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Resumen

Esta tesis tiene como objetivo la formulación, análisis e implementación de nuevos
métodos de elementos finitos mixtos para un conjunto de ecuaciones diferenciales
parciales que surgen en el contexto de la mecánica de fluidos. Más precisamente,
ampliamos el estudio de una formulación mixta basada en espacios de Banach
introducida recientemente para el problema de Navier–Stokes que permite la con-
servación de momentum, y primero, desarrollar un análisis de error a posteriori
para el esquema de Galerkin correspondiente. Extendendiendo las técnicas están-
dar comúnmente utilizadas en espacios Hilbert al caso de espacios Banach, como
estimaciones locales y descomposiciones de Helmholtz adecuadas, demostramos
confiabilidad del estimador, mientras que, desigualdades inversas, la técnica de lo-
calización basada en funciones burbuja, entre otras herramientas, se emplean para
demostrar la eficiencia.

Después, presentamos un método de elementos finitos mixto para un modelo de
convección natural en estado estacionario que describe el comportamiento de flui-
dos incompresibles no isotérmicos sujetos a una fuente de calor. Nuestro enfoque se
basa en la introducción de un tensor de pseudoesfuerzo modificado que depende de
la presión y los términos difusivo y convectivo de las ecuaciones de Navier-Stokes
para el fluido y un vector incógnita que involucra la temperatura, su gradiente y la
velocidad. La introducción de estas nuevas incógnitas conduce a una formulación
mixta donde el tensor de pseudoesfuerzo y el vector incógnita mencionados ante-
riormente, junto con la velocidad y la temperatura, son las principales incógnitas
del sistema. Tanto para el problema continuo como para el discreto, utilizamos
los teoremas de Banach–Nečas–Babuška y de punto fijo de Banach para demostrar
unicidad de solución.

Usando las técnicas desarrolladas para el análisis de error a posteriori para
la formulación que conserva momentum del problema de Navier–Stokes, comple-
mentamos el estudio del ya mencionado esquema de elementos finitos mixto para
el modelo de convección natural y obtenemos un estimador de error a posteriori
basada en residuos confiable y eficiente para el esquema de Galerkin correspon-
diente.

Finalmente, presentamos una formulación mixta para las ecuaciones no esta-
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cionarias de Brinkman–Forchheimer. Nuestro enfoque se basa en la introducción
del gradiente de velocidad y del ya mencionado tensor de pseudoesfuerzo como in-
cógnitas adicionales. Como consecuencia, obtenemos una formulación mixta donde
la velocidad junto con su gradiente y el tensor de pseudoesfuerzo, son las princi-
pales incógnitas del sistema. Establecemos la existencia y unicidad de solución de
la formulación débil en espacios Banach, empleando resultados clásicos en opera-
dores monótonos no lineales. A continuación, presentamos el buen planteamiento y
el análisis de error para el esquema semidiscreto continuo en tiempo y una aproxi-
mación de elementos finitos completamente discreta.

Para todos los problemas descritos anteriormente, se proporcionan varios ex-
perimentos numéricos que ilustran el buen desempeño de los métodos propuestos,
y que confirman los resultados teóricos.

Palabras Claves: ecuaciones estacionarias de Boussinesq, métodos de elemen-
tos finitos mixtos, conservación de momentum, conservación de energía térmica,
Navier–Stokes, espacios Banach, elementos Raviart–Thomas, estimador de error
a posteriori, confiabilidad, eficiencia, ecuaciones no estacionarias de Brinkman–
Forchheimer.



Abstract

This thesis aims at the formulation, analysis and implementation of new mixed fi-
nite element methods for a set of partial differential equations arising in the context
of fluid mechanics. More precisely, we extend the study of a Banach spaces–based
mixed formulation recently introduced for the Navier–Stokes problem allowing
conservation of momentum, and first develop an a posteriori error analysis for
the corresponding Galerkin scheme. By extending standard techniques commonly
used on Hilbert spaces to the case of Banach spaces, such us local estimates, and
suitable Helmholtz decompositions, we prove reliability of the estimator, whereas
inverse inequalities, the localization technique based on bubble functions, among
other tools, are employed to prove efficiency.

Next, we present a mixed finite element method for a class of steady-state
natural convection models describing the behavior of non-isothermal incompress-
ible fluids subject to a heat source. Our approach is based on the introduction
of a modified pseudostress tensor depending on the pressure, and the diffusive
and convective terms of the Navier-Stokes equations for the fluid and a vector un-
known involving the temperature, its gradient and the velocity. The introduction
of these further unknowns lead to a mixed formulation where the aforementioned
pseudostress tensor and vector unknown, together with the velocity and the tem-
perature, are the main unknowns of the system. For both, the continuous and
discrete problems, we make use of the Banach–Nečas–Babuška and Banach’s fixed
point theorems to prove unique solvability.

Using the techniques developed for the a posteriori error analysis of the mo-
mentum conservative formulation for the Navier–Stokes problem, we complement
the study of the aforementioned mixed finite element scheme for the natural con-
vection model and derive a reliable and efficient residual-based a posteriori error
estimator for the corresponding Galerkin scheme.

Finally, we study a mixed formulation for the unsteady Brinkman–Forchheimer
equations. Our approach is based on the introduction of the velocity gradient and
the aforementioned pseudostress tensor, as further unknowns. As a consequence,
we obtain a mixed formulation where the velocity together with its gradient and the
pseudostress tensor, are the main unknowns of the system. We establish existence
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and uniqueness of a solution to the weak formulation in a Banach space setting,
employing classical results on nonlinear monotone operators. We then present the
well-posedness and error analysis for a semidiscrete continuous-in-time scheme and
a fully discrete finite element approximation.

For all the problems described above, several numerical experiments are pro-
vided illustrating the good performance of the proposed methods and confirming
the theoretical results.

Key Words: stationary Boussinesq equations, mixed finite element method, con-
servation of momentum, conservation of thermal energy, Navier–Stokes, Banach
spaces, Raviart–Thomas elements, a posteriori error estimator, reliability, effi-
ciency, unsteady Brinkman–Forchheimer equations.
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Chapter 1

Introduction

There exists an abundant recent literature dealing with numerical techniques
to approximate the solution of the Navier–Stokes problem. Concerning mixed for-
mulations for the Navier-Stokes equations, we first mention the works of Farhloul
et al. (see [67] and [66]), where the authors extend the analysis of dual-mixed
formulations for the Stokes equations to the Navier-Stokes problem. They propose
quasi-optimal convergent numerical methods for the fluid flow problem considering
the strain tensor (in [67]) and the velocity gradient tensor (in [66]) as the main
unknowns of the corresponding systems. In [28] (see also [26] and [27]), Cai et al.
extended the analysis of pseudostress-based mixed methods for the Stokes problem
to the Navier-Stokes equations. They introduce and analyze a conforming H(div )
method for a pseudostress-based mixed formulation which turns to be of accuracy
O(hk+1−d/6) (d = 2, 3) in the L3 norm. More recently, a new optimally convergent
augmented-mixed finite element method for the Navier-Stokes equation was devel-
oped in [34] (see also [26], [27], [28], [89] for related works). This method, which
extends recent results on pseudostress-based formulations for the Stokes problem
(see e.g. [25], [68], [74], [77], [88], and the references therein), consists in a new for-
mulation of the Navier-Stokes problem with Dirichlet boundary conditions, where
the main unknowns are the velocity and the so called nonlinear pseudostress ten-
sor depending nonlinearly on the velocity through the respective convective term.
The pressure is eliminated by using the incompressibility condition, and can be
recovered as a simple postprocess of the nonlinear pseudostress tensor, as well as
the vorticity and the gradient of the fluid. Due to the presence of the convective
term in the system, the velocity is kept in H1, which leads to the incorporation
of Galerkin type terms arising from the constitutive and equilibrium equations,
and from the Dirichlet boundary condition, into the variational formulation. The
introduction of these terms allows to circumvent the necessity of proving inf-sup
conditions, and as a result, to relax the hypotheses on the corresponding discrete
subspaces (see for instance [21], [70] and [71] for the foundations of this procedure).
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Later on, in [30] it has been introduced and analyzed the first momentum
conservative conforming method for the stationary Navier–Stokes problem with
constant viscosity. There, the approach consists in rewriting the corresponding
system of equations in terms of the pseudostress tensor previously utilized in [34],
say σ, in such a way after eliminating the fluid pressure from the system, a first-
order set of equations can be derived. One of the advantages of employing this
procedure is that the equilibrium equation can be written in the form −divσ = f ,
as for the Stokes equations, allowing the derivation of the corresponding momen-
tum conservative scheme. Differently from [34], instead of considering the velocity
in H1, and consequently enriching the formulation with Galerkin least-squares
type terms, non-standard Banach spaces are introduced for both unknowns, the
pseudostress σ and the velocity u, in such a way well-posedness of the continu-
ous problem can be proved by means of the Banach–Nečas–Babuška theorem and
a fixed–point strategy. The associated Galerkin scheme makes use of Raviart–
Thomas elements of degree k ≥ 0 to approximate σ and discontinuous piecewise
polynomials of degree k for u and to prove unique solvability of the discrete scheme
it is adopted the same fixed–point strategy utilized for the continuous problem.

In this Thesis, we extend the study of Banach spaces–based mixed formula-
tions for fluid flow problems by introducing a reliable and efficient residual–based
a posteriori error estimator for the numerical scheme introduced in [30] and later
on, by proposing new numerical schemes for natural convection models and for
the unsteady Brinkman–Forchheimer problem modelling a fluid flowing through a
porus medium at high Raynolds number. Regarding the first model, in engineer-
ing and industry, natural convection is a largely studied phenomenon due to its
presence in different applications. For instance, electrical and electronic industries
use it for the thermal regulation of components and devices of industrial equip-
ments and the agricultural sector utilizes this phenomenon for drying applications
and storage. This phenomenon can be also found in aeronautics, nuclear energy,
solar collectors and environmental engineering, to name a few. In simple words,
natural convection is a phenomenon where the fluid motion is generated by density
differences due to temperature gradients. Mathematically, it is modelled by the
Navier–Stokes equations coupled to a convection-diffusion equation through the
Boussinesq approximation (variations in density are neglected everywhere except
in the buoyancy term), reason why it is often called as the Boussinesq model.

On the other hand, the flow of fluids through porous media at high Reynolds
numbers is a challenging multiphysics problem that has a wide range of applica-
tions, including processes arising in chemical, petroleum extraction and ground-
water engineering, as well as in many other industrial applications. The mathe-
matical model for the flow through the porous media was first developed by Darcy
[58] and the proposed model governs the linear relationship of the fluid velocity



17

with the pressure gradient, we remark that much of the research in porous medium
has been focused on the use of Darcy’s law. The main disadvantage of this theory
is that it works only for those problems which are modeled by accounting low
porosity and smaller velocities. Many of practical implications involve the non–
uniform porous distribution and higher flow transport. In such circumstances, the
Darcy’s theory fails to describe the exact nature of physical phenomenon. For
this purpose, the involvement of non–Darcian effects is accounted to describe the
exact behavior of physical problem. Forchheimer [69] considered such factors by
using the additional term through square velocity in Darcian velocity expression.
Another extension to Darcy’s law is the Brinkman model [22], which describes
Stokes flow through array of obstacles and can be applied for flows through highly
porous media.

The Brinkman-Forchheimer model is accurate when the flow velocity is too
large for Darcy’s law to be valid and additionally the porosity is not too small.
This model has been justified theoretically with different approaches (see, e.g. [81]
and [112]), and has been extensively studied (see, e.g. [80], [91], [93], [102] and
other papers cited therein). In [102], the authors prove continuous dependence
of solutions of the Brinkman-Forchheimer equations on the Brinkman and Forch-
heimer coefficients in the L2-norm, this work is extended to the H1-norm in [44].
In [95] the authors propose and study a perturbed compressible system that ap-
proximate the Brinkman–Forchheimer equations. The existence and uniqueness of
a weak solution is established and also how the solution of the perturbed problem
converges to the solution of the Brinkman–Forchheimer problem.

This Thesis is organized as follows. In Chapter 2 we develop an a posteriori
error analysis of the momentum conservative mixed finite element method for the
steady–state Navier–Stokes problem introduced in [30]. More precisely, by extend-
ing standard techniques commonly used on Hilbert spaces to the case of Banach
spaces, such us local estimates, suitable Helmholtz decompositions and the local
approximation properties of the Clément and Raviart–Thomas operators, we de-
rive the aforementioned a posteriori error estimator. In turn, inverse inequalities,
the localization technique based on bubble functions, and known results from pre-
vious works, are employed to prove the local efficiency of the proposed a posteriori
error estimator. The contents of this chapter gave rise to the following manuscript:

[29] J. Camaño, S. Caucao, R. Oyarzúa, and S. Villa-Fuentes,
A posteriori error analysis of a momentum conservative mixed-FEM
for the stationary Navier–Stokes problem. Preprint 2020-24, Centro
de Investigación en Ingeniería Matemática (CI2MA), Universidad de
Concepción, Concepción, Chile, (2020).

Next, in Chapter 3 we develope the a priori error analysis of fully-mixed formu-
lation for the Boussinesq system where the Navier-Stokes equation is discretized
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using the approach introduced in [30] whereas for the heat equation we employ
the formulation given in [33]. For both, the continuous and discrete problems, the
Banach–Nečas–Babuška and Banach’s fixed point theorems are employed to prove
unique solvability. We also provide the convergence analysis and prove that the
error decay with optimal rate of convergence. Further variables of interest, such as
the fluid pressure, the fluid vorticity, the fluid velocity gradient, and the heat-flux
can be easily approximated as a simple postprocess of the finite element solutions
with the same rate of convergence. The contents of this chapter gave rise to the
following paper:

[40] S. Caucao, R. Oyarzúa, and S. Villa-Fuentes, A new mixed-
FEM for steady-state natural convection models allowing conservation
of momentum and thermal energy. Calcolo 57 (2020), no. 4, 36.

In Chapter 4 we complement the study of the mixed finite element scheme
for the Boussinesq model detailed in Chapter 3. Using the techniques and results
obtained in Chapter 2 we derive a reliable and efficient residual–based a posteriori
error estimator for the corresponding mixed finite element scheme. The contents
of this chapter appear in the following manuscript:

[41] S. Caucao, R. Oyarzúa, and S. Villa-Fuentes, A posteriori er-
ror analysis of a momentum and thermal energy conservative mixed–
FEM for the Boussinesq equations. Preprint 2020-29, Centro de Investi-
gación en Ingeniería Matemática (CI2MA), Universidad de Concepción,
Concepción, Chile, (2020).

Finally, in Chapter 5, we propose and analyze a three–field Banach spaces–
based mixed formulation for the unsteady Brinkman–Forchheimer equations. Our
approach is based on the introduction of the velocity gradient and the pseudostress
tensors, as further unknowns. The introduction of these additional variables leads
to a mixed formulation where the velocity together with its gradient and the pseu-
dostress tensor, are the main unknowns of the system. Employing a classical
theory for monotone operators and previous works (see, e.g. [106], [37], [30]) we
prove existence and uniqueness of solution of the continuous weak formulation.
Then, we propose a semidiscrete continuos–in–time scheme defined by discontin-
uos piecewise polynomials of degree k for the velocity and the velocity gradient,
and Raviart–Thomas elements of order k for the pseudostree tensor. The resulting
scheme is discretized in time employing a backward Euler method. This chapter
gave rise to the following work:

[42] S. Caucao, R. Oyarzúa, S. Villa-Fuentes and I. Yotov,
A three–field Banach mixed formulation for the unsteady Brinkman–
Forchheimer equations. In preparation.



1.1. Preliminary notations 19

For each Chapter of this Thesis, the theoretical results such as, orders of con-
vergence, reliability and efficiency of the corresponding residual-based a posteriori
error estimators, are illustrated through several numerical examples.

We continue this section by introducing some notations that will be used
throughout the rest of the present Thesis.

1.1 Preliminary notations
Let us denote by Ω ⊆ Rd, d ∈ {2, 3}, a given bounded domain with polyhedral

boundary Γ. Standard notations will be adopted for Lebesgue spaces Lp(Ω), with
p ∈ [1,∞] and Sobolev spaces W r,p(Ω) with r ≥ 0, endowed with the norms
‖ · ‖Lp(Ω) and ‖ · ‖W r,p(Ω), respectively. Note that W 0,p(Ω) = Lp(Ω) and if p = 2,
we write Hr(Ω) in place of W r,2(Ω), with the corresponding Lebesgue and Sobolev
norms denoted by ‖ · ‖0,Ω and ‖ · ‖r,Ω, respectively. We also write | · |r,Ω for
the Hr-seminorm. In addition, H1/2(Γ) is the spaces of traces of functions of
H1(Ω) and H−1/2(Γ) denotes its dual. With 〈·, ·〉 we denote the corresponding
product of duality between H1/2(Γ) and H−1/2(Γ). By S and S we will denote the
corresponding vectorial and tensorial counterparts of the generic scalar functional
space S. In addition, we will denote by ‖(u, v)‖ := ‖(u, v)‖U×V := ‖u‖U + ‖v‖V
the norm on the product space U × V .

As usual I stands for the identity tensor in Rd×d, and | · | denotes the Euclidean
norm in Rd. Also, for any vector fields v = (vi)i=1,d and w = (wi)i=1,d we set the
gradient, divergence, and tensor product operators, as

∇v :=

(
∂vi
∂xj

)
i,j=1,d

, div v :=
d∑
j=1

∂vj
∂xj

, and v ⊗w := (viwj)i,j=1,d .

In addition, for any tensor fields τ = (τij)i,j=1,d and ζ = (ζij)i,j=1,d, we let div τ be
the divergence operator div acting along the rows of τ , and define the transpose,
the trace, the tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,d, tr (τ ) :=
d∑
i=1

τii,

τ : ζ :=
d∑

i,j=1

τijζij and τ d := τ − 1

d
tr (τ ) I.

For simplicity, in what follows we denote

(v, w)Ω :=

∫
Ω

v w, (v,w)Ω :=

∫
Ω

v ·w,



20 1.2. Analysis of a conservative mixed–FEM for the stationary Navier–Stokes problem

(v,w)Γ :=

∫
Γ

v ·w and (τ , ζ)Ω :=

∫
Ω

τ : ζ.

We also recall the Hilbert space

H(div ; Ω) :=
{
z ∈ L2(Ω) : div z ∈ L2(Ω)

}
,

with norm ‖z‖2
div ;Ω := ‖z‖2

0,Ω + ‖div z‖2
0,Ω, and introduce the tensor version of

H(div ; Ω) given by

H(div; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

whose norm will be denoted by ‖ · ‖div;Ω. Finally, given p > 2d
d+2

, in what follows
we will also employ the non-standard Banach space H(divp ,Ω) defined by

H(divp ; Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ Lp(Ω)

}
,

endowed with the norm

‖τ‖divp ;Ω :=
(
‖τ‖2

0,Ω + ‖div τ‖2
Lp(Ω)

)1/2
.

In turn, for any scalar function v, we define the sign function sgn, given by

sgn(v) :=

{
1 if v ≥ 0,
−1 if v < 0,

and observe that there holds v sgn(v) = |v|.
Finally, throughout the rest of this Thesis, we employ 0 to denote a generic

null vector (or tensor), and use C and c, with or without subscripts, bars, tildes
or hats, to denote generic constants independent of the discretization parameters,
which may take different values at different places.

We end this section by introducing the most relevant aspects of the method
introduced in [30].

1.2 Analysis of a conservative mixed–FEM for the
stationary Navier–Stokes problem

In this section we recall from [30] the steady-state Navier–Stokes problem,
its mixed variational formulation, the associated Galerkin scheme, and the main
results concerning the corresponding solvability analysis.
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1.2.1 The steady-state Navier–Stokes problem

Let Ω ⊆ Rd, d ∈ {2, 3} be a bounded domain with Lipschitz boundary Γ and let
ν > 0, u and p be the viscosity, the velocity and pressure, respectively, of a viscous
fluid occupying the region Ω, whose movement is described by the incompressible
steady-state Navier–Stokes equations with Dirichlet boundary condition:

−ν∆u + (u · ∇)u +∇p = f in Ω,

div u = 0 in Ω,

u = uD on Γ,

(p, 1)Ω = 0.

(1.2.1)

Above, f represents an external force acting on Ω and uD is the prescribed velocity
on Γ, satisfying the compatibility condition:

(uD · n, 1)Γ = 0. (1.2.2)

Now, in order to derive our mixed approach (see [30, Section 2.2] for details),
we begin by introducing the pseudostress tensor

σ := ν∇u − pI − u⊗ u in Ω.

Notice that from the incompressibility condition tr (∇u) = div u = 0 in Ω,
there hold

div(u⊗ u) = (u · ∇)u in Ω and tr (σ) = −dp− tr (u⊗ u) in Ω.

According to the above, we can rewrite equations (1.2.1), equivalently, as follows

σd = ν∇u− (u⊗ u)d in Ω, −divσ = f in Ω,

u = uD on Γ, (tr (σ), 1)Ω = −(tr (u⊗ u), 1)Ω,
(1.2.3)

where the unknowns of the system are the tensor σ and the velocity u. The
pressure p can be easily computed as a postprocess of the solution by using

p = −1

d
(tr (σ) + tr (u⊗ u)) in Ω.

1.2.2 The mixed variational formulation and its well posed-
ness

In this section we recall from [30, Section 2.3] the weak formulation of (1.2.3).
To that end, we define the spaces X := H(div4/3 ; Ω), M := L4(Ω) and

X0 :=
{
τ ∈ H(div4/3 ; Ω) : (tr (τ ), 1)Ω = 0

}
,
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and observe that the following decomposition holds:

X = X0 ⊕ P0(Ω)I,

where P0(Ω) is the space of constant polynomials on Ω. Then, the variational
formulation of (1.2.3) reads: Find (σ,u) ∈ X0 ×M, such that

a(σ, τ ) + b(τ ,u) + c(u; u, τ ) = F (τ ) ∀ τ ∈ X0,

b(σ,v) = G(v) ∀v ∈M,
(1.2.4)

where the forms a : X × X → R, b : X ×M → R and c : M ×M × X → R are
defined as

a(σ, τ ) :=
1

ν
(σd, τ d)Ω , b(τ ,v) := (div τ ,v)Ω, (1.2.5)

and
c(w; v, τ ) :=

1

ν
(w ⊗ v, τ d)Ω, (1.2.6)

and the functionals F ∈ X′0 and G ∈M′ as

F (τ ) := 〈τn,uD〉Γ and G(v) := −(f ,v)Ω. (1.2.7)

Notice that, from now on, the norms for the spaces X, M and the product space
X×M, will be denoted, respectively, by ‖ · ‖X, ‖ · ‖M and ‖(·, ·)‖ = ‖ · ‖X + ‖ · ‖M.

This problem is analyzed throughout [30, Section 3], and the well-posedness
comes as a result of a fixed-point strategy. In particular, we recall from [30] the
following results:

We start by recalling the classical Poincare and Sobolev estimates

‖w‖1,Ω ≤ CP |w|1,Ω ∀w ∈ H1
0(Ω) (1.2.8)

and

‖w‖Lr(Ω) ≤ CSob‖w‖1,Ω ∀w ∈ H1(Ω) , for r ≥ 1 if n = 2 or r ∈ [1, 6] if n = 3,
(1.2.9)

with CP > 0 and CS > 0 depending only on |Ω|. (1.2.8) can be deduced from [104,
Theorem 1.3.3] whereas (1.2.9) can be found in [104, Theorem 1.3.3].

Now we recall that the forms a, b and c are bounded:

|a(σ, τ )| ≤ 1

ν
‖σ‖X‖τ‖X ∀σ, τ ∈ X,

|b(τ ,v)| ≤ ‖τ‖X‖v‖M ∀ τ ∈ X,∀v ∈M,
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and
|c(w; v, τ )| ≤ 1

ν
‖w‖M‖v‖M‖τ‖X ∀ τ ∈ X,∀w,v ∈M.

In addition, from [30, Lemma 3.5], we have that the functionals F and G are
bounded:

|F (τ )| = |〈τn,uD〉| ≤ CF‖uD‖1/2,Γ‖τ‖X
and

|G(v)| = |(f ,v)Ω| ≤ ‖f‖L4/3(Ω)‖v‖M,

where CF is a positive constant depending on CS (cf. (1.2.9)).
We now let V be the kernel of b, that is

V := {τ ∈ X0 : b(τ ,v) = 0, ∀v ∈M} = {τ ∈ X0 : (div τ ,v)Ω = 0, ∀v ∈M} .

It is clear that V can be characterized as follows

V = {τ ∈ X0 : div τ = 0 in Ω} .

The following lemma establishes the ellipticity of a on V.

Lemma 1.2.1. There holds,

a(τ , τ ) ≥ α‖τ‖2
X ∀ τ ∈ V, (1.2.10)

with α := Cd/ν.

Now we provide the corresponding inf-sup condition of the bilinear form b.

Lemma 1.2.2. There holds,

sup
0 6=τ∈X0

b(τ ,v)

‖τ‖X
≥ β‖v‖M ∀v ∈ M, (1.2.11)

with
β := (d+ dC2

PC
2
S)−1/2.

From the properties of the bilinear forms a and b, described in (1.2.10) and
(1.2.11) and [63, Proposition 2.36] it is not difficult to see that the following inf-sup
condition holds:

sup
(τ ,v)∈X0×M

(τ ,v)6=0

a(ζ, τ ) + b(τ , z) + b(ζ,v) + c(u; z, τ )

‖(τ ,v)‖
≥ γ

2
‖(ζ, z)‖ (1.2.12)
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for all (ζ, z) ∈ X0 ×M, with

γ := C̃
βmin{1, νβ}

νβ + 1
(1.2.13)

where C̃ is a positive constant independent of the physical parameters.
Next, we recall from [30, Theorem 3.7] the well-posedness of (1.2.4).

Theorem 1.2.3. Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ2

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
< 1,

where CF is the bounding constant of F and γ is defined in (1.2.13). Then, there
exists a unique (σ,u) ∈ X0 ×M solution to (1.2.4). In addition, there exists
C > 0, such that

‖u‖M + ‖σ‖X ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
.

In particular, it can be proved (see [30, Theorem 3.7]) that the velocity satisfies
the following estimate

‖u‖M ≤
2

γ

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
. (1.2.14)

The latter will be employed next in Section 2.3.1.
We now provide the converse of the derivation of (1.2.4). More precisely, the

following theorem establishes that if (σ,u) is the unique solution of (1.2.4), then(
σ̃ := σ − 1

d |Ω|
(tr (u⊗ u), 1)ΩI,u

)
satisfies (1.2.3). We remark that there are

not extra regularity assumptions on the data; only f ∈ L4/3(Ω) and uD ∈ H1/2(Γ)
are required here.

Theorem 1.2.4. Let (σ,u) ∈ X0 ×M be the unique solution of (1.2.4). Then,
σd = ν∇u− (u⊗u)d in Ω, which implies that u ∈ H1(Ω), −divσ = f in Ω and
u = uD on Γ.

Proof. First, it is clear that the identity −divσ = f in Ω follows from the second
equation of (1.2.4). On the other hand, the derivation of the rest of the identities
follows from the first equation of (1.2.4), considering suitable test functions and
integrating by parts backwardly. We omit further details.
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1.2.3 The mixed finite element method

Let {Th}h be a family of regular triangulations of Ω by triangles T in R2

or tetrahedra in R3 of diameter hT , such that Ω = ∪{T : T ∈ Th} and define
h := max{hT : T ∈ Th}. Now, given an integer l ≥ 0 and a subset S of Rd,
we denote by Pl(S) the space of polynomials of total degree at most l defined
on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as (see, for instance, [21]):

RTk(T ) := [Pk(T )]d ⊕ P̃k(T )x,

where x := (x1, . . . , xd)
t is a generic vector of Rd and P̃k(T ) is the space of poly-

nomials of total degree equal to k defined on T . In this way, defining the finite
element subspaces:

Xh :=
{
τh ∈ X : ctτh|T ∈ RTk(T ), ∀ c ∈ Rd, ∀T ∈ Th

}
⊆ X,

Mh :=
{

vh ∈M : vh|T ∈ [Pk(T )]d, ∀T ∈ Th
}
⊆ M,

and observing that

Xh = Xh,0 ⊕ P0(Ω)I with Xh,0 = Xh ∩ X0,

the Galerkin scheme associated with problem (1.2.4) reads: Find (σh,uh) ∈ Xh,0×
Mh, such that

a(σh, τh) + b(τh,uh) + c(uh; uh, τh) = F (τh) ∀ τh ∈ Xh,0,

b(σh,vh) = G(vh) ∀vh ∈Mh,
(1.2.15)

where the forms a, b and c, as well as the functionals F and G are defined in
(1.2.5), (1.2.6) and (1.2.7).

The following results, taken from [30, Theorem 4.5 and Theorem 4.8], respec-
tively, provides the well-posedness of (1.2.15) and the corresponding theoretical
rate of convergence.

Theorem 1.2.5. Let f ∈ L4/3(Ω) and uD ∈ H1/2(Γ) such that

4

νγ̂2

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
< 1,

where CF is the bounding constant of F , independent of the physical parameters,
and γ̂ is the discrete version of γ (cf. (1.2.13)) given by

γ̂ := Ĉ
β̂min{1, νβ̂}

νβ̂ + 1
, (1.2.16)
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where Ĉ is a positive constants independent of the physical parameters and β̂ is the
constant related with the discrete inf-sup condition of the bilinear form b. Then,
there exists a unique (σh,uh) ∈ Xh,0 ×Mh solution to (1.2.15). In addition, there
exists C > 0, independent of h, such that

‖uh‖M + ‖σh‖X ≤ C
(
‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
.

In particular, as for the continuous case, it can be proved (see [30, Theorem
3.7]) that the discrete velocity satisfies the following estimate

‖uh‖M ≤
2

γ̂

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
. (1.2.17)

The latter will be employed next in Section 2.3.1.

Theorem 1.2.6. Assume that
4

νγγ̂

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
≤ 1

2
,

with γ and γ̂ given by (1.2.13) and (1.2.16), respectively, and CF being the bounding
constant of F . In addition, let (σ,u) ∈ X0 ×M and (σh,uh) ∈ Xh,0 ×Mh be the
unique solutions of problems (1.2.4) and (1.2.15), respectively. and assume further
that σ ∈ Hl+1(Ω), divσ ∈Wl+1,4/3(Ω) and u ∈Wl+1,4(Ω), for 0 ≤ l ≤ k. Then,
there exists C > 0, independent of h, such that

‖(σ − σh,u− uh)‖ ≤ C hl+1
{
|σ|Hl+1(Ω) + |divσ|Wl+1,4/3(Ω) + |u|Wl+1,4(Ω)

}
.

Observation

One of the advantages of the present method is the posibility of approximating
further variables of interes, such as the pressure p, the vorticity ω := 1

2
(∇u−∇ut),

the stress σ̃ := ν(∇u + (∇u)t)− pI and the velocity gradient G = ∇u, all of them
written in terms of the solution of the discrete problem (1.2.15). In fact, observing
that at the continuous level there hold

p = − 1

n
(tr (σ) + tr (u⊗ u)), σ̃ = σd + (u⊗ u)d + σt + u⊗ u,

G =
1

ν
(σd + (u⊗ u)d) and ω =

1

2ν
(σ − σt),

provided the discrete solution (σh,uh) ∈ Xh ×Mh of problem (1.2.15), we have
the following approximations for the aforementioned variables:

ph = − 1

n
(tr (σh) + tr (uh ⊗ uh)), σ̃h = σdh + (uh ⊗ uh)

d + σth + uh ⊗ uh,

Gh =
1

ν
(σdh + (uh ⊗ uh)

d) and ωh =
1

2ν
(σh − σth).
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On the other hand, thanks to the local properties of the Raviart-Thomas ele-
ment, the associated discrete scheme exactly conserves momentum when the datum
is in a suitable polynomial space. In addition, owing to the Banach spaces-based
approach it can be proved optimal convergence of the method considering the
norms where the variables naturally live. Finally, to emphasize another advan-
tage of the numerical method proposed in [30], in Table 1.2.3 we compare the
local degrees of freedom (Dof) considering k = 0 and d = 2, with the corre-
sponding local Dof of the classical velocity-pressure formulation discretized by the
Bernardi–Raugel element and the MINI-element (see Chapter III in [82]). We ob-
serve there that, although our formulation possesses considerably more unknowns
(6 unknowns in 2D) than the velocity-pressure formulation (3 unknowns in 2D),
the computational cost is not increased.

RT0 − P0 Bernardi-Raugel MINI-element
local Dof 8 10 11

Table 1.2.1: Local degrees of freedom for the lowest-order method (k = 0).





Chapter 2

A posteriori error analysis of a
momentum conservative
Banach–spaces based mixed–FEM
for the Navier–Stokes problem

2.1 Introduction

In this Chapter we continue the Banach spaces-based study of dual-mixed for-
mulations for nonlinear fluid-flow problems started in [30] (see [18, 31, 43, 40, 49]
for recent extensions) by analyzing a reliable and efficient a posteriori error esti-
mator for the momentum conservative mixed finite element method proposed in
[30] for the incompressible steady-state Navier–Stokes problem. There, the ve-
locity and a pseudostress tensor, defined in terms of the gradient of the velocity,
the pressure and the convective term, are introduced as main unknowns of the
system which allows, on the one hand, to preserve exactly conservation of momen-
tum when the datum is in a suitable polynomial space, and on the other hand,
to compute other variables of interest, such us the gradient of the velocity and
the vorticity, through a simple postprocessing of the pseudostress tensor, with-
out applying any numerical differentiation, thus avoiding further sources of error.
Then, the well-known Banach–Nečas–Babuška theory and the Banach fixed-point
theorem are applied to prove the unique solvability of the resulting continuous
formulation. Utilizing the same theoretical tools it can be proved that the asso-
ciated Galerkin scheme defined by Raviart-Thomas elements for the pseudostress
and discontinuous piecewise polynomials for the velocity, is well posed.

Now, one of the main tools widely utilized in the numerical analysis community
to guarantee a good convergence of most finite element methods, specially under

29
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the eventual presence of singularities, is the so called a posteriori error estimator.
This consists of a global quantity Θ expressed in terms of calculable local indicators
ΘT , defined on each element T of a given triangulation T , which allows to estimate
the finite element error in terms of a calculable quantity. This information can be
afterwards used to localize sources of error and construct an algorithm to efficiently
adapt the mesh. The estimator Θ is said to be efficient (resp. reliable) if there
exists C1 > 0 (resp. C2 > 0), independent of the meshsizes, such that

C1 Θ + h.o.t. ≤ ‖error‖ ≤ C2 Θ + h.o.t. ,

where h.o.t. is a generic expression denoting one or several terms of higher order.
Going back to our problem of interest, and regarding this powerful tool to

improve the performance of numerical methods for partial differential equations,
we mention the pioneer works [98], [108] and [109] (se also [4, Section 9.3]) where
the authors introduced the first contributions devoted to derive an a posteriori er-
ror analysis for the incompressible Navier-Stokes problem in its classical velocity-
pressure formulation. We refer also to [11] where the authors extend the afore-
mentioned contributions to the case of Dirac measures and [92] for an a posteriori
error analysis of a Discontinuous Galerkin scheme providing exactly-divergence
free approximations of the velocity.

On the other hand, the study of a posteriori error estimators for saddle-point
problems has been widely developed in the existing literature by many authors
(see, e.g. [2], [3], [10], [20], [35], [36], [76], [87], [94], [97], [105], and the refer-
ences therein). The techniques employed in the above list of contributions have
been successfully applied to a quasi-optimal dual-mixed scheme (in [66]) and to
augmented-mixed formulations (in [79] and [32], respectively) of the Navier-Stokes
problem with constant and variable viscosity.

Our purpose now is to additionally contribute in the direction of the aforemen-
tioned works by providing the a posteriori error analysis of the mixed variational
approach introduced in [30]. To that end, and since our formulation is defined on
non-standard Banach spaces, we extend several results usually utilized to analyze
a posteriori error estimators in Hilbert spaces, to the context of Banach spaces.
According to this, the rest of this Chapter is organized as follows. In Section 2.2
we provide some preliminary results to be employed next to derive and analyze our
a posteriori error estimator. The kernel of the present chapter is given by Section
2.3, where we develop the a posteriori error analysis. In Section 2.3.1 we employ
the global continuous inf-sup condition, a Helmholtz decomposition, and the local
approximation properties of the Clément and Raviart-Thomas operators, to de-
rive a reliable residual-based a posteriori error estimator. Then, in Section 2.3.2
inverse inequalities, and the localization technique based on element-bubble and
edge-bubble functions to prove the efficiency of the estimator. Finally, numerical
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results confirming the reliability and efficiency of the a posteriori error estima-
tor and showing the good performance of the associated adaptive algorithm, are
presented in Section 2.4.

2.2 Preliminary results for the a posteriori error
analysis

We start by introducing some useful notations to describe local information on
elements and edges or faces depending if d = 2 or d = 3, respectively. Let Eh be
the set of edges or faces of Th, whose corresponding diameters are denoted he, and
define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and we denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.

We also define unit normal vector ne on each edge or face by

ne := (n1, .., nd)
t ∀ e ∈ Eh .

Hence, when d = 2, we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and
se, respectively.

The usual jump operator [[·]] across internal edges or face are defined for piece-
wise continuous matrix, vector, or scalar-valued functions ζ by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face.
Finally, for sufficiently smooth scalar ψ, vector v := (v1, .., vd)

t, and tensor fields
τ := (τij)1≤i,j≤d, for d = 2 we let

curl (ψ) :=
( ∂ψ
∂x2

, − ∂ψ
∂x1

)t
, rot (v) :=

∂v2

∂x1

− ∂v1

∂x2

, curl (v) =

(
curl (v1)t

curl (v2)t

)
,

curl (τ ) =

(
rot (τ1)
rot (τ2)

)
and γ∗(τ ) = τ s
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and for d = 3 we let

curl (v) = ∇× v , curl (τ ) =

curl (τ1)
curl (τ2)
curl (τ3)

 and γ∗(τ ) =

τ1 × n
τ2 × n
τ3 × n

 ,

where τi is the i−th row of τ and the derivatives involved are taken in the distri-
butional sense.

Let us now recall the main properties of the Raviart–Thomas interpolator (see
e.g. [63]) and the Clément operator (see e.g. [46]) onto the space of continuous
piecewise linear functions. Given p > 1, let us define the space

Zp :=
{
τ ∈ H(div p; Ω) : τ |T ∈W1,p(T ), ∀T ∈ Th

}
,

and let

Πk
h : Zp → Xh :=

{
τ ∈ H(div ; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th

}
,

be the Raviart–Thomas interpolation operator, which is well defined in Zp (see
e.g. [63, Section 1.2.7]) and is characterized by the identities

(Πk
h(τ) · n, ξ)e = (τ · n, ξ)e ∀ ξ ∈ Pk(e), ∀ edge or face e of Th, (2.2.1)

and
(Πk

h(τ), ψ)T = (τ, ψ)T ∀ψ ∈ [Pk−1(T )]d, ∀ T ∈ Th (if k ≥ 1) .

Notice that, since Πk
h(τ) · ne ∈ Pk(e), from (2.2.1) we have that

Πk
h(τ) · ne = Pke (τ · ne) , (2.2.2)

where, for 1 ≤ r ≤ ∞, Pke : Lr(e)→ Pk(e) is the operator satisfying∫
e

(Pke (v)− v)zh = 0 ∀ zh ∈ Pk(e), (2.2.3)

Notice that for r = 2, Pke coincides with the usual orthogonal projection. In
addition, it is well known (see e.g. [63, Lemma 1.41]) that the following identity
holds

div (Πk
h(τ)) = Pkh(div τ) ∀ τ ∈ Zp,

where, given 1 ≤ r ≤ ∞, Pkh : Lr(Ω)→Mh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈

Th
}
is the operator satisfying∫

Ω

(P lh(v)− v)zh = 0 ∀ zh ∈Mh.

The following lemma establishes the local approximation properties of Πk
h.
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Lemma 2.2.1. Let p > 1. Then, there exists c1 > 0, independent of h, such that
for each τ ∈Wl+1,p(T ) with 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|τ − Πk
h(τ)|Wm,p(T ) ≤ c1

hl+2
T

ρm+1
T

|τ |Wl+1,p(T ),

where ρT is the diameter of the largest sphere contained in T . Moreover, there
exists c2 > 0, independent of h, such that for each τ ∈ W1,p(T ), with div τ ∈
Wl+1,p(T ) and 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|div τ − div (Πk
h(τ))|Wm,p(T ) ≤ c2

hl+1
T

ρmT
|div τ |Wl+1,p(T ).

Proof. See [30, Lemma 4.2] for details.

Now, before introducing the following lemma, let us now recall some classical
notation and results. Let T̂ be a fixed reference element, which usually corresponds
to the triangle with vertices (1, 0), (0, 1), and (0, 0) in R2, or the tetrahedron
with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), and (0, 0, 0) in R3. Any T ∈ Th can be
obtained by mapping T̂ using an affine map. By this we mean that for any T ∈ Th
there is a map FT : T̂ → T such that FT (T̂ ) = T and FT (x̂) = BT x̂ + bT where
BT ∈ Rd × Rd is an invertible matrix and bT is a vector in Rd.

Given T ∈ Th and e ∈ Eh,T , we let ê be the face or edge of T̂ satisfying
e = FT (ê). Then, the following change of variable formula holds

(f, 1)e =
|e|
|ê|

(f ◦ FT , 1)ê =
|e|
|ê|

(f̂ , 1)ê. (2.2.4)

It is easy to prove that
P̂ke (v) = Pkê (v̂) (2.2.5)

where, for 1 ≤ r ≤ ∞, Pkê : Lr(ê)→ Pk(ê) is defined as in (2.2.3).
Finally, let Pk

T̂
: L2(T̂ )→ Pk(T̂ ) be the usual orthogonal projector and nê the

unit normal vector on ê. Notice that

Pk
T̂

(τ̂) · nê|ê ∈ Pk(ê). (2.2.6)

Now we are in position of presenting the following lemma which extends the ap-
proximation property of the Raviart–Thomas operator on edges or faces, originally
given for Hilbert spaces.

Lemma 2.2.2. Let p > 1, T ∈ Th and e ∈ Eh,T . Then, there exists C > 0,
independent of h, such that

‖τ · n− Πk
h(τ) · n‖Lp(e) ≤ Ch1−1/p

e |τ |W1,p(T ) ∀ τ ∈W1,p(T ). (2.2.7)
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Proof. We begin by proceeding similarly as in [72, Lemma 3.18]. In fact, given
T ∈ Th and e ∈ Eh,T , we let ê ∈ Eh,T̂ , be such that e = FT (ê). Then, given
τ ∈ W1,p(T ), from (2.2.2), the identities (2.2.4) and (2.2.5), and the property
(2.2.6), we obtain

‖τ · ne − Πk
h(τ) · ne‖Lp(e) ≤

|e|1/p

|ê|1/p
‖τ̂ · n− Pkê (τ̂ · n)‖Lp(ê)

≤ |e|1/p

|ê|1/p
‖τ̂ · nê − Pk

T̂
(τ̂) · nê‖Lp(ê).

(2.2.8)

Then, making use of the Rellich–Kondrachov Theorem (see [63, Theorem B.46])
with s = 1/p′ being p′ the real number satisfying 1/p + 1/p′ = 1, Ω = ê, and the
trace theorem in W1,p(T̂ ) (see, for instance, [83, Theorem 1.5.1.3]), we obtain

‖τ̂ · nê − Pk
T̂

(τ̂) · nê‖Lp(ê) ≤ ĉ ‖τ̂ − Pk
T̂

(τ̂)‖W 1/p′,p(ê) ≤ Ĉ ‖τ̂ − Pk
T̂

(τ̂)‖W1,p(T̂ ).

(2.2.9)
Next, since Pk

T̂
∈ L(W1,p(T̂ ),W1,p(T̂ )) and Pk

T̂
(q̂) = q̂ for all q̂ ∈ Pk(T̂ ), we

can apply the Lp-version of the Deny–Lions and Bramble–Hilbert lemmas (see, for
instance, [63, Lemma B.67] and [63, Lemma B.68], respectively) to Pk

T̂
, obtaining

‖τ̂ − Pk
T̂

(τ̂)‖W1,p(T̂ ) ≤ Ĉ|τ̂ |W1,p(T̂ ). (2.2.10)

Now, employing the scaling estimate in [63, Lemma 1.101], geometric results (see,
for instance, [63, Lemma 1.100]) and the fact that |T | ∼= hdT and he ∼= hT , the
latter obtained thanks to the fact that we are considering a regular triangulation,
we deduce that

|τ̂ |W1,p(T̂ ) ≤ C̃‖BT‖ | det(BT )|−1/p|τ |W1,p(T ) ≤ Ch
1−d/p
e |τ |W1,p(T ),

which, together with (2.2.8), (2.2.9), (2.2.10) and the fact that |e| ∼= hd−1
e completes

the proof.

Let us consider now the space H1
h =

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈

Th
}
. Then, we denote by Ih : H1(Ω) −→ H1

h the well known Clément interpola-
tion operator. The local approximation properties of this operator are established
in the following lemma (see [46]):

Lemma 2.2.3. There exist constants c1, c2 > 0, independent of h, such that for
all v ∈ H1(Ω) there holds

‖v − Ihv‖0,T ≤ c1 hT |v|1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the set of elements intersecting T and e, respectively.
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In what follows we will employ a tensor version of Πk
h, denoted by Πk

h : Zp → X,
which is defined row-wise by Πk

h and the vector version of Ih, denote by Ih :
H1(Ω)→ H1

h, defined component-wise by Ih.

We end this section by establishing a suitable Helmholtz decomposition for
H(divp ; Ω).

Lemma 2.2.4. Let p > 1 when d = 2 and p ≥ 6/5 when d = 3. Then, for each
τ ∈ H(divp ,Ω) there exist

a) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that τ = ξ + curl w when d = 2,

b) ξ ∈W1,p(Ω) and w ∈ H1(Ω) such that τ = ξ + curl w when d = 3.

In addition, in both cases,

‖ξ‖W1,p(Ω) + ‖w‖1,Ω ≤ CHel‖τ‖divp ,Ω, (2.2.11)

where CHel is a positive constant independent of all the foregoing variables.

Proof. In what follows we prove the result for the two-dimensional case. The
three-dimensional case can be treated similarly by extending [73, Theorem 3.1] to
the Lp case.

Let B a bounded convex polygonal domain containing Ω. Then, given τ ∈
H(divp ; Ω) we let z ∈W1,p

0 (B) be the unique weak solution of the boundary value
problem:

∆z = divτ in Ω, ∆z = 0 in B \ Ω, z = 0 on ∂B,

which, owing to the fact that B is convex, belongs to W2,p(B) and satisfies (see
for instance [83, Theorem 2.4.2.5]):

‖z‖W2,p(Ω) ≤ ‖z‖W2,p(B) ≤ ‖divτ‖Lp(Ω).

Then, we set ξ = (∇z)|Ω ∈ W1,p(Ω) which clearly satisfies divξ = ∆z = divτ in
Ω and

‖ξ‖W1,p(Ω) ≤ ‖divτ‖Lp(Ω). (2.2.12)

Now, let ε := τ − ξ and observe that divε = 0 in Ω. In addition, thanks to the
continuous embedding W 1,p(Ω) into L2(Ω) (see, for instance, [63, Theorem B.46])
and (2.2.12) we obtain that ε ∈ L2(Ω) and

‖ε‖0,Ω ≤ ĉ
(
‖τ‖0,Ω + ‖ξ‖W1,p(Ω)

)
≤ c̃‖τ‖divp ,Ω.
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In this way, since Ω is connected and ε ∈ L2(Ω) satisfies divε = 0 in Ω, from [82,
Chapter I, Theorem 3.1] we conclude that there exists w = (w1, w2)t ∈ H1(Ω),
such that

ε = τ − ξ = curl w in Ω, (2.2.13)

which can be chosen so that (w1, 1)Ω = (w2, 1)Ω = 0. In turn, the equivalence
between ‖w‖1,Ω and |w|1,Ω, together with (2.2.12) (2.2.13) and the continuous
embedding from W 1,p(Ω) into L2(Ω), imply

‖w‖1,Ω ≤ c|w|1,Ω = c‖curl w‖0,Ω ≤ c(‖τ‖0,Ω + ‖ξ‖W1,p(Ω)) ≤ c‖τ‖divp ,Ω.

Then, the foregoing inequality and (2.2.12) confirm the stability estimate (2.2.11),
thus finishing the proof.

2.3 A posteriori error analysis

In this section we derive a residual-based a posteriori error estimator for the
mixed method (1.2.15). To that end, in what follows we assume that the hypothesis
of Theorems 1.2.3 and 1.2.5 hold and let (σ,u) ∈ X0 ×M and (σh,uh) ∈ Xh,0 ×
Mh be the unique solutions of the continuous and discrete problems (1.2.4) and
(1.2.15), respectively. Then, our global a posteriori error estimator is defined by:

Θ =

{∑
T∈Th

Θ2
T

}1/2

+

{ ∑
T∈Th

‖f + divσh‖4/3

L4/3(T )

}3/4

(2.3.1)

where, for each T ∈ Th, the local error indicator is defined as follows:

Θ2
T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥2

0,T

+
∑

e∈Eh,T (Γ)

h1/2
e ‖uD − uh‖2

L4(e)

+ h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d −∇uD

)∥∥∥∥2

0,e

.

(2.3.2)
The main goal of the present section is to establish, under suitable assumptions,

the reliability and efficiency of Θ. We begin with the reliability of the estimator.



2.3. A posteriori error analysis 37

2.3.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 2.3.1. Assume that the data f and uD satisfy

8

νγγ̂

(
CF‖uD‖1/2,Γ + ‖f‖L4/3(Ω)

)
≤ 1. (2.3.3)

Then, there exist Crel > 0, independent of h, such that

‖(σ − σh,u− uh)‖ ≤ Crel Θ. (2.3.4)

We begin the derivation of (2.3.4) with the next preliminary lemma.

Lemma 2.3.2. Assume that the data f and uD satisfy (2.3.3). Let (σ,u) ∈ X0×M
and (σh,uh) ∈ Xh,0×Mh solution to (1.2.4) and (1.2.15), respectively. Then, there
exists a constant Cglob > 0, independent of h, such that

‖(σ − σh,u− uh)‖ ≤ Cglob sup
(τ ,v)∈X0×M

(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
, (2.3.5)

where R : X0 ×M→ R is the residual functional

R(τ ,v) = a(σ − σh, τ ) + b(τ ,u− uh) + b(σ − σh,v) + c(u; u, τ )− c(uh; uh, τ )
(2.3.6)

for all (τ ,v) ∈ X0 ×M.

Proof. First, using the inf-sup condition (1.2.12) for the error (ζ, z) = (σ−σh,u−
uh), adding and substracting suitable terms, using the notation introduced in
(2.3.6), and the fact that

|c(u− uh; uh, τ )| ≤ 1

ν
‖uh‖M ‖u− uh‖M‖τ‖X,

it follows that

γ

2
‖(σ − σh,u− uh)‖ ≤ sup

(τ ,v)∈X0×M
(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
+ sup

τ∈X0
τ 6=0

c(u− uh; uh, τ )

‖τ‖X

≤ sup
(τ ,v)∈X0×M

(τ ,v)6=0

R(τ ,v)

‖(τ ,v)‖
+

1

ν
‖uh‖M ‖u− uh‖M.

In this way, (2.3.5) follows straightforwardly from (1.2.17) and assumption (2.3.3).
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In turn, according to (1.2.4), (1.2.15) and the definition of the forms a, b and
c, we find that, for any (τ ,v) ∈ X0 ×M, there holds

R(τ ,v) = R1(τ ) +R2(v)

where

R1(τ ) = 〈τn,uD〉Γ −
1

ν
(σd

h, τ
d)Ω − (uh,divτ )Ω −

1

ν

(
uh ⊗ uh, τ

d
)

Ω
(2.3.7)

and
R2(v) = −(f ,v)Ω − (v,divσh)Ω.

Hence, the supremum in (2.3.5) can be bounded in terms of R1 and R2 as follows

‖(σ − σh,u− uh)‖ ≤ Cglob
{
‖R1‖X′0 + ‖R2‖M′

}
.

In this way, we have transformed (2.3.5) into an estimate involving global inf-sup
conditions on X0 and M, separately.

Throughout the rest of this section, we provide suitable upper bounds for R1

and R2. We begin by establishing the corresponding estimate for R2, whose proof
follows from a straightforward application of the Hölder inequality.

Lemma 2.3.3. There holds

‖R2‖M′ ≤

{ ∑
T∈Th

‖f + divσh‖4/3

L4/3(T )

}3/4

.

Our next goal is to bound the remaining term ‖R1‖X′0 . With this aim in mind,
in what follows we introduce some technical results.

Lemma 2.3.4. There exists C1 > 0, independent of h, such that for each ξ ∈
W1,4/3(Ω) there holds

∣∣R1(ξ −Πk
h(ξ))

∣∣ ≤ C1

(∑
T∈Th

Θ2
1,T

)1/2

‖ξ‖W1,4/3(Ω), (2.3.8)

where

Θ2
1,T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥2

0,T

+
∑

e∈Eh,T (Γ)

h1/2
e ‖uD − uh‖2

L4(e) .



2.3. A posteriori error analysis 39

Proof. We recall from the definition of R1 (cf. (2.3.7)) that

R1(ξ −Πk
h(ξ)) = 〈 (ξ −Πk

h(ξ))n, uD 〉Γ −
1

ν

(
σd
h, (ξ −Πk

h(ξ))d
)

Ω

− 1

ν

(
uh, div(ξ −Πk

h(ξ))
)

Ω
− 1

ν

(
uh ⊗ uh, (ξ −Πk

h(ξ))d
)

Ω
.

Applying a local integration by parts to the third term above, (2.2.1) and the fact
that uD ∈ L2(Γ), we obtain

R1(ξ −Πk
h(ξ)) =

∑
e∈Eh(Γ)

(
(ξ −Πk

h(ξ))n, uD − uh
)
e

+
∑
T∈Th

(
∇uh −

1

ν
(σh + (uh ⊗ uh))

d, (ξ −Πk
h(ξ))

)
T

.

In turn, using Hölder and Cauchy-Schwarz inequalities, estimate (2.2.7) with p =
4/3, and the approximation property (see [99, eq. (3.28)] for details)

‖τ − Πk
h(τ)‖0,T ≤ C h

1−d/4
T |τ |W1,4/3(T ) ∀ τ ∈W1,4/3(T ) ,

with C > 0 a constant independent of the meshsize, we obtain∣∣R1(ξ −Πk
h(ξ))

∣∣ ≤ ∑
e∈Eh(Γ)

‖uD − uh‖L4(e) C h
1/4
e |ξ|W1,4/3(Te)

+
∑
T∈Th

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥
0,T

C h
1−d/4
T |ξ|W1,4/3(T ),

with Te being the element that contains e.
Finally, from the subadditivity inequality we obtain

|R1(ξ −Πk
h(ξ))|

≤ Ĉ


( ∑

e∈Eh(Γ)

h1/2
e ‖uD − uh‖2

L4(e)

)1/2( ∑
e∈Eh(Γ)

|ξ|4/3W1,4/3(Te)

)3/4

+

(∑
T∈Th

h
2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥2

0,T

)1/2(∑
T∈Th

|ξ|4/3W1,4/3(T )

)3/4
 ,

which clearly implies (2.3.8) and completes the proof.
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Lemma 2.3.5. Assume that uD ∈ H1(Γ) and let

Θ2
2,T := h2

T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d −∇uD

)∥∥∥∥2

0,e

.

Then,
a) if d = 2, there exists C2 > 0, independent of h, such that

∣∣R1 (curl (w − Ihw))
∣∣ ≤ C2

(∑
T∈Th

Θ2
2,T

)1/2

‖w‖1,Ω ∀w ∈ H1(Ω).

(2.3.9)

b) if d = 3, there exists Ĉ2 > 0, independent of h, such that

∣∣R1 (curl (w − Ihw))
∣∣ ≤ Ĉ2

(∑
T∈Th

Θ2
2,T

)1/2

‖w‖1,Ω ∀w ∈ H1(Ω).

Proof. In what follows we prove the result for d = 2 since the three dimensional
follows analogously.

Given w ∈ H1(Ω), we first notice from the definition of R1 in (2.3.7) that there
holds

R1(curl (w − Ihw))

= 〈curl (w − Ihw)n,uD〉Γ −
1

ν

(
σd
h + (uh ⊗ uh)

d, curl (w − Ihw)
)

Ω
.

Recalling that uD ∈ H1(Γ), now we apply the following integration by parts on
the boundary Γ given by (see, for instance, [62, Lemma 3.5, eq. (3.34)])

〈curl (w − Ihw)n,uD〉Γ = 〈∇uDs,w − Ihw〉Γ = 〈γ∗(∇uD),w − Ihw〉Γ,
and a local integration by parts, to obtain

R1(curl (w − Ihw)) = −
∑
T∈Th

(
curl

(
1

ν
(σh + (uh ⊗ uh))

d

)
, w − Ihw

)
T

+
∑

e∈Eh(Ω)

([[
γ∗

(
1

ν
(σh + (uh ⊗ uh))

d

)]]
, w − Ihw

)
e

+
∑

e∈Eh(Γ)

(
γ∗

(
1

ν
(σh + (uh ⊗ uh))

d −∇uD

)
, w − Ihw

)
e

.
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Hence, applying Cauchy-Schwarz inequality and the approximation properties of
the Clément interpolant (cf. Lemma 2.2.3), we obtain∣∣R1(curl (w − Ihw))

∣∣
≤ Ĉ

{(∑
T∈Th

h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,T

)1/2(∑
T∈Th

‖w‖2
1,∆(T )

)1/2

+

( ∑
e∈Eh(Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Ω)

‖w‖2
1,∆(e)

)1/2

+

( ∑
e∈Eh(Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d −∇uD

)∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Γ)

‖w‖2
1,∆(e)

)1/2}
.

Therefore, from the previous estimate and the fact that the number of triangles
of the macro-elements ∆(T ) and ∆(e) are uniformly bounded, we get (2.3.9) and
conclude the proof.

The following lemma combines Lemmas 2.3.4 and 2.3.5 and establishes the
desired estimate for R1.

Lemma 2.3.6. There exists C > 0, independent of h, such that

‖R1‖X′0 ≤ C

{ ∑
T∈Th

Θ2
T

}1/2

,

with ΘT defined as in (2.3.2).

Proof. For simplicity, we prove the result for the two-dimensional case. The three
dimensional case proceed analogously.

Let τ ∈ X0. It follows from Lemma 2.2.4 that there exist ξ ∈ W1,4/3(Ω) and
w ∈ H1(Ω), such that τ = ξ + curl w and

‖ξ‖W1,4/3(Ω) + ‖w‖1,Ω ≤ CHel‖τ‖X. (2.3.10)

Now, noticing that owing to the Galerkin orthogonality there holds R1(τh) = 0
for all τh ∈ Xh,0, it follows that

R1(τ ) = R1(τ − τh) ∀τh ∈ Xh,0.

In particular, for τh defined as

τh = Πk
hξ + curl (Ihw) + Cξ,wI
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with
Cξ,w = − 1

2|Ω|
(
tr
(
Πk
h(ξ) + curl (Ihw)

)
, 1
)

Ω
,

and observing that from the definition of R1 and the compatibility condition
(1.2.2), there holds R1(c I) = 0 for any constant c ∈ R, we obtain

R1(τ ) = R1(ξ −Πk
hξ) +R1(curl (w − Ihw)).

Hence, the proof follows from Lemmas 2.3.4 and 2.3.5, and estimate (2.3.10).

We end this section by observing that the reliability estimate (2.3.4) is a direct
consequence of Lemmas 2.3.3 and 2.3.6.

2.3.2 Local efficiency of the a posteriori error estimator

We begin by establishing the main result of this section.

Theorem 2.3.7. There exists Crel > 0, independent of h, such that

Ceff Θ ≤ ‖(σ − σh,u− uh)‖+ h.o.t, (2.3.11)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that the proof of (2.3.11) makes frequent use of the
identities provided by Theorem 1.2.4. We begin with the estimates for the zero
order terms appearing in the definition of ΘT (cf. (2.3.2)).

Lemma 2.3.8. There holds

‖f + divσh‖L4/3(T ) ≤ ‖σ − σh‖div4/3 ,T ∀T ∈ Th.

Proof. It suffices to recall, as established in Theorem 1.2.4, that f = −divσ in
Ω.

In order to derive the upper bounds for the remaining terms defining the global
a posteriori error estimator Θ (cf.(2.3.1)), we use results from [35], inverse inequali-
ties, and the localization technique based on element-bubble and edge-bubble func-
tions. To this end, we now introduce further notations and preliminary results.
Given T ∈ Th and e ∈ Eh,T , we let φT and φe be the usual element-bubble and
edge-bubble (for d = 2) or face-bubble (for d = 3) functions, respectively (see [110]
for details). In particular φT satisfies φT ∈ P3(T ) (for d = 2) or φT ∈ P4(T ) (for
d = 3), supp φT ⊆ T , φT = 0 on ∂T , and 0 ≤ φT ≤ 1 in T . Similarly, φe|T ∈ P2(T )
(for d = 2) or φe|T ∈ P3(T ) (for d = 3), supp φe ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh,T ′},
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φe = 0 on ∂T\e and 0 ≤ φT ≤ 1 in ωe. We also recall from [110] that, given
k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(ωe) that satisfies
L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L,
that is the componentwise application of L, is denoted by L. Additional properties
of φT , φe and L are collected in the following lemma.

Lemma 2.3.9. Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3 and
c4, depending only on k and the shape regularity of the triangulations (minimum
angle condition), such that, for each triangle T and e ∈ Eh, there hold

‖φT q‖2
0,T ≤ ‖q‖2

0,T ≤ c1‖φ1/2
T q‖2

0,T ∀q ∈ Pk(T ), (2.3.12)

‖φeL(p)‖2
0,e ≤ ‖p‖2

0,e ≤ c2‖φ1/2
e p‖2

0,e ∀p ∈ Pk(e)

and
c3 h

1/2
e ‖p‖0,e ≤ ‖φ1/2

e L(p)‖0,T ≤ c4 h
1/2
e ‖p‖0,e ∀p ∈ Pk(e).

Proof. See Lemma 4.1 in [110].

In addition, given k ∈ N ∪ {0}, T ∈ Th and e ∈ Eh, in what follows we will
make use of the following inverse inequalities (see [63, Lemma 1.138]): There exist
c1, c2 > 0, independent of the meshsize, such that

‖v‖W1,4/3(T ) ≤ c1 h
−1+d/4
T ‖v‖0,T ∀ v ∈ Pk(T ), (2.3.13)

‖v‖L4(e) ≤ c2 h
(1−d)/4
e ‖v‖0,e ∀ v ∈ Pk(e). (2.3.14)

Finally, we recall the standard discrete trace inequality, which establishes the
existence of a positive constant c, depending only on the shape regularity of the
triangulations, such that for each T ∈ Th and e ∈ Eh,T , there holds

‖v‖2
0,e ≤ c

(
h−1
e ‖v‖2

0,T + he|v|21,T
)
∀ v ∈ H1(T ). (2.3.15)

The proof of (2.3.15) we refer to Theorem 3.10 in [1].
Now we proceed by deriving the estimates for the remaining terms defining Θ.

Lemma 2.3.10. There exists C1 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥
0,T

≤ C1

{(
1 + h

1−d/4
T

)
‖u− uh‖L4(T ) + h

1−d/4
T

∥∥σ − σh∥∥0,T

}
∀T ∈ Th.

(2.3.16)
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Proof. Given T ∈ Th, we define χT := ∇uh −
1

ν
(σh + (uh ⊗ uh))

d in T . Then,

applying (2.3.12) to ‖χT‖0,T , recalling the identity ∇u =
1

ν
(σ + (u ⊗ u))d in Ω

(cf. Theorem 1.2.4), integrating by parts and using that φT = 0 on ∂T , we deduce

‖χT‖2
0,T ≤ ‖φ

1/2
T χT‖2

0,T =

(
∇uh −

1

ν
(σh + (uh ⊗ uh))

d, φTχT

)
T

= (div(φTχT ),u− uh)T +
1

ν

(
φTχT , (σ

d − σd
h) + (u⊗ u)d − (uh ⊗ uh)

d
)
T
.

Next, using the Hölder and Cauchy-Schwarz inequalities, the inverse inequality
(2.3.13) with l = 1, p = 4/3, m = 0 and q = 2, and the estimate (2.3.12), we
obtain

‖χT‖2
0,T ≤ c |φTχT |W1,4/3(T )‖u− uh‖L4(T )

+
1

ν
‖φTχT‖0,T

∥∥(σ − σh)d + (u⊗ u− uh ⊗ uh)
d
∥∥

0,T

≤ C h
−1+d/4
T ‖χT‖0,T‖u− uh‖L4(T )

+
1

ν
‖χT‖0,T

(∥∥σ − σh∥∥0,T
+
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
,

which implies

‖χT‖0,T ≤ C h
−1+d/4
T ‖u− uh‖L4(T ) +

1

ν

(∥∥σ − σh∥∥0,T
+
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
.

(2.3.17)
In turn, applying similar algebraic manipulation used in [30, Corollary 4.10], using
Hölder inequality, estimates (1.2.14), (1.2.17), and the fact that the data are small
enough, we deduce that∥∥u⊗ u− uh⊗ uh

∥∥
0,T
≤
(
‖u‖L4(T ) + ‖uh‖L4(T )

)
‖u− uh‖L4(T ) ≤ C ‖u− uh‖L4(T ),

(2.3.18)
with C > 0 independent of h. Finally, replacing (2.3.18) into (2.3.17) we obtain
(2.3.16) and conclude the proof.

Lemma 2.3.11. Assume that uD is piecewise polynomial. Then, there exists C2 >
0, independent of h, such that

h1/4
e ‖uD−uh‖L4(e) ≤ C2

{(
1+h

1−d/4
T

)
‖u−uh‖L4(T )+h

1−d/4
T

∥∥σ−σh∥∥0,T

}
(2.3.19)

for all e ∈ Eh,T (Γ).

Proof. Given e ∈ Eh(Γ), from (2.3.14), it follows that

‖uD − uh‖L4(e) ≤ Ch(1−d)/4
e ‖uD − uh‖0,e. (2.3.20)
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Hence, from (2.3.20) and (2.3.15), we deduce that

‖uD − uh‖L4(e) ≤ C
{
h(−1−d)/4
e ‖u− uh‖0,T + h(3−d)/4

e |u− uh|1,T
}
. (2.3.21)

Now, using the Cauchy-Schwarz inequality and the fact that |T | ∼= hdT , we deduce
that

‖u− uh‖0,T =
(
1, |u− uh|2

)1/2

T
≤ |T |1/4‖u− uh‖L4(T ) ≤ ch

d/4
T ‖u− uh‖L4(T ).

(2.3.22)

In turn, using the identity ∇u =
1

ν
(σd + (u⊗ u)d) in Ω (cf. Theorem 1.2.4) and

some algebraic computations, we deduce that

|u− uh|1,T

=

∥∥∥∥1

ν

(
(σ − σh)d + ((u⊗ u)− (uh ⊗ uh))

d
)

+
1

ν
(σh + (uh ⊗ uh))

d −∇uh

∥∥∥∥
0,T

≤ 1

ν

(∥∥σ − σh‖0,T +
∥∥u⊗ u− uh ⊗ uh

∥∥
0,T

)
+

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥
0,T

which together with (2.3.17) and (2.3.18), yields

|u− uh|1,T ≤ C
(
1 + h

−1+d/4
T

)
‖u− uh‖L4(T ) +

2

ν
‖σ − σh‖0,T . (2.3.23)

Therefore, (2.3.19) follows from estimates (2.3.21), (2.3.22) and (2.3.23), and the
fact that he ≤ hT .

Now we establish the estimates for the remaining terms defining Θ.

Lemma 2.3.12. There exist C3 > 0 and C4 > 0, independent of h, such that

hT

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥
0,T

≤ C3

{
‖u−uh‖L4(T )+‖σ−σh‖0,T

}
(2.3.24)

for all T ∈ Th and

h1/2
e

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥
0,e

≤ C4

{
‖u− uh‖L4(ωe) + ‖σ − σh‖0,ωe

}
(2.3.25)

for all e ∈ Eh(Ω).
Additionally, if uD is piecewise polynomial, there exists C5 > 0, independent of

h, such that

h1/2
e

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d −∇uD

)∥∥∥∥
0,e

≤ C5

{
‖u− uh‖L4(Te) + ‖σ − σh‖0,Te

}
(2.3.26)

for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary
face e belongs.
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Proof. For the two-dimensional case, we proceed as in [53, Lemma 3.15], that

is, we apply [77, Lemmas 4.9, 4.10, and 4.15] to ζ :=
1

ν
(σ + (u ⊗ u))d = ∇u

and ζh :=
1

ν
(σh + (uh ⊗ uh))

d, and the estimate ‖(u ⊗ u)d − (uh ⊗ uh)
d‖0,T ≤

‖u⊗ u− uh ⊗ uh‖0,T , to obtain∥∥∥∥curl

(
1

ν
(σh + uh ⊗ uh)

d

)∥∥∥∥2

0,T

≤ Ch−2
T

{
‖σ − σh‖2

0,T + ‖u⊗ u− uh ⊗ uh‖2
0,T

}
,

(2.3.27)∥∥∥∥[[γ∗(1

ν
(σh + uh ⊗ uh)

d

)]]∥∥∥∥2

0,e

≤ Ch−1
e

{
‖σ−σh‖2

0,ωe
+ ‖u⊗u−uh⊗uh‖2

0,ωe

}
(2.3.28)

and∥∥∥∥γ∗(1

ν
(σh + uh ⊗ uh)

d −∇uD

)∥∥∥∥2

0,e

≤ Ch−1
e

{
‖σ−σh‖2

0,Te+‖u⊗u−uh⊗uh‖2
0,Te

}
.

(2.3.29)
Thus, using the estimate (2.3.18) it follows that (2.3.27), (2.3.28), and (2.3.29),
imply (2.3.24), (2.3.25), and (2.3.26), respectively. On the other hand, for the
three-dimensional case the corresponding estimates follow from using the results
from Lemmas 4.9, 4.10, and 4.13 in [75], respectively.

We remark that, for simplicity, we have assume that uD is piecewise polynomial
for the derivation of (2.3.19) in Lemma 2.3.11 and (2.3.26) in Lemma 2.3.12.
However, by assuming that uD is sufficiently smooth, and proceeding similarly as
in [39, Section 6.2] one can also obtain similar estimates. In such a case, higher
order terms given by the errors arising from suitable polynomial approximations
would appear in (2.3.19) and (2.3.26), which explains the eventual h.o.t in (2.3.11).

We end this section by remarking that the efficiency of Θ (cf. (2.3.11)) in
Theorem 2.3.7 is now a straightforward consequence of Lemmas 2.3.8, 2.3.10, 2.3.11
and 2.3.12. In turn, we emphasize that the resulting positive constant, denoted by
Ceff is independent of h.

2.4 Numerical results

This section serves to illustrate the performance and accuracy of our mixed
finite element scheme (1.2.15) along with the reliability and efficiency properties
of the a posteriori error estimator Θ (cf. (2.3.1)) derived in Section 2.3. In what
follows, we refer to the corresponding sets of finite element subspaces generated by
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k = 0 and k = 1, as simply RT0−P0 and RT1−P1, respectively. Our implemen-
tation is based on a FreeFem++ code [85]. Regarding the implementation of the
Newton iterative method associated to (1.2.15) (see [30, Section 5] for details), the
iterations are terminated once the relative error of the entire coefficient vectors
between two consecutive iterates, say coeffm and coeffm+1, is sufficiently small,
i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol,

where ‖ · ‖`2 is the standard `2-norm in RN , with N denoting the total number
of degrees of freedom defining the finite element subspaces Xh and Mh stated
in Section 1.2.3, and tol is a fixed tolerance chosen as tol=1E-06. As usual, the
individual errors are denoted by:

e(σ) := ‖σ − σh‖X, e(u) := ‖u− uh‖M, e(p) := ‖p− ph‖0,Ω,

e(∇u) := ‖∇u−Gh‖0,Ω, e(ω) := ‖ω − ωh‖0,Ω,

where the pressure p, the velocity gradient ∇u, and the vorticity ω := 1
2

(
∇u −

(∇u)t
)
are approximated, respectively, through the post-processing formulas (cf.

[30, Section 4.4]):

ph = −1

d

(
tr (σh) + tr (uh ⊗ uh)−

1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
,

Gh =
1

ν

(
σd
h + (uh ⊗ uh)

d
)
, ωh =

1

2ν

(
σh − σt

h

)
.

Then, the global error and the effectivity index associated to the global estimator
Θ are denoted, respectively, by

e(σ,u) := e(σ) + e(u) and eff(Θ) :=
e(σ,u)

Θ
.

Moreover, using the fact that cN−1/d ≤ h ≤ C N−1/d, the experimental rate of
convergence of any of the above quantities will be computed as

r(�) := −d log(e(�)/e′(�))
log(N/N ′)

for each � ∈
{
σ,u, p,∇u,ω, (σ,u)

}
,

where N and N ′ denote the total degrees of freedom associated to two consecutive
triangulations with errors e and e′.

The examples to be considered in this section are described next. In all of
them, for the sake of simplicity, we choose the parameter ν = 1. Furthermore, the
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condition (tr (σh), 1)Ω = 0 is imposed via a penalization strategy using a scalar
Lagrange multiplier (see [30, eq. (5.1)] for details).

Example 1 is used to corroborate the reliability and efficiency of the a posteriori
error estimator Θ, whereas Examples 2 and 3 are utilized to illustrate the behavior
of the associated adaptive algorithm in 2D and 3D domains, respectively, which
applies the following procedure from [111]:

(1) Start with a coarse mesh Th.

(2) Solve the Newton iterative method associated to (1.2.15) for the current
mesh Th.

(3) Compute the local indicator Θ̂T for each T ∈ Th, where

Θ̂T := ΘT + ‖f + divσh‖L4/3(T ), (cf. (2.3.2))

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Generate an adapted mesh through a variable metric/Delaunay automatic
meshing algorithm (see [86, Section 9.1.9]).

(6) Define resulting mesh as current mesh Th, and go to step (2).

Example 1: Accuracy assessment with a smooth solution in
a square domain.

In our first example, we concentrate on the accuracy of the mixed method. We
consider the square domain Ω := (0, 1)2. The data f and uD are chosen so that a
manufactured solution of (1.2.1) is given by the smooth functions

u(x) :=

(
x2

1(x1 − 1)2 sin(x2)
2x1(x1 − 1)(2x1 − 1) cos(x2)

)
,

p(x) := cos(πx1) exp(πx2) ∀x := (x1, x2) ∈ Ω.

The results reported in Tables 2.4.1 and 2.4.2 are in accordance with the the-
oretical bounds established in Theorem 1.2.6. In addition, we also compute the
global a posteriori error indicator Θ (cf. (2.3.1)), and measure its reliability and
efficiency with the effectivity index. Notice that the estimator remain always
bounded.
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Example 2: Adaptivity in a 2D L-shape domain.

Our second example is aimed at testing the features of adaptive mesh refine-
ment after the a posteriori error estimator Θ (cf. (2.3.1)). We consider a L-shape
contraction domain Ω := (−1, 1)2 \ (0, 1)2. The data f and uD are chosen so that
the exact solution is given by

u(x) :=

(
− cos(πx1) sin(πx2)
sin(πx1) cos(πx2)

)
,

p(x) :=
1− x1

(x1 − 0.02)2 + (x2 − 0.02)2
− p0 ∀x := (x1, x2) ∈ Ω,

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the
pressure exhibit high gradients near the vertex (0, 0).

Tables 2.4.3–2.4.6 along with Figure 2.4.3, summarizes the convergence history
of the method applied to a sequence of quasi-uniformly and adaptively refined tri-
angulation of the domain. Suboptimal rates are observed in the first case, whereas
adaptive refinement according to the a posteriori error indicator Θ yields optimal
convergence and stable effectivity indexes. Notice how the adaptive algorithms
improves the efficiency of the method by delivering quality solutions at a lower
computational cost, to the point that it is possible to get a better one (in terms
of e(σ,u)) with approximately only the 0.6% of the degrees of freedom of the last
quasi-uniform mesh for the mixed scheme in both cases k = 0 and k = 1. In ad-
dition, we recall from [30, Remark 4.6] that our Galerkin scheme (1.2.15) satisfies
the property divσh = Pk

h(f) in Ω, where Pk
h is the L2(Ω)-orthogonal projection

onto Mh. In this way, using the fact that f does not live in Mh, we illustrate the
conservation of momentum in an approximate sense by computing the `∞-norm
for divσh + Pk

h(f), with k = 0, 1. As expected, these values are close to zero.
On the other hand, approximate solutions builded using the RT1 −P1 scheme

with 880, 554 degrees of freedom (54, 955 triangles), via the indicator Θ, are shown
in Figure 2.4.2. In particular, we observe in the computed magnitude of the velocity
a vortex near the corner region of the L-shape domain whereas the pressure exhibits
high gradients in the same region. In turn, examples of some adapted meshes for
k = 0 and k = 1 are collected in Figure 2.4.1. We can observe a clear clustering
of elements near the corner region of the contraction as we expected.
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Example 3: Adaptivity in a 3D L-shape domain.

To conclude, we replicate the Example 2 in a three-dimensional setting. How-
ever, this time we consider the 3D L-shape domain Ω := (−0.5, 0.5) × (0, 0.5) ×
(−0.5, 0.5) \ (0, 0.5)3, and the manufactured exact solutions adopt the form

u(x) :=

 sin(πx1) cos(πx2) cos(πx3)
−2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 ,

p(x) :=
10x3

(x1 − 0.02)2 + (x3 − 0.02)2
− p0 ∀x := (x1, x2, x3) ∈ Ω,

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Similarly, Tables 2.4.7
and 2.4.8 along with the Figure 2.4.6 confirm a disturbed convergence under quasi-
uniform refinement and optimal convergence rates when using adaptive refinement
guided by the a posteriori error estimator Θ. In turn, some approximated solu-
tions after four mesh refinement steps showing an analogous behavior to its 2-D
counterpart are collected in Figure 2.4.4, whereas snapshots of three meshes via Θ
are shown in Figure 2.4.5.
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N h e(σ) r(σ) e(u) r(u)

196 0.373 6.58E+00 – 1.39E-01 –
792 0.196 3.03E+00 1.110 4.30E-02 1.681
3084 0.098 1.51E+00 1.022 1.66E-02 1.399
12208 0.048 7.79E-01 0.965 7.79E-03 1.100
48626 0.028 3.84E-01 1.023 3.93E-03 0.993
196242 0.014 1.90E-01 1.011 1.91E-04 1.035

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

1.66E+00 – 1.61E+00 – 9.53E-01 –
6.63E-01 1.317 8.32E-01 0.949 3.75E-01 1.335
2.97E-01 1.181 4.28E-01 0.980 1.67E-01 1.193
1.54E-01 0.955 2.35E-01 0.870 7.95E-02 1.075
7.16E-02 1.106 1.14E-01 1.042 3.97E-02 1.007
3.50E-02 1.027 5.66E-02 1.009 1.97E-02 1.005

e(σ,u) r(σ,u) Θ eff(Θ) iter
6.72E+00 – 1.26E+01 0.534 4
3.07E+00 1.120 6.27E+00 0.490 3
1.53E+00 1.027 3.23E+00 0.474 3
7.86E-01 0.967 1.71E+00 0.461 3
3.88E-01 1.022 8.53E-01 0.455 3
1.92E-01 1.011 4.30E-01 0.446 3

Table 2.4.1: Example 1, RT0 −P0 scheme with quasi-uniform refinement.
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N h e(σ) r(σ) e(u) r(u)

608 0.3727 8.11E-01 – 1.50E-02 –
2496 0.1964 1.70E-01 2.211 3.54E-03 2.044
9792 0.0978 4.34E-02 1.997 8.36E-04 2.112
38912 0.0481 1.12E-02 1.958 2.09E-04 2.008
155296 0.0279 2.76E-03 2.029 5.69E-05 1.882
627360 0.0142 6.74E-04 2.021 1.38E-05 2.028

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

1.44E-01 – 2.45E-01 – 1.23E-01 –
3.22E-02 2.123 5.48E-02 2.117 2.46E-02 2.285
8.48E-03 1.953 1.45E-02 1.945 6.14E-03 2.028
2.21E-03 1.946 3.82E-03 1.933 1.60E-03 1.948
5.32E-04 2.060 9.26E-04 2.049 3.85E-04 2.058
1.30E-04 2.017 2.26E-04 2.019 9.33E-05 2.031

e(σ,u) r(σ,u) Θ eff(Θ) iter
8.26E-01 – 2.58E+00 0.321 3
1.74E-01 2.208 5.67E-01 0.306 3
4.43E-02 2.000 1.48E-01 0.299 3
1.15E-02 1.959 3.94E-02 0.291 3
2.82E-03 2.026 9.95E-03 0.283 3
6.88E-04 2.021 2.55E-03 0.269 3

Table 2.4.2: Example 1, RT1 −P1 scheme with quasi-uniform refinement.
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N h e(σ) r(σ) e(u) r(u)

552 0.400 6.48E+02 – 5.72E+00 –
2264 0.190 7.91E+02 – 3.51E+00 0.693
8778 0.103 6.63E+02 0.260 2.34E+00 0.600
34726 0.051 4.51E+02 0.559 1.04E+00 1.170
138722 0.027 2.63E+02 0.778 3.94E-01 1.407
555584 0.014 1.36E+02 0.948 1.15E-01 1.773

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

3.78E+01 – 4.89E+01 – 2.35E+01 –
3.87E+01 – 4.31E+01 0.180 1.67E+01 0.483
2.74E+01 0.508 3.84E+01 0.169 1.83E+01 –
1.87E+01 0.556 2.64E+01 0.543 1.19E+01 0.632
1.03E+01 0.863 1.59E+01 0.734 7.06E+00 0.748
5.15E+00 0.998 8.29E+00 0.939 3.37E+00 1.066

e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P0
h(f)‖`∞ iter

6.53E+02 – 8.37E+02 0.780 4.55E-13 5
7.94E+02 – 9.45E+02 0.840 9.09E-13 4
6.65E+02 0.261 8.08E+02 0.823 7.28E-12 4
4.52E+02 0.561 5.51E+02 0.820 1.09E-11 4
2.63E+02 0.780 3.27E+02 0.806 5.09E-11 3
1.37E+02 0.949 1.70E+02 0.802 1.16E-10 3

Table 2.4.3: Example 2, RT0 −P0 scheme with quasi-uniform refinement.
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N h e(σ) r(σ) e(u) r(u)

1728 0.400 4.92E+02 – 2.57E+00 –
7168 0.190 5.59E+02 – 1.63E+00 0.637
27936 0.103 4.07E+02 0.464 5.84E-01 1.512
110816 0.051 1.96E+02 1.064 1.69E-01 1.803
443296 0.027 6.89E+01 1.506 4.00E-02 2.078
1776640 0.014 1.94E+01 1.827 5.92E-03 2.751

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

2.38E+01 – 3.43E+01 – 1.62E+01 –
1.95E+01 0.283 3.15E+01 0.121 1.55E+01 0.063
1.12E+01 0.813 1.78E+01 0.842 8.95E+00 0.805
5.38E+00 1.064 8.51E+00 1.068 3.95E+00 1.190
1.74E+00 1.627 3.07E+00 1.470 1.38E+00 1.519
4.90E-01 1.827 8.48E-01 1.853 3.62E-01 1.924

e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P1
h(f)‖`∞ iter

4.95E+02 – 8.42E+02 0.588 9.38E-13 4
5.60E+02 – 7.56E+02 0.741 3.64E-12 4
4.08E+02 0.466 5.46E+02 0.748 1.18E-11 3
1.96E+02 1.065 2.64E+02 0.742 8.73E-11 3
6.90E+01 1.506 9.41E+01 0.733 1.46E-10 3
1.94E+01 1.827 2.64E+01 0.734 2.91E-10 3

Table 2.4.4: Example 2, RT1 −P1 scheme with quasi-uniform refinement.
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N e(σ) r(σ) e(u) r(u)

552 6.48E+02 – 5.72E+00 –
920 7.29E+02 – 2.21E+00 3.722
1370 4.22E+02 2.741 7.42E-01 5.486
2110 1.84E+02 3.843 2.63E-01 4.808
3666 9.33E+01 2.462 2.54E-01 0.123
7256 6.25E+01 1.175 2.53E-01 0.016
12786 4.67E+01 1.027 1.84E-01 1.114
22746 3.54E+01 0.961 1.36E-01 1.041
44082 2.51E+01 1.035 9.48E-02 1.102
81474 1.88E+01 0.955 6.68E-02 1.138
161434 1.32E+01 1.024 4.67E-02 1.051
306256 9.72E+00 0.959 3.19E-02 1.191

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

3.78E+01 – 4.89E+01 – 2.35E+01 –
3.10E+01 0.773 3.57E+01 1.230 1.44E+01 1.913
1.55E+01 3.475 2.21E+01 2.412 8.95E+00 2.394
6.77E+00 3.846 1.01E+01 3.629 3.75E+00 4.031
3.43E+00 2.458 5.38E+00 2.277 1.86E+00 2.532
2.32E+00 1.146 3.69E+00 1.109 1.29E+00 1.066
1.71E+00 1.076 2.73E+00 1.058 9.39E-01 1.136
1.29E+00 0.988 2.06E+00 0.978 7.07E-01 0.986
9.12E-01 1.040 1.47E+00 1.024 5.05E-01 1.014
6.77E-01 0.969 1.09E+00 0.973 3.70E-01 1.019
4.79E-01 1.013 7.71E-01 1.011 2.62E-01 1.008
3.51E-01 0.977 5.63E-01 0.983 1.89E-01 1.022

e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P0
h(f)‖`∞ iter

6.53E+02 – 8.37E+02 0.780 4.55E-13 5
7.31E+02 – 8.53E+02 0.858 3.64E-12 4
4.23E+02 2.748 5.03E+02 0.841 1.82E-11 4
1.85E+02 3.844 2.24E+02 0.825 8.73E-11 3
9.36E+01 2.458 1.16E+02 0.809 3.49E-10 3
6.27E+01 1.172 7.80E+01 0.804 1.05E-09 3
4.69E+01 1.027 5.83E+01 0.804 1.26E-09 3
3.56E+01 0.961 4.43E+01 0.803 1.91E-09 3
2.52E+01 1.035 3.15E+01 0.801 2.66E-09 3
1.88E+01 0.956 2.35E+01 0.800 4.57E-09 3
1.33E+01 1.024 1.66E+01 0.796 5.15E-09 3
9.75E+00 0.960 1.23E+01 0.795 9.30E-09 3

Table 2.4.5: Example 2, RT0 −P0 scheme with adaptive refinement via Θ.
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N e(σ) r(σ) e(u) r(u)

1728 4.92E+02 – 2.57E+00 –
2742 4.61E+02 0.283 9.12E-01 4.491
4052 1.71E+02 5.076 1.36E-01 9.732
5974 3.16E+01 8.706 3.24E-02 7.413
10506 1.01E+01 4.051 3.21E-02 0.026
23492 4.89E+00 1.794 2.63E-02 0.493
57828 2.01E+00 1.974 4.43E-03 3.960
140672 8.40E-01 1.962 4.06E-03 0.194
372550 3.20E-01 1.985 5.55E-04 4.088
880554 1.34E-01 2.017 4.91E-04 0.284

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

2.38E+01 – 3.43E+01 – 1.62E+01 –
1.19E+01 3.020 2.22E+01 1.889 1.16E+01 1.457
4.36E+00 5.122 6.91E+00 5.972 3.01E+00 6.901
7.54E-01 9.042 1.25E+00 8.795 4.79E-01 9.466
2.79E-01 3.522 4.71E-01 3.465 1.84E-01 3.386
1.30E-01 1.903 2.17E-01 1.927 8.64E-02 1.879
5.51E-02 1.902 9.24E-02 1.898 3.54E-02 1.982
2.22E-02 2.043 3.77E-02 2.018 1.51E-02 1.921
8.69E-03 1.928 1.45E-02 1.955 5.53E-03 2.057
3.48E-03 2.128 5.87E-03 2.107 2.30E-03 2.039

e(σ,u) r(σ,u) Θ eff(Θ) ‖divσh + P1
h(f)‖`∞ iter

4.95E+02 – 8.42E+02 0.588 9.38E-13 4
4.62E+02 0.297 5.89E+02 0.784 7.28E-12 4
1.71E+02 5.082 2.17E+02 0.789 2.55E-11 3
3.16E+01 8.705 4.05E+01 0.781 1.75E-10 3
1.01E+01 4.043 1.37E+01 0.738 9.60E-10 3
4.92E+00 1.789 6.58E+00 0.747 2.15E-09 3
2.01E+00 1.981 2.69E+00 0.748 6.81E-09 3
8.44E-01 1.956 1.15E+00 0.735 9.34E-09 3
3.20E-01 1.991 4.28E-01 0.748 1.14E-08 3
1.35E-01 2.013 1.85E-01 0.727 2.21E-08 3

Table 2.4.6: Example 2, RT1 −P1 scheme with adaptive refinement via Θ.
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Figure 2.4.1: Example 2, three snapshots of adapted meshes according to the
indicator Θ for k = 0 and k = 1 (top and bottom plots, respectively).
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Figure 2.4.2: Example 2, initial mesh, computed magnitude of the velocity, and
pressure field.
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Figure 2.4.3: Example 2, Log-log plot of e(σ,u) vs. N for quasi-uniform/adaptive
refinements for k = 0 and k = 1 (left and right plots, respectively).

N h e(σ) r(σ) e(u) r(u)

1464 0.354 1.02E+02 – 1.03E+00 –
11040 0.177 9.23E+01 0.147 6.52E-01 0.684
57624 0.101 8.27E+01 0.199 4.30E-01 0.757
285984 0.059 6.30E+01 0.509 2.32E-01 1.154
1518804 0.034 4.14E+01 0.756 1.11E-01 1.317

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

9.34E+00 – 7.85E+00 – 4.52E+00 –
7.93E+00 0.243 6.64E+00 0.249 3.49E+00 0.387
6.37E+00 0.396 5.77E+00 0.255 2.85E+00 0.365
4.24E+00 0.762 4.39E+00 0.511 2.03E+00 0.636
2.49E+00 0.956 3.02E+00 0.671 1.35E+00 0.738

e(σ,u) r(σ,u) Θ eff(Θ) iter
1.03E+02 – 1.16E+02 0.885 4
9.29E+01 0.151 1.01E+02 0.922 4
8.31E+01 0.203 8.87E+01 0.936 4
6.32E+01 0.511 6.71E+01 0.943 3
4.15E+01 0.757 4.40E+01 0.943 5

Table 2.4.7: Example 3, RT0 −P0 scheme with quasi-uniform refinement.
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N e(σ) r(σ) e(u) r(u)

1464 1.02E+02 – 1.03E+00 –
5784 9.54E+01 0.143 7.29E-01 0.762
40293 8.30E+01 0.214 4.22E-01 0.844
155496 5.22E+01 1.031 1.69E-01 2.034
1050117 2.09E+01 1.435 4.41E-02 2.108

e(p) r(p) e(∇u) r(∇u) e(ω) r(ω)

9.34E+00 – 7.85E+00 – 4.52E+00 –
8.26E+00 0.266 6.85E+00 0.298 3.55E+00 0.532
5.92E+00 0.516 5.67E+00 0.292 2.62E+00 0.468
3.15E+00 1.399 3.68E+00 0.960 1.59E+00 1.111
1.15E+00 1.582 1.58E+00 1.330 5.80E-01 1.581

e(σ,u) r(σ,u) Θ eff(Θ) iter
1.03E+02 – 1.16E+02 0.885 4
9.61E+01 0.149 1.04E+02 0.921 4
8.34E+01 0.218 8.87E+01 0.940 4
5.24E+01 1.035 5.56E+01 0.941 3
2.10E+01 1.436 2.27E+01 0.925 3

Table 2.4.8: Example 3, RT0 −P0 scheme with adaptive refinement via Θ.
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Figure 2.4.4: Example 3, initial mesh, computed magnitude of the velocity, and
pressure field.
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Figure 2.4.5: Example 3, three snapshots of adapted meshes according to the
indicator Θ for k = 0.
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Figure 2.4.6: Example 3, Log-log plot of e(σ,u) vs. N for quasi-uniform/adaptive
refinements for k = 0.



Chapter 3

A new mixed-FEM for steady-state
natural convection models allowing
conservation of momentum and
thermal energy

3.1 Introduction

The motion of a liquid or gas, generated by some parts of the fluid being
heavier than other parts, or in other words, produced by density differences as,
for example, when a liquid in a vessel is heated from below, is a process known as
natural convection. Different from what happens in forced convection, where the
fluid flow is driven by a external source (like a suction device or a fan), the driving
force is gravity and creates a circulating flow (convection). For several phenomena
in nature and industry, such as in oceanic circulation, central heating and dense
gas dispersion, that is, when density differences can be ignored except where they
appear in terms multiplied by the acceleration due to gravity, the fluid behavior
can be described by the well-known Boussinesq model. The latter consists in a
system of equations where the incompressible Navier–Stokes equation:

−ν ∆u + (∇u)u +∇p− θ g = 0 in Ω, div u = 0 in Ω,

u = 0 on Γ, (p, 1)Ω = 0,
(3.1.1)

is coupled with the convection-diffusion equation:

−κ∆ θ+u ·∇θ = 0 in Ω, θ = θD on ΓD, κ∇θ ·n = 0 on ΓN, (3.1.2)

61
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where Ω is a bounded domain in Rd, d ∈ {2, 3}, with polyhedral boundary Γ.
Above, the unknowns are the velocity u, the pressure p and the temperature θ of
the fluid occupying the region Ω, and the given data are the fluid viscosity ν > 0,
the thermal conductivity κ > 0, the external force per unit mass g ∈ L2(Ω), and
the boundary temperature θD ∈ H1/2(ΓD).

Recently, in the literature it can be observed an increasing interest in developing
new numerical methods to approximate the solution of (3.1.1)-(3.1.2), motivated
by the diverse applications of this coupled model (as those already mentioned
above), and also by the increasing need of simpler, more accurate, and more ef-
ficient procedures to solve it. For instance, primal and mixed-type numerical
formulations have been already considered in several works over the last decades
(see, e.g. [19, 45, 57, 55, 50, 52, 64, 99, 100, 101, 103, 107, 113], respectively,
and the references therein). The above list includes approaches with constant and
temperature-dependent parameters as well as the steady-state and evolutive cases.
In particular, in the context of dual-mixed formulations for (3.1.1)-(3.1.2), aug-
mented mixed formulations have been introduced in [6] and [52] for the Boussinesq
problem with temperature-dependent and constant viscosity, respectively. In both
cases, the analysis is based on the introduction of a pseudostress tensor relating
the diffusive and convective terms with the pressure and it is proved optimal con-
vergence. In turn, in [55] and [49] the authors explore new numerical schemes for
(3.1.1)-(3.1.2) considering constant (in [55]) and temperature-dependent viscosity
(in [49]). There the authors introduce an alternative pseudostress tensor which
allows them to derive a variational formulation with a skew-symmetric convec-
tive term. In this way, without augmenting the formulation as in [6] and [52],
well-posedness and optimal convergence are proved at the cost of not being able
to utilize low order elements (Raviart-Thomas spaces of order k ≥ d − 1). Fi-
nally, the gradient of the velocity and the temperature are introduced in [64] to
obtain a quasi-optimal mixed finite element method to approximate the solution
of (3.1.1)-(3.1.2).

When the equations to be solved are conservation laws, specifically, conser-
vation of mass, conservation of linear momentum, and conservation of energy as
it is in this case, it is always desirable to employ numerical schemes respecting
these laws. In this direction, in [8, 100] two mass-conservative schemes have been
proposed to approximate the solution of the Boussinesq problem. In [100] the
conservation of mass is numerically attained by utilizing the exactly divergence-
free discontinuous Galerkin (DG) method proposed in [48] (see also [47]) for the
discretization of fluid-flow problems. Later on, in [8] the authors consider a low
order stabilized numerical scheme to discretize the fluid-flow equation and obtain
the desired mass-conservative scheme. We emphasize that both works consider the
temperature-dependent parameter case. We emphasize also that [100] has been
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replicated in [99] and [24] for the Boussinesq model with constant parameters and
for double-diffusion equations in porous media, respectively.

Now, for flow problems in general, if the intention is to conserve momentum,
probably one of the classical approaches to do that is the discretization by means of
mixed finite element methods. In fact, since the equilibrium equation is discretized
at the same time with the constitutive equation, by construction, they naturally
conserve momentum. This is the case, for instance, of the pseudostress-based
mixed method for the Navier-Stokes equation introduced in [30]. There, consider-
ing a non-standard mixed formulation posed in Banach spaces, a new dual-mixed
method is proposed for the Navier-Stokes problem where the pseudostress and the
velocity are approximated using Raviart-Thomas elements of order k and discon-
tinuous piecewise polynomials of degree k, respectively.

Going back to the Boussinesq equations, we observe that the mixed-type ap-
proaches [6] and [52] do not conserve momentum nor thermal energy because of
the augmentation of the mixed formulation. The same lack of conservation of
momentum and thermal energy can be observed in [55], [49] and [64] precisely
because of the introduction of the aforementioned alternative pseudostress tensor
(for [55], [49]) and the gradient of the velocity and the temperature (in [64]) as
further unknowns.

Our main goal in this chapter is to extend the works [6, 52, 55, 49, 64] by in-
troducing a new fully-mixed finite element method for the coupled system (3.1.1)-
(3.1.2), allowing conservation of momentum and thermal energy. The latter is
achieved by employing the pseudostress-based mixed formulation introduced in
[30] for (3.1.1) and a similar approach for (3.1.2) based on the introduction of an
additional vector unknown relating the gradient of the temperature with the con-
vective term. In this way, the aforementioned pseudostress and vector unknowns,
together with the velocity and the temperature, become the resulting unknowns
of the coupled problem. As for the numerical scheme, the continuous problem is
discretized by using a conforming scheme defined by Raviart-Thomas elements of
order k for the pseudostress and vector unknowns and discontinuous piece-wise
polynomials of degree k for the velocity and temperature. Since the resulting for-
mulation is a nonlinear problem posed in nonstandard Banach spaces (due to the
convective terms), for both, the continuous and discrete problems, we make use
of the Banach–Nečas–Babuška and Banach’s fixed point theorems to prove unique
solvability. In addition, we show that the error decays with optimal rate of conver-
gence. Further variables of interest, such as the fluid pressure, the fluid vorticity
and the fluid velocity gradient, can be easily approximated as a simple postprocess
of the finite element solution with the same rate of convergence.

The rest of this Chapter is organized as follows. In Section 3.2, the fully-mixed
formulation is proposed. Then, in Section 3.3 the well-posedness of the continuous
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problem is proved by means of the Banach–Nečas–Babuška and Banach’s fixed
point theorems. A similar argument is employed in Section 3.4, to prove the well-
posedness of the Galerkin scheme. The corresponding a priori error estimates
are derived in Section 3.5 and finally in Section 3.6 we present some numerical
examples to validate the theoretical results and illustrate the good performance of
our mixed finite element method.

3.2 The continuous weak formulation
In this section we derive the weak formulation for (3.1.1)-(3.1.2) which will

allow us to propose later on the conforming scheme preserving linear momentum
and thermal energy. To that end, and similarly to [30] and [52] (see also [34]) we
introduce the tensor and vector variables

σ := ν∇u− (u⊗ u)− p I in Ω,

and
ρ := κ∇θ − θ u in Ω ,

and utilize the incompressibility condition div u = tr (∇u) = 0 to rewrite the
systems (3.1.1) and (3.1.2), respectively as the following equivalent first-order set
of equations (see [30] and [52] for details):

1

ν
σd +

1

ν
(u⊗ u)d = ∇u in Ω, divσ + θ g = 0 in Ω,

p = −1

d
tr (σ + u⊗ u) in Ω, u = 0 on Γ, (tr (σ + u⊗ u), 1)Ω = 0,

(3.2.1)
and

κ−1ρ+ κ−1θ u = ∇θ in Ω, div ρ = 0 in Ω,

θ = θD on ΓD, ρ · n = 0 on ΓN.
(3.2.2)

Note that the third equation in (3.2.1) allows us to eliminate the pressure p from
the system (which anyway can be approximated later on through a post-processing
procedure), whereas the last equation takes care of the requirement that (p, 1)Ω =
0.

Now, to derive the variational formulation, we begin by proceeding analogously
to [30] for the first and second equations of (3.2.1), that is, we multiply the first
equation of (3.2.1) by τ ∈ H(div4/3 ; Ω), integrate by parts, employ the identity
σd : τ = σd : τ d and the Dirichlet boundary condition u = 0 on Γ, and test the
second equation of (3.2.1) by v ∈ L4(Ω), to obtain

1

ν
(σd, τ d)Ω + (u,divτ )Ω +

1

ν
((u⊗ u)d, τ )Ω = 0 ∀ τ ∈ H(div4/3 ; Ω), (3.2.3)
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and
(v,divσ)Ω + (θ g,v)Ω = 0 ∀v ∈ L4(Ω). (3.2.4)

The choice of the spaces H(div4/3; Ω) and L4(Ω) for the variables τ and v,
respectively, and also for the unknowns σ and u, relies on the fact that, since the
first term on the left-hand side of (3.2.3) is well defined if σ, τ ∈ L2(Ω), the third
term on the left-hand side of (3.2.3) forces the velocity u, and consequently the
test function v, to live in L4(Ω). Moreover, the latter and the terms (u,divτ )Ω

and (v,divσ)Ω in (3.2.3) and (3.2.4), respectively, force both, divσ and div τ ,
to live in L4/3(Ω). In this way, both equations (3.2.3) and (3.2.4) are well-defined
if σ, τ ∈ H(div4/3; Ω) and u,v ∈ L4(Ω).

Next, for (3.2.2) we proceed similarly to (3.2.3)–(3.2.4). In fact, we define the
Banach space

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
,

and then, multiplying the first equation of (3.2.2) by η ∈ H and integrating by
parts, we get

κ−1(ρ,η)Ω + (θ, div η)Ω + κ−1(θ u,η)Ω = 〈η · n, θD〉ΓD
∀η ∈ H. (3.2.5)

Observe that, similarly to [33, eq. (4.3)], it can be seen that for all η ∈ H,
η · n|ΓD

∈ H−1/2(ΓD), thus the term 〈η · n, θD〉ΓD
is well defined.

In turn, the second equation of (3.2.2) is imposed weakly as

(ψ, divρ)Ω = 0 ∀ψ ∈ L4(Ω). (3.2.6)

Notice that since u ∈ L4(Ω) and since the term (ρ,η)Ω is well defined if ρ,η ∈
L2(Ω), the third term on the left-hand side of (3.2.5) forces θ, and consequently
the test function ψ, to live in L4(Ω). This fact suggested the introduction of the
space H for the unknown ρ and test η.

According to the above, at first we are interested in finding σ ∈ H(div4/3 ; Ω),
u ∈ L4(Ω), ρ ∈ H and θ ∈ L4(Ω), satisfying (3.2.3)–(3.2.6) and (tr (σ + u ⊗
u), 1)Ω = 0.

Now, let us define the space

H0(div4/3; Ω) :=
{
τ ∈ H(div4/3; Ω) : (tr τ , 1)Ω = 0

}
,

and recall that there holds (see e.g. [30, Section 3])

H(div4/3; Ω) = H0(div4/3; Ω)⊕ P0(Ω) I, (3.2.7)
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where P0(Ω) is the space of constant polynomials on Ω. More precisely, each
τ ∈ H(div4/3; Ω) can be decomposed uniquely as:

τ = τ0 + c I, with τ0 ∈ H0(div4/3; Ω) and c :=
1

d |Ω|
(tr τ , 1)Ω ∈ R.

Then, if we define the tensor

σ0 := σ +

(
1

d|Ω|
(tr (u⊗ u), 1)Ω

)
I, (3.2.8)

it follows that σ satisfies (tr (σ+u⊗u), 1)Ω = 0 if and only if σ0 ∈ H0(div4/3; Ω).
Moreover, from (3.2.7) it can be readily seen that equations (3.2.3) and (3.2.4) can
be rewritten in terms of σ0 as follows

1

ν
(σd

0 , τ
d)Ω + (u,divτ )Ω +

1

ν
((u⊗ u)d, τ )Ω = 0 ∀ τ ∈ H0(div4/3 ; Ω), (3.2.9)

and
(v,divσ0)Ω + (θ g,v)Ω = 0 ∀v ∈ L4(Ω). (3.2.10)

Consequently, for the sake of the subsequent analysis we reformulate the system
(3.2.3)–(3.2.6) considering σ0 defined in (3.2.8) as the tensor unknown and the
equations (3.2.9) and (3.2.10) instead of (3.2.3) and (3.2.4), respectively. More
precisely, denoting by

X := H(div4/3; Ω), X0 := X ∩H0(div4/3; Ω), M := L4(Ω) and Q := L4(Ω)

and introducing the forms aF : X × X → R, bF : X ×M → R, cF : M ×M × X →
R, dF : Q×M→ R, aT : H×H→ R, bT : H×Q→ R, and cT : M×Q×H→ R:

aF(σ, τ ) :=
1

ν
(σd, τ d)Ω, bF(τ ,v) := (v,divτ )Ω,

cF(w; u, τ ) :=
1

ν
((w ⊗ u)d, τ )Ω, dF(θ,v) := (θ g,v)Ω,

aT(ρ,η) := κ−1(ρ,η)Ω, bT(η, θ) := (θ, div η)Ω,

cT(w; θ,η) := κ−1(θw,η)Ω,

(3.2.11)

and the functional FT ∈ H′:

FT(η) := 〈η · n, θD〉ΓD
, (3.2.12)

we arrive at the fully-mixed variational formulation:
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Find (σ,u,ρ, θ) ∈ X0 ×M×H×Q, such that:

aF(σ, τ ) + bF(τ ,u) + cF(u; u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) + dF(θ,v) = 0 ∀v ∈M,

aT(ρ,η) + bT(η, θ) + cT(u; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q,

(3.2.13)

where, for the sake of simplicity, the subscript 0 from the new unknown σ0 has
been dropped.

Remark 3.2.1. We observe here that, according to the third equation of (3.2.1)
and the identity (3.2.8), the pressure can be recovered in terms of the pseudostress
σ ∈ X0 and the velocity u ∈M, as follows

p = −1

d

(
tr (σ) + tr (u⊗ u)− 1

|Ω|
(tr (u⊗ u), 1)Ω

)
. (3.2.14)

Moreover, one can compute further variables of interest, such as the shear-stress

tensor σ̃ := ν (∇u + (∇u)t)− p I, the vorticity ω :=
1

2
(∇u− (∇u)t), the velocity

gradient ∇u and the heat-flux ρ̃ := −κ∇θ, with the following post-processing
formulas

σ̃ = σd + (u⊗ u)d + σt + u⊗ u−
(

1

d|Ω|
(tr (u⊗ u), 1)Ω

)
I,

ω =
1

2 ν

(
σ − σt

)
,

∇u =
1

ν

(
σd + (u⊗ u)d

)
,

ρ̃ = −(ρ+ θ u).

(3.2.15)

3.3 Analysis of the coupled problem

In this section we combine the classical Banach–Nečas–Babuška and Banach
fixed-point theorems to prove the well-posedness of (3.2.13) under a suitable small-
ness assumption on the data. We begin by establishing the stability properties of
the forms involved.
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3.3.1 Stability properties

We start by recalling the well-known Hölder inequality∫
Ω

|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω), ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with
1

p
+

1

q
= 1.

(3.3.1)
In turn, we recall that H1(Ω) is continuously embedded into Lp(Ω) for p ≥ 1 if
d = 2 or p ∈ [1, 6] if d = 3. More precisely, we have the following inequality

‖w‖Lp(Ω) ≤ CS ‖w‖1,Ω ∀w ∈ H1(Ω), (3.3.2)

with CS > 0 depending only on |Ω| and p (see [104, Theorem 1.3.4]). Then, owing
to the Hölder inequality (3.3.1) and simple computations, we deduce that the forms
aF, bF, cF, dF, aT, bT and cT (cf. (3.2.11)) are bounded:∣∣aF(σ, τ )

∣∣ ≤ 1

ν
‖σ‖X‖τ‖X,

∣∣bF(τ ,v)
∣∣ ≤ ‖τ‖X‖v‖M, (3.3.3)

∣∣cF(w; v, τ )
∣∣ ≤ 1

ν
‖w‖M‖v‖M‖τ‖X,

∣∣dF(θ,v)
∣∣ ≤ ‖g‖0,Ω‖θ‖Q‖v‖M, (3.3.4)∣∣aT(ρ,η)

∣∣ ≤ 1

κ
‖ρ‖H‖η‖H,

∣∣bT(η, ψ)
∣∣ ≤ ‖η‖H‖ψ‖Q, (3.3.5)

∣∣cT(w;ψ,η)
∣∣ ≤ 1

κ
‖w‖M‖ψ‖Q‖η‖H. (3.3.6)

On the other hand, analogously to [30, Lemma 3.5], we observe that the functional
FT (cf. (3.2.12)) is bounded∣∣FT(η)

∣∣ ≤ CF ‖θD‖1/2,ΓD
‖η‖H ∀η ∈ H, (3.3.7)

with CF a positive constant depending on CS (cf. (3.3.2)).
Now, we let V and V be the kernel of bF and bT, respectively, that is

V :=
{
τ ∈ X0 : bF(τ ,v) = 0 ∀v ∈M

}
=
{
τ ∈ X0 : div τ = 0 in Ω

}
,

(3.3.8)
and

V :=
{
η ∈ H : bT(η, ψ) = 0 ∀ψ ∈ Q

}
=
{
η ∈ H : div η = 0 in Ω

}
,

(3.3.9)
and recall from [30, Lemma 3.1] that there exists Cd > 0, such that

Cd ‖τ‖2
0,Ω ≤ ‖τ d‖2

0,Ω + ‖div τ‖2
L4/3(Ω) ∀ τ ∈ X0. (3.3.10)
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From (3.3.10) we easily realize that aF satisfies

aF(τ , τ ) ≥ Cd

ν
‖τ‖2

X ∀ τ ∈ V, (3.3.11)

whereas for aT we proceed similarly to [33, Lemma 2.2] to obtain

aT(η,η) ≥ 1

κ
‖η‖2

H ∀η ∈ V. (3.3.12)

Now, we recall from [30, Lemma 3.3] that bF satisfies the inf-sup condition:

sup
06=τ∈X0

bF(τ ,v)

‖τ‖X
≥ βF ‖v‖M ∀v ∈M. (3.3.13)

Similarly, we can obtain an analogous result for bT. This is established in the next
lemma.

Lemma 3.3.1.
sup

0 6=η∈H

bT(η, ψ)

‖η‖H
≥ βT ‖ψ‖Q ∀ψ ∈ Q. (3.3.14)

Proof. Given ψ ∈ L4(Ω), we consider the variational problem

−∆z = sgn(ψ)|ψ|3 in Ω, z = 0 on ΓD, ∇z · n = 0 on ΓN,

and proceed analogously to the proof of [33, Lemma 2.1] to obtain the desired
result. We omit further details.

Using the aforementioned stability properties, particularly (3.3.3), (3.3.11) and
(3.3.13), and applying [63, Proposition 2.36] it is not difficult to see that the bilinear
form AF : (X×M)× (X×M)→ R defined by

AF((σ,u), (τ ,v)) := aF(σ, τ ) + bF(τ ,u) + bF(σ,v), (3.3.15)

satisfies:

sup
0 6=(τ ,v)∈X0×M

AF((ζ, z), (τ ,v))

‖(τ ,v)‖
≥ γF ‖(ζ, z)‖ ∀ (ζ, z) ∈ X0 ×M, (3.3.16)

where γF is the positive constant defined by

γF := C
min{1, νβF}
νβF + 1

, (3.3.17)

with C > 0 independent of ν.
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Finally, and analogously to (3.3.16) we can obtain from [63, Proposition 2.36]
that estimates (3.3.5), (3.3.12) and (3.3.14) imply that the bilinear form AT :
(H×Q)× (H×Q)→ R, defined by

AT((ρ, θ), (η, ψ)) := aT(ρ,η) + bT(η, θ) + bT(ρ, ψ), ∀ (ρ, θ), (η, ψ) ∈ H×Q,
(3.3.18)

satisfies the inf-sup condition:

sup
0 6=(η,ψ)∈H×Q

AT((ς, ϕ), (η, ψ))

‖(η, ψ)‖
≥ γT ‖(ς, ϕ)‖ ∀ (ς, ϕ) ∈ H×Q, (3.3.19)

where γT is the positive constant defined by

γT :=
κβ2

T

κ2 β2
T + 4κβT + 2

. (3.3.20)

3.3.2 The fixed-point operator

Here, we proceed similarly to [12] and [51] and describe the fixed-point strategy
to be employed next to prove the well-posedness of (3.2.13). We start by intro-
ducing the associated fixed-point operator. To that end we define the auxiliary
operators R : W ×Q ⊆M×Q→ X0 ×M and S : W ⊆M→ H×Q given by

R(w, φ) := (R1(w, φ),R2(w, φ)) = (σ,u) ∀ (w, φ) ∈W ×Q, (3.3.21)

with (σ,u) ∈ X0 ×M satisfying

aF(σ, τ ) + bF(τ ,u) + cF(w; u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) = −dF(φ,v) ∀v ∈M.
(3.3.22)

and
S(w) := (S1(w),S2(w)) = (ρ, θ) ∀w ∈W, (3.3.23)

where (ρ, θ) ∈ H×Q is such that

aT(ρ,η) + bT(η, θ) + cT(w; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q.
(3.3.24)

Above, W is a bounded set (to be specified next) ensuring the well-definedness of
R and S.

By virtue of the above, by defining the operator J : W ⊆M→M as

J (w) := R2(w,S2(w)) ∀w ∈W, (3.3.25)
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it is clear that (σ,u,ρ, θ) is a solution to (3.2.13) if and only if u satisfies J (u) =
u, and consequently, the well-posedness of (3.2.13) is equivalent to the unique
solvability of the fixed-point problem: Find u ∈W such that

J (u) = u. (3.3.26)

In this way, in what follows we focus on proving the unique solvability of (3.3.26).
Before doing that, we have to provide a suitable choice of W ensuring the well-
definedness of J .

3.3.3 Well-definedness of J
Since operator J is defined in terms of R and S, first we must study the

well-definedness of both operators, which evidently is equivalently to studying the
well-posedness of (3.3.22) and (3.3.24). We begin by analyzing the well-posedness
of (3.3.22).

Lemma 3.3.2. Let (w, φ) ∈M×Q and assume that

‖w‖M ≤
νγF
2
, (3.3.27)

with γF the positive constant in (3.3.17). Then, there exists a unique (σ,u) ∈
X0 ×M solution to (3.3.22). In addition, there holds

‖(σ,u)‖ ≤ 2

γF
‖g‖0,Ω‖φ‖Q. (3.3.28)

Proof. We proceed similarly as in the proof of [30, Theorem 3.7]. In fact, given
(w, φ) ∈M×Q, we begin by defining the bilinear form:

AF,w((σ,u), (τ ,v)) := AF((σ,u), (τ ,v)) + cF(w; u, τ ), (3.3.29)

where AF and cF are the forms defined in (3.3.15) and (3.2.11), respectively, that
is

AF,w((σ,u), (τ ,v)) := aF(σ, τ ) + bF(τ ,u) + bF(σ,v) + cF(w; u, τ ).

Then, problem (3.3.22) can be rewritten equivalently as: Find (σ,u) ∈ X0 ×M,
such that

AF,w((σ,u), (τ ,v)) = −dF(φ,v) ∀ (τ ,v) ∈ X0 ×M. (3.3.30)

Therefore, to prove the well-definedness of R, in the sequel we equivalently prove
that problem (3.3.30) is well-posed by means of the Banach–Nečas–Babuška the-
orem (see, for instance [63, Theorem 2.6]).
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First, given (ζ, z), (τ̂ , v̂) ∈ X0 ×M with (τ̂ , v̂) 6= 0, from (3.3.4) we observe
that

sup
06=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

‖(τ ,v)‖
≥
∣∣AF((ζ, z), (τ̂ , v̂))

∣∣
‖(τ̂ , v̂)‖

−
∣∣cF(w; z, τ̂ )

∣∣
‖(τ̂ , v̂)‖

≥
∣∣AF((ζ, z), (τ̂ , v̂))

∣∣
‖(τ̂ , v̂)‖

− 1

ν
‖w‖M‖(ζ, z)‖,

which together with (3.3.16) and the fact that (τ̂ , v̂) is arbitrary, implies

sup
0 6=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

‖(τ ,v)‖
≥
(
γF −

1

ν
‖w‖M

)
‖(ζ, z)‖.

Hence, using the fact that w ∈M satisfies (3.3.27), we easily obtain

sup
06=(τ ,v)∈X0×M

AF,w((ζ, z), (τ ,v))

‖(τ ,v)‖
≥ γF

2
‖(ζ, z)‖ ∀ (ζ, z) ∈ X0 ×M. (3.3.31)

On the other hand, for a given (ζ, z) ∈ X0 ×M, we observe that

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥ sup
0 6=(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z))

‖(τ ,v)‖

= sup
0 6=(τ ,v)∈X0×M

AF((τ ,v), (ζ, z)) + cF(w; v, ζ)

‖(τ ,v)‖
,

which together with (3.3.4) implies

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥ sup
0 6=(τ ,v)∈X0×M

AF((τ ,v), (ζ, z))

‖(τ ,v)‖
− 1

ν
‖w‖M‖(ζ, z)‖.

(3.3.32)
Therefore, using the fact that AF(·, ·) is symmetric, from (3.3.16) and (3.3.32) we
obtain

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥
(
γF −

1

ν
‖w‖M

)
‖(ζ, z)‖,

which combined with (3.3.27), yields

sup
(τ ,v)∈X0×M

AF,w((τ ,v), (ζ, z)) ≥ γF
2
‖(ζ, z)‖ > 0 ∀ (ζ, z) ∈ X0 ×M, (ζ, z) 6= 0.

(3.3.33)
In this way, from (3.3.31) and (3.3.33) we obtain that AF,w(·, ·) satisfies the hy-
potheses of the Banach–Nečas–Babuška theorem [63, Theorem 2.6], which allows
us to conclude the existence of a unique (σ,u) ∈ X0 ×M solution to (3.3.22), or
equivalently, the existence of a unique (σ,u) ∈ X0×M such that R(w, φ) = (σ,u).
Finally, from (3.3.30), using (3.3.31) with (ζ, z) = (σ,u), the bound of dF (cf.
(3.3.4)), we readily obtain (3.3.28), which concludes the proof.
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Next, we provide the well-definedness of S, or equivalently, the well-posedness
of (3.3.24).

Lemma 3.3.3. Let w ∈M and assume that

‖w‖M ≤
κγT
2
. (3.3.34)

Then, there exists a unique (ρ, θ) ∈ H × Q solution to (3.3.24). Moreover, there
holds

‖(ρ, θ)‖ ≤ 2CF
γT
‖θD‖1/2,ΓD

, (3.3.35)

with CF and γT the positive constants in (3.3.7) and (3.3.20), respectively.

Proof. The proof follows analogously to the proof of Lemma 3.3.2 (see also [30,
Theorem 3.7]). In fact, by defining the bilinear form:

AT,w((ρ, θ), (η, ψ)) := AT((ρ, θ), (η, ψ)) + cT(w; θ,η), (3.3.36)

where AT and cT are the forms defined in (3.3.18) and (3.2.11) respectively, we
observe that problem (3.3.24) can be rewritten equivalently as: Find (ρ, θ) ∈
H×Q, such that

AT,w((ρ, θ), (η, ψ)) = F (η) ∀ (η, ψ) ∈ H×Q. (3.3.37)

In turn, using (3.3.6), (3.3.19) and (3.3.34), it can be easily deduced that AT,w

satisfies

sup
0 6=(η,ψ)∈H×Q

AT,w((ς, ϕ), (η, ψ))

‖(η, ψ)‖
≥ γT

2
‖(ς, ϕ)‖ ∀ (ς, ϕ) ∈ H×Q, (3.3.38)

and

sup
(η,ψ)∈H×Q

AT,w((η, ψ), (ς, ϕ)) > 0 ∀ (ς, ϕ) ∈ H×Q, (ς, ϕ) 6= 0,

which together with the Banach–Nečas–Babuška theorem imply the well–posedness
of (3.3.24). Finally, from (3.3.37), applying (3.3.38) with (ς, ϕ) = (ρ, θ) and the
bound (3.3.7), we readily obtain (3.3.35).

From Lemmas 3.3.2 and 3.3.3 we automatically deduce that if the set W defin-
ing R and S (cf. (3.3.21) and (3.3.23)) is such that

W ⊆ B
(
0,
νγF
2

)
∩B

(
0,
κγT
2

)
= B

(
0,
λ

2

)
,
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with
λ := min

{
ν γF, κ γT

}
, (3.3.39)

then R and S, thus J (cf. (3.3.25)), are well-defined. Moreover, from (3.3.28) and
(3.3.35) we readily obtain that there hold, respectively

‖R2(w, φ)‖M ≤
2

γF
‖g‖0,Ω‖φ‖Q ∀ (w, φ) ∈W ×Q,

and
‖S2(w)‖Q ≤

2CF
γT
‖θD‖1/2,ΓD

∀w ∈W, (3.3.40)

which combined imply

‖J (w)‖M = ‖R2(w,S2(w))‖M ≤
2

γF
‖g‖0,Ω‖S2(w)‖Q ≤

4CF
γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
.

As a consequence of the above, if we define the bounded set W as follows

W :=
{

w ∈M : ‖w‖M ≤
4CF
γF γT

‖g‖0,Ω‖θD‖1/2,ΓD

}
, (3.3.41)

and assume that the data ν, κ and θD ∈ H1/2(ΓD) satisfies,

8CF
λ γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
≤ 1, (3.3.42)

with λ, γF and γT defined in (3.3.39), (3.3.17) and (3.3.20), respectively, then
we clearly deduce that the fixed-point operator J is well-defined and satisfies
J (W) ⊆W. The above is summarized in the following result.

Theorem 3.3.1. Let define the bounded set W as in (3.3.41) and assume that the
data satisfies (3.3.42). Then, J is well-defined and satisfies J (W) ⊆W.

3.3.4 Solvability analysis of the fixed-point equation

Here we provide the main result of this section, namely, existence and unique-
ness of solution of problem (3.2.13). We begin by establishing two lemmas that will
allow us to derive conditions under which operator J is a contraction mapping.

Lemma 3.3.4. Assume that (3.3.42) holds. Then,

‖R(w1, φ1)−R(w2, φ2)‖ ≤ 4

ν γ2
F

‖g‖0,Ω‖φ2‖Q‖w1 −w2‖M +
2

γF
‖g‖0,Ω‖φ1 − φ2‖Q,

(3.3.43)
for all (w1, φ1), (w2, φ2) ∈W×Q, with γF the positive constant defined in (3.3.17).
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Proof. Given (w1, φ1), (w2, φ2) ∈W×Q, we let (σ1,u1), (σ2,u2) ∈ X0×M, such
that R(w1, φ1) = (σ1,u1) and R(w2, φ2) = (σ2,u2). Then, from the definition of
R and AF,w (cf. (3.3.21) and (3.3.29)), and after simple computations, we obtain

AF,w1((σ1 − σ2,u1 − u2), (τ ,v)) = −cF(w1 −w2; u2, τ )− dF(φ1 − φ2,v).

Hence, we employ (3.3.31) with (ζ, z) = (σ1 − σ2,u1 − u2), the upper bounds of
cF and dF (cf. (3.3.4)), and the fact that ‖u2‖M ≤ 2

γF
‖g‖0,Ω‖φ2‖Q (cf. (3.3.28)), to

deduce

γF
2
‖(σ1 − σ2,u1 − u2)‖ ≤ sup

0 6=(τ ,v)∈X0×M

−cF(w1 −w2; u2, τ )− dF(φ1 − φ2,v)

‖(τ ,v)‖

≤ 1

ν
‖u2‖M‖w1 −w2‖M + ‖g‖0,Ω‖φ1 − φ2‖Q

≤ 2

ν γF
‖g‖0,Ω‖φ2‖Q‖w1 −w2‖M + ‖g‖0,Ω‖φ1 − φ2‖Q,

which implies (3.3.43).

Lemma 3.3.5. Assume that (3.3.42) holds. Then,

‖S(w1)− S(w2)‖Q ≤
4CF
κ γ2

T

‖θD‖1/2,ΓD
‖w1 −w2‖M, (3.3.44)

for all w1,w2 ∈W, with CF and γT the positive constants in (3.3.7) and (3.3.20).

Proof. Given w1,w2 ∈W, we let (ρ1, θ1), (ρ2, θ2) ∈ H×Q be such that S(w1) =
(ρ1, θ1) and S(w2) = (ρ2, θ2). Then, from the definitions of S andAT,w (cf. (3.3.23)
and (3.3.36)), and after simple computations, we deduce that

AT,w1((ρ1 − ρ2, θ1 − θ2), (η, ψ)) = −cT(w1 −w2; θ2,η).

Thus, employing (3.3.38) with (ς, ϕ) = (ρ1 − ρ2, θ1 − θ2), the upper bound of cT
(cf. (3.3.6)), and the fact that ‖θ2‖Q ≤ 2CF

γT
‖θD‖1/2,ΓD

(cf. (3.3.35)), we get

γT
2
‖(ρ1 − ρ2, θ1 − θ2)‖ ≤ sup

0 6=(η,ψ)∈H×Q

−cT(w1 −w2; θ2,η)

‖(η, ψ)‖

≤ 1

κ
‖θ2‖Q‖w1 −w2‖M

≤ 2CF
κ γT
‖θD‖1/2,ΓD

‖w1 −w2‖M,

which implies (3.3.44).
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We are ready now to prove the main result of this section, that is, the existence
and uniqueness of solution of problem (3.2.13).

Theorem 3.3.2. Let define λ := min
{
ν γF, κ γT

}
and assume that

16CF
λ γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
< 1. (3.3.45)

Then, the operator J (cf. (3.3.25)) has a unique fixed-point u in W. Equivalently,
the coupled problem (3.2.13) has a unique solution (σ,u,ρ, θ) ∈ X0 ×M×H×Q
with u ∈W. Moreover, there hold

‖(σ,u)‖ ≤ 4CF
γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρ, θ)‖ ≤ 2CF

γT
‖θD‖1/2,ΓD

. (3.3.46)

Proof. We begin by recalling from the previous analysis that assumption (3.3.45)
ensures the well-definedness of J . Now, let w1,w2,u1,u2 ∈ W, be such that
u1 = J (w1) and u2 = J (w2). According to the definition of J (cf. (3.3.25)),
from estimates (3.3.40), (3.3.43) and (3.3.44), we deduce that

‖J (w1)− J (w2)‖M = ‖R2(w1,S2(w1))−R2(w2,S2(w2))‖M

≤ 4

ν γ2
F

‖g‖0,Ω‖S2(w2)‖Q ‖w1 −w2‖M +
2

γF
‖g‖0,Ω ‖S2(w1)− S2(w2)‖Q

≤ 16CF
λγFγT

‖g‖0,Ω ‖θD‖1/2,ΓD
‖w1 −w2‖M,

which together with (3.3.45) and the Banach fixed point theorem implies that
J has a unique fixed-point in W, which equivalently implies that there exists a
unique (σ,u,ρ, θ) ∈ X0 ×M ×H × Q solution to (3.2.13) with u ∈W. Finally,
since (σ,u) satisfies (3.3.22) with φ = θ and w = u ∈ W, and (ρ, θ) satisfies
(3.3.24), with w = u ∈ W, the estimates in (3.3.46) follow from (3.3.28) and
(3.3.35).

3.4 Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of problem
(3.2.13). We mention in advance that the well-posedness analysis follows straight-
forwardly by adapting the results derived for the continuous problem to the discrete
case, reason why most of the details are omitted.
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3.4.1 The discrete coupled system and its well-posedness

Let us begin by considering {Th}h>0 a family of regular triangulation of Ω made
by triangles T when d = 2 (or tetrahedra when d = 3) of diameter hT and define
the meshsize h := max

{
hT : T ∈ Th

}
. Given an integer l ≥ 0 and a subset S of

Rd, we denote by Pl(S) the space of polynomials of total degree at most l defined
on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the local
Raviart–Thomas space of order k as (see, for instance [21]):

RTk(T ) := [Pk(T )]d ⊕ P̃k(T )x,

where x := (x1, . . . , xd)
t is a generic vector of Rd and P̃k(T ) is the space of poly-

nomials of total degree equal to k defined on T . In this way, we define the finite
element subspaces:

Xh :=
{
τh ∈ X : ctτh|T ∈ RTk(T ) ∀ c ∈ Rd ∀T ∈ Th

}
,

Mh :=
{
vh ∈M : vh|T ∈ [Pk(T )]d ∀T ∈ Th

}
,

Hh :=
{
ηh ∈ H : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Qh := {φh ∈ Q : φh|T ∈ Pk(T ) ∀T ∈ Th} .

Notice that, since L2(Ω) ⊆ L4/3(Ω), then Xh ⊆ H(div; Ω) ⊆ H(div4/3; Ω). In turn,
given T ∈ Th, since τnT ∈ H−1/2(∂T ), for all τ ∈ H(div4/3;T ) (see [33, Section
4.1]), then proceeding exactly as in [72, Lemma 3.4] it can be proved that

H(div4/3; Ω) :=
{
τ ∈ Y :

∑
T∈Th

〈τnT ,v〉∂T = 0 ∀v ∈ H1
0(Ω)

}
,

with Y := {τ ∈ L2(Ω) : τ |T ∈ H(div4/3;T ), ∀T ∈ Th}. Therefore, any discrete
subspace satisfying a zero normal jump property, in particular Xh, is a good choice
to approximate the unknown σ ∈ H0(div4/3; Ω).

Then defining the subspace Xh,0 := Xh ∩ X0, the Galerkin scheme associated
to problem (3.2.13) reads:

Find (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh such that:

aF(σh, τh) + bF(τh,uh) + cF(uh; uh, τh) = 0 ∀ τh ∈ Xh,0

bF(σh,vh) + dF(θh,vh) = 0 ∀vh ∈Mh

aT(ρh,ηh) + bT(ηh, θh) + cT(uh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh

bT(ρh,ψh) = 0 ∀ψh ∈ Qh,

(3.4.1)

where the forms aF, bF, cF, dF, aT, bT, cT and the functional FT are defined in (3.2.11)
and (3.2.12), respectively.
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3.4.2 Analysis of the discrete problem

First we provide the stability properties of the associated forms on the discrete
spaces defined above. We begin by observing that the boundedness of all the
forms are inherited from the continuous case. In addition, since divXh ⊆Mh and
div Hh ⊆ Qh, there hold that the discrete versions of V and V (cf. (3.3.8), (3.3.9))
become, respectively

Vh :=
{
τh ∈ Xh,0 : bF(τh,vh) = 0 ∀vh ∈Mh

}
=

{
τh ∈ Xh,0 : div τh = 0 in Ω

}
,

and
Vh :=

{
ηh ∈ Hh : bT(ηh, ψh) = 0 ∀ψh ∈ Qh

}
=

{
ηh ∈ Hh : div ηh = 0 in Ω

}
,

thus, Vh ⊆ V and Vh ⊆ V. As consequence, from (3.3.11) and (3.3.12), we obtain

aF(τh, τh) ≥
Cd

ν
‖τh‖2

X ∀ τh ∈ Vh, (3.4.2)

and
aT(ηh,ηh) ≥

1

κ
‖ηh‖2

H ∀ηh ∈ Vh. (3.4.3)

We continue by recalling from [30, Lemma 4.3] that the bilinear form bF satisfy
the following discrete inf-sup condition:

sup
0 6=τh∈Xh,0

bF(τh,vh)

‖τh‖X
≥ β̂F ‖vh‖M ∀vh ∈Mh, (3.4.4)

with β̂F > 0 independent of h.
The following result establishes the discrete version of Lemma 3.3.1

Lemma 3.4.1. Assume that there exists a convex domain B such that Ω ⊆ B and
ΓN ⊆ ∂B. Then there exists β̂T > 0 independent of h, such that

sup
0 6=ηh∈Hh

bT(ηh, ψh)

‖ηh‖H
≥ β̂T ‖ψh‖Q ∀ψh ∈ Qh. (3.4.5)

Proof. We proceed similarly to the proof of [33, Lemma 3.3]. In fact, given ψh ∈
Qh, and similarly to [13, Lemma 3.9] we let z ∈ W1,4/3(B) be the unique weak
solution of the boundary value problem:

∆z = ψ̃h :=


sgn(ψh)|ψh|3 in Ω

−1

|B \ Ω|

∫
Ω

sgn(ψh)|ψh|3 in B \ Ω
, ∇z ·n = 0 on ∂B,

∫
Ω

z = 0.
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Since B is a convex domain, it is well known that z ∈W2,4/3(B) (see [90, Theorem
1.1]) and

‖z‖W2,4/3(B) ≤ c‖ψ̃h‖L4/3(B) ≤ C‖|ψh|3‖L4/3(Ω) = C‖ψh‖3
L4(Ω).

Then we let η̂ = ∇z|Ω ∈W1,4/3(Ω), and observe that div η̂ = sgn(ψh)|ψh|3 in Ω,
η̂ · n = 0 on ΓN (since ΓN ⊆ ∂B) and

‖η̂‖W1,4/3(Ω) ≤ C‖ψh‖3
L4(Ω). (3.4.6)

Moreover, from the latter, and the fact that W1,4/3(Ω) is continuously embedded
into L2(Ω), we obtain

‖η̂‖0,Ω ≤ C‖ψh‖3
L4(Ω). (3.4.7)

Now, we let η̂h ∈ Hh be the Raviart-Thomas interpolation of η (see [72, Section
3.4] and [30, Section 4.2.1]). From [49, Lemma 5.4] we have that there exists
C > 0, independent of h, such that

‖η̂ − η̂h‖0,Ω ≤ Ch1−d/4‖η̂‖W1,4/3(Ω),

which together with (3.4.6) and (3.4.7), implies

‖η̂h‖0,Ω ≤ ‖η̂− η̂h‖0,Ω +‖η̂‖0,Ω ≤ Ch1−d/4‖η̂‖W1,4/3(Ω) +C‖ψh‖3
L4(Ω) ≤ Ĉ‖ψh‖3

L4(Ω).
(3.4.8)

In turn, it is well known that the following identity holds

div η̂h = Ph(div η̂) = Ph(sgn(ψh)|ψh|3), (3.4.9)

with Ph : L4(Ω) → Qh being the usual orthogonal projection with respect to the
L2(Ω)-inner product. Hence, using the fact that Ph is a continuous operator, from
(3.4.8) and (3.4.9), we easily obtain

‖η̂h‖H ≤ Ĉ‖ψh‖3
L4(Ω), (3.4.10)

with Ĉ > 0 independent of h. In this way, from (3.4.9) and (3.4.10), we find that

sup
0 6=ηh∈Hh

bT(ηh, ψh)

‖ηh‖H
≥ bT(η̂h, ψh)

‖η̂h‖H
≥

∫
Ω

ψh sgn(ψh)|ψh|3

Ĉ‖ψh‖3
L4(Ω)

= Ĉ−1
‖ψh‖4

L4(Ω)

‖ψh‖3
L4(Ω)

= Ĉ−1 ‖ψh‖L4(Ω),

which concludes the proof.
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Analogously to the continuous case, owing to (3.3.3), (3.3.5), (3.4.2), (3.4.3),
(3.4.4), (3.4.5) and [63, Proposition 2.36], it can be deduced that the bilinear forms
AF and AT defined in (3.3.15) and (3.3.18), satisfy:

sup
0 6=(τh,vh)∈Xh,0×Mh

AF((ζh, zh), (τh,vh))

‖(τh,vh)‖
≥ γ̂F ‖(ζh, zh)‖ ∀ (ζh, zh) ∈ Xh,0 ×Mh,

(3.4.11)
and

sup
0 6=(ηh,ψh)∈Hh×Qh

AT((ςh, ϕh), (ηh, ψh))

‖(ηh, ψh)‖
≥ γ̂T ‖(ςh, ϕh)‖ ∀ (ςh, ϕh) ∈ Hh ×Qh,

(3.4.12)
with

γ̂F := C
min{1, νβ̂F}
νβ̂F + 1

,

and

γ̂T :=
κ β̂2

T

κ2 β̂2
T + 4κ β̂T + 2

.

Employing (3.4.11) and (3.4.12) it can be proved the following result.

Lemma 3.4.2. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let λ̂ := min

{
ν γ̂F, κ γ̂T

}
and given wh ∈Mh, let AF,wh

and AT,wh

be the bilinear forms defined in (3.3.29) and (3.3.36), respectively. Then, for all
wh ∈Mh such that ‖wh‖M ≤ λ̂

2
, there hold

sup
0 6=(τh,vh)∈Xh,0×Mh

AF,wh
((ζh, zh), (τh,vh))

‖(τh,vh)‖
≥ γ̂F

2
‖(ζh, zh)‖ ∀ (ζh, zh) ∈ Xh,0 ×Mh,

(3.4.13)
and

sup
0 6=(ηh,ψh)∈Hh×Qh

AT,wh
((ςh, ϕh), (ηh, ψh))

‖(ηh, ψh)‖
≥ γ̂T

2
‖(ςh, ϕh)‖ ∀ (ςh, ϕh) ∈ Hh ×Qh.

(3.4.14)

Proof. The proofs of (3.4.13) and (3.4.14) follow using the same steps employed
to obtain (3.3.31) in Lemma 3.3.2. We omit further details.

Now, let us define the bounded set

Wh :=
{

wh ∈Mh : ‖wh‖M ≤
4CF
γ̂F γ̂T

‖g‖0,Ω‖θD‖1/2,ΓD

}
,
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and the discrete operators Rh : Wh ×Qh → Xh,0 ×Mh and Sh : Wh → Hh ×Qh,
defined respectively by

Rh(wh, φh) := (R1,h(wh, φh),R2,h(wh, φh)) = (σh,uh) ∀ (wh, φh) ∈Wh ×Qh,

where (σh,uh) is the unique solution of problem: Find (σh,uh) ∈ Xh,0 ×Mh such
that

aF(σh, τh) + bF(τh,uh) + cF(wh; uh, τh) = 0 ∀ τh ∈ Xh,0,

bF(σh,vh) = −dF(φh,vh) ∀vh ∈Mh,

and
Sh(wh) := (S1,h(wh),S2,h(wh)) = (ρh, θh) ∀wh ∈Wh,

where (ρh, θh) is the unique solution of problem: Find (ρh, θh) ∈ Hh × Qh such
that

aT(ρh,ηh) + bT(ηh, θh) + cT(wh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh,

bT(ρh, ψh) = 0 ∀ψh ∈ Qh.

Utilizing Lemma 3.4.2 and proceeding exactly as for the continuous case, it can
be easily deduced that both operators are well-defined if there holds

8CF

λ̂ γ̂F γ̂T
‖g‖0,Ω‖θD‖1/2,ΓD

≤ 1. (3.4.15)

Then, analogously to the continuous case we define the operator Jh : Wh ⊆Mh →
Mh as

Jh(wh) = R2,h(wh,S2,h(wh)) ∀wh ∈Wh, (3.4.16)

which is clearly well-defined and satisfies Jh(Wh) ⊆ Wh provided (3.4.15), and
realize that (3.4.1) is equivalent to the fixed-point problem: Find uh ∈ Wh such
that

Jh(uh) = uh. (3.4.17)

The following theorem provides the main result of this section, namely, exis-
tence and uniqueness of solution of the fixed-point problem (3.4.17), or equiva-
lently, the well-posedness of problem (3.4.1).

Theorem 3.4.1. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let define λ̂ := min

{
ν γ̂F, κ γ̂T

}
and assume that

16CF

λ̂ γ̂F γ̂T
‖g‖0,Ω‖θD‖1/2,ΓD

< 1. (3.4.18)
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Then, the operator Jh (cf. (3.4.16)) has a unique fixed-point uh in Wh. Equiva-
lently, the coupled problem (3.4.1) has a unique solution (σh,uh,ρh, θh) ∈ Xh,0 ×
Mh ×Hh ×Qh with uh ∈Wh. Moreover, there hold

‖(σh,uh)‖ ≤
4CF
γ̂F γ̂T

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρh, θh)‖ ≤

2CF
γ̂T
‖θD‖1/2,ΓD

.

(3.4.19)

Proof. First we observe that, as for the continuous case (see the proof of Theorem
3.3.2), assumption (3.4.18) ensures the well-definedness of operators Sh and Rh,
and consequently the well-definedness of Jh. Now, adapting the arguments utilized
in Section 3.3.4 (see Lemmas 3.3.4 and 3.3.5) one can obtain the following estimates

‖Rh(w1, φ1)−Rh(w2, φ2)‖ ≤ 4

ν γ̂2
F

‖g‖0,Ω‖φ2‖Q‖w1−w2‖M +
2

γ̂F
‖g‖0,Ω‖φ1−φ2‖Q,

and
‖Sh(w1)− Sh(w2)‖Q ≤

4CF
κ γ̂2

T

‖θD‖1/2,ΓD
‖w1 −w2‖M,

for all w1,w2 ∈Wh and φ1, φ2 ∈ Qh, which together with the definition of Jh (cf.
(3.4.16)), yield

‖Jh(w1)− Jh(w2)‖M ≤
16CF

λ̂γ̂Fγ̂T
‖g‖0,Ω ‖θD‖1/2,ΓD

‖w1 −w2‖M,

for all w1,w2 ∈ Wh. In this way, using estimate (3.4.18) we obtain that Jh is a
contraction mapping on Wh, thus problem (3.4.17), or equivalently (3.4.1) is well-
posed. Finally, analogously to the proof of Theorem 3.3.2 we can obtain (3.4.19),
which concludes the proof.

3.5 A priori error analysis

In this section we aim to provide the convergence of the Galerkin scheme (3.4.1)
and derive the corresponding rate of convergence. We begin by deriving the cor-
responding Cea’s estimate.

3.5.1 Cea’s estimate

From now on we assume that the hypotheses of Theorems 3.3.2 and 3.4.1 hold
and let (σ,u,ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh

be the unique solutions of (3.2.13) and (3.4.1), respectively.
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In order to simplify the subsequent analysis, we write eσ = σ−σh, eu = u−uh,
eρ = ρ − ρh, and eθ = θ − θh. As usual, for a given (τ̂h, v̂h) ∈ Xh,0 ×Mh and
(η̂h, ψ̂h) ∈ Hh ×Qh, we shall then decompose these errors into

eσ = ξσ + χσ, eu = ξu + χu, eρ = ξρ + χρ, eθ = ξθ + χθ, (3.5.1)

with
ξσ = σ − τ̂h, χσ = τ̂h − σh, ξu = u− v̂h, χu = v̂h − uh,

ξρ = ρ− η̂h, χρ = η̂h − ρh, ξθ = θ − ψ̂h, χθ = ψ̂h − θh.

Consequently, subtracting (3.2.13) and (3.4.1), and utilizing the definition of AF

and AT (cf. (3.3.15) and (3.3.18), respectively), we obtain the following identities:

AF((eσ, eu), (τh,vh)) + cF(u; u, τh)− cF(uh; uh, τh) = −dF(eθ,vh) (3.5.2)

for all (τh,vh) ∈ Xh,0 ×Mh, and

AT((eρ, eθ), (ηh, ψh)) + cT(u; θ,ηh)− cT(uh; θh,ηh) = 0 (3.5.3)

for all (ηh, ψh) ∈ Hh ×Qh.
We start providing the following auxiliary results.

Lemma 3.5.1. Assume that
8CF

νγFγ̂F γT
‖g‖0,Ω‖θD‖1/2,ΓD

≤ 1

2
(3.5.4)

Then there exist C1, C2 > 0, independent of h, such that

‖(χσ,χu)‖ ≤ C1 ‖(ξσ, ξu)‖+ C2 ‖ξθ‖Q +
4

γ̂F
‖g‖0,Ω ‖χθ‖Q (3.5.5)

Proof. First, from (3.5.1), (3.5.2), the definition of the bilinear form AF,w (cf.
(3.3.29)), and simple computations it can be obtained the identity

AF,uh
((χσ,χu), (τh,vh)) = −aF(ξσ, τh)− bF(τh, ξu)− bF(ξσ,vh)

− cF(uh; ξu, τh)− cF(ξu; u, τh)− cF(χu; u, τh)− dF(eθ,vh).

Then, utilizing the discrete inf-sup condition (3.4.13) with (ζh, zh) = (χσ,χu) ∈
Xh,0 ×Mh, and the continuity properties of aF, bF, cF and dF (cf. (3.3.3) and
(3.3.4)), we obtain

γ̂F
2
‖(χσ,χu)‖ ≤

(
1 +

1

ν

)
‖ξσ‖X +

(
1 +

1

ν
‖uh‖M +

1

ν
‖u‖M

)
‖ξu‖M

+
1

ν
‖u‖M ‖χu‖M + ‖g‖0,Ω ‖eθ‖Q.

(3.5.6)
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In this way, using the fact that u ∈W and uh ∈Wh, from (3.5.6) we deduce that

γ̂F
2
‖(χσ,χu)‖ ≤ C̃1 ‖(ξσ, ξu)‖+

4CF
νγF γT

‖g‖0,Ω‖θD‖1/2,ΓD
‖χu‖M + ‖g‖0,Ω ‖eθ‖Q,

with
C̃1 = 1 +

1

ν
max

{
1,

8CF
min{γF γT, γ̂F γ̂T}

‖g‖0,Ω‖θD‖1/2,ΓD

}
,

which together with (3.5.4) implies (3.5.5) with C1 = 2C̃1/γ̂F and C2 = 4 ‖g‖0,Ω/γ̂F,
and concludes the proof.

Lemma 3.5.2. Assume that there exists a convex domain B such that Ω ⊆ B and
ΓN ⊆ ∂B. Then there exist C3, C4 > 0, independent of h, such that

‖(χρ, χθ)‖ ≤ C3 ‖(ξρ, ξθ)‖+ C4 ‖ξu‖M +
4CF
κγ̂TγT

‖θD‖1/2,ΓD
‖χu‖M. (3.5.7)

Proof. We proceed similarly to the proof of Lemma 3.5.1. In fact, from (3.5.3),
the definition of the bilinear form AT,w (cf. (3.3.36)), the decomposition (3.5.1),
and simple algebraic manipulations, it can be obtained the identity

AT,uh
((χρ, χθ), (ηh, ψh)) = −aT(ξρ,ηh)− bT(ηh, ξθ)− bT(ξρ, ψh)

− cT(uh; ξθ,ηh)− cT(ξu; θ,ηh)− cT(χu; θ,ηh).

Then, applying the discrete inf-sup condition (3.4.14) with (ςh, ϕh) = (χρ, χθ) ∈
Hh × Qh, and the continuity properties of aT, bT and cT (cf. (3.3.5) and (3.3.6)),
we obtain

γ̂T
2
‖(χρ, χθ)‖ ≤

(
1 + 1

κ

)
‖ξρ‖H +

(
1 + 1

κ
‖uh‖M

)
‖ξθ‖Q

+
1

κ
‖θ‖Q‖ξu‖M +

1

κ
‖θ‖Q‖χu‖M,

which together with the fact that uh ∈Wh and that θ satisfies ‖θ‖Q ≤ ‖(ρ, θ)‖ ≤
2CF

γT
‖θD‖1/2,ΓD

(see (3.3.46)), allow us to deduce that

γ̂T
2
‖(χρ, χθ)‖ ≤ C̃3 ‖(ξρ, ξθ)‖+ C̃4 ‖ξu‖M +

2CF
κγT
‖θD‖1/2,ΓD

‖χu‖M,

with

C̃3 = 1 +
1

κ
max

{
1,

4CF
γ̂F γ̂T

‖g‖0,Ω‖θD‖1/2,ΓD

}
and C̃4 =

2CF
κγT
‖θD‖1/2,ΓD

.

Thus, we obtain (3.5.7) with C3 = 2 C̃3/γ̂T and C4 = 2 C̃4/γ̂T.
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Now we are in position of establishing the aforementioned Cea’s estimate.

Theorem 3.5.1. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let define λ̃ := min

{
ν γF, κ γ̂T

}
and assume further that

16CF

λ̃ γ̂F γT
‖g‖0,Ω ‖θD‖1/2,ΓD

≤ 1

2
. (3.5.8)

Then, there exists C > 0, independent of h, but depending on the domain, ν, κ,
‖g‖0,Ω and the datum θD, such that

‖eσ‖X + ‖eu‖M + ‖eρ‖H + ‖eθ‖Q

≤ C
{

dist ((σ,u),Xh,0 ×Mh) + dist ((ρ, θ),Hh ×Qh)
}
.

(3.5.9)

Proof. We begin by observing that estimate (3.5.8) implies (3.5.4), thus estimate
(3.5.5) holds. Now, since ‖χu‖M ≤ ‖(χσ,χu)‖, combining (3.5.5) and (3.5.7), it
is not difficult to see that there exist positive constants c1, c2, independent of h,
such that

‖(χρ, χθ)‖ ≤ c1‖(ξρ, ξθ)‖+ c2‖(ξσ, ξu)‖+
16CF
κγ̂Tγ̂FγT

‖g‖0,Ω‖θD‖1/2,ΓD
‖χθ‖Q

≤ c1‖(ξρ, ξθ)‖+ c2‖(ξσ, ξu)‖+
16CF

λ̃γ̂FγT
‖g‖0,Ω‖θD‖1/2,ΓD

‖χθ‖Q,

with

c1 = C3 +
4CF C2

κ γ̂T γ̂T
‖θD‖1/2,ΓD

and c2 = C4 +
4CF C1

κ γ̂T γ̂T
‖θD‖1/2,ΓD

which combined with (3.5.8) implies

‖(χρ, χθ)‖ ≤ 2 c1 ‖(ξρ, ξθ)‖+ 2 c2 ‖(ξσ, ξu)‖. (3.5.10)

In turn, from (3.5.5), (3.5.10) and estimate ‖χθ‖Q ≤ ‖(χρ, χθ)‖ we easily deduce
that

‖(χσ,χu)‖ ≤ c3 ‖(ξρ, ξθ)‖+ c4 ‖(ξσ, ξu)‖, (3.5.11)

with c3, c4 > 0, independent of h, but depending on the domain, ν, κ, ‖g‖0,Ω, and
the datum θD. In this way, estimate (3.5.9) follows from (3.5.1), (3.5.10), (3.5.11),
the triangle inequality and the fact that (τ̂h, v̂h) ∈ Xh,0 ×Mh and (η̂h, ψ̂h) ∈
Hh ×Qh are arbitrary.

At this point we remark that the condition (3.5.8) imposed in the above proof,
does not actually have a physical meaning, but only constitutes a condition guar-
anteeing the corresponding Cea’s estimate.
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3.5.2 Rate of convergence

In order to establish the rate of convergence of the Galerkin scheme (3.4.1), we
first recall the approximation properties of the discrete spaces involved:

(APσ
h ) For each 0 ≤ l ≤ k and for each τ ∈ Hl+1(Ω) ∩H0(div4/3; Ω) with divτ ∈

Wl+1,4/3(Ω), there holds

dist
(
τ ,Xh,0

)
:= inf

τh∈Xh,0

‖τ − τh‖div4/3;Ω ≤ C hl+1
{
‖τ‖l+1,Ω + ‖divτ‖Wl+1,4/3(Ω)

}
.

(3.5.12)
(APu

h) For each 0 ≤ l ≤ k and for each v ∈Wl+1,4(Ω), there holds

dist
(
v,Mh

)
:= inf

vh∈Mh

‖v − vh‖L4(Ω) ≤ C hl+1 ‖v‖Wl+1,4(Ω). (3.5.13)

(APρ
h) For each 0 ≤ l ≤ k and for each η ∈ Hl+1(Ω) with div η ∈ Wl+1,4/3(Ω),

there holds

dist
(
η,Hh

)
:= inf

ηh∈Hh

‖η − ηh‖div 4/3;Ω ≤ C hl+1
{
‖η‖l+1,Ω + ‖div η‖Wl+1,4/3(Ω)

}
.

(3.5.14)
(APθ

h) For each 0 ≤ l ≤ k and for each ψ ∈Wl+1,4(Ω), there holds

dist
(
ψ,Qh

)
:= inf

ψh∈Qh

‖ψ − ψh‖L4(Ω) ≤ C hl+1 ‖ψ‖Wl+1,4(Ω). (3.5.15)

For (3.5.12) and (3.5.14) we refer to [30, eq. (4.7)] and [33, eq. (3.8)], which are
consequences of [63, Lemma B.67, Lemma 1.101] and [72, Section 3.4.4], whereas
for (3.5.13) and (3.5.15) we refer to [63, Proposition 1.134, Section 1.6.3].

Now we are in position of establishing the rates of convergence associated to
the Galerkin scheme (3.4.1).

Theorem 3.5.2. Assume that the hypotheses of Theorem 3.5.1 hold and let (σ,u,
ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh be the unique
solutions of the continuous and discrete problems (3.2.13) and (3.4.1), respectively.
Assume further that σ ∈ Hl+1(Ω), divσ ∈ Wl+1,4/3(Ω), u ∈ Wl+1,4(Ω), ρ ∈
Hl+1(Ω), divρ ∈Wl+1,4/3(Ω) and θ ∈Wl+1,4(Ω), for 0 ≤ l ≤ k. Then there exists
Crate > 0, independent of h, but depending on the domain, ν, κ, ‖g‖0,Ω, and the
datum θD, such that

‖eσ‖X + ‖eu‖M + ‖eρ‖H + ‖eθ‖Q

≤ Crate h
l+1
{
‖σ‖l+1,Ω + ‖divσ‖Wl+1,4/3(Ω) + ‖u‖Wl+1,4(Ω)

+ ‖ρ‖l+1,Ω + ‖divρ‖Wl+1,4/3(Ω) + ‖θ‖Wl+1,4(Ω)

}
.

Proof. The result is a straightforward application of Theorem 3.5.1 and the ap-
proximation properties (APσ

h ), (APu
h), (APρ

h), and (APθ
h).
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3.5.3 Computing further variables of interest

In this section we introduce suitable approximations for further variables of
interest, such as the pressure p, the stress tensor σ̃, the vorticity ω, the velocity
gradient ∇u and the heat-flux vector ρ̃, all of them written in terms of the solution
of the discrete problem (3.4.1). To that end we let (σh,uh,ρh, θh) ∈ Xh,0 ×
Mh ×Hh ×Qh be the discrete solution of problem (3.4.1). Then, inspired by the
formulas in (3.2.14) and (3.2.15), we propose the following approximations for the
aforementioned variables:

ph = −1

d

(
tr (σh) + tr (uh ⊗ uh)−

1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
,

σ̃h = σd
h + (uh ⊗ uh)

d + σt
h + uh ⊗ uh −

(
1

d|Ω|
(tr (uh ⊗ uh), 1)Ω

)
I

ωh =
1

2 ν

(
σh − σt

h

)
, Gh =

1

ν

(
σd
h + (uh ⊗ uh)

d
)
, ρ̃h = −(ρh + θh uh).

(3.5.16)
The following corollary establishes the convergence result for this post-processing
procedure.

Corollary 3.5.3. Assume that the hypotheses of Theorem 3.5.1 hold and let
(σ,u,ρ, θ) ∈ X0 ×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh be the
unique solutions of the continuous and discrete problems (3.2.13) and (3.4.1), re-
spectively. Let ph, σ̃h, ωh, Gh and ρ̃h given by (3.5.16). Assume further that σ ∈
Hl+1(Ω), divσ ∈Wl+1,4/3(Ω), u ∈Wl+1,4(Ω), ρ ∈ Hl+1(Ω), divρ ∈ Wl+1,4/3(Ω)

and θ ∈ Wl+1,4(Ω), for 0 ≤ l ≤ k. Then there exists Ĉrate > 0, independent of h,
but depending on the domain, ν, κ, ‖g‖0,Ω, and the datum θD, such that

‖p− ph‖0,Ω + ‖σ̃ − σ̃h‖0,Ω + ‖ω − ωh‖0,Ω + ‖∇u−Gh‖0,Ω + ‖ρ̃− ρ̃h‖0,Ω

≤ Ĉrate h
l+1
{
‖σ‖l+1,Ω + ‖divσ‖Wl+1,4/3(Ω) + ‖u‖Wl+1,4(Ω)

+ ‖ρ‖l+1,Ω + ‖divρ‖Wl+1,4/3(Ω) + ‖θ‖Wl+1,4(Ω)

}
.

Proof. Recalling the formulas given in (3.2.15) and (3.5.16), and employing suit-
able algebraic manipulations it is not difficult to show that there exist Ĉ1, Ĉ2 > 0,
independents of h, such that the following estimates hold:

‖p−ph‖0,Ω+‖σ̃−σ̃h‖0,Ω+‖ω−ωh‖0,Ω+‖∇u−Gh‖0,Ω ≤ Ĉ1

{
‖σ−σh‖X+‖u−uh‖M

}
and

‖ρ̃− ρ̃h‖0,Ω ≤ Ĉ2

{
‖ρ− ρh‖H + ‖u− uh‖M + ‖θ − θh‖Q

}
.
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Then, the result follows straightforwardly from Theorem 3.5.2. We omit further
details.

3.6 Numerical results
In this section we present three numerical examples to illustrate the perfor-

mance of the mixed finite element scheme (3.4.1) on a set of quasi-uniform tri-
angulations of the corresponding domains. Our implementation is based on a
FreeFem++ code, in conjunction with the direct linear solver UMFPACK. Regard-
ing the resolution of the non-linear problem, we utilize the algorithm utilized to de-
fine the fixed-point operator Jh. More precisely, starting with (u0

h, θ
0
h) ∈Mh×Qh,

we propose the following iterative process: for each i = 1, 2, . . . , solve

aT(ρ
i
h,ηh) + bT(ηh, θ

i
h) + cT(u

(i−1)
h ; θih,ηh) = FT(ηh) ∀ηh ∈ Hh,

bT(ρ
i
h, ψh) = 0 ∀ψh ∈ Qh,

and

aF(σ
i
h, τh) + bF(τh,u

i
h) + cF(u

(i−1)
h ; uih, τh) = 0 ∀ τh ∈ Xh,0,

bF(σ
i
h,vh) = −dF(θih,vh) ∀vh ∈Mh.

The iterations are terminated once the relative error of the entire coefficient vectors
between two consecutive iterates, say coeffm and coeffm+1, is sufficiently small, that
is,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol,

where ‖ · ‖ stands for the usual Euclidean norm in RN , with N denoting the total
number of degrees of freedom defining the finite element subspaces Xh, Mh, Hh

and Qh, and tol is a specified tolerance.
Now, we introduce some additional notations. The individual errors are de-

noted by e(?), and let r(?), be the experimental rate of convergence given by

r(?) :=
log(e(?)/e′(?))

log(h/h′)
,

for ? ∈ {σ,u,ρ, θ, p, σ̃,ω,∇u, ρ̃}, and h and h′ denote two consecutive mesh sizes
with their respective errors e and e′.
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Example 1. In the first example we illustrate the accuracy of the mixed
method considering a manufactured exact solution defined on Ω = (0, 1) × (0, 1)
considering the partition of the boundary ΓN = [0, 1] × {1} and ΓD = ∂Ω\ΓN.
We consider the thermal conductivity κ = 1, the viscosity of the fluid ν = 1, the
external force g = (0,−1)t, and the terms on the right-hand side are adjusted so
that the exact solution is given by the functions:

u(x, y) :=

(
2x2y(x− 1)2(y − 1)(2y − 1)
−2y2x(x− 1)(y − 1)2(2x− 1)

)
,

p(x, y) := 3x2 + y2 − 4

3
,

θ(x, y) :=
1

2
sin(πx) cos2(

π

2
(y + 1)).

We show in Tables 3.6.1 and 3.6.2 the convergence history for a sequence of
quasi-uniform mesh refinements when the finite element spaces described in Section
3.4.1 are used with k = 0 and k = 1, respectively. It can be observed there that
the rates of convergence are the ones expected from Theorem 3.5.2 and Corollary
3.5.3, that is O(h) and O(h2), respectively.

Example 2. In the second example we assess the capability of a 3D implemen-
tation of the Galerkin scheme (3.4.1), considering a manufactured exact solution
defined on Ω = (0, 1)3 with ΓD = [0, 1]× [0, 1]×{0} and ΓN = ∂Ω\ΓD. We consider
the thermal conductivity κ = 1, the viscosity of the fluid ν = 1, the external force
g = (0, 0,−1)t, and the terms on the right-hand side are adjusted so that the exact
solution is given by the functions:

u(x, y, z) :=

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 ,

p(x, y, z) := (x− 1/2)3 sin(y + z),

θ(x, y, z) := sin2(πx) sin2(πy)(z − 1)2.

In Table 3.6.3, we summarize the convergence history for Example 2 considering
a sequence of quasi-uniform triangulations. We observe there that the rates of
convergence O(h) predicted by Theorem 3.5.2 and Corollary 3.5.3 are attained all
for the unknowns and for all the post–processed variables. Moreover, in Figures
3.6.1, 3.6.2 and 3.6.3 we compare the exact heat flux vector field, heat velocity
vector field and temperature with their approximate counterparts, respectively.
There we can observe that the approximate solution captures satisfactorily the
behavior of the exact solution.
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Example 3. In the third example we study the behavior of a fluid in a square
cavity Ω = (0, 1)2 with differentially heated walls. Here the boundary ∂Ω has been
partitioned considering ΓN = [0, 1] × {1} and ΓD = ∂Ω\ΓN. This phenomenon
has been widely studied with different types of boundary conditions (see, e.g.
[16, 56, 59]). In particular, we are interested in the problem with dimensionless
numbers: Find (u, p, θ) such that

−Ra∆u + (u · ∇)u + ∇ p − Pr Rag θ = 0 in Ω,

div u = 0 in Ω,

u = 0 on Γ,

−κ∆θ + u · ∇θ = 0 in Ω,

θ = θD on ΓD,

κ∇θ · n = 0 on ΓN,

where Pr and Ra are the Prandtl and Rayleigh numbers. Here we fix the Prandtl
and Rayleigh numbers as Pr = 0.5 and Ra = 2000, the thermal conductiv-
ity κ = 1, and similarly to [56] we choose the boundary condition θD(x, y) =
0.5(1 − cos(2πx))(1 − y) on ΓD. Here, since the analytical solution is unknown,
we construct the convergence history by considering a solution calculated with
1,161,246 N as the exact solution, and employing tolerance tol = 1e − 6 and a
RT0 − P0 −RT0 − P0 approximation on a sequence of uniform triangulations.

In Figure 3.6.4 we show the approximated pressure and temperature (top left
and bottom left, respectively), along with the approximated velocity and heat-flux
vector fields (top right and bottom right, respectively). There, it is possible to see
the expected physical behaviour from [56], that is, convection currents form inside
the cavity in a symmetric configuration and, due to the relatively low Rayleigh
number, the heat transfer throughout the fluid is mainly due to conduction. On
the other hand, since the solution is smooth, it makes sense to expect convergence
of O(h) when the mixed method is applied with k = 0; a fact that can be verified
from the results in Table 3.6.4. Finally, in order to illustrate the conservativity
property of the mixed method, in Table 3.6.5 we display the l∞-norm of divσh+gθh
and divρh for the mixed RT0 − P0 −RT0 − P0 approximation of the Boussinesq
equations. Since divσh and gθh belong to Mh, it should be expected to obtain
values close to zero for ‖divσh + gθh‖l∞ and similarly for ‖divρh‖l∞ . The latter
is confirmed in Table 3.6.5.
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Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation

h N e(σ) r(σ) e(u) r(u)

0.373 294 4.79e-01 – 2.00e-02 –
0.196 1188 2.29e-01 1.149 5.51e-03 2.016
0.097 4626 1.13e-01 0.999 1.53e-03 1.819
0.048 18312 5.75e-02 0.960 5.87e-04 1.350
0.025 72939 2.88e-02 1.033 2.63e-04 1.200
0.013 294363 1.42e-02 1.084 1.26e-04 1.135

e(ρ) r(ρ) e(θ) r(θ) Iter
6.57e-01 – 6.68e-02 – 4
2.86e-01 1.302 3.23e-02 1.135 3
1.43e-01 0.983 1.66e-02 0.946 3
6.96e-02 1.015 7.87e-03 1.053 3
3.49e-02 1.034 3.97e-03 1.025 3
1.73e-02 1.075 1.96e-03 1.085 3

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω)

1.72e-01 – 4.82e-01 – 7.41e-02 –
7.87e-02 1.221 2.45e-01 1.058 3.20e-02 1.310
3.75e-02 1.052 1.21e-01 1.001 1.51e-02 1.066
1.88e-02 0.972 6.22e-02 0.939 7.40e-03 1.007
9.34e-03 1.049 3.12e-02 1.033 3.68e-03 1.044
4.56e-03 1.099 1.53e-02 1.090 1.84e-03 1.062

e(∇u) r(∇u) e(ρ̃) r(ρ̃)

2.33e-01 – 1.78e-01 –
1.18e-01 1.062 8.33e-02 1.185
5.84e-02 0.999 4.13e-02 0.995
3.00e-02 0.941 2.05e-02 0.989
1.50e-02 1.031 1.04e-02 1.020
7.42e-03 1.085 5.13e-03 1.079

Table 3.6.1: Example 1: Meshsizes, degrees of freedom, errors, rates of conver-
gence, and number of iterations for the mixed RT0−P0−RT0−P0 approximations
of the Boussinesq equations.
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Errors and rates of convergence for the RT1 − Pdc
1 −RT1 − Pdc

1 approximation

h N e(σ) r(σ) e(u) r(u)

0.373 912 3.22e-02 – 1.04e-03 –
0.196 3744 7.43e-03 2.291 2.62e-04 2.154
0.097 14688 1.92e-03 1.917 6.17e-05 2.050
0.048 58368 4.81e-04 1.956 1.53e-05 1.968
0.025 232944 1.22e-04 2.048 3.97e-06 2.023
0.013 941040 3.02e-05 2.147 9.79e-07 2.145

e(ρ) r(ρ) e(θ) r(θ) Iter
7.09e-02 – 7.44e-03 – 3
1.78e-02 2.161 1.58e-03 2.417 3
4.37e-03 1.987 3.75e-04 2.042 3
1.15e-03 1.893 1.08e-04 1.761 3
2.86e-04 2.076 2.64e-05 2.108 3
6.94e-05 2.172 6.41e-06 2.167 3

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω)

8.86e-03 – 2.62e-02 – 3.12e-03 –
1.95e-03 2.364 6.18e-03 2.259 6.63e-04 2.417
4.67e-04 2.027 1.51e-03 1.999 1.54e-04 2.066
1.17e-04 1.955 3.82e-04 1.939 3.86e-05 1.959
2.98e-05 2.045 9.81e-05 2.036 9.90e-06 2.036
7.25e-06 2.169 2.39e-05 2.165 2.43e-06 2.153

e(∇u) r(∇u) e(ρ̃) r(ρ̃)

1.23e-02 – 1.75e-02 –
2.92e-03 2.251 3.76e-03 2.399
7.12e-04 2.000 9.45e-04 1.958
1.81e-04 1.937 2.29e-04 2.000
4.64e-05 2.035 5.96e-05 2.018
1.13e-05 2.163 1.46e-05 2.159

Table 3.6.2: Example 1: Meshsizes, degrees of freedom, errors, rates of conver-
gence, and number of iterations for the mixed RT1−Pdc

1 −RT1−Pdc
1 approxima-

tions of the Boussinesq equations.
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Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation.

h N e(σ) r(σ) e(u) r(u)

0.141 74400 2.62e+01 – 1.24e-01 –
0.118 127872 2.18e+01 0,995 1.04e-01 0.990
0.101 202272 1.87e+01 0.997 8.90e-02 0.993
0.088 301056 1.64e+01 0.998 7.79e-02 0.995
0.079 427680 1.46e+01 0.998 6.93e-02 0.996

e(ρ) r(ρ) e(θ) r(θ) Iter
7.03e-01 – 3.82e-02 – 4
5.87e-01 0.988 3.19e-02 0.986 4
5.04e-01 0.992 2.74e-02 0.990 4
4.41e-01 0.993 2.40e-02 0.993 4
3.92e-01 0.995 2.13e-02 0.994 4

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω)

1.33e-01 – 7.46e-01 – 6.32e-01 –
1.10e-01 1.047 6.23e-01 0.994 5.27e-01 0.997
9.34e-02 1.063 5.34e-01 0.998 4.52e-01 0.997
8.10e-01 1.069 4.67e-01 1.000 3.96e-01 0.998
7.14e-02 1.070 4.15e-01 1.001 3.52e-01 0.998

e(∇u) r(∇u) e(ρ̃) r(ρ̃)

4.75e-01 – 1.70e-01 –
3.97e-01 0.992 1.42e-01 0.981
3.40e-01 0.994 1.22e-01 0.986
2.98e-01 0.995 1.07e-01 0.990
2.65e-01 0.996 9.51e-02 0.992

Table 3.6.3: Example 2: Meshsizes, degrees of freedom, errors, rates of conver-
gence, and number of iterations for the mixed RT0−P0−RT0−P0 approximations
of the three–dimensional Boussinesq equations.
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Figure 3.6.1: Example 2: Approximate (left) and exact (right) heat flux vector
fields, with h = 0.079.

Figure 3.6.2: Example 2: Approximate (left) and exact (right) velocity vector
fields, with h = 0.079.

Figure 3.6.3: Example 2: Transversal cuts of the approximate (left) and exact
(right) temperatures, with h = 0.079.
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Errors and rates of convergence for the RT0 − P0 −RT0 − P0 approximation

h N e(σ) r(σ) e(u) r(u)

0.373 294 5.38e+01 – 7.65e-04 –
0.196 1188 2.25e+01 1.165 2.58e-04 1.696
0.097 4626 1.30e+01 0.959 8.39e-05 1.594
0.048 18312 6.21e+00 1.042 3.08e-05 1.417
0.025 72939 3.19e+00 0.996 1.40e-05 1.179
0.013 294363 1.64e+00 1.020 6.73e-06 1.122

e(ρ) r(ρ) e(θ) r(θ) Iter
4.56e-01 – 1.05e-01 – 3
2.55e-01 0.909 5.47e-02 1.016 3
1.32e-01 0.935 2.86e-02 0.919 3
6.67e-02 0.963 1.34e-02 1.074 3
3.37e-02 1.023 6.89e-03 0.993 3
1.72e-02 1.027 3.51e-03 1.033 3

Postprocessed variables

e(p) r(p) e(σ̃) r(σ̃) e(ω) r(ω)

1.35e+01 – 3.40e+01 – 9.65e+03 –
5.96e+00 1.281 1.81e+01 0.980 4.71e+03 1.120
2.94e+00 0.999 9.54e+00 0.911 2.31e+03 1.011
1.35e+00 1.101 4.54e+00 1.051 1.17e+03 0.965
6.93e-01 0.998 2.34e+00 0.990 5.91e+02 1.016
3.55e-01 1.024 1.20e+00 1.020 3.03e+02 1.027

e(∇u) r(∇u) e(ρ̃) r(ρ̃)

1.56e+01 – 4.56e-01 –
8.69e+00 0.914 2.55e-01 0.909
4.59e+00 0.905 1.32e-01 0.935
2.22e+00 1.030 6.67e-02 0.963
1.14e+00 0.992 3.37e-02 1.023
5.87e-01 1.020 1.72e-02 1.027

Table 3.6.4: Example 3: Meshsizes, degrees of freedom, errors, rates of conver-
gence, and number of iterations for the mixed RT0−P0−RT0−P0 approximations
of the Boussinesq equations.
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h ‖divσh + gθh‖l∞ ‖divρh‖l∞
0.373 7.105e-14 3.553e-15
0.196 2.274e-13 7.105e-15
0.097 9.095e-13 1.421e-14
0.048 2.274e-12 5.684e-14
0.025 7.276e-12 1.137e-13
0.013 1.455e-11 3.411e-13

Table 3.6.5: Example 3: Meshsizes and l∞-norms of divσh + gθh and divρh for
the mixed RT0 − P0 −RT0 − P0 approximation of the Boussinesq equations.

Figure 3.6.4: Example 3: Pressure, velocity vector field (from the left to the
right, at the top), temperature and heat flux vector field (from the left to the
right, at the bottom).



Chapter 4

A posteriori error analysis of a
momentum and thermal energy
conservative mixed–FEM for the
Boussinesq equations

4.1 Introduction

The derivation of new finite element methods for the Boussinesq model de-
scribing natural convection, in which the steady-state equations of momentum
(Navier-Stokes) and thermal energy are coupled by means of the so called Boussi-
nesq approximation, has become a very active research area lately (see, e.g. [8, 6,
49, 50, 52, 55, 64, 100, 99, 101]). The above list includes Discontinuous Galerkin
and stabilized methods, mixed and augmented-mixed approaches and generaliza-
tions of the Boussinesq model with temperature-dependent parameters.

Now, in Chapter 2 we have developed a new Banach spaces-based mixed finite
element method for the Boussinesq problem which allows, on the one hand, to con-
serve momentum and thermal energy if the external forces belong to the velocity
and temperature discrete spaces, respectively, and on the other hand, to compute
further variables of interest, such as the fluid vorticity, the fluid velocity gradient,
and the heat-flux, through a simple postprocess of the finite element solutions, in
which no numerical differentiation is applied, and hence no further sources of error
arise. More precisely, we introduce a modified pseudostress tensor depending on
the pressure, and the diffusive and convective terms of the Navier–Stokes equations
for the fluid, and a vector unknown involving the temperature, its gradient and
the velocity, and derive a mixed variational formulation where the aforementioned
pseudostress tensor and vector unknown, together with the velocity and the tem-

97
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perature, are the main unknowns of the system. In turn, the associated numerical
scheme is defined by Raviart–Thomas elements of order k for the pseudostress
tensor and the vector unknown, and discontinuous piece-wise polynomial elements
of degree k for the velocity and temperature. With this choice of discrete spaces
the proposed Galerkin scheme becomes well posed and optimal convergent.

The aim of the present chapter is to complement the study started in Chapter
2 by introducing a reliable and efficient residual-based a posteriori error estimator
for the associated mixed scheme. In this direction, we mention that the first contri-
bution dealing with adaptive algorithms for mixed formulations of the Boussinesq
problem is [65] where the authors introduced appropriate refinement rules to re-
cover the quasi-optimality of the method proposed in [64] under the presence of
singular behaviors near non-convex corner points. More recently, in the contribu-
tions [53, 54] the authors proposed reliable and efficient a posteriori error estima-
tors for augmented mixed-based formulations of the Boussinesq equations. In [53]
the error indicator is non-local due to the presence of the H1/2-norm of a resid-
ual term involving the temperature on the boundary, whereas in [54] the estimator
turns to be fully–local and fully–computable. However, in both cases the efficiency
estimate cannot be localized due to the presence of the convective term in some
of the terms defining the error indicator. These works were extended in [7] to the
case of natural convection models with temperature-dependent viscosity. Finally,
for adaptive algorithms based on primal schemes we mention [5, 9, 84, 114].

Motivated by the discussion above, in this chapter we provide the a posteriori
error analysis of the mixed variational formulation introduced in Chapter 2. One
of the principal advantages of our Banach space-based approach is that our a pos-
teriori error estimator, besides being fully–local and fully–computable, is locally
efficient, which improves the results obtained in [53, 54]. In turn, using the asso-
ciated a posteriori error indicator we propose an adaptive algorithm which is of
low computational cost, and allows to improve the accuracy, the stability and the
robustness of our fully-mixed method when being applied to problems in which
the overall approximation quality can be deteriorated by the presence of boundary
layers, singularities, or complex geometries.

The rest of this Chapter is organized as follows. In Section 4.2 we recall from
Chapter 2 the model problem and its continuous and discrete mixed variational
formulations. Next in Section 4.3 we provide some preliminary results to be em-
ployed next to derive and analyze our a posteriori error estimator. The kernel
of the present chapter is given by Section 4.4, where we develop the a posteriori
error analysis. In Section 4.4.1 we employ the global continuous inf-sup condi-
tion, a suitable Helmholtz decomposition, and the local approximation properties
of the Clément and Raviart-Thomas operators, to derive a reliable residual-based
a posteriori error estimator. Then, in Section 4.4.2 inverse inequalities, and the
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localization technique based on element-bubble and edge-bubble functions are uti-
lized to prove the efficiency of the estimator. Finally, numerical results confirming
the reliability and efficiency of the a posteriori error estimator, and showing the
good performance of the associated adaptive algorithm, are presented in Section
4.5.

4.2 The model problem and its momentum and
thermal energy conservative formulation

In this section we recall from Chapter 2 the steady-state natural convection
model, its variational formulation, the associated Galerkin scheme, and the main
results concerning the corresponding solvability analysis.

4.2.1 The steady-state natural convection model

The stationary Boussinesq problem is a system of equations where the incom-
pressible Navier–Stokes equation:

−ν ∆u + (∇u)u +∇p− θ g = 0 in Ω, div u = 0 in Ω,

u = 0 on Γ, (p, 1)Ω = 0,
(4.2.1)

is coupled with the convection-diffusion equation:

−κ∆ θ+u ·∇θ = 0 in Ω, θ = θD on ΓD, κ∇θ ·n = 0 on ΓN. (4.2.2)

Here Ω is a bounded domain in Rd, d ∈ {2, 3}, with polyhedral boundary Γ.
The unknowns are the velocity u, the pressure p and the temperature θ of the
fluid occupying the region Ω, and the given data are the fluid viscosity ν > 0, the
thermal conductivity κ > 0, the external force per unit mass g ∈ L2(Ω), and the
boundary temperature θD ∈ H1/2(ΓD).

Now, in order to derive our approach (see [40, Section 2] for details), we begin
by introducing the tensor and vector variables

σ := ν∇u− (u⊗ u)− p I and ρ := κ∇θ − θ u in Ω ,

and utilize the incompressibility condition div u = tr (∇u) = 0 in Ω to rewrite
the systems (4.2.1) and (4.2.2), respectively as the following equivalent first-order
set of equations (see [30] and [53] for details):

1

ν
σd +

1

ν
(u⊗ u)d = ∇u in Ω, divσ + θ g = 0 in Ω,

p = −1

d
tr (σ + u⊗ u) in Ω, u = 0 on Γ, (tr (σ + u⊗ u), 1)Ω = 0,

(4.2.3)
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and
κ−1ρ+ κ−1θ u = ∇θ in Ω, div ρ = 0 in Ω,

θ = θD on ΓD, ρ · n = 0 on ΓN.
(4.2.4)

Notice that the third equation in (4.2.3) has allowed us to eliminate the pressure
p from the system and provides a formula for its approximation through a post-
processing procedure, whereas the last equation takes care of the requirement that
(p, 1)Ω = 0.

4.2.2 The continuous weak formulation and its well posed-
ness

In this section, we recall from [40, Section 2] the weak formulation of the
problem given by (4.2.3)–(4.2.4). To that end, we define the spaces

X := H(div4/3; Ω), M := L4(Ω),

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
, Q := L4(Ω),

and
X0 :=

{
τ ∈ H(div4/3 ; Ω) : (tr (τ ), 1)Ω = 0

}
,

and observe that the following decomposition holds:

X = X0 ⊕ P0(Ω)I,

where P0(Ω) is the space of constant polynomials on Ω.
The derivation of the weak formulation proposed in [40] for the problem given

by (4.2.3)–(4.2.4) relies on the previous orthogonal decomposition. In fact, it
can be proved that the uniqueness condition given by the last equation in (4.2.3)
allows us to only look for the X0−component of the tensor σ (cf. [30, Lemma 3.1]).
Therefore, the variational formulation of (4.2.3)–(4.2.4) reads: Find (σ,u,ρ, θ) ∈
X0 ×M×H×Q, such that:

aF(σ, τ ) + bF(τ ,u) + cF(u; u, τ ) = 0 ∀ τ ∈ X0,

bF(σ,v) + dF(θ,v) = 0 ∀v ∈M,

aT(ρ,η) + bT(η, θ) + cT(u; θ,η) = FT(η) ∀η ∈ H,

bT(ρ, ψ) = 0 ∀ψ ∈ Q,

(4.2.5)

where, the bounded forms aF : X × X → R, bF : X ×M → R, cF : M ×M × X →
R, dF : Q×M→ R, aT : H×H→ R, bT : H× Q→ R, and cT : M× Q×H→ R
are defined as:
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aF(σ, τ ) :=
1

ν
(σd, τ d)Ω, bF(τ ,v) := (v,divτ )Ω,

cF(w; u, τ ) :=
1

ν
((w ⊗ u)d, τ )Ω, dF(θ,v) := (θ g,v)Ω,

aT(ρ,η) := κ−1(ρ,η)Ω, bT(η, ψ) := (ψ, div η)Ω,

cT(w; θ,η) := κ−1(θw,η)Ω,

(4.2.6)

and the functional FT ∈ H′:

FT(η) := 〈η · n, θD〉ΓD
. (4.2.7)

This problem is analyzed throughout [40, Section 3], and the well-posedness
comes as a result of a fixed-point strategy. In particular, we recall from [40] the

following inf-sup conditions: Given u ∈ M such that ‖u‖M ≤ λ

2
, with λ :=

min{ν γF, κ γT}, there holds

sup
(τ ,v)∈X0×M

(τ ,v)6=0

∣∣aF(ζ, τ ) + bF(τ , z) + bF(ζ,v) + cF(u; z, τ )
∣∣

‖(τ ,v)‖
≥ γF

2
‖(ζ, z)‖ (4.2.8)

for all (ζ, z) ∈ X0 ×M, and

sup
(η,ψ)∈H×Q

(η,ψ)6=0

∣∣aT(ς,η) + bT(η, ϕ) + bT(ς, ψ) + cT(u;ϕ,η)
∣∣

‖(η, ψ)‖
≥ γT

2
‖(ς, ϕ)‖ (4.2.9)

for all (ς, ϕ) ∈ H×Q, with

γF := C
min{1, νβF}
νβF + 1

and γT :=
κβ2

T

κ2 β2
T + 4κβT + 2

, (4.2.10)

where C, βF and βT are positive constants independent of the physical parameters.
In particular, βF and βT are the constants related with the inf-sup conditions of
the bilinear forms bF and bT, respectively (cf. [30, Lemma 3.4] and [40, Lemma
3.1]).

In turn, the following result taken from [40] establishes the well-posedness of
(4.2.5).
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Theorem 4.2.1. Let define λ := min
{
ν γF, κ γT

}
and assume that

16CF
λ γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
< 1,

where CF is the bounding constant of FT, and γF and γT are the constants defined
in (4.2.10). Then, the coupled problem (4.2.5) has a unique solution (σ,u,ρ, θ) ∈
X0 ×M×H×Q. Moreover, there hold

‖(σ,u)‖ ≤ 4CF
γF γT

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρ, θ)‖ ≤ 2CF

γT
‖θD‖1/2,ΓD

. (4.2.11)

Proof. See [40, Theorem 3.2] for details.

We now provide the converse of the derivation of (4.2.5).

Theorem 4.2.2. Let (σ,u,ρ, θ) ∈ X0×M×H×Q be the unique solution of the

variational formulation (4.2.5). Then,
1

ν
σd +

1

ν
(u⊗u)d = ∇u in Ω, u ∈ H1(Ω),

divσ+θ g = 0 in Ω, u = 0 on Γ, κ−1ρ+κ−1θ u = ∇θ in Ω, θ ∈ H1(Ω), div ρ = 0
in Ω, θ = θD on ΓD and ρ · n = 0 on ΓN.

Proof. First, it is clear that the identities divσ + θ g = 0 in Ω and div ρ = 0
in Ω follow from the second and fourth equations of (4.2.5), respectively. The
derivation of the rest of the identities follows from the first and third equations
of (4.2.5), considering suitable test functions and integrating by parts backwardly.
We omit further details.

4.2.3 The discrete coupled system and its well-posedness

Let us begin by considering {Th}h>0 a family of regular triangulations of Ω
made by triangles T (when d = 2) or tetrahedra (when d = 3) of diameter hT and
define the meshsize h := max

{
hT : T ∈ Th

}
. Given an integer l ≥ 0 and a subset

S of Rd, we denote by Pl(S) the space of polynomials of total degree at most l
defined on S. Hence, for each integer k ≥ 0 and for each T ∈ Th, we define the
local Raviart–Thomas space of order k as (see, for instance [21]):

RTk(T ) := [Pk(T )]d ⊕ P̃k(T )x,

where x := (x1, . . . , xd)
t is a generic vector of Rd and P̃k(T ) is the space of poly-

nomials of total degree equal to k defined on T . In this way, we define the finite
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element subspaces:

Xh :=
{
τh ∈ X : ctτh|T ∈ RTk(T ) ∀ c ∈ Rd ∀T ∈ Th

}
,

Mh :=
{
vh ∈M : vh|T ∈ [Pk(T )]d ∀T ∈ Th

}
,

Hh :=
{
ηh ∈ H : ηh|T ∈ RTk(T ) ∀T ∈ Th

}
,

Qh := {φh ∈ Q : φh|T ∈ Pk(T ) ∀T ∈ Th} .

(4.2.12)

Then defining the subspace Xh,0 := Xh ∩ X0, the Galerkin scheme associated to
problem (4.2.5) reads: Find (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh such that:

aF(σh, τh) + bF(τh,uh) + cF(uh; uh, τh) = 0 ∀ τh ∈ Xh,0

bF(σh,vh) + dF(θh,vh) = 0 ∀vh ∈Mh

aT(ρh,ηh) + bT(ηh, θh) + cT(uh; θh,ηh) = FT(ηh) ∀ηh ∈ Hh

bT(ρh, ψh) = 0 ∀ψh ∈ Qh,

(4.2.13)

where the forms aF, bF, cF, dF, aT, bT, cT and the functional FT are defined in (4.2.6)
and (4.2.7), respectively.

The following results, taken from [40, Theorem 4.1 and Theorem 5.2], provides
the well-posedness of (4.2.13) and the corresponding theorical rate of convergence.

Theorem 4.2.3. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let define λ̂ := min

{
ν γ̂F, κ γ̂T

}
and assume that

16CF

λ̂ γ̂F γ̂T
‖g‖0,Ω‖θD‖1/2,ΓD

< 1,

where CF is the bounding constant of FT, and γ̂F and γ̂T are the discrete version of
γF and γT respectively (cf. (4.2.10)), given by

γ̂F := C
min{1, νβ̂F}
νβ̂F + 1

and γ̂T :=
κ β̂2

T

κ2 β̂2
T + 4κ β̂T + 2

, (4.2.14)

where C is a positive constant independent of the physical parameters, and β̂F and
β̂T are the constants related with the discrete inf-sup conditions of the bilinear forms
bF and bT, respectively. Then, the coupled problem (4.2.13) has a unique solution
(σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh. Moreover, there hold

‖(σh,uh)‖ ≤
4CF
γ̂F γ̂T

‖g‖0,Ω‖θD‖1/2,ΓD
and ‖(ρh, θh)‖ ≤

2CF
γ̂T
‖θD‖1/2,ΓD

.

(4.2.15)
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Theorem 4.2.4. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let define λ̃ := min

{
ν γF, κ γ̂T

}
and assume further that

16CF

λ̃ γ̂F γT
‖g‖0,Ω ‖θD‖1/2,ΓD

≤ 1

2
,

where CF is the bounding constant of FT, and γF, γT and γ̂F, γ̂T given in (4.2.10)
and (4.2.14), respectively. Let (σ,u,ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈
Xh,0 × Mh × Hh × Qh be the unique solutions of the continuous and discrete
problems (4.2.5) and (4.2.13), respectively. Assume further that σ ∈ Hl+1(Ω),
divσ ∈ Wl+1,4/3(Ω), u ∈ Wl+1,4(Ω), ρ ∈ Hl+1(Ω), divρ ∈ Wl+1,4/3(Ω) and
θ ∈ Wl+1,4(Ω), for 0 ≤ l ≤ k. Then there exists Crate > 0, independent of h, but
depending on the domain, ν, κ, ‖g‖0,Ω, and the datum θD, such that

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖

≤ Crate h
l+1
{
‖σ‖l+1,Ω + ‖divσ‖Wl+1,4/3(Ω)

+ ‖u‖Wl+1,4(Ω) + ‖ρ‖l+1,Ω + ‖divρ‖Wl+1,4/3(Ω) + ‖θ‖Wl+1,4(Ω)

}
.

4.3 Preliminaries for the a posteriori error analysis
We start by introducing a few useful notations for describing local information

on elements and edges or faces depending on wether d = 2 or d = 3, respectively.
Let Eh be the set of edges or faces of Th, whose corresponding diameters are denoted
by he, and define

Eh(Ω) :=
{
e ∈ Eh : e ⊆ Ω

}
and Eh(Γ) :=

{
e ∈ Eh : e ⊆ Γ

}
.

For each T ∈ Th, we let Eh,T be the set of edges or faces of T , and denote

Eh,T (Ω) =
{
e ⊆ ∂T : e ∈ Eh(Ω)

}
and Eh,T (Γ) =

{
e ⊆ ∂T : e ∈ Eh(Γ)

}
.

We also define the unit normal vector ne on each edge or face by

ne := (n1, . . . , nd)
t ∀ e ∈ Eh .

Hence, when d = 2 we can define the tangential vector se by

se := (−n2, n1)t ∀ e ∈ Eh .

However, when no confusion arises, we will simply write n and s instead of ne and
se, respectively.
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The usual jump operator [[·]] across internal edges or faces are defined for piece-
wise continuous matrix, vector, or scalar-valued functions ζ, by

[[ζ]] = (ζ
∣∣
T+

)
∣∣
e
− (ζ

∣∣
T−

)
∣∣
e

with e = ∂T+ ∩ ∂T−,

where T+ and T− are the elements of Th having e as a common edge or face.
Finally, for sufficiently smooth scalar ψ, vector v := (v1, . . . , vd)

t, and tensor fields
τ := (τij)1≤i,j≤d, we let

curl (ψ) :=
( ∂ψ
∂x2

, − ∂ψ
∂x1

)t

, for d = 2, curl (v) =


∂v2

∂x1

− ∂v1

∂x2

, for d = 2,

∇× v , for d = 3,

curl (τ ) =



(
curl (τ1)
curl (τ2)

)
, for d = 2,curl (τ1)

curl (τ2)
curl (τ3)

 , for d = 3,

γ∗(v) =

{
v · s , for d = 2,

v × n , for d = 3,

and γ∗(τ ) =


τ s , for d = 2,τ1 × n
τ2 × n
τ3 × n

 , for d = 3,

where τi is the i-th row of τ and the derivatives involved are taken in the distri-
butional sense.

Let us now recall the main properties of the Raviart–Thomas interpolator (see
e.g. [63]) and the Clément operator (see e.g. [46]) onto the space of continuous
piecewise linear functions. Given p > 1, let us define the space

Zp :=
{
τ ∈ H(div p; Ω) : τ |T ∈W1,p(T ), ∀T ∈ Th

}
,

and let

Πk
h : Zp → Xh :=

{
τ ∈ H(div ; Ω) : τ |T ∈ RTk(T ), ∀T ∈ Th

}
,

be the Raviart–Thomas interpolation operator, which is well defined in Zp (see
e.g. [63, Section 1.2.7]) and is characterized by the identities

(Πk
h(τ) · n, ξ)e = (τ · n, ξ)e ∀ ξ ∈ Pk(e), ∀ edge or face e of Th, (4.3.1)

and
(Πk

h(τ), ψ)T = (τ, ψ)T ∀ψ ∈ [Pk−1(T )]d, ∀ T ∈ Th (if k ≥ 1) .



106 4.3. Preliminaries for the a posteriori error analysis

Notice that, since Πk
h(τ) · ne ∈ Pk(e), from (4.3.1) we have that

Πk
h(τ) · ne = Pke (τ · ne) ,

where, for 1 ≤ r ≤ ∞, Pke : Lr(e)→ Pk(e) is the operator satisfying∫
e

(Pke (v)− v)zh = 0 ∀ zh ∈ Pk(e),

Notice that for r = 2, Pke coincides with the usual orthogonal projection. In
addition, it is well known (see, e.g., [63, Lemma 1.41]) that the following identity
holds

div (Πk
h(τ)) = Pkh(div τ) ∀ τ ∈ Zp,

where, given 1 ≤ r ≤ ∞, Pkh : Lr(Ω)→ Mh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀T ∈

Th
}
is the operator satisfying∫

Ω

(Pkh(v)− v)zh = 0 ∀ zh ∈ Mh.

The following lemma establishes the local approximation properties of Πk
h.

Lemma 4.3.1. Let p > 1. Then, there exists c1 > 0, independent of h, such that
for each τ ∈Wl+1,p(T ) with 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|τ − Πk
h(τ)|Wm,p(T ) ≤ c1

hl+2
T

ρm+1
T

|τ |Wl+1,p(T ),

where ρT is the diameter of the largest sphere contained in T . Moreover, there
exists c2 > 0, independent of h, such that for each τ ∈ W1,p(T ), with div τ ∈
Wl+1,p(T ) and 0 ≤ l ≤ k, and for each 0 ≤ m ≤ l + 1, there holds

|div τ − div (Πk
h(τ))|Wm,p(T ) ≤ c2

hl+1
T

ρmT
|div τ |Wl+1,p(T ).

Proof. See [30, Lemma 4.1] for details.

The following lemma extends the estimate of the normal component of the
interpolation error, originally given for Hilbert spaces (see, for instance [72, Lemma
3.18]), to the Lp case.

Lemma 4.3.2. Let p > 1, T ∈ Th and e ∈ Eh,T . Then, there exists C > 0,
independent of h, such that

‖τ · n− Πk
h(τ) · n‖Lp(e) ≤ C h1−1/p

e |τ |W1,p(T ) ∀ τ ∈W1,p(T ). (4.3.2)
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Proof. See [29, Lemma 4.2] for details.

Now, we consider the space H1
h =

{
vh ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) ∀T ∈ Th

}
and denote by Ih : H1(Ω) → H1

h the Clément interpolation operator. The local
approximation properties of this operator are established in the following lemma
(see [46]):

Lemma 4.3.3. There exist constants c1, c2 > 0, independent of h, such that for
all v ∈ H1(Ω) there holds

‖v − Ihv‖0,T ≤ c1 hT |v|1,∆(T ) ∀T ∈ Th,

and
‖v − Ihv‖0,e ≤ c2 h

1/2
e ‖v‖1,∆(e) ∀ e ∈ Eh,

where ∆(T ) and ∆(e) are the unions of all elements intersecting T and e, respec-
tively.

In what follows, we denote by Πk
h : Zp → Xh the tensor version of Πk

h, which
is defined row-wise by Πk

h and by Ih : H1(Ω) → H1
h the corresponding vectorial

version of Ih which is defined componentwise by Ih.
We end this section by establishing a suitable Helmholtz decomposition for

H :=
{
η ∈ H(div4/3 ; Ω) : η · n = 0 on ΓN

}
.

Lemma 4.3.4. Assume that there exists a convex domain B such that Ω ⊆ B and
ΓN ⊆ ∂B, let 1 < p ≤ 2 when d = 2 and 6/5 ≤ p ≤ 2 when d = 3. Then, for each
η ∈ H there exist

a) ξ ∈W1,p(Ω) and w ∈ H1
ΓN

(Ω) such that η = ξ + curlw when d = 2,

b) ξ ∈W1,p(Ω) and w ∈ H1
ΓN

(Ω) such that η = ξ + curl w when d = 3,

where H1
ΓN

(Ω) :=
{
w ∈ H1(Ω) : w = 0 on ΓN

}
. In addition, we have that

‖ξ‖W1,p(Ω) +‖w‖1,Ω ≤ CHel ‖η‖divp ;Ω and ‖ξ‖W1,p(Ω) +‖w‖1,Ω ≤ CHel ‖η‖divp ;Ω,
(4.3.3)

for d = 2 and d = 3, respectively, where CHel is a positive constant independent of
all the foregoing variables.

Proof. In what follows we prove the result for the two-dimensional case. The
three-dimensional case can be treated similarly by extending [73, Theorem 3.1] to
the Lp case.
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We proceed as in the proof of [13, Lemma 3.9]. In fact, given η ∈ H, we let
z ∈W1,p(B) be the unique weak solution of the boundary value problem:

∆z =


div η in Ω

−1

|B \ Ω|

∫
Ω

div η in B \ Ω
, ∇z · n = 0 on ∂B,

∫
Ω

z = 0.

Since, B is a convex domain, it is well known that z ∈W2,p(B) (see [90, Theorem
1.1]) and

‖z‖W2,p(B) ≤ c ‖div η‖Lp(Ω),

where c > 0 is independent of z. We let ξ = (∇z)|Ω ∈W1,p(Ω), and observe that
div ξ = ∆z = divη in Ω, ξ · n = 0 on ∂B (which certainly yields ξ · n = 0 on ΓN)
and

‖ξ‖W1,p(Ω) ≤ c ‖div η‖Lp(Ω). (4.3.4)

On the other hand, let ε := η − ξ. Clearly, ε is a divergence-free vector in Ω,
and owing to the continuous embedding W1,p(Ω) into L2(Ω) (see, for instance, [63,
Theorem B.46]) and (4.3.4) we have that ε ∈ L2(Ω) and

‖ε‖0,Ω ≤ ĉ
(
‖η‖0,Ω + ‖ξ‖W1,p(Ω)

)
≤ c̃ ‖η‖divp ;Ω.

In this way, as a consequense of [82, Chapter I, Theorem 3.1], given ε ∈ L2(Ω)
satisfying div ε = 0 in Ω, and Ω connected, there exists w ∈ H1(Ω), such that
ε = curlw in Ω, that is,

η − ξ = curlw in Ω. (4.3.5)

In turn, noting that 0 = (η − ξ) · n = (curlw) · n = ∇w · s on ΓN, we deduce that
w is constant on ΓN, and therefore w can be chosen so that w ∈ H1

ΓN
(Ω), which

proves the Helmholtz decomposition for d = 2. In turn, the equivalence between
‖w‖1,Ω and |w|1,Ω, which is result of the generalized Poincaré inequality (see, for
instance, [63, Theorem B.63]), together with (4.3.4), (4.3.5) and the continuous
embedding from W1,p(Ω) into L2(Ω), yield

‖w‖1,Ω ≤ c |w|1,Ω = c ‖curlw‖0,Ω ≤ c (‖η‖0,Ω + ‖ξ‖W1,p(Ω)) ≤ c ‖η‖divp ;Ω.
(4.3.6)

Then, it is clear that (4.3.4) and (4.3.6) imply (4.3.3) and conclude the proof.

4.4 A posteriori error analysis
In this section we derive a reliable and efficient residual-based a posteriori error

estimator for the Galerkin scheme (4.2.13).
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In what follows we assume that the hypothesis of Theorems 4.2.1 and 4.2.3 hold,
and let (σ,u,ρ, θ) ∈ X0×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0×Mh×Hh×Qh be
the unique solutions of the continuous and discrete problems (4.2.5) and (4.2.13),
respectively. Then, our global a posteriori error estimator is defined by:

Θ =

{∑
T∈Th

Θ2
T

}1/2

+

{ ∑
T∈Th

(
‖θhg + divσh‖4/3

L4/3(T )
+ ‖divρh‖4/3

L4/3(T )

)}3/4

,

(4.4.1)
where, for each T ∈ Th, the local error indicator is defined as follows:

Θ2
T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥2

0,T

+h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,e

+h
2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (ΓD)

h1/2
e ‖θD − θh‖2

L4(e) +
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

.

(4.4.2)
The main goal of the present section is to establish, under suitable assumptions,

the existence of positive constants Crel and Ceff , independent of the meshsizes and
the continuous and discrete solutions, such that

Ceff Θ + h.o.t. ≤ ‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ Crel Θ + h.o.t. ,
(4.4.3)

where h.o.t. is a generic expression denoting one or several terms of higher order.
The upper and lower bounds in (4.4.3), which are known as the reliability and
efficiency of Θ, are derived below in Sections 4.4.1 and 4.4.2, respectively.
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4.4.1 Reliability of the a posteriori error estimator

The main result of this section is stated in the following theorem.

Theorem 4.4.1. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Let define λ := min

{
ν γ̂F, κ γT

}
and assume further that

16CF

λ γF γ̂T
‖g‖0,Ω ‖θD‖1/2,ΓD

≤ 1

2
, (4.4.4)

where CF is the bounding constant of FT, and γF, γT and γ̂F, γ̂T are given in (4.2.10)
and (4.2.14), respectively. Then, there exist Crel > 0, independent of h, such that

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖ ≤ Crel Θ. (4.4.5)

We begin the derivation of (4.4.5) with the next preliminary lemma.

Lemma 4.4.1. Assume that there exists a convex domain B such that Ω ⊆ B
and ΓN ⊆ ∂B. Assume further that the datum θD satisfies (4.4.4). Finally let
(σ,u,ρ, θ) ∈ X0 ×M×H×Q and (σh,uh,ρh, θh) ∈ Xh,0 ×Mh ×Hh ×Qh be the
unique solutions of problems (4.2.5) and (4.2.13), respectively. Then, there exists
a constant C > 0, independent of h, such that

‖(σ,u)− (σh,uh)‖ + ‖(ρ, θ)− (ρh, θh)‖

≤ C

(
sup

(τ ,v)∈X0×M
(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

)
,

(4.4.6)

where RF : X0 ×M → R and RT : H × Q → R are the residual functionals given
by

RF(τ ,v) = −aF(σh, τ )− bF(τ ,uh)− bF(σh,v)− cF(uh; uh, τ )− dF(θh,v)

for all (τ ,v) ∈ X0 ×M, and

RT(η, ψ) = FT(η)− aT(ρh,η)− bT(η, θh)− bT(ρh, ψ)− cT(uh; θh,η)

for all (η, ψ) ∈ H×Q.

Proof. First, using the inf-sup condition (4.2.8) for the error (ζ, z) = (σ−σh,u−
uh), adding and substracting cF(uh; uh, τ )+dF(θh,v), and using the first and second
equations of (4.2.5) and the continuity of the forms cF and dF given by (see [40,
Section 3])∣∣cF(w; v, τ )

∣∣ ≤ 1

ν
‖w‖M‖v‖M‖τ‖X,

∣∣dF(θ,v)
∣∣ ≤ ‖g‖0,Ω‖θ‖Q‖v‖M,
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we deduce that
γF
2
‖(σ − σh,u− uh)‖

≤ sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ sup
v∈M
v 6=0

|dF(θ − θh,v)|
‖v‖M

+ sup
τ∈X0
τ 6=0

|cF(u− uh; uh, τ )|
‖τ‖X

≤ sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ‖g‖0,Ω‖θ − θh‖Q +
1

ν
‖uh‖M ‖u− uh‖M.

Then, observing that the estimate (4.4.4) implies

8CF
ν γF γ̂F γ̂T

‖g‖0,Ω ‖θD‖1/2,ΓD
≤ 1

2
, (4.4.7)

and since ‖uh‖M ≤ ‖(σh,uh)‖, from (4.4.7) and the first estimate in (4.2.15), we
obtain

γF
4
‖(σ − σh,u− uh)‖ ≤ sup

(τ ,v)∈X0×M
(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ‖g‖0,Ω‖θ − θh‖Q. (4.4.8)

Similarly, from the inf-sup condition (4.2.9), with (ς, ϕ) = (ρ−ρh, θ− θh), the
third and fourth equations of (4.2.5), adding and substracting cT(uh; θh,η), and
using the continuity of cT given by (see [40, Section 3])∣∣cT(w;ψ,η)

∣∣ ≤ 1

κ
‖w‖M‖ψ‖Q‖η‖H,

we deduce that
γT
2
‖(ρ− ρh, θ − θh)‖ ≤ sup

(η,ψ)∈H×Q
(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

+ sup
η∈H
η 6=0

|cT(u− uh; θh,η)|
‖η‖H

≤ sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

+
1

κ
‖θh‖Q ‖u− uh‖M.

(4.4.9)

Next, since ‖u − uh‖M ≤ ‖(σ − σh,u − uh)‖ and ‖θh‖Q ≤ ‖(ρh, θh)‖, combining
(4.4.8) and (4.4.9), and using the second inequality in (4.2.15), it is not difficult
to see that there exist positive constants c1, c2, independent of h, such that

‖(ρ− ρh, θ − θh)‖ ≤ c1 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ c2 sup
(η,ψ)∈H×Q

(η,ψ)6=0

|RT(η, ψ)|
‖(η, ψ)‖

+
16CF
κγTγFγ̂T

‖g‖0,Ω‖θD‖1/2,ΓD
‖θ − θh‖Q
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which combined with (4.4.4) implies

‖(ρ− ρh, θ − θh)‖ ≤ ĉ1 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ĉ2 sup
(η,ψ)∈H×Q

(η,ψ) 6=0

|RT(η, ψ)|
‖(η, ψ)‖

, (4.4.10)

with ĉ1, ĉ2 > 0, independent of h. In turn, from (4.4.8), (4.4.10) and estimate
‖θ − θh‖Q ≤ ‖(ρ− ρh, θ − θh)‖ we easily deduce that

‖(σ−σh,u−uh)‖ ≤ ĉ3 sup
(τ ,v)∈X0×M

(τ ,v)6=0

|RF(τ ,v)|
‖(τ ,v)‖

+ ĉ4 sup
(η,ψ)∈H×Q

(η,ψ) 6=0

|RT(η, ψ)|
‖(η, ψ)‖

. (4.4.11)

with ĉ3, ĉ4 > 0, independent of h. In this way, estimate (4.4.6) follows from (4.4.10)
and (4.4.11).

Now, according to the definition of the forms aF, bF, cF, dF, aT, bF and cT (c.f.
(4.2.6)), we find that, for any (τ ,v) ∈ X0 ×M and (η, ψ) ∈ H×Q, there holds

RF(τ ,v) = RF,1(τ ) +RF,2(v) and RT(η, ψ) = RT,1(η) +RT,2(ψ)

where

RF,1(τ ) = −1

ν
(σd

h, τ
d)Ω − (uh,divτ )Ω −

1

ν

(
(uh ⊗ uh)

d, τ
)

Ω
, (4.4.12)

RF,2(v) = −(θhg,v)Ω − (v,divσh)Ω, (4.4.13)

RT,1(η) = 〈η · n, θD〉ΓD
− 1

κ
(ρh,η)Ω − (θh, div η)Ω −

1

κ
(θhuh,η)Ω (4.4.14)

and
RT,2(ψ) = −(ψ, divρh)Ω. (4.4.15)

Hence, the supremum in (4.4.6) can be bounded in terms of RF,1, RF,2, RT,1 and
RT,2 as follows

‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖

≤ C
{
‖RF,1‖X′0 + ‖RF,2‖M′ + ‖RT,1‖H′ + ‖RT,2‖Q′

}
.

In this way, we have transformed (4.4.6) into an estimate involving global inf-
sup conditions on X0, M, H and Q, separately.

Throughout the rest of this section, we provide suitable upper bounds for RF,1,
RF,2, RT,1 and RT,2. We begin by establishing the corresponding estimates for
RF,2 and RT,2 (cf. (4.4.13) and (4.4.15) ), which follow from a straightforward
application of the Hölder inequality.
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Lemma 4.4.2. There holds

‖RF,2‖M′ ≤

{ ∑
T∈Th

‖θhg + divσh‖4/3

L4/3(T )

}3/4

and ‖RT,2‖Q′ ≤

{ ∑
T∈Th ‖divρh‖4/3

L4/3(T )

}3/4

.

(4.4.16)

Note that from (4.4.16) and the inequality ap+bp ≤ 21−p(a+b)p, for all a, b ≥ 0
and 0 < p ≤ 1, we have that there exists C1 > 0 such that

‖RF,2‖M′ + ‖RT,2‖Q′ ≤ C1

{ ∑
T∈Th

(
‖θhg + divσh‖4/3

L4/3(T )
+ ‖divρh‖4/3

L4/3(T )

)}3/4

.

In turn, after a slight modification of the proof of [29, Lemma 5.6] is it not
dificult to see that the following estimate for RF,1 (cf. (4.4.12)) holds.

Lemma 4.4.3. There exists C2 > 0, independent of h, such that

‖RF,1‖X′0 ≤ C2

{ ∑
T∈Th

Θ2
1,T

}1/2

,

where

Θ2
1,T := h

2−d/2
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥2

0,T

+h2
T

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (Γ)

he

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥2

0,e

.

Our next goal is to bound the remaining term ‖RT,1‖H′ . To do that we need
to introduce the following two technical results.

Lemma 4.4.4. There exists C3 > 0, independent of h, such that for each ξ ∈
W1,4/3(Ω) there holds

∣∣RT,1(ξ − Πk
h(ξ))

∣∣ ≤ C3

{∑
T∈Th

Θ2
2,T

}1/2

‖ξ‖W1,4/3(Ω), (4.4.17)
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where

Θ2
2,T := h

2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

+
∑

e∈Eh,T (ΓD)

h1/2
e ‖θD − θh‖2

L4(e) . (4.4.18)

Proof. We recall from the definition of RT,1 (cf. (4.4.14)) that

RT,1(ξ − Πk
h(ξ)) = 〈 (ξ − Πk

h(ξ))n, θD 〉ΓD
− 1

κ

(
ρh, ξ − Πk

h(ξ)
)

Ω

−
(
θh, div (ξ − Πk

h(ξ))
)

Ω
− 1

κ

(
θhuh, ξ − Πk

h(ξ)
)
.

Then, similarly to [29, Lemma 5.3], applying a local integration by parts to the
third term above, using (4.3.1) and the fact that θD ∈ L2(ΓD), we obtain

RT,1(ξ − Πk
h(ξ)) =

∑
T∈Th

(
∇θh −

1

κ
(ρh + θhuh), (ξ − Πk

h(ξ))

)
T

+
∑

e∈Eh(ΓD)

(
(ξ − Πk

h(ξ))n, θD − θh
)
e
.

In turn, using the Hölder and Cauchy-Schwarz inequalities, the interpolation
property (4.3.2) with p = 4/3, and the fact that there exists a positive constant
C > 0 independent of the mesh, such that

‖τ − Πk
h(τ)‖0,T ≤ C h

1−d/4
T |τ |W1,4/3(T ) ∀ τ ∈W1,4/3(T ) ,

whose proof follows from Lemma 4.3.1 and [30, Remark 4.2], we deduce that∣∣RT,1(ξ − Πk
h(ξ))

∣∣ ≤ ∑
T∈Th

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

C h
1−d/4
T |ξ|W1,4/3(T )

+
∑

e∈Eh(ΓD)

‖θD − θh‖L4(e) C h
1/4
e |ξ|W1,4/3(Te),

with Te being the element containg e. Next, by using the Cauchy-Schwarz and
subadditivity inequalities and the fact that we are considering regular meshes, we
obtain∣∣RT,1(ξ − Πk

h(ξ))
∣∣

≤ Ĉ


(∑

T∈Th

h
2−d/2
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥2

0,T

)1/2(∑
T∈Th

|ξ|4/3
W1,4/3(T )

)3/4

+

( ∑
e∈Eh(ΓD)

h1/2
e ‖θD − θh‖2

L4(e)

)1/2( ∑
e∈Eh(ΓD)

|ξ|4/3
W1,4/3(Te)

)3/4
 ,
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which clearly implies (4.4.17) and completes the proof.

Lemma 4.4.5. Assume that θD ∈ H1(ΓD) and let

Θ2
3,T := h2

T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

+
∑

e∈Eh,T (Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

+
∑

e∈Eh,T (ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

.

(4.4.19)

a) Let w ∈ H1
ΓN

(Ω) and d = 2. Then, there exists C4 > 0, independent of h,
such that

∣∣RT,1 (curl (w − Ihw))
∣∣ ≤ C4

{∑
T∈Th

Θ2
3,T

}1/2

‖w‖1,Ω (4.4.20)

b) Let w ∈ H1
ΓN

(Ω) and d = 3. Then, there exists Ĉ4 > 0, independent of h,
such that

∣∣RT,1 (curl (w − Ihw))
∣∣ ≤ Ĉ4

{∑
T∈Th

Θ2
3,T

}1/2

‖w‖1,Ω.

Proof. In what follows we prove the result for the two-dimensional case since for
the three dimensional case follows analogously.

We proceed as in [29, Lemma 5.5]. In fact, given w ∈ H1(Ω), we first notice
from the definition of RT,1 in (4.4.14) that there holds

RT,1(curl (w − Ihw))

= 〈curl (w − Ihw) · n, θD〉ΓD
− 1

κ
(ρh + θhuh, curl (w − Ihw))Ω .

Recalling that θD ∈ H1(ΓD), now we apply the following integration by parts on
the boundary ΓD given by (see, for instance, [62, Lemma 3.5, eq. (3.34)])

〈curl (w − Ihw) · n, θD〉ΓD
= 〈∇θD · s, w − Ihw〉ΓD

= 〈γ∗(∇θD), w − Ihw〉ΓD
,
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which together with a local integration by parts, the fact that w|ΓN
= Ihw|ΓN

= 0
and noting that γ∗(∇θD) ∈ L2(ΓD), allow us to deduce that

RT,1(curl (w − Ihw)) = −
∑
T∈Th

(
curl

(
1

κ
(ρh + θhuh)

)
, w − Ihw

)
T

+
∑

e∈Eh(Ω)

([[
γ∗

(
1

κ
(ρh + θhuh)

)]]
, w − Ihw

)
e

+
∑

e∈Eh(ΓD)

(
γ∗

(
1

κ
(ρh + θhuh)−∇θD

)
, w − Ihw

)
e

.

Hence, applying Cauchy-Schwarz inequality and the approximation properties of
the Clément interpolant (cf. Lemma 4.3.3), we obtain∣∣RT,1(curl (w − Ihw))

∣∣
≤ Ĉ


(∑

T∈Th

h2
T

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥2

0,T

)1/2(∑
T∈Th

‖w‖2
1,∆(T )

)1/2

+

( ∑
e∈Eh(Ω)

he

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(Ω)

‖w‖2
1,∆(e)

)1/2

+

( ∑
e∈Eh(ΓD)

he

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥2

0,e

)1/2( ∑
e∈Eh(ΓD)

‖w‖2
1,∆(e)

)1/2
 .

Therefore, as a direct consequence of the previous estimate and the fact that the
number of triangles of the macro-elements ∆(T ) and ∆(e) are uniformly bounded,
we get (4.4.20) concluding the proof.

The following lemma establishes the estimate for RT,1.

Lemma 4.4.6. There exists C5 > 0, independent of h, such that

‖RT,1‖X′0 ≤ C5

{ ∑
T∈Th

(Θ2
2,T + Θ2

3,T )

}1/2

,

with Θ2,T and Θ3,T defined as in (4.4.18) and (4.4.19) respectively.

Proof. For simplicity, we prove the result for the two-dimensional case. The three
dimensional case follows analogously.
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Let η ∈ H. It follows from Lemma 4.3.4 that there exist ξ ∈ W1,4/3(Ω) and
w ∈ H1

ΓN
(Ω), such that η = ξ + curlw and

‖ξ‖W1,4/3(Ω) + ‖w‖1,Ω ≤ CHel ‖η‖H. (4.4.21)

Notice from the Galerkin scheme (4.2.13) that RT,1(ηh) = 0 for all ηh ∈ Hh.
Hence,

RT,1(η) = RT,1(η − ηh) ∀ηh ∈ Hh.

In particular, for ηh defined as

ηh = Πk
hξ + curl (Ihw),

whence
RT,1(η) = RT,1(ξ − Πk

hξ) +RT,1(curl (w − Ihw)).

Hence, the proof follows from Lemmas 4.4.4 and 4.4.5, and estimate (4.4.21).

We end this section by observing that the reliability estimate (4.4.5) is a direct
consequence of Lemmas 4.4.1, 4.4.2, 4.4.3 and 4.4.6.

4.4.2 Efficiency of the a posteriori error estimator

The main result of this section is stated as follows.

Theorem 4.4.2. There exists Ceff > 0, independent of h, such that

Ceff Θ ≤ ‖(σ,u)− (σh,uh)‖+ ‖(ρ, θ)− (ρh, θh)‖+ h.o.t, (4.4.22)

where h.o.t. stands for one or several terms of higher order.

We remark in advance that the proof of (4.4.22) makes frequent use of the
identities provided by Theorem 4.2.2. We begin with the estimates for the zero
order terms appearing in the definition of ΘT (cf. (4.4.2)).

Lemma 4.4.7. For all T ∈ Th there holds

‖θhg + divσh‖L4/3(T ) ≤ ‖σ − σh‖div4/3;T + ‖g‖0,Ω ‖θ − θh‖L4(T )

and
‖divρh‖L4/3(T ) ≤ ‖ρ− ρh‖div 4/3;T .

Proof. It suffices to recall, as established in Theorem 4.2.2, that divσ + θ g = 0
and div ρ = 0 in Ω.
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In order to derive the upper bounds for the remaining terms defining the global
a posteriori error estimator Θ (cf.(2.3.1)), we use results from [35], inverse inequali-
ties, and the localization technique based on element-bubble and edge-bubble func-
tions. To this end, we now introduce further notations and preliminary results.
Given T ∈ Th and e ∈ Eh,T , we let φT and φe be the usual element-bubble and
edge-bubble (for d = 2) or face-bubble (for d = 3) functions, respectively (see [110]
for details). In particular φT satisfies φT ∈ P3(T ) (for d = 2) or φT ∈ P4(T ) (for
d = 3), supp φT ⊆ T , φT = 0 on ∂T , and 0 ≤ φT ≤ 1 in T . Similarly, φe|T ∈ P2(T )
(for d = 2) or φe|T ∈ P3(T ) (for d = 3), supp φe ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh,T ′},
φe = 0 on ∂T\e and 0 ≤ φT ≤ 1 in ωe. We also recall from [110] that, given
k ∈ N ∪ {0}, there exists an extension operator L : C(e) → C(ωe) that satisfies
L(p) ∈ Pk(T ) and L(p)|e = p ∀ p ∈ Pk(e). A corresponding vector version of L,
that is the componentwise application of L, is denoted by L. Additional properties
of φT , φe and L are collected in the following lemma.

Lemma 4.4.8. Given k ∈ N ∪ {0}, there exist positive constants c1, c2, c3 and
c4, depending only on k and the shape regularity of the triangulations (minimum
angle condition), such that, for each triangle T and e ∈ Eh, there hold

‖φT q‖2
0,T ≤ ‖q‖2

0,T ≤ c1‖φ1/2
T q‖2

0,T ∀q ∈ Pk(T ), (4.4.23)

‖φeL(p)‖2
0,e ≤ ‖p‖2

0,e ≤ c2‖φ1/2
e p‖2

0,e ∀p ∈ Pk(e)

and
c3 h

1/2
e ‖p‖0,e ≤ ‖φ1/2

e L(p)‖0,T ≤ c4 h
1/2
e ‖p‖0,e ∀p ∈ Pk(e).

Proof. See Lemma 1.3 in [110].

In addition, given k ∈ N ∪ {0}, T ∈ Th and e ∈ Eh, in what follows we will
make use of the following inverse inequalities (see [63, Lemma 1.138]): There exist
c1, c2 > 0, independent of the meshsize, such that

‖v‖W1,4/3(T ) ≤ c1 h
−1+d/4
T ‖v‖0,T ∀ v ∈ Pk(T ), (4.4.24)

‖v‖L4(e) ≤ c2 h
(1−d)/4
e ‖v‖0,e ∀ v ∈ Pk(e). (4.4.25)

Finally, we recall a discrete trace inequality, which establishes the existence of
a positive constant c, depending only on the shape regularity of the triangulations,
such that for each T ∈ Th and e ∈ Eh,T , there holds

‖v‖2
0,e ≤ c

(
h−1
e ‖v‖2

0,T + he|v|21,T
)
∀ v ∈ H1(T ). (4.4.26)

For the proof of inequality (4.4.26) we refer to Theorem 3.10 in [1].
The corresponding bounds for the remaining terms defining Θ1,T are stated in

the following lemmas.
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Lemma 4.4.9. There exists C1 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇uh −
1

ν
(σh + (uh ⊗ uh))

d

∥∥∥∥
0,T

≤ C1

{(
1 + h

1−d/4
T

)
‖u− uh‖L4(T ) + h

1−d/4
T

∥∥σ − σh∥∥0,T

}
∀T ∈ Th.

Proof. See Lemma 5.10 in [29].

Lemma 4.4.10. There exist C2 > 0, C3 > 0 and C4 > 0, independent of h, such
that

hT

∥∥∥∥curl

(
1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥
0,T

≤ C2

{
‖u− uh‖L4(T ) + ‖σ − σh‖0,T

}
for all T ∈ Th,

h1/2
e

∥∥∥∥[[γ∗(1

ν
(σh + (uh ⊗ uh))

d

)]]∥∥∥∥
0,e

≤ C3

{
‖u− uh‖L4(ωe) + ‖σ − σh‖0,ωe

}
for all e ∈ Eh(Ω), and

h1/2
e

∥∥∥∥γ∗(1

ν
(σh + (uh ⊗ uh))

d

)∥∥∥∥
0,e

≤ C4

{
‖u− uh‖L4(Te) + ‖σ − σh‖0,Te

}
for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary
face e belongs.

Proof. It follow from Lemma 5.12 in [29] with uD = 0 on Γ.

Now, we aim to provide upper bounds for the terms defining Θ2,T .

Lemma 4.4.11. There exists C5 > 0, independent of h, such that

h
1−d/4
T

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

≤ C5

{(
1 + h

1−d/4
T

)
‖θ − θh‖L4(T ) + h

1−d/4
T

∥∥ρ− ρh∥∥0,T
+ h

1−d/4
T ‖u− uh‖L4(T )

}
,

(4.4.27)
for all T ∈ Th.

Proof. We proceed as in [29, Lemma 5.10]. In fact, given T ∈ Th, we define

χT := ∇θh−
1

κ
(ρh + θhuh) in T . Then, applying (4.4.23) to ‖χT‖0,T , recalling the
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identity ∇θ =
1

κ
(ρ+ θu) in Ω (cf. Theorem 4.2.2), integrating by parts and using

that φT = 0 on ∂T , we deduce

‖χT‖2
0,T ≤ ‖φ

1/2
T χT‖2

0,T

= (div(φTχT ), θ − θh)T +
1

κ
(φTχT , (ρ− ρh) + (θu− θhuh))T .

Next, using the Hölder and Cauchy–Schwarz inequalities, the estimates (4.4.24)
and (4.4.23), we obtain

‖χT‖2
0,T

≤ |φTχT |W1,4/3(T )‖θ − θh‖L4(T ) +
1

κ
‖φTχT‖0,T ‖ρ− ρh + θu− θhuh‖0,T

≤ C h
−1+d/4
T ‖χT‖0,T‖θ − θh‖L4(T ) +

1

κ
‖χT‖0,T

(∥∥ρ− ρh∥∥0,T
+
∥∥θu− θhuh∥∥0,T

)
,

which implies

‖χT‖0,T ≤ C h
−1+d/4
T ‖θ− θh‖L4(T ) +

1

κ

(∥∥ρ− ρh∥∥0,T
+
∥∥θu− θhuh∥∥0,T

)
. (4.4.28)

In turn, adding and subtracting θuh (it also works with θhu), using the Cauchy–
Schwarz inequality and the fact that ‖θ‖L4(Ω) and ‖uh‖L4(Ω) are bounded by data
and constants, all of them independent of h (cf. (4.2.11) and (4.2.15)), we deduce
that ∥∥θu− θhuh∥∥0,T

=
∥∥θ(u− uh) + (θ − θh)uh

∥∥
0,T

≤ ‖θ‖L4(T )‖u− uh‖L4(T ) + ‖uh‖L4(T )‖θ − θh‖L4(T )

≤ C
(
‖u− uh‖L4(T ) + ‖θ − θh‖L4(T )

)
,

(4.4.29)

with C > 0 independent of h. Finally, replacing back (4.4.29) into (4.4.28) we
derive (4.4.27) and conclude the proof.

Lemma 4.4.12. Suppose that θD is piecewise polinomial. Then, there exists C2 >
0, independent of h, such that

h
1/4
e ‖θD − θh‖L4(e)

≤ C6

{(
1 + h

1−d/4
T

)
‖θ − θh‖L4(T ) + h

1−d/4
T ‖ρ− ρh‖0,T + h

1−d/4
T ‖u− uh‖L4(T )

}
(4.4.30)

for all e ∈ Eh,T (ΓD).
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Proof. We proceed as in [29, Lemma 5.11]. In fact, given e ∈ Eh(ΓD) an edge
or face of an element depending on whether d = 2 or d = 3, respectively. From
(4.4.25), it follows that

‖θD − θh‖L4(e) ≤ C h(1−d)/4
e ‖θD − θh‖0,e. (4.4.31)

Hence, from (4.4.31) and (4.4.26), we deduce that

‖θD − θh‖L4(e) ≤ C
{
h(−1−d)/4
e ‖θ − θh‖0,T + h(3−d)/4

e |θ − θh|1,T
}
. (4.4.32)

Next, we focus on estimating the right-hand side of (4.4.32). To that end, we use
first the Cauchy-Schwarz inequality and the fact that for regular triangulations
|T | ∼= hdT , to deduce that there exists c > 0, independent of h, such that

‖θ − θh‖0,T ≤ c h
d/4
T ‖θ − θh‖L4(T ). (4.4.33)

In turn, using the identity ∇θ =
1

κ
(ρ + θu) in Ω (cf. Theorem 4.2.2) and some

algebraic computations, we deduce that

|θ − θh|1,T =

∥∥∥∥1

κ
(ρ− ρh) +

1

κ
(θu− θhuh) +

1

κ
(ρh + θhuh)−∇θh

∥∥∥∥
0,T

≤ 1

κ

(∥∥ρ− ρh‖0,T +
∥∥θu− θhuh∥∥0,T

)
+

∥∥∥∥∇θh − 1

κ
(ρh + θhuh)

∥∥∥∥
0,T

which together with (4.4.28) and (4.4.29), yields,

|θ−θh|1,T ≤ C
{(

1+h
−1+d/4
T

)
‖θ−θh‖L4(T )+ ‖ρ−ρh‖0,T+ ‖u−uh‖L4(T )

}
. (4.4.34)

Therefore, (4.4.30) follows from estimates (4.4.32), (4.4.33) and (4.4.34), and the
fact that he ≤ hT .

Lemma 4.4.13. There exist C7 > 0 and C8 > 0, independent of h, such that

hT

∥∥∥∥curl

(
1

κ
(ρh + θhuh)

)∥∥∥∥
0,T

≤ C7

{
‖u− uh‖L4(T ) + ‖ρ− ρh‖0,T + ‖θ − θh‖L4(T )

} (4.4.35)

for all T ∈ Th and

h
1/2
e

∥∥∥∥[[γ∗(1

κ
(ρh + θhuh)

)]]∥∥∥∥
0,e

≤ C8

{
‖u− uh‖L4(ωe) + ‖ρ− ρh‖0,ωe + ‖θ − θh‖L4(ωe)

} (4.4.36)
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for all e ∈ Eh(Ω).
Additionally, if θD is piecewise polynomial, there exists C9 > 0, independent of

h, such that

h
1/2
e

∥∥∥∥γ∗(1

κ
(ρh + θhuh)−∇θD

)∥∥∥∥
0,e

≤ C9

{
‖u− uh‖L4(Te) + ‖ρ− ρh‖0,Te + ‖θ − θh‖L4(Te)

} (4.4.37)

for all e ∈ Eh(Γ), where Te is the element to which the boundary edge or boundary
face e belongs.

Proof. For the two-dimensional case, the derivation of the first two inequalities,
follows as in [54, Lemma 3.11], that is, it suffices to use Lemmas 6.1 and 6.2 in
[35]. Indeed, from there we have that for each piecewise polynomial ηh in Th and
for each η ∈ L2(Ω) with curl (η) = 0 in Ω, there exists C > 0, independent of h,
satisfying

hT‖curl (ηh)‖0,T ≤ C ‖η − ηh‖0,T and h1/2
e ‖ [[γ∗(ηh)]]‖0,e ≤ C ‖η − ηh‖0,ωe .

Thus, taking η :=
1

κ
(ρ+θu) = ∇θ and ηh :=

1

κ
(ρh+θhuh), and using the estimate

(4.4.29) we can obtain (4.4.35) and (4.4.36). In turn, these same arguments com-
bined with [62, Lemma 3.26] allows us to deduce the inequality (4.4.37). Further
details are omitted.

On the other hand, the proof for the three-dimensional case follows from a
slight modification of the proofs of Lemmas 4.9, 4.10, and 4.13 in [75].

We remark that, for simplicity, the derivation of (4.4.30) in Lemma 4.4.12 and
(4.4.37) in Lemma 4.4.13 has required θD to be piecewise polynomial. However, if
θD is sufficiently smooth, and proceeding similarly as in [39, Section 6.2], higher
order terms given by the errors arising from suitable polynomial approximations
would appear in (4.4.30) and (4.4.37), which explains the eventual h.o.t in (4.4.22).

We end this section by remarking that the efficiency of Θ (cf. (4.4.22)) in
Theorem 4.4.2 is now a straightforward consequence of Lemmas 4.4.7 and 4.4.9–
4.4.13. In turn, we emphasize that the resulting positive constant denoted by Ceff
is independent of h.

4.5 Numerical results
This section serves to illustrate the performance and accuracy of the proposed

mixed finite element scheme (4.2.13) along with the reliability and efficiency prop-
erties of the a posteriori error estimator Θ (cf. (4.4.1)) derived in Section 4.4. In
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what follows, we refer to the corresponding sets of finite elements subspaces gener-
ated by k = 0 and k = 1, as simply RT0−P0−RT0−P0 and RT1−P1−RT1−P1,
respectively. Our implementation is based on a FreeFem++ code [85]. Regarding
the implementation of the Newton iterative method associated to (4.2.13) (see
[40, Section 6] for details), the iterations are terminated once the relative error
of the entire coefficient vectors between two consecutive iterates, say coeffm and
coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖`2
‖coeffm+1‖`2

≤ tol,

where ‖ · ‖`2 is the standard `2-norm in RN , with N denoting the total number
of degrees of freedom defining the finite element subspaces Xh, Mh, Hh and Qh

stated in Section 4.2.3, and tol is a fixed tolerance chosen as tol = 1E − 06. As
usual, the individual errors are denoted by:

e(σ) := ‖σ − σh‖X, e(u) := ‖u− uh‖M, e(p) := ‖p− ph‖0,Ω,

e(ρ) := ‖ρ− ρh‖H, e(θ) := ‖θ − θh‖Q,

where the pressure p is approximate through the post-processing formula (cf. [40,
eq. (5.16)]):

ph = −1

d

(
tr (σh) + tr (uh ⊗ uh)−

1

|Ω|
(tr (uh ⊗ uh), 1)Ω

)
.

We stress here that we are able to recover other variables of physical interest such
as the stress tensor, the vorticity, the velocity gradient and the heat-flux vector
by a post-processing procedure (see [40, Section 5.3] for details). However, for the
sake of simplicity, in the numerical essays below we will focus only on the formula
suggested for the pressure field. Then, the global error and the effectivity index
associated to the global estimator Θ are denoted, respectively, by

e(~t) := e(σ) + e(u) + e(ρ) + e(θ) and eff(Θ) :=
e(~t)

Θ
.

Moreover, using the fact that cN−1/d ≤ h ≤ C N−1/d, the experimental rate of
convergence of any of the above quantities will be computed as

r(�) := −d log(e(�)/e′(�))
log(N/N ′)

for each � ∈
{
σ,u,ρ, θ, p,~t

}
,

where N and N ′ denote the total degrees of freedom associated to two consecutive
triangulations with errors e(�) and e′(�).
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The examples to be considered in this section are described next. In all of
them, for the sake of simplicity, we consider the thermal conductivity κ = 1
and the viscosity of the fluid ν = 1. In addition, the condition of zero-average
pressure (translated in terms of the trace of σh) is imposed through a real Lagrange
multiplier.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori
error estimator Θ, whereas Examples 2 and 3 are utilized to illustrate the behavior
of the associated adaptive algorithm in 2D and 3D domains, respectively, which
applies the following procedure from [111]:

(1) Start with a coarse mesh Th.

(2) Solve the Newton iterative method associated to (4.2.13) for the current
mesh Th.

(3) Compute the local indicator Θ̂T for each T ∈ Th, where

Θ̂T := ΘT + ‖θhg + divσh‖L4/3(T ) + ‖divρh‖L4/3(T ), (cf. (4.4.2))

(4) Check the stopping criterion and decide whether to finish or go to next step.

(5) Generate an adapted mesh through a variable metric/Delaunay automatic
meshing algorithm (see [86, Section 9.1.9]).

(6) Define resulting mesh as current mesh Th, and go to step (2).

At this point we mention that, should non-zero source terms appear in the right-
hand side of the second equations of (4.2.3) and (4.2.4), say fm and fe, respectively,
some terms in the a posteriori error estimator must be modified. More precisely,
the quantities

‖θhg + divσh‖L4/3(T ) and ‖divρh‖L4/3(T )

must be replaced by

‖θhg + divσh − fm‖L4/3(T ) and ‖divρh − fe‖L4/3(T ),

whose estimation from below and above follows in a straightforward manner.
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Example 1: Accuracy assessment with a smooth solution

In our first example, we concentrate on the accuracy of the mixed method
(4.2.13). The domain is the square Ω = (0, 1)× (0, 1), the boundary Γ = ΓD ∪ΓN,
with ΓN = [0, 1]×{1} and ΓD = Γ\ΓN. We consider the external force g = (0,−1)t,
and the terms on the right-hand side are adjusted so that a manufactured solution
of (4.2.3)–(4.2.4) is given by the smooth functions

u(x, y) :=

(
x2(x− 1)2 sin(y)

2x(x− 1)(2x− 1) cos(y)

)
, p(x, y) := cos(πx)eπy

and θ(x, y) :=
1

2
sin(πx) cos2

(π
2

(y + 1)
)
.

Tables 4.5.1 and 4.5.2 show the convergence history for a sequence of quasi-uniform
mesh refinements, including the average number of Newton iterations. The results
illustrate that the optimal rates of convergence O(h) and O(h2) provided by The-
orem 4.2.4 are attained for k = 0, 1. In addition, we also compute the global a
posteriori error indicator Θ (cf. (4.4.1)), and measure its reliability and efficiency
with the effectivity index. Notice that the estimator remain always bounded.

Example 2: Adaptivity in a 2D L-shape domain

Our second example is aimed at testing the features of adaptive mesh refine-
ment after the a posteriori error estimator Θ (cf. (4.4.1)). We consider a L-shape
contraction domain Ω := (−1, 1)2 \ (0, 1)2, the boundary Γ = ΓD ∪ ΓN, with
ΓN = [−1, 0]× {1} and ΓD = Γ \ ΓN. The external force is chosen as g = (0,−1)t,
and the terms on the right-hand side are adjusted so that the exact solution is
given by the functions

u(x, y) :=

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, p(x, y) :=

1− x
(x− 0.02)2 + (y − 0.02)2

− p0

and θ(x, y) :=
1

y + 1.1
,

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the
pressure and temperature exhibit high gradients near the origin and the line y =
−1.1, respectively.

Tables 4.5.3–4.5.6 along with Figure 4.5.3, summarizes the convergence history
of the method applied to a sequence of quasi-uniformly and adaptively refined tri-
angulation of the domain. Suboptimal rates are observed in the first case, whereas
adaptive refinement according to the a posteriori error indicator Θ yield optimal
convergence and stable effectivity indexes. Notice how the adaptive algorithms
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improves the efficiency of the method by delivering quality solutions at a lower
computational cost, to the point that it is possible to get a better one (in terms
of e(~t)) with approximately only the 1.8% of the degrees of freedom of the last
quasi-uniform mesh for the mixed scheme in both cases k = 0 and k = 1. In
addition, and similarly to [30, Remark 4.6], we observe that our Galerkin scheme
(4.2.13) satisfies the properties θhg + divσh = Pk

h(fm) and divρh = Pkh(fe) in Ω,
where Pkh is the L2(Ω)-orthogonal projection onto discontinuous piecewise poly-
nomials of degree k and Pk

h is its vectorial version. In this way, using the fact
that neither fm nor fe live in Mh and Qh (cf. (4.2.12)), respectively, we illustrate
the conservation of momentum and thermal energy in an approximate sense by
computing the `∞-norm for Fm := θhg + divσh−Pk

h(fm) and Te := divρh−Pkh(fe),
with k = 0, 1. As expected, these values are close to zero.

On the other hand, approximate solutions builded using the RT1−P1−RT1−P1

scheme with 811, 911 degree of freedom (33, 717 triangles), via the indicator Θ, are
shown in Figure 4.5.2. In particular, we observe that computed pressure and
temperature exhibit high gradients near the contraction region and at the bottom
boundary of the L-shape domain, respectively. In turn, examples of some adapted
meshes generates using Θ for k = 0 and k = 1 are collected in Figure 4.5.1. We
can observe a clear clustering of elements around the vertex (0, 0) and the line
y = −1.1, which illustrate again how the method is able to identify the regions in
which the accuracy of the numerical approximation is deteriorated.

Example 3: Adaptivity in a 3D L-shape domain

Finally, in our third example we turn to the testing of the scheme and the
adaptive algorithm in a three-dimensional scenario. More precisely, we consider
the 3D L-shape domain Ω := (−0.5, 0.5) × (0, 0.5) × (−0.5, 0.5) \ (0, 0.5)3, the
boundary Γ = ΓD ∪ΓN, with ΓN = {−0.5}× [0, 0.5]× [−0.5, 0.5] and ΓD = Γ \ΓN.
We consider the external force g = (0, 0,−1)t, and the terms on the right-hand
side are adjusted so that the exact solution is given by the functions

u(x, y, z) :=

 sin(πx) cos(πy) cos(πz)
−2 cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 ,

p(x, y, z) :=
10z

(x− 0.005)2 + (y − 0.005)2
− p0

and θ(x, y, z) := cos(πy) sin(π(x+ z)),

where p0 ∈ R is a constant chosen in such a way (p, 1)Ω = 0. Notice that the
pressure exhibit high gradients near the contraction region of the 3D L-shape
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domain. The latter is illustrated in Figure 4.5.4 where the initial mesh and the
last two adapted meshes according to the indicator Θ for k = 0 show a clear
clustering of elements in the contraction region as we expected. Moreover, in
Figure 4.5.5 we compare the exact magnitude of the velocity, the temperature
field and the pressure field with their approximate counterparts after four mesh
adaptive refinement steps. There we can observe that the approximate solution
captures satisfactorily the behavior of the exact solution.

N e(σ) r(σ) e(u) r(u)

294 6.55e+00 – 1.17e-01 –
1173 3.12e+00 1.071 4.44e-02 1.402
4701 1.50e+00 1.058 1.67e-02 1.411
18312 7.75e-01 0.970 7.76e-03 1.124
72729 3.82e-01 1.025 3.92e-03 0.990
293163 1.91e-01 0.996 1.88e-03 1.053

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

6.02e-01 – 6.58e-02 – 1.61e+00 –
2.99e-01 1.011 3.58e-02 0.879 6.83e-01 1.237
1.42e-01 1.073 1.59e-02 1.167 2.97e-01 1.202
7.01e-02 1.038 7.86e-03 1.040 1.50e-01 1.003
3.53e-02 0.993 4.02e-03 0.971 7.09e-02 1.088
1.74e-02 1.015 1.97e-03 1.023 3.52e-02 1.006

e(~t) r(~t) Θ eff(Θ) iter
7.34e+00 – 1.25e+01 0.586 4
3.50e+00 1.069 6.51e+00 0.538 4
1.67e+00 1.065 3.37e+00 0.500 4
8.61e-01 0.978 1.78e+00 0.483 4
4.26e-01 1.021 8.99e-01 0.474 4
2.12e-01 0.999 4.61e-01 0.461 4

Table 4.5.1: Example 1: RT0 − P0 − RT0 − P0 scheme with quasi-uniform
refinement.
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N e(σ) r(σ) e(u) r(u)

912 7.81e-01 – 1.68e-02 –
2184 3.10e-01 2.117 6.29e-03 2.245
5880 1.10e-01 2.091 2.27e-03 2.055
19128 3.26e-02 2.064 6.42e-04 2.143
65400 9.78e-03 1.957 2.03e-04 1.876
247320 2.59e-03 1.997 5.28e-05 2.024

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

7.35e-02 – 8.11e-03 – 1.42e-01 –
2.86e-02 2.164 2.67e-03 2.546 5.95e-02 1.995
1.12e-02 1.889 1.14e-03 1.727 2.13e-02 2.072
3.29e-03 2.080 3.01e-04 2.250 6.29e-03 2.070
1.01e-03 1.927 9.31e-05 1.910 1.88e-03 1.961
2.68e-04 1.989 2.47e-05 1.997 5.04e-04 1.982

e(~t) r(~t) Θ eff(Θ) iter
8.79e-01 – 2.62e+00 0.336 4
3.47e-01 2.127 1.04e+00 0.333 4
1.25e-01 2.070 3.82e-01 0.326 4
3.68e-02 2.068 1.15e-01 0.321 4
1.11e-02 1.953 3.56e-02 0.312 4
2.94e-03 1.997 9.75e-03 0.301 4

Table 4.5.2: Example 1: RT1 − P1 − RT1 − P1 scheme with quasi-uniform
refinement.
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N e(σ) r(σ) e(u) r(u)

858 6.72e+02 – 4.77e+00 –
3411 7.38e+02 – 3.46e+00 0.468
13167 6.91e+02 0.098 2.08e+00 0.752
52029 4.43e+02 0.648 1.02e+00 1.037
209343 2.56e+02 0.788 3.50e-01 1.538
833151 1.39e+02 0.879 1.23e-01 1.516

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

1.72e+02 – 3.10e+00 – 3.32e+01 –
1.15e+02 0.583 1.45e+00 1.103 3.47e+01 –
6.70e+01 0.800 7.15e-01 1.042 2.86e+01 0.284
3.46e+01 0.963 3.51e-01 1.035 1.75e+01 0.717
1.70e+01 1.023 1.70e-01 1.041 9.48e+00 0.880
8.62e+00 0.981 8.66e-02 0.978 5.36e+00 0.824

e(~t) r(~t) Θ eff(Θ) ‖Fm‖`∞ ‖Te‖`∞ iter
8.52e+02 – 1.02e+03 0.836 9.09e-13 2.27e-13 5
8.58e+02 – 1.02e+03 0.841 1.82e-12 4.55e-13 5
7.61e+02 0.178 8.95e+02 0.850 3.64e-12 6.82e-13 4
4.79e+02 0.674 5.82e+02 0.823 1.46e-11 2.05e-12 4
2.73e+02 0.806 3.33e+02 0.820 7.28e-11 4.55e-12 4
1.48e+02 0.886 1.83e+02 0.812 1.46e-10 1.23e-11 4

Table 4.5.3: Example 2: RT0 − P0 − RT0 − P0 scheme with quasi-uniform
refinement.



130 4.5. Numerical results

N e(σ) r(σ) e(u) r(u)

2688 5.12e+02 – 2.25e+00 –
6144 5.36e+02 – 1.86e+00 0.465
16080 5.21e+02 0.059 1.31e+00 0.724
52176 3.79e+02 0.541 4.54e-01 1.801
190080 1.78e+02 1.168 1.53e-01 1.679
706704 6.35e+01 1.571 3.40e-02 2.296

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

7.57e+01 – 5.80e-01 – 2.11e+01 –
5.21e+01 0.904 3.11e-01 1.509 2.01e+01 0.121
3.06e+01 1.106 1.60e-01 1.379 1.73e+01 0.303
1.21e+01 1.581 5.86e-02 1.710 1.06e+01 0.830
3.40e+00 1.962 1.62e-02 1.984 4.75e+00 1.247
9.73e-01 1.905 4.85e-03 1.842 1.59e+00 1.663

e(~t) r(~t) Θ eff(Θ) ‖Fm‖`∞ ‖Te‖`∞ iter
5.90e+02 – 6.85e+03 0.086 9.09e-13 2.27e-13 5
5.90e+02 – 4.45e+03 0.132 3.64e-12 6.82e-13 4
5.53e+02 0.135 2.06e+03 0.268 1.09e-11 1.82e-12 4
3.91e+02 0.587 7.85e+02 0.498 1.46e-11 2.50e-12 4
1.82e+02 1.188 4.78e+02 0.380 4.37e-11 6.37e-12 4
6.45e+01 1.577 1.64e+02 0.392 1.53e-10 1.75e-11 4

Table 4.5.4: Example 2: RT1 − P1 − RT1 − P1 scheme with quasi-uniform
refinement.
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N e(σ) r(σ) e(u) r(u)

858 6.72e+02 – 4.77e+00 –
1494 6.59e+02 0.064 2.29e+00 2.386
2562 4.01e+02 2.557 7.64e-01 5.633
4203 1.78e+02 3.674 2.54e-01 4.972
6627 9.90e+01 2.059 2.47e-01 0.094

10776 7.61e+01 0.917 2.40e-01 0.111
17610 5.85e+01 1.083 2.02e-01 0.709
28650 4.55e+01 0.883 1.39e-01 1.319
47085 3.30e+01 1.118 1.10e-01 0.795
77445 2.58e+01 0.850 7.26e-02 1.440
124623 1.88e+01 1.050 5.67e-02 0.830
200520 1.45e+01 0.877 3.66e-02 1.449

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

1.72e+02 – 3.10e+00 – 3.32e+01 –
1.16e+02 1.274 1.50e+00 2.344 2.64e+01 0.744
9.35e+01 1.117 1.10e+00 1.598 1.46e+01 3.047
7.01e+01 1.301 7.46e-01 1.758 6.29e+00 3.799
5.59e+01 0.796 5.91e-01 0.828 3.72e+00 1.857
3.57e+01 1.557 3.67e-01 1.661 2.80e+00 0.989
2.88e+01 0.892 2.91e-01 0.956 2.16e+00 1.064
2.03e+01 1.230 2.06e-01 1.211 1.66e+00 0.917
1.60e+01 0.828 1.58e-01 0.928 1.20e+00 1.149
1.12e+01 1.232 1.12e-01 1.170 9.33e-01 0.857
8.58e+00 0.886 8.44e-02 0.957 6.82e-01 1.047
6.00e+00 1.191 5.97e-02 1.151 5.22e-01 0.890

e(~t) r(~t) Θ eff(Θ) ‖Fm‖`∞ ‖Te‖`∞ iter
8.52e+02 – 1.02e+03 0.836 9.09e-13 2.27e-13 5
7.79e+02 0.291 9.24e+02 0.842 3.64e-12 4.55e-13 5
4.96e+02 2.320 5.90e+02 0.841 1.46e-11 6.82e-13 4
2.49e+02 3.118 2.96e+02 0.839 6.18e-11 1.14e-12 4
1.56e+02 1.649 1.89e+02 0.826 3.75e-10 2.05e-12 4
1.12e+02 1.135 1.36e+02 0.827 7.75e-10 3.41e-12 4
8.78e+01 1.020 1.06e+02 0.824 9.02e-10 5.46e-12 4
6.62e+01 0.995 8.03e+01 0.824 1.63e-09 7.28e-12 4
4.93e+01 1.025 6.00e+01 0.821 1.80e-09 8.64e-12 4
3.71e+01 0.972 4.53e+01 0.819 3.09e-09 1.57e-11 4
2.76e+01 0.999 3.38e+01 0.814 3.71e-09 1.77e-11 4
2.06e+01 0.974 2.53e+01 0.811 6.47e-09 2.98e-11 4

Table 4.5.5: Example 2: RT0−P0−RT0−P0 scheme with adaptive refinement.
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N e(σ) r(σ) e(u) r(u)

2688 5.12e+02 – 2.25e+00 –
4134 4.09e+02 1.043 7.63e-01 5.022
8067 1.65e+02 2.713 1.09e-01 5.812
12489 3.22e+01 7.477 2.88e-02 6.105
24567 1.15e+01 3.050 2.71e-02 0.184
51774 5.17e+00 2.139 2.60e-02 0.110
130833 2.29e+00 1.754 3.50e-03 4.326
309630 8.81e-01 2.223 3.33e-03 0.112
811911 3.84e-01 1.724 5.75e-04 3.644

e(ρ) r(ρ) e(θ) r(θ) e(p) r(p)

7.57e+01 – 5.80e-01 – 2.11e+01 –
7.59e+01 – 5.72e-01 0.069 8.81e+00 4.055
2.69e+01 3.101 1.41e-01 4.193 4.11e+00 2.280
1.55e+01 2.512 7.63e-02 2.801 7.66e-01 7.692
5.78e+00 2.926 2.98e-02 2.782 3.23e-01 2.554
3.33e+00 1.478 1.82e-02 1.323 1.38e-01 2.274
1.16e+00 2.269 6.19e-03 2.327 6.25e-02 1.711
5.80e-01 1.617 2.84e-03 1.811 2.31e-02 2.308
1.86e-01 2.363 9.87e-04 2.190 1.03e-02 1.671

e(~t) r(~t) Θ eff(Θ) ‖Fm‖`∞ ‖Te‖`∞ iter
5.90e+02 – 6.85e+03 0.086 9.09e-13 2.27e-13 5
4.86e+02 0.902 1.51e+03 0.322 3.64e-12 3.41e-13 4
1.92e+02 2.775 5.69e+02 0.338 8.73e-11 1.36e-12 4
4.79e+01 6.362 1.32e+02 0.363 1.75e-10 2.27e-12 4
1.73e+01 3.006 4.68e+01 0.370 8.15e-10 7.28e-12 4
8.55e+00 1.894 2.33e+01 0.367 2.71e-09 1.46e-11 4
3.47e+00 1.947 9.19e+00 0.377 3.06e-09 2.27e-11 4
1.47e+00 1.998 3.98e+00 0.368 8.79e-09 2.68e-11 4
5.71e-01 1.958 1.51e+00 0.379 1.05e-08 6.41e-11 4

Table 4.5.6: Example 2: RT1−P1−RT1−P1 scheme with adaptive refinement
via Θ.
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Figure 4.5.1: Example 2: Four snapshots of adapted meshes according to the
indicator Θ for k = 0 and k = 1 (top and bottom plots, respectively).

Figure 4.5.2: Example 2: Initial mesh, computed magnitude of the velocity,
temperature field and post-processed pressure field (from left to right).
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Figure 4.5.3: Example 2: Log-log plot of e(~t) vs. N for quasi-uniform/adaptative
refinements for k = 0 and k = 1 (left and right plots, respectively).

Figure 4.5.4: Example 3: Initial mesh and two snapshots of adapted meshes
according to the indicator Θ for k = 0 (from left to right).
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Figure 4.5.5: Example 3: Exact (top plots) and approximate (bottom plots)
magnitude of the velocity, temperature field, and pressure field.





Chapter 5

A three-field Banach spaces-based
mixed formulation for the unsteady
Brinkman–Forchheimer equations

5.1 Introduction

The phenomenon of fast flows in highly porous media is a challenging multi-
physics problem that has a wide range of applications, among which we highlight
predicting and controlling processes arising in chemical, petroleum and environ-
mental engineering, to name a few areas of interest. In particular, subsurface
applications include groundwater remediation and oil and gas extraction, where
fast flow may occur in fractured or vuggy aquifers or reservoirs, as well as near in-
jection and production wells. In this regard, we remark that in the last years, most
of the research efforts have been focused on the use of Darcy’s law. However, this
constitutive equation becomes unreliable to model the flow of fluids through highly
porous media with Reynolds numbers greater than one, as in the above applica-
tions. To overcome this limitation, a first alternative is to employ the Forchheimer
law [69], which accounts for faster flows by including a nonlinear inertial term.
Another possible option is the Brinkman model [22], which describes Stokes flows
through a set of obstacles, and therefore can be applied precisely to that kind of
media. According to the above, the Brinkman–Forchheimer equation (see, e.g.,
[102, 44, 61, 95] and [43]), which combines the advantages of both models, has
been used to model fast flows in highly porous media.

In this context, and up to the authors’ knowledge, one of the first works in
analyzing the unsteady Brinkman–Forchheimer equations is [102]. There, the au-
thors prove stability of solutions of the Brinkman–Forchheimer equations on the
Brinkman and Forchheimer coefficients in the L2-norm, which is later extended to
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the H1-norm in [44]. Later on, in [61], well-posedness of solution for a velocity-
pressure variational formulation is established by combining the Faedo–Galerkin
approach with a suitable regularization, whereas, a perturbed compressible system
that approximates the Brinkman–Forchheimer equations is proposed and analyzed
in [95]. The corresponding time discretization of the perturbed system is defined by
a semi-implicit Euler scheme and the lowest-order Raviart–Thomas element is em-
ployed for the spatial discretization. More recently, a mixed pseudostress-velocity
formulation was analyzed in [43], where the existence and uniqueness of solution
were established for the weak formulation in a Banach space framework. As for the
numerical discretization, semidiscrete continuous-in-time and fully discrete finite
element approximations are introduced which converge with sub-optimal rate of
convergence. In turn, in [38], the coupling of the steady Brinkman–Forchheimer
and double-diffusion equations is analyzed. There, the velocity gradient, the pseu-
dostress tensor, and a pair of vectors involving the temperature/concentration, its
gradient and the velocity, are introduced as further unknowns. As a consequence,
a fully mixed variational formulation presenting a Banach spaces framework in
each set of equations is obtained. Well-posedness of solution of the continuous and
discrete problems are proved by employing a fixed-point approach combined with
classical results on nonlinear monotone operators and Babuška-Brezzi’s theory in
Banach spaces.

The purpose of the present Chapter is to develop and analyze a new three-field
mixed formulation of the unsteady Brinkman–Forchheimer problem and study
a suitable conforming numerical discretization. To that end, unlike to previous
works, we proceed as in [49] and [38], and introduce, besides the fluid velocity,
the velocity gradient and a pseudostress tensor as further unknowns. The pressure
is eliminated from the system which can be easily recovered through a simple
postprocess of the pseudostress. There are several advantages of this new approach,
including the direct and accurate approximation of another unknowns of physical
interest such as the velocity gradient and pseudostress tensors. Moreover, our
approach improves the suboptimal theoretical rates of convergence obtained in [43]
for the pseudostress-velocity formulation under a quasi-uniformity assumption on
the mesh. In addition, two of the numerical examples illustrate the capability of
the method to resolve sharp velocity gradients in the presence of discontinuous
spatially varying parameters in more realistic and complex geometries.

Employing techniques from [106], [37], and [49], we combine the classical mono-
tone operator theory and suitable theoretical results in a Banach space setting to
establish existence and uniqueness of solution of the continuous weak formulation.
Stability for the weak solution is obtained by means of an energy estimate. We then
consider semidiscrete continuous-in-time and fully discrete finite element approx-
imations. The pseudostress tensor is approximated by Raviart–Thomas elements
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of order k ≥ 0, whereas, discontinuous piecewise polynomials of degree k are em-
ployed to approximate the velocity and velocity gradient tensor, and we make use
of a backward Euler method for the discretization in time. Adapting the tools em-
ployed for the analysis of the continuous problem, we prove well-posedness of the
discrete scheme and derive the corresponding stability estimates. We further per-
form an error analysis for the semidiscrete and fully discrete schemes, establishing
rates of convergence in space and time of the numerical method.

The rest of this Chapter is organized as follows. The remainder of this section
describes standard notations and functional spaces to be employed throughout the
Chapter. In Section 5.2, we introduce the model problem and derive its three-field
mixed variational formulation. Next, in Section 5.3 we establish the well-posedness
of the weak formulation. The semidiscrete continuous-in-time scheme is introduced
and analyzed in Section 5.4. Error estimates and rates of convergence are also de-
rived. In Section 5.5, the fully discrete approximation is developed and analyzed
employing similar arguments to the semidiscrete formulation. Finally, the perfor-
mance of the method is illustrated in Section 3.6 with several numerical examples
in 2D and 3D, thus confirming the aforementioned rates of convergence, as well as
its flexibility to handle spatially varying parameters in complex geometries.

Preliminaries

In addition to the notation introduced in Section 1.1, given T > 0 and a
separable Banach space V endowed with the norm ‖ · ‖V, we let Lp(0, T ; V) be the
space of classes of functions f : (0, T )→ V that are Bochner measurable and such
that ‖f‖Lp(0,T ;V) <∞, with

‖f‖p
Lp(0,T ;V) :=

∫ T

0

‖f(t)‖p
V dt, ‖f‖L∞(0,T ;V) := ess sup

t∈[0,T ]

‖f(t)‖V.

In turn, in the sequel we will make use of the well-known Young’s inequality, for
a, b ≥ 0, 1/p + 1/q = 1, and δ > 0,

a b ≤ δp/2

p
ap +

1

q δq/2
bq. (5.1.1)

5.2 Continuous formulation

In this section we introduce the model problem and derive the corresponding
weak formulation.
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5.2.1 Model problem

In this Chapter we are interested in approximating the solution of the un-
steady Brinkman–Forchheimer equations (see for instance [44, 61, 95, 96, 43]).
More precisely, given the body force term f and a suitable initial data u0, the
aforementioned system of equations is given by

∂ u

∂ t
− ν ∆u + αu + F |u|p−2u +∇p = f , div (u) = 0 in Ω× (0, T ] ,

u = 0 on Γ× (0, T ] , u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T ] ,
(5.2.1)

where the unknowns are the velocity field u and the scalar pressure p. In addition,
the constant ν > 0 is the Brinkman coefficient, α > 0 is the Darcy coefficient,
F > 0 is the Forchheimer coefficient and p ∈ [3, 4] is given.

Now, in order to derive our weak formulation, we first rewrite (5.2.1) as an
equivalent first-order set of equations. To that end, unlike [43] and inspired by [49]
and [38], we introduce the velocity gradient and pseudostress tensors as further
unknowns, that is

t := ∇u, σ := ν t− p I in Ω× (0, T ] . (5.2.2)

In this way, applying the trace operator to t and σ, and utilizing the incompress-
ibility condition div (u) = 0 in Ω × (0, T ], one arrives at tr (t) = 0 in Ω × (0, T ]
and

p = −1

d
tr (σ) in Ω× (0, T ] . (5.2.3)

Hence, replacing back (5.2.3) in the second equation of (5.2.2), we find that our
model problem (5.2.1) can be rewritten, equivalently, as the set of equations with
unknowns u, t and σ, given by

t = ∇u , σd = ν t ,
∂ u

∂ t
+ αu + F |u|p−2u− div(σ) = f in Ω× (0, T ] ,

u = 0 on Γ× (0, T ] , u(0) = u0 in Ω , (tr (σ), 1)Ω = 0 in (0, T ] .
(5.2.4)

At this point we stress that, as suggested by (5.2.3), p is eliminated from the for-
mulation (5.2.4) and computed afterwards in terms of σ by using identity (5.2.3).
This fact, justifies the last equation in (5.2.4), which is equivalent to impose that
(p, 1)Ω = 0 in (0, T ].

5.2.2 Variational formulation

In this section we derive our three-field Banach mixed variational formulation
for the system (5.2.4). To that end, we proceed as in [38, Section 2.2] (see also
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[49, 33, 30] for similar approaches) and extend the analysis derived there to our
current unsteady regime and considering a generalized version of the inertial term
|u|p−2u, with p ∈ [3, 4]. In fact, multiplying the first, second and third equations
of (5.2.4) by suitable test functions τ , r, and v, respectively, integrating by parts
and using the Dirichlet boundary condition u = 0 on Γ× (0, T ], we get

(t, τ )Ω + (u,div(τ ))Ω = 0 , (5.2.5)

ν (t, r)Ω − (σd, r)Ω = 0 , (5.2.6)

(∂t u,v)Ω + α (u,v)Ω + F (|u|p−2u,v)Ω − (div(σ),v)Ω = (f ,v)Ω , (5.2.7)

for all (τ , r,v) in X×Q×M, where X ,Q and M are spaces to be derived below.
We begin by noting that the first term in (5.2.6) is well defined for t, r ∈ L2(Ω),
but due to the incompressibility condition div u = tr (t) = 0, it makes sense to
look for t, and consequently the test function r, in

Q :=
{

r ∈ L2(Ω) : tr (r) = 0 in Ω
}
, (5.2.8)

This implies that (5.2.6) can be rewritten equivalently as

ν (t, r)Ω − (σ, r)Ω = 0 ∀ r ∈ Q . (5.2.9)

In addition, we note that the first and second terms in (5.2.5) and (5.2.6) (or
(5.2.9)), respectively, are well defined if σ, τ ∈ L2(Ω). In turn, if u,v ∈ Lp(Ω),
with p ∈ [3, 4], then the first, second, and third terms in (5.2.7) are clearly well
defined, which forces both div(σ) and div(τ ) to live in Lq(Ω), with q ∈ [4/3, 3/2]
satisfying 1/p + 1/q = 1. According to this, we introduce the Banach space

H(divq; Ω) :=
{
τ ∈ L2(Ω) : div(τ ) ∈ Lq(Ω)

}
,

equipped with the norm

‖τ‖H(divq;Ω) := ‖τ‖0,Ω + ‖div(τ )‖Lq(Ω) ,

and deduce that the equations (5.2.5)–(5.2.7) and (5.2.9) are well defined if we
choose the spaces Q as in (5.2.8) and

M := Lp(Ω) and X := H(divq; Ω)

with their respective norms: ‖ · ‖Q := ‖ · ‖0,Ω, ‖ · ‖M := ‖ · ‖Lp(Ω), and ‖ · ‖X :=
‖ · ‖H(divq;Ω).

Now, for convenience of the subsequent analysis and similarly as in [30] (see
also [72, 49, 38]) we consider the decomposition:

X = X0 ⊕ R I ,
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where
X0 :=

{
τ ∈ H(divq; Ω) : (tr (τ ), 1)Ω = 0

}
;

that is, R I is a topological supplement for X0. More precisely, each τ ∈ X can be
decomposed uniquely as:

τ = τ0 + c I with τ0 ∈ X0 and c :=
1

d |Ω|
(tr (τ ), 1)Ω ∈ R .

Then, noticing that div(τ ) = div(τ0) and employing the last equation of (5.2.4),
we deduce that both σ and τ can be considered hereafter in X0. Next, in order to
write the above formulation in a more suitable way for the analysis to be developed
below, we now set the notations

u := (u, t) , v := (v, r) ∈M×Q ,

with corresponding norm given by

‖v‖ := ‖v‖M + ‖r‖Q ∀v ∈M×Q .

Hence, the weak formulation associated with the unsteady Brinkman–Forchheimer
system (5.2.4) reads: Given f : [0, T ]→ L2(Ω) and u0 ∈M, find (u,σ) : [0, T ]→
(M×Q)× X0, such that u(0) = u0 and, for a.e. t ∈ (0, T ),

∂

∂ t
[E(u(t)),v] + [A(u(t)),v] + [B′(σ(t)),v] = [F (t),v] ∀v ∈M×Q ,

− [B(u(t)), τ ] = 0 ∀ τ ∈ X0 ,
(5.2.10)

where, the operators E ,A : (M × Q) → (M × Q)′, and B : (M × Q) → X′0 are
defined, respectively, as

[E(u),v] := (u,v)Ω , (5.2.11)

[A(u),v] := α (u,v)Ω + F (|u|p−2u,v)Ω + ν (t, r)Ω , (5.2.12)

[B(v), τ ] := − (v,div(τ ))Ω − (r, τ )Ω , (5.2.13)

and F is the bounded linear functional given by

[F,v] := (f ,v)Ω . (5.2.14)

In all the terms above, [·, ·] denotes the duality pairing induced by the correspond-
ing operators. In addition, we let B′ : X0 →

(
M×Q

)′ be the adjoint of B, which
satisfies [B′(τ ),v] = [B(v), τ ] for all v ∈M×Q and τ ∈ X0.
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5.3 Well-posedness of the model
In this section we establish the solvability of (5.2.10). To that end we first

collect some previous results that will be used in the forthcoming analysis.

5.3.1 Preliminary results

We begin by recalling the key result [106, Theorem IV.6.1(b)], which will be
used to establish the existence of a solution to (5.2.10).

Theorem 5.3.1. Let the linear, symmetric and monotone operator N be given
for the real vector space E to its algebraic dual E∗, and let E ′b be the Hilbert space
which is the dual of E with the seminorm

|x|b =
(
N x(x)

)1/2
x ∈ E.

Let M ⊂ E × E ′b be a relation with domain D =
{
x ∈ E : M(x) 6= ∅

}
. Assume

M is monotone and Rg(N +M) = E ′b. Then, for each f ∈W1,1(0, T ;E ′b) and for
each u0 ∈ D, there is a solution u of

d

dt

(
N u(t)

)
+M

(
u(t)

)
3 f(t) a.e. 0 < t < T, (5.3.1)

with

N u ∈W1,∞(0, T ;E ′b), u(t) ∈ D, for all 0 ≤ t ≤ T, and N u(0) = N u0.

In addition, in order to provide the range condition in Theorem 5.3.1 we will
require the following abstract result (see [37, Theorem 3.1] for details).

Theorem 5.3.2. Let X1, X2 and Y be separable and reflexive Banach spaces, being
X1 and X2 uniformly convex, and set X = X1×X2. Let a : X → X ′ be a nonlinear
operator, b : L(X, Y ′), and let V be the kernel of b, that is,

V :=
{
v ∈ X : [b(v), q] = 0 ∀ q ∈ Y

}
.

Assume that

(i) a is hemi-continuous, that is, for each u, v ∈ X the real mapping

J : R→ R, t→ J(t) = [a(u+ tv), v]

is continuous.
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(ii) there exist constants L > 0 and p1, p2 ≥ 2, such that

‖a(u)−a(v)‖X′ ≤ L

2∑
j=1

{
‖uj− vj‖Xj

+
(
‖uj‖Xj

+‖vj‖Xj

)pj−2‖uj− vj‖Xj

}
,

for all u = (u1, u2), v = (v1, v2) ∈ X.

(iii) the family of operators
{
a(· + t) : V → V′ : t ∈ X

}
is uniformly strictly

monotone, that is there exist γ > 0 and p1, p2 ≥ 2, such that

[a(u+ t)− a(v + t), u− v] ≥ γ
{
‖u1 − v1‖p1

X1
+ ‖u2 − v2‖p2

X2

}
,

for all t ∈ X, and for all u = (u1, u2), v = (v1, v2) ∈ V , and

(iv) there exist β > 0 such that

sup
v∈X
v 6=0

[b(v), q]

‖v‖X
≥ β ‖q‖Y ∀ q ∈ Y .

Then, for each (f, g) ∈ X ′ × Y ′ there exists a unique (u, p) ∈ X × Y such that

[a(u), v] + [b(v), p] = [f, v] ∀ v ∈ X ,

[b(u), q] = [g, q] ∀ q ∈ Y .

Next, we establish the stability properties of the operators involved in (5.2.10).
We begin by observing that the operators E ,B and the functional F are linear.
In turn, from (5.2.11), (5.2.13) and (5.2.14), and employing Hölder’s and Cauchy–
Schwarz inequalities, there hold∣∣[B(v), τ ]

∣∣ ≤ ‖v‖ ‖τ‖X ∀ (v, τ ) ∈
(
M×Q

)
× X0 , (5.3.2)∣∣[F,v]

∣∣ ≤ ‖f‖0,Ω ‖v‖0,Ω ≤ |Ω|(p−2)/(2 p) ‖f‖0,Ω ‖v‖ ∀v ∈M×Q , (5.3.3)

and∣∣[E(u),v]
∣∣ ≤ |Ω|(p−2)/p‖u‖ ‖v‖, [E(v),v] = ‖v‖2

0,Ω ∀u,v ∈M×Q , (5.3.4)

which implies that B and F are bounded and continuous, and E is bounded, con-
tinuous, and monotone. In addition, employing the Cauchy–Schwarz and Hölder
inequalities, it is readily seen that, the nonlinear operator A (cf. (5.2.12)) is
bounded, that is∣∣[A(u),v]

∣∣ ≤ (α |Ω|(p−2)/p ‖u‖M + F ‖u‖p−1
M + ν ‖t‖Q

)
‖v‖ . (5.3.5)
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Finally, recalling the definition of the operators E ,A, and B (cf. (5.2.11)–
(5.2.13)), we stress that problem (5.2.10) can be written in the form of (5.3.1)
with

E :=
(
M×Q

)
×X0 , u :=

(
u
σ

)
, N :=

(
E 0
0 0

)
, M :=

(
A B′
−B 0

)
.

(5.3.6)
Let E′2 be the Hilbert space that is the dual of M×Q with the seminorm induced by
the operator E :=

(
I 0
0 0

)
(cf. (5.2.11)), which is ‖v‖E = (v,v)

1/2
Ω = ‖v‖0,Ω ∀v ∈

M×Q. Note that E′2 = L2(Ω)× {0}. Then we define the spaces

E ′b :=
(
L2(Ω)×{0}

)
×{0}, D :=

{
(u,σ) ∈

(
M×Q

)
×X0 : M(u,σ) ∈ E ′b

}
.

(5.3.7)
In the next section we prove the hypotheses of Theorem 5.3.1 to establish the
well-posedness of (5.2.10).

5.3.2 Range and initial conditions

We begin with the verification of the range condition in Theorem 5.3.1. Let us
consider the resolvent system associated with (5.2.10): Find (u,σ) ∈ (M×Q)×X0

such that

[(E +A)(u),v] + [B′(σ),v] = [F̂ ,v] ∀v ∈M×Q ,

[B(u), τ ] = 0 ∀ τ ∈ X0 ,
(5.3.8)

where F̂ ∈ L2(Ω) × {0} ⊂ M′ × {0} is a functional given by F̂ (v) := (f̂ ,v)Ω for
some f̂ ∈ L2(Ω). Next, a unique solution to (5.3.8) is established by employing
Theorem 5.3.2. We stress that alternatively to Theorem 5.3.2, similar arguments
developed in [38, Section 3.3] can be employed to stablish the well-posedness of
(5.3.8). We begin by observing that, thanks to the uniform convexity and sepa-
rability of Lp(Ω) for p ∈ (1,+∞), the spaces M,Q, and X0 are uniformly convex
and separable as well.

We continue our analysis by proving that the nonlinear operator E+A satisfies
hypothesis (ii) of Theorem 5.3.2 with p1 = p ∈ [3, 4] and p2 = 2.

Lemma 5.3.3. Let p ∈ [3, 4]. Then, there exists LBF > 0, depending on ν, F, and
α, such that

‖(E +A)(u)− (E +A)(v)‖

≤ LBF

{
‖u− v‖M + ‖t− r‖Q +

(
‖u‖M + ‖v‖M

)p−2‖u− v‖M
}
,

(5.3.9)

for all u = (u, t),v = (v, r) ∈M×Q.
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Proof. Let u = (u, t),v = (v, r) ∈ M × Q. Then, according to the definition of
the operators E ,A (cf. (5.2.11), (5.2.12)), similar to the boundedness estimates
(5.3.4) and (5.3.5), using Hölder’s and Cauchy–Schwarz inequalities, we find that

‖(E +A)(u)− (E +A)(v)‖

≤ (1 + α)|Ω|(p−2)/p‖u− v‖M + F ‖|u|p−2u− |v|p−2v‖M′ + ν ‖t− r‖Q .
(5.3.10)

In turn, applying [17, Lemma 2.1, eq. (2.1a)] to bound the second term on the
right hand side of (5.3.10), we deduce that there exists cp > 0, depending only on
|Ω| and p such that

‖|u|p−2u− |v|p−2v‖M′ ≤ cp

(
‖u‖M + ‖v‖M

)p−2‖u− v‖M . (5.3.11)

Thus, using (5.3.11) and (5.3.10), we obtain (5.3.9) with

LBF = max
{

(1 + α)|Ω|(p−2)/p, F cp, ν
}
,

which ends the proof.

Next, the following lemma shows that the operator E +A satisfies hypothesis
(iii) of Theorem 5.3.2 with p1 = p ∈ [3, 4] and p2 = 2.

Lemma 5.3.4. Let p ∈ [3, 4]. The family of operators
{

(E +A)(·+ z) : M×Q→

(M × Q)′ : z ∈ M × Q
}

is uniformly strictly monotone, that is, there exists
γBF > 0, such that[

(E +A)(u + z)− (E +A)(v + z),u−v
]
≥ γBF

{
‖u−v‖p

M +‖t− r‖2
Q

}
, (5.3.12)

for all z = (z, s) ∈M×Q, and for all u = (u, t),v = (v, r) ∈M×Q.

Proof. Let z = (z, s) ∈ M × Q and u = (u, t),v = (v, r) ∈ M × Q. Then, from
the definition of the operators E ,A (cf. (5.2.11), (5.2.12)), we get[

(E +A)(u + z)− (E +A)(v + z),u− v
]

= (1 + α)‖u− v‖2
0,Ω + F (|u + z|p−2(u + z)

−|v + z|p−2(v + z),u− v)Ω + ν ‖t− r‖2
Q ,

(5.3.13)

where, employing [17, Lemma 2.1, eq. (2.1b)] to bound the second term in (5.3.13),
we deduce that there exists Cp > 0 depending only on |Ω| and p such that

(|u + z|p−2(u + z)− |v + z|p−2(v + z),u− v)Ω ≥ Cp ‖u− v‖p
M . (5.3.14)
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Thus, replacing (5.3.14) back into (5.3.13), and bounding below the first term on
the right-hand side of (5.3.13) by 0, we obtain[

(E +A)(u + z)− (E +A)(v + z),u− v
]
≥ Cp F ‖u− v‖p

M + ν ‖t− r‖2
Q ,

which gives (5.3.12) with γBF = min
{
Cp F, ν

}
.

Remark 5.3.1. We observe that, using similar arguments to [49, eq. (3.30)], the
kernel of the operator B (cf. (5.2.13)) can be written as

V =
{

v = (v, r) ∈M×Q : ∇v = r and v ∈ H1
0(Ω)

}
. (5.3.15)

In turn, since the strict monotonicity bound (5.3.12) holds on M×Q, it is clear that
it also holds on V. Notice also that alternatively to Lemma 5.3.4, and similarly to
[38, Lemma 3.5], it is possible to prove that the family of operators

{
(E+A)(·+z) :

V → V′ : z ∈ M × Q
}

is uniformly strongly monotone, that is, there exists
γ̃BF > 0, such that[

(E +A)(u + z)− (E +A)(v + z),u− v
]
≥ γ̃BF ‖u− v‖2 ,

for all z = (z, s) ∈M×Q, and for all u = (u, t),v = (v, r) ∈ V.

We end the verification of the hypotheses of Theorem 5.3.2, with the corre-
sponding inf-sup condition for the operator B.

Lemma 5.3.5. There exists a constant β > 0 such that

sup
v∈M×Q

v 6=0

[B(v), τ ]

‖v‖
≥ β ‖τ‖X ∀ τ ∈ X0 . (5.3.16)

Proof. For the case p = 4 and q = 4/3 we refer the reader to [49, eq. (3.44),
Lemma 3.3], whose proof can be easily extended to the case p ∈ [3, 4] and q ∈
[4/3, 3/2] satisfying 1/p + 1/q = 1. Further details are omitted.

Now, we are in a position of establishing the solvability of the resolvent system
(5.3.8).

Lemma 5.3.6. Given F̂ = (f̂ ,0) ∈ L2(Ω) × {0}, there exists a unique solution
(u,σ) = ((u, t),σ) ∈ (M×Q)× X0 of the resolvent system (5.3.8).
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Proof. First, we recall from (5.3.2) and (5.3.3) that B and F̂ are linear and
bounded. In turn, we note that Lemma 5.3.3 implies, in particular, that the
nonlinear operator E +A is hemi-continuous, that is, for each u,v ∈M×Q, the
mapping

J : R→ R, z 7→ J(z) := [(E +A)(u + z v),v]

is continuous. In this way, as a consequence of Lemmas 5.3.3, 5.3.4, and 5.3.5, and
a straightforward application of Theorem 5.3.2, we conclude the result.

We end this section establishing a suitable initial condition result, which is
necessary to apply Theorem 5.3.1 to our context.

Lemma 5.3.7. Assume the initial condition u0 ∈M ∩H, where

H :=
{

v ∈ H1
0(Ω) : ∆v ∈ L2(Ω) and div (v) = 0 in Ω

}
. (5.3.17)

Then, there exists (t0,σ0) ∈ Q× X0 such that u0 = (u0, t0) and(
A B′
−B 0

)(
u0

σ0

)
∈
(
L2(Ω)× {0}

)
× {0} . (5.3.18)

Proof. It proceeds similarly to the proof of [43, Lemma 3.6]. In fact, given u0 ∈
M ∩H, we can define t0 := ∇u0 and σ0 := ν t0, such that

tr (t0) = 0, div(σ0) = ν ∆u0, and tr (σ0) = 0 in Ω . (5.3.19)

Notice that t0 ∈ Q and σ0 ∈ H0(div; Ω) ⊂ X0, with H0(div; Ω) :=
{
τ ∈

H(div; Ω) : (tr (τ ), 1)Ω = 0
}
. Next, integrating by parts the identity t0 = ∇u0

and proceeding similarly to (5.2.5), we obtain

− [B(u0), τ ] = 0 ∀ τ ∈ X0 .

Hence, given u0 ∈ M ∩H (cf. (5.3.17)), multiplying the identity ν t0 = σ0 and
the second equation in (5.3.19) by r ∈ Q and v ∈M, respectively, and after minor
algebraic manipulation we deduce that(

A B′
−B 0

)(
u0

σ0

)
=

(
F0

0

)
, (5.3.20)

where, F0 = (f0,0) and

(f0,v)Ω := (−ν ∆u0 + αu0 + F |u0|p−2u0,v)Ω ,
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which together with the additional regularity of u0, and the continuous injection
of H1(Ω) into L2(p−1)(Ω), with p ∈ [3, 4], implies that∣∣(f0,v)Ω

∣∣ ≤ {ν ‖∆u0‖0,Ω + α ‖u0‖0,Ω + F ‖u0‖p−1

L2(p−1)(Ω)

}
‖v‖0,Ω

≤ C
{
‖∆u0‖0,Ω + ‖u0‖0,Ω + ‖u0‖p−1

1,Ω

}
‖v‖0,Ω .

(5.3.21)

Thus, F0 ∈ L2(Ω)× {0} so then (5.3.18) holds, completing the proof.

Remark 5.3.2. The assumption on the initial condition u0 in (5.3.17) is not
necessary for all the results that follow but we shall assume it from now on for
simplicity. A similar assumption to u0 is also made in [43, Lemma 3.6] (see also
[61, eq. (2.2)]). Note also that (u0,σ0) satisfying (5.3.18) is not unique.

5.3.3 Main result

We now establish the well-posedness of problem (5.2.10).

Theorem 5.3.8. For each compatible initial data (u0,σ0) = ((u0, t0),σ0) con-
structed in Lemma 5.3.7 and each f ∈ W1,1(0, T ; L2(Ω)), there exists a unique
(u,σ) = ((u, t),σ) : [0, T ] →

(
M × Q

)
× X0 solution to (5.2.10), such that

u ∈W1,∞(0, T ; L2(Ω)) and (u(0), t(0),σd(0)) = (u0, t0,σ
d
0 ).

Proof. We recall that (5.2.10) fits the framework of Theorem 5.3.1 with the defi-
nitions (5.3.6) and (5.3.7). Note that N is linear, symmetric and monotone since
E is (cf. (5.3.4)). In addition, since A is strictly monotone, it is not difficult to see
thatM is monotone. On the other hand, from Lemma 5.3.6 we know that given
(F̂ ,0) ∈ E ′b with F̂ = (f̂ ,0), there is a unique (u,σ) = ((u, t),σ) ∈

(
M×Q

)
×X0,

such that (F̂ ,0) = (N+M)(u,σ) which implies Rg(N+M) = E ′b. Finally, consid-
ering u0 ∈M∩H (cf. (5.3.17)), from a straightforward application of Lemma 5.3.7
we are able to find (t0,σ0) ∈ Q×X0 such that (u0,σ0) = ((u0, t0),σ0) ∈ D. There-
fore, applying Theorem 5.3.1 to our context, we conclude the existence of a solution
(u,σ) = ((u, t),σ) to (5.2.10), with u ∈W1,∞(0, T ; L2(Ω)) and u(0) = u0.

We next show that the solution of (5.2.10) is unique. To that end, let (ui,σi),
with i ∈ {1, 2}, be two solutions corresponding to the same data. Then, taking
(5.2.10) with (v, τ ) = (u1 − u2,σ1 − σ2) ∈

(
M×Q

)
× X0, we deduce that

1

2
∂t ‖u1 − u2‖2

0,Ω + [A(u1)−A(u2),u1 − u2] = 0 ,

which together with the strict monotonicity bound of A (cf. (5.3.12)), yields

1

2
∂t ‖u1 − u2‖2

0,Ω + α ‖u1 − u2‖2
0,Ω + Cp F ‖u1 − u2‖p

M + ν ‖t1 − t2‖2
Q ≤ 0 .
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Integrating in time from 0 to t ∈ (0, T ], and using u1(0) = u2(0), we obtain

‖u1(t)−u2(t)‖2
0,Ω +

∫ t

0

(
‖u1−u2‖2

0,Ω +‖u1−u2‖p
M+‖t1−t2‖2

Q

)
ds ≤ 0 . (5.3.22)

Therefore, it follows from (5.3.22) that u1(t) = u2(t) and t1(t) = t2(t) for all
t ∈ (0, T ]. Next, from the inf-sup condition of the operator B (cf. (5.3.16)) and
the first equation of (5.2.10), we get

β ‖σ1 − σ2‖X ≤ sup
v∈M×Q

v 6=0

[B′(σ1 − σ2),v]

‖v‖

= − sup
v∈M×Q

v 6=0

[∂t E(u1 − u2),v] + [A(u1)−A(u2),v]

‖v‖
= 0 ,

which implies that σ1(t) = σ2(t) for all t ∈ (0, T ], and therefore (5.2.10) has a
unique solution.

Finally, since Theorem 5.3.1 implies that M(u) ∈ L∞(0, T ;E ′b), we can take
t → 0 in all equations without time derivatives in (5.2.10). Using that the initial
data (u0,σ0) = ((u0, t0),σ0) satisfies the same equations at t = 0 (cf. (5.3.20)),
and that u(0) = u0, we obtain

ν (t(0)− t0, r)Ω − (σ(0)− σ0, r)Ω = 0 ∀ r ∈ Q ,

(t(0)− t0, τ )Ω = 0 ∀ τ ∈ X0 .
(5.3.23)

Thus, taking r = t(0)−t0 and τ = σ(0)−σ0 in (5.3.23) we deduce that t(0) = t0.
In addition, from the latter and testing the first equation in (5.3.23) with r =
(σ(0)− σ0)d ∈ Q implies that σd(0) = σd

0 , completing the proof.

We conclude this section with the corresponding stability bounds for the solu-
tion of (5.2.10).

Theorem 5.3.9. Assume that f ∈ W1,1(0, T ; L2(Ω)) ∩ L2(p−1)(0, T ; L2(Ω)), and
u0 ∈ M ∩ H satisfying (5.3.18), with p ∈ [3, 4].. Then, there exist constants
CBF,1, CBF,2 > 0 only depending on |Ω|, ν, α, F, and β, such that

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;M) + ‖t‖L2(0,T ;Q) + ‖σ‖L2(0,T ;X)

≤ CBF,1

{
‖f‖p−1

L2(p−1)(0,T ;L2(Ω))
+ ‖f‖L2(0,T ;L2(Ω)) + ‖u0‖p/2

M + ‖u0‖p−1
0,Ω + ‖u0‖1,Ω

}
(5.3.24)

and

‖u‖L∞(0,T ;M) ≤ CBF,2

{
‖f‖2/p

L2(0,T ;L2(Ω)) + ‖u0‖M + ‖u0‖2/p
1,Ω

}
. (5.3.25)
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Proof. We follow an analogous reasoning to the proof of [43, Theorem 3.3]. In
fact, we begin choosing (v, τ ) = (u,σ) in (5.2.10) to get

1

2
∂t ‖u‖2

0,Ω + [A(u),u] = (f ,u)Ω .

Next, from the definition of the operator A (cf. (5.2.12)), using Cauchy–Schwarz
and Young’s inequalities (cf. (5.1.1)), we obtain

1

2
∂t ‖u‖2

0,Ω + α ‖u‖2
0,Ω + F ‖u‖p

M + ν ‖t‖2
Q ≤

δ

2
‖f‖2

0,Ω +
1

2 δ
‖u‖2

0,Ω . (5.3.26)

In turn, noting from the second row of (5.2.10) that u = (u, t) belong to V (cf.
(5.3.15)), we know that t = ∇u and u ∈ H1

0(Ω), which combined with the Sobolev
embedding from H1(Ω) into Lp(Ω), with p ∈ [3, 4], implies

α

2
‖u‖2

0,Ω +
ν

2
‖t‖2

Q ≥
min

{
α, ν

}
2

(
‖u‖2

0,Ω + ‖∇u‖2
0,Ω

)
≥

min
{
α, ν

}
2 ‖ip‖2

‖u‖2
M ,

which combined with (5.3.26) and choosing δ = 1/α, yields

∂t ‖u‖2
0,Ω +

min
{
α, ν

}
‖ip‖2

‖u‖2
M + ν ‖t‖2

Q ≤
1

α
‖f‖2

0,Ω . (5.3.27)

Notice that, in order to simplify the stability bound, we have neglected the term
F‖u‖p

M in the left hand side of (5.3.26). Integrating (5.3.27) from 0 to t ∈ (0, T ],
we obtain

‖u(t)‖2
0,Ω +

∫ t

0

(
‖u‖2

M + ‖t‖2
Q

)
ds ≤ C1

{∫ t

0

‖f‖2
0,Ω ds+ ‖u(0)‖2

0,Ω

}
, (5.3.28)

with C1 > 0 depending only on |Ω|, ν, and α.
On the other hand, from the inf-sup condition of B (cf. (5.3.16)), the first

equation of (5.2.10), and the stability bounds of F, E ,A (cf. (5.3.4), (5.3.3) and
(5.3.5)), we deduce that

β ‖σ‖X ≤ sup
v∈M×Q

v 6=0

[B′(σ),v]

‖v‖
= sup

v∈M×Q
v 6=0

[F,v]− [∂t E(u),v]− [A(u),v]

‖v‖

≤ C2

(
‖f‖0,Ω + ‖u‖M + ‖u‖p−1

M + ‖t‖Q + ‖∂t u‖0,Ω

)
,

(5.3.29)

with C2 > 0 depending on |Ω|, ν, α, and F. In turn, using (5.3.27), the Sobolev
embedding of Lp(Ω) into L2(Ω), with p ∈ [3, 4], the Young inequality (cf. (5.1.1)),
and simple algebraic computations, we are able to find that

∂t ‖u‖2 (p−1)
0,Ω + ‖u‖2 (p−1)

M = (p− 1)‖u‖2 (p−2)
0,Ω ∂t ‖u‖2

0,Ω + ‖u‖2 (p−2)
M ‖u‖2

M

≤ C̃3 ‖f‖2
0,Ω ‖u‖

2 (p−2)
M ≤ Ĉ3 ‖f‖2 (p−1)

0,Ω +
1

2
‖u‖2 (p−1)

M ,



152 5.3. Well-posedness of the model

which, similarly to (5.3.28), implies

‖u(t)‖2 (p−1)
0,Ω +

∫ t

0

‖u‖2 (p−1)
M ds ≤ C3

{∫ t

0

‖f‖2 (p−1)
0,Ω ds+ ‖u(0)‖2 (p−1)

0,Ω

}
, (5.3.30)

with C3 > 0 depending on |Ω|, ν, and α. Then, taking square in (5.3.29), integrat-
ing from 0 to t ∈ (0, T ], using (5.3.28) and (5.3.30), we get∫ t

0

‖σ‖2
X ds ≤ C4

{∫ t

0

(
‖f‖2(p−1)

0,Ω + ‖f‖2
0,Ω

)
ds

+ ‖u(0)‖2(p−1)
0,Ω + ‖u(0)‖2

0,Ω +

∫ t

0

‖∂t u‖2
0,Ω ds

}
,

(5.3.31)

with C4 > 0 depending on |Ω|, ν, α, F, and β. Next, in order to bound the last
term in (5.3.31), we differentiate in time the second equation of (5.2.10), choose
(v, τ ) = ((∂t u, ∂t t),σ), and employ Cauchy–Schwarz and Young’s inequalities, to
obtain

1

2
∂t

(
α ‖u‖2

0,Ω +
2 F

p
‖u‖p

M + ν ‖t‖2
Q

)
+ ‖∂t u‖2

0,Ω ≤
1

2
‖f‖2

0,Ω +
1

2
‖∂t u‖2

0,Ω .

Integrating from 0 to t ∈ (0, T ], we get

2 F

p
‖u(t)‖p

M +

∫ t

0

‖∂t u‖2
0,Ω

≤ C5

{∫ t

0

‖f‖2
0,Ω ds+ ‖u(0)‖p

M + ‖u(0)‖2
0,Ω + ‖t(0)‖2

Q

}
,

(5.3.32)

with C5 := max
{

1, α, 2 F/p, ν}. Then, combining (5.3.32) with (5.3.31), yields∫ t

0

‖σ‖2
X ds ≤ C6

{∫ t

0

(
‖f‖2(p−1)

0,Ω + ‖f‖2
0,Ω

)
ds

+ ‖u(0)‖p
M + ‖u(0)‖2(p−1)

0,Ω + ‖u(0)‖2
0,Ω + ‖t(0)‖2

Q

}
,

(5.3.33)

which, combined with (5.3.28) and the fact that (u(0), t(0)) = (u0, t0), with t0 =
∇u0 in Ω (cf. Lemma 5.3.7 and Theorem 5.3.8), implies (5.3.24). In addition,
(5.3.32) yields (5.3.25) with

CBF,2 :=

(
p

2 F
max

{
1, α,

2 F

p
, ν
})1/p

,

concluding the proof.
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Remark 5.3.3. The stability bound (5.3.24) can be derived alternatively without
the using the fact that u = (u, t) belongs to V (cf. (5.3.15)), but in that case the
expression on the right-hand side of (5.3.24) would be more complicated involving
other terms related to p ∈ [3, 4]. We also note that (5.3.25) will be employed in
the next section to deal with the nonlinear term associated to the operator A (cf.
(5.2.12)), which is necessary to obtain the corresponding error estimate.

Remark 5.3.4. The analysis developed in this section can be easily extended to
the problem (5.2.4) with non-homogeneous Dirichlet boundary condition, u = uD

on Γ × (0, T ]. To that end, (5.2.10) has to be rewritten as follows: given f :
[0, T ] → L2(Ω), uD : [0, T ] → H1/2(Γ) and u0 ∈ M ∩ H (cf. (5.3.17)), find
(u,σ) = ((u, t),σ) : [0, T ] →

(
M × Q

)
× X0, such that u(0) = u0 and, for a.e.

t ∈ (0, T ),

∂

∂ t
[E(u(t)),v] + [A(u(t)),v] + [B′(σ(t)),v] = [F (t),v] ∀v ∈M×Q ,

− [B(u(t)), τ ] = [G(t), τ ] ∀ τ ∈ X0 ,

where the functional G ∈ X′0 is given by [G, τ ] = 〈τn,uD〉Γ, with 〈·, ·〉Γ denoting
the duality between H−1/2(Γ) and H1/2(Γ). We refer the reader to [30, Lemma 3.5]
for the proof that τn ∈ H−1/2(Γ) for all τ ∈ X0 in the case p = 4 and q = 4/3.
The proof can be extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2] satisfying
1/p + 1/q = 1, after slight adaptations. Then, we reformulate the problem as a
parabolic problem for u, and proceed as in [14, eq. (4.14), Section 4.1].

5.4 Semidiscrete continuous-in-time
approximation

In this section we introduce and analyze the semidiscrete continuous-in-time
approximation of (5.2.10). We analyze its solvability by employing the strategy
developed in Section 5.3. Finally, we derive the error estimates and obtain the
corresponding rates of convergence.

5.4.1 Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles K (when
d = 2) or tetrahedra K (when d = 3) of diameter hK , and define the mesh-size
h := max

{
hK : K ∈ Th

}
. In turn, given an integer l ≥ 0 and a subset S of

Rd, we denote by Pl(S) the space of polynomials of total degree at most l defined
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on S. Hence, for each integer k ≥ 0 and for each K ∈ Th, we define the local
Raviart–Thomas space of order k as

RTk(K) := Pk(K)⊕ P̃k(K) x ,

where x := (x1, . . . , xd)
t is a generic vector of Rd, P̃k(K) is the space of polynomials

of total degree equal to k defined onK, and, according to the convention in Section
5.1, we set Pk(K) := [Pk(K)]d and Pk(K) := [Pk(K)]d×d. In this way, introducing
the finite element subspaces:

Mh :=
{

vh ∈M : vh|K ∈ Pk(K) ∀K ∈ Th
}
,

Qh :=
{

rh ∈ Q : rh|K ∈ Pk(K) ∀K ∈ Th
}
,

Xh :=
{
τh ∈ X : ctτh|K ∈ RTk(K) ∀ c ∈ Rn ∀K ∈ Th

}
, X0,h := Xh ∩ X0 ,

(5.4.1)
and denoting from now on

uh := (uh, th), vh := (vh, rh) ∈Mh ×Qh ,

the semidiscrete continuous-in-time problem associated with (5.2.10) reads: Find
(uh,σh) : [0, T ]→

(
Mh ×Qh

)
× X0,h such that, for a.e. t ∈ (0, T ),

∂

∂ t
[E(uh),vh] + [A(uh),vh] + [B(vh),σh] = [F,vh] ∀vh ∈Mh ×Qh ,

− [B(uh), τh] = 0 ∀ τh ∈ X0,h .
(5.4.2)

As initial condition we take (uh,0,σh,0) = ((uh,0, th,0),σh,0) to be a suitable ap-
proximations of (u0,σ0), the solution of (5.3.20), that is, we chose (uh,0,σh,0)
solving

[A(uh,0),vh] + [B(vh),σh,0] = [F0,vh] ∀vh ∈Mh ×Qh ,

− [B(uh,0), τh] = 0 ∀ τh ∈ X0,h ,
(5.4.3)

with F0 ∈ L2(Ω) × {0} being the right-hand side of (5.3.20). This choice is
necessary to guarantee that the discrete initial datum is compatible in the sense
of Lemma 5.3.7, which is needed for the application of Theorem 5.3.1. Notice that
the well-posedness of problem (5.4.3) follows from similar arguments to the proof
of Lemma 5.3.6. In addition, taking (vh, τh) = (uh,σh) in (5.4.3), we deduce from
the definition of the operator A (cf. (5.2.12)) and the continuity bound of F0 (cf.
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(5.3.21)) that, there exists a constant C0 > 0, depending only on |Ω|, ν, α, and F,
and hence independent of h, such that

‖uh,0‖p
M + ‖uh,0‖2

0,Ω + ‖th,0‖2
Q ≤ C0

{
‖u0‖2(p−1)

1,Ω + ‖∆u0‖2
0,Ω + ‖u0‖2

0,Ω

}
. (5.4.4)

In this way, the well-posedness of (5.4.2) follows analogously to its continuous
counterpart provided in Theorem 5.3.8. More precisely, we begin introducing the
discrete kernel of the operator B, that is,

Vh :=
{

vh := (vh, rh) ∈Mh ×Qh : (vh,div(τh))Ω + (rh, τh)Ω = 0 ∀ τh ∈ X0,h

}
.

(5.4.5)
Then, we derive from [49, Section 5] the following two properties, the first one

being the discrete inf-sup condition of B and the second one an auxiliary result
that will be used to obtain the stability bound (5.4.10) below.

Lemma 5.4.1. There exist positive constants β̃ and Cd, such that

sup
vh∈Mh×Qh

vh 6=0

[B(vh), τh]

‖vh‖
≥ β̃ ‖τh‖X ∀ τh ∈ X0,h (5.4.6)

and
‖rh‖Q ≥ Cd ‖vh‖M ∀ (vh, rh) ∈ Vh . (5.4.7)

Proof. For the case p = 3 and q = 3/2 we refer the reader to [38, Lemma 4.1],
whose proof can be easily extended to the case p ∈ [3, 4] and q ∈ [4/3, 3/2]
satisfying 1/p + 1/q = 1. In what follows we provide some details just for sake of
completeness. We begin by introducing the discrete space Z0,h defined by

Z0,h :=
{
τh ∈ X0,h : [B(vh,0), τh] = (vh,div(τh))Ω = 0 ∀vh ∈Mh

}
,

which, according to the fact that div(X0,h) ⊆Mh, becomes

Z0,h =
{
τh ∈ X0,h : div(τh) = 0 in Ω

}
.

Next, by using the abstract equivalence result provided by [49, Lemma 5.1] with
the setting X = Mh, Y = Y1 = Qh, Y2 =

{
0
}
, V = Vh, Z = X0,h, and Z0 = Z0,h,

where X, Y, Y1, Y2, V, Z, and Z0 correspond to the notations employed there, we
deduce that (5.4.6) and (5.4.7) are jointly equivalent to the existence of positive
constants β1 and β2, independent of h, such that there hold

sup
τh∈X0,h

τh 6=0

[B(vh,0), τh]

‖τh‖X
= sup

τh∈X0,h

τh 6=0

(vh,div(τh))Ω

‖τh‖X
≥ β1 ‖vh‖M ∀vh ∈Mh (5.4.8)
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and

sup
rh∈Qh
rh 6=0

[B(0, rh), τh]

‖rh‖Q
= sup

rh∈Qh
rh 6=0

(rh, τh)Ω

‖rh‖Q
≥ β2 ‖τh‖X ∀ τh ∈ Z0,h . (5.4.9)

Then, we observe that (5.4.8) follows from a slight adaptation of [30, Lemma 4.3]
(see also [49, eq. (5.45)]). Furthermore, recalling from [72, Lemma 2.3] that there
exists a constant c1 > 0, depending only on Ω, such that

c1 ‖τ‖2
0,Ω ≤ ‖τ d‖2

0,Ω + ‖div(τ )‖2
0,Ω ∀ τ ∈ H0(div; Ω) ,

and using the fact that τ d
h ∈ Qh for each τh ∈ Z0,h (see part of the proof of [72,

Theorem 3.3] for details), we easily get (5.4.9) with β2 = c
1/2
1 .

Next, we address the discrete counterparts of Lemmas 5.3.3 and 5.3.4, whose
proofs, being almost verbatim of the continuous ones, are omitted.

Lemma 5.4.2. Let p ∈ [3, 4]. The family of operators
{

(E+A)(·+zh) : Mh×Qh →

(Mh × Qh)
′ : zh ∈ Mh × Qh

}
is uniformly strongly monotone with the same

constant γBF > 0 from (5.3.12), that is, there holds[
(E+A)(uh+zh)− (E+A)(vh+zh),uh−vh

]
≥ γBF

{
‖uh−vh‖p

M +‖th−rh‖2
Q

}
,

for each zh = (zh, sh) ∈ Mh × Qh, and for all uh = (uh, th),vh = (vh, rh) ∈
Mh×Qh. In addition, the operator E+A : (Mh×Qh)→ (Mh×Qh)

′ is continuous
in the sense of (5.3.9), with the same constant LBF.

We are now in position of establishing the semi-discrete continuous in time
analogue of Theorems 5.3.8 and 5.3.9.

Theorem 5.4.3. Let p ∈ [3, 4]. For each compatible initial data (uh,0,σh,0) :=
((uh,0, th,0),σh,0) satisfying (5.4.3) and f ∈W1,1(0, T ; L2(Ω)), there exists a unique
(uh,σh) = ((uh, th),σh) : [0, T ] →

(
Mh × Qh

)
× X0,h solution to (5.4.2), satis-

fying uh ∈ W1,∞(0, T ; Mh) and (uh(0), th(0)) = (uh,0, th,0). Moreover, assuming
that u0 ∈ M ∩ H satisfies (5.3.18) and that f ∈ L2(p−1)(0, T ; L2(Ω)), there exist
constants ĈBF,1, ĈBF,2 > 0 depending only on |Ω|, ν, α, F, and β̃, such that

‖uh‖L∞(0,T ;L2(Ω)) + ‖uh‖L2(0,T ;M) + ‖th‖L2(0,T ;Q) + ‖σh‖L2(0,T ;X)

≤ ĈBF,1

{
‖f‖p−1

L2(p−1)(0,T ;L2(Ω))
+ ‖f‖L2(0,T ;L2(Ω))

+ ‖u0‖(p−1)2

H1(Ω) + ‖u0‖p−1
H1(Ω) + ‖∆u0‖p−1

L2(Ω) + ‖∆u0‖L2(Ω) + ‖u0‖L2(Ω)

}
,

(5.4.10)
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and

‖uh‖L∞(0,T ;M) ≤ ĈBF,2

{
‖f‖2/p

L2(0,T ;L2(Ω)) + ‖u0‖2(p−1)/p

H1(Ω) + ‖∆u0‖2/p

L2(Ω) + ‖u0‖2/p

L2(Ω)

}
.

(5.4.11)

Proof. According to Lemma 5.4.2, the discrete inf-sup condition for B provided
by (5.4.6) (cf. Lemma 5.4.1), and considering that (uh,0,σh,0) satisfies (5.4.3), the
proof of existence and uniqueness of solution of (5.4.2) with uh ∈W1,∞(0, T ; Mh)
and uh(0) = uh,0, follows similarly to the proof of Theorem 5.3.8 by applying
Theorem 5.3.1. Moreover, from the discrete version of (5.3.23), we deduce that
th(0) = th,0. Notice that, it is not possible to prove that σd

h(0) = σd
h,0 since

(σh(0)− σh,0)d does not belong to Qh.
On the other hand, noticing from the second row of (5.4.2) that uh := (uh, th) :

[0, T ] → Vh (cf. (5.4.5)), employing (5.4.7) to obtain the discrete version of
(5.3.28), using the fact that (uh(0), th(0)) = (uh,0, th,0) and estimate (5.4.4) to
bound the discrete versions of (5.3.28)–(5.3.33), we proceed as in the proof of
Theorem 5.3.9 and derive (5.4.10) and (5.4.11), thus completing the proof.

5.4.2 Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (5.4.2). To
that end, in what follows we assume that {Th}h>0 is a family of quasi-uniform
triangulations, which implies that the following inverse inequality holds (see, for
instance,[63, Corollary 1.141]):

‖ξ‖Lq(Ω) ≤ Chd( 1
q
− 1

p
)‖ξ‖Lp(Ω), (5.4.12)

for all piecewise polynomial functions ξ and C > 0 independent of h.
Now we introduce some notations and state a couple of previous results. First,

we recall the discrete inf-sup condition of B (cf. (5.4.6)), and a classical result
on mixed methods (see, for instance [72, eq. (2.89) in Theorem 2.6]) ensure the
existence of a constant C > 0, independent of h, such that:

inf
vh∈Vh

‖u− vh‖ ≤ C inf
vh∈Mh×Qh

‖u− vh‖ . (5.4.13)

Now, in order to obtain the theoretical rates of convergence for the discrete
scheme (5.4.2), we recall the approximation properties of the finite element sub-
spaces Mh,Qh, and Xh (cf. (5.4.1)), that can be found in [21], [63], [72], and [33,
Section 3.1] (see also [49, Section 5]).

(APu
h) For each l ∈ [0, k + 1] and for each v ∈Wl,p(Ω), there holds

inf
vh∈Mh

‖v − vh‖M ≤ C hl ‖v‖Wl,p(Ω) .
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(APt
h) For each l ∈ [0, k + 1] and for each t ∈ Hl(Ω) ∩Q, there holds

inf
rh∈Qh

‖r− rh‖Q ≤ C hl ‖r‖Hl(Ω) .

(APσ
h ) For each l ∈ (0, k+1] and for each τ ∈ Hl(Ω)∩X0 with div(τ ) ∈Wl,q(Ω),

there holds

inf
τh∈X0,h

‖τ − τh‖X ≤ C hl
{
‖τ‖Hl(Ω) + ‖div(τ )‖Wl,q(Ω)

}
.

Owing to (5.4.13) and (APu
h), (APt

h) and (APσ
h ), it follows that, under an

extra regularity assumption on the exact solution (to be specified below in Theorem
5.4.4), there exist positive constants C(u), C(∂t u), C(σ), and C(∂t σ), depending
on u, t and σ, respectively, such that

inf
vh∈Vh

‖u− vh‖ ≤ C(u)hl , inf
vh∈Vh

‖∂t u− vh‖ ≤ C(∂t u)hl ,

inf
τh∈X0,h

‖σ − τh‖X ≤ C(σ)hl , and inf
τh∈X0,h

‖∂t σ − τh‖X ≤ C(∂t σ)hl .

(5.4.14)
In turn, in order to simplify the subsequent analysis, we write eu = (eu, et) =

(u−uh, t−th), and eσ = σ−σh. Next, given arbitrary v̂h := (v̂h, r̂h) : [0, T ]→ Vh

(cf. (5.4.5)) and τ̂h : [0, T ] → X0,h, as usual, we shall then decompose the errors
into

eu = δu + ηu = (δu, δt) + (ηu,ηt) , eσ = δσ + ησ , (5.4.15)

with
δu = u− v̂h , δt = t− r̂h , δσ = σ − τ̂h ,

ηu = v̂h − uh , ηt = r̂h − th , ησ = τ̂h − σh .
(5.4.16)

In addition, we stress for later use that ∂t vh : [0, T ]→ Vh for each vh(t) ∈ Vh

(cf. (5.4.5)). In fact, given (vh, τh) : [0, T ] → Vh × X0,h, after simply algebraic
computations, we obtain

[B(∂t vh), τh] = ∂t
(
[B(vh), τh]

)
− [B(vh), ∂t τh] = 0 , (5.4.17)

where, the latter is obtained by observing that ∂t τh(t) ∈ X0,h.
In this way, by subtracting the discrete and continuous problems (5.4.2) and

(5.2.10), respectively, we obtain the following system:

∂

∂ t
[E(eu),vh] + [A(u)−A(uh),vh] + [B(vh), eσ] = 0 ∀vh ∈Mh ×Qh,

[B(eu), τh] = 0 ∀ τh ∈ X0,h.
(5.4.18)
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We now establish the main result of this section, namely, the theoretical rate of
convergence of the discrete scheme (5.4.2). Notice that, optimal and sub-optimal
rates of convergences of order O(hl) and O(hl−d(p−2)/(2p)) are confirmed for (u, t)
and σ, respectively.

Theorem 5.4.4. Let ((u, t),σ) : [0, T ] →
(
M × Q

)
× X0 with u ∈ W1,∞(0, T ;

L2(Ω)) and ((uh, th),σh) : [0, T ]→
(
Mh ×Qh

)
× X0,h with uh ∈W1,∞(0, T ; Mh),

be the unique solutions of the continuous and semidiscrete problems (5.2.10) and
(5.4.2), respectively. Assume further that {Th}h>0 is a family of quasi-uniform
triangulations and that there exists l ∈ (0, k + 1], such that u ∈ Wl,p(Ω), t ∈
Hl(Ω), σ ∈ Hl(Ω), and div(σ) ∈ Wl,q(Ω), with p ∈ [3, 4] and q ∈ [4/3, 3/2]
satisfying 1/p + 1/q = 1. Then, there exist C1(u,σ), C2(u,σ) > 0 depending only
on C(u), C(∂t u), C(σ), C(∂t σ), |Ω|, ν, α, F, β̃, and data, such that

‖eu‖L∞(0,T ;L2(Ω)) +‖eu‖L2(0,T ;M) +‖et‖L2(0,T ;Q) ≤ C1(u,σ)
(
hl+hl (p−1)

)
(5.4.19)

and
‖eσ‖L2(0,T ;X) ≤ C2(u,σ)h−d(p−2)/(2p)

(
hl + hl (p−1)

)
. (5.4.20)

Proof. First, adding and subtracting suitable terms in (5.4.18) with vh = ηu =
(ηu,ηt) : [0, T ]→ Vh (cf. (5.4.5)) and τh = ησ : [0, T ]→ X0,h, and employing the
strict monotonicity bound of A (cf. (5.3.12)) and the fact that ηu(t) ∈ Vh, thus
[B(ηu),ησ] = 0, we deduce that

1

2
∂t ‖ηu‖2

0,Ω + α ‖ηu‖2
0,Ω + FCp ‖ηu‖p

M + ν ‖ηt‖2
Q ≤ −(∂t δu,ηu)Ω

−α(δu,ηu)Ω − F(|u|p−2u− |v̂h|p−2v̂h,ηu)Ω − ν(δt,ηt)Ω − [B(ηu), δσ] .
(5.4.21)

Next, using again the fact that ηu(t) = (ηu,ηt)(t) ∈ Vh, we deduce from (5.4.7)
that Cd‖ηu‖M ≤ ‖ηt‖Q. Thus, using (5.3.11), the continuity bound of the operator
B (cf. (5.3.2)), the Cauchy–Schwarz, Hölder and Young’s inequalities (cf. (5.1.1)),
and neglecting the term ‖ηu‖p

M in (5.4.21) to obtain a simplified error estimate,
we obtain

1

2
∂t ‖ηu‖2

0,Ω + α ‖ηu‖2
0,Ω +

C2
d ν

2
‖ηu‖2

M +
ν

2
‖ηt‖2

Q

≤ ‖∂t δu‖0,Ω‖ηu‖0,Ω + α ‖δu‖0,Ω‖ηu‖0,Ω

+ F cp

(
‖δu‖M + 2 ‖u‖M

)p−2 ‖δu‖M ‖ηu‖M + ν ‖δt‖Q‖ηt‖Q + ‖δσ‖X‖ηu‖

≤ C1

(
‖∂t δu‖2

M + ‖δu‖2 (p−1)
M +

(
1 + ‖u‖2 (p−2)

M

)
‖δu‖2

M + ‖δt‖2
Q + ‖δσ‖2

X

)
+

1

2

(
α ‖ηu‖2

0,Ω +
C2

d ν

2
‖ηu‖2

M +
ν

2
‖ηt‖2

Q

)
,
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where C1 is a positive constant depending on |Ω|, ν, α, F, and Cd, which yields

∂t ‖ηu‖2
0,Ω + α ‖ηu‖2

0,Ω +
C2

d ν

2
‖ηu‖2

M +
ν

2
‖ηt‖2

Q

≤ 2C1

(
‖∂t δu‖2

M + ‖δu‖2 (p−1)
M +

(
1 + ‖u‖2 (p−2)

M

)
‖δu‖2

M + ‖δt‖2
Q + ‖δσ‖2

X

)
.

(5.4.22)
Integrating (5.4.22) from 0 to t ∈ (0, T ], recalling that ‖u‖L∞(0,T ;M) is bounded by
data (cf. (5.3.25)), we find that

‖ηu(t)‖2
0,Ω +

∫ t

0

(
‖ηu‖2

0,Ω + ‖ηu‖2
M + ‖ηt‖2

Q

)
≤ C2

{
‖ηu(0)‖2

0,Ω

+

∫ t

0

(
‖∂t δu‖2

M + ‖δu‖2 (p−1)
M + ‖δu‖2

M + ‖δt‖2
Q + ‖δσ‖2

X

)}
,

(5.4.23)

with C2 > 0 depending only on |Ω|, ν, α, F, Cd, and data.
Next, in order to bound the last term in (5.4.23), we subtract the continuous

and discrete initial condition problems (5.3.20) and (5.4.3), to obtain the error
system:

[A(u0 − uh,0),vh] + [B(vh),σ0 − σh,0] = 0 ∀vh ∈Mh ×Qh ,

− [B(u0 − uh,0), τh] = 0 ∀ τh ∈ X0,h .

Then, proceeding as in (5.4.22), recalling from Theorems 5.3.8 and 5.4.3 that
(u(0), t(0)) = (u0, t0) and (uh(0), th(0)) = (uh,0, th,0), respectively, we get

‖ηu(0)‖2
0,Ω + ‖ηu(0)‖2 ≤ Ĉ0

(
‖δu0‖

2 (p−1)
M + ‖δu0

‖2 + ‖δσ0‖2
X

)
, (5.4.24)

where, similarly to (5.4.16), we denote δu0
= (δu0 , δt0) = (u0 − v̂h(0), t0 − r̂h(0))

and δσ0 = σ0 − τ̂h(0), with arbitrary (v̂h(0), r̂h(0)) ∈ Vh and τ̂h(0) ∈ X0,h, and
Ĉ0 is a positive constant depending only on |Ω|, ν, α, F, and Cd. Thus, combining
(5.4.23) and (5.4.24), and using the error decomposition (5.4.15), there holds

‖eu(t)‖2
0,Ω +

∫ t

0

(
‖eu‖2

M + ‖et‖2
Q

)
ds ≤ C Ψ(u,σ) , (5.4.25)

where

Ψ(u,σ) := ‖δu(t)‖2 +

∫ t

0

(
‖∂t δu‖2 + ‖δu‖2 (p−1) + ‖δu‖2 + ‖δσ‖2

X

)
ds

+ ‖δu0
‖2 (p−1) + ‖δu0

‖2 + ‖δσ0‖2
X .
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Then, using the fact that v̂h : [0, T ] → Vh and τh : [0, T ] → X0,h are arbitrary,
taking infimum in (5.4.25) over the corresponding discrete subspaces Vh and X0,h,
and applying the approximation properties (5.4.14), we obtain (5.4.19).

On the other hand, to get the estimate (5.4.20), we observe that from the
discrete inf-sup condition of B (cf. (5.4.6)), the first equation of (5.4.18), and the
continuity bounds of E ,A,B (cf. (5.3.4) (5.3.9), (5.3.2)), there holds

β̃ ‖ησ‖X ≤ sup
vh∈Mh×Qh

vh 6=0

[B(vh),ησ]

‖vh‖

= − sup
vh∈Mh×Qh

vh 6=0

[∂t E(eu),vh] + [A(u)−A(uh),vh] + [B(vh), δσ]

‖vh‖

≤ C̃3

(
‖∂t eu‖0,Ω + ‖eu‖M +

(
‖u‖M + ‖uh‖M

)p−2 ‖eu‖M + ‖et‖Q + ‖δσ‖X
)
,

with C̃3 > 0 depending only on |Ω|, ν, α, and F. Then, taking square in the above
inequality, integrating from 0 to t ∈ (0, T ], recalling that both ‖u‖L∞(0,T ;M) and
‖uh‖L∞(0,T ;M) are bounded by data (cf. (5.3.25), (5.4.11)), and employing (5.4.25),
we deduce that∫ t

0

‖ησ‖2
X ds ≤ C3

{
Ψ(u,σ) +

∫ t

0

‖∂t ηu‖2
0,Ω ds

}
, (5.4.26)

with C3 > 0 depending on |Ω|, ν, α, F, β̃, and data. Next, in order to bound the
last term in (5.4.26), we choose vh = ∂t ηu = (∂t ηu, ∂t ηt) in the first equation of
(5.4.18), to find that

1

2
∂t

(
α ‖ηu‖2

0,Ω + ν ‖ηt‖2
Q

)
+ ‖∂t ηu‖2

0,Ω

= −(∂t δu, ∂t ηu)Ω − α (δu, ∂t ηu)Ω − F (|u|p−2u− |uh|p−2uh, ∂t ηu)Ω

+(∂t ηu,div(δσ))Ω − ν (δt, ∂t ηt)Ω + (∂t ηt, δσ)Ω .

Notice that [B(∂t ηu),ησ] = 0 since ηu(t) ∈ Vh (cf. (5.4.17)). Then, using the
identities

(δt, ∂t ηt)Ω = ∂t (δt,ηt)Ω−(∂t δt,ηt)Ω and (∂t ηt, δσ)Ω = ∂t (ηt, δσ)Ω−(ηt, ∂t δσ)Ω ,

in combination with the Cauchy–Schwarz, Hölder and Young’s inequalities, the
continuity bound ofA (cf. (5.3.9)), and the inverse inequality ‖∂t ηu‖M ≤ c h−d(p−2)/(2p) ‖∂t ηu‖L2(Ω)
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(cf. (5.4.12)), with ηu(t) ∈Mh, we obtain
1

2
∂t

(
α ‖ηu‖2

0,Ω + ν ‖ηt‖2
Q

)
+ ‖∂t ηu‖2

0,Ω

≤ C4 h
−d(p−2)/p C(u,uh)

(
‖∂t δu‖2

M + ‖δu‖2
M + ‖eu‖2

M + ‖δσ‖2
X

)
+

1

2
‖∂t ηu‖2

0,Ω + ∂t

(
(ηt, δσ)Ω − ν (δt,ηt)Ω

)
+ ν (∂t δt,ηt)Ω − (ηt, ∂t δσ)Ω ,

with
C(u,uh) := 1 + ‖u‖2(p−2)

M + ‖uh‖2(p−2)
M

and C4 > 0 depending on |Ω|, ν, α, F, β̃, and data. Thus, integrating from 0 to
t ∈ (0, T ], we find that

1

2

(
α ‖ηu(t)‖2

0,Ω + ν ‖ηt(t)‖2
Q +

∫ t

0

‖∂t ηu‖2
0,Ω ds

)
≤ C4 h

−d(p−2)/p

∫ t

0

C(u,uh)
(
‖∂t δu‖2

M + ‖δu‖2
M + ‖eu‖2

M + ‖δσ‖2
X

)
ds

+
(

(ηt(t), δσ(t))Ω − ν (δt(t),ηt(t))Ω

)
+

∫ t

0

(
ν (∂t δt,ηt)Ω − (ηt, ∂t δσ)Ω

)
ds

+
α

2
‖ηu(0)‖2

0,Ω +
ν

2
‖ηt(0)‖2

Q −
(

(ηt(0), δσ(0))Ω − ν (δt(0),ηt(0))Ω

)
.

Then, using Cauchy–Schwarz and Young’s inequalities, recalling that ‖u‖L∞(0,T ;M)

and ‖uh‖L∞(0,T ;M) are bounded by data (cf. (5.3.25) and (5.4.11)), employing
estimates (5.4.23), (5.4.24) and (5.4.25), and some algebraic manipulations, we
deduce that

‖ηu(t)‖2
0,Ω + ‖ηt(t)‖2

Q +

∫ t

0

‖∂t ηu‖2
0,Ω ≤ C5

{
h−d(p−2)/p Ψ(u,σ)

+‖δt(t)‖2
Q + ‖δσ(t)‖2

X +

∫ t

0

(
‖∂t δu‖2 + ‖∂t δσ‖2

0,Ω

)
ds

+

∫ t

0

(
‖δu‖2 (p−1)

M + ‖δu‖2 + ‖δσ‖2
X

)
ds + ‖δu0‖

2 (p−1)
M + ‖δu0

‖2 + ‖δσ0‖2
X

}
,

(5.4.27)
with C5 > 0 depending on |Ω|, ν, α, F, β̃, and data. Thus, combining (5.4.26) and
(5.4.27), using the error decomposition (5.4.15) and considering sufficiently small
values of h, yields∫ t

0

‖eσ‖2
X ds ≤ C6 h

−d(p−2)/p

{
Ψ(u,σ) + ‖δσ(t)‖2

X +

∫ t

0

‖∂t δσ‖2
X ds

}
. (5.4.28)
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Finally, using again the fact that v̂h : [0, T ] → Vh and τ̂h : [0, T ] → X0,h are
arbitrary, taking infimum in (5.4.28) over the corresponding discrete subspaces Vh

and X0,h, and applying the approximation properties (5.4.14), we derive (5.4.20)
and conclude the proof.

Remark 5.4.1. The rates of convergences obtained in (5.4.19)–(5.4.20) improve
the ones obtained in [43, Theorem 4.4] for the pseudostress-velocity formulation.
More precisely, an additional order of convergence hl (p−2)/2(p−1) is gained, which
illustrate one of the advantage of our three-field mixed formulation (5.4.2). We also
note that in the steady state case of (5.2.4) the error estimate (5.4.20) does not
include the term h−d(p−2)/(2p) because the global inverse inequality is not necessary
to bound ‖ησ‖X (see [38, Section 5] for details of the case p = 3).

5.5 Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of
(5.2.10) (cf. (5.4.2)). To that end, for the time discretization we employ the
backward Euler method. Let ∆t be the time step, T = N∆t, and let tn = n∆t,
n = 0, ..., N . More precisely, we let dtun = (∆t)−1(un − un−1) be the first order
(backward) discrete time derivative, where un := u(tn). Then the fully discrete
method reads: given fn ∈ L2(Ω) and (u0

h,σ
0
h) = (uh,0,σh,0) satisfying (5.4.3) find

(unh,σ
n
h) = ((unh, t

n
h),σnh) ∈

(
Mh ×Qh

)
× X0,h, n = 1, ..., N , such that

dt [E(unh),vh] + [A(unh),vh] + [B(vh),σ
n
h ] = [F n,vh] ∀vh ∈Mh ×Qh ,

− [B(unh), τh] = 0 ∀ τh ∈ X0,h ,
(5.5.1)

where [F n,vh] := (fn,vh)Ω.
In what follows, given a separable Banach space V endowed with the norm

‖ · ‖V, we make use of the following discrete in time norms

‖u‖p
`p(0,T,V) := ∆t

N∑
n=1

‖un‖p
V and ‖u‖`∞(0,T,V) := max

0≤n≤N
‖un‖V . (5.5.2)

Next, we state the main results for method (5.5.1).

Theorem 5.5.1. Let p ∈ [3, 4]. For each (u0
h,σ

0
h) = ((uh,0, th,0),σh,0) satisfying

(5.4.3) and fn ∈ L2(Ω), n = 1, ..., N , there exists a unique solution (unh,σ
n
h) =

((unh, t
n
h),σnh) ∈

(
Mh × Qh

)
× X0,h to (5.5.1). Moreover, under a suitable extra

regularity assumption on the data, there exist constants C̃BF,1, C̃BF,2 > 0 depending
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only on |Ω|, ν, α, F, and β̃, such that

‖uh‖`∞(0,T ;L2(Ω)) + ∆t ‖dtuh‖`2(0,T ;L2(Ω)) + ‖uh‖`2(0,T ;M) + ‖th‖`2(0,T ;Q)

+‖σh‖`2(0,T ;X) ≤ C̃BF,1

{
‖f‖p−1

`2(p−1)(0,T ;L2(Ω))
+ ‖f‖`2(0,T ;L2(Ω)) + ‖u0‖(p−1)2

1,Ω

+‖u0‖p−1
1,Ω + ‖∆u0‖p−1

0,Ω + ‖∆u0‖0,Ω + ‖u0‖0,Ω

}
(5.5.3)

and

‖uh‖`∞(0,T ;M) ≤ C̃BF,2

{
‖f‖2/p

`2(0,T ;L2(Ω)) + ‖u0‖2(p−1)/p

H1(Ω) + ‖∆u0‖2/p

L2(Ω) + ‖u0‖2/p

L2(Ω)

}
.

(5.5.4)

Proof. First, we note that at each time step the well–posedness of the fully discrete
problem (5.5.1), with n = 1, ..., N , follows from similar arguments to the proof of
Lemma 5.3.6 (see also [38, Section 3.3] for the case p = 3).

On the other hand, the derivation of (5.5.3) and (5.5.4) can be obtained sim-
ilarly as in the proof of Theorem 5.3.9. In fact, we choose (vh, τh) = (unh,σ

n
h) in

(5.5.1), use the identity

(dt u
n
h,u

n
h)Ω =

1

2
dt ‖unh‖2

L2(Ω) +
1

2
∆t ‖dtunh‖2

L2(Ω) , (5.5.5)

the definition of the operator A (cf. (5.2.12)), and the Cauchy–Schwarz and
Young’s inequalities (cf. (5.1.1)), to obtain

1

2
dt‖unh‖2

0,Ω +
1

2
∆t ‖dtunh‖2

0,Ω + α ‖unh‖2
0,Ω + F ‖unh‖

p
M + ν ‖tnh‖2

Q

≤ δ

2
‖fn‖2

0,Ω +
1

2 δ
‖unh‖2

0,Ω .

(5.5.6)

In turn, noting from the second row of (5.5.1) that unh = (unh, t
n
h) ∈ Vh (cf. (5.4.5)),

with n = 1, . . . , N , using the estimate (5.4.7), and choosing δ =
1

2α
, we obtain

dt ‖unh‖2
0,Ω + ∆t ‖dtunh‖2

0,Ω + C2
d ν ‖unh‖2

M + ν ‖tnh‖2
Q ≤

1

4α
‖fn‖2

0,Ω . (5.5.7)

Notice that, in order to simplify the stability bound, we have neglected the term
‖unh‖

p
M in the left–hand side of (5.5.6). Thus summing up over the time index

n = 1, ...,m, with m = 1, . . . , N , in (5.5.7) and multiplying by ∆t, we get

‖umh ‖2
0,Ω + (∆t)2

m∑
n=1

‖dtunh‖2
0,Ω + ∆t

m∑
n=1

(
‖unh‖2

M + ‖tnh‖2
Q

)
≤ C1

{
∆t

m∑
n=1

‖fn‖2
0,Ω + ‖u0

h‖2
0,Ω

}
,

(5.5.8)
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with C1 depending only on ν, α, and Cd.
On the other hand, from the discrete inf-sup condition of B (cf. (5.4.6)) and

the first equation of (5.5.1), we deduce that

‖σnh‖X ≤ C2

{
‖fn‖0,Ω + ‖unh‖0,Ω + ‖unh‖

p−1
M + ‖tnh‖Q + ‖dtunh‖0,Ω

}
, (5.5.9)

with C2 > 0 depending on |Ω|, ν, α, F, and β̃. In turn, using Young’s inequality
(cf. (5.1.1)), we readily obtain

‖un−1
h ‖2

0,Ω ‖unh‖
2 (p−2)
0,Ω ≤ 1

p− 1
‖un−1

h ‖2 (p−1)
0,Ω +

p− 2

p− 1
‖unh‖

2 (p−1)
0,Ω ,

which, together with (5.5.7), the fact that Lp(Ω) is continuously embedded into
L2(Ω), with p ∈ [3, 4], the Young inequality (cf. (5.1.1)), and simple algebraic
computations, imply

dt ‖unh‖
2 (p−1)
0,Ω + ‖unh‖

2 (p−1)
M ≤ (p− 1)‖unh‖

2 (p−2)
0,Ω dt ‖unh‖2

0,Ω + ‖unh‖
2 (p−2)
M ‖unh‖2

M

≤ C̃3 ‖fn‖2
0,Ω ‖unh‖

2 (p−2)
M ≤ Ĉ3 ‖fn‖2 (p−1)

0,Ω +
1

2
‖unh‖

2 (p−1)
M ,

which, similarly to (5.5.8), yields

‖umh ‖
2 (p−1)
0,Ω + ∆t

m∑
n=1

‖unh‖
2 (p−1)
M ≤ C3

{
∆t

m∑
n=1

‖fn‖2 (p−1)
0,Ω + ‖u0

h‖
2 (p−1)
0,Ω

}
,

(5.5.10)
with C3 > 0 depending on |Ω|, ν, and α. Then, taking square in (5.5.9), using
(5.5.8) and (5.5.10), we deduce the analogous estimate of (5.3.31), that is

∆t
m∑
n=1

‖σnh‖2
X ≤ C4

{
∆t

m∑
n=1

(
‖fn‖2(p−1)

0,Ω + ‖fn‖2
0,Ω

)
+ ‖u0

h‖
2 (p−1)
0,Ω + ‖u0

h‖2
0,Ω + ∆t

m∑
n=1

‖dtunh‖2
0,Ω

}
, with m = 1, . . . , N ,

(5.5.11)

with C4 > 0 depending on |Ω|, ν, α, F, and β̃. Next, in order to bound the last term
in (5.5.11), we choose (vh, τh) = ((dt u

n
h, dt t

n
h),σnh) in (5.5.1), apply some algebraic

manipulation, and employ the Cauchy–Schwarz and Young’s inequalities, to obtain

‖dtunh‖2
0,Ω +

1

2
dt

(
α ‖unh‖2

0,Ω + ν ‖tnh‖2
0,Ω

)
+ F (|unh|p−2unh, dtu

n
h)Ω

+
1

2
∆t
(
α ‖dtunh‖2

0,Ω + ν ‖dttnh‖2
0,Ω

)
≤ 1

2
‖fn‖2

0,Ω +
1

2
‖dtunh‖2

0,Ω .

(5.5.12)
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In turn, employing Hölder and Young’s inequalities, we have∣∣(|unh|p−2unh,u
n−1
h )Ω

∣∣ ≤ p− 1

p
‖unh‖

p
M +

1

p
‖un−1

h ‖p
M ,

which implies

(|unh|p−2unh, dtu
n
h)Ω ≥

(∆t)−1

p

(
‖unh‖

p
M − ‖u

n−1
h ‖p

M

)
=

1

p
dt ‖unh‖

p
M . (5.5.13)

Thus, combining (5.5.12) with (5.5.13), summing up over the time index n =
1, ...,m, with m = 1, . . . , N and multiplying by ∆t, we get

2F

p
‖umh ‖

p
M + ∆t

m∑
n=1

‖dtunh‖2
0,Ω

≤ C5

{
∆t

m∑
n=1

‖fn‖2
0,Ω + ‖u0

h‖
p
M + ‖u0

h‖2
0,Ω + ‖t0

h‖2
Q

}
,

(5.5.14)

with C5 depending on ν, α, and F. Then, combining (5.5.11) and (5.5.14) yields

∆t
m∑
n=1

‖σnh‖2
X ≤ C6

{
∆t

m∑
n=1

(
‖fn‖2

0,Ω + ‖fn‖2(p−1)
0,Ω

)
+ ‖u0

h‖
2(p−1)
0,Ω + ‖u0

h‖
p
M + ‖u0

h‖2
0,Ω + ‖t0

h‖2
Q

}
, with m = 1, . . . , N

with C6 > 0 depending on |Ω|, ν, α, F, β̃, and p, which combined with (5.5.8),
the fact that (u0

h, t
0
h) = (uh,0, th,0) and the estimate (5.4.4), implies (5.5.3). In

addition, (5.5.14) and (5.4.4) yields (5.5.4), which concludes the proof.

Now, we proceed by establishing the corresponding rates of convergence for
the fully discrete scheme (5.5.1). To that end, as in Section 5.4.2 we assume that
{Th}h>0 is a family of quasi-uniform triangulations and write enu = (enu, e

n
t ) =

(un − unh, t
n − tnh), and enσ = σn − σnh . Next, given arbitrary v̂nh := (v̂nh, r̂

n
h) ∈ Vh

(cf. (5.4.5)) and τ̂ nh ∈ X0,h, with n = 1, . . . , N , we decompose the errors into

enu = δnu + ηnu = (δnu, δ
n
t ) + (ηnu,η

n
t ) , enσ = δnσ + ηnσ , (5.5.15)

with
δnu = un − v̂nh , δnt = tn − r̂nh , δnσ = σn − τ̂ nh ,

ηnu = v̂nh − unh , ηnt = r̂nh − tnh , ηnσ = τ̂ nh − σnh .
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Thus, subtracting the fully discrete problem (5.5.1) from the continuous counter-
parts (5.2.10) at each time step n = 1, ..., N , we obtain the following error system:

dt [E(enu),vh] + [A(un)−A(unh),vh] + [B(vh), e
n
σ] = (rn(u),vh)Ω,

[B(enu), τh] = 0.
(5.5.16)

for all vh ∈ Mh × Qh and τh ∈ X0,h, where rn(u) denotes the difference between
the time derivative and its discrete analog, that is

rn(u) = dtu
n − ∂tu(tn) .

In addition, we recall from [23, Lemma 4] that for sufficiently smooth u, there
holds

∆t
N∑
n=1

‖rn(u)‖2
0,Ω ≤ C(∂ttu)(∆t)2 , with C(∂ttu) := C‖∂ttu‖2

L2(0,T ;L2(Ω)) .

(5.5.17)
Then, using discrete-in-time arguments as in the proof of Theorem 5.5.1 and the
estimate (5.5.17), the derivation of the theoretical rate of convergence of the fully
discrete scheme (5.5.1) follows similarly to the proof of Theorem 5.4.4,.

We stress for later use that dt vnh ∈ Vh, when vnh ∈ Vh (cf. (5.4.5)), for each
n = 1, . . . , N . In fact, given vnh ∈ Vh, with n = 1, . . . , N , assuming v0

h ∈ Vh and
using the linearity of the operator B, we obtain

[B(dt v
n
h), τh] =

1

∆ t

(
[B(vnh), τh]− [B(vn−1

h ), τh]
)

= 0 ∀ τh ∈ X0,h . (5.5.18)

We now establish the aforementioned result.

Theorem 5.5.2. Let the assumptions of Theorem 5.4.4 hold, with p ∈ [3, 4]. Then,
for the solution of the fully discrete problem (5.5.1) there exist Ĉ1(u,σ), Ĉ2(u,σ) >

0 depending only on C(u), C(∂t u), C(∂ttu), C(σ), C(∂t σ), |Ω|, ν, α, F, β̃, and
data, such that

‖eu‖`∞(0,T ;L2(Ω)) + ∆t ‖dteu‖`2(0,T ;L2(Ω)) + ‖eu‖`2(0,T ;M) + ‖et‖`2(0,T ;Q)

≤ Ĉ1(u,σ)
(
hl + hl (p−1) + ∆t

) (5.5.19)

and
‖eσ‖`2(0,T ;X) ≤ Ĉ2(u,σ)h−d(p−2)/(2p)

(
hl + hl (p−1) + ∆t

)
. (5.5.20)
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Proof. Similarly as in the proof of Theorem 5.4.4, adding and subtracting suitable
terms in (5.5.16) with vh = ηnu = (ηnu,η

n
t ) ∈ Vh and τh = ηnσ ∈ X0,h, with

n = 1, . . . , N , and employing the strict monotonicity of A (cf. (5.3.14)), we deduce
that

(dt η
n
u,η

n
u)Ω + α ‖ηnu‖2

0,Ω + FCp ‖ηnu‖
p
M + ν ‖ηnt ‖2

Q

≤ −(dt δ
n
u,η

n
u)Ω − α (δnu,η

n
u)Ω − F (|un|p−2un − |v̂nh|p−2v̂nh,η

n
u)Ω

− ν (δnt ,η
n
t )Ω − [B(ηnu), δnσ] + (rn(u),ηnu)Ω .

Notice that [B(ηnu),ηnσ] = 0 since ηnu ∈ Vh, n = 1, . . . , N . In addition, using the
identity (5.5.5), the fact that (ηnu,η

n
t ) ∈ Vh (cf. (5.4.7)), the continuity bound of

B (cf. (5.3.2)), and similar arguments employed to derive (5.4.22), we obtain

dt ‖ηnu‖2
0,Ω + ∆t ‖dtηnu‖2

0,Ω + ‖ηnu‖2
0,Ω + ‖ηnu‖2

M + ‖ηnt ‖2
Q ≤ C1

{
‖dt δnu‖2

M

+‖δnu‖
2(p−1)
M +

(
1 + ‖un‖2(p−2)

M

)
‖δnu‖2

M + ‖δnt ‖2
Q + ‖δnσ‖2

X + ‖rn(u)‖2
0,Ω

}
,

(5.5.21)
with C1 > 0 depending on |Ω|, ν, α, F, and Cd. Thus summing up over the time
index n = 1, ...,m, with m = 1, . . . , N , in (5.5.21) and multiplying by ∆t, we get

‖ηmu ‖2
0,Ω + (∆t)2

m∑
n=1

‖dtηnu‖2
0,Ω + ∆t

m∑
n=1

(
‖ηnu‖2

0,Ω + ‖ηnu‖2
M + ‖ηnt ‖2

Q

)
≤ C2 ∆t

m∑
n=1

{
‖dt δnu‖2

M + ‖δnu‖
2(p−1)
M +

(
1 + ‖un‖2(p−2)

M

)
‖δnu‖2

M

+ ‖δnt ‖2
Q + ‖δnσ‖2

X + ‖rn(u)‖2
0,Ω

}
+ ‖η0

u‖2
0,Ω ,

(5.5.22)

with C2 > 0 depending on |Ω|, ν, α, F, and Cd. Thus, using (5.4.24) and the error
decomposition (5.5.15) to bound ‖η0

u‖2
L2(Ω), noting that ‖u‖`∞(0,T ;M) is bounded

by ‖u‖L∞(0,T ;M), which is bounded by data (cf. (5.3.25)), we find that

‖emu ‖2
0,Ω +(∆t)2

m∑
n=1

‖dtenu‖2
0,Ω +∆t

m∑
n=1

(
‖enu‖2

M +‖ent ‖2
Q

)
≤ C Ψ̂(u,σ) , (5.5.23)

with m = 1, . . . , N , where

Ψ̂(u,σ)

:= ‖δmu ‖2 + (∆t)2

m∑
n=1

‖dtδnu‖2
0,Ω + ∆t

m∑
n=1

{
‖dt δnu‖2 + ‖δnu‖2(p−1) + ‖δnu‖2

}

+ ∆t
m∑
n=1

{
‖δnσ‖2

X + ‖rn(u)‖2
0,Ω

}
+ ‖δ0

u‖2 (p−1) + ‖δ0
u‖2 + ‖δ0

σ‖2
X .
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Then, proceeding as in (5.4.25), using the fact that v̂nh ∈ Vh and τ nh ∈ X0,h, with
n = 0, 1, . . . , N , are arbitrary, taking infimum in (5.5.23) over the corresponding
discrete subspaces Vh and X0,h, using (5.5.17) and the approximation properties
(5.4.14), we obtain (5.5.19).

On the other hand, to get the estimate (5.5.20), we observe that from the
discrete inf-sup condition of B (cf. (5.4.6)), the first equation of (5.5.16), and the
continuity bound of E ,A,B (cf. (5.3.4), (5.3.9), (5.3.2)), there holds

β̃ ‖ηnσ‖X ≤ sup
vh∈Mh×Qh

vh 6=0

[B(vh),η
n
σ]

‖vh‖

= sup
vh∈Mh×Qh

vh 6=0

− [dt E(enu),vh]− [A(un)−A(unh),vh]− [B(vh), δ
n
σ] + (rn(u),vh)Ω

‖vh‖

≤ C3

(
‖dt enu‖0,Ω +

(
‖un‖M + ‖unh‖M

)p−2‖enu‖M + ‖enu‖+ ‖δnσ‖X + ‖rn(u)‖0,Ω

)
.

Then, taking square in the above inequality, summing up over the time index
n = 1, ...,m, with m = 1, . . . , N , multiplying by ∆t, noting that ‖u‖`∞(0,T ;M) is
bounded by ‖u‖L∞(0,T ;M), which in turn is bounded by data, as well as ‖uh‖`∞(0,T ;M)

(cf. (5.3.25) and (5.5.3)), and employing (5.5.23), we deduce that

∆t
m∑
n=1

‖ηnσ‖2
X ≤ C4

{
Ψ̂(u,σ) + ∆t

m∑
n=1

‖dt ηnu‖2
0,Ω

}
, (5.5.24)

with C4 > 0 depending on |Ω|, ν, α, F, β̃, and data. Next, in order to bound the
last term in the right-hand side of (5.5.24), we choose vh = (dt η

n
u, dt η

n
t ) in the

first equation of (5.5.16) and use the identity (5.5.5), and the fact that ηnu ∈ Vh

(cf. (5.5.18)), which implies [B(dt η
n
u),ηnσ] = 0, to find that

1

2
dt

(
α ‖ηnu‖2

0,Ω + ν ‖ηt‖2
Q

)
+

1

2
∆t
(
α ‖dtηnu‖2

0,Ω + ν ‖dtηnt ‖2
Q

)
+ ‖dt ηnu‖2

0,Ω

= −(dt δ
n
u, dt η

n
u)Ω − α (δnu, dt η

n
u)Ω − F (|un|p−2un − |unh|p−2unh, dt η

n
u)Ω

+ (dt η
n
u,div(δnσ))Ω + (rn(u), dtη

n
u)Ω − ν (δnt , dt η

n
t )Ω + (dt η

n
t , δ

n
σ)Ω .

Then, using the identities

(δnt , dt η
n
t )Ω = dt

(
δnt ,η

n
t

)
Ω
− (dt δ

n
t ,η

n−1
t )Ω,

and (dt η
n
t , δ

n
σ)Ω = dt

(
ηnt , δ

n
σ

)
Ω
− (ηn−1

t , dt δ
n
σ)Ω ,
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with n = 1, . . . , N , in combination with Cauchy–Schwarz, Hölder and Young’s in-
equalities (cf. (5.1.1)), the continuity bound (5.3.11), and the fact that ‖dt ηnu‖M ≤
c h−d(p−2)/(2p) ‖dt ηnu‖0,Ω, with ηnu ∈Mh (cf. (5.4.12)), we obtain

1

2
dt

(
α ‖ηnu‖2

0,Ω + ν‖ηnt ‖2
Q

)
+

1

2
∆t
(
α ‖dtηnu‖2

0,Ω + ν‖dtηnt ‖2
Q

)
+ ‖dt ηnu‖2

0,Ω

≤ C5 h
−d(p−2)/p Ĉ(un,unh)

(
‖dt δnu‖2

0,Ω + ‖δnu‖2
M + ‖enu‖2

M + ‖δnσ‖2
X + ‖rn(u)‖2

0,Ω

)
+

1

2
‖dt ηnu‖2

0,Ω + dt

(
(ηnt , δ

n
σ)Ω − ν (δnt ,η

n
t )Ω

)
+ ν (dt δ

n
t ,η

n−1
t )Ω − (ηn−1

t , dt δ
n
σ)Ω ,

where
Ĉ(un,unh) := 1 + ‖un‖2(p−2)

M + ‖unh‖
2(p−2)
M

and C5 is a positive constant depending on |Ω|, α and F. Thus, summing up over
the time index n = 1, ...,m, with m = 1, . . . , N , and multiplying by ∆t, using
Cauchy–Schwarz and Young’s inequalities, and minor algebraic manipulations, we
get

‖ηmu ‖2
0,Ω + ‖ηmt ‖2

Q + (∆t)2

m∑
n=1

(
‖dtηnu‖2

0,Ω + ‖dtηnt ‖2
Q

)
+ ∆t

m∑
n=1

‖dt ηnu‖2
0,Ω

≤ C6 h
−d(p−2)/p∆t

m∑
n=1

Ĉ(un,unh)
(
‖dt δnu‖2

M + ‖δnu‖2
M + ‖enu‖2

M + ‖δnσ‖2
X

+‖rn(u)‖2
0,Ω

)
+ C7

{
‖δmt ‖2

0,Ω + ‖δmσ ‖2
X + ∆t

m∑
n=1

(
‖dt δnt ‖2

0,Ω + ‖dtδnσ‖2
X

)
+ ‖δ0

t‖2
0,Ω + ‖δ0

σ‖2
X + ∆t

m−1∑
n=1

‖ηnt ‖2
Q + ‖η0

u‖2
0,Ω +

(
1 + ∆t

)
‖η0

t‖2
Q

}
,

(5.5.25)
with C6, C7 > 0 depending on |Ω|, ν, α and F. Thus, using the error decomposition
(5.5.15), combining (5.5.25) and (5.5.22), employing (5.4.24) to bound the terms
‖η0

u‖0,Ω, ‖η0
t‖Q, noting again that ‖u‖`∞(0,T ;M) is bounded by ‖u‖L∞(0,T ;M), which

together with ‖uh‖`∞(0,T ;M) are bounded by data (cf. (5.3.25) and (5.5.3)), and
considering sufficiently small values of h, there holds

∆t
m∑
n=1

‖enσ‖2
X ≤ C h−d(p−2)/p

{
Ψ̂(u,σ) + ‖δmσ ‖2

X + ∆t
m∑
n=1

‖dt δnσ‖2
X

}
, (5.5.26)

with m = 1, . . . , N . Finally, noting again that v̂nh ∈ Vh and τ̂ nh ∈ X0,h, with
n = 0, 1, . . . , N , are arbitrary, taking infimum in (5.5.26) over the corresponding
discrete subspaces Vh and X0,h, using (5.5.17) and the approximation properties
(5.4.14), we derive (5.5.20) and conclude the proof.
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5.6 Numerical results
In this section we present four numerical results that illustrate the performance

of the fully discrete method (5.5.1) on a set of quasi-uniform triangulations of the
respective domains, considering the finite element subspaces defined by (5.4.1)
(cf. Section 5.4.1). In what follows, we refer to the corresponding sets of finite
element subspaces generated by k = 0 and k = 1, as simply P0 − P0 − RT0

and P1 − P1 − RT1, respectively. Our implementation is based on a FreeFem++
code [85], in conjunction with the direct linear solver UMFPACK [60]. We handle
the nonlinearly using a Newton–Raphson algorithm with a fixed tolerance tol =
1E−06. As usual, the iterative method is finished when the relative error between
two consecutive iterations of the complete coefficient vector, namely coeffm+1 and
coeffm, is sufficiently small, that is,

‖coeffm+1 − coeffm‖
‖coeffm+1‖

≤ tol ,

where ‖ · ‖ stands for the usual Euclidean norm in RN , with N denoting the total
number of degrees of freedom defined by the finite element subspaces Mh,Qh and
X0,h (cf. (5.4.1)).

We stress that according to the notation used for the fully discrete norm (5.5.2),
and besides the unknowns u, t, and σ, we are also able to compute the pressure
error:

‖ep‖`2(0,T ;L2(Ω)) =

{
∆ t

N∑
n=1

‖pn − pnh‖2
0,Ω

}1/2

,

where, pnh stands for the post-processed pressure suggested by the identity (5.2.3),
that is

pnh = −1

d
tr (σnh) with n = 1, . . . , N . (5.6.1)

It follows that

‖ep‖`2(0,T ;L2(Ω)) =
1

d
‖tr (σ − σh)‖`2(0,T ;L2(Ω)) ≤

1√
d
‖σ − σh‖`2(0,T ;X) ,

which shows that the rate of convergence for p is at least the one for σ, which is
indeed confirmed below by the numerical results reported below.

The examples considered in this section are described next. In all of them,
and for the sake of simplicity, we choose ν = 1. In addition, the condition
(tr (σnh), 1)Ω = 0 is implemented using a scalar Lagrange multiplier (adding one
row and one column to the matrix system that solves (5.5.1) for unh, t

n
h, and σnh).

Examples 1 and 2 are used to corroborate the rate of convergence in two and
three dimensional domains, respectively. The total simulation time for these ex-
amples is T = 0.01 s and the time step is ∆ t = 10−3 s. The time step is sufficiently
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small, so that the time discretization error does not affect the convergence rates.
On the other hand, Examples 3 and 4 are used to analyze the behavior of the
method when different Darcy and Forchheimer coefficients are considered in dif-
ferent scenarios. For these cases, the total simulation time and the time step are
considered as T = 1 s and ∆ t = 10−2 s, respectively.

Example 1: 2D domain with different values of the parameter
p

In this test we corroborate the convergence for the space discretization using an
analytical solution and also study the performance of the numerical method with
respect to the total error and differents values of the power p in the inertial term
|u|p−2u (cf. (5.2.4)). The domain is the square Ω = (0, 1)2. First, we consider
p = 4, α = 1, F = 10, and the data f and the initial condition u0 are defined by
means of the exact solution given by the smooth functions

u = exp(t)

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
, p = exp(t) cos(πx) sin

(πy
2

)
.

Notice that the given exact solution u is non-homogeneous on the boundary so
that the right-hand side must be adjusted properly as described in Remark ??.

In Figure 5.6.1 we display the solution obtained with the mixed P1−P1−RT1

approximation with meshsize h = 0.0128 and 39, 146 triangle elements (actually
representing 979, 674N) at time T = 0.01. Note that we are able to compute not
only the original unknowns, but also the pressure field through the formula (5.6.1).
Tables 5.6.1 and 5.6.2 show the convergence history for a sequence of quasi-uniform
mesh refinements, including the average number of Newton iterations. The results
illustrate that the optimal and sub-optimal spatial rates of convergence O(hk+1)
and O(hk+1/2) for (u, t) and σ, respectively, provided by Theorem 5.5.2 (see also
Theorem 5.4.4) are attained for d = 2, p = 4, and k = 0, 1. Moreover, the
numerical results suggest optimal rate of convergenceO(hk+1) for all the unknowns.
The Newton’s method exhibits a behavior independent of the mesh size, converging
in average of 2.2 iterations in all cases. On the other hand, in Table 5.6.3 we show
the behavior of our method respect to the total error:

etotal =
(
‖eu‖2

`2(0,T ;M) + ‖et‖2
`2(0,T ;Q) + ‖eσ‖2

`2(0,T ;X)

)1/2

,

considering α = 1, F = 10, and different powers p ∈
{

3.0, 3.2, 3.4, 3.6, 3.8, 4.0
}

in the inertial term |u|p−2u (cf. (5.2.4)), polynomial degree k = 0, and different
meshsizes h. Here we observe that the method provides optimal rate of convergence
independently of p.
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Example 2: Convergence against smooth exact solutions in a
3D domain

In our second example, we consider the cube domain Ω = (0, 1)3 and the exact
solution:

u = exp(t)

 sin(π x) cos(π y) cos(π z)
−2 cos(π x) sin(π y) cos(π z)

cos(π x) cos(π y) sin(π z)

 , p = exp(t) (x− 0.5)3 sin(y+ z) .

Similarly to the first example, we consider the parameters p = 4, α = 1, and
F = 10, whereas the right-hand side function f is computed from (5.2.1) using
the above solution. In addition, the model problem is complemented with the
appropriate Dirichlet boundary condition and initial data.

The numerical solutions at time T = 0.01 are shown in Figure 5.6.2, which
were built using the fully-mixed P0 − P0 − RT0 approximation with meshsize
h = 0.0786 and 34, 992 tetrahedral elements (actually representing 600, 696N).
The convergence history for a set of quasi-uniform mesh refinements using k =
0 is shown in Table 5.6.4. Again, the mixed finite element method converges
optimally with order O(h) for all the unknowns, which, in particular, is better
than the theoretical suboptimal rate of convergence O(h1/4) provided by (5.5.20)
in Theorem 5.5.2 (see also Theorem 5.4.4) for σ with d = 3, p = 4, and k = 0.

Example 3: Flow through porous media with channel network

In our third example, inspired by [15, Section 5.2.4], we focus on a flow through
a porous medium with a channel network. We consider the square domain Ω =
(−1, 1)2 with an internal channel network denoted as Ωc, which is described in
the first plot of Figure 5.6.3. First, we consider the Brinkman–Forchheimer model
(5.2.4) in the whole domain Ω, with inertial power p = 4 but with different values
of the parameters α and F for the interior and the exterior of the channel, that is,

α =

{
1 in Ωc

1000 in Ω \ Ωc
and F =

{
10 in Ωc

1 in Ω \ Ωc
.

The parameter choice corresponds to a high permeability (α = 1) in the channel
and increased inertial effect (F = 10), compared to low permeability (α = 1000)
in the porous medium and reduced inertial effect (F = 1). In addition, the body
force term is f = 0, the initial condition is zero, and the boundaries conditions are

u · n = 0.2, u · t = 0 on Γleft, σ n = 0 on Γ \ Γleft,

which corresponds to inflow on the left boundary and zero stress outflow on the
rest of the boundary.



174 5.6. Numerical results

In Figure 5.6.3 we display the computed magnitude of the velocity, velocity
gradient tensor, and pseudostress tensor at times T = 0.01 and T = 1, which
were built using the fully-mixed P0 − P0 − RT0 approximation on a mesh with
27, 287 triangle elements (actually representing 218, 561N). As expected, we ob-
serve faster flow through the channel network, with a significant velocity gradient
across the interface between the channel and the porous medium. The pseudostress
is more diffused, since it includes the pressure field. This example illustrates the
ability of the Brinkman–Forchheimer model to handle heterogeneous media using
spatially varying parameters, as well as the ability of our three-field mixed finite
element method to resolve sharp velocity gradients in the presence of strong jump
discontinuity of the parameters. On the other hand, in Figure 5.6.4 we display the
computed magnitude of the velocity by considering the setting α = 1000, F = 1 in
the porous medium, and the parameters p = 3, F ∈ {10, 100, 1000, 10000}, with
α = 10 and 100 (first a second rows in Figure 5.6.4, respectively) in the channel.
Analogously, in the third and fourth rows of Figure 5.6.4, we display the setting in
the channel p = 4, F ∈ {10, 100, 1000, 10000}, with α = 10 and 100, respectively.
We observe that in both cases with p = 3 or p = 4 the inertial term F |u|p−2u has
more effect due the faster flow.

Example 4: Flow through porous media with fracture net-
work

In our last example, inspired by [15, Section 5.2.5], we focus on flows through
porous media with fracture network. We consider the square domain Ω = (−1, 1)2

with an internal network of thin fractures denoted as Ωf that intersect at sharp
angles, which is described in the first plot of Figure 5.6.5. Similarly to Example
3, we consider the Brinkman–Forchheimer model (5.2.4) in the whole domain Ω,
with inertial power p = 4 but with different values of the parameters α and F for
the interior and the exterior of the fracture, that is,

α =

{
1 in Ωf

1000 in Ω \ Ωf
and F =

{
10 in Ωf

1 in Ω \ Ωf
. (5.6.2)

In turn, the body force term is f = 0, the initial condition is zero, and the bound-
aries conditions are

σ n =


(−0.5(y − 1), 0) on Γleft ,

(0, −0.5(x− 1)) on Γbottom ,

(0, 0) on Γright ∪ Γtop ,

(5.6.3)

which drives the flow in a diagonal direction from the left-bottom corner to the
right-top corner of the square Ω.
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In Figure 5.6.5 we display the computed magnitude of the velocity, velocity
gradient tensor, and pseudostress tensor at times T = 0.01 and T = 1, which
were built using the fully-mixed P1 − P1 − RT1 approximation on a mesh with
48, 891 triangle elements (actually representing 1, 222, 689N). We note that the
velocity in the fractures is higher than the velocity in the porous medium, due to
smaller fractures thickness and the parameter setting (5.6.2). Also, the velocity
is higher in branches of the network where the fluid enters from the left-bottom
corner and goes decreasing to the right-top corner of the cavity. In addition, we
observe a significant velocity gradient across the interface between the fracture and
the porous medium. The pseudostress is consistent with the boundary conditions
(5.6.3) and similarly to the channel network it is more diffused, since it includes
the pressure field.

‖eu‖`∞(0,T ;L2(Ω)) ‖eu‖`2(0,T ;M)

N h error rate error rate
304 0.3727 2.02E-01 – 2.51E-02 –
1248 0.1964 8.73E-02 1.3069 1.09E-02 1.2964
4896 0.0970 4.38E-02 0.9772 5.48E-03 0.9806
19456 0.0478 2.13E-02 1.0183 2.65E-03 1.0294
77648 0.0245 1.08E-02 1.0188 1.35E-03 1.0115
313680 0.0128 5.35E-03 1.0755 6.67E-04 1.0769

‖et‖`2(0,T ;Q) ‖eσ‖`2(0,T ;X) ‖ep‖`2(0,T ;L2(Ω))

error rate error rate error rate iter
9.23E-02 – 4.99E-01 – 4.31E-02 – 2.3
4.48E-02 1.1299 1.88E-01 1.5214 1.88E-02 1.2980 2.2
2.24E-02 0.9782 8.60E-02 1.1116 8.30E-03 1.1563 2.2
1.14E-02 0.9617 3.96E-02 1.0954 3.46E-03 1.2360 2.2
5.66E-03 1.0427 1.96E-02 1.0539 1.76E-03 1.0131 2.2
2.80E-03 1.0790 9.65E-03 1.0865 8.44E-04 1.1264 2.2

Table 5.6.1: Example 1, Number of degrees of freedom, mesh sizes, errors, rates
of convergences, and average number of Newton iterations for the P0 − P0 − RT0

approximation of the Brinkman-Forchheimer model with p = 4 and F = 10.
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‖eu‖`∞(0,T ;L2(Ω)) ‖eu‖`2(0,T ;M)

N h error rate error rate
932 0.3727 5.71E-02 – 5.53E-03 –
3864 0.1964 1.39E-02 2.2117 1.31E-03 2.2546
15228 0.0970 3.46E-03 1.9675 3.23E-04 1.9787
60656 0.0478 8.76E-04 1.9398 8.10E-05 1.9561
242362 0.0245 2.20E-04 2.0693 2.04E-05 2.0646
979674 0.0128 5.35E-05 2.1671 4.91E-06 2.1801

‖eσ‖`2(0,T ;X) ‖ep‖`2(0,T ;L2(Ω)) ‖et‖`2(0,T ;Q)

error rate error rate error rate iter
3.56E-02 – 6.52E-01 – 6.34E-02 – 2.7
8.44E-03 2.2489 1.83E-01 1.9865 1.14E-02 2.6740 2.3
2.07E-03 1.9902 4.98E-02 1.8416 1.85E-03 2.5816 2.2
5.24E-04 1.9431 1.31E-02 1.8874 3.99E-04 2.1684 2.2
1.29E-04 2.0955 3.38E-03 2.0269 6.53E-05 2.7076 2.2
3.07E-05 2.2019 8.10E-04 2.1911 1.23E-05 2.5544 2.2

Table 5.6.2: Example 1, Number of degrees of freedom, mesh sizes, errors, rates
of convergences, and average number of Newton iterations for the P1 − P1 − RT1

approximation of the Brinkman-Forchheimer model with p = 4 and F = 10.

Figure 5.6.1: Example 1: Computed magnitude of the velocity, velocity gradient
component, pseudostress tensor component, and pressure field.
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p = 3.0 p = 3.2
N h etotal rate iter etotal rate iter

304 0.3727 5.20E-01 – 2.1 5.17E-01 – 2.2
1248 0.1964 1.99E-01 1.4991 2.1 1.98E-01 1.5005 2.1
4896 0.0970 9.18E-02 1.0978 2.1 9.11E-02 1.0992 2.1
19456 0.0478 4.26E-02 1.0834 2.1 4.23E-02 1.0839 2.1
77648 0.0245 2.11E-02 1.0500 2.1 2.10E-02 1.0507 2.1
313680 0.0128 1.04E-02 1.0846 2.1 1.03E-02 1.0849 2.1

p = 3.4 p = 3.6
etotal rate iter etotal rate iter

5.14E-01 – 2.3 5.12E-01 – 2.3
1.97E-01 1.5017 2.2 1.96E-01 1.5027 2.2
9.05E-02 1.1004 2.2 8.99E-02 1.1015 2.2
4.20E-02 1.0844 2.2 4.17E-02 1.0849 2.2
2.08E-02 1.0514 2.2 2.07E-02 1.0519 2.2
1.02E-02 1.0852 2.2 1.02E-02 1.0854 2.2

p = 3.8 p = 4.0
etotal rate iter etotal rate iter

5.10E-01 – 2.3 5.08E-01 – 2.3
1.95E-01 1.5035 2.2 1.94E-01 1.5042 2.2
8.95E-02 1.1025 2.2 8.91E-02 1.1034 2.2
4.15E-02 1.0854 2.2 4.13E-02 1.0859 2.2
2.05E-02 1.0524 2.2 2.04E-02 1.0529 2.2
1.01E-02 1.0857 2.2 1.01E-02 1.0859 2.2

Table 5.6.3: Example 1, Number of degrees of freedom, mesh sizes, total errors,
rates of convergences, and average number of Newton iterations for the P0 −
P0 − RT0 approximation of the Brinkman-Forchheimer model, considering p ∈
{3.0, 3.2, 3.4, 3.6, 3.8, 4.0} and F = 10.
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‖eu‖`∞(0,T ;L2(Ω)) ‖eu‖`2(0,T ;M)

N h error rate error rate
888 0.7071 4.50E-01 – 5.73E-02 –
2916 0.4714 3.11E-01 1.2964 3.96E-02 0.9106
22680 0.2357 1.60E-01 0.9806 2.06E-02 0.9394
137940 0.1286 8.81E-02 1.0294 1.14E-02 0.9831
600696 0.0786 5.39E-02 1.0115 6.97E-03 0.9943

‖et‖`2(0,T ;Q) ‖eσ‖`2(0,T ;X) ‖ep‖`2(0,T ;L2(Ω))

error rate error rate error rate iter
2.93E-01 – 2.70E-00 – 1.98E-01 – 3.1
1.93E-01 1.0284 1.40E-00 1.6237 1.14E-01 1.3593 2.8
9.54E-02 1.0179 5.49E-01 1.3470 5.03E-02 1.1810 2.3
5.18E-02 1.0068 2.67E-01 1.1900 2.26E-02 1.3220 2.2
3.16E-02 1.0020 1.54E-01 1.1178 1.10E-02 1.4654 2.2

Table 5.6.4: Example 2, Number of degrees of freedom, mesh sizes, errors, rates of
convergences, and average number of Newton iterations for the mixed P0−P0−RT0

approximation of the Brinkman-Forchheimer model with p = 4 and F = 10.

Figure 5.6.2: Example 2: Computed magnitude of the velocity, velocity gradient
component, pseudostress tensor component, and pressure field.
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Figure 5.6.3: Example 3: Domain configuration, computed magnitude of the
velocity, velocity gradient tensor, and pseudostress tensor at time T = 0.01 (top
plots), and at time T = 1 (bottom plots).
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Figure 5.6.4: Example 3: Computed magnitude of the velocity with p = 3 and
channel setting F ∈ {10, 100, 1000, 10000} and α ∈ {10, 100} (first and second
rows, respectively), and p = 4 with channel setting F ∈ {10, 100, 1000, 10000} and
α ∈ {10, 100} (third and fourth rows, respectively).
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Figure 5.6.5: Example 4: Domain configuration, computed magnitude of the
velocity, velocity gradient tensor, and pseudostress tensor at time T = 0.01 (top
plots), and at time T = 1 (bottom plots).





Chapter 6

Conclusions and future work

6.1 Concluding remarks

The purpose of this thesis is to extend the analysis developed in the works
[30] and [43], more precisely, we develop mixed finite element methods for dif-
ferent models of partial differential equations, these are, the stationary Navier-
Stokes problem, the stationary Boussinesq model and the unsteady Brinkman–
Forchheimer equations, specifically:

In Chapter 2 we established the a posteriori error analysis for the momentum
conservative mixed finite element method associated to the stationary Navier-
Stokes problem, developed in [30]. Extending standard techniques commonly used
on Hilbert spaces to the case of Banach spaces, we derive a reliable and efficient
residual-based a posteriori error estimator for that scheme. In addition, several
numerical results were provided in order to illustrate the reliability and efficiency
of the estimator, together with the expected behavior of the associated adaptive
algorithm.

Next, in Chapter 3 we have derived and analyzed a new mixed finite element
method for the stationary Boussinesq equations based on the introduction of a
modified pseudostress tensor depending on the pressure, and the diffusive and
convective terms of the Navier–Stokes equations for the fluid and a vector un-
known involving the temperature, its gradient and the velocity. The introduction
of these further unknowns lead to a mixed formulation in a Banach space frame-
work for both fluid and convection-diffusion equations, where the aforementioned
pseudostress tensor and vector unknown, together with the velocity and temper-
ature, are the main unknowns of the system. We have shown that the method is
well posed and optimal convergent. Our approach improves the previous works
[50, 51, 52, 6] in the sense that, on the one hand, it allows conservation of momen-
tum and thermal energy when Raviart–Thomas elements of degree k are employed

183
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for approximating the pseudostress tensor and the vector unknown, and discontin-
uous piece-wise polynomial elements of degree k for the velocity and temperature,
and on the other hand, it avoids the introduction of additional redundant Galerkin
terms into the formulation, thus the method is less expensive. In addition, it allow
to recover through post-processing formulae the fluid pressure, the shear-stress
tensor, the fluid vorticity, the fluid velocity gradient, and the heat-flux in terms of
the discrete solution, conserving the same rates of convergence. These advantages
are illustrated by means of numerical experiments.

Later, in Chapter 4, using the techniques and results obtained in Chapter 2, we
extended the analysis developed in Chapter 3, and we established the a posteriori
error analysis for the corresponding Galerkin scheme. We derive a reliable and
efficient residual-based a posteriori error estimator for that scheme. Finally, to
illustrate the performance of the adaptive algorithm based on the proposed a
posteriori error indicator and to corroborate the theoretical results, we provide
some numerical examples.

Finally, in Chapter 5, we proposed and analyzed a mixed formulation for the
Brinkman–Forchheimer equations for unsteady flows. Our approach introduces the
velocity gradient and the pseudostress tensors, as further unknowns. The intro-
duction of these further unknowns lead to a mixed formulation where the velocity
together with its gradient and the pseudostress tensor, are the main unknowns
of the system. Employing classical results on nonlinear monotone operators, we
established existence and uniqueness of a solution to the weak formulation in
a Banach space setting. We then present well-posedness and error analysis for
semidiscrete continuous-in-time and fully discrete finite element approximations
using discontinuous piecewise polynomials of degree k for the velocity and the ve-
locity gradient tensor, and Raviart–Thomas spaces of order k for the pseudostress
tensor, and backward Euler time discretization.

6.2 Future works
The development of this thesis and the results obtained have motivated us to

new works, some of them are detailed below:

A numerical method for the Navier-Stokes/Darcy problem.

A future goal is to analyse the Navier-Stokes/Darcy problem. In the free fluid
domain ΩS, we consider the incompressible Navier-Stokes equations:

σS = − pS I + 2µ e(uS) in ΩS ,
−divσS + ρ(uS · ∇)uS = fS in ΩS ,

div uS = 0 in ΩS ,
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where µ > 0 is the dynamic viscosity of the fluid, ρ is its density, uS is the fluid
velocity, pS the pressure, σS is the Cauchy stress tensor, fS is a given external
force, and e is the strain tensor:

e(uS) :=
1

2

(
∇uS + (∇uS)t

)
.

In the porous medium ΩD we consider the following Darcy model:

K−1uD = −∇ pD + fD in ΩD ,
div uD = 0 in ΩD ,

where uD is the Darcy velocity, pD is the pressure, and K ∈ L∞(ΩD) is a symmetric
and uniformly positive definite tensor in ΩD and fD is a given external force.
Finally, we consider appropriate transmission and boundary conditions.

We propose to extend the works [30] and [78] to the Navier-Stokes/Darcy cou-
pled problem. Our approach consists in coupling the pseudostress-based method
proposed in [30] for the Navier-Stokes problem with the standard dual-mixed for-
mulation for the Darcy model, and using the techniques of chapters 2, 3 and 4
develop an a priori and a posteriori error analysis for the weak formulation.

A posteriori error analysis of the mixed formulation for the
unsteady Brinkman–Forchheimer equations.

As a natural continuation, we are interested in carrying out an a posteriori error
analysis for the unsteady Brinkman–Forchheimer problem studied in Chapter 5.
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