants C1
u, C1

c , independent of h and ∆t, such that

1

4
‖ξ1
u‖20,Ω +

1

4
∆tα̃a‖ξ1

u‖21,Th ≤ C
1
u(h2k +∆t4),

1

8
‖ξ1
c‖20,Ω +

1

4
∆tα̂a‖ξ1

c‖2H1(Ω) ≤ C
1
c (h2k +∆t4).

Proof. First, taking into account the regularity assumptions for u, we have for all x a γ ∈ (0, 1) that

depends on x such that

u(0) = u(∆t)−∆tu′(∆t) +
1

2
∆t2u′′(∆tγ),

then using the reduced problem as stated on Remark 4.1, u satisfies the following error equation

‖ξ1
u‖20,Ω +∆tα̃a‖ξ1

u‖21,Th ≤ −
(
Πh u(∆t)− u(∆t) + u0

h − u(0), ξ1
u

)
Ω

+∆t
(
ah1(c1

h;Πh u(∆t), ξ1
u)− ah1(c1;u(∆t), ξ1

u)
)

−∆t
(
ch1(u1

h;u1
h, ξ

1
u)− ch1(u(∆t),u(∆t), ξ1

u)
)

−∆t
(
Fr(u

1
h, ξ

1
u)− Fr(u(∆t), ξ1

u)
)

−∆t
(
Fg(c1

h, ξ
1
u)− Fg(c(∆t), ξ1

u)
)
− ∆t2

2

(
u′′(∆tγ), ξ1

u

)
,

which results after choosing ξ1
u as test function in the first equation of Lemma 4.2 and system (4.7),

performing an Euler scheme step, subtracting both equations, and adding ±ah1(c1
h;Πh u(∆t), ξ1

u).
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Now, by applying the error approximation results from (4.21), Young’s inequality, and the stability

properties, we get

1

4
‖ξ1
u‖20,Ω +

1

4
∆tα̃a‖ξ1

u‖21,Th ≤ Ch
2k∆t

(
‖u(∆t)‖2Hk+1(Ω) + ‖u(0)‖2Hk+1(Ω)

+ ‖c(∆t)‖2Hk+1(Ω) + ‖p(∆t)‖2Hk(Ω)

)
+ C∆t4(‖u′′‖2L∞(0,T ;L2(Ω))) +

4C̃2
LipM

2

α̃a
∆t‖ξ1

c‖21,Ω

+∆t
γ2

2

α̃a
‖ξ1
c‖1,Ω. (4.28)

Next, we choose ξ1
c as test function in the third equation of Lemma 4.2 and system (4.7); we follow

the same steps as before, adding to the sum of both equations the term ±a2(c1
h; Ih c1, ξ1

c ), with ∆t

sufficiently small
(
∆t ≤ 1

2(12C2
d+2γ̃2

3)

)
to obtain

1

4
‖ξ1
c‖20,Ω +

1

2
∆tα̂a‖ξ1

c‖21,Ω ≤ C∆th2k
(
‖u(∆t)‖2Hk+1(Ω) + ‖c(∆t)‖2Hk+1(Ω) + ‖c(0)‖2Hk+1(Ω)

+ ‖c(∆t)‖2Hk+1(Ω)‖u(∆t)‖2H1(Ω) + ‖u(∆t)‖2Hk+1(Ω)‖c(∆t)‖
2
H1(Ω)

)
+ C∆t4(‖c′′‖2L∞(0,∆t;L2(Ω))) +

6C̃2
1 (1 + C∗)2M2

α̂a
∆t‖ξu‖21,Th .

(4.29)

In this way, from (4.28) we deduce that

τ‖ξu‖21,Th ≤ C(h2k +∆t4) +
16C̃2

LipM
2

α̃2
a

τ‖ξ1
c‖21,Ω + 4

γ2
2

α̃2
a

∆t‖ξ1
c‖21,Ω.

We insert the previous identity into (4.29) and consider M sufficiently small such that the terms

multiplying ‖ξc‖21,Ω, can be absorbed into the left-hand side of the inequality, to get

1

8
‖ξ1
c‖20,Ω +

1

4
∆tα̂a‖ξc‖21,Ω ≤ C1

c (h2k +∆t4). (4.30)

The first estimate follows by directly substituting (4.30) into (4.28).

Theorem 4.3. Let (u, p, c) be the solution of (4.6) and (uh, ph, ch) be the solution of (4.7) with BDF2

iteration. Suppose that u ∈ L∞(0, T ;Hk+1
0 (Ω)), c ∈ L∞(0, T ;Hk+1

0 (Ω)), u′ ∈ L∞(0, T ;Hk(Ω)),

u(3) ∈ L2(0, T ;L2(Ω)) and ‖u‖L∞(0,T ;W 1,∞(Ω)) < M for a sufficiently small constant M > 0. Then

there exist positive constants C, η1 ≥ 0 independent of h and ∆t such that for all m+ 1 ≤ N ,

‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω +
m∑
n=1

∆tα̃a‖ξn+1
u ‖21,Th

≤ C(∆t4 + h2k) +

m∑
n=1

η1∆t‖ξn+1
c ‖20,Ω.

Proof. We choose as tests functions vh = ξn+1
u in the first equation of (4.7), using BDF2 differentiation

formula and inserting the terms

± 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω
, ± 1

2∆t

(
3Πh u(tn+1)− 4Πh u(tn) +Πh u(tn−1), ξn+1

u

)
Ω
,



4.3. Numerical method 82

and ±ah1(cn+1
h ;Πh u(tn+1), ξn+1

u ), we get

1

2∆t

(
3ξn+1
u − 4ξnu + ξn−1

u , ξn+1
u

)
Ω

+
1

2∆t

(
3En+1

u − 4Enu + En−1
u , ξn+1

u

)
Ω

+
1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω

+ ah1(cn+1
h ; ξn+1

u , ξn+1
u ) + ah1(cn+1

h ;Πh u(tn+1), ξn+1
u )

+ ch1(un+1
h ,un+1

h , ξn+1
u ) = Fg(cn+1

h , ξn+1
u ) + Fr(u

n+1
h , ξn+1

u ). (4.31)

Considering Lemma 4.2 at t = tn+1 with v = ξn+1
u , and after inserting the term

± 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω
,

we readily deduce the expression

1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
Ω

+ ah1(c(tn+1);u(tn+1), ξn+1
u ) + ch1(u(tn+1),u(tn+1), ξn+1

u )

= Fg(cn+1, ξn+1
u ) + Fr(u

n+1, ξn+1
u )−

(
u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2∆t
, ξn+1
u

)
Ω

. (4.32)

We can then subtract (4.31) from (4.32) and multiply both sides by 4∆t to obtain an equality

I1 + I2 = I3 + I4 + I5 + I6 + I7 + I8,

where we define

I1 := 2
(
3ξn+1
u − 4ξnu + ξn−1

u , ξn+1
u

)
,

I2 := 4∆tah1(cn+1
h ; ξn+1

u , ξn+1
u ),

I3 := 4∆t

(
u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2∆t
, ξn+1
u

)
Ω

,

I4 := −2
(
3En+1

u − 4Enu + En−1
u , ξn+1

u

)
,

I5 := 4∆t
(
Fg(cn+1

h , ξn+1
u )− Fg(c(tn+1), ξn+1

u

)
,

I6 := 4∆t
(
Fr(u

n+1
h , ξn+1

u )− Fr(u(tn+1), ξn+1
u

)
,

I7 := −4∆t
(
ah1(cn+1

h ;Πh u
n+1, ξn+1

u )− ah1(c(tn+1);u(tn+1), ξn+1
u )

)
,

I8 := −4∆t
(
ch1(un+1

h ,un+1
h , ξn+1

u )− ch1(u(tn+1),u(tn+1), ξn+1
u )

)
.

Let us estimate each term Ii, i ∈ {1, . . . , 8}. For I1, using (4.27) we can assert that

I1 = ‖ξn+1
u ‖20,Ω + ‖2ξn+1

u − ξnu‖20,Ω + ‖Λξn+1
u ‖20,Ω − ‖ξnu‖20,Ω − ‖2ξnu − ξn−1

u ‖20,Ω.

Using the ellipticity stated in (4.14), we readily get

I2 ≥ 4∆tα̃a‖ξn+1
u ‖21,Th .

By using Taylor’s formula with integral remainder we have∣∣∣∣u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2∆t

∣∣∣∣ =
∆t3/2

2
√

3
‖u(3)‖L2(tn−1,tn+1;L2(Ω)),
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then by combining Cauchy-Schwarz and Young’s inequality, we obtain the bound

|I3| ≤
∆t4

24ε1
‖u(3)‖2L2(tn−1,tn+1;L2(Ω)) +

∆tε1

2
‖ξn+1
u ‖21,Th .

Now we insert ±4∆tE′u(tn+1) onto the fourth term, which leads to

I4 = −4∆t(E′u(tn+1), ξn+1
u )Ω +

(
E′u(tn+1)− 3En+1

u − 4Enu + En−1
u

2∆t
, ξn+1
u

)
Ω

.

Proceeding as before and using (4.21) on the first term of I4, we get

|I4| ≤
C

2ε2
h2k‖u′‖2L∞(0,T ;Hk(Ω)) +

∆tε2

2
‖ξn+1
u ‖21,Th +

∆t4C

2ε3
‖u(3)‖2L2(0,T ;L2(Ω)) +

∆tε3

2
‖ξn+1
u ‖21,Th .

Now by (4.25), appealing to (4.21), and inserting ±4∆tFg(Ih cn+1, ξn+1
u ), we are left with

|I5| ≤
2γ2

2∆t

ε4

(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξn+1

c ‖20,Ω
)

+ 2∆tε4‖ξn+1
u ‖21,Th .

In the same manner using (4.24), and inserting ±4∆tFr(Πh u
n+1, ξn+1

u ), we get

|I6| ≤
2γ2

1∆t

ε5

(
C∗h2k‖u‖2L∞(0,T ;Hk(Ω)) + ‖ξu‖20,Ω

)
+ 2∆tε5‖ξn+1

u ‖21,Th

Again inserting ±ah1(cn+1
h ;u(tn+1), ξn+1

u ) and ±ah1(Ih cn+1;u(tn+1), ξn+1
u ) and using (4.21) we get

|I7| ≤
C̃2
a∆th

2k

2ε6
‖u‖2L∞(0,T ;Hk+1(Ω)) +

∆tε6

2
‖ξn+1
u ‖21,Th +

C̃2
lipM

2

2ε7
‖ξc‖21,Ω

+
∆t

2
ε7‖ξn+1

u ‖21,Th +
C̃2

lipM
2∆th2k

2ε8
‖c‖2L∞(0,T ;Hk(Ω)) +

ε8∆t

2
‖ξn+1
u ‖21,Th .

Now we insert into I8 the three terms

± ch1(u(tn+1), Πh u(tn+1), ξn+1
u ), ±ch1(Πh u(tn+1), Πh u(tn+1), ξn+1

u ),

± ch1(Πh u(tn+1),u(tn+1), ξn+1
u ),

which yields

I8 = −4∆t
(
ch1(u(tn+1), Πh u(tn+1), ξn+1

u )− ch1(Πh u(tn+1), Πh u(tn+1), ξn+1
u )

+ ch1(Πh u(tn+1), Πh u(tn+1), ξn+1
u )− ch1(Πh u(tn+1),u(tn+1), ξn+1

u )

+ ch1(Πh u(tn+1),u(tn+1), ξn+1
u )− ch1(u(tn+1)u(tn+1), ξn+1

u ) + ch1(un+1
h , ξn+1

u , ξn+1
u )

)
.

The last term is moved to the left-hand side, where we use (4.16); whereas for the remaining terms

(which we further rename as Ĩ8), the bound (4.12) together with (4.21) imply that

|Ĩ8| ≤ 4∆t

(
C∗C̃uC∞M‖ξn+1

u ‖21,Th +
h2kC

2ε9
‖u‖2L∞(0,T ;H1(Ω))‖u‖

2
L∞(0,T ;Hk+1(Ω)) +

ε9

2
‖ξn+1
u ‖21,Th

+
Ch2k

2ε10
‖u‖2L∞(0,T ;Hk+1(Ω))‖u‖

2
L∞(0,T ;H1(Ω)) +

ε10

2
‖ξn+1
u ‖21,Th

)
,
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where C∗ is a positive constant coming from (4.21). Hence, by choosing εi = 2α̃a/11 for i = 1, . . . , 11,

collecting the above estimates, and summing over 1 ≤ n ≤ m for all m+ 1 ≤ N we get

‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω − 3‖ξ1
u‖20,Ω +

m∑
n=1

∆tα̃a‖ξn+1
u ‖21,Th

≤ C(∆t4 + h2k) + η1

m∑
n=1

‖ξn+1
c ‖20,Ω +

m∑
n=1

11γ2
1∆t

α̃a
‖ξn+1
u ‖20,Ω,

where C̃uC
∗C∞M ≤ α̃a/4 and η1 = C(α̃a, C̃Lip, γ1, γ2). Finally, using Theorem 4.2, considering

∆t sufficiently small and applying Gronwall’s lemma, we get the desired result.

Theorem 4.4. Let (u, c) be the solution of (4.6) and (uh, ch) be the solution of (4.7) using the BDF2

differential operator. If u ∈ L∞(0, T ;Hk+1
0 (Ω)), c ∈ L∞(0, T ;Hk+1

0 (Ω)), c′ ∈ L∞(0, T ;Hk(Ω)),

c(3) ∈ L2(0, T ;L2(Ω)), and ‖c‖L∞(0,T ;W 1,∞(Ω)) < M ; then there exist positive constants C, η2 > 0,

independent of h and ∆t, such that for all m+ 1 ≤ N

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +
m∑
n=1

‖Λξn+1
c ‖20,Ω +

m∑
n=1

∆tα̂a‖ξn+1
c ‖21,Ω

≤ C(∆t4 + h2k) +

m∑
n=1

η2∆t‖ξn+1
u ‖21,Th .

Proof. Proceeding similarly as in the proof of Theorem 4.3, from the second equation of (4.6) we get

1

2∆t

(
3ξn+1
c − 4ξnc + ξn−1

c , ξn+1
c

)
Ω

+
1

2∆t

(
3En+1

c − 4Enc + En−1
c , ξn+1

c

)
Ω

+
1

2∆t

(
3c(tn+1)− 4c(tn) + c(tn−1), ξn+1

c

)
Ω

+ ah2(ξn+1
c , ξn+1

c ) + ah2(Ih c(tn+1), ξn+1
c )

+ ch2(un+1
h , cn+1

h , ξn+1
c )− d2(cn+1

h , ξn+1
c ) = −Gr(c

n+1
h , ξn+1

c ),

(4.33)

and considering the third equation in Lemma 4.2, focusing on t = tn+1, we immediately obtain

1

2∆t

(
3c(tn+1)− 4c(tn) + c(tn−1), ξn+1

c

)
Ω

+ a2

(
c(tn+1), ξn+1

c

)
+ c2

(
u(tn+1), c(tn+1), ξn+1

c

)
− d2(cn+1, ξn+1

c ) = −Gr(c
n+1, ξn+1

c )−
(
c′(tn+1)− 3c(tn+1)− 4c(tn) + c(tn−1)

2∆t
, ξn+1
c

)
Ω

.
(4.34)

Subtracting (4.33) from (4.34) and multiplying both sides of the result by 4∆t leads to

2
(
3ξn+1
c − 4ξnc + ξn−1

c , ξn+1
c

)
Ω

+ 4∆ta2(cn+1
h ; ξn+1

c , ξn+1
c )

= 4∆t

(
c′(tn+1)− 3c(tn+1)− 4c(tn) + c(tn−1)

2∆t
, ξn+1
c

)
Ω

− 2
(
3En+1

c − 4Enc + En−1
c , ξn+1

c

)
Ω

− 4∆t
(
a2(cn+1

h ; Ih cn+1, ξn+1
c )− a2(cn+1; cn+1, ξn+1

c )
)

− 4∆t
(
c2(un+1

h , cn+1
h , ξn+1

u )− ch1(u(tn+1), c(tn+1), ξn+1
u )

)
+ 4∆t

(
d2(cn+1

h , ξn+1
c )− d2(cn1 , ξn+1

c )
)
− 4∆t

(
Gr(c

n+1
h , ξn+1

c )−Gr(c
n+1, ξn+1

c )
)
.

(4.35)
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As done above, we rewrite (4.35) using auxiliary terms now denoted Î1, . . . , Î8, and derive individual

bounds for each term. For the first, second, and third terms, we use (4.27), (4.13), and Taylor

expansion together with Young’s inequality, respectively, to obtain

Î1 = ‖ξn+1
c ‖20,Ω + ‖2ξn+1

c − ξnc ‖20,Ω + ‖Λξn+1
c ‖20,Ω − ‖ξnc ‖20,Ω − ‖2ξnc − ξn−1

c ‖20,Ω,
Î2 ≥ 4∆tα̂a‖ξn+1

c ‖21,Ω,

|Î3| ≤
∆t4

24ε1
‖c(3)‖2L2(tn−1,tn+1;L2(Ω)) +

∆tε1

2
‖ξn+1
c ‖21,Ω.

Now we insert ±4∆tE′c(tn+1) into Î4 and exploit (4.21). This leads to the bound

|Î4| ≤
C

2ε2
h2k‖c′‖2L∞(0,T ;Hk(Ω)) +

∆tε2

2
‖ξn+1
c ‖21,Ω +

∆t4C

2ε3
‖c(3)‖2L2(0,T ;L2(Ω)) +

∆tε3

2
‖ξn+1
c ‖21,Ω.

Employing again (4.21) in combination with (4.15) and (4.11), inserting ±a2(cn+1
h ; c(tn+1), ξn+1

c ) and

±a2(Ih cn+1; c(tn+1), ξn+1
c ); we have

|Î5| ≤
Ĉ2
a∆th

2k

2ε4
‖c‖2L∞(0,T ;Hk+1(Ω)) +

∆tε4

2
‖ξn+1
c ‖21,Ω + ĈlipM‖ξc‖21,Ω

+
C̃2

lipM
2∆th2k

2ε5
‖c‖2L∞(0,T ;Hk(Ω)) +

ε5∆t

2
‖ξn+1
c ‖21,Ω.

In order to derive a bound for Î6 we add and subtract the terms

±c2(u(tn+1), Ih c(tn+1), ξn+1
c ), ±c2(Πh u(tn+1), Ih c(tn+1), ξn+1

c ), ±c2(Πh u(tn+1), c(tn+1), ξn+1
c ),

which yields

Î6 = 4∆t
(
ch2(un+1

h , Ih c(tn+1), ξn+1
c )− c2(Πh u(tn+1), Ih c(tn+1), ξn+1

c )

+ c2(Πh u(tn+1), Ih c(tn+1), ξn+1
c )− c2(Πh u(tn+1), c(tn+1), ξn+1

c )

+ ch2(Πh u(tn+1), c(tn+1), ξn+1
c )− c2(u(tn+1)c(tn+1), ξn+1

c ) + c2(un+1
h , ξn+1

c , ξn+1
c )

)
.

Using (4.17), (4.10c) and (4.21), we get

|Ĩ6| ≤ 4∆t

(
C̃2C∗

2ε6
‖ξn+1
u ‖21,Th‖c‖

2
L∞(0,T ;H1(Ω)) +

ε6

2
‖ξc‖21,Ω

+
h2kCC̃2

2ε7
‖u‖2L∞(0,T ;H1(Ω))‖c‖

2
L∞(0,T ;Hk+1(Ω)) +

ε7

2
‖ξn+1
c ‖21,Ω

+
Ch2kC̃2

2ε8
‖u‖2L∞(0,T ;Hk+1(Ω))‖c‖

2
L∞(0,T ;H1(Ω)) +

ε8

2
‖ξn+1
c ‖21,Ω

)
.

Now, using (4.18) and (4.26), we have:

|Î7| ≤
C2
d

ε9
2∆t

(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξc‖20,Ω

)
+ 2∆tε9‖ξn+1

c ‖21,Ω,

|Î8| ≤
γ2

3

ε10
2∆t

(
C∗h2k‖c‖2L∞(0,T ;Hk(Ω)) + ‖ξc‖20,Ω

)
+ 2∆tε10‖ξn+1

c ‖21,Ω.
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In this manner, and after choosing εi = 4α̂a/25 for i = 1, . . . , 8 and M ≤ α̂a/ĈLip, we can collect the

above estimates and sum over 1 ≤ n ≤ m, for all m+ 1 ≤ N , to get

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξnc ‖20,Ω +

m∑
n=1

∆tα̂a‖ξn+1
c ‖21,Ω − 3‖ξ1

c‖20,Ω

≤ C(∆t4 + h2k) +
m∑
n=1

η2‖ξn+1
u ‖21,Th +

m∑
n=1

∆t
25

α̂a
(C2

d + γ2
3)‖ξc‖20,Ω.

And the proof is completed by considering ∆t sufficiently small and applying Gronwall’s lemma.

Theorem 4.5. Under the assumptions of Theorems 4.3 and 4.4 with

M := min

{
α̃a

ĈLip

,
α̃a

4C̃uC∗C∞

}
there exist positive constants γ̂u and γ̂c independent of ∆t and h, such that for a sufficiently small ∆t

and all m+ 1 ≤ N , the following inequalities hold(
‖ξm+1
u ‖20,Ω + ‖2ξm+1

u − ξmu ‖20,Ω +

m∑
n=1

‖Λξnu‖20,Ω +

m∑
n=1

∆tα̃a‖ξn+1
u ‖21,Th

)1/2

≤ γ̂u(∆t2 + hk),

(
‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +
m∑
n=1

‖Λξnc ‖20,Ω +
m∑
n=1

∆tα̂a‖ξn+1
c ‖21,Ω

)1/2

≤ γ̂c(∆t2 + hk).

Proof. From Theorem 4.3 we have the estimate

m∑
n=1

∆t‖ξn+1
u ‖21,Th ≤ C(∆t4 + h2k) +

η1

α̃a

m∑
n=1

∆t‖ξn+1
c ‖20,Ω,

which, substituting back into Theorem 4.4, yields

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +
m∑
n=1

‖Λξnc ‖20,Ω +

m∑
n=1

∆tα̂a‖ξn+1
c ‖21,Ω

≤ C(∆t4 + h2k) +
η1η2

α̃a

m∑
n=1

∆t‖ξn+1
c ‖20,Ω.

For the last term on the right-hand side of this last bound we have

‖ξm+1
c ‖20,Ω ≤ 2

(
‖Λξmc ‖20,Ω + ‖2ξmc − ξm−1

c ‖20,Ω
)
,

and considering ∆t sufficiently small and applying Gronwall’s lemma, we readily deduce that

‖ξm+1
c ‖20,Ω + ‖2ξm+1

c − ξmc ‖20,Ω +

m∑
n=1

‖Λξn+1
c ‖20,Ω +

m∑
n=1

∆tα̂a‖ξn+1
c ‖21,Ω ≤ C(∆t4 + h2k). (4.36)

The first bound follow by combining (4.36) and Theorem 4.3.
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Lemma 4.3. Under the same assumptions of Theorem 4.5, we have(
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

≤ γ̂p(∆t2 + hk).

Proof. Owing to the inf-sup condition (4.19), there exists a function wh ∈ Z⊥h such that

b
(
wh, p(tn+1)− pn+1

h

)
= ‖p(tn+1)− pn+1

h ‖20,Ω, (4.37)

‖wh‖1,Th ≤
1

β̃
‖p(tn+1)− pn+1

h ‖0,Ω. (4.38)

From (4.7) and Lemma 4.2, proceeding as in the proof of Theorem 4.3, we obtain

∆tb(wh, p(tn+1)− pn+1
h ) = −∆t

(
u′(tn+1)−

3un+1
h − 4unh + un−1

h

2∆t
,wh

)
Ω

+∆t
(
ah1(cn+1

h ;un+1
h ,wh)− ah1(c(tn+1);u(tn+1),wh)

)
+∆t

(
ch1(un+1

h ;un+1
h ,wh)− ch1(u(tn+1);u(tn+1),wh)

)
+∆t

(
Fg(c(tn+1),wh)− Fg(cn+1

h ,wh)
)

+∆t
(
Fr(u(tn+1),wh)− Fr(u

n+1
h ,wh)

)
≤ ∆t2

2
√

3
‖u(3)‖L2(tn−1,tn+1,L2(Ω))

√
∆t‖wh‖1,Th

+ C̃aC
∗hk∆t‖u‖L∞(0,T ;Hk+1(Ω))‖wh‖1,Th + C̃lipM∆t‖ξn+1

c ‖1,Ω‖wh‖1,Th
+ C̃lip∆tM‖ξc‖1,Ω‖wh‖1,Th +∆tCC̃uC

∗C∞M‖ξc‖1,Ω‖wh‖1,Th
+∆tCC̃uh

k‖u‖L∞(0,T ;H1(Ω))‖u‖L∞(0,T ;Hk+1(Ω))‖wh‖1,Th
+∆tCC̃uh

k‖u‖L∞(0,T ;H1(Ω))‖u‖L∞(0,T ,Hk+1(Ω))‖wh‖1,Th
+ γ2∆th

kC∗‖c‖L∞(0,T ;Hk(Ω))‖wh‖1,Th + γ2∆t‖ξu‖0,Ω‖wh‖1,Th
+ γ1∆th

kC∗‖u‖L∞(0,T ;Hk(Ω))‖wh‖1,Th + γ1∆t‖ξu‖0,Ω‖wh‖1,Th .

Summing over 1 ≤ n ≤ m for all m + 1 ≤ N and substituting back into equations (4.37) and (4.38),

we obtain(
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

≤ C

β̃

(∆t2 + hk) +

(
m∑
n=1

∆t‖ξn+1
c ‖20,Ω

)1/2

+

(
m∑
n=1

∆t‖ξn+1
u ‖21,Th

)1/2
 .

The result follows by applying Theorem 4.5.

4.4 Numerical results

In this section we test the performance of the numerical method and produce some typical solutions

in operating conditions. Tetrahedral meshes have been constructed using the freely available mesh
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k DoF eu rate ep rate es rate

1 53 0.004507 – 0.291804 – 0.253207 –

299 0.002783 0.679 0.192100 0.589 0.153518 0.708

1265 0.001273 1.150 0.096891 1.006 0.073370 1.085

4634 0.000631 1.017 0.051713 0.911 0.038362 0.941

17780 0.000308 1.033 0.026853 0.945 0.018841 1.026

2 132 0.001817 – 0.115142 – 0.089672 –

797 0.000342 2.349 0.032084 1.799 0.018151 2.249

3427 8.031e-5 2.133 0.007198 2.197 0.003702 2.337

12702 1.948e-5 2.056 0.002023 1.844 0.000996 1.905

49157 4.358e-6 2.159 0.000525 1.941 0.000251 1.987

Table 4.1: Spatial accuracy test: experimental errors and convergence rates for the approximate

solutions uh, ph and ch. Values are displayed for schemes with first and second order in space (table

produced by the author).

manipulator GMSH [81], and the implementation of the H(div)-conforming finite element scheme is

carried out using the open source finite element library FEniCS [7]. The linear systems encountered at

each Newton-Raphson step are solved with the GMRES method preconditioned with AMG. The New-

ton iterations stop whenever either the absolute or the relative residuals (measured in the `2−norm)

drop below the fixed tolerance set to 1× 10−6. Apart from the main python modules, a dedicated

C++ expression is needed to efficiently compile the position of the rake at each time. It depends on

the structure dimensions and on the angular velocity.

4.4.1 Numerical verification of convergence

We start with a simple experimental convergence analysis to confirm the error bounds anticipated

in Section 4.3.2. Doing this in a 2D domain suffices, so we consider Ω as a circle of radius one

and construct a sequence of successively refined meshes on which we compute errors between the

approximate solutions obtained with the H(div)-conforming scheme and the closed-form solutions

u = sin(t)

(
cos(π/2x) sin(π/2y)

− sin(π/2x) cos(π/2y)

)
, p = (x4 − y4) exp(−t), c =

1

2
cos
(π

4
|x|2

)
exp(−t),

that are used to construct suitable Dirichlet boundary data for velocity and an exact flux for con-

centration, and manufactured forcing and source terms Fex and gex appearing on the right-hand side

of the momentum equation and of the concentration mass balance, respectively. As u is prescribed

everywhere on ∂Ω, for sake of uniqueness we impose p ∈ L2
0(Ω) through a Lagrange multiplier ap-

proach. We use a constant viscosity ν = 0.01 and diffusivity D = 1.0 with fr as given in (4.23),

fbk(c) = 1× 10−2(1− c) and k pointing in the radial outwards direction.
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∆t êu rate êp rate ês rate

2 5.6194 – 0.5069 – 0.4558 –

1 1.5943 1.817 0.1809 1.487 0.0868 2.391

0.5 0.4433 1.847 0.0523 1.789 0.0193 2.167

0.25 0.1153 1.943 0.0135 1.951 0.0046 2.070

0.125 0.0296 1.959 0.0033 2.000 0.0012 1.994

Table 4.2: Time accuracy test: experimental errors and convergence rates for the approximate solutions

uh, ph and ch, computed for each refinement level (table produced by the author).

We show orders of convergence in the discrete norm ‖·‖1,Th for the velocity u, in the L2-norm of the

error of p, and in the H1-norm of the error in c in Table 4.1. For polynomial degrees k = 1 and k = 2

we observe that the order of convergence predicted by our theory (see Theorem 4.5 and Lemma 4.3)

is achieved.

Regarding the convergence of the time advancing scheme, now we set T = 4 and consider a sequence

of uniform refined time partitions τl, l ∈ {1, 2, 3, 4, 5} where the time step is 22−l. Absolute errors are

computed as

êu =

(
m∑
n=1

∆t‖u(tn+1)− un+1
h ‖21,Th

)1/2

, êp =

(
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖20,Ω

)1/2

,

êc =

(
m∑
n=1

∆t‖c(tn+1)− cn+1
h ‖21,Ω

)1/2

,

and we readily observe from Table 4.2 that the method converges to the exact solution with the

expected second-order rate.

4.4.2 Preliminary two-dimensional computation

The typical operation conditions on the clarifier unit are characterised by about 1.2 revolutions

per hour, a solid concentration behind the rake of 0.01 g/l, a feed flow rate of 10,000 gpm, a return

sludge flow rate of 3000 gpm, an effluent flow rate in the overflow weir of approximately 7000 gpm,

and a solid concentration at the inlet of 5 g/l (see [65] and the references therein). The specification

of the remaining model parameters, at least in this specific scenario, are much less clear and we need

to characterise them in terms of the expected flow conditions. Known issues in the operation process

include a strong backflow into the feedwell, a large recirculation zone near the feedwell, the high

velocity of the flow exiting the feedwell, and the lack of flow symmetry.

In order to gain insight into the impact of the rake parameters on the simulation we regard the

operation from an azimuthal view and consider only the coupled Navier-Stokes/concentration problem

in an annular domain of external radius 30m and internal radius 3m, where one can still see the rotating

arm, but the vertical sedimentation is not represented. Here the body force term exerted on the fluid

(Fg) is considered with a radial direction towards the centre of the inner disk. Furthermore the
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Figure 4.3: Spatio-temporal variation of the average concentration after complete rake cycles at dif-

ferent radius (measured from the centre of the annular domain) and values of α (figure produced by

the author).

parameters of the simulation are taken as follows:

ρs = 2500 [kg/m2], c0 = 0.05, ρf = 1000 [kg/m2], ω = 1.2 [rad/min], cr = 1× 10−3,

g = 1× 10−3 [m/min2], D0 = 1.0 [m2/min], ν0 = 0.05 [kg/(m min)],

fbk(c) = 1.0× 10−3c(1− c)2[m/s], σe(c) =

{
0 for c ≤ cc = 0.07

(50.0/cc)[(c/0.07)5 − 1][Pa] for c > cc.

We start the simulation with a homogeneous initial concentration c0 and then, we observe how this

concentration changes over time for different values of the parameters α and β. From results shown

in Figures 4.3 and 4.4, it can be highlighted that the solids removal coefficient α is the most relevant

for the concentration profile, while the combined contributions from drag and density do not seem to

have a large effect.
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Figure 4.4: Spatio-temporal variation of the average concentration after complete rake cycles at dif-

ferent radius (measured from the centre of the annular domain) and values of β (figure produced by

the author).

4.4.3 Performance of clarifier units

Having now a better understanding on the dimension and isolated effects of each mechanism in

the coupled problem, we turn to the simulation of the sedimentation of flocculated suspensions in a

more realistic geometry. We consider the domain sketched in Figure 4.1, and take R = 15 [m] and

H = 7 [m]. We suppose that the tank is initially filled with a homogeneous mixture of concentration

c0 = 0.02. Apart from the specifications in (4.2), (4.3), the remaining concentration-dependent and

constant parameters needed in the model assume the following form (where the suspension is assumed
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Figure 4.5: Domain cuts showing snapshots of solids concentration and line integral contours of velocity

on a slice, focusing on time instants t = 1, 30, 60 and 180 [min] (figure produced by the author).

of type Kaolin flat D)

ρs = 2500 [kg/m3], cin = 0.05, ρf = 1000 [kg/m3], ω = 0.12 [rad/min], α = 0.01 [min−1],

βρr = 50 [kg/m3 m−1], cr = 1× 10−3, g = 9.8 [m/s2], D0 = 0.05 [m2/min],

uin = −4.2k [m/min], ν0 = 0.05 [kg/(m min)],

fbk(c) = 1.0× 10−4c(1− c)2[m/s], σe(c) =

{
0 for c ≤ cc = 0.07

(50.0/cc)[(c/0.07)5 − 1][Pa] for c > cc.

We conduct a series of runs on the 3D geometry where the resulting tetrahedral mesh has 139001

elements and 27510 vertices (representing 1.1M DoFs for the lowest-order H(div)-conforming finite

element method). The time stepping scheme uses a fixed timestep of ∆t = 0.5 [min] and we simulate

the process until 180 [min]. As mentioned above, one manifestation of performance in the clarifier

units is the development of recirculation patterns, and we plot in Figure 4.5 the concentration profiles

on a cut of the domain, as well as a slice of a section where we plot line integral contours of velocity,

for three different times. The plots indicate a large diffusion of the concentration as it spreads out

from the feedwell, and we also see a substantial modification on the flow patterns due to the combined

contribution of the rake mechanism and the gravitational settling. The velocity can be seen more

clearly from Figure 4.6, showing streamlines at t = 180 [min] from different angles, emphasising that

the recirculation in the xy plane occurs mainly near the bottom of the vessel, whereas on the top the
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Figure 4.6: Velocity streamlines at 180 [min], shown from the side (top panel), from the bottom

(bottom left figure), and from the top (bottom right figure) (figure produced by the author).

Figure 4.7: Time evolution of the concentration and normal velocity on the overflow for different

values of the solids removal coefficient α (figure produced by the author).

velocity is dominated by gravitational forces and a radially spreading concentration-driven flow.
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Figure 4.8: Time evolution of the concentration and normal velocity on the overflow for different

values of the drag-density coefficient βρr (figure produced by the author).

Figure 4.9: Time evolution of the concentration and normal velocity on the overflow for different

values of rake height hr (figure produced by the author).

On the other hand, the variation of the flow conditions depending on different factors can be observed

from Figures 4.7, 4.8, and 4.9. There we portray the dynamics of the concentration and flow rate on

the overflow, that is, respectively

1

60π

∫
Γofl

c ds,
1

60π

∫
Γofl

u · nds,

according to modifications in the solids removal intensity, on the drag and density of the rotating

rake, and on the rake height. Based on the results of this set of simulations, we can identify the solids

removal coefficient α as the most sensitive factor on the outputs of overflow concentration and overflow

flow rate. On the other hand, the combined contributions from drag and density do not seem to have

a large effect on these markers, which is consistent with what we saw in the preliminary 2D test.

However, a further inspection reveals that the effects are not necessarily localised but they differ over

the height of the device. From Figure 4.10 we can see how the average concentration varies over time
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Figure 4.10: Spatio-temporal variation of the average concentration after complete rake cycles at

different heights (measured from the bottom) with α = 0.3, β = 50 (top left), α = 0.0, β = 50 (top

right), α = 0.0, β = 0.0 (bottom) (figure produced by the author).

(and measured after a given number of cycles of the rotating rake) depending on the solids removal

coefficient and on the drag.



CHAPTER 5

Second-order schemes for axisymmetric Navier-Stokes-Brinkman

and transport equations modelling water filters

Soil-based water filtering devices can be described by models of viscous flow in porous media cou-

pled with an advection-diffusion-reaction system modelling the transport of distinct contaminant

species within water, and being susceptible to adsorption in the medium that represents soil. In

this chapter we analyze such models mathematically, and design suitable numerical methods for

their approximate solution. The governing equations are the Navier-Stokes-Brinkman equations

for the flow of the fluid through a porous medium coupled with a convection-diffusion equation

for the transport of the contaminants plus a system of ordinary differential equations account-

ing for the degradation of the adsorption properties of each contaminant. These equations

are written in meridional axisymmetric form and the corresponding weak formulation adopts a

mixed-primal structure. A second-order, (axisymmetric) divergence-conforming discretisation of

this problem is introduced and the solvability, stability, and spatio-temporal convergence of the

numerical method are analysed. Some numerical examples illustrate the main features of the

problem and the properties of the numerical scheme.

5.1 Introduction

5.1.1 Scope

We are interested in the analysis and numerical approximation of the flow of a viscous fluid through

a porous medium, where it is assumed that the fluid carries a number m of components that are

adsorbed by the porous medium. While viscous flow in porous media with adsorption arises in several

applications including polymer flooding as part of the process of enhanced oil recovery in petroleum

engineering [46], chromatography [141], or water decontamination and removal of pollutants such as

heavy metals or radioactive ions [160], the particular formulation in the present work is motivated

by a model of a soil-based water filtering device designed to remove contaminants from water by

adsorption [134].

The governing equations for this process can be formulated as follows. We assume that the porous

medium is represented by a simply connected spatial domain Ω ⊂ R3 whose boundary ∂Ω is split

96
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into three disjoints parts Γ in, Γwall and Γ out representing the inlet, walls, and outlet boundaries.

For all times 0 < t ≤ T , we consider the Navier-Stokes-Brinkman equations written in terms of

the volume average flow velocity u(t) : Ω → R3 and the fluid pressure p(t) : Ω → R; as well as the

balances for contaminant concentration possessing sink terms that depend on the rate of degradation

of the adsorption properties of each material, described in terms of the vector of concentrations of

m ≥ 2 distinct types of contaminants ~θ(t) = (θ1(t), . . . , θm(t)) : Ω → Rm and of the adsorption

capacity relative to each contaminant ~s(t) = (s1(t), . . . , sm(t)) : Ω → Rm. The coupled set of governing

equations (three partial differential equations (PDEs) and one ordinary differential equation (ODE))

adopts the form

ρf(∂tu+ u · ∇u) + K−1νu− div(νε(u)− pI) = F (~θ), in Ω × (0, T ], (5.1a)

divu = 0, in Ω × (0, T ], (5.1b)

φ∂t~θ − div(D∇~θ) + (u · ∇)~θ = −ρb∂t~s, in Ω × (0, T ], (5.1c)

∂t~s = G(~s, ~θ) in Ω × (0, T ], (5.1d)

where ε(u) = 1
2(∇u +∇uT ) is the strain rate tensor, D = diag(D1(x), . . . , Dm(x)) denotes a space-

dependent and positive definite matrix containing diffusivity coefficients, ν > 0 is the constant fluid

viscosity, ρf , ρb are the constant densities of the fluid phases and of the bulk filter medium, φ(x) is

the porosity of the soil constituting the porous medium, and K(x) > 0 is the permeability tensor

(assumed symmetric and uniformly positive definite). The source and reaction terms are

F (~θ) = g
m∑
i=1

θi; Gi(si, θi) = k+
i (x)

(
smax
i − si

)
θi, i = 1, . . . ,m, (5.2)

where G = (G1, . . . , Gm)T, g is the gravity acceleration, smax
i is a constant representing the maximum

amount of contaminant i that can be absorbed at a given point, and k+
i (x) is a spatially-dependent

modulation coefficient accounting for the forward adsorption rate related to the loss of contaminant

i due to the filtering process (boundary conditions and further assumptions will be specified in later

parts of the chapter).

Thus, the flow of the incompressible fluid through Ω is modelled by the Navier-Stokes-Brinkman

equation (5.1a) and the continuity equation (5.1b), which express the conservation of momentum and

mass respectively. Equation (5.1c) describes the evolution of ~θ within Ω, under the effects of advection

and diffusion, in addition to adsorption by the filter media. Given the typical operating conditions

within the filter, we would expect the effects of advection to dominate those from diffusion, as noted

in [134]. The sink term −ρb∂t~s in (5.1c) accounts for the net and local removal of each contaminant

type due to the filtration process. This adsorption process is described by a multicomponent Langmuir-

type model, as given by (5.1d) and (5.2). Under this model, it is assumed that each site has a maximum

capacity for each individual contaminant, which we take to be uniform across the two layers of filter

media. In this way, the adsorption is noncompetitive and the saturation of a site by one contaminant

does not prevent adsorption of the other contaminants at the same site. It is also assumed that the

adsorption process is irreversible for all contaminants and all filter layers, so that once adsorbed the

contaminants remain attached to the filter media with no desorption back into the fluid. As described

previously, for each contaminant we ascribe a spatially dependent adsorption rate k+
i (x), so (5.2)

stipulates that the rate of removal of a contaminant at a site is proportional to the concentration of
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the contaminant present in the fluid at the site, the remaining capacity of the filter media at the site

and the adsorption rate.

While the modelling of a filter calls for a three-dimensional domain, in practice most filter designs

display rotational symmetry around their central axis, with the flow also expected to exhibit such sym-

metry. This property motivates an axisymmetric formulation of the problem, allowing for the reduction

from three to two spatial dimensions, which evidently reduces the computational cost associated with

its solution. Thus, the model which is eventually analysed herein is a reformulation of (5.1) along

with suitable initial and boundary conditions as a meridional axisymmetric PDE-ODE initial-boundary

value problem. It is the purpose of this chapter to advance a second-order divergence-conforming dis-

cretisation for this problem. Specifically, we introduce an axisymmetric H(div)-conforming method

based on two-dimensional BDM spaces [40] combined with an implicit, second-order backward dif-

ferentiation formula for time discretisation. Based on discrete stability properties, we prove that the

discrete problem has at least one solution. At the core of this chapter is the derivation of an optimal a

priori error estimate for the numerical scheme, where the main difficulty is the fully discrete analysis

verifying that each of the terms is bounded optimally in the corresponding weighted spaces. Numerical

examples illustrate the model and reconfirm the theoretical order of accuracy.

5.1.2 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 5.2 we introduce the model problem

and state some preliminaries for its analysis, starting with a description of the initial and boundary

conditions for (5.1) that correspond to the filter model (Section 5.2.1). Next, in Section 5.2.2, we refor-

mulate (5.1) and the corresponding initial and boundary conditions in meridional axisymmetric form,

which under suitable assumptions leads to model in two (namely, radial and vertical) space dimensions.

We provide in Section 5.2.3 some preliminaries on functional spaces associated with radially symmetric

functions. The weak (variational) formulation of the axisymmetric problem is stated in Section 5.2.4.

Further assumptions on the model coefficients, as well as a number of inequalities related to the bi-

linear and trilinear forms involved in the weak formulation, are stated in Section 5.2.5. Section 5.3

outlines the well-posedness analysis (proof of existence and uniqueness of a weak solution) of the

axisymmetric problem derived in Section 5.2.4. Section 5.4 is devoted to the description of the spatio-

temporal discretisation of the axisymmetric model. We then proceed to specify, in Section 5.4.1, the

axisymmetric H(div)-conforming method, where we first derive a semi-discrete (continuous in time)

Galerkin formulation for the model problem, based on two-dimensional BDM spaces adapted to the

axisymmtric setting, and then pass to a fully discrete scheme by applying a second-order time dis-

cretisation through an implicit backward differentiation formula. Next, in Section 5.4.2, we establish

discrete stability properties of the bilinear and trilinear forms involved in the method. These proper-

ties allow us to prove (in Section 5.4.3) the existence of a discrete solution. Then, in Section 5.5, we

prove an optimal a priori error estimate for the numerical scheme, where we verify that each of the

terms is bounded optimally in the corresponding weighted space. Finally, in Section 5.6 we present

numerical examples generated by the method introduced. Example 5.1 (Section 5.6.1) is an accuracy

test with a manufactured known exact solution of (5.1) equipped with initial and boundary conditions.

Results confirm that the method converges to the exact solution with the expected second-order rate.

Next, in Example 5.2 (Section 5.6.2), numerical results are validated against experimental data, and
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Figure 5.1: Left: schematic representation of the domain Ω, its various boundaries Γ in, Γwall and Γ out,

and the material interface Σ. Right: reduction to the axisymmetric configuration (adapted from [15]).

in Example 5.3 (Section 5.6.3) we solve the full two-layer, two-contaminant filter model.

5.2 Model problem and preliminaries

5.2.1 Initial and boundary conditions

Let us consider a porous skeleton consisting of two different materials separated by an interface,

where the matrix is saturated with an incompressible interstitial fluid (see a diagrammatic represen-

tation on the left part of Figure 5.1). The coupled set of governing equations (5.1) is posed along with

the initial and boundary conditions

u = uin, ~θ = ~θ in on Γ in × (0, T ], (5.3a)

u = 0, D∇~θ · n = ~0 on Γwall × (0, T ], (5.3b)

(νε(u)− pI)n = 0, D∇~θ · n = ~0 on Γ out × (0, T ], (5.3c)

~θ(0) = ~0, u(0) = ~0, ~s(0) = ~0 in Ω. (5.3d)

Condition (5.3a) indicates that the contaminated water enters the filter at Γ in with a constant

influx velocity, and each contaminant θi, 1 ≤ i ≤ m present at a fixed concentration θ in
i ; while

condition (5.3c) accounts for zero normal stress and zero contaminant flux at the outlet. The system

is preliminarily flushed with clean water and so there are no contaminants in the filter. Once the flow

is at rest, we consider the initial conditions (5.3d).

The two distinct materials that compose the porous domain will have different permeability, porosity,

as well as adsorption rate. Moreover, the diffusivities of the contaminants will vary from one type

of porous structure to another. However it is important to remark that these differences in material
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properties, at least in the applications we address here, are not large enough to modify the flow regime

between the two subdomains and this explains why (5.1a)–(5.1d) are defined on the whole domain Ω.

Should this not be the case, one needs to solve explicitly for the coupling of Navier-Stokes/Brinkman

or Brinkman/Darcy equations including suitable transmission conditions at the interface (see for

instance [17,72] for formulations tailored to axisymmetric domains).

5.2.2 An axisymmetric formulation

Assuming that the data, the domain and the expected flow properties are all symmetric with respect

to a given axis of symmetry denoted Γ sym, we may rewrite the model equations in the meridional

domain Ωa (see the right part of Figure 5.1). In this case the velocity only possess radial and vertical

components and we recall that the divergence operator in axisymmetric coordinates (in radial and

height variables r, z) is

diva v := ∂zvz +
1

r
∂r(rvr).

Then, making abuse of notation, we may rewrite system of PDEs (5.1) as

ρf(∂tu+ u · ∇u) + K−1νu− diva(νε(u)) +∇p+ ν(ur/r
2)e1 = F (~θ), (5.4a)

diva u = 0, (5.4b)

φ∂t~θ − diva(D∇~θ) + (u · ∇)~θ = −ρb∂t~s, (5.4c)

∂t~s = G(~s, ~θ) for (r, z, t) ∈ Ωa × (0, T ], (5.4d)

while the corresponding initial and boundary conditions (5.3) take the form

u = uin, ~θ = ~θ in on Γ in
a × (0, T ], (5.5a)

u = 0, D∇~θ · n = ~0 on Γwall
a × (0, T ], (5.5b)

u · n = 0, D∇~θ · n = ~0 on Γ sym × (0, T ], (5.5c)

(νε(u)− pI)n = 0, D∇~θ · n = ~0, on Γ out
a × (0, T ], (5.5d)

~θ(0) = ~0, u(0) = 0, ~s(0) = ~0 in Ωa, (5.5e)

where the condition (5.5c) at the symmetry axis indicates slip velocity and zero normal fluxes.

5.2.3 Preliminaries on spaces of radially symmetric functions

For α ∈ R and 1 ≤ p <∞, let Lpα(Ωa) denote the space of measurable functions v on Ωa such that

‖v‖p
Lpα(Ωa)

:=

∫
Ωa

|v|prα dr dz ≤ ∞,

and let us denote the scalar product in L2
α(Ωa) by (·, ·)α,Ωa . Moreover we introduce Hq

α(Ωa) as the

space of functions in Lpα(Ωa) whose derivatives up to order q are also in Lpα(Ωa), and we denote by

Hq
α,j(Ωa) its restriction to functions with null trace on a given portion Γ ja of the boundary. By ~L

we denote the corresponding vectorial counterpart of the scalar functional space L when the number
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of components depends on m. Furthermore, the space V 1
1 (Ωa) := H1

1 (Ωa) ∩ L2
−1(Ωa) is endowed with

the following norm and seminorm:

‖v‖V 1
1 (Ωa) :=

(
‖v‖2L2

1(Ωa) + |v|2H1
1 (Ωa) + ‖v‖2L2

−1(Ωa)

)1/2
,

|v|V 1
1 (Ωa) :=

(
|v|2H1

1 (Ωa) + ‖v‖2L2
−1(Ωa)

)1/2
.

Let us define the space

H0(diva;Ωa) :=
{
v ∈ L2

1(Ωa) : diva v ∈ L2
1(Ωa) and v|∂Ωa · n = 0

}
,

endowed with the following norm

‖v‖diva,Ωa =
(
‖v‖L2

1(Ωa) + ‖diva(v)‖L2
1(Ωa)

)1/2
.

The essential boundary conditions (5.5a), (5.5b)1, (5.5c)1 suggest to employ the functional spaces

V 1
1,in,wall(Ωa) :=

{
v ∈ V 1

1 (Ωa)×H1
1 (Ωa) : v|Γ in

a ∪Γwall
a

= 0 and v|Γ sym · n = 0
}
,

~H1
1,in(Ωa) =

{
~ψ ∈ ~H1

1 (Ωa) : ~ψ|Γ in
a

= ~0
}
.

In what follows, to make notation more concise, we write L2
1 instead of L2

1(Ωa), and proceed similarly

for V 1
1 (Ωa), ~L2

1(Ωa), ~H1
1 (Ωa), and other spaces of functions defined on Ωa as well as their corresponding

norms. That is, in the remainder any space of functions and corresponding norm whose domain is not

specified is understood to refer to functions defined on Ωa.

5.2.4 Weak formulation of the axisymmetric problem

For a fixed t > 0, the weak (variational) formulation of problem (5.4), (5.5) is obtained after testing

against suitable functions and applying integration by parts in axisymmetric coordinates; and it can

be formulated as follows:

Find (u(t), p(t), ~θ(t), s(t)) ∈ V 1
1 × L2

1 × ~H1
1 × L2

1 such that (5.5a) holds, and(
ρf∂tu(t),v

)
1,Ωa

+ a1

(
u(t),v

)
+ c1

(
u(t);u(t),v

)
+ b
(
v, p(t)

)
= d1(~θ,v) for all v ∈ V 1

1,in,wall(Ωa), (5.6a)

b
(
u(t), q

)
= 0 for all q ∈ L2

1, (5.6b)(
φ∂t~θ(t), ~ψ

)
1,Ωa

+ a2

(
~θ(t), ~ψ

)
+ c2

(
u(t); ~θ(t), ~ψ

)
+ d2

(
s(t); ~θ(t), ~ψ

)
= 0 for all ~ψ ∈ ~H1

1,in(Ωa), (5.6c)(
∂t~s(t),~l

)
1,Ωa

+ d3

(
~θ(t);~s(t),~l

)
− d4

(
~θ(t),~l

)
= 0 for all l ∈ ~L2

1, (5.6d)
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where the bilinear, trilinear, and nonlinear forms are defined as follows for all u,v,w ∈ V 1
1 , q ∈ L2

1,

~s,~l ∈ ~L2
1, and ~θ, ~ψ ∈ ~H1

1 :

a1(u,v) :=

∫
Ωa

K−1νu · vr dr dz +

∫
Ωa

νε(u) : ε(v)r dr dz +

∫
Ωa

ν

r
urvr dr dz,

a2(~θ, ~ψ) :=

∫
Ωa

D∇~θ : ∇~ψr dr dz, b(v, q) := −
∫
Ωa

q diva vr dr dz,

c1(w;u,v) :=

∫
Ωa

ρf(w · ∇)u · vr dr dz, c2(v; ~θ, ~ψ) :=

∫
Ωa

(v · ∇)~θ · ~ψr dr dz,

d1(~ψ,v) :=

∫
Ωa

F (~ψ) · vr dr dz, d2(~s; ~θ, ~ψ) :=

∫
Ωa

m∑
i=1

(f(x, si)θiψi)r dr dz,

d3(~ψ;~s,~l) :=

∫
Ωa

m∑
i=1

g(x, ψi)silir dr dz,

d4(~ψ,~l) :=

∫
Ωa

m∑
i=1

g(x, ψi)s
max
i lir dr dz.

5.2.5 Further assumptions and preliminaries

The permeability tensor K ∈ [C(Ωa)]d×d is assumed symmetric and uniformly positive definite,

hence its inverse satisfies

vTK−1(x)v ≥ α1|v|2 for all v ∈ Rd and x ∈ Ωa, for a constant α1 > 0.

We also require D to be positive definite, i.e.,

~ψTD~ψ ≥ α2|~ψ|2 for all ~ψ ∈ Rm, for a constant α2 > 0.

We assume there exist constants f1, f2, g1, g2 > 0 such that f1 ≤ f(x, s) ≤ f2, g1 ≤ g(x, θ) ≤ g2, and

that f and g are Lipschitz continuous and satisfy∣∣f(s1)− f(s2) ≤ |f |Lip|s1 − s2|,
∣∣g(θ1)− g(θ2)

∣∣ ≤ |g|Lip|θ1 − θ2|.

These assumptions imply that for all ~s1, ~s2, ~s,~l ∈ ~L2
1 and ~θ, ~ψ ∈ ~H1

1 such that smax
i ≤ smax, there hold

d2(~s; ~θ, ~θ) ≥ f1‖~θ‖2~L2
1

, (5.7)

d2(~s; ~θ, ~ψ) ≤ f2‖~θ‖~L2
1
‖~ψ‖~L2

1
, (5.8)

d2(~s2; ~θ, ~ψ)− d2(~s1; ~θ, ~ψ) ≤ |f |Lip‖~s2 − ~s1‖~L2
1
‖~θ‖ ~H1

1
‖~ψ‖ ~H1

1
, (5.9)

d3(~ψ;~s,~s) ≥ g1‖~s‖2~L2
1

, (5.10)

d3(~ψ;~s,~l) ≤ g2‖~s‖~L2
1
‖~l‖~L2

1
, (5.11)

d4(~ψ,~l) ≤ g2s
max‖~l‖~L2

1
≤ Cd‖~l‖~L2

1
. (5.12)

If in addition ~s ∈ ~H1
1 , we also get

d3(~θ2;~s,~l)− d3(~θ1;~s,~l) ≤ |g|Lip‖~θ2 − ~θ1‖ ~H1
1
‖~s‖ ~H1

1
‖~l‖~L2

1
. (5.13)
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Due to the uniform boundedness of K−1 and D, one can easily establish the following properties for

all u,v,∈ V 1
1 , q ∈ L2

1, and ~θ, ~ψ ∈ ~H1:∣∣a1(u,v)
∣∣ ≤ Ca‖u‖V 1

1
‖v‖V 1

1
, (5.14a)∣∣a2(~θ, ~ψ)

∣∣ ≤ Ĉa‖~θ‖ ~H1
1
‖~ψ‖ ~H1

1
, (5.14b)∣∣b(v, q)∣∣ ≤ Cb‖v‖V 1

1
‖q‖L2

1
, (5.14c)∣∣d1(~θ,v)

∣∣ ≤ CF ‖~θ‖ ~H1
1
‖v‖V 1

1
. (5.14d)

Moreover, thanks to the axisymmetric version of the well-known Sobolev embeddings (see [20, 133]),

we have that for p̂ ≥ 1,

‖w‖
Lp̂1
≤ C∗p̂‖w‖V 1

1
for all w ∈ V1

1, (5.15)

where the constant C∗p̂ > 0 depends only upon |Ωa| and p̂. Also, for u,v,w ∈ H1
1 and ~θ, ~ψ ∈ ~H1

1 ,

Hölder’s inequality and (5.15) with 1
p̂ + 1

p̂∗ = 1
2 imply that (see [49])∣∣c1(w;u,v)

∣∣ ≤ Cv‖w‖H1
1
‖u‖H1

1
‖v‖H1

1
,∣∣c2(w; ~θ, ~ψ)

∣∣ ≤ C̄v‖w‖H1
1
‖~θ‖H1

1
‖~ψ‖~L3

1
,∣∣c2(w; ~θ, ~ψ)

∣∣ ≤ Ĉv‖w‖H1
1
‖~θ‖ ~H1

1
‖~ψ‖ ~H1

1
.

Next, Poincaré’s inequality and the positive definiteness of D readily imply the following coercivities

(see [32, Chapter IX]):

a1(v,v) ≥ αa‖v‖2V 1
1

for all v ∈ V 1
in,wall(Ωa), (5.16)

a2(~ψ, ~ψ) ≥ α̂a‖~ψ‖2~H1
1

for all ~ψ ∈ ~H1
1,in(Ωa). (5.17)

We then proceed to characterise the kernel of the bilinear form b(·, ·) as

Z :=
{
v ∈ V 1

1,in,wall(Ωa) : b(v, q) = 0 for all q ∈ L2
1

}
=
{
v ∈ V 1

1,in,wall(Ωa) : diva v = 0 a.e. in Ωa

}
,

and using integration by parts directly implies the relations (see [32, Section IX.2])

c1(w;v,v) = 0 and c2(w; ~ψ, ~ψ) = 0

for all w ∈ Z, v ∈ V 1
1,in,wall(Ωa), and ~ψ ∈ ~H1

1,in(Ωa).
(5.18)

Note that for a given w ∈ Z, property (5.16) together with (5.18) readily lead to the ellipticity of the

bilinear form

a1(·, ·) + c1(w, ·, ·) : V 1
1,in,wall(Ωa)× V 1

1,in,wall(Ωa)→ R.

Moreover, it is well known (i.e. [32, Proposition IX.1.1]) that an inf-sup condition holds for b(·, ·) in

the following sense:

sup
v∈V 1

1,in,wall(Ωa)\{0}

b(v, q)

‖v‖V 1
1

≥ β‖q‖L2
1

for all q ∈ L2
1.
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5.3 Well-posedness analysis of the continuous problem

This part of our analysis will be restricted to the case of no-slip velocity boundary conditions on

the whole boundary. Then we introduce the spaces

H1
1,� :=

{
w ∈ H1

1 : w = 0 on ∂Ωa

}
, V 1

1,� :=
{
w ∈ V 1

1 : w = 0 on ∂Ωa

}
,

and V 1
1,� := V 1

1,� ×H1
1,�.

From [111], we recall the weighted Sobolev inequality:

Lemma 5.1. For all v ∈H1
1 there holds

‖v‖2L4
1
≤ Ĉ‖v‖L2

1
|v|H1

1
.

We will also use the following lemma (for its proof in the axysimmetric case we refer the reader

to [32, Chapter IX]):

Lemma 5.2. If (u, p, ~θ,~s) ∈ V 1
1,� × L2

1 × ~H1
1,� × ~L2

1 solves (5.6), then u ∈ Z is a solution of the

following reduced problem:

For all t ∈ (0, T ], find (u, ~θ, s) ∈ Z × ~H1
1,� × ~L2

1 such that(
ρf∂tu(t),v

)
1,Ωa

+ a1

(
u(t),v

)
+ c1

(
u(t);u(t),v

)
= d1(~θ,v) for all v ∈ V 1

1,in,wall(Ωa), (5.19a)(
φ∂t~θ(t), ~ψ

)
1,Ωa

+ a2

(
~θ(t), ~ψ

)
+ c2

(
u(t); ~θ(t), ~ψ

)
+ d2

(
~s(t); ~θ(t), ~ψ

)
= 0 for all ~ψ ∈ ~H1

1,in(Ωa), (5.19b)(
∂t~s(t),~l

)
1,Ωa

+ d3

(
~θ(t);~s(t),~l

)
− d4

(
~θ(t),~l

)
= 0 for all ~l ∈ ~L2

1. (5.19c)

Conversely, if (u, ~θ, ~s) ∈ Z × ~H1
1,� × ~L2

1 is a solution of (5.19), then there exists a pressure p ∈ L2
1

such that (u, p, ~θ,~s) is a solution of (5.6).

A similar problem of (5.6) but in Cartesian coordinates has been studied in [3]. The authors

showed the existence of the solution by using the Galerkin method and applying the Cauchy-Lipschitz

theorem. The proof of the existence of the solution of (5.6) can be showed by using the same method

noting that F is a Lipcshitz-continuous function; and using equivalent imbeddings stated for weighted

Sobolev spaces in [111] and weighted Poincaré like inequalities in [159, Section 4.3].

Theorem 5.1. Assume that for r ≥ 4,

(u, ~θ, s) ∈ L2
(
0, T ;Z ∩W 1,r

1 (Ωa)
)
× L2(0, T ; ~H1

1,�)× L2
(
0, T ; ~H1

1

)
is a solution to problem (5.19). Then such solution is unique.

Proof. Throughout the proof, and for simplicity of the presentation, we assume that the model con-

stants are scaled as φ, ρb, ρf = 1. Let (u1, ~θ1, s1) and (u2, ~θ2, s2) be two solutions of (5.19). We

denote

U := u1 − u2, ~Θ := ~θ1 − ~θ2, and ~S := ~s1 − ~s2.
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Now, from (5.19b), by adding and subtracting c2(u2, ~θ1, ~Θ) and d2(~s2, ~θ1, ~Θ); and using properties

(5.18) and (5.9) we obtain

(∂t ~Θ, ~Θ)1,Ωa + a2( ~Θ, ~Θ)

= −c2(U ; ~θ1, ~Θ)− d2(~s2; ~Θ, ~Θ)− d2(~s1; ~θ1, ~Θ) + d2(~s2, ~θ1, ~Θ),

1

2

d

dt
‖ ~Θ‖2~L2

1

+ α2| ~Θ|2~H1
1

≤ ‖U‖2~L4
1

|~θ1| ~H1
1
‖ ~Θ‖~L4 + |f |Lip‖~S‖~L2

1
‖~θ1‖ ~H1

1
‖ ~Θ‖~L4

1
.

By Lemma 5.1 and Young’s inequality it follows that

1

2

d

dt
‖ ~Θ‖2~L2

1

+ α2| ~Θ|2~H1
1

≤ Ĉ

4

(
ε1|U |2H1

1
+

1

ε1
|~θ1| ~H1

1
‖U‖2L2

1
+ ε2| ~Θ|2~H1

1

+
1

ε2
|~θ1|2~H1

1

‖ ~Θ‖2~L2
1

)
.

(5.20)

Now, selecting v = U in (5.19a), adding and subtracting c1(u2;u1;U), we obtain

(∂tU ,U)1,Ωa + a1(U ,U) + c1(u2;U ,U) = −c1(U ;u1,U) + d1( ~Θ,U).

Employing properties (5.18) and (5.14d), we can readily see that

1

2

d

dt
‖U‖2L2

1
+ ν‖ε(U)‖2L2

1
+ ν‖Ur‖2L2

−1
≤ ‖U‖2L4

1
|u1|H1

1
+ CF | ~Θ|~L2

1
‖U‖L2

1
.

Applying Lemma 5.1 and Young’s inequality we conclude that

1

2

d

dt
‖U‖2L2

1
+ αa‖U‖2V 1

1

≤ Ĉε3

2
|U |2V 1

1
+

Ĉ

2ε3
‖U‖2L2

1
|u1|H1

1
+
CF
2

(
| ~Θ|2~L2

1

+ ‖U‖2L2
1

)
.

(5.21)

In the same manner, from (5.19c), after adding and subtracting d3(~θ2;~s1, ~S), we infer

(∂t~S, ~S)1,Ωa + d3(~θ2; ~S, ~S) = −d3( ~Θ;~s1, ~S)− d4( ~Θ, ~S).

Using (5.10), (5.11), (5.12) and (5.13), we can assert that

1

2

d

dt
‖~S‖~L2

1
+ g1‖~S‖~L2

1

≤
|g|Lip

2

(
‖ ~Θ‖2L2

1
+ ‖~s1‖2~H1

1

‖~S‖2L2
1

)
+
|g|Lips

max

2

(
‖ ~Θ‖2~L2

1

+ ‖~S‖2~L2
1

)
,

(5.22)

and choosing ε1 = 2ναa/Ĉ, ε2 = 2α2/Ĉ and ε3 = ναa/Ĉ, we obtain from (5.20), (5.21) and (5.22)

that

d

dt

(
‖U‖2L2

1
+ ‖ ~Θ‖2~L2

1

+ ‖~S‖2~L2
1

)
≤ C

(
|u1|2H1

1
+ |~θ1|2~H1

1

+ ‖~θ1‖2~L1
2

+ ‖~s1‖2~H1
1

+ 1
)(
‖U‖2L2

1
+ ‖ ~Θ‖2~L2

1

+ ‖~S‖2~L2
1

)
.

We may now integrate from τ = 0 to τ = t to infer the bound

‖U‖2L2
1

+ ‖ ~Θ‖2~L2
1

+ ‖~S‖2~L2
1

≤
∫ t

0
C
(
|u1|2H1

1
+ |~θ1|2~H1

1

+ ‖~θ1‖2~L1
2

+ ‖~s1‖2~H1
1

+ 1
)(
‖U‖2L2

1
+ ‖ ~Θ‖2~L2

1

+ ‖~S‖2~L2
1

)
dτ.

Applying Gronwall’s lemma, we now conclude that U = 0, ~Θ = ~0 and ~S = ~0.
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5.4 Spatio-temporal discretisation

5.4.1 An axisymmetric H(div)-conforming method

Let us denote by Th a regular partition of Ωa composed by triangular elements K of diameter hK .

First, we recall the definition of the two-dimensional BDM spaces (see e.g. [40]) locally on an element

K ∈ Th, BDMk(K) := (Pk(K))2, where Pk(K) denotes the local space spanned by polynomials of

degree up to k. In turn, related to the axisymmetric setting, as in [71] we define

BDMaxi
k (K) :=

{
v ∈ BDMk(K) : v · nK |Γ sym = 0

}
=
{

(vr, vz)
T ∈ BDMk : vr|Γ sym = 0

}
,

where the associated degrees of freedom are given by∫
Eh
v · nKpr ds, p ∈ Rk(∂K) for k ≥ 0,∫

K
v · ∇pr dr dz, p ∈ Pk−1(K) for k ≥ 1,∫

K
v · curl(bKp)r dr dz, p ∈ Pk−2(K) for k ≥ 2,

where bK denotes a bubble function on the element K and

Rk(∂K) :=
{
φ ∈ L2(∂K) : φ|e ∈ Pk(e), e ∈ Eh(K)

}
.

Then, globally, for an integer k and a mesh Th on Ω, we utilize the discrete spaces

Hk
h :=

{
vh ∈H(diva;Ωa) : vh|K ∈ BDMaxi

k (K) for all K ∈ Th
}
,

Ykh :=
{
qh ∈ L2

1(Ωa) : qh|K ∈ Pk(K) for all K ∈ Th
}
,

Mk
h :=

{
ψh ∈ C(Ωa) : ψh|K ∈ Pk(K) for all K ∈ Th

}
,

to define the following finite element subspaces for the approximation of the unknowns u, p, ~θ and ~s,

respectively, where the polynomial degree is k ≥ 1:

Vh := Hk
h ∩H0(diva;Ωa), Qh := Yk−1

h ,

~Mh,0 := ~Mk
h ∩ ~H1

1,in(Ω), ~Sh := ~Yk−1
h .

Let us recall that for axisymmetric cases the property diva Vh ⊆ Qh is not preserved [72], and let us

also recall from [71] the following discrete inf-sup condition for b(·, ·), where β̃ is independent of h:

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1,Th
≥ β̃‖qh‖L2

1,0(Ωa) for all qh ∈ Qh. (5.23)

Associated with these finite-dimensional spaces, we state the following semi-discrete Galerkin for-
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mulation for problem (5.1), (5.3):

For a fixed t > 0, find (uh(t), ph(t), ~θh(t), ~sh(t)) ∈ Vh ×Qh × ~Mh,0 × ~Sh
such that for all (vh, qh, ~ψh,~lh) ∈ Vh ×Qh × ~Mh,0 × ~Sh:(
ρf∂tuh(t),v

)
1,Ωa

+ ah1
(
uh(t),vh

)
+ ch1

(
uh(t);uh(t),vh

)
+ b
(
vh, ph(t)

)
= d1

(
~θh(t),vh

)
,

b
(
uh(t), qh

)
= 0,(

φ∂t~θh(t), ~ψ
)

1,Ωa
+ a2

(
~θh(t), ~ψh

)
+ ch2

(
uh(t); ~θh(t), ~ψh

)
= d2

(
~sh(t); ~θh(t), ~ψh

)
,(

∂t~sh(t),~lh
)

1,Ωa
+ d3

(
~θh(t);~sh(t),~lh

)
= d4

(
~θh(t),~lh

)
.

(5.24)

Here the discrete versions of the trilinear forms a1(·, ·), c1(·; ·, ·) and c2(·; ·, ·) are defined using a

symmetric interior penalty, an upwind approach and a skew-symmetric form, respectively (see e.g.

[46, 102,109]):

ah1(u,v) :=

∫
Ωa

(
K−1u · v + νεh(u) : εh(v) + ν

ur
r

vr
r

)
r dr dz

−
∑
e∈Eh

∫
e

(
{{νεh(u)ne}} · Jvτ K− {{νεh(v)ne}} · Juτ K

+
a0

he
νJuτ K · Jvτ K

)
r ds,

ch1(w;u,v) :=
1

2

∫
Ωa

((w · ∇h)u · v − (w · ∇h)v · u) r dr dz

+
∑
e∈Eh

∫
e
ŵup(u) · vr ds,

ch2(uh; ~θh, ~ψh) :=
1

2

(∫
Ωa

(v · ∇h)~θ · ~ψr dr dz −
∫
Ωa

(v · ∇h)~ψ · ~θr dr dz

)
,

where the fluxes are defined as

ŵup(u) :=
1

2

(
w · nK − |w · nK |

)
(ue − u),

and ue denotes the trace of u taken from within the exterior of K.

We then proceed with the method of lines, and for the time discretisation we partition the interval

[0, T ] into N subintervals [tn−1, tn] of length ∆t. We will use an implicit, second-order backward

differentiation formula (BDF2). Starting from the interpolates u0
h, ~θ 0

h and ~s 0
h of the initial data onVh,
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~Mh,0 and ~Sh, respectively, we solve for n = 1, . . . , N − 1 the nonlinear system(
un+1
h − 4

3
unh +

1

3
un−1
h ,vh

)
1,Ωa

=
2

3
∆t
(
d1(~θ n+1

h ,vh)− ah1(un+1
h ,vh)− ch1(un+1

h ;un+1
h ,vh)− b(vh, pn+1

h )
)
,

b(un+1
h , qh) = 0,(
~θ n+1
h − 4

3
~θ nh +

1

3
~θ n−1
h , ~ψh

)
1,Ωa

=
2

3
∆t
(
−d2(sn+1

h ; ~θ n+1
h , ~ψh)− a2(~θ n+1

h , ~ψh)− ch2(un+1
h ; ~θ n+1

h , ~ψh)
)
,(

~sn+1
h − 4

3
~snh +

1

3
~sn−1
h ,~lh

)
1,Ωa

=
2

3
∆t
(
−d3(~θ n+1

h ;~sn+1
h ,~lh) + d4(~θ n+1

h ,~lh)
)

(5.25)

for all vh ∈ Vh, qh ∈ Qh, ~ψh ∈ ~Mh and ~sh ∈ ~Sh.

Then, in a way analogous to the continuous case, we define the discrete kernel

Zh :=
{
vh ∈ Vh : b(vh, qh) = 0 for all qh ∈ Qh

}
,

however we cannot obtain a characterisation analogous to the discrete case.

5.4.2 Discrete stability properties

For the subsequent analysis, we introduce for r ≥ 0 the broken Hr
α(Th) space

Hr
α(Th) =

{
v ∈ L2

α : v|K ∈Hr
α(K),K ∈ Th

}
,

as well as the following parameter- and mesh- dependent broken norms

‖v‖2∗,Th :=
∑
K∈Th

‖εh(v)‖2L2
1(K) +

∑
K∈Th

‖vr‖L2
−1(K) +

∑
e∈Eh

1

he
‖Jvτ K‖2L2

1(e),

‖v‖21,Th := ‖v‖2L2
1(Ωa) + ν‖v‖2∗,Th for all v ∈H1

1 (Th),

‖v‖2T 2
h

:= ‖v‖21,Th +
∑
K∈Th

h2
K |v|2H2

1 (K) for all v ∈H2
1 (Th),

where the stronger norm ‖·‖2T 2
h

is used to show continuity. It can be proven that this norm is equivalent

to ‖·‖1,Th on H1
1 (Th) (see [67] and [19]). Finally, adapting the argument used in [102, Proposition 4.5]

and relying on the equivalent weighted Sobolev embeddings in [111] we have the following discrete

Sobolev embedding: for r = 2, 4 there exists a constant Cemb > 0 such that

‖v‖Lr1 ≤ Cemb‖v‖1,Th for all v ∈H1
1 (Th). (5.26)

Using these norms, we can establish continuity of the trilinear and bilinear forms involved, stated in

the following lemma that can be proved following [137, Section 3.3.2], [71, Section 3] and [19, Section

4].
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Lemma 5.3. The following properties hold:∣∣ah1(u,v)
∣∣ ≤ C‖u‖T 2

h
‖v‖1,Th for all u ∈H2

1 (Th), v ∈ Vh,∣∣ah1(u,v)
∣∣ ≤ C̃a‖u‖1,Th‖v‖1,Th for all u,v ∈ Vh,∣∣b(v, q)∣∣ ≤ C̃b‖v‖1,Th‖q‖L2

1(Ωa) for all v ∈H1
1 (Th), q ∈ L2

1(Ω),

and for all u,v,w ∈H1
1 (Th) and ~ψ, ~θ ∈ [H1

1 (Ω)]m, there holds∣∣d1(~θ,v)
∣∣ ≤ CF ‖~θ‖ ~H1

1
‖v‖1,Th , (5.27a)∣∣ch2(w; ~θ, ~ψ)

∣∣ ≤ C̃‖w‖1,Th‖~ψ‖ ~H1
1
‖~θ‖ ~H1

1
. (5.27b)

Note that while the coercivity of the form a2(·, ·) in the discrete setting is readily implied by (5.17),

there also holds (cf. [109, Lemma 3.2])

ah1(v,v) ≥ α̃a‖v‖21,Th for all v ∈ Vh, (5.28)

provided that a0 > 0 is sufficiently large and independent of the mesh size.

Let w ∈H0(div0;Ω), due to the skew-symmetric form of the operators ch1 and ch2 , and the positivity

of the non-linear upwind term of ch1 (see e.g. [138]), we can write

ch1(w;u,u) ≥ 0 for all u ∈ Vh, (5.29)

ch2(w; ~ψh, ~ψh) = 0 for all ~ψh ∈Mh, (5.30)

as well as the following relation (which is based on (5.26) and follows by the same method as in

[62,102]):

For any w1,w2,u ∈H2
1 (Th) there holds for all v ∈ Vh∣∣ch1(w1;u,v)

∣∣− ∣∣ch1(w2;u,v)
∣∣ ≤ C̃c‖w1 −w2‖1,Th‖v‖1,Th‖u‖1,Th .

(5.31)

5.4.3 Existence of discrete solutions

In what follows we will use the following algebraic relation: for any real numbers an+1, an, an−1

and defining Λan := an+1 − 2an + an−1, we have

2(3an+1 − 4an + an−1, an) = |an+1|2 + |2an+1 − an|2 + |Λan|2

− |an|2 − |2an − an−1|2.
(5.32)

Theorem 5.2. Let (un+1
h , pn+1

h , ~θ n+1
h , ~sn+1

h ) ∈ Vh ×Qh × ~Mh,0 × Sh be a solution of problem (5.25).
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Then the following bounds are satisfied, where C1, C2 and C3 are constants independent of h and ∆t:

‖un+1
h ‖2L2

1
+ ‖2un+1

h − unh‖2L2
1

+
n∑
j=1

‖Λujh‖
2
L2

1
+

n∑
j=1

∆t‖uj+1
h ‖21,Th

≤ C1

(
‖~θ 1
h‖2~L2

1

+ ‖2~θ 1
h − ~θ 0

h‖2~L2
1

+ ‖u1
h‖2L2

1
+ ‖2u1

h − u0
h‖2L2

1

)
,

‖~θ n+1
h ‖2~L2

1

+ ‖2~θ n+1
h − ~θ nh ‖2~L2

1

+
n∑
j=1

‖Λ~θ jh‖
2
~L2

1

+
n∑
j=1

∆t|~θ j+1
h |2~L2

1

≤ C2

(
‖~θ 1
h‖2~L2

1

+ ‖2~θ 1
h − ~θ 0

h‖2~L2
1

)
,

‖~sn+1
h ‖2~L2

1

+ ‖2~sn+1
h − ~snh ‖2~L2

1

+
n∑
j=1

‖Λ~sjh‖
2
~L2

1

≤ C3

(
‖~θ 1
h‖2~L2

1

+ ‖2~θ 1
h − ~θ 0

h‖2~L2
1

+ ‖~s 1
h‖2~L2

1

+ ‖2~s 1
h − ~s 0

h‖2~L2
1

+ n∆tC2
d

)
.

(5.33)

Proof. First we take ~ψh = 4~θ n+1
h in the third equation of (5.25) and use properties (5.7), (5.30) and

relation (5.32) to deduce the inequality

‖~θ n+1
h ‖2~L2

1

+ ‖2~θ n+1
h − ~θ nh ‖2~L2

1

+ ‖Λ~θ nh ‖2~L2
1

+ 4α2∆t|~θ n+1
h |2H1

1

≤ ‖~θ nh ‖2~L2
1

+ ‖2~θ nh − ~θ n−1
h ‖2~L2

1

.

Hence, summing over n, we get

‖~θ n+1
h ‖2~L2

1

+ ‖2~θ n+1
h − ~θ nh ‖2~L2

1

+
n∑
j=1

‖Λ~θ jh‖
2
~L2

1

+ 4α2

n∑
j=1

∆t|~θ j+1
h |2H1

1

≤ ‖~θ 1
h‖2~L2

1

+ ‖2~θ 1
h − ~θ 0

h‖2~L2
1

.

(5.34)

Similarly, in the fourth equation of (5.25), we take ~lh = 4~sn+1
h and apply (5.12), (5.10) together with

Young’s inequality to get

‖~sn+1
h ‖2~L2

1

+ ‖2~sn+1
h − ~snh ‖2~L2

1

+ ‖Λ~snh ‖2~L2
1

≤ 4∆tCd‖~θ n+1
h ‖~L2

1
+ ‖~snh ‖2~L2

1

+ ‖2~snh − ~sn−1
h ‖2~L2

1

≤ 2∆tCp|~θ n+1
h |2~H1

1

+ 2C2
d∆t+ ‖~snh ‖2~L2

1

+ ‖2~snh − ~sn−1
h ‖2~L2

1

.

Summing over n we therefore obtain

‖~sn+1
h ‖2~L2

1

+ ‖2~sn+1
h − ~snh ‖2~L2

1

+

n∑
j=1

‖Λ~s jh‖
2
~L2

1

≤ 2Cp

n∑
j=1

∆t|~θ j+1
h |2~H1

1

+ 2n∆tC2
d + ‖~s 1

h‖2~L2
1

+ ‖2~s 1
h − ~s 0

h‖2~L2
1

. (5.35)

We get the second result of (5.33) by replacing (5.34) in (5.35). Finally we take vh = 4un+1
h and

qh = 4pn+1
h in the first and second equation of (5.25), respectively and apply (5.32), (5.27a), (5.28)
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and (5.29) to deduce the estimate

‖un+1
h ‖2L2

1
+ ‖2un+1

h − unh‖2L2
1

+ ‖Λunh‖2L2
1

+ 4∆tα̃a‖un+1
h ‖21,Th

≤ 4∆tCF ‖~θ n+1
h ‖~L2

1
‖un+1

h ‖L2
1

+ ‖unh‖2L2
1

+ ‖2unh − un−1
h ‖2L2

1
.

Now we use Young’s inequality with ε = α̃a to arrive at

‖un+1
h ‖2L2

1
+ ‖2un+1

h − unh‖2L2
1

+ ‖Λunh‖2L2
1

+∆t2α̃a‖un+1
h ‖21,Th

≤ 2
C2
FCp
α̃a

∆t|~θ n+1
h |2~H1

1

+ ‖unh‖2L2
1

+ ‖2unh − un−1
h ‖2L2

1
,

and summing over n we can assert that

‖un+1
h ‖2L2

1
+ ‖2un+1

h − unh‖2L2
1

+
n∑
j=1

‖Λujh‖
2
L2

1
+ 2α̃a

n∑
j=1

∆t‖uj+1
h ‖21,Th

≤
C2
FCp
2

n∑
j=1

∆t|~θ j+1
h |2~H1

1

+ ‖u1
h‖2L2

1
+ ‖2u1

h − u0
h‖2L2

1
.

(5.36)

Finally we get the first result in (5.33) from the bounds (5.34) and (5.36).

Theorem 5.3. Assume that

CF
α̃a
≤ α2

Cp
. (5.37)

Then problem (5.25) admits at least one solution

(un+1
h , pn+1

h , ~θ n+1
h , ~sn+1

h ) ∈ Vh ×Qh × ~Mh,0 × ~Sh.

Proof. To simplify the proof we introduce the following constants:

Cu := C1

(
‖~θ 1
h‖~L2

1
+ ‖2~θ 1

h − ~θ 0
h‖~L2

1
+ ‖u1

h‖L2
1

+ ‖2u1
h − u0

h‖L2
1

)
,

Cθ := C2

(
‖~θ 1
h‖~L2

1
+ ‖2~θ 1

h − ~θ 0
h‖~L2

1

)
,

Cs := C3

(
‖~θ 1
h‖~L2

1
+ ‖2~θ 1

h − ~θ 0
h‖~L2

1
+ ‖~s 1

h‖~L2
1

+ ‖2~s 1
h − ~s 0

h‖~L2
1

+ n∆tC2
d

)
.

We shall make use of Brouwer’s fixed-point theorem in the form given by [82, Corollary 1.1, Chapter

IV]:

Theorem 5.4 (Brouwer’s fixed-point theorem). Let H be a finite-dimensional Hilbert space with scalar

product denoted by (, )H and corresponding norm ‖·‖H . Let Φ : H → H be a continuous mapping for

which there exists µ > 0 such that (Φ(u), u)H ≥ 0 for all u ∈ H with ‖u‖H = µ. Then there exists an

element u ∈ H such that Φ(u) = 0, ‖u‖H ≤ µ.

We proceed by induction on n ≥ 2. We define the mapping

Φ : Vh ×Qh × ~Mh,0 × ~Sh → Vh ×Qh × ~Mh,0 × ~Sh
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using the relation(
Φ(un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h ), (vh, qh, ~ψh,~lh)

)
1,Ωa

=
1

2∆t

(
3un+1

h − 4unh + un−1
h ,vh

)
1,Ωa

+ ah1
(
un+1
h ,vh

)
+ ch1

(
un+1
h ;un+1

h ,vh
)

+ b(vh, p
n+1
h )− b(un+1

h , qh)−
(
F
(
~θ n+1
h

)
,vh
)

1,Ωa
+

1

2∆t

(
3~θ n+1
h − 4~θ nh + ~θ n−1

h , ~ψh
)

1,Ωa

+ a2

(
~θ n+1
h , ~ψh

)
+ ch2

(
un+1
h ; ~θ n+1

h , ~ψh
)

+ d2

(
~sn+1
h ; ~θ n+1

h , ~ψh
)

+
1

2∆t

(
3~sn+1
h − 4~snh + ~sn−1

h ,~lh
)

1,Ωa
+ d3

(
~θ n+1
h ;~sn+1

h ,~lh
)
− d4

(
~θ n+1
h ,~lh

)
.

Note this map is well-defined and continuous on Vh×Qh× ~Mh,0× ~Sh. On the other hand, if we take

(vh, qh, ~ψh,~lh) = (un+1
h , pn+1

h , ~θ n+1
h , ~sn+1

h ),

and employ (5.29), (5.30), (5.27a) and (5.28), we obtain(
Φ(un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h ), (un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h )

)
1,Ωa

≥ − 1

2∆t
‖4unh − un−1

h ‖L2
1
‖un+1

h ‖L2
1

+ α̃a‖un+1
h ‖21,Th − CF ‖θ

n+1
h ‖~L2

1
‖un+1

h ‖L2
1

− 1

2∆t
‖4~θ nh − ~θ n−1

h ‖~L2
1
‖~θ n+1
h ‖~L2

1
+ α2|~θ n+1|2~H1

1

+
3

2∆t
‖~sn+1
h ‖2L1

2

− 1

2∆t
‖4~snh − ~sn−1

h ‖~L2
1
‖~sn+1
h ‖~L2

1
− Cd‖~θ n+1

h ‖~L2
1
.

Next, using (5.33), inequality (5.37) and Young’s inequality with constant ε1 = α̃a/CF , we deduce

that (
Φ(un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h ), (un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h )

)
1,Ωa

≥ α̃a
2
‖un+1

h ‖2L2
1

+
3

2∆t
‖~sn+1
h ‖2~L2

1

+
α2

2Cp
‖~θ n+1
h ‖2~L2

1

− 5

2∆t
Cu‖un+1

h ‖L2
1(Ωa)

−
(

5

2∆t
Cθ + Cd

)
‖~θ n+1
h ‖~L2

1
− 5

2∆t
Cs‖~sn+1

h ‖~L2
1
.

Then, setting

CR = min

{
α̃a
2
,

3

2∆t
,
α2

2Cp

}
, Cr = 2 max

{
5

2∆t
Cu,

5

2∆t
Cθ + Cd,

5

2∆t
Cs

}
,

we may apply the inequality a+ b ≤
√

2(a2 + b2)1/2, valid for all a, b ∈ R, to obtain(
Φ(un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h ), (un+1

h , pn+1
h , ~θ n+1

h , ~sn+1
h )

)
1,Ωa

≥ CR
(
‖un+1

h ‖2L2
1

+ ‖~θ n+1
h ‖2~L2

1

+ ‖~sn+1
h ‖2~L2

1

)
− Cr

(
‖un+1

h ‖2L2
1

+ ‖~θ n+1
h ‖2~L2

1

+ ‖~sn+1
h ‖2~L2

1

)1/2
.

Hence, the right-hand side is nonnegative on a sphere of radius r := Cr/CR. Consequently, by

Theorem 5.4, there exists a solution to the fixed-point problem

Φ
(
un+1
h , pn+1

h , ~θ n+1
h , ~sn+1

h

)
= 0.
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As in the previous chapters, one cannot directly establish a discrete version of Theorem 5.1. In

fact we were not able to control the discrete norms arising from (5.31), which would be necessary to

establish a discrete counterpart of (5.21). However, even when uniqueness of the discrete counterpart

remains an open problem, our non-exhaustive selection of numerical examples did not present any

difficulties in this regard.

5.5 Error analysis

The following development follows the structure adopted in [4]. We start by recalling some inter-

polation results from [26] and [71].

Lemma 5.4. Let Lh be the Lagrange interpolation operator Lh : C0(Ωa)→ Vh, where Vh denotes

the space of Lagrange finite elements of order k. We also consider its vectorial counterpart, keeping

the same notation. Then for all l and for all p such that 1 ≤ l ≤ k + 1, 1 ≤ p ≤ +∞, l > 3
p or

p = 1, l = 3 there exists a constant C∗ > 0 independent of h, such that for all v∈W l,p
1 (Ωa), the

following inequalities hold;

‖v − Lh v‖Lp1(Ωa) ≤ C∗hl|v|W l,p
1 (Ωa)

, |v − Lh v|Lp1(Ωa) ≤ C∗hl−1|v|
W l,p

1 (Ωa)
.

Lemma 5.5. Let Πh be the BDMaxi
k interpolation operator Πh : C0(Ωa) → Hk

h. Then for all v ∈
Hk+1

1 (Ωa), the following inequalities hold:

‖v −Πh v‖L2
1(Ωa) ≤ C∗hk+1|v|Hk+1

1 (Ωa), ‖v −Πh v‖1,Th ≤ C
∗hk‖v‖Hk+1

1 (Ωa).

Proof. The first result comes from [71, Corrollary A.7]. The proof of the second result comes much in

the same way as in the Cartesian case, by making use of the equivalent weighted inverse inequalities

and weighted approximation properties proved in [26], see [72, Section 3.1] and [19].

Lemma 5.6. Let Ih denote the modified Clément interpolation operator

Ih : H1
0,1(Ωa)→Mk

h,

and the same notation is kept for its vectorial counterpart. Then for all l and for all p such that

1 ≤ l ≤ k + 1, 1 ≤ p ≤ +∞ there exists a constant C∗ > 0 independently of h such that for any

function v ∈W l,p
1 (Ωa),

‖v − Ih v‖Lp1(Ωa) ≤ C∗hl|v|W l,p
1 (Ωa)

.

Lemma 5.7. Assume that u ∈H2
1 and ~θ ∈ ~H1

1 . Then(
∂tu(t),v

)
1,Ωa

+ ah1
(
u(t),v

)
+ ch1

(
u(t);u(t),v

)
+ b(v, p)− d1

(
~θ(t),v

)
= 0,(

∂t~θ(t), ~ψ
)

1,Ωa
+ a2

(
~θ(t), ~ψ

)
+ ch2

(
~u(t); ~θ(t), ~ψ

)
+ d2

(
~s(t); ~θ(t), ~ψ

)
= 0

for all (v, ~ψ) ∈ Vh ×Mh,0. A similar result also holds for the fourth equation in (5.24).

Proof. Since we assume u ∈H2
1 (Ωa), integration by parts yields the required result. See also [19].



5.5. Error analysis 114

Now we decompose the errors as follows:

u− uh = Eu + ξu = (u−Πh u) + (Πh u− uh),

p− ph = Ep + ξp = (p− Lh p) + (Lh p− ph),

~θ − ~θh = E~θ + ξ~θ = (~θ − Ih ~θ) + (Ih ~θ − ~θh),

~s− ~sh = E~s + ξ~s = (~s− Lh ~s) + (Lh ~s− ~sh).

Assuming that u0
h = Πh u(0), ~θ0

h = Ih ~θ(0) and ~s0
h = Lh ~s(0), we will use also the notation Enu =

u(tn)−Πh u(tn) and ξnu = Πh u(tn)− unh, and the corresponding notation for other variables. Since

for the first time iteration of system (5.25) we adopt a backward Euler scheme, we require error

estimates for this step.

Theorem 5.5. Let us assume that

u ∈ L∞(0, T ;H3
1 ) ∩ L∞(0, T ;V 1

1,�(Ωa)), u′ ∈ L∞(0, T ;H1
1 ),

u′′ ∈ L∞(0, T ;L2
1), p ∈ L∞(0, T ;H2

1 ), ~θ ∈ L∞(0, T ; ~H3
1,�(Ωa)),

~θ ′ ∈ L∞(0, T ; ~H2
1 ), ~θ ′′ ∈ L∞(0, T ; ~L2

1), ~s ∈ L∞(0, T ; ~H3
1 ),

~s ′ ∈ L∞(0, T ; ~H2
1 ), ~s ′′ ∈ L∞(0, T ; ~H1

1 ),

and also that ‖u‖L∞(0,T ;H1
1 ) < M for a sufficiently small constant M > 0 (a precise condition for M,

can be found in Theorem 5.6). Then there exist positive constants C1
u, C1

θ , C1
s , independently of h

and ∆t, such that

‖ξ1
u‖2L2

1
+

1

2
∆tα̃a‖ξu‖21,Th ≤ C

1
u(h2k +∆t4),

1

4
‖ξ1
~θ
‖2~L2

1

+
1

2
∆tα̂a‖ξ~θ‖

2
~H1

1

≤ C1
θ (h2k +∆t4),

1

2
‖ξ1
~s‖

2
~L2

1

+
1

2
∆tg1‖ξ1

~s‖
2
~L2

1

≤ C1
s (h2k +∆t4).

Proof. Since these bounds are similar to those used in Theorems 5.6–5.8, we postpone some details

until the proof of those theorems. First, based on the regularity assumptions for u, for all x there

exists γ ∈ (0, 1) such that

u(0) = u(∆t)−∆tu′(∆t) +
1

2
∆t2u′′(∆tγ),

where u satisfies the error inequality

‖ξ1
u‖2L2

1
+∆tα̃a‖ξ1

u‖21,Th
≤ −

(
Πh u(∆t)− u(∆t)− (u0

h − u(0)), ξ1
u

)
1,Ωa

+∆tb
(
Lh p(∆t)− p(∆t), ξ1

u

)
+∆tah1

(
Πh u(∆t), ξ1

u

)
−∆t

(
ch1(u1

h;u1
h, ξ

1
u)− ch1(u(∆t),u(∆t), ξ1

u)
)

−∆td1

(
~θ1
h − ~θ(∆t), ξ1

u

)
− ∆t2

2

(
u′′(∆tγ), ξ1

u

)
,

which follows by choosing ξ1
u as test function in the first equation of Lemma 5.7 and system (5.24),

performing an Euler scheme step, subtracting both equations and adding ±ah1(Πh u(∆t), ξ1
u).
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Now by applying the error approximation results from Lemmas 5.4 to 5.6, Young’s inequality and

the stability properties from Section 5.4.2, we get

‖ξ1
u‖2L2

1
+

1

4
∆tα̃a‖ξ1

u‖21,Th
≤ Ch2k∆t

(
‖u(∆t)‖2

Hk+1
1

+ ‖u(0)‖2
Hk+1

1

+ ‖~θ(∆t)‖2
Hk+1

1

+ ‖p(∆t)‖2
Hk

1

)
+ C∆t4‖u′′‖2L∞(0,∆t;L2

1) + 48C2
F∆t‖ξ1

~θ
‖2~L2

1

.

(5.38)

Next we follow the same steps to obtain for ~θ

1

2
‖ξ1
~θ
‖2~L2

1

+
1

2
∆tα̂a‖ξ1

~θ
‖2~H1

1

≤ C∆th2k
(
‖u(∆t)‖2

Hk+1
1

+ ‖~θ(∆t)‖2~Hk+1
1

+ ‖~θ(0)‖2~Hk+1
1

)
+ C∆t4‖T ′′‖2L∞(0,∆t;L2

1) +
3C̃C∗∆t

2α̂a
‖ξu‖21,Th +

5∆t|f |2LipC
∗

α̂a
‖~θ(∆t)‖2‖ξ1

~s‖
2
~L2

1

,

(5.39)

and analogously for ~s

1

2
‖ξ~s‖2~L2

1

+
1

2
∆tg1‖ξ~s‖2~L2

1

≤ Ch2k∆t2
(
‖~s(∆t)‖2~Hk

1

+ ‖~s(0)‖2~Hk
1

+ ‖~θ(∆t)‖2~Hk+1
1

)
+ C∆t4‖~s′′‖2

L∞(0,∆t;~L2
1)

+
5|g|2Lip∆t

2g1

(
1 + ‖~s(∆t)‖2~H1

1

)
‖ξ~θ‖

2
~H1

1

.

(5.40)

In this way, from (5.38) and (5.40) we have that

3C̃C∗ε2∆t

2α̂a
‖ξu‖21,Th ≤ C(h2k +∆t4) +

144C̃C∗C2
F∆t

α̃aα̂
‖ξ1
~θ
‖2~L2

1

,

5∆t|f |2LipC
∗

α̂a
‖~θ(∆t)‖2‖ξ1

~s‖
2
~L2

1

≤ C(h2k +∆t4) +
25∆t|f |2LipC

∗|g|2Lip

α̂ag2
1

(
1 + ‖~s(∆t)‖2~H1

1

)
‖~θ(∆t)‖2‖ξ~θ‖

2
~L2

1

.

We substitute these inequalities into (5.39) and consider ∆t sufficiently small such that the terms

multiplying ‖ξ~θ‖
2
~L2

1

can be absorbed into the left-hand side of the inequality to get

1

4
‖ξ1
~θ
‖2~L2

1

+
1

2
∆tα̂a‖ξ~θ‖

2
~H1

1

≤ C1
θ (h2k +∆t4). (5.41)

Finally we deduce the first and third desired estimates by directly substituting (5.41) on (5.38) and

(5.40).

Theorem 5.6. Let (u, p, ~θ,~s) be the solution of (5.4), (5.5) under the assumptions of Section 5.3,

and (uh, ph, ~θh, ~sh) be the solution of (5.25). Suppose that

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V 1

1,�(Ωa)),

~θ ∈ L∞(0, T ; ~Hk+1
1,� (Ωa)), u′ ∈ L∞(0, T ;Hk

1 ), u(3) ∈ L2(0, T ;L2
1)
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and ‖u‖L∞(0,T ;H1
1 ) < M for a sufficiently small constant M > 0. Then there exist positive constants

C, γ1 ≥ 0 independent of h and ∆t such that for all m+ 1 ≤ N ,

‖ξm+1
u ‖2L2

1
+ ‖2ξm+1

u − ξmu ‖2L2
1

+

m∑
n=1

‖Λξnu‖2L2
1

+

m∑
n=1

∆tα̃a‖ξn+1
u ‖21,Th

≤ C(∆t4 + h2k) +
m∑
n=1

γ1∆t‖ξn+1
~θ
‖2~L2

1

.

Proof. We choose as test function vh = ξn+1
u in the first equation of (5.25) and insert the terms

± 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
,

± 1

2∆t

(
3Πh u(tn+1)− 4Πh u(tn) +Πh u(tn−1), ξn+1

u

)
, ±ah1

(
Πh u(tn+1), ξn+1

u

)
.

Hence we get

1

2∆t

(
3ξn+1
u − 4ξnu + ξn−1

u , ξn+1
u

)
1,Ωa

+
1

2∆t

(
3En+1

u − 4Enu + En−1
u , ξn+1

u

)
1,Ωa

+
1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
1,Ωa

+ ah1(ξn+1
u , ξn+1

u )

+ ah1(Πh u(tn+1), ξn+1
u ) + ch1(un+1

h ,un+1
h , ξn+1

u ) + b(ξn+1
u , pn+1

h )

= d1(~θn+1
h , ξn+1

u ).

(5.42)

Considering the first equation on Lemma 5.7 at t = tn+1 with v = ξn+1
u , and after inserting the term

± 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
1,Ωa

,

we readily deduce the identity

1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1), ξn+1

u

)
1,Ωa

+ ah1
(
u(tn), ξn+1

u

)
+ ch1

(
u(tn+1),u(tn+1), ξn+1

u

)
+ b(ξn+1

u , p(tn+1))

= d1(~θ(tn+1), ξn+1
u )

−
(
u′(tn+1)− 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1)

)
, ξn+1
u

)
1,Ωa

.

(5.43)

We can then subtract (5.43) from (5.42) and multiply both sides by 4∆t to obtain an identity I1 +

I2 + · · ·+ I8 = 0, where

I1 := 2
(
3ξn+1
u − 4ξnu + ξn−1

u , ξn+1
u

)
, I2 := 4∆tah1(ξn+1

u , ξn+1
u )1,Ωa ,

I3 := 4∆t

(
u′(tn+1)− 1

2∆t

(
3u(tn+1)− 4u(tn) + u(tn−1)

)
, ξn+1
u

)
1,Ωa

,

I4 := 2
(
3En+1

u − 4Enu + En−1
u , ξn+1

u

)
, I5 := −4∆td1(~θn+1

h − ~θ(tn+1), ξn+1
u )1,Ωa ,

I6 := 4∆tah1
(
En+1
u , ξn+1

u

)
,

I7 := 4∆t
(
ch1(un+1

h ,un+1
h , ξn+1

u )− ch1
(
u(tn+1),u(tn+1), ξn+1

u

))
,

I8 := 4∆tb(ξn+1
u , pn+1

h − p(tn+1)).
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For the first term, using (5.32) we can assert that

I1 = ‖ξn+1
u ‖2L2

1
+ ‖2ξn+1

u − ξnu‖2L2
1

+ ‖Λξn+1
u ‖2L2

1
− ‖ξnu‖2L2

1
− ‖2ξnu − ξn−1

u ‖2L2
1
.

Using the ellipticity stated in (5.28), we readily get

I2 ≥ 4∆tα̃a‖ξn+1
u ‖21,Th .

By using Taylor’s formula with integral remainder we have∣∣∣∣u′(tn+1)− 3u(tn+1)− 4u(tn) + u(tn−1)

2∆t

∣∣∣∣ =
∆t3/2

2
√

3
‖u(3)‖L2(tn−1,tn+1;L2

1),

then by combining Cauchy-Schwarz and Young’s inequality, we obtain the bound

|I3| ≤
∆t4

24ε1
‖u(3)‖2L2(tn−1,tn+1;L2

1) +
∆tε1

2
‖ξn+1
u ‖21,Th .

Now we insert ±4∆tE′u(tn+1) into the fourth term, which leads to

I4 = −4∆t(E′u(tn+1), ξn+1
u )1,Ωa

+

(
E′u(tn+1)− 3En+1

u − 4Enu + En−1
u

2∆t
, ξn+1
u

)
1,Ωa

.

Proceeding as before and using Lemma 5.5 on the first term of I4, we get

|I4| ≤
C

2ε2
h2k‖u′‖2

L∞(0,T ;Hk
1 )

+
∆tε2

2
‖ξn+1
u ‖21,Th

+
∆t4C

2ε3
‖u(3)‖2L2(0,T ;L2

1) +
∆tε3

2
‖ξn+1
u ‖21,Th .

Now by (5.27a), appealing to Lemma 5.6, and inserting ±4∆td1(Ih ~θn+1, ξn+1
u ), we are left with

|I5| ≤ 4∆tCF ‖ξn+1
~θ

+ En+1
~θ
‖~L2

1
‖ξn+1
u ‖1,Th

≤
16C2

F∆t

2ε4

(
Ch2k‖~θ‖2

L∞(0,T ; ~Hk+1
1 )

+ ‖ξn+1
~θ
‖2~L2

1

)
+
∆tε4

2
‖ξn+1
u ‖21,Th .

And again by Lemmas 5.5 and 5.3 we immediately have

|I6| ≤ 4∆tC̃a‖En+1
u ‖1,Th‖ξ

n+1
u ‖1,Th ≤

2C̃2
a∆th

2k

ε5
‖u‖2

L∞(0,T ;Hk+1
1 )

+
∆tε5

2
‖ξn+1
u ‖21,Th .

Adding and subtracting suitable terms within I7 yields

I7 = Ĩ7 − 4δtch1
(
un+1
h , ξn+1

u , ξn+1
u

)
,

where we define

Ĩ7 := −4∆t
(
ch1(u(tn+1), Πh u(tn+1), ξn+1

u )− ch1(Πh u(tn+1), Πh u(tn+1), ξn+1
u )

+ ch1(Πh u(tn+1), Πh u(tn+1), ξn+1
u )− ch1(Πh u(tn+1),u(tn+1), ξn+1

u

+ ch1(Πh u(tn+1),u(tn+1), ξn+1
u )− ch1(u(tn+1)u(tn+1), ξn+1

u )
)
.
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The bound (5.31) and Lemma 5.5 imply that

|Ĩ7| ≤ 4∆tC̃c
(
‖ξn+1
u ‖21,Th‖Πh u(tn+1)‖1,Th + ‖Πh u(tn+1)‖1,Th‖E

n+1
u ‖1,Th‖ξ

n+1
u ‖1,Th

+ ‖En+1
u ‖1,Th‖u(tn+1)‖1,Th‖ξ

n+1
u ‖1,Th

)
≤ 4∆t

(
C̃cC

∗‖ξn+1
u ‖21,Th‖u‖

2
L∞(0,T ;H1

1 )

+
h2kCC̃2

c

2ε6
‖u‖2L∞(0,T ;H1

1 )‖u‖
2
L∞(0,T ;Hk+1

1 )
+
ε6

2
‖ξn+1
u ‖21,Th

+
Ch2kC̃2

c

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )
‖u‖2L∞(0,T ;H1

1 ) +
ε7

2
‖ξn+1
u ‖21,Th

)
≤ 4∆t

(
C∗C̃cM‖ξn+1

u ‖21,Th +
h2kC

2ε6
‖u‖2L∞(0,T ;H1

1 )‖u‖
2
L∞(0,T ;Hk+1

1 )

+
ε6

2
‖ξn+1
u ‖21,Th +

Ch2k

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )
‖u‖2L∞(0,T ;H1

1 )

+
ε7

2
‖ξn+1
u ‖21,Th

)
,

where C∗ is a positive constant coming from Lemma 5.5. Finally, using Lemmas 5.3 and 5.4 we obtain

|I8| ≤
8∆tCC̃2

b h
2k

ε8
‖p‖2L∞(0,T ;Hk(Ωa)) +

∆tε8

2
‖ξn+1
u ‖21,Th .

Hence, by choosing εi = α̃a/3 for i = {1, 2, 3, 4, 5, 8}, ε6 = ε7 = 7α̃a/16, collecting the above estimates,

and summing over 1 ≤ n ≤ m for all m+ 1 ≤ N ; we get

‖ξm+1
u ‖2L2

1
+ ‖2ξm+1

u − ξmu ‖2L2
1

+
m∑
n=1

‖Λξnu‖2L2
1
− 3‖ξ1

u‖2L2
1

+

m∑
n=1

∆tα̃a‖ξn+1
u ‖21,Th ≤ C(∆t4 + h2k) +

24C2
F∆t

α̃a

m∑
n=1

‖ξn+1
~θ
‖2~L2

1

.

where 4C̃cC
∗M ≤ α̃a/4 and γ1 = 24C2

F /α̃a. Finally, using Theorem 5.5, we get the desired result.

Theorem 5.7. Let (u, p, ~θ,~s) be the solution of (5.4), (5.5) under the assumptions of Section 5.3 and

(uh, ph, ~θh, ~sh) be the solution of (5.25). If

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V 1

1,�(Ωa)), ~θ ∈ L∞(0, T ; ~Hk+1
1,� (Ωa)),

~θ ′ ∈ L∞(0, T ; ~Hk
1 ), ~θ (3) ∈ L2(0, T ; ~L2

1), ~s ∈ L∞(0, T ; ~Hk
1 ),

then there exist constants C, γs, γu > 0, independent of h and ∆t, such that for all m+ 1 ≤ N

‖ξm+1
~θ
‖2~L2

1

+ ‖2ξm+1
~θ
− ξm~θ ‖

2
~L2

1

+

m∑
n=1

‖Λξn+1
~θ
‖2~L2

1

+

m∑
n=1

∆tα̂a‖ξn+1
~θ
‖2~H1

1

≤ C(∆t4 + h2k) +
m∑
n=1

γs∆t‖ξn+1
~s ‖2~L2

1

+
m∑
n=1

γu∆t‖ξn+1
u ‖21,Th .
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Proof. Proceeding similarly as in the proof of Theorem 5.6, we choose as test function ~ψh = ξn+1
~θ

in

the second equation of (5.25) and insert suitable additional terms to obtain the following identity,

which is analogous to (5.42):

1

2∆t

(
3ξn+1
~θ
− 4ξn~θ + ξn−1

~θ
, ξn+1
~θ

)
1,Ωa

+
1

2∆t

(
3En+1

~θ
− 4En~θ + En−1

~θ
, ξn+1
~θ

)
1,Ωa

+
1

2∆t

(
3~θ(tn+1)− 4~θ(tn) + ~θ(tn−1), ξn+1

~θ

)
1,Ωa

+ ah2(ξn+1
~θ

, ξn+1
~θ

) + ah2(Ih ~θ(tn+1), ξn+1
~θ

) + ch2(un+1
h , ~θ n+1

h , ξn+1
~θ

)

= −d2(~sn+1
h ; ~θ n+1

h , ξn+1
~θ

). (5.44)

Starting from the second equation in Lemma 5.7, focusing on t = tn+1, using ~ψ = ξn+1
~θ

and proceeding

as in the derivation of (5.43), we obtain

1

2∆t

(
3~θ(tn+1)− 4~θ(tn) + ~θ(tn−1), ξn+1

~θ

)
1,Ωa

+ ah2
(
~θ(tn+1), ξn+1

~θ

)
+ ch2

(
u(tn+1), ~θ(tn+1), ξn+1

~θ

)
= d2

(
~s(tn+1); ~θ(tn+1), ξn+1

~θ

)
−
(
~θ′(tn+1)− 3~θ(tn+1)− 4~θ(tn) + ~θ(tn−1)

2∆t
, ξn+1
~θ

)
1,Ωa

.

(5.45)

Next we proceed to subtract (5.45) from (5.44), and to multiply both sides by 4∆t. This leads to an

identity Î1 + Î2 + · · ·+ Î7 = 0, where

Î1 := 2
(
3ξn+1
~θ
− 4ξn~θ + ξn−1

~θ
, ξn+1
~θ

)
1,Ωa

, Î2 := 4∆tah2
(
ξn+1
~θ

, ξn+1
~θ

)
,

Î3 := 4∆t

(
~θ′(tn+1)− 3~θ(tn+1)− 4~θ(tn) + ~θ(tn−1)

2∆t
, ξn+1
~θ

)
1,Ωa

,

Î4 := 2
(
3En+1

~θ
− 4En~θ + En−1

~θ
, ξn+1
~θ

)
1,Ωa

, Î5 := 4∆tah2
(
En+1
~θ

, ξn+1
~θ

)
,

Î6 := 4∆t
(
ch2
(
un+1
h , ~θ n+1

h , ξn+1
u

)
− ch1

(
u(tn+1), ~θ(tn+1), ξn+1

u

))
,

Î7 := 4∆t
(
d2

(
~sn+1
h , ~θ n+1

h , ξn+1
~θ

)
− d2

(
~s(tn+1); ~θ(tn+1), ξn+1

~θ

))
.

For the first, second, and third terms, we use (5.32), (5.17), and Taylor expansion together with

Young’s inequality, respectively, to obtain

Î1 = ‖ξn+1
~θ
‖2~L2

1

+ ‖2ξn+1
~θ
− ξn~θ ‖

2
~L2

1

+ ‖Λξn+1
~θ
‖2~L2

1

− ‖ξn~θ ‖
2
~L2

1

− ‖2ξn~θ − ξ
n−1
~θ
‖2~L2

1

,

Î2 ≥ 4∆tα̂a‖ξn+1
~θ
‖2~H1

1

,

|Î3| ≤
∆t4

24ε1
‖~θ (3)‖2

L2(tn−1,tn+1;~L2
1)

+
∆tε1

2
‖ξn+1
~θ
‖2~H1

1

.

Inserting ±4∆tE′~θ
(tn+1) into Î4 and using Lemma 5.6 leads to the bound

|Î4| ≤
C

2ε2
h2k‖~θ ′‖2

L∞(0,T ; ~Hk
1 )

+
∆tε2

2
‖ξn+1
~θ
‖2~H1

1

+
∆t4C

2ε3
‖~θ (3)‖2

L2(0,T ;~L2
1)

+
∆tε3

2
‖ξn+1
~θ
‖2~H1

1

.
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Employing again Lemma 5.6 in combination with (5.14b) we have

|Î5| ≤
2Ĉ2

a∆th
2k

ε4
‖~θ‖2

L∞(0,T ;Hk+1
1 )

+
∆tε4

2
‖ξn+1
~θ
‖2~H1

1

.

In order to derive a bound for Î6 we proceed as for the bound on I7 in the proof of Theorem 5.6;

namely adding and subtracting suitable terms in the definition of Î6, defining Ĩ6 in this case by

Î6 = Ĩ6 + 4δtc
h
2

(
un+1
h , ξn+1

~θ
, ξn+1
~θ

)
,

and applying (5.30), (5.27b) and Lemma 5.6 to the result, we get

|Ĩ6| ≤4∆t

(
C̃2C∗

2ε5
‖ξn+1
u ‖21,Th‖~θ‖

2
L∞(0,T ; ~H1

1 )
+

1

2ε5
‖ξ~θ‖

2
~H1

1

+
h2kCC̃2

2ε6
‖u‖2L∞(0,T ;H1

1 )‖~θ‖
2
L∞(0,T ; ~Hk+1

1 )
+
ε6

2
‖ξn+1
~θ
‖2~H1

1

+
Ch2kC̃2

2ε7
‖u‖2

L∞(0,T ;Hk+1
1 )
‖~θ‖2

L∞(0,T ; ~H1
1 )

+
ε7

2
‖ξn+1
~θ
‖2~H1

1

)
.

Next we add and subtract suitable terms in Î7 to obtain

Î7 = −4∆t
(
d2

(
~sn+1
h , Ih ~θ(tn+1), ξn+1

~θ

)
− d2

(
Lh ~s(tn+1), Ih ~θ(tn+1), ξn+1

~θ

)
+ d2

(
Lh ~s(tn+1), Ih ~θ(tn+1), ξn+1

~θ

)
− d2

(
Lh ~s(tn+1), ~θ(tn+1), ξn+1

~θ

)
+ d2

(
Lh ~s(tn+1), ~θ(tn+1), ξn+1

~θ

)
− d2

(
~s(tn+1), ~θ(tn+1), ξn+1

~θ

)
+ d2

(
~sn+1
h , ξn+1

~θ
, ξn+1
~θ

))
.

After passing the last expression to the left-hand side and using (5.7), we can combine (5.8) and (5.9),

to infer that the remaining terms in Î7 (which we now denote as Î∗7 ) are bounded as follows:

|Î∗7 | ≤
8|f |2Lip∆t

ε8
‖ξn+1
~s ‖2~L2

1

‖~θ‖2
L∞(0,T ; ~H1

1 )
+
ε8∆t

2
‖ξ~θ‖

2
~H1

1

+
8f2

2∆th
2k

ε9
‖~θ‖2

L∞(0,T ; ~Hk+1
1 )

+
∆tε9

2
‖ξ~θ‖

2
~H1

1

+
8|f |2Lip∆th

2k

ε10
‖~s‖2

L∞(0,T ; ~Hk
1 )
‖~θ‖2

L∞(0,T ; ~H1
1 )

+
∆tε10

2
‖ξ~θ‖

2
~H1

1

.

In this manner, and after choosing εi = 3α̂a/7 for i ∈ {1, 2, 3, 4, 8, 9, 10} and ε5 = ε6 = ε7 = α̂a/4, we

can collect the above estimates and sum over 1 ≤ n ≤ m, for all m+ 1 ≤ N , to get

‖ξm+1
~θ
‖2~L2

1

+ ‖2ξm+1
~θ
− ξm~θ ‖

2
~L2

1

+

m∑
n=1

‖Λξn~θ ‖
2
~L2

1

+

m∑
n=1

∆tα̂a‖ξn+1
~θ
‖2~H1

1

− 3‖ξ1
~θ
‖2~L2

1

≤ C(∆t4 + h2k) +
56|f |2Lip∆t

3̂αa
‖~θ‖2

L∞(0,T ; ~H1
1 )

m∑
n=1

‖ξn+1
~s ‖2~L2

1

+
8∆tC̃2C∗

α̂a
‖~θ‖2

L∞(0,T ; ~H1
1 )

m∑
n=1

‖ξn+1
u ‖21,Th .
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Identifying the constants

γs =
56|f |2Lip

3̂αa
‖~θ‖2

L∞(0,T ; ~H1
1 )
, γu =

8C̃2C∗

α̂a
‖~θ‖2

L∞(0,T ; ~H1
1 )

we may conclude the proof.

Theorem 5.8. Let (u, p, ~θ,~s) be the solution of (5.4), (5.5) under the assumptions of Section 5.3,

and (uh, ph, ~θh, ~sh) be the solution of (5.25). If

u ∈ L∞(0, T ;Hk+1
1 ) ∩ L∞(0, T ;V 1

1,�),
~θ ∈ L∞(0, T ; ~Hk+1

1,� ),

~s ∈ L∞(0, T ; ~Hk
1 ), ~s ′ ∈ L∞(0, T ; ~Hk

1 ), ~s (3) ∈ L2(0, T ; ~L2
1),

then there exist constants C, γ2 > 0 that are independent of h and ∆t such that for all m+ 1 ≤ N

‖ξm+1
~s ‖2~L2

1

+ ‖2ξm+1
~s − ξm~s ‖

2
~L2

1

+
m∑
n=1

‖Λξn~s ‖
2
~L2

1

+

m∑
n=1

∆tg1‖ξn+1
~s ‖2~L2

1

≤ C(∆t4 + h2k) + γ2

m∑
n=1

∆t‖ξn+1
~θ
‖2~L2

1

.

Proof. We choose as test function ~lh = ξn+1
~s in the third equation of (5.25) and add and substract

suitable terms. Analogously to (5.43) and (5.44), we obtain

1

2∆t

(
3ξn+1
~s − 4ξn~s + ξn−1

~s , ξn+1
~s

)
1,Ωa

+
1

2∆t

(
3En+1

~s − 4En~s + En−1
~s + 3~s(tn+1)− 4~s(tn) + ~s(tn−1), ξn+1

~s

)
1,Ωa

+ d3

(
~θ n+1
h , ξn+1

~s , ξn+1
~s

)
+ d3

(
~θ n+1
h ;Lh ~s(tn+1), ξn+1

~s

)
− d4

(
~θ n+1
h , ξn+1

~s

)
= 0.

(5.46)

Now we consider (5.6d) at time t = tn+1, using also ~l = ξn+1
~s as test function. Adding and subtracting

a suitable term, we deduce the relation

1

2∆t

(
3~s(tn+1)− 4~s(tn) + ~s(tn−1), ξn+1

~s

)
1,Ωa

+ d3

(
~θ(tn+1);~s(tn+1), ξn+1

~s

)
= d4

(
~θ(tn+1), ξn+1

~s

)
−
(
~s ′(tn+1)− 1

2∆t

(
3~s(tn+1)− 4~s(tn) + ~s(tn−1)

)
, ξn+1
~s

)
1,Ωa

.

(5.47)

As in the two previous proofs, we subtract (5.47) from (5.46) and multiply both sides by 4∆t to obtain

Ī1 + Ī2 + · · ·+ Ī6 = 0, where

Ī1 := 2
(
3ξn+1
~s − 4ξn~s + ξn−1

~s , ξn+1
~s

)
1,Ωa

, Ī2 := d3(~θ n+1
h , ξn+1

~s , ξn+1
~s ),

Ī3 := 4∆t

(
~s ′(tn+1)− 1

2∆t

(
3~s(tn+1)− 4~s(tn) + ~s(tn−1)

)
, ξn+1
~s

)
1,Ωa

,

Ī4 := 2
(
3En+1

~s − 4En~s + En−1
~s , ξn+1

~s

)
1,Ωa

,

Ī5 := −4∆t
(
d3(~θ n+1

h ;Lh ~s(tn+1), ξn+1
~s )− d3(~θ(tn+1);~s(tn+1), ξn+1

~s )
)
,

Ī6 := −4∆td4

(
~θ n+1
h − ~θ(tn+1), ξn+1

~s

)
.
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For the first, second, and third terms, we proceed to use (5.32), the ellipticity (5.10), and Taylor

expansion to get

Ī1 = ‖ξn+1
~s ‖2~L2

1

+ ‖2ξn+1
~s − ξn~s ‖

2
~L2

1

+ ‖Λξn+1
~s ‖2~L2

1

− ‖ξn~s ‖
2
~L2

1

− ‖2ξn~s − ξ
n−1
~s ‖2~L2

1

,

Ī2 ≥ 4∆tg1‖ξn+1
~s ‖2~L2

1

,

|Ī3| ≤
∆t4

24ε1
‖~s(3)‖2

L2(tn−1,tn+1;~L2
1)

+
∆tε1

2
‖ξn+1
~s ‖2~H1

1

.

For the fourth term we include ±4∆tE′~s(tn+1) and use Taylor’s formula and Lemma 5.6, which leads

to

|Ī4| ≤
C

2ε2
h2k‖~s ′‖2

L∞(0,T ; ~Hk
1 )

+
∆tε2

2
‖ξn+1
~s ‖2~L2

1

+
∆t4C

2ε3
‖~s (3)‖2

L2(0,T ;~L2
1)

+
∆tε3

2
‖ξn+1
~s ‖2~L2

1

.

To handle Ī5, we add and subtract the terms

d3

(
~θ(tn+1);~s(tn+1), ξn+1

~s

)
and d3

(
Ih ~θ(tn+1)M ;~s(tn+1), ξn+1

~s

)
.

Then, owing to (5.11), (5.13), Lemma 5.4, and Young’s inequality, we end up with

|Ī5| ≤
Cg2

2∆th
2k

ε4
‖~s‖2

L∞(0,T ; ~Hk
1 )

+
ε4∆t

2
‖ξ~s‖2~L2

1

+
8|g|2Lip∆t

ε5
‖ξn+1
~θ
‖2~H1

1

‖~s‖2
L∞(0,T ; ~H1

1 )

+
ε5∆t

2
‖ξ~s‖2~L2

1

+
C|g|2Liph

2k∆t

ε6
‖~θ‖2

L∞(0,T ; ~Hk+1
1 )
‖~s‖2

L∞(0,T ; ~H1
1 )

ε6∆t

2
‖ξ~s‖2~L2

1

.

Finally we insert ±4∆td4(Ih ~θ(tn+1), ξn+1
~s ) in Ī6 and use Lemma 5.6 in order to deduce the bound

|Ī6| =
∣∣∣4∆t(d4

(
~θn+1
h − Ih ~θ(tn+1), ξn+1

~s

)
+ d4

(
Ih ~θ(tn+1)− ~θ(tn+1), ξn+1

~s

))∣∣∣
≤

8|g|2Lip∆t

ε7
‖ξn+1
~θ
‖2~L2

1

+
C|g|2Liph

2k

ε8
‖~θ‖2

L∞(0,T ; ~Hk+1
1 )

+
ε7 + ε8

2
∆t‖ξ~s‖2~L2

1

.

It then suffices to take εi = 3g1/4 for all i ∈ {1, . . . , 10} and to sum over 1 ≤ n ≤ m, for all m+ 1 ≤ N
in the above estimates, which, in combination with Theorem 5.6 implies that

‖ξm+1
~s ‖2~L2

1

+ ‖2ξm+1
~s − ξm~s ‖

2
~L2

1

+

m∑
n=1

‖Λξn~s ‖
2
~L2

1

+

m∑
n=1

∆tg1‖ξn+1
~s ‖2~L2

1

≤ C(∆t4 + h2k) +
32|g|2Lip

3g1

(
1 + ‖~s‖2

L∞(0,T ; ~H1
1 )

)
∆t

m∑
n=1

‖ξn+1
~θ
‖2~L2

1

,

and the result follows by choosing

γ2 =
32|g|2Lip

3g1

(
1 + ‖~s‖2

L∞(0,T ; ~H1
1 )

)
.
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Theorem 5.9. Under the same assumptions of Theorems 5.6 - 5.8, there exist positive constants γ̂u,

γ̂θ and γ̂s independent of ∆t and h, such that for a sufficiently small ∆t and all m + 1 ≤ N , the

following inequalities hold:(
‖ξm+1
u ‖2L2

1
+ ‖2ξm+1

u − ξmu ‖2L2
1

+
m∑
n=1

(
‖Λξnu‖2L2

1
+∆tα̃a‖ξn+1

u ‖21,Th
))1/2

≤ γ̂u(∆t2 + hk),(
‖ξm+1
~θ
‖2~L2

1

+ ‖2ξm+1
~θ
− ξm~θ ‖

2
~L2

1

+
m∑
n=1

(
‖Λξn~θ ‖

2
~L2

1

+∆tα̂a‖ξn+1
~θ
‖2~H1

1

))1/2

≤ γ̂θ(∆t2 + hk),(
‖ξm+1
~s ‖2~L2

1

+ ‖2ξm+1
~s − ξm~s ‖

2
~L2

1

+

m∑
n=1

(
‖Λξn~s ‖

2
~L2

1

+∆tg1‖ξn+1
~s ‖2~L2

1

))1/2

≤ γ̂s(∆t2 + hk).

Proof. From Theorem 5.6 and 5.8 we have the estimates

m∑
n=1

γu∆t‖ξn+1
u ‖21,Th ≤ C(∆t4 + h2k) +

γ1γu
α̃a

m∑
n=1

∆t‖ξn+1
~θ
‖2~L2

1

,

m∑
n=1

γs∆t‖ξn+1
~s ‖2~L2

1

≤ C(∆t4 + h2k) +
γsγ2

g1

m∑
n=1

∆t‖ξn+1
~θ
‖2~L2

1

,

which, after substituting them back into Theorem5.7, yield

‖ξm+1
~θ
‖2~L2

1

+ ‖2ξm+1
~θ
− ξm~θ ‖

2
~L2

1

+
m∑
n=1

‖Λξn~θ ‖
2
~L2

1

+
m∑
n=1

∆tα̂a‖ξn+1
~θ
‖2~H1

1

≤ C(∆t4 + h2k) +
γ1γug1 + γsγ2α̃a

α̃ag1

m∑
n=1

∆t‖ξn+1
~θ
‖2~L2

1

.

For the last term on the right-hand side of this last bound we have

‖ξm+1
~θ
‖2~L2

1

≤ 2(‖Λξm~θ ‖
2
~L2

1

+ ‖2ξm~θ − ξ
m−1
~θ
‖2~L2

1

),

and considering ∆t sufficiently small and applying Gronwall’s lemma, we readily infer the estimate

‖ξm+1
~θ
‖2~L2

1

+ ‖2ξm+1
~θ
− ξm~θ ‖

2
~L2

1

+
m∑
n=1

(
‖Λξn+1

~θ
‖2~L2

1

+∆tα̂a‖ξn+1
~θ
‖2~H1

1

)
≤ C(∆t4 + h2k).

(5.48)

The first and third bounds follow by combining (5.48) and Theorems 5.6 and 5.8.

Lemma 5.8. Under the same assumptions of Theorem 5.9, we have(
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖2L2

1

)1/2

≤ γ̂p(∆t2 + hk).
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Proof. Owing to the inf-sup condition (5.23), there exists wh ∈ Z⊥h such that

b(wh, p(tn+1)− pn+1
h ) = ‖p(tn+1)− pn+1

h ‖2L2
1
, (5.49)

‖wh‖1,Th ≤
1

β̃
‖p(tn+1)− pn+1

h ‖L2
1
. (5.50)

From (5.25) and Lemma 5.7, proceeding as in the proof of Theorem 5.6, we obtain

∆tb(wh, p(tn+1)− pn+1
h )

= −∆t

(
u′(tn+1)−

3un+1
h − 4unh + un−1

h

2∆t
,wh

)
1,Ωa

+∆tah1(un+1
h − u(tn+1),wh)

+∆t
(
ch1(un+1

h ;un+1
h ,wh)− ch1(u(tn+1);u(tn+1),wh)

)
+∆td1(~θ(tn+1)− ~θ n+1

h ,wh)

≤ ∆t2

2
√

3
‖u(3)‖L2(tn−1,tn+1,L2

1)

√
∆t‖wh‖1,Th + C̃aC

∗hk∆t‖u‖L∞(0,T ;Hk+1
1 )‖wh‖1,Th

+ C̃a∆t‖ξn+1
u ‖1,Th‖wh‖1,Th + C∗C̃c∆t‖u‖L∞(0,T ;H1

1 )‖ξu‖1,Th‖wh‖1,Th
+ 2∆tCC̃ch

k‖u‖L∞(0,T ;H1
1 )‖u‖L∞(0,T ;Hk+1

1 )‖wh‖1,Th
+ CF∆th

kC∗‖~θ‖L∞(0,T ; ~Hk+1
1 )‖wh‖1,Th + CF∆t‖ξ~θ‖~L2

1
‖wh‖1,Th .

Summing over 1 ≤ n ≤ m for all m + 1 ≤ N and substituting back into equations (5.49) and (5.50),

we obtain (
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖2L2

1

)1/2

≤ C

β̃

(
∆t2 + hk +

(
m∑
n=1

∆t‖ξn+1
~θ
‖2~L2

1

)1/2

+

(
m∑
n=1

∆t‖ξn+1
u ‖21,Th

)1/2)
,

and the desired result readily follows from Theorem 5.9.

5.6 Numerical tests

5.6.1 Example 5.1: accuracy tests

In our first computational test we examine the convergence of the Galerkin method (5.24), taking

as computational domain the square Ω = (0, 1)2. We take the parameter values ν = 0.1, k+(x) = 1,

g = (0,−1)T , K−1 = I, D = 10−3I, Ds = 1, ρf = φ = 1, ρb = 0.1, a0 = 500 × 10k, where k is the

polynomial degree. Following the approach of manufactured solutions, we prescribe boundary data

and additional external forces and adequate source terms so that the closed-form solutions to (5.1),

(5.3) are given by the smooth functions
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k DoF eu rate ep rate e~θ rate es rate

1 75 0.05435 – 0.57400 – 0.26530 – 0.11760 –

259 0.02894 0.909 0.12480 2.201 0.13940 0.928 0.05934 0.986

963 0.01466 0.981 0.05242 1.252 0.07039 0.986 0.02978 0.995

3715 0.00736 0.995 0.02545 1.042 0.03537 0.993 0.01490 0.999

14595 0.00368 0.998 0.01202 1.083 0.01792 0.981 0.00746 0.999

2 195 0.00537 – 0.77890 – 0.00071 – 0.05373 –

715 0.00149 1.848 0.11910 2.710 0.00018 1.947 0.01480 1.860

2739 0.00038 1.953 0.01749 2.767 4.619e-5 2.001 0.00378 1.970

10723 9.074e-5 2.084 0.00249 2.813 1.154e-5 2.001 0.00095 1.992

42435 2.328e-5 1.963 0.00052 2.256 2.909e-6 1.988 0.00024 1.998

Table 5.1: Example 5.1 (Spatial accuracy test): experimental errors and convergence rates for the

approximate solutions uh, ph, ~θh and sh. Values are displayed for schemes with first- and second-

order in space (table produced by the author).

u(r, z, t) =

(
0

− cos(rπ/2) exp(−t)

)
, ~θ(r, z, t) =

(
z2r2(3− 2r)(1− exp(−t))
z2r2(3− 2r)(1− exp(−t))

)
,

p(r, z, t) = (r3 − 2z4) sin(t), ~s(r, z, t) =

(
1− exp(−z2r2(3− 2r)(t+ exp(t)))

1− exp(−z2r2(3− 2r)(t+ exp(t)))

)
.

As u is prescribed everywhere on ∂Ωa, for sake of uniqueness we impose p ∈ L2
0,1(Ωa) through a

Lagrange multiplier approach. Also note that the exact solutions satisfy the boundary conditions

(5.5a), (5.5b), (5.5c) on the inlet, wall, and symmetry axis, respectively, whereas instead of (5.5d) we

set

u = uout, D∇~θ · n = ~0,

on the outlet Γ out
a × (0, T ]. The accuracy of the spatial semi-discretisation is tested by considering

a sequence of uniformly refined meshes {Th,l}l of mesh size hl = 2−l
√

2, and fixing T = 0.005 with

∆t = 0.001. Relative errors in their natural norms, along with the corresponding convergence rates

are computed as

eu =
‖u− uh‖1,Th
‖u‖1,Th

, ep =
‖p− ph‖L2

1(Ωa)

‖p‖L2
1(Ωa)

, e~θ =
‖~θ − ~θh‖ ~H1

1 (Ωa)

‖~θ‖ ~H1
1 (Ωa)

,

e~s =
‖~s− ~sh‖ ~H1

1 (Ωa)

‖~s‖ ~H1
1 (Ωa)

, rate = log(e(·)/ẽ(·))[log(h/h̃)]−1,

where e, ẽ denote errors generated on two consecutive meshes of sizes h and h̃, respectively. These

quantities are listed in Table 5.1 for k = 0 and k = 1, and they indicate optimal error decay in the

light of Theorem 5.9.
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∆t êu rate êp rate ê~θ rate ês rate

2.5 0.5496 – 0.5663 – 17.691 – 0.6738 –

1.25 0.1408 1.964 0.1177 2.266 3.2720 2.435 0.1673 2.009

0.625 0.0289 2.284 0.0258 2.188 0.6621 2.305 0.0409 2.032

0.3125 0.0066 2.119 0.0061 2.091 0.1519 2.124 0.0105 1.965

0.1562 0.0016 2.047 0.0015 1.976 0.0366 2.054 0.0027 1.934

Table 5.2: Example 5.1 (time accuracy test): experimental errors and convergence rates for the

approximate solutions uh, ph, ~θh and sh, computed for each refinement level (table produced by the

author).

Regarding the convergence of the time advancing scheme, now we set T = 5 and consider a sequence

of uniform refined time partitions τl, l ∈ {1, 2, 3, 4, 5} where the time step is 5/2l. Absolute errors are

computed as

êu =

(
m∑
n=1

∆t‖u(tn+1)− un+1
h ‖21,Th

)1/2

, êp =

(
m∑
n=1

∆t‖p(tn+1)− pn+1
h ‖2L2

1

)1/2

,

ê~θ =

(
m∑
n=1

∆t‖~θ(tn+1)− ~θ n+1
h ‖2~H1

1

)1/2

, ê~s =

(
m∑
n=1

∆t‖~s(tn+1)− ~sn+1
h ‖2~L2

1

)1/2

,

and we readily observe from Table 5.2 that the method converges to the exact solution with the

expected second-order rate.

5.6.2 Example 5.2: validation against experimental data

Now we define a different adimensionalisation of (5.1a)-(5.3d) that follows the recent model (tai-

lored specifically for soil-based water filters for arsenic removal) proposed in [134]. This problem

considers only one type of contaminant and only one type of adsorption. Defining as L, vi, θ0, smax the

representative length of the column, the linear inflow rate, initial solids concentration, and maximum

adsorption, respectively; we define dimensionless variables as

r̄ =
r

L
, z̄ =

z

L
, ū =

u

vi
, θ̄ =

θ

θ0
, p̄ =

L(p− patm)

µvi
, s̄ =

s

smax
, t̄ = k+θ0t,

and we also define the constants

Re =
ρfviL

ν
, Pe =

viL

D
, Da =

κ

L2
, α =

ρbsmax

θ0
, β =

k+L2θ0

D
. (5.51)
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Figure 5.2: Example 5.2 (validation against experimental data): contaminant concentration after one

day (left). Value of θ|avg(t) (experimental observation from [134] and numerical simulation) using raw

laterite as the adsorbent (right) (figure produced by the author).

Making abuse of notation, the problem defined in Ωa × (0, T ] adopts the form

βRe

Pe
∂tu+ Reu · ∇u+

1

Da
u− 1

φ
diva(ε(u)) +∇p+

1

φ
(ur/r

2)e1 = 0,

diva u = 0,

φβ

Pe
∂tθ −

1

Pe
diva(∇θ) + u · ∇θ = −αβ

Pe
∂ts,

∂ts = θ(1− s).

The setup consists of a lab-scale filter (a column of height 1 and radius R̄ = 0.11, already in dimension-

less units) where one varies the feed flow rate, the arsenic concentration at the feed, and also the bed

height. Gravitational effects are not considered, and the boundary and initial conditions are precisely

as in (5.5a)-(5.5e). The configuration of the system implies that the non-dimensional constants from

(5.51) assume the values

Re = 68.1, Pe = 1.11× 105, Da = 8000, α = 248, β = 136,

and the remaining parameter values are φ = 0.48, uin(r, z) = (0, 1
R̄2 (r − R̄)(r + R̄))t, θin = 1. We

employ a structured mesh of 8000 triangular elements and define a constant time step of ∆t = 0.15

(adimensional time t = 0.15 ≈ 1 day).

During the filtration process the soil-based bed reaches a point in time where it is no longer adequate

for adsorption. This phenomenon can be observed in Figure 5.2 where we plot the evolution of the

average concentration of the contaminant θ on the outlet, that is

θavg(t) =
2

R̄2

∫
Γ out

a

θ r ds.
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We also compared the predictions of the model with experimental data, collected for a filter that

uses raw laterite as an adsorbent medium, and to which an arsenic solution is injected in its upper

part [134]. The qualitative results displayed on figure 5.2 seem to show an acceptable adjustment

to the experimental data. This suggest that the model and the axisymmetric divergence-conforming

scheme can be used effectively as a tool to study the behaviour of the filtration process under similar

flow regimes.

5.6.3 Example 5.3: Two contaminants in two-layer filter

We model a filter with two contaminants and two layers. The domain has a R/L ratio of 0.22. While

the inlet is the top wall, the outlet is the region {(z, r)|z = 0 and 0 ≤ r ≤ 0.25R}. For (5.4) we take

(5.2) with m = 2 and and we consider µ = 8.94× 10−4 Pa s, vi = 6.0× 10−3 m/s, ρf = 103 Kg/m3,

θin
1 = 8.0× 10−5 Kg/m3, θin

2 = 2.0× 10−5 Kg/m3, smax
1 = 10−3 Kg/Kg, smax

2 = 10−2 Kg/Kg. In

addition, the rheology of the grains is different in the top and bottom halves of the domain. More

precisely, we have

Dtop = 3.8× 10−11 m2/s, Dbot = 7.6× 10−12 m2/s, φtop = 0.32, φbot = 0.28,

ρb,top = 1050 Kg/m3, ρb,bot = 1100 Kg/m3, k+
1,top = 5.0× 10−3 m3/(Kg s),

k+
2,top = 0 m3/(Kg s), k+

1,bot = 2.5× 10−4 m3/(Kg s), k+
2,bot = 10−3 m3/(Kg s),

and the permeability K(x) = κ(x)I has a log-uniform distribution in each layer that satisfies

1.57× 10−9 m2 ≤ κtop(x) ≤ 3.04× 10−6 m2,

5.18× 10−10 m2 ≤ κbot(x) ≤ 10−6 m2.

Qualitative results for the concentration of the two contaminants at times t = 10, 100 and 300 are

shown on Figure 5.3. As expected, most of the first contaminant is retained in the upper layer, whereas

the second one passes the first layer to begin to be retained in the lower layer.

Now we change values to smax
1 = 10−7 Kg/Kg and smax

2 = 10−6 Kg/Kg and run the simulation for a

longer time to assess how the swapping the order of layers and the geometry affect the contaminant

removal, measured by θavg(t). For the first two tests we use the same cylinder, altering only the order

of the layers. As we can see from the top panels of Figure 5.4, reversing the order of the layers softens

the transition towards saturation, but the most important behaviour is reached essentially at the same

time in both cases. We also test with a truncated cone (see dimensions in the bottom left panel of

Figure 5.4). The saturation is now achieved in a much shorter time, which could be explained by a

combined effect of volume reduction (and therefore of adsorbent mass), and faster flow patterns that

decrease the retention time and thus the adsorption of the system.
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Figure 5.3: Example 5.3 (two contaminants in two-layer filter): concentration of contaminants at times

t = 10, 100, 300 (figure produced by the author).
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Figure 5.4: Example 5.3 (two contaminants in two-layer filter): concentration of contaminants θavg,i(t)

using a cylinder and changing order of layers (top); and similar computation using a truncated cone

(bottom) (figure produced by the author).



CHAPTER 6

Conclusions, current and future works

6.1 Conclusions

In this thesis, we have proposed and analysed PDE-based models for the coupling of flow equations

and transport; we have proved their solvability using fixed-point theories and we have also proposed

accurate, robust and reliable methods for the discretisation of these equations, with special emphasis in

H(div)-conforming formulations for the flow equations, whereas for the transport problem (resulting

in a scalar or vectorial advection-diffusion equation) we have studied entropy stable schemes for stand-

alone problems as well as finite element primal formulations when coupled with the flow equations.

Furthermore, in each chapter, we have studied one or more modelling problems with engineering

applications.

In Chapter 2 we studied entropy stable schemes for the numerical solution of initial value problems

of nonlinear, possibly strongly degenerate systems of convection-diffusion equations proposed in [99].

As a new contribution, we demonstrated, firstly, that these schemes can naturally be extended to

initial-boundary value problems with zero-flux boundary conditions in one space dimension, including

an explicit bound on the growth of the total entropy. Secondly, it was shown that these assumptions

are satisfied by certain diffusively corrected multiclass kinematic flow models of arbitrary size that

describe traffic flow or the settling of dispersions and emulsions.

Numerical examples illustrate the behavior and accuracy of entropy stable schemes for these ap-

plications. They also confirm the theoretical bounds for entropy in both cases, zero-flux boundary

conditions and periodic boundary conditions. Furthermore, the results of Examples 2.2, 2.3 and 2.4

demonstrate that entropy stable schemes have a competitive computational efficiency compared with

other common numerical schemes, when used on diffusively corrected multiclass kinematic flow mod-

els, like the traffic model and the polydisperse sedimentation model presented here. In fact, Tables 2.2,

2.3 and 2.4, favor the ES scheme in terms of CPU time, although the CFL condition (2.39) was the

same for all schemes with the same value of CCFL in each case. A probable heuristic explanation of

this observation lies in the difference of the computation of the numerical flux in each case, which

involve for instance in the case of the KT scheme the calculation of slopes, evaluation of the minmod

limiter function, and other operations not present in other schemes. Results were favorable for the ES

schemes also for Examples 2.5 and 2.6, for which CPU times are not reported herein.
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Although errors and errors rates are comparable with the other tested methods (Kurganov-Tadmor

and component-wise Global Lax-Friedrichs) for coarser cell partitions, because of the differences on

finer cell partitions we cannot entirely confirm that the methods converge to the same solution. This

shortcoming is exacerbated by the lack of a well-posedness theory for (2.1) in the strongly degenerate

case. It is therefore a topic requiring more careful study in future research.

In Chapter 3 we proposed a divergence-conforming finite element method for the double diffusive

problem, considering temperature-dependent viscosity and possible cross-diffusion terms subject to

the restriction of maintaining the coercivity of the diffusion operator. The formulation includes the

Navier-Stokes/Brinkman flow description, which makes this model suitable for the study of flow in

saturated porous media and interfaces between porous media and free flow. The numerical scheme is

based onH(div)-conforming BDM elements of order k for the velocity, discontinuous elements of order

k−1 for the pressure, and Lagrangian finite elements of order k for temperature and the concentration

of a solute. The main differences between the available well-posedness results and analysis of H(div)-

conforming methods for classical Boussinesq equations and the double-diffusive equations (3.1) are,

of course, caused by the vector-valued nature of the quantities (the components of ~m) that diffuse

in (3.1) while in the classical Boussinesq formulation there is only one scalar diffusive quantity (for

instance, solely temperature). Some of the arguments related to the well-posedness analysis of the

continuous problem, in particular those related to handling non-homogenous Dirichlet data by a lifting

argument [125, 137], carry over almost verbatim from the scalar to the vectorial case. However, the

bilinear form associated with the term −div(D∇~m) must be coercive so that stability is ensured. This

requirement, in turn, imposes restrictions on the choice of the diffusion matrix D; this matrix must

be positive definite (though not necessarily symmetric). These properties are essential for the proof

of existence of a discrete solution.

Regarding our computational tests, it is worth mentioning, that the results for different thermal

Rayleigh values computed in Example 3.2 and summarised on the right panel of Table 3.4, were quite

close to the results published by [59, 86]. For Ra ≤ 1000, the values of Nu and Sh were within a

relative error of 3%, while for the last value Ra = 2000, within 6%, which confirms that the proposed

scheme gives results comparable to other known methods for a large range of parameter values, with

the benefit that this formulation produces exactly divergence-free velocity approximations, which are

of particular importance in ensuring that solutions to the flow equations remain locally conservative

as well as energy stable (see e.g. [62]). Moreover, the error estimates of velocity can be derived in a

pressure-robust manner (see [100]) which can be seen on the results presented in our accuracy test (see

table 3.4). Another consequence of local conservation is that the coupled systems (in the present case,

of temperature and reactive concentrations) can be written, at the discrete level, in exact divergence

form. It is also interesting to note, that even if solvability of the coupled problem cannot be guaranteed

if D is not positive definite, the convergence of the Newton iterations in Example 3.2 was observed

for a broad range of parameters (Sr,Pr ∈ [10−3, 103], N ∈ [1, 10], Da ∈ [10−7, 1], Ra ∈ [100, 2000]).

This suggests that it may be interesting to study whether the stability analysis can be improved, to

include a wider spectrum of values for the diffusion matrix.

In Chapter 4 we have advanced a model for the process of clarification and thickener in cylindrical

units in the presence of a spinning rake structure. The model is intrinsically 3D, it incorporates a

detailed flow-sedimentation coupling in the settling mixture and it considers a simplified, one-way
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coupling that only imposes the velocity of the rotating arm which affects both the transport of solid

particles and the revolving flow near the bottom of the tank. The novelty of the treatment consisted in

the inclusion of terms that account for the influence of the rake motion on the momentum balance and

the removal of solids. We also adapted techniques of the immersed boundary finite element method

(see e.g. [34]) for the analysis and numerical approximation of those terms. This addition constitutes

an important generalisation over existing models for sedimentation-consolidation processes reviewed

in e.g. [42]. The numerical method we used is based on H(div)-conforming finite element methods for

the flow and classical Lagrange elements for the solids concentration. A monolithic Newton scheme

with exact Jacobian was employed in all cases, and we generated several tests to confirm the accuracy

of the method and analysed several cases relevant to the process of clarification. Based on the results

of this set of simulations, we could identify the solids removal coefficient α as the most sensitive factor

on the outputs of overflow concentration and overflow flow rate. On the other hand, the combined

contributions from drag and density did not seem to have a large effect on these markers. A further

inspection revealed that the effects are not necessarily localised but they differ over the height of the

device. Although several interesting extensions regarding the rake mechanics were left to be explored

(some of which will be mentioned in the section of future works), we hope that this study helps in

gaining a fuller understanding of the operating conditions in clarifier units.

In Chapter 5 we have advanced a second-order divergence-conforming discretisation for the system

of partial differential equations modeling soil-based water filtering devices. Specifically, we introduced

an axisymmetric H(div)-conforming method based on two-dimensional BDM spaces [40] combined

with an implicit, second-order backward differentiation formula for time discretisation. Based on dis-

crete stability properties, we proved that the discrete problem has at least one solution. Furthermore,

we derived an optimal a priori error estimate for the numerical scheme, where the main difficulty is

the fully discrete analysis verifying that each of the terms is bounded optimally in the corresponding

weighted spaces. Results of our accuracy test in the first numerical example, confirm that the method

converges to the exact solution with the expected second-order rate. We also compared the predic-

tions of the model with experimental data, collected for a filter that uses raw laterite as an adsorbent

medium, and to which an arsenic solution is injected in its upper part [134]. The qualitative results

displayed on figure 5.2 seem to show an acceptable adjustment to the experimental data. This suggest

that the model and the axisymmetric divergence-conforming scheme can be used effectively as a tool

to study the behaviour of the filtration process under similar flow regimes.

6.2 Ongoing research

Our current and ongoing investigation is an extension of the models presented through this thesis,

to fluid-structure interactions with biological applications. Firstly, we intend to develop a model to

quantify the effect of platelet count, shear rate and injury size on the initiation of blood coagulation

under venous flow conditions.

Blood coagulation is a complex process that leads to thrombus formation inside blood vessels. It

is initiated by the damage of the endothelial tissue at the internal surface of blood vessel walls. As a

result, tissue factor (TF), that is normally isolated from blood plasma, is bared and forms a complex

with factor VII. This complex activates factors IX and X that initiate the coagulation cascade. The
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formation of thrombin accelerates the reaction of conversion of fibrinogen into fibrin. The latter forms

fibrin polymer which constitutes the clot together with platelets. Red blood cells are trapped inside

the clot and further reinforce it. Once initiated by activated factors IX and X, thrombin production

is self-sustained through the positive feedback loops of the coagulation cascade [39]. Further, blood

vessels are embedded in a biological tissue and, during the flow of blood, pressure is applied to the

internal surfaces producing deformation of the vessel walls.

In recent years mathematical modelling has provided an important tool for the qualitative under-

standing of the underlying mechanisms behind thrombus growth [39] and several approaches have

been proposed for the mathematical modelling of blood coagulation (see [13, 39, 95] and references

therein). However, quantifying the effects of these mechanisms has been far more complicated, not

only for the complexity of the coagulation factors interaction, but also for the disparities in the values

of blood coagulation kinetic constants reported in literature, and the difficulties in performing in vitro

experiments of thrombus growth, needed for the validation of computational models [79].

We devote our current work to extend the mathematical model of clot growth dynamics proposed

in [39], by taking into account fluid-structure interactions. A classical approach to this problem has

been the generation of a single mesh with a fitted interface between fluid and vessel wall. Usually,

for the structure problem a Lagrangian formulation is considered, while for the fluid one an arbitrary

Lagrangian Eulerian (ALE) approach is employed to account for the movement of the interface [128].

A different approach considers unfitted meshes, where the fluid mesh is fixed and the structure one

is free to move independently. Within these methods we could mention the immersed boundary

method [140], and fictitious domain methods. For our problem, we propose the use of the immersed

boundary method with Lagrange multiplier introduced in [37] as an adaptation of the original method

to a finite elements version.

The base model consists of advection-diffusion-reaction equations describing the spatio-temporal

distributions of blood coagulation factors and platelet subtypes during thrombus development, coupled
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with the Navier-Stokes equations to describe the dynamics of blood flow in the vessel,

∂P

∂t
+ div(uP −D∇P ) = (k1φc + k2Ba + k3T + k4T

2 + k5T
3)P,

∂T

∂t
+ div(uT −D∇T ) = (k1φc + k2Ba + k3T + k4T

2 + k5T
3)P − k6AT,

∂Ba
∂t

+ div(uBa D∇Ba) = k7φc(B
0 −Ba) + k8T (B0 −Ba)− k9ABa,

∂A

∂t
+ div(uA−D∇A) = −k6AT − k9ABa,

∂Fg
∂t

+ div(uFg −D∇Fg) = − k10TFg
K10 + Fg

− k11F,

∂Fp
∂t

= k11F,

∂φf
∂t

+ div(k(φc + φf ))(uφf −Dp∇φf ) = −k12Tφf − k13φfφc,

∂φc
∂t

+ div(k(φc + φf ))(uφc −Dp∇φc) = k12Tφf + k13φfφc,

ρf
∂u

∂t
+ div(ρuuT − µ∇u+ Ip) = − µ

Kf
u,

div(u) = 0.

Here u, is the flow velocity, p is the pressure, ρf the density of the blood, µ is the dynamic viscosity, D

is the diffusion coefficient taken the same for all clotting factors, P is the concentration of prothrombin,

T is the concentration of thrombin, Ba represents the concentration of clotting factors FIXa and FXa

involved in the initiation phase. A, Fg, F , Fp are the concentrations of antithrombin, fibrinogen, fibrin

and fibrin polymer, respectively. The density of platelets in flow is denoted by φf and we use φc for

density in the clot. Following [79], the effective diffusion coefficient for platelets k(φc + φf ) and the

hydraulic permeability of the clot Kf are given by

k(φc + φf ) = tanh

(
π

(
1−

φc + φf
φmax

))
,

1

Kf
=

16

α2
F̃ 3/2
p (1 + 56F̃ 3

p )

(
φmax + φc
φmax − φc

)
,

where the normalized concentration of fibrin polymer in the clot, F̃p is given by,

F̃p = max

(
0.001,

Fp
0.015 log(Fp) + 0.13

)
.

We consider as a domain a segment of a vein whose two-dimensional approximation is schematically

represented in the figure 6.1. Furthermore, the initial and boundary conditions are given by,

p = pin on Γin,

p = 0 on Γout,

u = 0 on Γwall ∪ Γdamaged,

P = P0, A = A0, Fg = F 0
g , φf = φ0

f on Γin,

φc = φ0
c on Γdamaged,
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Figure 6.1: Schematic view of the blood vessel 2D approximation (left), snapshot of the velocity norm

for a fluid-structure simulation (right) (figure produced by the author).

Weak formulation: The weak formulation of the problem reads as follows: for t ∈ (0, T ), find

Fp(t) ∈ L2(Ω) and P (t), T (t), Ba(t), A(t), Fg(t), φf (t), φc(t) ∈ H1(Ω) such that

(∂tP ,mP )Ω + c2(u;P,mP ) + a2(P,mP ) = ((k1φc + k2Ba + k3T + k4T
2 + k5T

3)P,mP )Ω,

(∂tT ,mT )Ω + c2(u;T,mT ) + a2(T,mT ) = ((k1φc + k2Ba + k3T + k4T
2 + k5T

3)P

− k6AT,mT )Ω,

(∂tBa,mB)Ω + c2(u;Ba,mB) + a2(Ba,mB) = (k7φc(B
0 −Ba) + k8T (B0 −Ba)− k9ABa,mB)Ω,

(∂tA,mA)Ω + c2(u;A,mA) + a2(A,mA) = (−k6AT − k9ABa,mA),

(∂tFg,mg)Ω + c2(u;Fg,mg) + a2(Fg,mg) =

(
− k10TFg
K10 + Fg

− k11F,mg

)
Ω

,

(∂tFp,mp)Ω = (k11F,mp)Ω,

(∂tφf ,mf )Ω + c3(u,ϕ;φf ,mf ) + a3(φf ,mf ) = (−k12Tφf − k13φfφc,mf ),

(∂tφc,mc)Ω + c3(u,ϕ;φc,mc) + a3(φc,mc) = (k12Tφf + k13φfφc,mc),

(6.1)

for all mP ∈ H1(Ω), mT ∈ H1(Ω), mB ∈ H1(Ω), mA ∈ H1(Ω), mg ∈ H1(Ω), mp ∈ L2(Ω),

mf ∈ H1(Ω) and mc ∈ H1(Ω). Here the variational forms c2, a2, c3 and a3 are defined as follows,

a2(m1,m2) = (D∇m1,∇m2)Ω c2(u,m1,m2) = (u · ∇m1,m2)Ω,

a3(φ1, φ2) = (k(φc + φf )Dp∇φ1,∇φ2)Ω, c3(u,ϕ;φ1, φ2) = (u · ∇(k(ϕ)φ1), φ2)Ω

Fluid-structure interaction: Now for the fluid-structure equations, we follow the approach pre-

sented in [37]. The immersed boundary method is both a mathematical formulation and a numerical

method for fluid-structure interactions, in which immerse compressible visco-elastic bodies interact

with and incompressible fluid [36]. The original immersed boundary method was developed by Pe-

skin [140] for the computer simulation of fluid-structure interactions, with special focus in biological

fluid dynamics. It links the Lagrangian and Eulerian frameworks and therefore allows to exploit the

strengths of both formulations. Although, this method relies on the finite differences method, and

a Dirac delta distribution to pass information between frameworks, in [34], a suitable modification
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using finite elements was proposed. A posterior modification by the same authors added more flexi-

bility to the scheme through the use of a Lagrange multiplier [33]. The theoretical properties of the

immersed boundary method with Lagrange multiplier, between other benefits, show unconditional

stability for semi-implicit time discretisations and inf-sup stability for the global saddle point problem

under suitable mesh conditions [37].

In this approach, the Navier-Stokes equations are considered everywhere and the presence of the

solid structure is taken into account by means of a source term which depends on the unknown position

of the structure. These equations are coupled with the condition that the structure moves at the same

velocity of the underlying fluid, that is

∂tX(s, t) = u (X(s, t)) .

Furthermore, a suitable Lagrange multiplier is introduced in the ordinary differential equation that

governs the evolution of the solid, thus giving more flexibility to the resulting numerical scheme. More

precisely, the equation now reads

γ1(µ,u(X(·, t), t))− γ2(µ, ∂tX(·, t)) = 0 for all µ ∈ Λ,

where γ1(·, ·) and γ2(·, ·) are bilinear forms such that γ1(µ,v(X))− γ2(µ,Y ) = 0 for all µ ∈ Λ implies

v(X) = Y .

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with Lipschitz continuous boundary. We assume Ω is

subdivided into two time-dependant subregions Ωf (t) and Ωs(t), which correspond to the fluid and

the solid material, respectively. We assume, then that the solid domain Ωs is a image of the reference

domain B ⊂ R2. The mapping X : B → R2 associates to each point s ∈ B its image x = X(s, t) at

time t. We denote by λ and µ the Lamé constants. The problem considered is the following: given

an initial velocity u0 ∈ H1
0 , and initial body position X0 ∈ W 1,∞(B), find velocity and pressure

(u(t), p(t)) ∈ (H1
0 (Ω) × L2

0(Ω)), body position X(t) ∈ H1(B), and a Lagrange multiplier χ(t) ∈ Λ
such that for almost every t ∈]0, T [ holds

ρf (∂tu,v)Ω + a1(u,v) + c1(u;u,v) + b(v, p) + dX(χ,v(X)) = 0,

b(u, q) = 0,

(∂ttX,Y )B + aX(X,Y )− dX(χ,Y ) = 0,

dX(γ,u(X)− ∂tX) = 0,

(6.2)

for all v ∈H1
0 (Ω), q ∈ L2

0(Ω), Y ∈ H1(B), γ ∈ Λ. The variational forms are given by

a1(u,v) :=
µ

Kf
(u,v)Ω + (µ∇(u),∇(v))Ω , b(v, q) := (q,div v)Ω,

c1(w;u,v) :=
(
(w · ∇)u,v

)
Ω
,

aX(X,Y ) =
(µ

2
∇X : ∇Y + λdiv(X) div(Y )

)
B
, dX(χ,u) = (η1∇χ : ∇u+ η2χ · u)B

If we consider both η1 and η2 positive constants different from zero, H1(B) can be used as the space

Λ.

Finite element discretisation: Let Vh ⊂ H1
0 (Ω) and Qh ⊂ L2

0(Ω) be finite element spaces

which satisfy the usual discrete ellipticity on the kernel and the discrete inf-sup condition. Moreover,
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we consider the finite-dimensional subspaces ~Mh ⊂ [H1(Ω)]7×L2(Ω), Sh ⊂H1(B) and Λh ⊂ Λ. Then

the finite element counterpart of the problem (6.1) reads as follows: given an initial velocity u0h ∈ Vh,

and initial body position X0 ∈ W 1,∞(B), find velocity, pressure (uh(t), ph(t)) ∈ Vh × Qh), blood

coagulation factors (Ph(t), Th(t), Ba,h(t), Ah(t), Fg,h(t), φf,h(t), φc,h(t), Fp,h(t)) ∈ ~Mh), body position

Xh(t) ∈ Sh(B), and a Lagrange multiplier χh(t) ∈ Λh such that for almost every t ∈]0, T [ holds

ρf (∂tuh,v)Ω + a1(uh,v) + c1(uh;uh,v) + b(v, ph) = −dX(χh,v(Xh)),

b(uh, q) = 0,

(∂ttXh,Y )B + aX(Xh,Y ) = dX(χh,Y ),

dX(γ,uh(Xh)− ∂tXh) = 0,

(∂tPh,mP )Ω + c2(uh;Ph,mP ) + a2(Ph,mP ) = ((k1φc,h + k2Ba,h + k3T + k4T
2
h

+ k5T
3
h )Ph,mP )Ω,

(∂tTh,mT )Ω + c2(uh;Th,mT ) + a2(Th,mT ) = ((k1φc,h + k2Ba,h + k3Th + k4T
2
h + k5T

3
h )Ph

− k6AhTh,mT )Ω,

(∂tBa,h,mB)Ω + c2(uh;Ba,h,mB) + a2(Ba,h,mB) = (k7φc,h(B0 −Ba,h) + k8Th(B0 −Ba,h)

− k9AhBa,h,mB)Ω,

(∂tAh,mA)Ω + c2(uh;Ah,mA) + a2(Ah,mA) = (−k6AhTh − k9AhBa,h,mA),

(∂tFg,h,mg)Ω + c2(uh;Fg,h,mg) + a2(Fg,h,mg) = (−
k10ThFg,h
K10 + Fg,h

− k11Fh,mg)Ω,

(∂tFp,h,mp)Ω = (k11Fh,mp)Ω,

(∂tφf,h,mf )Ω + c3(uh,ϕh;φf,h,mf ) + a3(φf,h,mf ) = (−k12Thφf,h − k13φf,hφc,h,mf ),

(∂tφc,h,mc)Ω + c3(uh,ϕh;φc,h,mc) + a3(φc,h,mc) = (k12Thφf,h + k13φf,hφc,h,mc),

for all v ∈ Vh, q ∈ Qh, (mP ,mT,mB,mA,mg,mf ,mc,mp) ∈ ~Mh, Y ∈ Sh, γ ∈ Λh.

To solve numerically the fully coupled problem it is necessary to introduce an appropriate time

discretisation. The simplest choice if one wants to maintain stability in the solution would be the

use of an implicit technique, however the Navier-Stokes equations are strongly coupled through the

source term with the structure elasticity system which implies the resolution of a fully nonlinear

coupled system of equations at each time step. Currently, we employ a first order semi-implict time

discretisation to solve the nonlinear system but the exploration of other semi-implicit modifications

could be of practical interest. Let us subdivide the time interval [0, T ] into N equal parts with time

step ∆t, for n = 1, ...N , then the relevant part of the discrete in space and time system reads,

ρf

(
un+1
h − unh
∆t

,v

)
Ω

+ a1(un+1
h ,v) + c1(unh;un+1

h ,v) + b(v, pn+1
h ) = −dX(χn+1

h ,v(Xn
h )),

b(un+1
h , q) = 0,(

Xn+1
h − 2Xn

h +Xn−1
h

∆t2
,Y

)
B

+ aX(Xn+1
h ,Y ) = dX(χn+1

h ,Y ),

dX

(
γ,un+1

h (Xn
h )−

Xn+1
h −Xn

h

∆t

)
= 0.
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Figure 6.2: Snapshots of velocity and pressure at times t = 0, 60, 80 s, with rigid walls (figure produced

by the author).

Figure 6.3: Snapshots of pressure with velocity stream lines (left) and platelets concentration φc (right)

at times t = 0.4 s for the fluid-structure problem (figure produced by the author).

We have performed some tests with a two-dimensional reduction of the blood vessel (see figure

6.1), assuming rigid walls or with the complete fluid-structure model, to determine if the expected

qualitative effects are capture by the model. Results assuming rigid blood vessel walls and BDF2 time

discretisation are shown in figure 6.2 and seem to be in qualitative agreement with other computational

studies of blood vessel occlusions (i.e. [28]). Preliminary results for the fluid structure model, using

the semi-implicit time discretisaton and a stable mini-element pair, show a reasonable deformation for

different pressure values when tested on the fluid-structure sub-problem (6.2) (an example is shown on

figure 6.1 right), and at initial stages of the complete model with blood coagulation factors reactions

(see figure 6.3 left). However, more work is still necessary to obtain a stable and performant scheme

for longer time frames, and a more realistic three dimensional model.
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6.3 Future works

The general framework addressed in this thesis is very extensive and has a large number of potential

applications at theoretical and engineering level, which means that the research in this subject is far

from being complete. Indeed, this work has motivated several ongoing and future projects, some of

which we briefly described below.

1. To extend the domain of application and develop formulas for estimating parameters associated

with entropy stable schemes: We acknowledge that the current form of the entropy stable schemes

make them difficult to apply to more general real life problems. Their main limitation is the

requirement of a diffusion matrix K(u) such that the product Kη−1
u,u is positive definite, and

the difficulty to obtain stable numerical fluxes from relation (2.28). It would be interesting to

investigate alternatives to relax these restrictions. A further inconvenience for the practical use

of the schemes is the necessity to fine-tune the extra viscosity parameter α so that oscillations

of the numerical solution are avoided but the numerical solutions do not become more smeared

than necessary. Clearly, it would be desirable to have a formula at hand that directly generates

a value of this parameter from the coefficient functions of (2.1) and u0, avoiding the trial-and-

error procedure underlying the final choices of α in our numerical examples. A first step in this

direction could be to use the CFL constant to derive an upper bound for the value of α, following

the lines of Lemma 2.1 in [114].

2. To extend the model for clarifiers by taking into account the mechanical properties of the rake,

rheological models and solid-flux theory: With respect to the model for clarifiers introduced

in Chapter 4, several interesting extensions were left to be explored. Regarding modelling

aspects, we mention that the present approach is likely to be more suitable for the application

to clarifiers in wastewater treatment, since for that application the rake can be moved more

easily through compacted sludge. In contrast, the sediments formed by the settling of mineral

suspension exhibit major resistance to the motion of the rake, and the torque that needs to be

applied (that is, the cost of energy) [147] and the precise conditions under which the rake could

brake are of utmost importance (a rake being stuck or broken represents a major shutdown of

the industrial process) [156]. Our model currently does not resolve the stresses generated in the

structure, which is a natural next step. While the approach (4.4) is a rough approximation of the

experimental and numerical observation that “rake blades typically suck material behind them as

they move as well as pushing material in front of them” [167, p. 102] one could also easily extend

the present development to the case of more adequate rheological models for the suspension [56],

partly including the effect of shear [84,89] and changes in flock structure [61,90,121]. In addition,

for the flow regimes we have studied here, turbulent effects have little relevance but in some

industrial settings this is crucial to resolve the separation of clear fluid and solid particles [65,107].

Model reduction and the consistent connection with solid-flux theory should also be considered

eventually [68].

3. To study fluid-structure interactions in order to address biological applications of interest: We

are interested in extending this work, to address models with biological applications such as

the clotting on blood vessels [39] or calcium signalling in embryonic epithelial cells [101]. These
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models involve the study of partial differential equations describing poroelastic fluid-structure

interactions coupled with systems of transport equations. Although we are open to other alter-

natives, for the fluid-structure aspect of the model, for now we are working with the immersed

boundary method approach [35], that was already briefly reviewed when working on Chapter 4.

On one side, calcium signalling is one of the most important mechanisms of information propa-

gation in the body, playing an important role as a second messenger in several processes such as

embryogenesis, heart function, blood clotting, muscle contraction and diseases of the muscular

and nervous systems [101]. In the specific case of embryogenesis, calcium elevation leads to

contractions in embryonic cells. Our objective is to develop a multi-dimensional version of the

mechanochemical model introduced in [101] describing the interplay of calcium signalling with

the mechanics of embryonic epithelial tissue during apical constriction. The model couples the

reaction system or Atri’s model [21] with a fluid-structure interaction system where we assume

the cell compound is surrounded by a viscous fluid and the tissue behaves as a neo-Hookean

material. On the side of the coagulation model, we have initial results with a two-dimensional

fixed walls model and the next steps include working with the fluid-structure poroelastic model

and the full three-dimensional model.

4. Improve the numerical methods: There are a number of improvements we can add in terms of

the numerical methods presented throughout this work. For instance, to concentrate on the

design of partitioned solvers and efficient preconditioners needed for costly 3D computations

with long time horizons [22]. We could also incorporate mixed formulations as an alternative for

handling non-homogeneous Dirichlet boundary conditions in the transport equations, removing,

for instance, the need to introduce liftings and their consequent numerical approximation, as

discussed in the third chapter. Even more, it would allow us to directly obtain other quantities

of interest for some engineering applications such as vorticity or stress [17]. We are also interested

in study space adaptivity through residual-based a posteriori error indicators [11], and employ

more advanced flux reconstruction techniques useful in the regimes of convection-dominated

flows and degenerate diffusion of solids due to compression effects [45].
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[163] J. Woodfield, M. Alvarez, B. Gómez-Vargas, and R. Ruiz-Baier, Stability and finite

element approximation of phase change models for natural convection in porous media, Journal

of Computational and Applied Mathematics, 360 (2019), pp. 117–137.



154

[164] K. Yang, P. Sun, L. Wang, J. Xu, and L. Zhang, Modeling and simulations for fluid and

rotating structure interactions, Computer Methods in Applied Mechanics and Engineering, 311

(2016), pp. 788–814.

[165] N. Zabaras and D. Samanta, A stabilized volume-averaging finite element method for flow

in porous media and binary alloy solidification processes, International Journal for Numerical

Methods in Engineering, 60 (2004), pp. 1103–1138.

[166] Y. Zhuang, H. Yu, and Q. Zhu, A thermal non-equilibrium model for 3d double diffusive con-

vection of power-law fluids with chemical reaction in the porous medium, International Journal

of Heat and Mass Transfer, 115 (2017), pp. 670–694.
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