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Abstract

This thesis aims to develop the mathematical and numerical analysis of nonlinear coupled partial
differential equations (PDE’s)-based models that describe certain phenomena in Biology and Bio-
medicine encompassing generalized bioconvection and deformable image registration. More precisely,
we introduce primal and mixed schemes based on finite elements for the aforementioned models, prove
the solvability of the continuous and discrete problems, establish the corresponding error estimates,
and present a variety of tests to validate the theoretical results and illustrate the performance of such
methods including applied examples.

We begin with the bioconvective flows model, which describes the hydrodynamics of microorganisms
in a culture fluid and takes place in several biological processes, including reproduction, infection, and
the marine life ecosystem. The flows are governed by a Navier-Stokes type system coupled to a
conservation equation that models the microorganisms concentration. The culture fluid is assumed
to be viscous and incompressible with a concentration dependent viscosity. For the mathematical
analysis, the model is rewritten in terms of a first-order system based on the introduction of the strain,
the vorticity, and the pseudo-stress tensors in the fluid equations along with an auxiliary vector in the
concentration equation. The resulting weak model is then augmented using appropriate redundant
parameterized terms and rewritten as a fixed-point problem. Existence and uniqueness results for both
the continuous and the discrete scheme are obtained under certain regularity assumptions combined
with the Lax-Milgram theorem or the Babuska-Brezzi theory, and the Banach and Brouwer fixed-point
theorems. Optimal a priori error estimates are also derived and confirmed via numerical examples.

Next, we address the study of a deformable image registration (DIR) model, which arises in numer-
ous research fields as a solution to the combination or comparison of a series of images. Specifically,
in Biomedicine, there is a need to detect changes in images obtained from the same subject over time,
whereby the deformable image registration represents a powerful computational method for image
analysis, with promising applications in the diagnosis of human disease. One important and recent
application of DIR is the study of local lung tissue deformation from computed-tomography images of
the thorax, which allows the early detection of damage induced by mechanical ventilation in the lung.
In our case, for the first model studied in this part, which we will call extended deformable image
registration problem, we propose a finite element method for its numerical approximation, proving
well-posedness of the primal and dual-mixed continuous formulations, as well as of the associated
Galerkin schemes. A priori error estimates and the corresponding rates of convergence are also es-
tablished for both discrete methods. In addition, we provide numerical examples confronting our
formulations with the standard ones.

Finally, in order to guarantee an appropriate convergence behavior of the discrete approximations
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obtained by the aforementioned primal and mixed variational formulations of the image registration
problem, we develop an a posteriori error analysis for both schemes in terms of residual estimators,
which we prove to be reliable and efficient. Based on the latters, we implement adaptive mesh-
refinement schemes for the formulations, confirm their properties and illustrate their applicability
using medical brain images and binary images.



Resumen

Esta tesis tiene como objetivo desarrollar un analisis matematico y numérico de modelos basados en
ecuaciones diferenciales parciales (PDE’s) acopladas y no lineales que describen ciertos fendmenos
en Biologia y Biomedicina que abarcan la bioconveccién generalizada y el registro de imagenes de-
formables. Mds precisamente, introducimos esquemas primales y mixtos basados en elementos finitos
para los modelos antes mencionados, probamos la solubilidad de los problemas continuos y discretos,
establecemos las estimaciones de error correspondientes y presentamos una variedad de experimentos
numéricos para validar los resultados tedricos e ilustrar el desempeno de tales métodos incluyendo
ejemplos aplicados.

Iniciamos con el modelo de flujos bioconvectivos el cual describe la hidrodinamica de un cultivo
de microorganismos y se usa para estudiar y entender diversos procesos bioldgicos tales como la re-
produccién, infecciones, y el ecosistema de la vida marina. Desde un punto de vista matematico, el
problema esta constituido por ecuaciones tipo Navier-Stokes para el movimiento del fluido acoplada
a una ecuacién de conservacion para describir la hidrodindmica y la concentracién de microorganis-
mos, respectivamente. El cultivo se asume como un fluido viscoso e incompresible con una viscosidad
dependiente de la concentracion. Para el andlisis matematico de este modelo, se reescribe en términos
de un sistema de primer orden basado en la introduccién de los tensores de esfuerzo, de vorticidad y
de pseudo-estrés en las ecuaciones de fluidos junto con un vector auxiliar en la ecuacién de concen-
tracién. La formulacién débil resultante se aumenta utilizando términos parametrizados redundantes
apropiados y lo reescribimos como un problema de punto fijo. La existencia y unicidad, tanto para el
esquema continuo como para el discreto se obtienen bajo ciertos supuestos de regularidad combinados
con el teorema de Lax-Milgram o la teoria de Babuska-Brezzi y los teoremas de punto fijo de Banach
y Brouwer. También derivamos estimaciones de error a priori éptimas y que se ilustran a través de
experimentos numeéricos.

Luego, estudiamos un modelo de registro deformable de imagenes (DIR, por sus siglas en inglés), el
cual surge en un gran nimero de campos de investigacién como solucién a la combinacién o compara-
cién de una serie de imagenes. Especificamente, en biomedicina, existe la necesidad de detectar cambios
en iméagenes obtenidas a partir de un mismo sujeto a través del tiempo, por lo cual, el registro defor-
mable de ellas representa un poderoso método computacional para analizar imagenes biomédicas, con
prometedoras aplicaciones en el diagndstico en enfermedades humanas. Una aplicacién importante y
reciente de este problema es estudiar la deformacién regional del tejido pulmonar a partir de imagenes
de tomografia computarizada del torax, lo cual permite la deteccién temprana del dano inducido por
ventilacién mecanica en el pulmén. En nuestro caso, para el primer modelo estudiado en esta parte, el
cual llamaremos problema de registro deformable de imédgenes extendido, proponemos un método de
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elementos finitos para su aproximacién numérica, probando que las formulaciones continuas primal y
dual-mixta, asi como de los esquemas de Galerkin asociados estdn bien puestos. También se estable-
cen estimaciones de error a priori y las correspondientes tasas de convergencia para ambos métodos
discretos. Adicionalmente, proporcionamos ejemplos numéricos que comparan nuestras formulaciones
con la estandar.

Finalmente, con el fin de garantizar un comportamiento de convergencia adecuado de las aproxi-
maciones discretas que se obtienen a través de las formulaciones variacionales primales y mixtas antes
mencionadas para el problema de registro de imagenes, desarrollamos un andlisis de error a poste-
riori para ambos esquemas en términos de estimadores residuales, que demostramos ser confiables y
eficientes. Basados en estos ultimos, implementamos esquemas adaptativos de refinamiento de malla
para las formulaciones, confirmamos sus propiedades e ilustramos la aplicabilidad de éstos utilizando
imagenes médicas cerebrales e imagenes sintéticas.
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Introduction

Most of the partial differential equations (PDEs) that model many natural phenomena in science and
engineering are difficult or even impossible to solve analytically, so numerical methods are required to
generate approximate solutions that allow a better understanding and description of such phenomena.
Finite element methods are one of such techniques and have shown to be appropriate for a wide
range of problems representing, in particular, a very powerful tool to obtain approximate solutions
in finite dimensional spaces and to conduct computational simulations. In particular, the mixed
finite element method is a technique used for numerically solving mathematical models in the form of
systems of PDE’s that involve several physically disparate quantities, which need to be approximated
simultaneously. In some cases, one or several fields are introduced in the formulation of the problem
because of its physical interest and they are usually related with some derivatives of the original
unknown fields, or a combination of these.

According to the above, this thesis deals with mixed finite element methods for certain phenomena
based on nonlinear coupled partial differential equations of special interest in Biology and Biomedi-
cine that encompass generalized bioconvection and deformable image registration (see Section Model
Problems below). For each of these models, we are particularly interested in:

- deriving suitable variational formulations based on mixed or primal-mixed approaches,

- establishing the existence and uniqueness of continuous weak solutions,

- proposing Galerkin schemes and analyzing their well-posedness,

- obtaining the corresponding solvability and convergence results,

- developing a posteriori error analysis, in some cases, and

- validating theoretical results and illustrating the performance of the schemes through essays and
numerical simulations.

In the following two sections, we first describe the models we focus in this thesis and briefly discuss
some of their applications. Then, we present the outline section in which we set the organization of
the thesis and explain the mathematical and numerical focusing used for each model.

Model problems

In this thesis we address two problems that are generated in important areas of science and health,
such as Biology and Biomedicine. The problem that we study in the biological area is known as the
bioconvective fluid model, and the corresponding one to the Biomedicine area is called the deformable
image registration (DIR) model, which are described next.



First, we focus on the bioconvective fluids problem [65, 71,75, 78], represented by the following
system of partial differential equations, describing the three-dimensional hydrodynamics of negatively
geotactic micro-organisms in suspension in a viscous and incompressible culture fluid {2,

—div (u(p)e(u)) + (Vu)u+Vp= f—g(l+vyp)iz, and divu =0 in (2,

Oy .
—/{Ago—ku-Vgo—FUa—m:O in 2 (1)

0 1
u=0, and ma—f—ygngzO on I and |Q|/Q<,0=01,

where the unknowns are the velocity u, the pressure p, and the micro-organism concentration ¢ of
the culture fluid which might affect the kinematic viscosity pu. Here, e(u) stands for the symmetric
part of the velocity gradient, f refers to a volume-distributed external force, g is the gravitational
force magnitude, i3 = (0,0,1)" is the vertical unitary vector, x and U are constants associated to the
diffusion rate and the mean velocity of upward swimming of the microorganisms, respectively, and
~v > 0 is a given constant depending on the micro-organisms density and the culture fluid density. The
model (1) will be studied in Chapter 1. We also remark that the bioconvection phenomenon takes
place in several biological processes, including reproduction, infection, and the marine life ecosystem
[17,67,68,78]. Some direct applications are related to bacterial research, microbiological cultures,
separation of subpopulations of geotactic micro-organisms in lab experiments, and population control
of plankton communities in the oceans, to name a few.

The deformable image registration (DIR) model concerns the problem of aligning a given set of
images by means of a transformation that warps one or more of these images. Its formulation requires
three main ingredients: (i) the transformation model, composed by a family of mappings that warp
the target image into the reference image; (ii) the similarity measure, a function that measures the
differences between the images; and (iii) the regularizer, which renders the problem well-posed. Spe-
cifically, consider a domain 2 € R¥=23, R : 2 — R the reference image and T : 2 — R the target
image, where R(x) and T'(z) denote the image intensity at point . Then, the objective of DIR is to
find a transformation w : 2 — R¢, also known as the displacement field, that best aligns the images
R and T, namely

T(x+u(x)=Rx) Vaxel?.

This problem is ill-posed in general, so one formulates it as a minimization problem by considering a
family of deformations V (such that u € V), a similarity measure D : V — R (a functional which attains
its minimum when the equality above holds), a regularizer S : V — R (which provides smoothness to
the problem), and a positive constant o (which balances D and S). Putting everything together, the
following minimization problem arises:
min {aD(u; R, T)+ S(U)} (2)
ucy
We call to the equation (2) the standard DIR. A extended version for DIR is formulated as follows:
Let @ be the kernel of the adjoint operator induced by S, which we assume to be non trivial and
finite dimensional, splitting V = Q-+ @ Q, from which we recall the orthogonality condition, that is, if
u € QF then (u, p) =0 Vp € Q, also given a positive constant 3, hinted to control w in Q. Then the



extended DIR version is formulated as the following minimization problem:

. By
min  max saD(u; R, T) 4+ S(u) + (u— X\, p) + =||A } 3
o fuin ma {aD(us B T) + S(u) + (u = X p) + IR (3)
Additional details for obtain (3) will be mentioned in Chapter 2. A common choice for the similarity
measure is the sum of squares difference, i.e, the L? error that takes the form

PsR.T) = [ (T +ule) - ()"

where R and T are reference and target images, respectively. In this thesis we study the case of elastic
DIR, in which V = H!(£2) and the regularizing term is taken to be the elastic deformation energy,
defined by

S(u) = ;/QCe(u) e(u),

where 1
e(u) = i{Vu + (Vau)'} and Ct = Mr(T)+dur V7 € L3(92),

are respectively, the infinitesimal strain tensor (symmetric component of the displacement field gradi-
ent) and the elasticity tensor for isotropic solids with the Lamé constants A, > 0 characterizing the
material. In this case, the associated Euler-Lagrange equations from (2) deliver the following strong
problem: Find w such that

div(Ce(u)) = aVD(u) in (2,

Ce(uly = 0 on 0. @

We observe that this problem presents a structure similar to that of a linear elasticity problem with a
nonlinear load source. In turn, the associated Euler-Lagrange equations from (3) allow us to formulate
the following problem with unknowns w, and the rigid motions p y A

—div(Ce(u)) + p = —aVD(u), A=Ilgu, p=pA in £

Ce(u)y =0 on 012, ®)

where IIg : V — @ is the orthogonal projection on (. The extended DIR problem (5) will be
analyzed in Chapter 2, whilst a posteriori error analysis for the standard DIR problem (4) will be
developed in Chapter 3. It is important to remark that this model arises in a number of important
applications, particularly in the field of medical imaging [85], for example in the study of lung regional
deformation computed from tomography images of the thorax [29,64], and problems related with the
image registration of the human brain.

Outline of the thesis

This thesis is organized as follows. In Chapter 1, we extend the results obtained in [24] to analyze
the solvability of the coupled system (6). We write the model as a first-order system of equations
in which the resulting unknowns become the velocity and concentration along with the strain tensor,
the vorticity tensor, a pseudo-stress tensor and a vectorial unknown depending on the fluid velocity,



the microorganism concentration and its gradient (introduced as auxiliary unknowns). After the
variational formulation is derived, the problem is then augmented by using redundant parameterized
Galerkin terms, which allows to set the problem in standard Hilbert spaces and, in turn, to circumvent
any inf-sup compatibility condition between the involved spaces. Then the analysis is carried out
using a fixed-point approach [36], combining the Lax-Milgram theorem with the classical Banach and
Brouwer fixed-point theorems for stating the respective solvability of the continuous problem and the
associated Galerkin scheme, under suitable regularity assumptions, a feasible choice of parameters
and, in the discrete case, for any family of finite element subspaces. A Strang-type lemma, valid for
linear problems, enables us to derive the corresponding Céa estimate and to provide optimal a priori
error bounds for the Galerkin solution. The contents of this chapter gave rise to the following paper:

[34] E. COLMENARES, G. N. GATICA AND W. MIRANDA, Analysis of an augmented fully-

mixed finite element method for a bioconvective flows model. Journal of Computational and
Applied Mathematics, vol. 393, Art. Num. 113504, (2021).

In Chapter 2, we generalize the analysis presented in [13] to regularizers that may present a kernel,
and to Lipschitz similarity measures. This is performed by splitting weakly the warping with respect
to the kernel of the regularizer so that such kernel remains present in the formulation throughout the
model, under the assumption of a relationship between the regularizer and the similarity measure.
Then, we derive the new model and analyze its primal formulation at both continuous and discrete
levels. The main results, which are obtained by using the Babuska-Brezzi theory and duality argu-
ments, include well-posedness of the continuous and discrete formulations, a priori error estimates,
and the respective rates of convergence. In addition, we introduce and analyze (using basically the
same theoretical tools from the primal case) an extended dual-mixed formulation in the particular
case of an elastic energy. The contents of this chapter gave rise to the following paper:

[15] N. BARNAFI, G. N. GaTicA, D. E. HURTADO, W. MIRANDA AND R. RUIZ-BAIER, New
primal and dual-mized finite element methods for stable image registration with singular
reqularization. Mathematical Models and Methods Applied Sciences, to appear (2021).

In Chapter 3, we develop an a posteriori error analysis for the variational formulations described
in [13]. More precisely, we develop an reliable and efficient residual-based a posteriori error estimat-
ors, which allows us to establish appropriate adaptive methods to guarantee greater precision of the
numerical approximations, and mainly the convergence of the Galerkin scheme in situations in which
there are singularities or high gradients of the solution. Our theoretical results, make use of the stand-
ard tools, which include global inf-sup conditions, Helmholtz decompositions, and the approximation
properties of the Raviart-Thomas and Clément interpolants for proving reliability of the estimator.
In turn, localization techniques using bubble functions and inverse inequalities are employed to prove
the corresponding efficiency estimates. This chapter is constituted by the following preprint:

[14] N. BARNAFI, G. N. Gatica, D. E. HurtADO, W. MIRANDA AND R. RuI1z-BAIER, 4
posteriori error estimates for primal and mized finite element approximations of the deform-
able image registration problem. Preprint 2018-50, Centro de Investigacién en Ingenieria
Matemaética (CI2MA), Universidad de Concepcién, Chile, (2018).



Throughout the chapters of this thesis, the theoretical results are illustrated through several numer-
ical examples, that corroborate the accuracy of the numerical schemes. In addition, the computational
implementations were obtained using the free access software for finite elements: FreeFem-++ [59],
FEniCS [4] and the illustrator ParaView.

Preliminary notations

Let 2 C R%23 a bounded domain with boundary I" := 982, and outward unit normal given by
v = (v, - ,vq)" Standard notation will be adopted for Lebesgue spaces LP(§2) and Sobolev spaces
H*(£2) with norm || - ||5,«, and semi-norm | - |s . Given a generic scalar functional space A, we let A
and A be its vectorial and tensor versions, respectively, and we denote by || - ||, with no subscripts, the
natural norm of either an element or an operator in any product functional space. As usual, for any
vector field v = (v;);=1 4, We set the gradient, divergence and, tensor product operators, as

d
v v,

Vo ::( ”Z> , dive =) 25 and v @w = (vawg)s jo1a.
9%j ) i =14 =1 Ox;

Furthermore, given tensor fields 7 = (7i5)i j=1.4 and ¢ = ({ij)ij=1,4, we let div T be the divergence
operator div acting along the rows of 7, and define the transpose, the trace, the tensor inner product,
and the deviatoric tensor, respectively, as

d d
1
R d._
0= (Tji)ije1a, tr(7T) = ;m, T:(¢:= 'Zl 7;jGj, and T9:=T — Etr('r)]l.
= )=
Finally, we recall the following Hilbert space
H(div; ) = {r cL2(Q): divre L2(Q)},

eqquiped with the usual norm

1T l&sv.0 = 7l + Idiv 7§ o



Introducciéon

La mayoria de las ecuaciones diferenciales parciales (EDP’s) que modelan una diversidad de fenémenos
naturales en ciencia e ingenieria son dificiles o incluso imposibles de resolver analiticamente, por lo que
se requieren métodos numéricos para generar soluciones aproximadas que permitan una mejor com-
prensién y descripcién de dichos fenémenos. Los métodos de elementos finitos son una de esas técnicas
y han demostrado ser apropiados para una amplia gama de problemas, representando en particular,
una herramienta muy poderosa para obtener soluciones aproximadas en espacios de dimensién finita
y para realizar simulaciones computacionales. En particular, el método de elementos finitos mixtos
es una técnica utilizada para resolver numéricamente modelos matemaéticos presentados en forma de
sistemas de EDP’s que involucran varias cantidades fisicamente dispares, que requieran aproximarse
simultdneamente. En algunos casos, una o mas variables se introducen en la formulaciéon del problema
por su interés fisico y suelen estar relacionadas con algunas derivadas de las incognitas originales, o

una combinacion de estas.

De acuerdo con lo anterior, esta tesis trata sobre métodos mixtos de elementos finitos para ciertos
fendmenos representados por medio de ecuaciones diferenciales parciales acopladas no lineales, que son
de especial interés en Biologia y Biomedicina y que engloban bioconveccién generalizada y el registro
de imégenes deformables (ver apartado Problemas modelo méas adelante). Para cada uno de estos

modelos, estamos particularmente interesados en:

- derivar formulaciones variacionales adecuadas basadas en enfoques mixtos o primarios-mixtos,

- establecer la existencia y la unicidad de soluciones débiles a nivel continuo,

- proponer esquemas de Galerkin y analizar su buena planteamiento,

- obtener correspondientes resultados de solubilidad y convergencia,

- desarrollar analisis de errores a posteriori, en algunos casos, y

- validar resultados tedricos e ilustrar el desempeno de los esquemas a través de ensayos y simu-
laciones numéricas.

En las dos secciones siguientes, primero describimos los modelos que en los que nos enfocamos

en esta tesis y discutimos brevemente algunas de sus aplicaciones. A continuacién, presentamos la
organizaciéon de la tesis y explicamos el enfoque matematico y numérico utilizado para cada modelo.

Problemas modelo

En esta tesis abordamos dos problemas que se generan en importantes dreas de la ciencia y la
salud, como lo son la Biologia y la Biomedicina. El problema que estudiamos en el area biolégica se



conoce como modelo de flujos bioconvectivos, y el correspondiente al drea de Biomedicina es llamado
problema de registro deformable de imagenes (DIR, por sus siglas en inglés), los cuales se describen a
continuacién.

Primero, estudiamos en el problema de fluidos bioconvectivos [65, 71,75, 78], el cual se representa
mediante el siguiente sistema de ecuaciones diferenciales parciales, y que describe la hidrodinamica
de un grupo de microorganismos que tienen un comportamiento geotéctico negativo, es decir que se
mueven contra la gravedad (tienden a nadar hacia arriba), suspendidos en un cultivo, fluido viscoso e
imcopresible {2,

—div (u(p)e(u)) + (Vu)u+Vp= f—g(1+vyp)iz, and dive =0 in £,

Oy .
—/ﬁAgo—i-u-Vgo—i—Ua—xg:O in 2, (6)

1
u=0, and I‘Jgf—VgUgO:O on I and |m/ggo:oz,

donde la incognitas son la velocidad wu, la presién p, y la concentracion de microoganismos ¢, la cual
puede afectar a la viscosidad cinematica u. Aqui, e(u) es el tensor de pequenas deformaciones, f es
una fuerza externa distribuida en el volumen, g es la magnitud de la fuerza de gravedad, iz = (0,0,1)*
es el vector unitario vertical, y las constantes positivas: k y U asociadas a la tasa de difusion y la
velocidad promedio de natacién ascendente de los microorganismos, respectivamente; v que depende
de la densidad de los microorganismos y el cultivo; o que asegura que ningin microorganismo pueda
salir o entrar en el dominio fisico. El modelo (6) seréd estudiado en el Capitulo 1. Senalamos ademds
que el fenémeno de bioconveccion aparece en varios procesos bioldgicos, incluida la reproduccién, la in-
feccion, y el ecosistema de vida marina [17,67,68,78]. Algunas aplicaciones directas estdn relacionadas
con la investigacién bacteriana, los cultivos microbiolégicos, la separacién de subpoblaciones de mi-
croorganismos geotacticos en experimentos de laboratorio y el control de la poblaciéon de comunidades
de plancton en los océanos, por nombrar algunas.

El modelo de registro deformable de imagenes (DIR) consiste en el problema de alinear un con-
junto dado de imagenes mediante una transformacién que deforma una o mas de estas imagenes. Su
formulacién requiere de tres ingredientes principales: (i) el modelo de transformacién, compuesto por
una familia de mapeos que deforman la imagen objetivo en la imagen de referencia; (ii) la medida de
similitud, funcién que mide las diferencias entre las imédgenes; y (iii) el regularizador, que hace que el
problema este bien planteado. Especificamente, considerando un dominio 2 ¢ R%=%23 R: 2 — R la
imagen de referencia y T : {2 — R la imagen objetivo, donde R(x) y T'(x) denotan la intensidad de
la imagen en el punto «. Entonces, el objetivo del DIR es encontrar una transformacién w : 2 — R¢,
también conocida como campo de desplazamiento, que mejor se alinea las imégenes R y T', esto es

T(x+u(x)=R(x) Vaxel?.

En general este problema estd mal puesto, por lo que se formula como un problema de minimizacién
considerando una familia de deformaciones V (tal que w € V), una medida de similitud D : V — R (un
funcional que alcanza su minimo cuando se cumple la igualdad anterior, un regularizador S : V — R (el
cual aporta suavidad al problema), y una constante positiva « (la cual equilibra D y S). Escribiendo
matematicamente eso, se genera el siguiente problema de minimizacién:

min {oﬂ)(u; R, T)+ S(u)} (7)

ucV



Llamaremos a la ecuacién (7) la versién estdndar del problema DIR. Una versién extendida de este
problema se formula como sigue: Sea () el kernel del operador adjunto inducido por S, el cual se
asume no trivial y de dimensién finita, se tiene la descomposicién ¥V = Q+ @ Q, de la cual recordamos
la condicién de ortogonalidad es decir, si u € Q1 entonces (u,p) = 0 Vp € @, ademds dada una
constante (3, sugerida para controlar u en (). Entonces la versién extendida DIR se formula como el
siguiente problema de minimizacién:

. ) B2
D(w; R,T) + S PSP } 8
o fuin i {aD(us B T) +S(u) + {u =X p) + SR ®)
Detalles adicionales para obtener (8) se mencionan en el Capitulo 2. Usualmente, la medida de similitud
se elige como la suma de diferencia de cuadrados, dada por

PsR.T) = [ (T@+ule) - R(@)*

donde R y T son las imagenes de referencia y objetivo, respectivamente. En esta tesis nos ocupamos
del caso eldstico del DIR, en el cual V = H!(£2) y el término regularizador se elige como la energia de
deformacién elastica, definida por

am:ié&mym&

donde ]
e(u) = §{Vu + (Vu)'} y Ct = Mr(T) +dur V7 € L*(92),

son respectivamente, el tensor de deformacién infinitesimal (componente simétrico del gradiente del
campo de desplazamiento) y el tensor de elasticidad para sélidos isotrépicos con las constantes de
Lamé A\, > 0. En este caso, las ecuaciones de Euler-Lagrange asociadas a (7), nos proporcionan el
siguiente problema: Encontrar u tal que

div(Ce(u)) = aVD(u) in £,

Ce(ur = 0 on 0f2. ®)

Hacemos notar que este problema presenta una estructura similar al problema de elasticidad lineal con
termino fuente no lineal. A su vez, las ecuaciones de Euler-Lagrange asociadas al problema extendido
(8), nos permiten formular el siguiente problema con incégnitas u, y los movimientos rigidos p y A

—div(Ce(u)) + p = —aVD(u), A=Ilgu, p=pX in £

(10)
Ce(u)y =0 on 012,

donde I1g : V — @ es la proyeccién ortogonal en Q). La versién extendida (10) del problema DIR serd
analizada en el Capitulo 2, mientras que el anélisis de error a posteriori para la versién estandar (9) serd
desarrollado en el Capitulo 3. Es importante senalar que este modelo tiene una serie de aplicaciones
importantes, particularmente en el campo de las imdgenes médicas [85], como por ejemplo en el
estudio de la deformacién regional del pulmén a partir de imagenes de tomografia del térax [29,64], y
a problemas relacionados con el registro de imagenes del cerebro humano.



Organizacion de la tesis

Esta tesis estd organizada como sigue. En el Capitulo 1, extendemos los resultados obtenidos en [24]
para analizar la solubilidad del sistema acoplado (6). Primero, escribimos el modelo como un sistema
de ecuaciones de primer orden en el cual las incégnitas resultantes son la velocidad y la concentracion
junto con el tensor de esfuerzo; la vorticidad; el tensor de pseudo esfuerzo y un vector desconocido
que depende de la velocidad de fluido, la concentracién de microorganismos y su gradiente. Después se
obtiene la formulacién variacional, el problema entonces es aumentado usando términos redundantes
de Galerkin, lo cual nos permite establecer el problema en espacios estandar de Hilbert y, a su vez,
evitar cualquier condicién de compatibilidad inf-sup entre los espacios involucrados. Luego, el andlisis
es llevado a cabo usando una estrategia de punto-fijo [36], combinando el teorema de Lax-Milgram
con los teoremas clasicos de Banach y punto-fijo de Brouwer para obtener la respectiva solubilidad del
problema continuo y el esquema de Galerkin asociado, bajo supuestos adecuados de regularidad, una
eleccion factible de pardametros y, en el caso discreto, para cualquier familia de subespacios de elementos
finitos. Utilizando un lema de tipo Strang, valido para problemas lineales, derivamos la correspondiente
estimacién de Céa y provee cotas éptimas de error a priori para la solucion de Galerkin. Los contenidos
de este capitulo dieron lugar al siguiente articulo:

[34] E. COLMENARES, G. N. GATICA AND W. MIRANDA, Analysis of an augmented fully-

mixed finite element method for a bioconvective flows model. Journal of Computational and
Applied Mathematics, vol. 393, Art. Num. 113504, (2021).

En el Capitulo 2, generalizamos el andlisis presentado en [13] para regularizadores que podrian
presentar un kernel no trivial, y para medidas de similitud Lipschitz, lo cual se realiza separando
débilmente la deformacién con respecto al kernel del regularizador para que dicho kernel permanezca
presente en la formulacién a lo largo del modelo, bajo el supuesto de una relacién entre el regularizador
y la medida de similitud. Luego, derivamos el nuevo modelo y analizamos su formulacién primal tanto
en el caso continuo como discreto. Los principales resultados en este capitulo, los cuales se obtienen
usando la teoria de Babuska-Brezzi y argumentos de dualidad, incluyen solubilidad de las formulaciones
continua y discreta, estimaciones de error a priori y la respectiva tasa de convergencia. Adicionalmente,
introducimos y analizamos (usando bésicamente las mismas herramientas que en el caso primal) una
formulacion dual-mixta para el caso particular de energia eldstica. Los contenidos de este capitulo
dieron lugar al siguiente articulo:

[15] N. BARNAFI, G. N. GaTtica, D. E. HURTADO, W. MIRANDA AND R. Ru1z-BAIER, New
primal and dual-mized finite element methods for stable image registration with singular
regularization. Mathematical Models and Methods Applied Sciences, to appear (2021).

En el Capitulo 3, desarrollamos un andlisis de error a posteriori para las formulaciones variacio-
nales descrita en [13]. Mds precisamente, desarrollamos estimadores de error a posteriori confiables
y eficientes basados en residuos, los cuales permiten establecer métodos adaptativos apropiados para
garantizar mayor precisién de las aproximaciones numéricas, y principalmente la convergencia del es-
quema de Galerkin en situaciones en las que hay presencia de singularidades o bien altos gradientes
de la solucién. Para los resultados tedricos hacemos uso de herraminetas estdndar, las cuales inclu-
yen la condicién inf-suf global, descomposiciones de Helmholtz, propiedades de aproximacién de los
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interpolantes de Raviart-Thomas y Clément para probar la confiabilidad. Por otro lado, técnicas de
localizaciéon basadas en funciones burbuja y desigualdades inversa se utilizan para demostrar la co-
rrespondiente estimacién de eficiencia. Este capitulo esta constituido por la siguiente pre-publicacion:

[14] N. BARNAFI, G. N. Gatica, D. E. HurtADO, W. MIRANDA AND R. Ruiz-BAIER, A
posteriori error estimates for primal and mized finite element approximations of the defor-

mable image registration problem. Preprint 2018-50, Centro de Investigacién en Ingenieria
Matemética (CI2MA), Universidad de Concepcién, Chile, (2018).

A lo largo de los capitulos que conforman esta tesis, los resultados tedricos, son ilustrados a través
de varios ejemplos numéricos, que corroboran la precisién de los esquemas numéricos. Ademas, las
implementaciones computacionales de los métodos, se obtuvieron empleando las librerias de elementos
finitos de acceso libre: FreeFem++ [59], FEniCS [4] y el ilustrador ParaView.



CHAPTER 1

Analysis of an augmented fully-mixed finite element method for a
bioconvective flows model

1.1 Introduction

Bioconvective flows, or bioconvection, refers to a spontaneous flow and pattern formation due to
the motion of a large number of upswimming micro-organisms as an innate behavioral response to
a stimulus like gravity, light, oxygen, food, changes on temperature, or some combination of these.
In a fluid of finite depth, upswimming means that cells accumulate near the top surface due to the
gathering of micro-organisms, so the upper regions of the suspensions become denser than the lower,
and when the density gradient is high enough, micro-organisms fall down; leading to an overturning
convection [78].

By its nature, this phenomenon takes place in several biological processes, including reproduction,
infection and the marine life ecosystem [68]. Some direct applications are related to bacterial re-
search, microbiological cultures, separating swimming subpopulations of geotactic micro-organisms
(whose movement is gravity-induced) in lab experiments, and controlling population of plankton com-
munities in the oceans, to name a few. In addition, more recently, bioconvective flows have also been
considered useful to medical, bioengineering and pharmaceutical applications [17,67]. For instance,
it can be used to configure new geometries of bioreactors, to improve the biofuel production and to
enhance microfluidics mixing, which are often linked to several pharmaceutical and biotechnological
experiments such as analyses of DNA or drugs, screening of patients and combinatorial synthesis.

A fluid dynamical model to describe bioconvection of geotactic microorganisms was introduced
in [71] and [75], independently, from a biological and physical point of view. Using the Boussinesq
approximation, the resulting model consists of a Navier-Stokes type system for describing the hydro-
dynamic of the culture fluid assumed to be viscous and incompressible, in terms of the velocity and
the pressure, nonlinearly coupled to an advection-diffusion equation for the micro-organisms concen-
tration, which comes from a cell conservation equation.

The mathematical analysis of this model was carried out in [65]. There, the authors prove existence
of weak solutions by the Galerkin method, and existence of strong solutions by a semi-group approach
along with the method of successive approximations, for both stationary and evolution problems.

11



1.1. Introduction 12

Also, a positivity property of the concentration is shown there. Later, generalized models in which
the effective viscosity depends on the concentration of the organisms are mathematically analyzed
n [19], for initial conditions, and in [32], for periodic conditions and assuming that the viscosity is
a concentration-dependent continuously differentiable function. In these works, uniqueness results of
solutions are further given. Then in [40], the authors complement the results from [65] by addressing
the problem of obtaining convergence rates for the error when using spectral Galerkin approximations
of the problem with a constant viscosity.

First numerical simulations of bioconvection are developed in [27,58] in two dimensions. Whilst
in [27] the authors integrate the Navier-Stokes equations, they treat the cells as individuals moving
points, instead of using the continuum cell conservation. In [58], the problem is solved integrating
the incompressible Navier-Stokes equations and the cell conservation equation in a shallow box as a
physical domain. To the best of our knowledge, [24] is one of the first finite element analysis for the
bioconvection model. There, the problem is considered with concentration-dependent viscosity and
the authors firstly improve the existence result from [32], by allowing the viscosity to be a continuous
and bounded function. They then state existence and uniqueness results for the continuous and
discrete problems, as well as a the convergence associated to the classical primal method based on
finite elements; whose solvability requires an inf-sup compatibility condition. Additionally, although
the analysis is carried out in two and three dimensions, they test the performance and accuracy
of the numerical technique only in the 2d-case, including an example with data obtained from lab
experiments. Here the Taylor-Hood finite element of second order is used for approximating the
velocity and pressure, whereas piecewise quadratic polynomials are used for the concentration. Other
numerical techniques developed for related models and their respective mathematical analysis are
[38, 41,42, 46, 52-54, 60, 70, 72, 86] and the references there in, which include gyrotactic, geotactic,
oxitactic and chemotactic microorganisms modeling.

As a phenomenon from fluid dynamics, in certain applications some additional physically relevant
variables such as the gradient of the fluid velocity or the gradient of the micro-organisms concentration
might reveal specific mechanisms of the bioconvection, and hence become of primary interest. Whilst
these variables could be obtained via numerical integration of the discrete solutions provided by stand-
ard methods, this certainly would lead to a loss of accuracy or deteriorate the expected convergence
order. In light of this, the purpose of this work is to contribute with the construction, analysis and im-
plementation of a new numerical technique based on mixed finite elements for simulating bioconvective
flows of geotactic micro-organisms, allowing

(a) direct computation of physically relevant variables in the phenomena such as the velocity gradi-
ent, the vorticity, the shear stress tensor of the fluid and the micro-organisms concentration
gradient,

(b) flexibility regarding the use of finite element subspaces, avoiding any inf-sup compatibility res-
triction,

(c¢) high-order approximations, and optimal-order a priori error estimates.

To that end, based on previous mixed methods developed for related problems [2,3, 5,26, 35, 37],
we firstly re-write the original model as a first-order system of equations in which the resulting un-
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knowns become the velocity and concentration (as primal variables) along with the strain tensor,
the vorticity tensor, a pseudo-stress tensor and a vectorial unknown depending on the fluid velocity,
the microorganism concentration and its gradient (introduced as auxiliary unknowns). After a vari-
ational formulation, the problem is then augmented by using redundant parameterized Galerkin terms,
which allows to set the problem in standard Hilbert spaces and, in turn, to circumvent any inf-sup
compatibility condition between the involved spaces. The analysis is then carried out by a fixed-point
approach [36], combining the Lax-Milgram theorem with the classical Banach and Brouwer fixed-point
theorems for stating the respective solvability of the continuous problem and the associated Galerkin
scheme, under suitable regularity assumptions, a feasible choice of parameters and, in the discrete
case, for any family of finite element subspaces. A Strang-type lemma, valid for linear problems,
enables us to derive the corresponding Céa estimate and to provide optimal a priori error bounds
for the Galerkin solution. In turn, the pressure can be recovered by a post-processed of the discrete
solutions, preserving the same rate of convergence. Finally, numerical experiments are presented to
illustrate the performance of the technique and confirming the expected orders.

We have organized the contents of this chapter as follows. In Section 1.2, we introduce the model
problem, and the auxiliary variables in terms of which an equivalent first-order set of equations is
obtained. Next, in Section 1.3, we derive the augmented mixed variational formulation and establish
its well-posedness. The associated Galerkin scheme is introduced and analyzed in Section 1.4. In
Section 1.5, we derive the corresponding Céa estimate and, finally, in Section 1.6 we present a couple of
numerical examples illustrating the performance of our augmented fully-mixed finite element method.

1.2 The bioconvective flows model

In this section, we present the model problem, and define the auxiliary unknowns to be introduced
into the respective continuous formulation. From [71,75, 78], we consider the following system of
partial differential equations, describing the three-dimensional hydrodynamics of negatively geotactic
micro-organisms in suspension in a viscous and incompressible culture fluid {2, given by

—div (u(p)e(u)) + (Vu)u+Vp= f—g(l+~vp)iz, and divu =0 in £,

Do (1.1)
—kAp+u-Vo+U—/—=0 in {2,
81’3
that is, a set of coupled non-linear equations given by a Navier-Stokes type-system and an advection—
diffusion equation, in the Boussinesq approximation framework, where the unknowns are the velocity
u = (u;);=1,3, the pressure p and the micro-organism concentration ¢ of the culture fluid, and in the
realistic case in which the micro-organisms concentration might affect the kinematic viscosity pu( - ).

Here, e(u) stands for the symmetric part ot the velocity gradient, defined as e(u) = 3(Vu + (Vu)'),
f refers to a volume-distributed external force, g is the gravitational force magnitude, x and U
are constants associated to the diffusion rate and the mean velocity of upward swimming of the
microorganisms, respectively, i3 = (0,0, 1) is the vertical unitary vector, and « := po/pm — 1 > 0, is a
given constant depending on the micro-organisms density pg and the culture fluid density p,,. In turn,
such as in [24] (cf. [32]), we assume that the viscosity u(-) is a Lipschitz continuous and bounded
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from above and below function; that is, for some constants L, > 0 and p1, u2 > 0, there hold
n(s) — )] < Luls—t],  Vs,t>0, (1.2)

and
p < p(s) < pp, Vs 20, (1.3)

We complete the system (1.1), with a non-slip condition for the velocity and a zero flux Robin-type
condition for the micro-organisms on the boundary, that is

0
u=0, and na—f —w3Up =0 on I (1.4)

1
’m/gcp = q, (1.5)

where « is a given positive constant, assuring that no micro-organisms are allowed to leave or enter

as well as the total mass restriction

the physical domain. Note that (1.5) is equivalent to

/Q(w—a)zoj

and consequently, when setting the auxiliary concentration ¢, := ¢ — «, which satisfies / Yo =0,
2
and by introducing it into (1.1) and (1.4), we get

—div (u(pa + @)e(u)) + (Vu)u+Vp= f, —g(1+7¢a)i3 in £,

0
H% —3U(pa+a) =0 on I,
where f, := f — gyais. Note that the rest of equations remains unchanged with ¢, in place of

. Therefore, to simplify the notation and without confusion, we rename from now on ¢ := @, and
f := f,, so that the original problem (1.1), (1.4) and (1.5), takes the form

—div (u(p +a)e(u)) + (Vu)u+Vp= f—g(l+~yp)iz, and divu =0 in {2,
Oy . .
—kAp+u-Vo+U—=0 in 2, with v =0, (1.6)
Oz3 o
9y
u =0 and /{a——ugU(go—Fa):O on I'.
v

From the first equation of (1.6), it is clear that uniqueness of an eventual pressure solution of this
problem (see [55] or [76]) is ensured in the space

L3(Q) = {q i) [ - o}.

Likewise, from the total mass condition on the auxiliary concentration (second equation of the second

row in system (1.6)), we see that an eventual weak solution ¢ of (1.6) belongs to the space

HY(2) := HY(2) N L3(2) = {1/JEH1(_Q): /szo}, (1.7)
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which is a closed subspace of H!(£2), and in which the norm and the seminorm are equivalent (result
to be used in Lemma 1.2).

Next, in order to derive our fully-mixed formulation, we firstly need to rewrite (1.6) as a first-order
system of equations. To this purpose, inspired by the approach from [26] (see also [2,3]), we introduce
as additional unknowns the strain and vorticity tensors

1
t:=e(u) and p= i{Vu - (Vu)t} = Vu-—t in 2, (1.8)
as well as the pseudo-stress tensor
oc=ple+a)t—pl—(u®u) in . (1.9)

Note that div(u ® u) = (Vu)u when divu = 0 (incompressibility condition - second equation of first
row in (1.6)). Thus, the first equation of (1.6) and the constitutive relation (1.9), gives the equilibrium
equation
—div(e) = f—g(1 + y¢)is in (2. (1.10)
Again, from the incompressibility condition, we have that tr(Vu) = 0 and so tr(p) = tr(¢) = 0. In
particular, by taking deviatoric part from both sides of (1.9), we find that
ol =plp+at—(uxuw? in 2, (1.11)

and so the pressure can be eliminated from the system but, by taking trace from both sides of (1.9),
we readily deduce that it can be recovered in terms of o and u as

p= —%tr(a%— (u®u)) in Q. (1.12)

As for the equation modeling the micro-organisms concentration, similarly to [37], we introduce as
the new vectorial unknown that we call “pseudo-concentration” gradient

p:=rVy—pu—U(p+a)is in (2, (1.13)
so that, from the first equation of second row from (1.6), the incompressibility condition and the Robin
condition for the concentration, we get

—divp =0 in {2, and p-v =0 on Ir. (1.14)

Finally, gathering together (1.8), (1.10), (1.11), (1.13) and (1.14), we arrive at the following first-order
system with unknowns ¢, o, p, u, p and ¢

t+p=Vu, ocl+weuw! = pupt+at, —dive=f—-g(l+yp)iz in 2

kip+rTlou+ kT U(p+a)is =Ve, —divp=0 in £

u=0 and p-v=0 on I (1.15)

/!Ztr(d—i-(u@u))—o and /QQO—O.

Note that according to (1.12), the zero mean value restriction of the pressure on the domain is imposed
via the first equation in the last row in (1.15). Also, notice that the incompressibility condition of the
fluid is implicitly present through the equilibrium relation (1.10) and by stating that ¢ is a trace-free
tensor.
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1.3 The continuous formulation

In this section we introduce and analyze the weak formulation of the system described by (1.15).
To this end, in Section 1.3.1 we firstly deduce an augmented variational formulation of (1.15) and
then in Section 1.3.2 we equivalently rewrite it as a fixed-point problem in terms of operators, which
arise by decoupling the fluid equations and the concentration equation. Their well-definiteness and
solvability are addressed through Sections 1.3.3 and 1.3.4.

1.3.1 The augmented fully-mixed variational formulation

We first recall (see, e.g., [49] or [55]) that there holds
H(div; 2) = Hy(div; 2) @ RI, (1.16)

where

Ho(div; 2) = {T € H(div; 2) - / frr = o} |
2

which means that any ¢ € H(div; {2), can be uniquely written in terms of its orthogonal projection,
namely ¢, € Hy(div, £2), as

1
¢ = ¢y + cl, where c 3|Q|/Qrc

In particular, using the first equation in the last row of (1.15), it is easy to see that an eventual
solution o € H(div; £2) of that system is given by

1
o =09+ cl with oo € Ho(div;2), and c= _3|Q|/ tr(u®u). (1.17)
2

4 = gd and divo? = div o, it follows that the equations in (1.15) remain unchanged

Then, since o
when replacing there o in place of o. This fact along with (1.17) allows us to reduce the problem
by only looking for . According to that, and for simplifying the notation, we set from now on

o := o € Hy(div; 2).

In addition, by their definitions, we introduce the following spaces for the strain tensor ¢ and the

vorticity p, respectively,

L2(02) := {'r cL2(2): r'=7r and tr(r) = o}, and L2 (0):= {n cL2(0): n' = —n}-

Also, the boundary condition for p on I" (see third row in (1.15)) suggests the introduction of the

functional space
H(div; £2) := {q € H(div;2): ¢g-v=0 on F}.

Now, multiplying the first equation in (1.15) by a test function 7 € Hy(div; {2), integrating by
parts, using the Dirichlet condition for u, and the identity t : 7 = ¢ : 7¢ (since ¢ is trace-free), we get

Q 2 §2
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Next, testing the second equation from first row in (1.15) with = € L2.(§2), we obtain

/Qad:r—i—/g(u@)u)d:r:/u(cp—i—a)t:r Vr e L2(92).

2

In turn, the equilibrium relation associated to o (third equation from first row in (1.15)) is written as

—/v-diVU:/ (f—g(1+’y<p)i3)-v Vo e L3(92),
(9} 2

whereas the symmetry of the pseudo-stress tensor is weakly imposed through the identity
—/QO' =0 Vneli, ().

As for the equations associated to the micro-organisms concentration (second row from (1.15)), we
firstly multiply the respective constitutive relation by a function ¢ € Hp(div; £2) and, after integrating
by parts, we find

%‘l/p-qﬂffl/@u-q+f<ﬁ1/U(s0+a)i3-q=—/sodivq Vg € Hp(div; 2),
(] 0 0 (]

and the equilibrium relation for the concentration is weakly expressed as
—/ Ypdivp=0 Vi eL}(0).
o}

In this way, we arrive at first instance to the mixed formulation: Find t € L2.(12), o € Hy(div; 2),
pcl? (£2),pcHp(div;2), and u, ¢ in suitable spaces to be specified below, such that

skew
/t:Td+/u~diVT+/p:T: 0,
0] n 2
/u(<p+a)t:r—/Ud:r—/(u®u)d:r: 0,
Q Q Q
—/v'diva—/a:n: /(f—g(1+’yg0)i3)-v, (1.18)
9] N 9]
H_l/p-q+/<pdivq+f<fl/<pu-q— —H_l/U(Wra)is-q,
n 9] n 9]
—/wdivp: 0,
Q
for all T € Ho(div;$2), » € L4(92), (n,v) € L4_ (2) x L2(12), ¢ € Hp(div; 2), and ¢ € L*(92).

Note that the third terms on the left-hand side of the second and fourth equations in (1.18) require
a suitable regularity for both unknowns u and ¢. Indeed, by applying Cauchy-Schwarz and Holder
inequalities, and then the continuous injections i : H'(£2) — L*(£2) and i : H'(£2) — L*(§2) (see
e.g. [1] or [80]), we deduce that there exist positive constants c1(§2) := ||| ||4|| and ¢c2(£2) := ||#]|?, such
that

]/Q @U'Q'S01(9)||<P||1,9||U|1,Q|CIHO,Q Ve HU(Q)Vu e HI(2),Yq e L2A(Q),  (L19)
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and

< (D) Null1 ellwli,elrlo.n Vu,we H(2),Vr e L2(Q). (1.20)

[ @ewtr

In light of the above, and in order to be able to set the variational formulation (1.18) in a framework
on standard Hilbert spaces for both the velocity and concentration, we propose to seek u € H%)(Q) and
¢ € HY(£2), and so their respective test spaces. In turn, similarly as in [26, Section 2] (see also [3,37]),
we additionally augment (1.18) by incorporating the following redundant Galerkin terms coming from

the constitutive and equilibrium equations,

m/(e(u)—t) ce(v) =0 Vv e H(2),
9]
/{2/ dive -divr = —/@/ (f—9g(1+p)is)-divr V7 € Hy(div; ),
2 @ (1.21)
I€3/ {a‘d+(u®u)d—,u(g0+a)t} =0 V1 € Hyo(div; £2),
n
/<a4/ {p— (Vu—e(u))}:n=0 v e L2, (£2),
n
and
/15/ {Vgo —klp—klou — /f_lU(go + a)ig} V=0 Vo€ ﬁl(Q),
@ (1.22)

56/ divpdivg =0 Vq € Hr(div; £2),
2

where (K1, ke, K3, K4, K5, Kg) 1S a vector of positive parameters to be specified later in Section 1.3.3.
Hence, letting
t = (t,0,p) € H i= L2(2) x Ho(div; 2) x L2, (1)

skew

where H is endowed with the natural norm

Il = {1

and adding up (1.18) with (1.21) and (1.22), we arrive at the following augmented fully-mixed formu-
lation for the bioconvective flow problem1: Find (¢, u, p, ) € H x H}(£2) x Hp(div; £2) x HY(£2) such
that

Ay((t ), (r,v) + Bu((t,u),(r,v)) = Fy(r,v) VY(r,v)€HxH(f),

2 2 2 M2 Vo o
0,2 + 17 laiv. + (1716, r:=(r,7,n) €M,

(1.23)

A((p,9): (q.¥) + Bu((p,9), (q.¥)) = Folq.¥) V(g ¢) € Hp(div; 2) x H(£2),

where, given ¢ € ﬁl(Q) and w € H{(2), Ay, By, A and B,, are the bilinear forms defined,
respectively, as

Ay((t,u), (r,v)) = /Q/JJ(<Z>—|—a)t: (T—KgTd) + / ol (HgTd—’I‘) —i—/gt:Td

2

+/ (u+/~$2diva)-divr—/v-divo'+/p:7-—/0':n (1.24)
Q Q Q Q

-l-m/g(e(u)—t) ce(v) + /f4/9{p—(Vu—e(u))} ',
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Buw((t,u),(r,v)) = / (u® w)d : (H3Td — 7“) , (1.25)

n

A((p, ), (q,v)) == ,.;—1/91,. (@ —K5VY) + /Q (¢ + ke divp) divg

—/wdivp—i-/ig)/ch'V@b,
N (7

Bu((p, ), (g,0)) = /Q ow - (g — r5VY), (1.27)

for all (t,u), (r,v) € H x H}(£2) and for all (p,¢), (g,v) € Hp(div; 2) x H'(£2). In turn, given
¢ € HY(2), F, and Fj are the bounded linear functionals given by

(1.26)

and

Fy(r,v) = /Q (f—9g(1+~9¢)is) - (v — Kkodiv 7') V(r,v) € H x Hé(Q), (1.28)
and

Fy(q,¢) == —r7" /Q U +a)iz- (q—rsVY)  V(g,v) € Hp(div; 2) x H(2). (1.29)

1.3.2 The fixed point approach

Now, we proceed similarly as in [36] (see also [26,37]) and rewrite (1.23) as an equivalent fixed-point
equation in terms of a certain operator T to be defined below. Firstly, we set H := H}(£2) x HY(£2)
and start by introducing the operator S : H — H x H}(£2) by

S(w, ) == (((Si(w,9). Sa(w, ). Ss(w,9)) , Saw,9) ) = (tw)  VY(w,0)€H,  (130)

where, given (w, ) € H, (t,u) is the unique solution to the problem1: Find (t,w) € H x H}(£2) such
that

As((t,u), (r,v) + Bu((t,u), (r,v)) = Fy(r,v)  V(r,v) € Hx H{(2). (1.31)
In addition, we also introduce the operator S : H — Hp(div; £2) x H!(£2) defined as
g(wv¢) = (gl(w7¢)7§2(wv¢)) = (pa 80) V(w,qS) € H’ (132)

where, given (w, ¢) € H, (p, ¢) is the unique solution to the probleml: Find (p, ) € Hp(div; £2) x
H'(£2) such that

A((p.¢). (0, %) + Buw((p,9),(a.9)) = Fy(a,v) V(g,¥) € Hr(div; 2) x H'(12). (1.33)
Having introduced the auxiliary mappings S and g, we now define the operator T : H — H as
T(w,¢) = (Si(w.0).8:(Sa(w.6),6)) V(w.$) € H, (1:34)
and realize that (1.23) can be rewritten as the fixed point probleml: Find (u, ) € H such that
T(u,p) = (u, ). (1.35)

In this way, through the following sections we study the conditions under which the operator T is
well-defined, has a fixed point and when it is unique.
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1.3.3 Well-definiteness of the fixed point operator

In what follows we show that T is well-defined. Notice that it suffices to prove that the uncoupled
problems (1.31) and (1.33) defining S and g, respectively, are well-posed. To state the solvability of
(1.31), we start studying the stability properties of the forms A4 and B,, and the functional Fy (cf.
(1.24), (1.25) and (1.28), respectively). Firstly, given ¢ € H(£2), from the Cauchy-Schwarz inequality
we find that there exists a positive constant, denoted by ||A|, and depending on py (cf. (1.3)) and
the parameters k1, ko, K3, k4, Such that

[Ag((tu), ()] < [AgllIE ] Iz o)l V(¢ w), (r,v) € H x Hy(£2). (1.36)
Also, given w € H}(£2), from the estimation (1.20) we have that
Bu((t,w), (r,0))] < c2(2)(1+ 53)?|lw|l1,ellulelr o)l V(Ew), (r,v) € Hx Hy(£2). (1.37)

It then follows from (1.36) and (1.37) that there exists a positive constant, denoted by ||Ag + B[,
and depending on pg, k1, K2, K3, K4, c2(£2), and ||lw||1,¢, such that

[(Ag + Buw)((tu), (r,v))| < [[Ag+Bull |t uw)|l|(r,v)ll  V(tw), (r,v) € HxHy(2). (1.38)

Regarding the ellipticity of A, we proceed similarly to [26, Lemma 3.1]. So, we use the bounds for
wu(-) (cf. (1.3)), the Cauchy-Schwarz and Young inequalities (with d1,d2,d3 > 0), and subsequently
the Korn inequality and the Poincaré inequality (see [81, Théoreme 1.2-5]) with constant ¢,, to deduce
that there exists a(§2) > 0 satisfying

Ay((r,v),(r,v)) = a(@)||(r0)|>  ¥(r,v) € Hx Hy(2), (1.39)

where

() = min {al(Q), a3(9), cpaa(2), a5(9)} , (1.40)

with

K K ) 0 K
a1(02) ==y — 23(52 _ 275127 asg(02) := mln{mg (1 — 'u221> ,22},

— i K2 Ry %2) R — %
a3(§2) := min {03(_(2)042([2), 5 }, ay(2) = 5 (1 5 > 155 and  a5(82) = Ky (1 5 ) ,
and c3(§2) > 0 (see [49, Lemma 2.3] for details) is such that

es(Q)l5 0 < I7¢

Gotldivrlio V7€ Hy(div; 2).

In turn, the positivity of «({2) is ensured as long as the constants «; in (1.40) are positive, which gives
the following feasible ranges for the parameters (k;)1<i<4 ,

20 )
0 < n1<262(u1—“2ﬁ3>, Ko >0, 0<ng<—H and 0< n4<263/<1(1——2) (1.41)
201 H2 2
with 5
0<dh<— and 0<da,d3 < 2. (1.42)

12
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Next, combining (1.37) with (1.39), we have that for all (r,v) € H x H}(£2) there holds

(Ao +Bu)(2,0), (r,)) > {a(2) ~ (@)1 + D)ol o e, 0)1? > 2w w2, (143

a(82)

provided ¢(£2)(1 + £2)Y/?||lw 1,0 < — Therefore, the ellipticity of the form Ay + B,, is ensured

a(s2)
2

with the constant > 0, independent of w, by requiring ||wl1,o < ro, with

. o(£2)
U 20(2) (1 + K3V

(1.44)

Finally, the functional Fy (with ¢ € H'(£2), given) is clearly linear in H x H}(£2), and using
Cauchy-Schwarz inequality, we conclude with Mg := (1 4 x3)/2, that

1B < Ms{Ilflog + (1212 + A6l ) gl } - (1.45)

where g := gis € L>(2). The foregoing analysis essentially gives us conditions for the well-posedness
of the uncoupled problem (1.31) or, equivalently, the well definition of the operator S (cf. (1.30)).
This is summarized in the following result.

Lemma 1.1. Let 19 > 0 given by (1.44) and let r € (0,79). Assume that k1 € <0,252 (Ml — "“2%5“12)),

Ko > 0, Ky € (0,2“%), and Ky € (0,253ﬂ1 (1 — %2)) with &, € (o, %) and 85,85 € (0,2). Then,
for each (w, ¢) € H such that |[w|1,o < r, there exist a unique solution (t,u) = S(w, ¢) € H x H}(2)
to problem (1.31) and a positive constant cg > 0, independent of (w, ¢), such that

1S(w, o)l = & W)l < es {IFloe + (1212 + 1dllo.0) lgllsc.c} - (1.46)

Proof. 1t follows from the estimates (1.38), (1.43) and (1.45) and a straightforward application of the
Lax-Milgram Theorem (see e.g. [49, Theorem 1.1]), and the respective continuous dependence result

gives the a priori estimate (1.46) with cg := (7(28) In turn, the ranges for the parameters are stated
«
according to (1.41)-(1.42), guaranteeing the positivity of the ellipticity constant «({2). [ |

Next, we concentrate in proving that problem (1.33) is well posed or, in other words, that the
operator S (cf. (1.32)) is well-defined. The following lemma establishes this result.

Lemma 1.2. Assume that k5 € (0,2~), with § € (0,2K), and kg > 0. Then, there exists a positive
constant 7o (see (1.52) below) such that for all v € (0,79) and (w,¢) € H with ||w||1,o < r, the
problem (1.33) has a unique solution (p, ) = g(w, ¢) € Hp(div; £2) x ﬁl((}) Moreover, there exists
a constant cg > 0, independent of (w, @), satisfying

18(w,6)| = (P @)ll < egn™ U {al22+ [gllo.0 }- (1.47)
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Proof. For a given w € H{(2), we firstly observe from (1.26) and (1.27) that A + By, is clearly a
bilinear form. Also, from the Cauchy-Schwarz inequality we have that

AP 2), (0, 0)) < 1Al (@ o) 1I(g, )],

where ||A|| depends on &, k5 and kg, and from the estimate (1.19) we get

Bu((p,0), (@, ) | < 571 (1+ 52) e (2) w

[CEDIE (1.48)

for all (p, v), (q,v) € Hr(div; 2) x }~I1(Q) Then, by gathering the foregoing estimates, we find that
there exists a positive constant, which we denote by ||A 4+ B,,||, only depending on k, k5, kg and ¢1(12),
such that

In,ellell,e

IA((p,¢), (@,%)) + Buw((p,¢), (a.9))| < |A + Byl |(p, ) (2, )],

for all (p, ), (q,%) € Hp(div; £2) x H(£2). Likewise, from the definition of the bilinear form A (cf.
(1.26)), we have that

A((g.¥),(a.¥) = v lallde — 7 f%/gq-vw + g |divall§ o + ks ¥l o,

and hence, using the Cauchy-Schwarz inequality and the Young inequality with 5> 0, we obtain for
all (q,7) € Hp(div; £2) x HY(£2) that

~ kL g

A(q, ), (g, ) > &1 <1 - ;g) lqlls. + #6lldivglls o + #s (1 - ) 913 - (1.49)

In this way, recalling that the norm and semi-norm are equivalent in the space ﬁl(Q) (cf. 1.7), we
apply the generalized Poincaré inequality with constant ¢, to the last term in (1.49) (see [48, Teorema
9.13]), and define the constants

17
ai(92) = min{ﬂa_l (1 — g%) ,56} and  Qo(R2) := ks (1 _B 5 5) ,

which are positive thanks to the hypotheses on g, k5 and kg, to obtain

A(q,¥), (g ) = aDll(g.v)I*  Y(g,v) € Hp(div;2) x H(12), (1.50)

with a(f2) := min {a;(£2), ¢,a2(2)}, which shows that A is elliptic. Therefore, combining (1.48) and
(1.50), we deduce that for all (q,%) € Hp(div; £2) x H'(£2), there holds

(A+Bw)((g:¥), (a.9)) = {a(2) = 571 (1 + 13) 21 ()

a(f2 ~ = a2
whenever £~ 1(1 4 k2)Y2¢1(2)|Jw|1.0 < oz(z)' Thus, the ellipticity of A + B,, with constant a(2 ),

vo w2 2w, wa

independent of w, is ensured by requiring ||w||;,o < 7o, with

a()
26711+ K2)12¢1(02)

7o = (1.52)
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Next, it is easy to see from (1.29) that the functional ﬁqb is bounded with

1Bl < w7 0 (1 )Y {al 22 + Il } - (1.53)

Summing up, and owing to the hypotheses on k5 and kg, we have proved that for any sufficiently
small w € H}(£2), the bilinear form A + By, and the functional F, satisfy the hypotheses of the
Lax-Milgram Theorem, which guarantees the well-posedness of (1.33) and the a priori estimate (1.47)

with cg 1= (14 K2)Y/2, [ |

2
a)

At this point, we remark that, for computational purposes, the constants a(f2) and a(f2) yielding
the ellipticity of Ay + By, and A+ ]§w, respectively, can be maximized by taking the parameters
01, 09, 03, K1, K3, K4, § and k5 as the middle points of their feasible ranges, and by choosing ko and kg
so that they maximize the minima defining o (2) and a;(£2), respectively. More precisely, we take

1 )
0p=—, 0O2=03=1, K3= 1M1::U%’ 51—52<M1_H3M2>_m

p2 p2 o Hs 20 2’
52 o p201 P %

K4 = 03K1 <1 - 2) = k2= 263 (1 — )= “—%, d =K, (1.54)

-1

~ 5 K
ky =0 =K, and kg=kK (1—>:
20 2

The explicit values of the stabilization parameters r;, ¢ € {1,...,6}, given above will be employed in

Section 1.6 for the corresponding numerical examples.

1.3.4 Solvability analysis of the fixed point equation

Having proved the well-posedness of the uncoupled problems (1.31) and (1.33), which ensures that
the operators S, S and T are well defined, we now aim to establish the existence of a unique fixed
point of the operator T. For this purpose, in what follows we will verify the hypothesis of the Banach
fixed-point theorem (see, e.g. [30, Theorem 3.7-1]). We begin with the following result.

Lemma 1.3. Suppose that the parameters k;, i € {1,...,6}, satisfy the conditions required by Lemmas
1.1 and 1.2. Given r € (0,min{ro,7}), with ro and ro given by (1.44) and (1.52), respectively, we let
W, be the closed ball in H defined by

We = {(w,0) € H: [(w,0)] <r}, (1.55)
and assume that the data satisfy
es{Iflog + (12 + 7r) lglso} + cgn U{al2"* + 1} <. (156)
with cs and cg as in (1.46) and (1.47), respectively. Then T(W,) C W,..
Proof. Given (w,¢) € W,, and so ||w||1,o < 79, it follows from Lemma 1.1 that there exists a unique

u = Sy(w, ¢) € HL(£2) solution to problem (1.31) and it satisfies the a priori estimate (1.46). In turn,
if the data satisfies (1.56), we have that ||S4(w, ¢)|/1,2 < o, and according to Lemma 1.2 there exists
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a unique ¢ = Sa(S4(w, @), ¢) € HL(£2) solution to (1.33) with w := Sy(w, @). As a consequence, from

the definition of the operator T (cf. (1.34)), 3! (u,p) = (Ss(w, ), S2(Sa(w, ¢),¢)) = T(w, ) and
from (1.46) and (1.47)

I, )l < [Sa(w, d)ll,0 + [1S2(Sa(w, ), )

< es {Ifloe + (12172 + 7l¢llo.e) llglsoa | + e~ U {al2'* + 4]0}

1,62,

The results then follows using that ||¢|o,o < r and the assumption on the data (1.56). [

Next, we establish two lemmas that will be useful to derive conditions under which the operator
T is continuous. To this end, in a similar way to [5, Section 3.3] and [26, Section 3.3], we introduce
the following regularity hypotheses on the operator S. From now on, we suppose that f € H‘s((}), for
some § € (1/2,1) and that for each (w, ¢) € H with |w|; o <7, r > 0 given, there holds

S(w, 6) € ((LA(2) N E(2)) x (Ho(div; 2) N (92)) x (L3, (2) NH(2))) x (Hy 0 H*(02)),

and

181w, @)lls.0 + 183(w, 8) 5.0 + 85w, 0)
< Cs{Iflls + (1212 + 7 1¢llo.c) Iglloe,2 }

5,2 + [Sa(w, 9)[[146,0
(1.57)

where Cs is a constant independent of (w, ¢). The aforementioned range for § will become clear in the
proof of Lemma 1.4 and Lemma 1.6 below, in which we will require to suitably control an expression
involving the norm of t = S;(w, ¢) in some L%’ —space by the respective norm in the HY —space, so
that it then can be bounded by data using the a priori estimate (1.57).

Lemma 1.4. Let r € (0,7¢), with ro given by (1.44). Then, for all (w, ), (w,&g) € H such that
lwlli,0, [|[w|i,e < r, there exists a positive constant Cs, depending on the parameters ko, k3, the
constant c(£2) (cf. (1.20)), the ellipticity constant «(§2) of the bilinear form Ay (cf. (1.39)) and §
(cf. (1.57)), such that

IS(w, ) — S, 9)|| < Cs { Ly [S1(w, d)l5,0ll6 — Flass o)

B (1.58)
+[1814(w, @)ll0llw — Bll1.0 + 7 g0l — Bl }

where L, and v are given by (1.2) and (1.1), respectively.

Proof. Given (w,¢), (w,$) € H with w10, [|@|1.e <7, let (t,u) := S(w, ¢) and (t,u) := S(w, ¢)
be the corresponding solutions to the problem (1.31), respectively. Firstly, from the bilinearity of the
forms Ay and B, it is observed that

(A(; + Bﬂ))((t?u) - (i,ﬁ),(g,'v)) - _(A¢> - Ag)((t,u),([, v))

(1.59)
- Bw—ﬂ)((ta u’)v (£7'U)) + <F¢> - F(g) (ﬂ, ’U) V<£7'U) € H x H(lJ(Q) )
where we can notice that
(Ay — AZ)((t ), (r,v) = /Q {u(¢> +a) = p(o+ a)} t:{r—rsT}, (1.60)
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and

(Fo=F3) o) = = [ 16— dg- (v~ madivr). (1.61)
Thus, using the ellipticity of Aj 4 Bg (cf. (1.43)) and then the identities (1.59), (1.60) and (1.61)

with (r,v) = (t,u) — (t,u), we find that

a(zm”(t’ w) - (&,0)|* < (A;+Ba)((tw) - (&), (tu) - (&),

= —(As = AZ)((t,w), (t,u) — (£ a) — By_a((t,u), (t,u) — (@) + (Fs - F3)((t,u) - (& a)),

——/Q{M(¢+Oé)_ﬂ($+a)}t:{(t—N)_H?)(O.d_a,d)}_Bw_ﬂ)((t’u)’(t,u)_(t?a))
_/Q'Yw—ﬁg)g'{(u—ﬂ)—/ﬁgdiv(a-—&)},

Now, applying Cauchy-Schwarz and Holder inequalities, the Lipschitz continuity of p(-) (cf. (1.2)),
and the estimate (1.20), we obtain

a($? ~ ~
D)~ @ @I2 < {200+ )2t am) 16— Bl

+e2(R2)(1+ 13) 2 ullellw — w]

L2+ 10+ 1) 2lgllc.lle — dlo.o It w) - G D),

(1.62)
where p, g € [1,4+00) are such that 1/p+1/q = 1. Next, according to the additional regularity assumed
in (1.57), and recalling that the Sobolev embedding theorem (cf. [1, Theorem 4.12] or [80, Theorem
1.3.4]) establishes the continuous injection is : HO(£2) — L (§2) with boundedness constant Cs > 0,
where

. 6

3—-25"
we then take p such that 2p = §* to deduce that, on the one hand, since ¢ := S;(w, ¢)

[tll2e () = [S1(w, @) l12e(2) < Csl|S1(w, @)

5,025 (1.63)

and, on the other hand, the respective conjugate index ¢ is given by

2p 3
29 = L = =
1 p—1 )
Finally, inequalities (1.62) and (1.63) together with the previous identity give (1.58) with constant
2
Cs = o) max {Cg(l +RV2 () + &DHY2, 1+ /@%)1/2} . [ |

In turn, the following result establishes the Lipschitz-continuity of the operator S.

Lemma 1.5. Let r € (0,79), with 7o given by (1.52). Then, for all (w, ), (w,&) € H such that
|wll1,0, |wli,e <7, there exists a positive constant Cg, depending on the parameter ks, the ellipticity
constant a(2) of the bilinear form A (cf. (1.50)) and the constant c¢1(£2) (cf. (1.19)), such that

18w, 0) ~ 8@, )| < 17" Cg { Ull6 ~ dllo.0 + [Sa(aw, )l 0llw — e b, (1.64)

where k is given in (1.1).
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Proof. Given r and (w, ¢), (ﬂj,aﬁ) € H as in the hypothesis, let us denote (p, ) := S(w, ) and
(P, @) := S(w, ¢), that is, the respective solutions to problem (1.33) in Hp(div; £2) x H'(£2). Thus,
from the bilinearity of A and B,, for any w, we have that

(A + Bﬂ))((p7 90) - (ﬁa ;5)’ (CI>¢)) = _Bwfﬂ)((p7 90)7 (qa ¢)) + (ﬁ(ﬁ - F(;Ng) (q7¢)7

for all (q,%) € Hp(div; 2) x H'(£2). Hence, using the ellipticity of A + Bg (cf. (1.51)) and the
continuity of By, (cf. (1.48)) and the definition of Fy (cf. 1.29), we obtain
(12

.0~ GBI < Bu-al(p.9). (0.0) —~ B.2) + (Fs ~ F5) (p.0) — (5. 2).

1

< {x 11+ (U6 - dlloe + a(@)|w - Bl gll¢

12) @) = 3,2

2 -
The result then follows with Cg := 20 (14 £2)Y2max{1, ¢1(£2)} and recalling that ¢ = So(w, @).

~—

Q

[ |
As a consequence of the previous lemmas, we have the following result.

Lemma 1.6. Given r € (0, min{ro,7}), with ro and 1y given by (1.44) and (1.52), respectively, we
let W,. be the closed ball in H defined in (1.55) and assume that the data satisfy (1.56). Then, there
holds

IT(w, ¢) - T(@,9)]

< (1 w1+ L) Co{Ifllse + 1l + (12172 +7) gl + U Hi(w, 6) - (@, D)1,
(1.65)
for all (w, @), (w, 5) € W, where C 1is a positive constant depending on r, the constants cs, Cs, Cg
(cf. (1.46), (1.58), (1.64)) and & (cf. (1.57)).

Proof. Given r € (0, min{ro,7o}), and (w, ¢), (w,¢) € W,., from the definition of T (cf. (1.34)), the
Lipschitz-continuity of S (cf. (1.64)) and the a priori estimate given for S (1.47) we note that

||T(wa ¢) - T(ﬂjva)” < ||S4(w7d)) - S4(HJ’$)H + ||§2(S4(w7¢)7¢) - §2(S4(@7$)7$)”
< [181(w,¢) — Sa(@, )|l + k7' C5 {Ull6 = Bllo.0 +11S2(Sa(w, 6). &)1, 0lISs(w, 6) — S (i, D)l|1.c }

<KIO5U ||¢ — lloe + (1+ w7 1Cg7)[|Sa(w, ¢) — Sa(w, )10,

where in the last inequality we have used that the data satisfy (1.56) and so ||§2(S4('w, ), )| < r.
Next, using the Lipschitz-continuity of S (cf. (1.58)) and then applying the estimates (1.46) and (1.57),
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and the fact that ||¢||1, 0 < r, we get

IT(w, ¢) — T(@,)|| <k 'C5U |6 — dllo.o + (1 + £~ C57)Cs {Lu I1S1(w, d)l5,2ll¢ — SllLsss e
+ [1S4(w, 9)[l1,2llw — w1 + vgllec.2lld — gllo,ﬂ}

< kg U 6= Bllo.e + (1 + w~'Cgr)Cs { LuCsCs || F s + (1212 +77) gl |16 = S0

s (1 fllo.0 + (12172 + 5 7) Iglloc,0] o — @

Lo +glle.ellé = dlh.e} -

where the multiplicative constant 55, appearing in the second term of the last inequality, stands for
the boundedness constant of the continuous injection of H'(£2) into L3/%(£2). In this way, with

C(r):= (14+rCg)(1+7)Cs, Cr = max{CsCy,cs} and Crpo = 3max{CsCj, cs, 1},
after performing some algebraic manipulations, we find that

IT(w,6) = T(@,3)| < (1++57")(1+ L) {C) [Cra (Iflse + [ Fllo.0)

+Cra (12172 +9)lglloo| + C5U I (w, 6) — (@, 9)]1
and so (1.65) follows with Ct := max{C(r) Cr 1, C(r) Cr2, Cg}
|

We are now in a position to establish sufficient conditions for the existence and uniqueness of a fixed-
point for our problem (1.35) (equivalently, the well-posedness of the variational problem (1.23)). In-
deed, we have from Lemmas 1.1 and 1.2 that T is well-defined in any ball W,., with r € (0, min{rg, 7o}),
and if the data satisfy (1.56) then T(W,.) C W, (cf. Lemma 1.3). Furthermore, Lemma 1.6 guarantees
that T is Lipschitz-continuous. So, if the data is small enough so that

(L4 51+ L) Cr{ I fls0 + 1 flo.0 + (12172 +9) gl + U} < 1, (1.66)

then T becomes a contraction. Therefore, the Banach fixed-point Theorem provides the existence of
a unique fixed-point of T; that is, a unique solution to the problem (1.35), or equivalently, to the
variational problem (1.23). We have then shown the main result of this section, and we state it as

follows.

Theorem 1.1. Let W, be the closed ball in H = H}(£2) x HY(2) defined in (1.55). Suppose that the
parameters ki, i € {1,...,6}, satisfy the conditions required by Lemmas 1.4 and 1.5, that the estimate
(1.57) holds and the data satisfy (1.56) and (1.66). Then, the augmented fully-mized problem (1.23)
has unique solution (t,u,p, p) € H x H}(2) x Hp(div; 2) x H'(2), with (u,p) € W,. Moreover, the
following a priori estimates hold

It w)l < es {Iflo.c + (12172 + 5 elo ) lghe.o}
and
I o)l < g U {al22+ gl

with cg and cg are given as in Lemmas 1.1 and 1.2, respectively.
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We point out here that in practice micro-organisms are slightly denser than water and so the
parameter v = po/pm — 1 is small. Then, the data restrictions (1.56) and (1.66) are equivalent to
require the diffusion rate x to be sufficiently large while the average velocity of upward swimming
U and the physical domain {2 to be sufficiently small. Hence, Theorem 1.1 essentially states that
our augmented fully-mixed formulation provides unique solutions to the Bioconvection problem for
suspensions with viscous culture fluid, large diffusion rate, and slowly upswimming micro-organisms
in small containers, similarly to the primal method for bioconvection proposed in [24].

1.4 The Galerkin Scheme

We here present and analyze the Galerkin scheme of the augmented fully-mixed formulation (1.23).
In Section 1.4.1, after introducing the finite element spaces in which the discretization is based, we
set the discrete problem and adapt the same strategy from Section 1.3.2 to equivalently write it as
a fixed-point equation. The respective solvability analysis will be then address in Section 1.4.2 by
adapting the results for the continuous case obtained in Sections 1.3.3 and 1.3.4.

1.4.1 The discrete framework

As usual, given a shape-regular triangulation 73 of £2 made up of tetrahedra K of diameter hx, we
define the meshsize h := max {hg : K € Tp,}. Furthermore, for any £ > 0 and for each K € Tp, let
P(K) (resp. Px(K)) be the space of polynomial functions on K of degree < k (resp. = k), and with
the same notations from Section 1.1, we define the local Raviart-Thomas space of order k as

RT;,(K) := Py(K) @ Pr(K)x,

where x is a generic vector in R3. Thus, we introduce the following finite element spaces for approx-
imating t, o and p, respectively,

HE = {rheLgr(Q); rhlg € Po(K) VKen},
HY = {rh € Hy(div;2):  c'ry|, € RTy(K), VceR?, VKeT, }
HE = {nh eL2,.(2):  mulg € Pr(K), VKGE},

and for approximating w, p and @, respectively, we define
HY = {uh €C@): ol €Pra(K), YKETh, w,=0on r},

HP = {qh eHp(div;2):  qlx eRTL(K), VEKeT, }
H;f = {thC(\Q): wh|K€Pk+1(K)a VKE’EL, and /Qwh:()}.

That is, trace-free and skew-symmetric tensors in the space sz‘sc (or simply Py when k£ = 0) of
discontinuous piecewise polynomials tensors of degree < k, are used for approximating the strain
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tensor t and the vorticity p, respectively, Raviart-Thomas elements of degree k for approximating the
pseudo-stress o and the pseudo-concentration gradient p, whereas the components of the velocity u
and the concentration ¢ are approximating by using the Lagrange space of piecewise polynomials of
degree k + 1 (with zero-mean value for ¢).

Then, letting Hj, := H! x HY x HY and &}, := (¢4, 0, pp), T := (T, Th,mp,) € Hy, the Galerkin
scheme of (1.23) reads: Find (&), up, Py, ¢n) € Hy x HY x HY x HY such that

A@h((thv uh)? (Ehv vh)) + Bw(@muh)y (£h7'vh)> = F@h(ﬂhﬂ vh) v(£h7 vh) € Hy, x Hy,
(1.67)

A((pha (Ph), (qhawh)) + Euh((pha Soh)a (thwh)) = F‘Ph(qhﬂ wh) v(qhvwh) € Hg X Hf

Similarly to the continuous case, we now rewrite (1.67) as a fixed-point problem in terms of operators
arising by decoupling the system. Indeed, adapting the approach from Section (1.3.2), we firstly define
H), := H}} x H}f and introduce the operator Sy : H;, — Hj, x H}' as

Sn(wn, ¢p) = ((Sl,h(wha¢h),Sz,h('whaQSh)aS3,h(wh»¢h))>S4,h('wha¢h)) = (L, un),

for all (wp, ¢n) € Hy, where, for (wy, ¢p) € Hy, given, (), us) is the unique solution to the discrete
version of the problem (1.31), namely: Find (¢;,us) € Hy, x H}! such that

Ad)h((th’ uh)? (ﬂhﬂ vh)) + B’wh((th?uh)v (£h7'vh)) = F¢>h(£h7vh) V(ﬂh, vh) € Hy, x Hy, (168)

where the bilinear forms Ay, (with ¢p in place of ¢) and By, (with wj in place of w), and the
functional F, (with ¢, instead of ¢) are defined as in (1.24), (1.25) and (1.28), respectively. Secondly,
we define the operator Sy : Hy, — HY x HY as

Sh(wh, én) = (Syn(wn, 1), Son(wn, é1)) = (P, en) ¥ (wh, ép) € Hy,

where, for (wp,¢n) € Hy given, (py, ¢n) stands for the unique solution to the discrete version of
problem (1.33), that is: Find (py,, pn) € HY x Hf such that

K((piw Soh)7 (q}w wh)) =+ B'wh((ph7 ‘Ph)ﬂ (qhvwh)) = ﬁﬁsh(qhvwh) v(qhﬂph) € HZ X Hf? (169)

where the bilinear forms A and ﬁwh (with wy, in place of w), and the functional ﬁ% (with ¢y, instead
of ¢) are defined as in (1.26), (1.27), and (1.29), respectively. Hence, by introducing the operator
Ty, : Hh — Hh as

Th(wy, ¢p) = <S4,h(wh7¢h)a§2,h(s4,h(wha ¢h)7¢h)> V(wp, ¢n) € Hy,

we realize that solving (1.67) is equivalent to seeking for a fixed-point of the operator T}, that is:
Find (up, pp) € Hy, such that

Th(un, on) = (wn, on). (1.70)

1.4.2 Solvability analysis

Here we study the solvability of the fixed-point equation (1.70) by adapting the analysis from
Sections 1.3.3 and 1.3.4. We remark in advance that most of the proofs are almost verbatim from
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the analogues results at continuous level, and hence we omit the details in those cases. To begin
with, using the same arguments from Lemmas 1.1 and 1.2, we firstly state conditions under which
the discrete problems (1.68) and (1.69) are well-posed, and therefore the operators S; and §h are
well-defined.

Lemma 1.7. Suppose that the parameters k;, i € {1,...,4}, satisfy the conditions required by Lemma
1.1. Then, for each r € (0,79), with ro given by (1.44), and for each (wp,¢n) € Hy such that
lwnll1,0 < 7, the problem (1.68) has a unique solution (t,,wn) = Sp(wy, ¢n) € Hy, x HY. Moreover,
with the same constant cg > 0 from (1.46), which is independent of (wp, ¢n), there holds

I1Sn(wn, o)l = 1t un) | < es {IIfllo.c + (12172 + Hlénlon) lgleo}

Lemma 1.8. Suppose that the parameters k;, i € {5, 6}, satisfy the conditions required by Lemma 1.2.
Then, for each T € (0,79), 7o given by (1.52), and for each (wp, 1) € Hy, such that w10 < T, the
problem (1.69) has a unique solution (py,,pn) € HY x HY. Moreover, with the same constant cg >0
from (1.47), which is independent of (wp, ¢n), there holds

I8n(wn, o)l = pr o)l < g™ U {al212 4 onloa .

Now we state the solvability of the fixed-point equation (1.70) by verifying the hypotheses of the
Brouwer fixed-point Theorem (cf. [30, Theorem 9.9-2]). On the one hand, as a straightforward com-
bination of Lemmas 1.7 and 1.8, we begin by establishing the discrete version of Lemma 1.3.

Lemma 1.9. Given r € (0, min{ro,70}), with ro and ro given by (1.44) and (1.52), respectively, we
let W, 1, be the closed ball in H;, defined by

Wo = { (wnyn) € Hu s || (wns o) < 7}, (1.71)

and assume that the data satisfy (1.56). Then Tp(W, ) C Wiy

On the other hand, we focus now on the Lipschitz continuity of the operators Sy and §h, Regarding
Sy, the discrete version of Lemma 1.4 is provided next. Here, we particularly notice in advance that
the additional regularity assumption (1.57) employed there to suitably bound t in the L2”—norm by
some H°—norm can not be applied at the present discrete context to bound ¢;. On the contrary,
we will utilize a L* — L* — L2 argument (H6lder inequality) to bound the respective term in which
it is involved and then make use of the fact that ¢; € Hfb, and so their components are piecewise
polynomials (see at the beginning of Section 1.4.1).

Lemma 1.10. Let (wp, ¢pn), (ﬂ;h,ih) € Hy, such that ||wp,
ro given by (1.44). Then, there exists a positive constant Cs, , depending on k2, K3, c2(§2), and a(12),
but independent of h, such that

1,0, [|[Wnll1,0 <7, for any r € (0,r0) with

IS (wh, ¢n) — Sh(wn, én)|| < Cs, {Lu 1S4 (wn, 80) a0yl 6n — dnllrae

3 N (1.72)
+1San(wn, ¢n)ll1,ellwn — whl1,e + Iglleo,2llén — ¢hHo,n} :
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Proof. The proof is almost verbatim to that one of Lemma 1.4. Indeed, it suffices to see that when
applying the Holder inequality with p = ¢ = 2, the estimate (1.62) becomes
a(£2)
2
+2(2)(1+ 63) 2| |unll, @l wn — @hll1,0 + (1 + £3)72(lg]lco,2llén — onl

(Eh, wn) — (£, Un)|| < {Lu(l + 832t a0y én — dnllae (L73)

ol

Since elements of H} are piecewise polynomials by components we have that [tnllLa(0) < +oo, and
using the fact that S;,(wp, ¢n) = tp, the inequality (1.73) immediately yields the estimate (1.72)

2
with Cg, = o) max {(1 + kY2 ()1 + K2)V2, (1 + /@%)1/2} , which is clearly independent of
|

Following the same arguments used in the proof Lemma 1.5, we directly have the following result
regarding the operator Sy,.

Lemma 1.11. Let (wy,, ¢p), (W, ¢p) € Hy, such that |lwn 1,0, lwnlh,e <7, for any r € (0,79), with
o given by (1.52). Then, with the same constant Cg provided by Lemma 1.5, there holds

181w, 6n) = Su(@n, )l < 5 C { Ullon — nlloa + 1820w, on) 0llwn — @illo} - (174)

As a result of the previous two lemmas, we can state the Lipschitz-continuity of the operator T},
which constitutes the discrete version of Lemma 1.6.

Lemma 1.12. Let r € (0, min{ro,70}), with ro and 7o given by (1.44) and (1.52), respectively, let
W, be the closed ball in Hy, defined in (1.71) and assume that the data satisfy (1.56). Then, there
exists a constant Ct, > 0, that depends on v and other constants but is independent of h, such that

ITh(wh, ¢n) — Tn(@n, ¢n)]| < (1+ K11+ L) CTh{HSl,h(wha on)llLaco) )
1.75
+ I Fllo,2 + (WW2 +7) 19ll00,2 + U}||(w,¢) —(w, 9],
for all (wp, 1), (@, dn) € Wrp.

Proof. Proceeding as in the proof of Lemma 1.6, but using (1.72) and (1.74) instead (1.58) and (1.64),
respectively, the continuous injection of H'(£2) into L*(£2) with constant C, and then the a priori
estimate provided by Lemma 1.7, we find that

T4 (wh, é1) — Th (@, bn)||

< & 105U ||on — dnlloe + (1 +#1Cg7)Cs, {Lué ISt (wn, &n) sy llén — dnll1e

ol

C(r) := (14rC5)(1+7)Cs, , CN'TJ .= max{C,cg} and 5'1‘,2 = 2max{cg, 1},

tes[IFlo.0+ (12172 +57)lglloo] lwn = @nllie + 7 lgl.olon - bl

Then, after performing algebraic manipulations and defining

the results follows with C, := max{C(r) Cr, C(r) Cr2, Cg}, which is independent of 1 because so
the constants C(r), Cr 1, Ct2 and Cy are. [ |
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The previous lemma provides the continuity required by the Brouwer fixed-point theorem, in the
convex and compact set W,.;, C Hj,. Therefore, we have essentially proved the following result.

Theorem 1.2. Suppose that the parameters rk;, i € {1,...,6}, satisfy the conditions required by
Lemmas 1.4 and 1.5. Let W, j, be the closed ball in Hy, defined in (1.71) and assume that the data satisfy
(1.56). Then, the Galerkin scheme (1.67) has at least one solution (t;,, wn, Py, ¢n) € Hyx HExHY xHY
with (wp, on) € Wy, and the following a priori estimates hold

It un)| < es {IFloe + (12172 + Alenlo) gl

and
|1 on)ll < g U {al212 + lgnlloe }

with cg and cg as in Lemmas 1.1 and 1.2, respectively.

We end this section by remarking that the lack of suitable estimates for [|Sy n(wn, ¢n)||L1(0) (similar
to [26, Section 4.2]) stops us of trying to use (1.75) to derive a condition on data so that T} becomes
a contraction. This is the reason why in the previous theorem we can only guarantee the existence of
a discrete solution. In turn, as we commented after Theorem 1.1 for the continuous case, the previous
result states that our augmented fully-mixed scheme provides existence of discrete solutions to the
bioconvection problem whenever the data satisfy the condition (1.56), that is, for suspensions with
viscous culture fluid, large diffusion rate, and slowly upswimming micro-organisms in small containers,
similarly to the classical finite element method for bioconvection that was constructed in [24].

1.5 A priori error analysis

In this section, we undertake the error analysis for the Galerkin scheme (1.67) associated to the
problem (1.23). To that end, we will deduce the corresponding Céa estimate as well as the respect-
ive theoretical convergence rates according to the approximation properties of the discrete spaces
introduced in Section 1.4.1. To begin with, we let

(t,u,p, o) € H x H5(2) x Hp(div; 2) x H'(2)  with (u,p) € W, ,
and
(t, un, Py, on) € Hy x Hi x HY x HY  with  (up, on) € Wy,
be solutions to the problems (1.23) and (1.67), respectively. Therefore, we have that
Ay((t,u), (r,v)) + Bu((t,u), (r,v)) = Fp(r,v) V(r,v) € H x Hy(£2),

(1.76)
A@h(@h?“h)a (Eh,vh)) + Buh(@h:uh)v (fhﬂ'vh)) - F@h(ﬂmvh) v(fhv vh) € Hjp x H;LL’

and

A((p,9): (q.¥)) + Bul(p,9), (q.¥)) = Fo(q,v) V(g ¢) € Hp(div; 2) x H(12),

A((ph7 (zOh)v (Qhﬂ/)h)) B'U«h((ph’ @h)’ (qha wh)) = F@h (Qhﬂ/]h) v(Qh’ 7vz)h) € HZ X Hﬁ

(1.77)
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Because of the structure of the systems (1.76) and (1.77), in what follows we apply the well-known
Strang lemma for elliptic variational problems (see [83, Theorem 11.1]) in order to derive an upper
bound for the total error ||(¢, uw, p, ) — (£, un, Pp, ©n)||. We recall this auxiliary result as follows.

Lemma 1.13. Let V be a Hilbert space, F € V', and A : V xV — R be a bounded and V -elliptic
bilinear form. In addition, let {V4},~o be a sequence of finite dimensional subspaces of V', and for
each h > 0 consider a bounded bilinear form A : Vi, x V), — R and a functional F}, € V;. Assume
that the family {Ap} -~ is uniformly elliptic, that is, there exists a constant & > 0, independent of h,
such that

Ap(vn, va) = @llonly, Vo €V, Vh>0.

In turn, let u € V and up, € V}, such that
A(u, v) = F(v), VYveV, and Ap(up, vp) = Fp(vy), Yo € V.
Then, for each h > 0 there holds

F — F
lu—unlly < Csr{ sup [Fwon) = Fifuon)|

wpREVR HwhHV
wp, 70

A — A
©onf | oyt sup |A(vp, wp) — Ap(vp, wy)|
v EV), whEV), |wnllv
vh?'éo wh;é()

where Cgr = &~ max{1, ||A|}.

In that follows, we denote as usual

dist ((¢,w), Hy, x HY) := inf t,u) — (r,,vn)l,
((tw). BB = ) (g o)

and

dist((p, ¢), HY x HY) := inf D, ) — (an, ¥n)|l -
((p.) B ) o= int ) = a0

The following lemma provides a preliminary estimate for the error ||(¢,w) — (¢, up)|| associated to
the system (1.76).

2
Lemma 1.14. Let Cgr := ) max{1, [|A, + By}, where a(£2) is the constant yielding the ellipt-
a

icity of A, + By (cf. (1.43) and Lemma 1.1). Then, there holds
1t w) = (o wn)ll < Csr { (14 20 A0l + e2(2) (1 4+ 132w — wllyc) dist (¢, w), Hy x HE)

+7(1+13)llglloc,0lle = enllo,e + LuCs(L+ #3)'2¢

s.2lle = enllusrsq) (1.78)

+ea( Q)1+ 1) ul,ollu - wille}
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Proof. Since (u, ) € W, and (up, ¢p) € W, p,, Lemma 1.1 and Lemma 1.7 guarantee that the bilinear
forms A, + B, and Ay, +B,, are H x H{(£2)—elliptic and Hj, x H¥—elliptic (¥ h > 0), respectively,
with the same constant @ (see (1.43)). Also, F, and F,, are clearly both linear and bounded
functionals. Therefore the system (1.76) satisfies the hypotheses of Strang’s lemma and thus, a direct

application of the Lemma 1.13 to the specific context (1.76) with
A = Aap —+ Bu, {Ah}h>0 = {A@h + Buh}h>07 F = F@, and Fh = F@h s

yields

It w) = (o w)l < Csr{ |[(Fo = Fou) g, ans

(ry,,vn) € Hp xH}

+ inf (H(t, u) — (15, vn) ||

(Ehvvh)7£0
(1.79)
L sw [(Ap — Ay ) (4, vn), (8h, 2h)) + Bu—u, (4, 1), (85, 21)))|
(81,,2n) €Hp xHY (8 1)l 7
(§h7zh)7£0
2
where Cgr 1= o) max{1l, [|[A, + Byl/}. Now, from the estimate (1.61), observe that the first term
a
at the right-hand side of (1.79) can be bounded as
|(Fe = Fo) g | < 70+ )2 gl sl = enlloo (1.80)

To estimate the supremum in (1.79), on the one hand, we first conveniently add and subtract (¢, w)
in the first component of the bilinear form A, — A, to find

(ASD - Asﬁh)((ﬁh’ vh)a (§h7zh)) = A@((fha vh) - (L 'u')a (§h7zh))
(1.81)

+ (ASD - AS%)((L u)? (§hv zh)) + A@h((L u) - (Ehv'vh)? (§h7 zh)) :

Now, we apply (1.36) to estimate the first and third terms at the right-hand side of (1.81), whereas
the the second term is estimated by proceeding similarly to the derivation of (1.62) combined with
(1.63), which gives

[(Ap = Ay, ) (T, 0n), (shy20))| < 2 AL (8 w) = (2, v0) || (sh, 20)l

+ LuCs(1 + #3)' 2 |tlls,0lle — nllas gl (shs ) -

On the other hand, for estimating the term that involves By, , we apply (1.37) with w = u — uy,

1Bu—w, (T, v1), (8, 20)] < c2(2) (1 + 83)2|lw — wpl|1,ellvnll,ell(sh. 20)]]
< ()1 + 63) 2 |lu — upll1,0ll(E w) — (v, v0) | [(8h, 20) (1.82)

+ ()1 + K2V u —

1,02 ’UHLQH(éha zu)ll,

where the last inequality arises after adding and subtracting w in the term ||vpl|1,0, using triangle
inequality and then bounding ||u — vpl|1,2 by |[(t,w) — (3, vn)||. Finally, by replacing (1.80), (1.81)

and (1.82) back into (1.79), we get (1.78). [ |
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Concerning the error ||(p, ¢) — (P, ¥n)|| associated to the concentration equations (1.77), we have
the following result.

~ 2 <5 ~ o o
Lemma 1.15. Let Cgr := () max{1, ||[A+Byl||}, where a(S2) is the constant yielding the ellipticity
a
of A+ By (c¢f (1.51) and Lemma 1.2). Then, there holds

12, 0) = (pr>om)l < C’ST{ (14 5t @)+ 1) V2w = up 1,0 ) dist ((p, ), HE x HY)

0,9}-

Proof. Tt follows from a slight modification of the proof of [35, Lemma 5.3] which makes use of Lemma

(1.83)
+rre(2)(1+ )l ellellu — unllie + £TTUL+82)V2 e = on

1.13. There, the consistency error associated to the functional in the Strang estimate vanishes, but
this does not happen in the present case with F, — F,,. We simply bound this term similarly as in
the proof of Lemma 1.5. We omit further details. |

We now combine the two previous lemmas to derive an a priori estimate for the total error
It w,p, o) — (t,, un, P, on)||. Indeed, by gathering together the estimates (1.78) and (1.83), we
get

||(§,u,p, 90) - (tha Up, Ph» Soh)H < CSTLHClS(l + H§)1/2Ht”579‘|(p - @hHL3/5(Q)

+ (Corea(@)(1 + ) Pullie + Csra'er(@)(1+ )Y 2llll0) - wille

+ (Corr(1 4+ 53) gl + Corn U1 +2)) 0 — gnllo.0

+ CST<1 + 2 Ayl + ca(2)(1 + £2)V2|u — uhul,g)dist((;, w), Hy, x HY)

+ 65T<1 + 57 te ()1 + k32w — 'U/h”l’()>dist((p, ¢), HY x HY).

The first term of the right-hand side of the foregoing inequality is estimated by using (1.57) to bound
|[]/s.2, and the continuous injection of H!(£2) into L3/°(£2) to get || — enllsioo) < Cslle — onllie-
In turn, in the second term, we use that (u, ) € W, to bound ||u|1,o and ||¢|1,o by r. In this way,
after performing some algebraic manipulations, we can assert that

||(t)u7p’ ‘P) - (thauhvph7()0h)H S C(.f)ga Ry by 7Y, U) r, ‘QD ||(§7’u’)pa 90) - (thauhvph7¢h)"
+Cor (14 20 Al + e2(2)(1+ K2 — anlly 0 ) dist (8 w), B, x H) (1.81)

+ 55T<1 + Kl (2)(1 + /4,%)1/2||u — uhHLQ)dist((p, ®), Hﬁ X H;f) ,

where C(f, g, k, 1,7v,U,|f2]) is a constant, depending only on data, r and |{2|, but is independent of
h, defined by

C(.f?Qa Ky s 7, U7 T, |'Q|) = max{ Cl(f,g,,u,’)/,’l“, “QD ) C2(K‘>r) ’ C3(g¢’{77a U) } ’ (185)
with
Ci(f, 9,17 712) == Ly Cr{lIfllse + (122 +77)lgllc2}, Colk,r) = rCo(x' +1),

and  Cs(g,k,7,U) := Cs (V||glloc,0 +£71U),
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where
Cy := Csr C5 Cs as (1+ "f%)l/Q , Cr:=Csrea(2)(1+ Hg)uz + Csr c1($2) (1 + '%)1/2’

and Cs:=Cgsr(1+ lﬁ%)l/z + Csr (1+ "%)1/2 :

Note that the constants multiplying the distances dist(@, u), Hj x H}L‘) and dist((p, ®), Hf: X Hf)
are both controlled by other constants, parameters, and data only because so ||[u — w1, does,
according to Theorem 1.1. Consequently, we are in position to establish the following result providing
the complete Céa estimate.

Theorem 1.3. Let r € (0, min{ro,7o}), with ro and 7o given by (1.44) and (1.52), respectively, and
(t,u,p,p) € H x H{(2) x Hp(div; 2) x HY(2) and (L), un, pp, o) € Hy x HE x HY x HY, with
(u,p) € W, and (up, pp) € W, p, be solutions to the problems (1.23) and (1.67), respectively. Assume
that the data, r and §2 are such that the constant defined by (1.85) satisfies

_ (1.86)

N | =

C(f,g.k, 1,7, U, [2]) <

Then, there exists a positive constant C, depending only on parameters, data and other constants, all
of them independent of h, such that

H(L u, p, SO) - (thvufnph?@h)u < C{dISt((§7 'LL), Hh X H’;LI‘) + dlSt((p7 90)7 Hg X H;f)} (187)

Proof. Tt follows by using the hypothesis (1.86) into the estimate (1.84) and the fact that w and uy,
are both bounded by r and so ||lu — up||1,0 < 2r. |

Finally, we complete our a priori error analysis stating the corresponding convergence rate of our
Galerkin scheme (1.67).

Theorem 1.4. In addition to the hypotheses of Theorems 1.1, 1.2 and 1.3, assume that there exists
s > 0 such that t € H*(£2), o € H*(2) with dive € H*(2), p € H*(2), u € H*TY(02), p € H3()
with divp € H*(02), and ¢ € H*TY(§2). Then, there exists C > 0, independent of h, such that

||(t7uapa (P) - (thauhaph780h)H < Chmin{s7k+l}{}‘ Ht

sotlolsetlldivelsetiplse  +lulls+io+lplset|
(1.88)

Proof. Tt follows directly from the Céa estimate (1.87) and standard approximation properties of the
discrete spaces H¢, HZ, HY, HY, HY and H (see [21,49], for instance) . [ |

Now, regarding the postprocessing of additional variables, on the one hand, we recall the orthogonal
decomposition for the pseudostress tensor provided in (1.16), and then the modified equation for the
continuous pressure (1.12) becomes

1 1
p=—str(c+cd+ (u®u)), with c:=——-— [ trlu®u). (1.89)
3 3102] Jo
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Thus, according to (1.89), we define our discrete approximation of the pressure as

1 1

pp = —=tr(op + cpl + (up @ uy)), with ¢ = ——— tr(up, @ up), (1.90)

3 3121 Ja

which yields
1

p—pn=50{(on— o)+ (wn G un —u@w) | + (e ).
On the other hand, such as in [37], it is not difficult to see that the relation (1.13) gives also the chance
to compute the discrete concentration gradient through the formulae

Von = £ oy + 5 opun + 57U (on + )iz . (1.91)

Therefore, similarly to [23, Section 4], we easily deduce that there exist constants C, C > 0, independ-
ent of h, such that

Ip = pulo.c < C{llo = onllaivie + u — unllio .
(1.92)

Ve — Vnllo,n < 6{”p_thdiv;Q+ o — @nll,0 + Hu—uhlh,g},

and so the convergence rates of the postprocessed variables, in the L?-norm, coincide with those
provided by (1.88) (cf. Theorem 1.4).

1.6 Numerical results

This section presents a few numerical examples to illustrate the performance of our augmented
fully-mixed formulation (1.67) and to support the respective convergence theoretical results for the
primary and postprocessed variables predicted by Theorem 1.4 and the estimates (1.92), respectively.
The fixed-point problem (1.70) has been implemented through a Picard iteration on a FreeFem-+-+
code (cf. [59]) and the resulting algebraic linear systems have been solved with the direct linear solver
UMFPACK (see [39]). As an initial solution, we have simply taken (ug)), 9020)) = (0,0) to construct,
on each step m, the entire solution vector

sol™) = (£ (™) plm) 4y (m) plm) Sy g all > 1.

As a stopping criteria, we have prescribed a fixed tolerance tol = 1E—8 to finish the iterative technique
when either a maximum number of iterations is reached or the relative error between two consecutive

m+1)

iterations, let us say sol™) and sol( , satisfies

||so1™ 1) — 5ol ||,

501"+ 1| 2

< tol,

where || - ||,2 stands for the Euclidean ¢#2—norm in R" with N denoting the total number of degrees
of freedom defined by the finite element family (H¢, v, HZ ,H}, Hz , Hf) specified in Section 1.4.1.

The individual errors associated to the primary unknowns are denoted and defined by
e(t) := [t —tullo,e, e(o):=llo—onlavie, elp):=Ilp—puloe,

e(u) = lu—uplie, eP):=I[p—pplave and e(p):= ¢ —¢nlle,
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and the errors associated to the postprocessed variables (cf. (1.90) and (1.91)) are given, respectively,
as

e(p) == [lp—prllo,e and e(Vy) := [[Vo = Voullon-

We also let eprin and epost be the total errors related to the primary and post-processed variables,
respectively, that is,

1/2

eprin 1= {e(t)? +e(0)? +e(p)® +e(u)’ +e(p)* + e(p)’} and  eposs = {e(p)® +e(Ve)?}'2.

Following the same notation, we denote r(-), rprin and rpest as the individual experimental conver-
gence rate associated to each variable, and the total convergence rates of the primary unknowns and
post-processed variables, respectively, that is

log(epost /e;ost )
log(h/h)

B log(e( . )/e/( . )) _ log(eprim/eiarim) and Tpost =

) gy T T T g/

where h and A’ denote two consecutive meshsizes with errors e and e’.

1.6.1 Example 1: Accuracy assessment in 2D

In our first example we study the accuracy of the method in 2D by manufacturing an exact solution of

a corresponding modification of problem (1.6) and considering a non concentration-dependent viscosity.
dp

BES and Vo,

More precisely, the expressions is, g—;’;, and v3 are replaced in (1.6) by iz := (0,1),
respectively. Then, we consider the square {2 := (—1,1)? and the data

pw(zy, xy) = 1+sin’(z;), U =0.01, ~=0.5, k=1, a=05 and g=(0,1)". (1.93)

It follows that u1 = 1 and pe = 2 (cf. (1.3)), and hence the stabilization parameters x;, (i =1,...,6),
are chosen as in (1.54) and in accordance to Lemmas 1.1 and 1.2, that is

/{1:%, /{2:/{3:/;%, 54:%, K5 = Kk, and /16:%. (1.94)
The terms on the right-hand sides are adjusted in such a way that the exact solutions are given by

the smooth functions

27 cos(mx) sin(mxg) sin? (1)
u(21,22) = , p(x1,22) = —dx18in(z2),
—27 cos(mry) sin(ma ) sin?(ma)

and

o(z1,22) = z9exp<Ux2> — «, where ¥ € R is taken so that / @ =0.
K 2

Note that the homogeneous Dirichlet condition for the velocity, the Robin-type boundary condition
for the concentration, the incompressibbility condition of the fluid, and the zero-mean value restriction
for both the pressure and the concentration are satisfied by the above functions.

Values of errors and corresponding convergence rates associated to the approximations with the
finite element families Py — RTy — Py — P; — RTy — Py and P{i*¢ — RT; — P{isc — Py — RT; — Py
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115 2 3.1e+00

1.7e-01 0.25 0.3 0.35 0.4 4.7e-01

——— Ph b —

42e+00 2 -1 0 1 2 4.1e+00 uh 3.6e-19

Dh i o

Figure 1.1: Example 1: Approximated pressure, velocity magnitude, and concentration obtained with
the fully-mixed method using k£ = 0 and N = 873843 degrees of freedom.

corresponding to approximations of order £k = 0 and k = 1, respectively, are reported in Table 1.1.
There, we observe that the convergence rates are linear (in the case k = 0) and quadratic (in the case
k = 1) with respect to h for all the main unknowns in their respective norms, as well as the post-
processed variables in the L?—norm. Also, it is observed that the errors decay faster when increasing
the approximation order from k& = 0 to ¥ = 1. In particular, this behavior can be observed from the
values related to the total convergence rates rprin and rpest for the primary and the variables obtained
by post-processing. Our findings are in agreement with the theoretical error bounds predicted from
Theorem 1.4 and the estimates (1.92). On the other hand, we mention that 8 and 9 Picard steps were
required to reach the prescribed tolerance tol = 1E-08 in the cases k = 0 and k& = 1, respectively.
The approximation of the velocity magnitude, the pressure and concentration are depicted in Figure
1.1 computed with our fully-mixed method on a mesh with N = 873843 degrees of freedom and k£ = 0.

1.6.2 Example 2: Accuracy assessment in 3D with concentration-dependent vis-
cosity

In this example we focus on testing the accuracy of our method in the three-dimensional setting
and considering the viscosity as a concentration-dependent function. To that end, we define the

manufactured exact solution in the cube £2 := (0,1)3 as
4aiwoxs(ws — 1) (2e — 1) (22 — 23) (21 — 1)?
u(zy, x2,x3) = —43:130%3;3(362 —1)*(x3 — 1)(x1 — 1)(z1 — x3) ,
2

2
4arz9xd(xs — 1)% (w2 — 1) (21 — 1) (21 — 22)
p(x1,xe, x3) = cos(mxy) cos(xe) cos(zs) ,

and, similarly as in the first example, the auxiliary exact concentration satisfying the Robin-type
boundary condition takes the form

U
p(z1, 2, 13) = ﬁewp(—x;:,) — «, where 9 € R is taken so that / e =0.
K Q
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Fully-mixed Py — RTy — Py — P; — RTy — P; (k = 0) scheme

e(t) r(t) e(o) r(o) elp) r(p) e(u) r(u) e rlp) el x(p)

2.4590 - 17.755 - 2.1535 - 4.4929 - 0.1792 - 0.1728 -

1.2280 1.0018 8.9033 0.9958 1.1132 0.9520 2.2405 1.0038 0.0898 0.9968 0.0869 0.9917
0.8925 0.9976 6.4778 0.9943 0.8147 0.9759 1.6285 0.9974 0.0654 0.9912 0.0633 0.9906
0.7010 0.9980 5.0906 0.9958 0.6419 0.9850 1.2792 0.9976 0.0514 0.9953 0.0498 0.9928
0.5607 1.0098 4.0729 1.0085 0.5144 1.0012 1.0232 1.0097 0.0411 1.0112 0.0398 1.0117
0.3924 0.9928 2.8513 0.9919 0.3606 0.9881 0.7162 0.9923 0.0288 0.9892 0.0279 0.9881
0.3567 1.0724 2.5921 1.0715 0.3279 1.0687 0.6510 1.0731 0.0262 1.0637 0.0253 1.0998

e(p) r(p) e(Vy) r(VY) eprin  Tprim  ©post  Tpost h N It

1.5750 - 0.1728 - 18.606 - 1.5845 - 0.0884 18819
0.7723 1.0281 0.0869 0.9917 9.3301 0.9958 0.7772 1.0277 0.0442 74499
0.5587 1.0122 0.0633 0.9906 6.7884 0.9943 0.5623 1.0119 0.0321 140451
0.4378 1.0076 0.0497 0.9995 5.3347 0.9957 0.4406 1.0075 0.0252 227139
0.3497 1.0169 0.0398 1.0044 4.2682 1.0085 0.3520 1.0158 0.0202 354483
0.2444 0.9966 0.0279 0.9881 2.9881 0.9918 0.2460 0.9964 0.0141 722403
0.2222 1.0706 0.0253 1.0998 2.7164 1.0716 0.2236 1.0710 0.0129 873843

o 00 0 0o 0o Co o

Fully-mixed P§i*¢ — RT; — P{is¢ — Py — RT; — P3 (k = 1) scheme

e(t) r(t) e(o) r(o) elp) x(p) e(u) r(u) e =x(p) el x(p)

0.3204 - 2.2831 - 0.2628 - 0.5630 - 0.0214 - 0.0205 -

0.1812 1.9853 1.2892 1.9905 0.1523 1.9001 0.3186 1.9830 0.0121 1.9859 0.0117 1.9533
0.0808 1.9898 0.5745 1.9907 0.0695 1.9322 0.1422 1.9868 0.0054 1.9871 0.0052 1.9972
0.0455 1.9988 0.3234 2.0013 0.0395 1.9679 0.0801 1.9990 0.0031 1.9330 0.0030 1.9158
0.0359 2.0168 0.2556 2.0023 0.0313 1.9803 0.0633 2.0033 0.0024 2.1782 0.0023 2.2613
0.0239 2.0105 0.1712 1.9805 0.0208 2.0194 0.0423 1.9919 0.0016 2.0036 0.0015 2.1122

e(p) r(p) e(Ve) r(VY) eprin  Tprim  ©post  Tpost h N It

0.2185 - 0.0205 - 2.3879 - 0.2195 - 0.1178 35139
0.1236 1.9843 0.0117 1.9533 1.3490 1.9889 0.1242 1.9841 0.0884 62211
0.0550 1.9942 0.0052 1.9972 0.6014 1.9897 0.0552 1.9943 0.0589 139395
0.0309 2.0082 0.0030 1.9158 0.3386 2.0007 0.0310 2.0073 0.0442 247299
0.0244 2.0100 0.0023 2.2613 0.2676 2.0024 0.0245 2.0123 0.0393 312771
0.0163 1.9935 0.0015 2.1122 0.1792 1.9822 0.0164 1.9945 0.0321 466755

Table 1.1: Example 1: Convergence history for the fully-mixed approximation of the Bioconvection
problem with k£ = 0 (first and second panel) and k = 1 (third and fourth panel)
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Next, the viscosity is taken as a concentration-dependent function defined as

p(p) = 1+ sin*(p),

satisfying (1.2) and (1.3) with g1 = 1 and p2 = 2. The rest of data and stabilization parameters are
taken as in (1.93) and (1.94).

For this example, we consider the finite element spaces introduced in Section 1.4.1 with & = 0. The
convergence history is summarized in Table 1.2 and it is observed there that the total error decay is
of order O(h) for the primary unknowns and the postprocessed variables as predicted by Theorem
1.4 and the estimates (1.92). In particular, 4 Picard steps were required to achieve the prescribed
tolerance tol = 1E-08. Next, in Figure 1.2 we display the streamlines, the component p;5, of the
vorticity tensor and the concentration profile ¢ in the first panel, whereas in the second panel are
depicted the component £1;j of the shear stress tensor, the component o3 of the pseudo-stress
tensor and the concentration gradient vector field Vj, obtained with k£ = 0 and N = 1403428 degrees
of freedom.

1.6.3 Example 3: Accuracy assessment with no manufactured analytical solution

In this example we aim to illustrate the accuracy of our method by considering a case in which the
exact solution is unknown in the two-dimensional setting. As in the previous example, we consider
the viscosity as the concentration-dependent function given by u(p) = 1 + sin?(y), satisfying (1.2)
and (1.3) with u3 = 1 and pg = 2. Here, the source term is taken as f = 0, and the data are given by

U=001, v=0.1, k=008, a=03 and g=(0,9.8)",

in terms of which the parameters x;, (i = 1,...,6) are defined according to (1.94). The boundary
conditions are imposed as in (1.4) In Table 1.3, we summarize the convergence history for a sequence
of uniform triangulations, considering a Py — RTy — Py — P; — RTy — P approximation. We mention
that the errors and the convergence rates of are computed by considering the discrete solution obtained
with a finer mesh (N = 822,774) as the exact solution. It is observed that the rate of convergence
O(h) is attained by all the primary and post processed unknowns as well as the total convergence
rates in agreement with Theorem 1.4 and the estimates (1.92). Additionally, in Figure 1.3 we display
the approximation of the velocity components whereas in Figure 1.4, we illustrate, in a 3D view,
the pressure (left) and the concentration (right) scalar fields and observe there that p, has a linear
behavior differently than ;. All the figures presented there were obtained with N = 181,203 degrees
of freedom.
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Fullyfmixed PQ — RTO — PO — P1 — RT(] — P1 (]f = 0) scheme

e(t) r(t) e(o) r(o) elp) x(p) e(uw) r(u) ep) xp) elp) z(¥)
0.0817 - 0.6974 — 0.0446 — 0.0916 — 0.4489 - 1.0850 -
0.0676 0.4672 0.4764 0.9398 0.0419 0.1544 0.0647 0.8576 0.4365 0.0692 0.8401 0.6039
0.0550 0.7174 0.3580 0.9941 0.0371 0.4209 0.0452 1.2500 0.3301 0.9713 0.6096 1.1154
0.0389 0.8569 0.2360 1.0274 0.0290 0.6089 0.0252 1.4391 0.1918 1.3385 0.3433 1.4156
0.0297 0.9306 0.1750 1.0400 0.0234 0.7546 0.0161 1.5537 0.1240 1.5178 0.2160 1.6113
0.0240 0.9623 0.1388 1.0375 0.0194 0.8314 0.0113 1.5853 0.0875 1.5611 0.1478 1.6981
0.0200 0.9807 0.1150 1.0355 0.0165 0.8813 0.0085 1.5883 0.0658 1.5629 0.1077 1.7414
0.0151 0.9861 0.0856 1.0239 0.0127 0.9166 0.0054 1.5436 0.0426 1.5095 0.0654 1.7349
0.0121 0.9924 0.0682 1.0169 0.0103 0.9465 0.0039 1.4727 0.0310 1.4282 0.0447 1.7019
0.0101 0.9933 0.0567 1.0105 0.0086 0.9611 0.0030 1.3985 0.0242 1.3510 0.0331 1.6428
0.0093 1.0021 0.0523 1.0152 0.0080 0.9762 0.0027 1.3583 0.0218 1.3048 0.0291 1.6082
e(p) I‘(p) e(vsﬁ) I'(VQD) Cprim Tprim €post Tpost h N It
0.2231 - 1.0680 - 0.7096 - 0.2233 - 0.7071 972 4
0.1496 0.9845 0.8146 0.6680 0.4874 0.9263 0.1499 0.9837 0.4714 3064 4
0.1091 1.0995 0.5879 1.1342 0.3669 0.9875 0.1092 1.0099 0.3536 7028 4
0.0674 1.1858 0.3303 1.4215 0.2423 1.0236 0.0675 1.1864 0.2357 22792 4
0.0474 1.2239 0.2076 1.6150 0.1798 1.0375 0.0475 1.2247 0.1768 53604 4
0.0362 1.2111 0.1421 1.6967 0.1426 1.0358 0.0362 1.2120 0.1414 103724 4
0.0291 1.1919 0.1037 1.7373 0.1182 1.0342 0.0292 1.1926 0.1179 178132 4
0.0201 1.1502 0.0631 1.7257 0.0880 1.0230 0.0209 1.1508 0.0884 419012 4
0.0163 1.1107 0.0447 1.5443 0.0702 1.0163 0.0163 1.1110 0.0707 814644 4
0.0134 1.0808 0.0322 1.7988 0.0583 1.0101 0.0134 1.0812 0.0589 1403428 4
0.0123 1.0732 0.0284 1.5868 0.0538 1.0149 0.0123 1.0735 0.0129 1782252 4

Table 1.2: Example 2: Convergence history for the fully-mixed approximation of the three-dimensional

Bioconvection problem with concentration-dependent viscosity and using approximation order k = 0
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Figure 1.2: Example 2: Streamlines, concentration profile ¢j, and component p;,; of the vorti-
city tensor (first panel), and the component ¢1; j, of the shear stress tensor, component o3, of the
pseudo-stress tensor and concentration gradient Vj obtained with the fully-mixed method for the
Bioconvection problem using £ = 0 and N = 1403428 degrees of freedom.
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Fullyfmixed PO — RT() - ]PO - P1 - RT[) — P1 (k = 0) scheme

e(t) r(t) e(o) (o) elp) =x(p) e(w) =r(u) elp) r@) elp) x(p)
0.8054 - 0.9424 - 1.0043 - 0.3207 - 0.0044 - 0.7832 -
0.4911 0.7137 0.6119 0.6230 0.5652 0.8294 0.2062 0.6372 0.0026 0.7738 0.3074 1.3492
0.3845 0.8510 0.4995 0.7057 0.4456 0.8265 0.1564 0.9609 0.0020 0.8716 0.2119 1.2932
0.2689 0.8815 0.3550 0.8421 0.3166 0.8429 0.1019 1.0566 0.0014 0.8740 0.1355 1.1028
0.2051 0.9418 0.2695 0.9579 0.2455 0.8838 0.0766 0.9920 0.0010 1.0412 0.0989 1.0945
0.1831 0.9634 0.2380 1.0557 0.2197 0.9435 0.0678 1.0362 0.0009 1.1338 0.0871 1.0788
0.1488 1.0336 0.1966 0.9522 0.1781 1.0460 0.0525 1.2744 0.0007 1.3073 0.0689 1.1680
0.1290 1.1170 0.1690 1.1833 0.1522 1.2293 0.0461 1.0169 0.0005 1.4173 0.0582 1.3202
e(p) I'(p) e(VSO) I‘(Vg@) €prim Tprim €post Tpost h N It
0.3211 - 0.0963 - 1.8060 - 0.3352 - 0.2357 2739 10
0.1414 1.1828 0.0500 0.9449 1.0354 0.8026 0.1500 1.1599 0.1179 10659 12
0.1089 0.9031 0.0372 1.0279 0.8156 0.8295 0.1152 0.9165 0.0884 18819 13
0.0674 1.1862 0.0209 1.4220 0.5721 0.8745 0.0706 1.2088 0.0589 42051 13
0.0481 1.2233 0.0159 0.9504 0.4366 0.9397 0.0500 1.1976 0.0442 74499 13
0.0405 1.3406 0.0138 1.2028 0.3881 1.0001 0.0428 1.3265 0.0393 94179 13
0.0330 1.0205 0.0102 1.5062 0.3163 1.0201 0.0345 1.0668 0.0321 140451 13
0.0291 0.9838 0.0088 1.1549 0.2718 1.1847 0.0304 0.9985 0.0283 181203 13

44

Table 1.3: Example 3: Convergence history for the fully-mixed approximation of a two-dimensional

Bioconvection problem with no manufactured analytical solution and with concentration-dependent

viscosity, using approximation order k =0
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Figure 1.3: Example 3: Horizontal and vertical components w1 and wup, 2 (left and right, respectively)
of the velocity vector field obtained with the fully-mixed method for the Bioconvection problem with
no manufactured analytical solution and with concentration-dependent viscosity using & = 0 and
N = 181,203 degrees of freedom.

8e+00

c—NvwROoN® ©

o bUbhAbLLL

Pn
| - 06
996400 9o
2.9e-02

Figure 1.4: Example 3: Pressure p and concentration ¢, (left and right, respectively) obtained with
the fully-mixed method for the Bioconvection problem with no manufactured analytical solution and
with concentration-dependent viscosity using k& = 0 and N = 181,203 degrees of freedom.




CHAPTER 2

New primal and dual-mixed finite element methods for stable image
registration with singular regularization

2.1 Introduction

Deformable image registration (DIR) is a challenging process where a given set of images are aligned
by means of a transformation that warps one or more of these images. It arises in numerous applications
and particularly in medical imaging [85]. Its formulation requires three inputs: a transformation
model (composed by a family of mappings that warp the target images), a function that measures the
differences between images known as similarity measure, and a regularizer that renders the problem
well-posed. In addition to the many variants of these components, different modeling approaches
exist, between which we highlight: traditional variational minimization [61,74], L2-optimal mass
transport [57,93] (which does not require regularization), and level-set modeling [87]. The solution
strategy in general considers the incorporation of an auxiliary time variable, which can be seen as a
semi-implicit formulation of the proximal point algorithm [84] recently extended to a more general class
of proximal operators by using Forward-backward splitting [45]. Also, machine learning techniques
have been recently developed for the solution of this problem, which do not depend on the existence of
ground truth solutions and support large deformations [12]. This last work proved competitive against
the well-established software ANTs [11].

For a more mathematical explanation of DIR, let us now consider a domain 2 C R%=23_ and two
fields R: 2 — R and T : 2 — R referred to as reference and target images, where R(x) and T'(x)
denote the image intensity at point . Then, the objective of DIR is to find a mapping of T onto R
by means of a warping u such that—ideally—it holds that

T(x+u(x)=R(x) Vaxel?. (2.1)

This problem is ill-posed in general, so one formulates it as a minimization problem by considering
a similarity measure D (a functional which attains its minimum when (2.1) holds), a regularizer S
(which provides smoothness to the problem), a family of deformations V (such that w € V) and a
positive constant « (which balances D and §). Putting everything together, the following minimization
problem arises:

min {oﬂ?(v) + S(v)}. (2.2)

vey

46
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The choices of V and S are not independent. For example, it would not make sense to consider
V = L?(12) together with a regularizer S(u) = [, |Vu|?dz which penalizes steep gradients, as S
would not be well-defined in all V. It is common practice to consider S to be a quadratic term of
the form S(v) = %a(v,v), where a is a suitable bounded bilinear form. One common example is
given by considering the L? error as a similarity measure together with the H} norm as a regularizer
(equivalently, using a(u,v) := [, Vu - V), which yields the following problem:

min {a/Q]T(a:—i—u(a:))—R(w)|2dx+/Q]Vu\2dx}, (2.3)

veH} ()

with first order conditions given by: Find u € H}(£2) such that
a(u,v) = —(VD(u),v) = —/ VT (x +u(x))(T(x 4+ u(x)) — R(z))dz Vv e H(12),
Q

where VD stands for the Fréchet derivative of D. Further details and examples beyond this brief
overview can be found in [74].

The present chapter has been mainly motivated by the study of lung regional deformation computed
from tomography images of the thorax [29,64]. However, as we will illustrate later on, it is also applic-
able to related problems such as the image registration of the human brain. The optimal warping, u,
can be interpreted as a displacement field, from which the gradient Vu can be calculated to obtain the
strain tensor required to characterize the continuum mechanics framework. The study of deformation
from one side has revealed the lungs to present a highly heterogeneous and anisotropic behaviour [8,63],
thus providing new deformation-based markers to understand lung diseases [28,82]. The proposal of
the optical flow formulation by Horn & Schunk [61] gave origin to much mathematical analysis at
the continuous level, with an increasing interest towards the discrete analysis in an algorithm-specific
fashion in [79], in the optimal-control setting within a more classical Galerkin framework [69], and
more recently the variational problem was tackled in its primal and mixed formulation in [13].

In fact, the mixed finite element method (MFEM) is a well-established technique which allows to
incorporate unknowns of physical interest, such as stress and rotation, and also delivers locking-free
schemes in the context of incompressible elasticity (see, e.g., [21,49]). It also introduces additional
difficulties: (i) the new variables increase the dimension of the numerical scheme, making its computa-
tional solution more expensive, (ii) the mixed formulation may now possess a saddle-point structure,
which results in linear systems of equations that are harder to solve numerically and (iii) only dis-
crete spaces that satisfy the required inf-sup conditions grant a stable scheme, therefore restricting
the choices for approximations and also demanding more attention in the analysis of the finite ele-
ment scheme. For a mixed formulation of DIR with elastic regularization and a target image with
Lipschitz gradient, it has been shown that classical existence of solutions is independent of the regu-
larization parameter in the primal case. Furthermore, both primal and mixed schemes give existence
and uniqueness for a sufficiently small regularization, and PEERS elements, as well as BDM-Py for
stress-displacement, are inf-sup stable [13]. In addition, the drawback mentioned in (iii) is alternat-
ively overcome in [13] by using an augmented mixed variational formulation whose discrete analysis
does not require the verification of any inf-sup condition, and hence arbitrary finite element subspaces
can be employed. More precisely, in this last work a complete numerical analysis of the method was
presented, in the particular case of an elastic regularizer and a sum-of-squared-differences similarity
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measure with Neumann boundary conditions. Using such conditions is usually physically desirable,
as other ones present artificial stress accumulation on the boundaries, thus yielding the difficulty of
non-uniqueness to iterative schemes.

In this chapter we aim to generalize the analysis presented in [13] to regularizers that may present
a kernel, and to Lipschitz similarity measures. This is performed by splitting weakly the warping
with respect to the kernel of the regularizer so that such kernel remains present in the formulation
throughout the model, under the assumption of a relationship between the regularizer and the similar-
ity measure commonly known in the inverse problems community as source condition [92]. Numerical
experiments validating our aforedescribed extended model and showing how it compares to a more
traditional formulation are also presented.

The rest of the chapter is organized as follows. In Section 2.2 we derive the new model and analyze
its primal formulation at both continuous and discrete levels. The main results, which are obtained
by using the Babuska-Brezzi theory and duality arguments, include well-posedness of the continuous
and discrete formulations, a priori error estimates, and the respective rates of convergence. Then, in
Section 2.3 we introduce and analyze, using basically the same theoretical tools from Section 2.2, an
extended dual-mixed formulation in the particular (though very common and useful) case of an elastic
energy. Next, in Section 2.4 we explain how to use the traditional time regularization to implement
the methods, and provide a suitable bound of the time step guaranteeing convergence. In Section
2.5 we present several numerical experiments illustrating convergence, the capability of the methods
to capture translations and rotations, the effect of the added degrees of freedom, the advantage of
using the dual-mixed approach in the quasi-incompressible case, and the application to the image
registration of the human brain.

2.2 Extended primal formulation in abstract form

In this section we derive an abstract extended model and analyze its continuous and discrete primal
formulations.

2.2.1 Setting of the problem

As briefly commented in the Introduction, our problem is posed in the following framework: a Hilbert
space (V, (-,-)), a similarity measure D : ¥V — R, a symmetric bounded bilinear form a : ¥V x V — R
acting as the regularizer, and a positive scalar «. Then, we look for minimizers of the following

problem:
. 1
min {aD(v) + ia(v, v)} . (2.4)

The first order conditions yield the following nonlinear problem: Find u € V such that
a(u,v) =aF,(v) YveV, (2.5)

where, given w € V, F, : V — R is the linear functional defined as

Fy(v) := —(VD(w),v) YveV, (2.6)
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which is clearly bounded with ||Fy|y = [[VD(w)]|]y. Next, denoting by @ the kernel of the adjoint
of the bounded operator induced by a, which we assume to be non trivial and finite dimensional, and
splitting V as Q+ @ Q, we can rewrite (2.4) equivalently as

1
min aD(w+n)+ -za(v,v) ¢,
(v,n)eQLxQ{ v+m) 2 ( )}

and then impose the condition v € Q* as (v,£) =0 V¢ € Q, to obtain

1
min  max < aD(v+n) + —a(v,v) + (v, } 2.7
omin max {aD(o ) + ja(v,0) + (v,6) (2.7)
Finally, to avoid having the nonlinear term D in more than one equation, we perform the change of
variables v < v + 7, whence (2.7) becomes

(v’nr)nei]r}lXQrgneaé( {aD(v) + %a(v, v) + (v — 77,§>} . (2.8)
In this formulation a is not elliptic, which gives difficulties in proving the well-posedness of the weak
problem. If we consider the form (2.7) with solution (u,\) € V x @, we get that F,,(£) = 0 for all
£ in Q, which is fully nonlinear and does not give the required control over XA, but on the other hand,
form (2.8) gives rise to a non invertible linear operator. This hints the requirement of controlling the
component of u in ), for which, given a positive constant 5, we consider the problem

. 1 B w2
omin max LoD(0) + ga(v, ) + 0= 0.8 + Gl | (2.9)

We call (2.9) the extended formulation of (2.4). Equivalently, this setting can be obtained by splitting
V in the Euler-Lagrange equations (2.5). First write them as finding (u, \) € V x @ such that

a(u,v) = aFy,v) VoeQt,

A& = (W vEeQ,

and then impose the weak orthogonality by adding a Lagrange multiplier p together with the compact
perturbation S(\,n) to obtain the extended weak form: Find (u, \, p) € V x @ x @ such that

(2.10)

a(u,v) + BN n) + (v —n,p) = aF,(v) V(v,n) €V xQ,

(w—X\¢€ = 0 VEeqQ. (2.11)

The extended formulation presents two advantages:

e The standard formulation gives rise to a nonlinear compatibility condition for the solution wu,
namely 0 = F,(§) V¢ € @, which arises after testing (2.5) against elements in (). Thus,
the new variable A does not affect the compatibility condition. The existence of functions such
that this holds is known as the source condition, and is usually stated in the inverse problems
community as 9D L @ [92], which we assume true throughout the chapter.
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e Fixed-point schemes arising from such problems impose an undesired orthogonality to the solu-
tion, which we refer to as kernel locking. If we let u, in V be a previous solution, we get the
fixed-point problem of finding w1 in V such that

a(Upy1,v) = Fy, (v) YoeV.

This problem does not have a unique solution, so it is common in practice to choose uy1 such
that u,+1 L Q. The orthogonal space is closed, and thus if the sequence {u,}, converges to a
solution u, such solution is also orthogonal to .

The interpretation of A in the overall context of the problem is crucial to understand the extent
to which it regularizes the problem. For it we first focus on the nonlinear compatibility condition
F,(§) = 0, also written as IIgVD(u) = 0, where IIg : V — @ is the orthogonal projection on Q.
This condition rises naturally from the extended formulation, and thus it is a necessary condition
for the differentiability of D. If the functional does not comply with it, then it is unrelated to a
variational principle, so we can add a function A = IToVD(u) € Q to (2.11) ~without A- such that
the compatibility condition holds, that is

a(u,v) + (v —=n,p) = a(Fy—A)(v) VY(v,n)€VxQ,

(u—X¢ = 0 VEeQ.

We can see that A indeed takes the desired values by testing the first equation with v = n € @, which
gives F,(n) = (\,n) Vn € Q. Note that the same holds if we take the term (\,v) to the left hand
side and replace it with (\,n), which means that the compatibilized problem is equivalent to (2.11)

(2.12)

if we take SA = A. In what follows, we show that such choice gives a well posed problem with many
numerical advantages, for which we will make the following assumptions

(A1) There exist two positive constants &, and C, such that

Callv]® < a(v,v) YoveQt, and la(w,v)] < Cq|wlly vy Yw, veV.

(A2) There exists a positive constant Lp and a space VW containing V, such that the embedding
iy YV — W is compact and there holds

[VD(21) = VD(z2)|ly < Lpllz1 — 22l V21, 20 € V.

(A3) There exists a positive constant Mp such that ||VD(w)|y < Mp for all w € V.

2.2.2 Analysis of the continuous formulation

We now show that the extended problem (2.11) has at least one solution, which is stable with
respect to the data. For this, we first set the product space H := Vx @, and let A: H x H — R and
B : H x @ — R be the bilinear forms involved in (2.11), that is

A((w,9), (v,n)) = a(w,v) + B(I,n) V(w,d), (v,n) € H, (2.13)
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and
B((v,n),§) == (v—n,8)  V(un)el, VeQ. (2.14)
In addition, for each z € V, we denote by G, : H — R the linear functional given by (cf. (2.6))
G.(v,n) := aF,(v) V(v,n) € H. (2.15)

Note here that A, B, and G, are bounded. In fact, considering the corresponding euclidean norm for
the product space H, and denoting the constants ||A|| := max{Cq, 8} (cf. (A1) and ||B| := V2,
we easily find, using the Cauchy-Schwarz inequality, that

[ A((w, 9), (v,m) | < [|A[H[(w, Dz [[(0,n)l[g - and [ B((v,n), &) | < [|B I(o,n)l[a €]y

for all (w,v), (v,n) € H, V& € Q. In turn, it is clear from the above definition of G, and the fact
that F, € V' (cf. (2.6)) that G, € H and ||G.|| = «o||F;|| = «||VD(z)||. According to the previous
notations, (2.11) can be rewritten as: Find ((u, A), p) € H x @ such that

A((u,N), (v,m) + B((v,m),p) = Gulv,n)  V(v,n)€eH,

B((u,A),§) = 0 VEe Q.

Then, we introduce the operator 7' : V — V defined by T'(z) := u for each z € V, where u € V is the
first component of the solution to the problem: Find ((ﬂ, A), ﬁ) € H x @ such that

(2.16)

A(@,N), (v,m) + B((v,n),p) = Gu(v,n)  Y(v,n) € H,

N (2.17)
B((@,\),¢) = 0 VEeq.

We stress here that solving (2.16) is equivalent to seeking a fixed point of 7', that is: Find u € V
such that T'(u) = wu. In the following lemma we show that, for any z € V, the linear problem (2.17)
is well-posed, whence the operator 1" is well-defined.

Lemma 2.1. Given z in V, there exists a unique ((ﬂ, X),ﬁ) € H x @ solution to (2.17). Moreover,
there exists a positive constant Cr, independent of ((ﬂ, X), ﬁ), such that the following a priori estimate
holds

IT()llv < (@A), P)lnxq < CrllG:llm = aCr||VD(2)|y. (2.18)

Proof. In what follows we apply the Babuska-Brezzi theory (cf. [49, Chapter 2]). To this end, we first
let N be the kernel of the operator induced by B, that is

N={wmeH: Blun&=0 veeQ},

which, according to (2.14), yields N = {(v,n) eH: n= HQU}. Then, given (v,n) = (v, IIgv) € N,
we split v = v+ + 1 € Q+ @ Q and use assumption (Al) to obtain

A((w,m), (v,m) = a(wh,vh) + Blnlly = oI5 + Blalll > callo,ml, (2.19)
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with ¢, := min {Ea, g}, which gives the N-ellipticity of A. On the other hand, given an arbitrary
£ € Q, we easily see that

sup B((U’n)7£) > B((Ov _5)75)

> = o |[€]lv,
S Memla = 0 @l
(v,m)#(0,0)

(2.20)

with ¢, = 1, which proves the continuous inf-sup condition for B. In this way, a straightforward applic-
ation of [49, Theorem 2.3] implies the existence of a unique solution to (2.17) and the corresponding
stability estimate (2.18) with a constant Cr depending on ¢,, ¢, and [|A]|. [ |

Now, given r > 0, we let B(r) be the closed ball of V centered at the origin with radius 7. Then, as
a consequence of the previous lemma, we have the following additional result.

Lemma 2.2. Let Lp, Mp, and Cr be the constants specified in (A2), (A3), and Lemma 2.1, respect-
ively, and define ro := a O Mp. Then, there hold T(V) C B(rg) and

HT(ZI) — T(ZQ)HV < aCrLp H21 — ZQHW V21,20 € V. (2.21)

Proof. Given z € V, it readily follows from (2.18) and (A3) that ||T(z)||y < aCr Mp := 19, which
proves the required inclusion for 7. In turn, the fact that (2.17) is a linear problem guarantees that,
given z1, zg € V, the difference T'(z1) — T'(22) is the first component of the unique solution of (2.17)
when G is replaced there by the functional G, — G,. Thus, from the stability estimate (2.18) again,
and the Lipschitz-continuity provided by (A2), we deduce that

1T(21) = T(22)|ly < aCr||VD(21) — VD(22)lly < aCr Lp|lz1 — 22llw,

which completes the proof. |

Having established the above properties of T, we are now in position to provide the main result of
this section.

Theorem 2.1. Let ry be the radius defined in the statement of Lemma 2.2. Then, problem (2.16)
admits at least one solution ((u,)),p) € H x Q, with u € B(rg). Moreover, under the additional
assumption o Cr Lp |[iw|| < 1, this solution is unique.

Proof. We begin by noticing from Lemma 2.2 that certainly T(B(ro)) C B(rg). Next, it is easy to see
from the Lipschitz continuity of 7" (cf. (2.21)) and the compactness of the embedding iy : V — W (cf.
(A2)) that T(B(rg)) is compact. Hence, Schauder’s fixed-point theorem (cf. [30, Theorem 9.12-1(b)])
implies the existence of a fixed point u € B(rg) for T, and hence of a solution ((u, A), ,0) € HxQ to

problem (2.16). Furthermore, it also follows from (2.21) and (A2) that
IT(z1) = T(z2)lly < aCrLpliw|llz1 —22lly  Va, eV,

whence the uniqueness in V is imposed by forcing T' to be a contraction and then using the Banach
fixed-point theorem, which happens precisely when o Cp Lp [|iyy || < 1. [ |
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2.2.3 Analysis of the discrete scheme

In this section we consider the Galerkin scheme approximating the solutions of (2.16), establish its
well-posedness, derive the associated Céa estimate, and provide the corresponding rates of convergence.
For this purpose, we now let {Vh}h>0 be a sequence of finite dimensional subspaces of V, where h > 0
is an index thought as a characteristic meshsize. Then, bearing in mind that @ is finite dimensional,
and defining Hy, := V, X @, our discrete extended problem reduces to: Find ((uh, An), ph) € H, xQ
such that

A((un, M), (0nymw)) + B((vnomn), pn) = Guy(vnymn) Y (vpmn) € Hy

B((un, An),&n) = 0 VL eqQ.

(2.22)

In turn, we introduce the discrete operator T}, : Vi, — V, given by T'(zp) := up, ¥V 2z € Vy, where uy,
is the first component of the solution ((ﬂh, An), ﬁh) € Hy x @ to (2.22) with G, instead of Gy, , that
is: »

A((@n, An)s (vn,m)) + B((vn,mn), pn) = Gay(vn,mn) Y (vn,mn) € Hp,

N (2.23)
B((ﬂh,)\h),fh) = 0 thEQ.

As for the continuous case, we emphasize here that solving (2.22) is equivalent to finding uy € V
such that Tp(up) = up. We start our discrete analysis by proving the well-posedness of (2.23), thus
confirming that 7T}, is well-defined.

Lemma 2.3. Given z, € V), there exists a unique ((ﬁh,xh),ﬁh) € Hp x @ solution to (2.23).
Moreover, with the same constant Cp from Lemma 2.1, there holds

1T (zi)llv < 1 (@@ns An)s B0) lExe < OT |Gayllir = aCr||VD(zp)lly < aCrMp =: 9. (2.24)

Proof. The proof is analogous to the one shown for the well posedness of problem (2.17) (cf. Lemma
2.1). In fact, we first observe that the discrete kernel N, of B becomes

Ny, = {(Uhvnh) €Hp: np = Hth},

which is clearly contained in IV, and hence the Np-ellipticity of A follows from that of IV, and certainly
with the same ellipticity constant ¢,. In turn, given &, € @, the discrete inf-sup condition for B is
obtained as in (2.20) by bounding below the involved supremum with (vy,np) = (0, —&), which yields
the same resulting constant c¢,. In this way, applying now the discrete version of the Babuska-Brezzi
theory (cf. [49, Theorem 2.4]), and using from (A3) that ||VD(zp)|| < Mp, we conclude the proof. W

Next, given 7 > 0, we let By(r) be the closed ball of V, centered at the origin with radius r.
Then, the main result concerning the solvability of (2.22), which summarizes the discrete analogues
of Lemma 2.2 and Theorem 2.1, is established as follows.

Theorem 2.2. The discrete problem (2.22) has at least one solution ((uh,)\h),ph) € Hyp x Q, with
up, € By(rog). Moreover, under the assumption o Cr Lp |liw|| < 1, this solution is unique.
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Proof. We first notice from (2.24) (cf. Lemma 2.3) that Tj,(V) € Bp(r0), which obviously yields, in
particular, T}, (Bh(ro)) C By(ro). In addition, proceeding as in the proofs of Lemma 2.2 and Theorem
2.1, but certainly using now the linear character of problem (2.23), and employing the stability estimate
(2.24), the assumption (A2), and the boundedness of iy, we easily find that

[Th(z1,0) = Th(z2p)llv < aCr Lo [liw | 21,0 — 22pllv - Vz1h, 220 € Vi (2.25)

In this way, the fact that Bj(rg) is clearly a compact and convex subset of V}, the continuity of
Ty, : B(rg) — Bp(ro), and a straightforward application of Brouwer’s theorem (cf. [30, Theorem 9.9-
2]) implies the existence of a fixed point uy € By (ro) for T}, and therefore of a solution ((uh, An), ph) €
Hjp, x @ to (2.22). Finally, uniqueness in V}, follows again by forcing 7}, to be a contraction. |

Having proved the existence of solutions for the discrete and continuous problems, we now provide
the Céa estimate for the corresponding error. In what follows, given a subspace X}, of a generic Banach
space (X, |- |lx), we set

dist(z, Xp) = x1g{ |z — xn||x VeeX.
h h

Theorem 2.3. Assume that o Cr Lyp |liw]| < 1 -6, with 6 €]0,1[, and let ((u,\),p) € H x Q and
((uh,)\h),ph) € Hj, x Q be the unique solutions of (2.16) and (2.22), respectively. Then, there exists
a positive constant C, depending only on cq, cy, |All, and ||B||, and hence independent of h, such that

1((uy N), p) = ((uns A, pn) lrxg < 671 C dist(u, V) - (2.26)

Proof. Let ((ah,Xh),ﬁh) € Hj, x @ be the resulting unique solution of the discrete scheme (2.22)
when the functional G, is replaced there by G,. In this way, ((ﬁh,xh%ﬁh) € Hjy x @ constitutes a
conforming Galerkin approximation of the unique solution ((u, A), p) € H x @ to (2.16), and hence
the Céa estimate provided by the discrete Babuska-Brezzi theory (cf. [49, Theorems 2.5 and 2.6]) gives
the existence of a positive constant c , depending only on ¢4, ¢, ||A||, and || B||, such that

1((uy A), p) = ((@ns An)s ) xg < Cdist(((u, ), p), Hy x Q) = Cdist(u, V), (2.27)

where the last equality arises from the fact that A and p belong to (). On the other hand, the linear
character of the discrete problem (2.23) readily implies that the difference ((@, Xh), o) — ((un, An), pn)
is the unique solution of it when G, is replaced there by G, — G, , and therefore, the a priori estimate
(2.24) and the assumption (A2) yield

(s An)s 51) — ((uny M)y pn) | < Cr |G — Gy || e
= aCr|VD(u) = VD(up)|ly < aCr Lp |liw| |lu — unlly -

(2.28)

Finally, the required estimate (2.26) follows easily from triangle inequality, (2.27), (2.28), and the
hypothesis o Cr Lp |liw| < 1—6. [ |
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We end this section by stressing that the main assumption in Theorem 2.3 is handled by choosing
a particular value of §. Certainly, the closer to 1, the smaller the constant 6 C in the Céa estimate,
but then the hypothesis aCr Lp |liw| < 1 — 6, with 1 — § approaching 0, is more demanding on
the constants involved. Conversely, the closer to 0, the hypothesis is less restrictive, but then the
constant in the Céa estimate blows up. According to the above, it seems more reasonable to consider
the midpoint of the range for d, that is 6 = 1/2, which yields the assumption a Cr Lp |liw| < 1/2,
and the corresponding Céa estimate

H((u7 >‘)7p) - ((Uhy)\h)7ph)”H><Q < 26diSt(u7Vh) . (2’29)

2.2.4 The rates of convergence

For the sake of exposition and clearness, we now assume V = H!(§2) := [H'(£2)]?, which is precisely
the case of the application to an elastic energy that we report later on in Section 2.5. In there, the
unknown w of the abstract analyses from Sections 2.2.1, 2.2.2, 2.2.3, and 2.4, becomes the respective
displacement vector u of the elastic material.

Now, let {7}}}»0
and define the meshsize h := max {hK : Ke ﬁ}, which also acts as the index of 7. Then, given

be a family of regular triangulations of £2 made of triangles K with diameter hg,

an integer k > 1, we denote by Py (K) := [Pr(K)]? the space of polynomial vectors of degree < k on
K, introduce the Lagrange finite element subspace of V of order k

Vii= {o e HY(®): wili € Py(K) VK €T}, (2.30)

and let £;, : C(2) := [C(2)]?2 — V), be its associated interpolation operator. It is well-known that
there holds the following approximation property (cf. [20]):

(AP}) for each m € {1,...,k + 1} there exists a positive constant C,, such that

dist(v, V) < [|[v — Lp(v)]l1.0 < Con B™ vl Vv e H™() := [H™(2))%. (2.31)

Then, as a straightforward consequence of Theorem 2.3, (2.29), and (AP}}), and analogously to [13],
we obtain the following convergence result.

Theorem 2.4. Assume that o Cy Lp ||iw| < 1/2, and let ((u,\),p) € H x Q and ((up, \p), pr) €
Hj, xQ be the unique solutions of (2.16) and (2.22), respectively. In addition, suppose that u € H™((2),
for some m € {1, N 1}. Then, there holds

1((a,2), ) = ((ans An), o) x@ < 2C Con ™ a2 (2.32)

Furthermore, in what follows we apply usual duality arguments to derive the rate of convergence
for the error u — up, but measured in the weaker norm | - ||o,2. For this purpose, we now simplify
the writing of the vector versions of (2.16) and (2.22) by introducing the bilinear form arising after
adding the expressions on the left-hand side of either one, that is we let A : (H X Q) X (H X Q) — R
be defined as

A((W, %), (8,€)) = AW, ) + B(¥,x) + B(W,¢),
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for all w := (w,9), ¥ := (v,n) € H:=V x Q, for all x, £ € Q. In this way, (2.16) and (2.22) can be
rewritten, respectively, as: Find (4, p) := ((u,A),p) € H x Q such that

A((d, p), (0,€) = Gu(¥) VY (4,8):= ((v,m),€) € HxQ, (2.33)
and: Find (up, pp) 1= ((uh,)\h),ph) € Hj, x @ such that
A((Gn, pn), (B, &) = Gu, (Bn) Y (Bn, &) = (v, 0n),&n) € Hy X Q. (2.34)

Note that A is obviously bounded with a corresponding constant ||.A|| depending on ||A|| and || B||.

Next, we let (W, x) := ((w,ﬁ),x) € H x @ be the unique solution, guaranteed by Lemma 2.1 and
the symmetry of A, of the continuous problem

./4((17, 5)7 (V_‘}>X)) = / (u - uh) v V(ﬁ,f) = ((%77)75) € HxQ, (2'35)

2

and consider the following regularity assumption:

(RAY) there holds w € H%({2) and there exists a positive constant Creg, independent of w and h,
such that

”WHQ,_Q < Creg ”u — Uy |O,Q . (2.36)

In addition, throughout the rest of the section we assume W = L?({2) in (A2). Then, we are able to
prove the following result, which establishes an extra O(h) for the rate of convergence of ||u — uy||o,0-

Theorem 2.5. In addition to the hypotheses of Theorem 2.3 with § = 1/2, assume (RAY) and that
aLp(Cy +1)Creg < 1/2. Then, there exists a positive constant Co, depending only on [|A|, C, Ca
(cf. (2.31)), and Creg (cf. (2.36)), and hence independent of h, such that

Hu - UhHQ,Q < Cy hdist(u, Vh) . (237)
In particular, if u € H™(§2), with m € {17 ok + 1}, there holds
lu— unlo. < Coh™ [ulmo. (2.39)

with 6’0 = Cpy, Cy.
Proof. We begin by taking (9,£) = (d, p) — (dp, pr) in (2.35), which yields

Hu - uhH%,Q = A((ﬁ; P) - (ﬁfuph)a (V_‘;’X)) )

and by recalling from the Sobolev embedding theorem that H2(§2) C C(§2), which implies, according

to (RAY), that w € C(£2). Thus, adding and subtracting (Wy, xs) = ((Lr(W),9),x) € Hj, X Q in
the second component of A, and then using (2.33), (2.34), and the definition of the functional G, (cf.
vector version of (2.6) and (2.15)), we obtain from the foregoing equation

lu—upll§ o = A((d, p) = (@n, 1), (W, X) = (Wh, xn)) + AW, p) = (T, p1), (Wi, Xn))
= A((d, p) — (Tn, pr), (W, X) = (Wh, xn)) + Gu(Wn) — Gu, (W) (2.39)

= A((d,p) — (dn, pr), (W, x) — (Wh, xn)) + a(VD(u,) — VD(u), ws) .
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Next, employing now the boundedness of A, the assumption (A2), the estimate (2.29), the approxim-
ation property (2.31) for L, and the regularity bound (2.36), we deduce from (2.39) that

lu—unllg o < JANNE, p) = (Gh, i)l [W = Li(W)lle + o Lp [[u— usllo. [|Whlle

< ||l 2C dist(u, V) Cy (2.40)
< Chllu—uyo,edist(u,V4) + aLp [[u—upllon [|[Whi,e,
with € :=2|A| C Cy Creg, Which yields
lu—wupllo.e < Chdist(u,Vs) + aLp |[wpi,0- (2.41)

In turn, applying again (2.31) and (2.36), and assuming for sake of simplicity that h < 1, we find that
[wille < Iw=wille + [[WllLe < (C2h+1) [[Wl2 < (Co+ 1)Creg|lu—uplloe,

which, replaced back into (2.41), leads to (2.37) with Cy = 2C. Finally, it is straightforward to see
that (2.31) and (2.37) imply (2.38), which completes the proof. [ |

As a particular case of (2.38), we notice that for k = 1 and u € H?(£2) there holds the error estimate
lu—upllo.e < Coh?|ulsn, that is |[u—uyllo.e = O(h?). This rate of convergence will be illustrated
below in Section 2.5 with some numerical results.

2.3 Extended mixed formulation and application to elastic energies

In this section we present and analyse a dual-mixed formulation of problem (2.16) in the particular
case of an elastic energy. In this regard, we find it important to remark in advance that the setting
and analysis to be considered and developed, respectively, in what follows, do not correspond to a
straightforward application of those from Sections 2.2.1 and 2.2.2, which basically refer to a primal
formulation, but to a modification of them yielding the associated extended mixed approach to be
employed here. Still, the point of departure for this novel model is the use of an elastic regularizer
with Neumann boundary conditions, which presents a non-trivial kernel.

2.3.1 Setting of the problem

Let C : L?(2) — L%(£2) be the Hooke operator defined by

Ct = Xstr(m)L + 2us T VT el?(0), (2.42)

where A and p5 are the associated Lamé parameters, and let e(u) := & { t} be the strain

rate tensor, also known as the symmetric component of Vu. Then, letting V = H1 (£2), the bilinear
form a from Section 2.2 is defined as

v) = /ch(w) ce(v) Vw,veV, (2.43)
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and its kernel @) is given by the subspace of V determined by the rigid motions, that is

OIREN

Next, we introduce the auxiliary unknown o := Ce(u), and observe that there holds
oc=0" and Clo =Vu-& in 0, (2.45)
where the rotation & := 3 {(Vu) - (Vu)t} is considered as a further unknown as well. In addition,

we look for rigid motions p and A such that
—dive + p=—-aVD(u), A=Ilgu, and p=pA in {2, (2.46)

where o and [ are the analogue parameters from Section 2.2, and incorporate the Neumann boundary
condition
cv=0 on I. (2.47)

We now proceed to derive the variational formulation of (2.45), (2.46), and (2.47). In fact, recalling
that the definition of H(div; {2) was provided in Section 2.1, we first define the spaces

Ho(div; £2) := {T € H(div;2): 7vr=0 on F},

and
1.2

skew

() = {wen}((z); A —!IJ},

noting in advance that o and @ will be sought in Hg(div;2) and L2, (£2), respectively. Thus,

skew
performing the tensor inner product of the second equation in (2.45) with an arbitrary 7 € Hy(div; £2),

integrating by parts, and using the boundary condition that holds for 7, we obtain
/Clo':7'+/45:7'+/u-div7':0 V1 € Hoy(div; £2). (2.48)
(9} 9} (9}

In addition, testing the first and third equations in (2.46) against v € L2({2) and £ € Q, respectively,
and rewriting the second equation in (2.46) as the equivalent orthogonality condition, we find that

/Qv-diva—/ﬁp'v:a/QVD(u)-v Vo e L*(92), (2.49)
[w=5n-6=0 veea, (2.50)

and
/Q(A—u)-n—o VneQ. (2.51)

Finally, the symmetry of o (first equation in (2.45)) is imposed weakly as

/ U:o=0 VYWcl?_ (7). (2.52)
2
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Therefore, incorporating (2.51) into (2.48), and adding (2.49), (2.50), and (2.52), we arrive at the
following dual-mixed variational formulation of (2.45) - (2.47): Find & := (o, p) € H := Hy(div; £2) x
Q and 4 := (u,®,A) € Q := L3(2) x L2, (£2) x Q, such that

skew
a(é,7) + b(#,d) = 0 V7= (r,n) eH,
(2.53)
b(é,v) — c(u,d) = aFyu(v) Vo= (v,¥,£) €Q,
wherea: HxH — R, b: Hx Q — R, and c: Q x Q — R, are the bilinear forms defined as
a(l,7) = [ CT'¢iT, (2.54)
0
b(7, 9) ::/v-divr—l— !P:T+/(§—U)-n, (2.55)
0 19 0
and
c(w,¥):=0 [ 9-€, (2.56)
9
for all ¢

=(,x), T :=(r,n) € H, forall w:= (w,7,9), v := (v,%,£) € Q. In turn, given
w:= (w,T,9) € Q, the linear functional Fy, : Q — R is defined by

Fw (V) := /QVD(W) v Vo= (v,%,£) €Q. (2.57)

At this point we stress that a, b, and ¢ are all bounded bilinear forms with respect to the usual norms
of the product spaces H and Q, that is

- 1/2 -
1#le = {73 + 3o} V7= (rm) e H,

and
1Bllq == 1 [vl§.o+ I¥

1/2 ~
Lot el V= (0E8cq.

Moreover, a and ¢ are both symmetric and positive semi-definite, that is
a(f,7) >0 VFeH and c(¥,9) >0 VieQ. (2.58)

In addition, it is clear that Fy, is bounded for each w € L2(2).

2.3.2 Analysis of the continuous formulation

In order to study the solvability of (2.53), and similarly to the analysis in Section 2.2.2, we now
introduce the operator T : L?(£2) — L2(£2) defined by T(z) := u for each z € L?({2), where
G :=(o,p) cHand i:= (u,®,A) € Q are such that

a(@,7) + b(7,4) = 0 V7= (r,n) € H,
(2.59)

b(&,¥) — c(u,v) = aF,(¥) Vuv:=(w¥,§£ecqQ.
We remark here that solving (2.53) is equivalent to seeking a fixed point of T, that is: Find
u € L2(02) such that T(u) = u. The following abstract result will allow us to show below that, given

z € L2(£2), the linear problem (2.59) is well-posed, thus confirming that the operator T is well-defined.
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Theorem 2.6. Let H and Q be real Hilbert spaces, and let a : Hx H — R, b: Hx Q — R,
and ¢ : Q x Q — R be bounded bilinear forms with induced bounded linear operators A : H — H’,
B:H—- Q' B*':Q— H, and C: Q — Q/, defined, respectively, by the identities

A(Q)(r):=a((,7) V(¢ TeEH,
B(7)(v) = B*(v)(7) := b(7,v) VreH, VveQ,
C(w)(v) :=c(w,v) Vw, v e Q.

In turn, let K = N(B) and V = N(B®), and assume the following hypotheses:

i) a and c are symmetric and positive semi-definite.

ii) a is K-elliptic, that is there exists a positive constant oy such that

a(t,T) > oy ||’T”%I VreK.

iii) R(B) is closed, that is there exists a positive constant By such that

b
sup (T, v) > By llvllq VoeVt,
ren ||TIH
T#0
or equivalently
b(T,’U) 1
sup > By |ITllw Vre K.

veq ||vllQ
v#0
iv) c is V-elliptic, that is there exists a positive constant 7, such that

c(v.v) = 1 vl VveV.

Then, for each pair (F,G) € H' x Q' there exists a unique (o,u) € H x Q solution to
a(o,7) + b(r,u) = F(7) VreH,
(2.60)
b(o,v) — c(u,v) = G(v) Vv eQ.

In addition, there exists a positive constant C, depending only on o, By, Vv, |All, and [|C||, such
that

ol + ulq < € {IFlw +IGlq }-

Proof. See [18, Theorem 4.3.1]. [ |

We now apply Theorem 2.6 to show the well-posedness of (2.59), and hence the well-definiteness of
the associated operator T. To this end, we first rewrite the bilinear form b (cf. (2.55)) as

b(F,%) = /Qv-{diVT—n}+/Q!P:T+/Q§-n, (2.61)
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for all 7 := (7,m) € H, for all ¥ := (v,¥,€) € Q, from which we deduce that the null space of its
induced operator B : H — Q' is given by

K=N(B):= {'F:: (r,m)eH: divr—n=0, 7=71° and 77:0},

which yields
K:{F::(T,n)GH: divr=0, 7=7°% and 77:0}. (2.62)

Similarly, looking at the original definition (2.55) of b, we readily find that

V:N(Bt)::{ﬁzz(v,w,E)eQ: /Q’U-diVT-l-/QW:TZO
V7 e Ho(div;2), and €= HQU} ,
from which, rewriting the expression involving 7 in the distributional sense, we are lead to
V= {6 = (0,0,€)€Q: W¥=Vo in D(2) and &= UQU}.

Moreover, the fact that Vv = ¥ € L2 (£2) implies that £(v) = 0, that is v lies in the subspace of

skew

rigid motions @, and therefore V. C Vj, where
Vo= {d:=(aVaa eQ: qeQj. (2.63)

Conversely, it is easy to see that, given q € Vy, there holds b(7,q) = 0 for all 7 € H (see also (2.67)
below), which shows that Vo C V, and hence V = Vj,.

We now aim to show the K-ellipticity of a, for which we first state two preliminary results that are
based on the decomposition H(div; (2) := H(div; {2) & RI, where

Hi(div; 2) i= { € H(div; 2) : /Q

tr(7) = 0} .

In fact, we have the following lemmas, in which we use that for each 7 € H(div; {2) there exist unique
7o € H(div; 2) and d € R such that 7 = 7 + dI € H(div; (2).

Lemma 2.4. There exists a positive constant c1, depending only on {2, such that

1725 + Idiv(T)l5e = erlmollde V7 € H(div; 2). (2.64)

Proof. See [21, Proposition 3.1 of Chapter IV] or [49, Lemma 2.3]. [
Lemma 2.5. There exists a positive constant co, depending only on {2, such that
HTUH3iV;Q 2> C2 ||T||?liv;9 VT e Ho(div, Q) : (265)

Proof. See [47, Lemma 2.2] or [49, Lemma 2.5]. [ |

Then, the announced result for a is established as follows.
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Lemma 2.6. There exists a constant ay. > 0, independent of the Lamé parameter \s, such that
a(T,T) > oy H?H%{ V7 eK.

Proof. We begin by recalling from [49, Section 2.4.3] that in the present 2D case the inverse C~! of
the Hooke tensor C becomes
1 A
Clr = T - —
2415 dprs(Ns + ps)

tr(7) I Vrel?(),

which, after some algebraic manipulations, yields (cf. [49, egs. (2.48) and (2.52)])

1
2ug

a(7,7) = /chq- == mGe + 5 ] (P32 > 5— 17050

2ps (As + ps

for all ¥ := (7,n) € H. In particular, given ¥ € K, that is n = 0 and 7 € Hy(div; {2) such that
div(7) =0 and 7 = 7F, it follows from the foregoing inequality and straightforward applications of
Lemmas 2.4 and 2.5, that

5 o c1 2 C1 2 c1C2 2 C1C2 || 22
F7) 2 5ol = 5 Il = 2 Irle = Sz 171,
which completes the proof with the constant o := % |

A preliminary continuous inf-sup condition for the bilinear form b (cf. (2.55)), in which the space
Vj as such (cf. (3.19)) plays a key role, is established next.

Lemma 2.7. There exists a positive constant By, independent of the Lamé parameters, such that

P
qup 209 S 5 G5, Vo) vEeQ. (2.66)
i;% 17|l

Proof. While we already know that Vg = V., the inclusion Vo C V = N(B?) suffices to realize
that (2.66) trivially holds for ¥ € Vj, and therefore in what follows we prove for v := (v,¥,&) €
Q\ V. Indeed, given an arbitrary ¥ := (7,m) € H, we first use the orthogonal decomposition
v=(v—Igv)+Igv € Q@ Q, and then integrate by parts the expression fQ Ilgv-div T, to deduce
from (2.55) that there holds

b(7,9) = /Q(U—HQv)-diVT+/Q(W—VHQv):T+/Q(£—HQU)-77. (2.67)

Next, we proceed as in the proof of [50, Lemma 3.4]. In fact, assuming that v — IIgv # 0, we let
¢ := e(z) in £2, where z € H'(£2) is the unique solution, up to an element in @, of the problem

div(e(z)) =v—1Ilgv in 2, e(z)v=0 on I. (2.68)

Note that the compatibility condition required by this Neumann problem is satisfied thanks to the
orthogonality relation [,(v — IIgv) -q =0 Yq € Q. Thus, it is clear that ¢ € Ho(div;{2) with
div(¢) = v — IIgv and ¢ = ¢* in 2. In addition, the corresponding continuous dependence result
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for (2.68) guarantees the existence of a positive constant C, independent of v — IIgv, such that
I<]ldivie < Cn ||lv — IIgo||o,e. In this way, defining ¢ := (¢,0) € H, it readily follows that

b(%. % b(C. 3 v — I[ovl|?
oy PEE)  EE) o~ vl

)
zen 17l ) [CTavee

lo.c2 - (2.69)

1
2 Cn [CRap el

In turn, if ¥ — VIlgv # 0, a slight variation of the proof of [51, Lemma 4.4] allows us to show that

there exists ¢ € Ho(div; £2) such that § (¢ —¢*) = ¥ — VIIgv and [|[¢[laivie < en |¥ — VIIgvlo.o,

with a positive constant cy, independent of ¥ — VIIgv. Hence, setting 5 :=(¢,0) € H, we see that
b(7,8) _ b(, %) ¥ —VIgo|3 ,+ [,(v — o) - div{

sup ——- > —= = =
zen [|7[|H 1€ ]lex [rqhi:; (2.70)

1
> ¥ =Vilguloge = v = Igulos-

Furthermore, assuming that § — Ilgv # 0, we define E :=(0,§ — Ilgv) € H and readily observe that

b(7.%) _ b(C.7)

sup —= > =
w17l = il

= [|§ = Hguljo,e- (2.71)

7

In this way, since at least one of the components of (v — Ilgv, ¥ — VIIgv,§ — HQv) does not vanish,
which follows from the fact that ¥ ¢ Vj, a suitable linear combination of (2.69), (2.70), and (2.71)
implies the existence of a positive constant 35, depending on Cx and cy, such that

b(7, v q
sup H(;Ilv) > By || — (HQv,VHQv,HQv)Hq. (2.72)
TFeH
770

Finally, (2.72) and the fact that (IIgv, VIIgv,IIgv) € Vj yield (2.66) and complete the proof. W

We remark here that the inf-sup condition (2.66) provides an alternative proof of the inclusion
V C Vg, and hence of the identity V = V. In fact, for each ¥ € V there necessarily holds, due
to (2.66), dist(U, Vo) = 0, which is obviously equivalent to saying ¥ € V. Furthermore, as a direct
corollary of Lemma 2.7, we now state the continuous inf-sup condition for b required by item iii) of
Theorem 2.6.

Lemma 2.8. With the same constant By from Lemma 2.7 there holds

b7 &
sup 258 5 5 15]lq VEe V. (2.73)
zen || T|m
770

Proof. 1t suffices to use in (2.66) that dist(d, Vo) = dist(4, V) = ||¥]|q for all ¥ € VL. [ |

Next, having in mind that V.= Vg (cf. (3.19)), we prove the V-ellipticity of the bilinear form c
(cf. (2.56)).
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Lemma 2.9. There exists a positive constant v,, such that

c(v,9) > v ||'BH2Q VoeV.

Proof. Given ¥ := (q,Vq,q) € V (cf. (3.19)), it follows from (2.56) and the fact that all the norms
in (Q are equivalent, that there exists a positive constant cg, depending only on ), such that

- B q 4
o(@,8) = Blalie = 5 {lalie + csllalio} = wloly  vEeV,

with v, = gmin{l,cE}. |

Hence, thanks to (2.58), and Lemmas 2.6, 2.8, and 2.9, we are able to prove the following result.

Lemma 2.10. For each pair (F,G) € H' x Q' there exist unique & := (a,p) € H and i := (u, P, A) €
Q such that
a(@,7) + b(7,4) = F(¥) V7:=(7,n)cH,
(2.74)
b(&,v) — c(d,d) = G(v) VU= (v,%,€) €Q.
Moreover, there exists a positive constant C, depending only on oy, By, VY, and the norms of the

operators induced by a and b, such that

1@ Dllrcq < C{IFlw +11Gllq } (2.75)
Proof. Tt follows from a straightforward application of Theorem 2.6. |

Next, given an arbitrary z € L?(£2), we consider the particular pair (F,G) := (0,aF,) € H x Q/,
and conclude, thanks to Lemma 2.10, that the problem defining T(z) (cf. (2.59)) is well-posed, thus
confirming that the operator T : L2(£2) — L2(£2) is well-defined. Moreover, by noticing from (2.57)
that ||aFy||q = «[|[VD(2)||0,2, we deduce from (2.75) that there holds

IT()]o.c < [I(@,8)uxq < Ca||VD(z)|oe  VzeL(2). (2.76)
The Lipschitz-continuity of the operator T is established in the following lemma.
Lemma 2.11. Assume (A2) and let C be the constant provided by the continuous dependence estimate
(2.75). Then, there holds
IT(21) — T(2z2)llo,0 < aCLpllz1 — 2200 V21, 22 € L*(02).

Proof. We proceed analogously to [13, Lemma 11]. In this way, given z; € L2(02), j € {1,2}, we
let @, := (gj,gj) € H and 4, := (u;,®;,A;) € Q be the unique solution to (2.59) with z = z;, so
that T(z;) = u;. Subtracting the respective rows of the resulting systems (2.59), we easily find that
(&) — Gy,1; — Uy) € H x Q is solution of (2.74) with F := 0 and G := a (F5, — F5,), and hence the
corresponding estimate (2.75) and the Lipschitz continuity of VD (cf. (A2)) yield

I'T(z1) — T(22)

0.2 < [d; —thflg < Clla(Fs —Fy)llqr

= Ca||[VD(z1) = VD(22)|o,0 < CaLp|z1 — 2200,
which finishes the proof. |
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We are now in position to establish the existence of a unique fixed-point for the operator T, or
equivalently, the well-possedness of problem (2.53). More precisely, we have the following result.

Theorem 2.7. Assume (A2), (A3) and aC Lp < 1. Then, the mized problem (2.53) has a unique
solution (&,4) € H x Q. Moreover, the following a priori estimate holds

1(¢, 1) laxq < CaMp.

Proof. 1t follows straightforwardly from Lemma 2.11 and the present hypothesis involving the con-
stants «, C, and Lp that T is a contraction, and hence the classical Banach theorem implies the
existence of a unique fixed point of T. Equivalently, the mixed problem (2.53) has a unique solution
(6,u) € H x Q, which, according to the estimate (2.76) and the assumption (A3), satisfies

1@ @)[[rxq < Ca|VD(u)|oe < CaMp,

thus completing the proof. |

2.3.3 Analysis of the discrete scheme

In this section we introduce and analyze a Galerkin scheme for problem (2.53). As in Section 2.2.4,
we first let {E}h>0
and define the meshsize h := max {hK . K e E}, which also serves as the index of 7. In turn,

be a family of regular triangulations of {2 made of triangles K with diameter hy,

we recall that, given a non-negative integer k, Py (K) stands for the space of polynomials of degree
< k on K, whose vector and tensor versions are denoted by Py (K) and Py(K) , respectively. Then,
noting that certainly the space of rigid motions @ is already of finite dimension, we propose next two
possible sets of finite element subspaces of Hg(div; §2), L2(£2), and L2, (£2), which, in order to make
clear the unknowns they are approximating, are denoted by HY, H}! and Hf, respectively. The first
choice, employed in [13, Section 4.2] and [14, Section 3.4] for previous related results, consists of the
Brezzi-Douglas-Marini (BDM) space of order 1 for the stress (cf. [22]) and the rest as in [10, Theorem

7.2], that is
HY = {Th € Ho(div; Q) : 7hlx € PL(K) VK € Th},

H} = {vh eL?(2): wulk ePo(K) VK € 7;1}7 (2.77)

Hf = {Sph = < _(th %h > eLZkew(‘Q): 1/%\1( S P()(K) VK € ﬁl} ,

In addition, we also consider the classical PEERS space of order 0, originally introduced in [9] for
linear elasticity as well, which is given by

HY = {mn € Ho(divi2): 7]k € RTo(K) & Po(K) curl’bi Vi € {1,2}, VK € Ty },

H = {vh cL?(2): wulxk €Po(K) VK € 771}, (2.78)

H? = {sl'/h = ( —?bh ‘f)h > €eC(): Yp|lg € PL(K) \ﬂ(e’rh},
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where 7, ; denotes the ith row of 71, RT((K) is the local Raviart-Thomas space of order 0 (cf. [21],
[49]), br is the usual cubic bubble function on K, and curl®bx = (%I’T’;, —881’7’1(). Nevertheless, for
stability purposes to be discussed later on (see Lemma 2.12 below), we need that the space of rigid
motions ) be contained in the finite element subspace approximating u, reason why we now enrich

this space with the P;({2)-component of @, thus yielding the introduction of
ﬁz::Hz@<< 2 >> (2.79)
21
Then, letting Hy, := Hf x Q and Qj := ﬁ;; x H® x @Q, the Galerkin scheme of (2.53) reads: Find
gy = (G'h,ph) € Hy, and 4y, := (uh,@h,)\h) € Qy, such that
a(dp, Th) + b(Fp,Up) = 0 VT = (Th,mp) € Hy,

(2.80)
b(&y,vn) — c(Up,¥y) = aFy, (d,) VU, = (vh, P &,) € Q.

Analogously to the analysis from Section 2.3.2, we now introduce the discrete operator T}, : IZI}Zl — ITI;Ll
defined by Ty(zy) := u,, for each z;, € HY, where &), := (h:p,) € Hy and 4y, := (uy,, Py, Ap) € Qp
satisfy
a(@p, Th) + b(Fp,4,) = 0 V7 = (Th,mp) € Hy,
(2.81)
b(éh,ﬁh) — C(l, ’l_fh) = anh (ﬁh) VU, = (’Uh,wh,ﬁh) € Qy.

As for the continuous problem, it is easy to see that solving (2.80) is equivalent to looking for a fixed
point of Ty, that is: Find uy € ITI}L1 such that Tp(up) = up, for whose solvability analysis we need
to show first that T}, is well-defined, equivalently that (2.81) is well-posed. For this purpose, in what
follows we apply Theorem 2.6 to the discrete setting provided by the spaces Hy and Qp, the bilinear
forms a|g, x1, and b|m, xq,, and the discrete kernels of B and B*®, which are given, respectively, by

K; = {‘Fh = (Th,’r]h) e Hy, : b(?h,ﬁh) =0 V’l?h = (’Uh,Eph,Eh) S Qh}, (2.82)
and

Vi = {17h = (vn, &) € Qn: b(Th,Up) =0 VT = (Tp,m)) € Hh}- (2.83)
Thus, employing the expression for b given by (2.61), we can redefine Kj, as

K, = {?h = (Th,’l’]h) e Hy : /th'{diVTh_nh}:O Vvh€ﬁ27
(2.84)

/!ph:ThZO V!thHf, /Ehnhzo thEQ},
0 )

from which, noticing that the pair (H, ﬁz), taken either from (2.77) - (2.79) or (2.78) - (2.79), satisfies
the inclusion div Hf C H}, it readily follows that

Kh::{‘?h::(Th,?’]h)EHhi diVTh:O, ’l’]h:O, /!ph:ThIO VWhEHf}.
02

In this way, due to the first two identities characterizing K} in the foregoing equation, we deduce that
the Kj-ellipticity of a can be proved exactly as we did for its K-ellipticity, and hence with the same

constant oy := 32 from Lemma 2.6 there holds

a(?h,Fh) > oy ||7_"h||%{ V7, e Ky . (2.85)
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We now aim to establish the discrete analogue of Lemma 2.7, for which we first highlight that,
thanks to the enriched space H}! (cf. (2.79)), one guarantees that Vi (cf. (3.19)) is a subspace of Qp.
Then, we have the following result.

Lemma 2.12. There exists a positive constant EB, independent of h, such that

b(7 &

Sh(UR) := sup M
TpEHY ||Th||H
7 #0

> By dist(@n, Vo) V&, € Qn. (2.86)

Proof. We proceed analogously to the proof of Lemma 2.7. However, because of the similarities
involved, we simplify our reasoning by using the results already available along the proof of [50, Lemma
4.1], which in turn is an adaptation of the proof of [73, Theorem 4.5]. We begin by recalling from
(2.67) that, given 7, := (1h,m;,) € Hy, and Uj, := (vp, ¥, &) € Qp, we can rewrite b(7p, ¥p,) as

b (7, V) = /Q(vh — Igvy) -div Ty, + /Q(!Ph — Vilgvy) : 7 + /Q(ﬁh — IIgup) -y, (2.87)

from which one easily deduces that Vj C Vy, and hence (2.86) is trivially satisfied for ¥, € V.
According to this, it only remains to prove for ¥, € Qp\ Vo. Indeed, if vj, — IIgv,, # 0, we know
from the first part of the proof of [50, Lemma 4.1] that there exists ¢;, € Hf such that div(¢,) =
Pr(vy, — Igvy) and ||€p]ldivie < Cn v — Hgvpllo,0, where Py, : L?(£2) — H} is the orthogonal

projection, and Cl is a positive constant independent of h. In turn, decomposing vy = vy, + qp, with
vy, € Hy and qp, € <<

particular, this latter identity obviously implies div (¢}, ) = Pp (v —IIgvp). Then, setting ¢, = (¢, 0),
using the original definition of b (cf. (2.55)), integrating by parts similarly as done for the derivation

Z2

. ) >, we obtain Ilgvy, = Ilgv,+qp, and thus vy, —Ilgvy, = v, —Igvy. In
-

of (2.67), and applying the properties of the orthogonal projections P}, and Ilg, we find that
b(Gin) = [ (@nt @) divie) + [ w156,
= / vp, - Ph(’l_Jh — HQ’Dh) + / (‘I’h — th) : Ch
2 0
= / vy, - (Op — 1Iop) + / (Yhn—Van) : ¢y
2 (9]
= 9w —Mownlia + [ (@1 Van): ¢,
which readily yields

2 o o, — Houall§.o + / (¥, — Vau) : ¢,
b 9
S () > (CnsTn) _ 0
1Chlle 1€Chlldiv2 (2.88)

1
> = |lvn — Hgopllo,e — 1¥h — Vanlo,e-
Cn

Next, assuming that ¥;, — Vqy, # 0 and appealing now to the second half of the proof of [50, Lemma
4.1], there exists another ¢; € Hf such that div(¢;,) =0, / (P, —Van) : ¢, = || — thHaQ, and
(9}
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I<hllaiv:e < en ||[¥h — Vagllo,n, where ¢y is a positive constant independent of h. Hence, defining
¢h = (¢, 0), and employing again (2.55), we obtain

b(Ch, r) = 1€ — Varlld o,
which, similarly as before, gives

. 1
Sn(Oh) = = [[¥n = Vanllos- (2.89)

In this way, a suitable linear combination of (2.88) and (2.89) implies the existence of a positive
constant (1, depending only on Cy and ¢y, such that

Sp(@n) > A {th — Igvpllon + [|¥h — VQhHO,Q} . (2.90)

In addition, proceeding exactly as for the derivation of (2.89), but now considering ¥;, — VIlgvy, in
place of ¥, — Vqy, and utilizing the expression (2.87) for b, we are able to show that

B 1
Sn(@n) 2 = [1¥n = VIguallo.e, (2.91)

with a positive constant ¢y independent of h. Furthermore, if &, — IIgv), # 0, we do as in the
continuous case (cf. (2.71) in the proof of Lemma 2.7) and choose ¢, := (0,€, — IIgvy) to prove,
according to (2.87), that

Sh(Bn) > [[€n — Hqunlloe- (2.92)

The rest of the proof follows analogously to the one of Lemma 2.7 by considering now the inequalities
(2.90), (2.91), and (2.92), and after discarding the expression ||¥; — Vqplo,0 in the first one of them.
We omit further details. |

As a first straightforward consequence of (2.86) we have that V;, C Vj, and hence V; = V.

Moreover, since dist(@,, Vi) = |9 |lq for all ¥, € Vi, we conclude the discrete inf-sup condition for
b, that is
b(7y, U, ~ .
sup 270 ) Be Inllq  VUh € ViNQu, (2.93)
TREH, ||Th”H
71,70

with certainly the same constant EB from Lemma 2.12. On the other hand, since the continuous and
discrete kernels V and Vj, respectively, coincide, the Vp-ellipticity of the bilinear form c is already
proved by Lemma 2.9.

Therefore, bearing in mind (2.85), (2.93), and Lemma 2.9, a straightforward application of Theorem
2.6 allows us to establish the following result.

Lemma 2.13. For each pair (F,G) € H' x Q' there exist unique &), := (o, p,) € Hy, and U}, :=
(up,, P, Ap) € Qp such that

a(@,,Tn) + b(Ty,4dy,) = F(Ty) VT :=(Th,n) € Hy, 201
2.94
b(d,,vn) — c(Uy,v,) = G(Un) VU, = (vn, ¥r &) € Qn.
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Moreover, there exists a positive constant Q, depending only on oy, EB, Vv, and the norms of the
operators induced by a and b, such that

@ )l < C{IFlw +|Glq }- (2.95)

Next, we proceed analogously to the continuous case (cf. (2.76) and the last part of Section 2.3.2) by
applying now Lemma 2.13 to the pair of functionals (F,G) := (0, Fy,), with an arbitrary z, € Hj.
In this way, we conclude that T} : Hy — H} is well-posed, and that

ITh(zn)lo.e < 1 8))lxq < CallVD(z)loe Yz, € H.

Moreover, adopting the same arguments from Lemma 2.11, and employing the a priori estimate (2.95)
and the Lipschitz-continuity of VD (cf. (A2)), we arrive at the same property for the operator Ty,
that is

ITh(zs) — Ta(wi)llo,.e < Calpllzy —whlloe  Vzn, wy € Hj.

Consequently, we are now in position to establish the well-posedness of our mixed finite element
method (2.80), by appealing to its equivalence with the existence of a unique fixed point of T}, and
applying again the respective Banach theorem. We omit further details and state the corresponding
result as follows.

Theorem 2.8. Assume (A2), (A3) and « C Lp < 1. Then, the discrete scheme (2.80) has a unique
solution (&', dp) € Hy x Qp. Moreover, the following a priori estimate holds

H(&ha ﬁh)HHxQ < QO[ MD .

2.3.4 A priori error analysis

Given (&,ud) € H x Q and (&, dp) € Hy, X Qp, the unique solutions of the continuous and discrete
problems (2.53) and (2.80), respectively, we now aim to estimate the corresponding error given by
|(6,1d) — (&4, up)|lHxq- To this end, we first let (&},,d;) € Hy x Qj be the solution to (2.94) with
F =0 and G = a Fy, equivalently the solution to (2.81) with u in place of zj, that is

a(@y,Th) + b(Fp,d,) = 0 V7 = (Th,m,) € Hy,
(2.96)
b(d),,vn) — c(Uy,¥n) = aFu(v,) VU, := (v, ¥h &) € Qn,

which certainly can be seen as the classical Galerkin approximation of (2.53). Then, invoking the
corresponding Céa estimate (see, e.g., [18, Proposition 5.5.2.]), we have the preliminary estimate

(3, 6) — (& @)llxq < C {dist(, Hy) + dist(d, Qu) } (2.97)

where C is a positive constant independent of h. Next, subtracting (2.96) from (2.80), we find that
(Gn,up) — (&, 1y, solves

a(dn —ap, Th) + b(Th,ty — 1) = 0 VT = (Th,my) € Hy,

b(cy — &), V) — c(Up — Uy, vn) = o(Fy, —Fu)(Un) VU, = (vy, ¥, &) € Qn s
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and hence, thanks to the a priori estimate (2.95), the fact that |Fy, —Fullq = [|[VD(uy)—VD(u)0.0
(cf. (2.57)), and the Lipschitz-continuity of VD (cf. (A2)), there holds

1(&h, Tin) — (G, i) lHxq < CaLp [u—uoe. (2.98)

In this way, employing the triangle inequality together with the estimates (2.97) and (2.98), and then
realizing that dist(¢', Hy,) = dist(o, HY) and that dist(d, Q) = dist(u, HY) + dist(®, HY), we get

1(5,5) = (Gh, @n)llxq < C {dist(e, HF) + dist(u, F}}) + dist(, HE) }
+ CalLpl|(&,@) — (G, h)|rxq -
The foregoing inequality readily implies the following main result.

Theorem 2.9. Assume (A2), (A3) and that C o Lp < 1— 6, with & €]0,1[. Then, there holds
(&) — (&, 1ip)|lxg < 61 C {dist(a, HE) + dist(u, FY) + dist (&, Hf)} .
Exactly as remarked at the end of Section 2.2.3, we also stress here that the optimal value of § is
1/2, whence we obtain the assumption C aw Lp < 1/2 and the Céa estimate

1(&,1) — (&, 1n)|uxq < 2C {dist(a, HY) + dist (u, 0¥ + dist (&, Hf)} . (2.99)

We end this section with the rates of convergence of our mixed finite element solution (&', uy,), for
which we first recall the approximation properties of the finite element subspaces involved (see [21]).

(APY) there exists C' > 0, independent of h, such that for each = € H!(£2) N Hy(div; 2) with
div(7) € H'(£2) there holds

dist(7,Hy) < Ch{HTHLQ + HdiV(T)HLQ}.

(AP} there exists C > 0, independent of h, such that for each v € H'(§2) there holds

dist(v,Hp) < Chlv|i,0.

(£2) there holds

skew

(AP‘,‘?) there exists C' > 0, independent of h, such that for each ¥ € H'(£2) N 12
dist(@, H?) < Ch|¥|10.
Note here that, while (AP}}) provides the approximation property of H}!, the fact that this space is

contained in H}! implies that dist(v, ﬁz) < dist(v, H}}), and hence (AP}) also serves to estimate the
distance to H}!. According to the above discussion, the main result of this section is stated as follows.
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Theorem 2.10. Assume (A2), (A3) and that Ca Lp < 1/2. In addition, suppose that the solution
(@,4) = ((o,p),(w,®,X)) € Hx Q of (2.53) verifies o € H'(£2), div(e) € H'(£2), u € H'(02),
and @ € H'(§2). Then, there exists a positive constant C, independent of h, such that

e

Proof. 1t is a simple consequence of the Céa estimate (2.99), the additional regularity assumptions on
the solution, and the approximation properties (APZ) , (AP}), and (AP¥). [ |

1(3,5) = (@) mxq < Ch{lloo+ |divie)

2.4 Implementation of the methods

We now refer to the practical implementation of (2.11). The extension to (2.53) proceeds similarly.
More precisely, in what follows we employ a fictional time variable in a gradient flow fashion to
implement the solution of problem (2.11), thus rendering problem (2.4) convex for a sufficiently small
time step. This means that, given a time step At, k € N, and a previous iteration uj, we modify the
extended problem (2.9) to obtain

1 1
i D) +3 - S lnll? — w3 2.100
Jhn, max {a (v) + ga(v,0) + (v =n,6) + H??H + oAz llv ukyv}, (2.100)

where we recall from Section 2.2.2 that H = V x Q. Then, the first order conditions of this problem
are given by the following: Find ((u,p),\) € H x Q such that

(u,v) + At a(u,v) + AL, n) + At{v —n, p) = @ AtF,, (v) + (ug,v) Y(v,n) € H,
(u—2A,8) =0 V€ € Q,

where the nonlinear term is treated explicitly, and which is well-posed in virtue of Theorem 2.2.

(2.101)

The resulting solution of (2.101) is then redenoted ((j41, pr+1), Ak+1). Our main modification to the
classical time dependent scheme used to implement registration problems is that the extended variables
prevent the orthogonality to the kernel of the adjoint operator. Now we establish a relationship between
subsequent iterations to find a bound on the time step for stability.

Lemma 2.14. Given an initial iteration ((uo,po), )\g) € HxQ andn € N, we let ((un, Pn), )\n) and
((Wnt1, Prt1), Ang1) be the solutions of (2.101) with k = n — 1 and k = n, respectively. In addition,
let ¢, be the ellipticity constant of the bilinear form a (cf. (Al)), and define 1 (At) := (5 + 26, — )
and ka(At) := (4; + aLp). Then, there holds

FL(At) [unt1 = unllp < w2(A8) [ — un—1 ] (2.102)

Proof. Subtracting the corresponding equations of the problems (2.101) yielding ((un, pn),)\n) and
((un—i-h pn—i-l)’ )‘n+1)7 we obtain

1
Zt<un+l — Un, V) + a(tpy1 — Un, V) + B(Ans1 — Any 1) + (U =1, put1 — pn)

1
= a(Fy, — Fy,_,)(v )+E< — Up—1,V) V(v,n) e H,

(2.103)
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and
<Un+1 — Up — )\n—i-l + An,§> =0 V{ € Q . (2104)

from which, testing (2.103) and (2.104) against (v,1) = (Unt1 — Un, Prt1 — Pn) and € = A1 — Ap,
respectively, we deduce that

1
— ung — UnH]Qj + a(Uni1 — Un, Uns1 — Un) + Bl[Ans1 — )\nH%}

At

1
At
Next, using the ellipticity of a (cf. (Al)), the Lipschitz continuity of VD (cf. (A2)), and Young’s
inequality, we arrive at

1 - « Lpa 1
<2At + ca) Hun-‘rl - un”% < 5 Hun-‘rl - un||2 + <2 + 2At> ||’LLn - un—lH2 ’

= Oé(Fun - Fun—l)(un+1 - un) + <Un — Un—1,Un4+1 — Un) .

which leads to the desired result after a minor algebraic rearrangment. |

We stress here that the estimate (2.102) (cf. Lemma 2.14) becomes useless if k1 (At) < 0. According
to it, we now provide a way to bound how small At should be in order to guarantee that x1(At) > 0.

Lemma 2.15. Problem (2.100) is unconditionally stable in time, that is stable for any fized time step
At if o < 2¢,. It is otherwise stable if At < a%%a

Proof. We first observe that if o < 2¢,, then, independently of At, k;(At) remains always strictly
positive, bounded below precisely by 2¢, — a. Otherwise, the strict positivity of k1 (At) is guaranteed
only by imposing ﬁ > o — 2¢,. |

Unfortunately, the previous scheme does not guarantee convergence for arbitrary «. Indeed, it is
clear from (2.102) that in order to obtain ||up+1 — un|| < 0 ||un — up—1||, with § €]0, 1], it suffices to

require that ko(At) < k1(At), which yields the condition o < L?;Cil' Alternatively, if we consider

variable time steps, we can prove the following result.

Lemma 2.16. Let {Atk}k N be an arbitrary sequence of time steps, and given an initial iteration
€

((uo,po),)\o) € HxQ and n € N, we let ((un,pn),)\n) and ((Un+1,pn+1),)\n+1) be the solutions of
(2.101) with (k, At) = (n — 1, At") and (k, At) = (n, At"Y), respectively. Then, there holds

R (A [[untr = unlp < w2(AE") fup — un-1l -

Consequently, under the assumption

1 1 ~
W > M—f-OJ(LD—Fl)—QCa,

the absolute step-wise error is strictly decreasing.
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Proof. The derivation of the relationship between ||upn41 —un ||} and ||u, —un—1]|3 is analogous to the
one in the proof of Lemma 2.14, except for a minor modification. In fact, as time steps are different,
the time derivatives gives rise to new terms which cancel out , that is

Un+1 Uy, 1 9 1 1
(G = g et =) = g linss =l + (G = g ) (o =)

and

U, Up—1 1 1 1
<W - Ttn,un—i-l - Un> = Tﬁwn — Up—1, Upt1 — Up) + At A (Un, Unt1 — Un) -

Finally, the condition relating the subsequent time steps At"*! and At" is obtained by imposing
Hg(Atn) < K)l(Athrl). |

The above formulation and its associated analysis apply straightforwardly to the mixed case, the
only difference being that, while the H' inner product is employed in the regularizing terms for the
primal case, the L? one is utilized for the mixed approach.

2.5 Numerical examples

In this section we present several numerical examples to show the effectiveness of the proposed
formulations. All tests were implemented with the FEniCS library [4]. For this, we will use in the
primal case the same regularizer used in the mixed formulation, that is the bilinear form defined by
(2.43), which arises from the Hooke law for elastic materials. Thus, as already announced at the
beginning of Section 2.2.4, the abstract unknown u utilized in Sections 2.2.1, 2.2.2, 2.2.3, and 2.4, is
rewritten here as u to denote the respective displacement vector. We consider the problem with null
traction boundary conditions so that it kernel is given by the space of rigid motions @ (cf. (2.44)),
and consider the similarity functional given by the squared error, i.e.:

D(u) = /Q (T(x + u(x)) - R(z))?,

where the maps R, T : {2 — [0,1] denote the reference and target images respectively, and are such
that the gradient VD fulfills condition 2. In what follows we consider the domain 2 = (0,1)?, and
all examples, except for the convergence one, use the classic time regularization scheme described in
Section 2.4. Also, only in the real-case study we use the time-adaptivity strategy presented in Section
2.4. For the other examples, we used At oc a~! justified by Lemma 2.15, which does not account for
the ellipticity constant of the problem but gives satisfactory results nonetheless. The Young modulus

FE and Poisson ratio v are related to the Lamé parameters through A = i Ly

o=z and ps

_ E
— 2(1+v)

2.5.1 Example 1: Convergence

We consider the reference and target images

R(z) = exp (—20|z — 0.3(1,1)||%)
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and
T(x) = exp (—20[|xz —0.7(1,1)|)),

respectively, where © = (z1,x2)* with parameters s = A\; = 8 = 1 and o = 0.1. We define also the
individual errors

eo(u) := [|u — up|

0.2, ei(u):=lu—uplin, eolo):=|o—onln,
e(0) = [l —opllaiv;e, e(u):=[u—uyloe, and e(P):= [P — Pylon,

and the respective experimental rates of convergence

ro(u) == log (eo(u)/e{)(u)) ro(w) = log (el(u)/e’l(u)) ro(o) = log (eo(a)/e6(a))
O T leg (/w0 T g (/) T g (W)
_ log (e(0)/¢'()) _ log (e(u)/e/(u)) _ log (e(®)/¢/(#))
T0) = (n/h) Tl = (/1) )= (/1)

where e y e/, with and without subindex, denote in each case the errors of two consecutive triangula-
tions with meshsizes given by h and I’.

We report the convergence results for the primal (2.11) and mixed (2.53) formulations in Tables 2.1
and 2.2, respectively with respect to a solution of higher resolution, where the mixed scheme is set
with the BDM elements described in (2.77). We stress that this problem was solved with a low «, thus
results from the point of view of registration are not satisfactory, but they help us to verify convergence,
as it is theoretically established for small o without the time stabilization terms (see Section 2.4). In
particular, the O(h) and O(h?) rates of convergence for ||u — wup||1,o and |[u — upllo,0, respectively,
which are predicted by (2.32) (cf. Theorem 2.4) and (2.38) (cf. Theorem 2.5), are confirmed by the
sixth and fourth columns of Table 2.1. Nevertheless, the convergence of the extended mixed scheme
shown in Table 2.2 seems a bit slow for eg(o) and slightly oscillating for e(u), which could be originated
by an insufficient number of degrees of freedom employed.

Ndofs hmax eg(u) rg(u) 61(’11,) I (u)
56 3.536e-01  1.756e-03 - 1.959e-02 -
168  1.768e-01 5.669e-04 1.631 1.210e-02 0.695
o584  8.839e-02 1.636e-04 1.793 6.253e-03 0.952

2184  4.419e-02 4.291e-05 1.931 3.147e-03  0.990

8456  2.210e-02 1.082e-05 1.988 1.575e-03 0.998

33288 1.105e-02  2.649e-06 2.030 7.878e-04 0.999

Table 2.1: Example 1: Errors and convergence rates for the primal extended scheme with oo = 0.1.
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Nofs hmax eo(o) ro(o) e(o) r(o) e(u) r(u) e(P) r(P)
95 7.071e-01  9.059e-03 - 8.327e-02 - 5.783e+00 - 6.327e+00 -
327 3.536e-01 3.304e-03 1.455 5.103e-02 0.706 2.194e-04 1.469 5.642e-04 1.345
1223 1.768e-01 1.285e-03 1.363 3.217e-02 0.666 1.126e-04 0.960 2.416e-04 1.224
4743  8.839e-02 3.924e-04 1.711 1.632¢-02 0.979 5.731e-05 0.975 1.128e-04 1.098
18695 4.419e-02 1.262e-04 1.637 8.122¢-03 1.006 3.129e-05 0.873  5.609e-05 1.008

Table 2.2: Example 1: Errors and convergence rates for the mixed extended scheme with o = 0.1.

2.5.2 Example 2: To extend or not to extend

In this test we compare the results of the Neumann solver with and without extending the formula-
tion, i.e. without the added degrees of freedom in @) and their corresponding terms to (2.11), which we
call the standard formulation. The translation images are defined as in the convergence test, whereas
the rotation images are given by

R(x) = ¢(Sx) and T(x)= ¢(SRx),

10 1|1 -1
S = R=—
!o a]’ \/5!1 1

and the function p(x) = exp(—C|z|?). The parameters used are given by F = 103, v = 0.3, a = 10%,

where

)

At =0.1/a, =1, C =20, a = 0.4, and the convergence criterion is given by a threshold on the
similarity, so that the simulation stops when D(u) < 0.01D(0). In Figures 2.1 and 2.2, which display
the reference image and the warped reference image with the target image in the background, we notice
that both translations and rotations cannot be captured up to the required tolerance without extending
the formulation. In this regard we stress that choosing a smaller At does not yield convergence in
the non-extended scenario. This locking-like phenomenon is seen due to the choice of the convergence
criterion, and indeed using another one such as the solution increments would yield convergence to a
solution, albeit unsatisfactory.

Formulation Iterations time [s]

Translation Extended 64 3.516
Standard 1000 —

Rotation Extended 51 3.454
Standard 1000 —

Table 2.3: Example 2: Extended vs. standard in terms of iterations and execution time on a personal
computer.

2.5.3 Example 3: Translations in the quasi-incompressible case

In this test we register the translation images for the primal (2.11) and mixed (2.53) formula-
tions, both with £ = 15, v = 0.4999, a = 100, At = 0.1/a, § = 1, and time regularization terms
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Intensity

(a) Extended case

Intensity

(b) Standard case

Figure 2.1: Example 2: Warped reference images in translation example. We present the reference
image R(z) in the first column and the deformed reference image R o (I 4 uy)~!(x) with the target
image T'(Z) in the background in the second column.

were included and a tolerance of 1078 for the absolute £>° error between two subsequent steps was
used. The results are reported in Figure 2.3, where the rigid motion components obtained were
A = (0.386,0.396, 0.022) for the primal case and A = (0.402,0.381, —0.056) for the mixed one. As A is
a rigid motion, the first two components are translations in x and y, whereas the third one represents
a rotation. The solution in this case presents no rotation and has by construction a translation of 0.4
in each axis, which is coherent with the results obtained. We highlight that the primal formulation
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Intensity

(a) Extended case

Intensity

(b) Standard case

Figure 2.2: Example 2: Comparison warped reference images in rotation example. We present the
reference image R(z) in the first column and the deformed reference image Ro (I+wy,)~!(x) with the
target image T'(¥) in the background in the second column.

took 213 iterations to achieve convergence, whereas the mixed one took 102. This difference is mainly
due to the locking effects generated by v = 0.5 in the primal formulation, which are fully overcome
by the mixed one.
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b) Warped target images T o (I + uy,) for primal and mixed formulation.

Figure 2.3: Example 3: Solutions of the primal and mixed formulations of the translation test.

2.5.4 Example 4: Rotations in the quasi-incompressible case

This test was performed for the same settings of the translation example but with the rotation
images using C' = 20 and @ = 0.4. Results are reported in Figure 2.4, and the rigid motions obtained

in this case are
A= (—2.843107%,3.120107°,-7.0841072) and X = (6.798107°,6.042107*, —1.4761073),

for the primal and mixed cases, respectively. We remark that we did not allow for more than 1000
iterations in time, which was achieved by the primal case still without reaching the required tolerance.
The mixed one instead converged after 74 iterations, which is again explained by the superiority of

the mixed formulation in the quasi-incompressible case.
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) R and T, reference and target images.

- - _0999

) R and T, reference and target images.

Intensity

Intensity

Figure 2.4: Example 4: Solutions of the primal and mixed formulations of the rotation test.

2.5.5 Example 5: Application to the image registration of the human brain

The real application is performed on brain images obtained in [33]. We use this case as well to test
the condition on the time step given by

At
1+ At"(a(Lp + 1) —cq)’

At < (2.105)
Two important observations are in place for condition (2.105). One is that it guarantees the conver-
gence of ||un11 — Upl|, and not of ||up4+1 — uy||/Aty, which means that possibly the error performed by
means of incorporating the time terms might not disappear. The second one is that it does not stall
the simulation within a certain time. To see this, assume AtY = 7 = (a(Lp + 1) — ¢,) . This choice
gives At"™ < 7/(n+ 1), and thus we can not insure that ), At" < oco.
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(a) Reference and template images.
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(b) Primal and mixed formulation solutions.

Figure 2.5: Example 5: Results of registration for brain images scenario with a = 104, 8 = 1.

In turn, for the simulations we use the elastic constants £ = 15 and v = 0.3. For the others
constants we consider a = 10*, 8 = 1, At = 0.01/a and a tolerance of 1076 for a domain with
128 x 128 elements. We report the outcome in Figures 2.5 and 2.6, that indicate sufficiently accurate
results after convergence. To avoid an excessive reduction of the time step, we used (2.105) every ten

iterations.
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(a) |T o (I+ @) — R| for primal and mixed formulations.

Figure 2.6: Example 5: Results of registration for brain images scenario with a = 104, 8 = 1.
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CHAPTER 3

Adaptive mesh refinement in deformable image registration: A
posteriori error estimates for primal and mixed formulations

3.1 Introduction

Deformable image registration (DIR) consists of aligning two images through a transformation
that deforms one image onto the other. It arises in several applications, particularly in the medical
imaging field [85]. Its mathematical formulation requires three objects: a transformation model,
defined by a family of suitable mappings that warp the target image, a similarity measure, typically
represented by a functional that quantifies the difference between images, and a regularizer, which
renders the problem well-posed [74]. In addition to the many variants of these components, different
modeling approaches exist, between which we highlight the traditional variational minimization [61,74],
optimal mass transport [57] and level-set modeling [87]. The solution of the DIR problem typically
considers incorporating an auxiliary time variable. This approach can be interpreted as a semi-implicit
formulation of the proximal point algorithm [84], recently extended to a more general class of proximal
operators by using forward-backward splitting [45]. The formulation of the optical flow problem put
forward by Horn & Schunk [61] leads to a more rigorous mathematical analysis of the DIR problem
continuous formulation, which is in contrast with the lack of rigorous numerical analysis of the discrete
counterpart, recently developed in the variational formulation [79] in an algorithm-specific fashion and
also in the optimal-control setting within a more classical Galerkin framework [69].

One active area of DIR application is the study of deformation in the lungs from the analysis of
computed-tomography images of the thorax [29]. In this setting, the optimal warping u that solves the
DIR problem can be interpreted as a displacement field, from which deformation metrics such as the
strain tensor can be computed based on Vu using the framework of continuum mechanics. The study
of deformation using DIR has revealed that the lungs display a highly heterogeneous and anisotropic
behavior [63]. Further, deformation metrics from the strain tensor recently proved very insightful in
understanding certain pulmonary diseases and lung injury progression [28,62,82]. The prediction of
strain measures from DIR is not without problems, as it has been shown that estimating the strain
tensor from direct differentiation of the transformation mapping yields spurious numerical errors that
can distort the physical meaning of the strain tensor [64]. This problem, together with an effort of
providing a rigorous analysis of the Galerkin formulation of DIR, motivated the recent development of

82
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primal and mixed continuous formulations and finite-element schemes [13]. This last work used null
traction boundary conditions so as to avoid spurious stress. It relied on the mixed theory of linear
elasticity problems with pure-traction conditions [50], which delivered a priori error estimates not
only for the displacement solution but also for the stress and rotation fields in the mixed formulation.
These analytical results provide a sound framework for the error assessment of stress and deformation
estimates in DIR.

Depending on the amount of warping from the target to the reference images, the optimal warping u
can typically result in localized regions with high variations. These localizations may not be accurately
captured by the transformation model, which has motivated the development of adaptive refinement
techniques in other areas of numerical analysis [91]. However, specific schemes developed for DIR
remain understudied. One exception is the work of Haber et al. [56], where a finite-difference scheme
was employed to solver the DIR problem, and a oct-tree strategy was used to improve the numerical
solution by adaptive refinement. Another approach is the use of ad-hoc mesh-refinement techniques
based on classical strategies in finite-element analysis for elasticity [77,94]. While very useful, this
approach does not directly extend to mixed formulations, and it lacks of a theoretical framework that
can guarantee the numerical convergence of the scheme.

In this chapter, we propose a posteriori mesh-refinement scheme particularly tailored for primal
and mixed formulations of the DIR problem. We start by constructing an optimal a posteriori error
estimator © [91]. The estimator © is then decomposed into a sum of local error indicators 67 that
give a norm-wise equivalent of the error. The estimator © is said to be reliable (resp. efficient) if there
exists Crel > 0 (resp. Cegr > 0) independent of the mesh sizes such that

Cot © + h.o.t. < ||error|| < Cyq © + h.o.t.,

where h.o.t. is a generic expression for denoting higher order terms. This estimator is designed to
be effective in terms of computing cost, allowing to rapidly identify regions with large error that
are candidates to local mesh refinement. At the same time, the use of the estimator prevents the
refinement of areas where the error is small, delivering an efficient scheme for error reduction, which is
in contrast to uniform refinement schemes. We validate the proposed mesh-refinement scheme and the
associated theoretical results through applications on the registration of smooth and medical images,
where the performance of the methods is assessed in terms on error measures and convergence rates.

We have organized the contents of this chapter as follows. In Section 3.2, we state the mathematical
formulation of DIR, along with the similarity measure and regularizer considered in this work. In
Section 3.3, we state the weak problems for the primal and mixed formulations of DIR, along with
their corresponding Galerkin schemes. In Section 3.4, we develop a posteriori error indicators for the
FE formulations, to then derive the corresponding theoretical bounds yielding reliability and efficiency
of each estimator under reasonable assumptions. To demonstrate the applicability of the proposed
methods, in Section 3.5 we apply the mesh-refinement scheme in the elastic registration of smooth and
medical images, where we confirm the reliability and efficiency of the estimators, along with assessing
their numerical performance.
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3.2 Mathematical formulation of the deformable image registration
problem

In this section we recall from [13, Section 2] the elastic deformable image registration model. Let
n € {2, 3} be the dimension of the images we are interested in analyzing, and let {2 C R™ be a compact
domain with Lipschitz boundary I' := 92. Let R € H'(£2) be the reference image and T € H(£2)
be the target image. The DIR problem consists in finding a transformation u : {2 — R", also known
as the displacement field, that best aligns the images R and T, which is expressed as the variational
problem (cf. [74])

125 aDlu; R, T| + S[u], (3.1)

where V is typically H'(£2), D : V — R is the similarity measure between the images R and T, o > 0
is a weighting constant, and S : V' — R is a regularization term rendering the problem well-posed. A
common choice for the similarity measure is the sum of squares difference, i.e, the L? error that takes
the form

D R.T)i= 5 [ (T -+ u(a)) - R(@)*

For the case of elastic DIR, the regularizing term is commonly taken to be the elastic deformation
energy, defined by

Slu] = ;/QCe(u) e(u),

where

e(u) = %{V’u + (Vu)'}

is the infinitesimal strain tensor, i.e., the symmetric component of the displacement field gradient, and
C is the elasticity tensor for isotropic solids, that is

Ct = Mr(T)I 4 2ur V1 € L*(N). (3.2)

Assuming that (3.1) has at least one solution with sufficient regularity, the associated Euler-Lagrange
equations deliver the following strong problem: Find u such that

div(Ce(u)) = afu in (2,

(3.3)
Ce(uly = 0 on 012,
where
fu(@) ={T(x + u(x)) — R(x)}VT(x + u(x)) Vzec 2 ae. (3.4)
We assume the following conditions on the nonlinear load term f:
|fu(®) — fo(2)| < Lilu(z) —v(x)] Ve ae, 35)

|fu(z)| < My Ve e 2 ae.,

where Ly and My are positive constants.
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3.3 Continuous and discrete weak formulations of DIR

In this section we summarize the continuous primal and mixed variational formulations of (3.3)
derived in [13, Section 3] and [13, Section 4], respectively, and recall the respective solvability results.

3.3.1 DIR primal formulation

The primal variational formulation for the registration problem reads: Find w € H'(§2) such that
a(u,v) = aFy(v), ve H (), (3.6)

where a : H'(£2) x H'(£2) — R is the bilinear form defined by
a(u,v) = / Ce(u) : e(v) Vu,ve H(0), (3.7)
n
and for every w € H'(2), F,, : H*(2) — R is the linear functional given by

Fyu(v) ::—/qu-v Vv e H' ().

By imposing the conditions (3.5), we can deduce the Lipschitz continuity and uniform boundedness
properties for the functional Fy,, that is

IFu = Foll gy < Lrlu—vloe  Vuve H'(0), (3.8)

and
HFuHHl(Q)’ < Mp Vu e HY(Q),

respectively. We recall the results concerning the solvability of (3.6), as developed in [13, Section 3].
First, we define the following linear auxiliary problem: Given z € H'(£2), find w € H'(£2) such that

a(u,v) = aF,(v), ve HY(RQ). (3.9)

Since this problem does not have unisolvency, we modify it by imposing weak orthogonality to the
rigid motions space, denoted by RM({2) and defined as (see [20, Eq. 11.1.7])

RM(2) :={ve H'(2): e(v)=0}, (3.10)

which guarantees unique solvability of (3.9) since RM({2) is the null space of its solution operator.
Defining

H:zRM(Q)J‘:{’UEHl(Q)Z /Q'v:0, /Qrotv:O},

where rot v = —dvy /Oxe + Ovg/dx1, for v = (v1, v2)', we consider the following restricted problem:
Given z € H, find w € H such that

a(u,v) = aFy(v), veH. (3.11)

Then, we have the following result:
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Theorem 3.1. Given z € H, problem (3.11) has a unique solution w € H, and there exists Cp, > 0
such that

lulle < aCyll el gy -
Proof. See [13, Theorem 2]. [ ]

We now define the operator T:H > H given by 'f‘(z) = u, where u is the unique solution to
problem (3.11) and thus rewrite (3.6) as the fixed-point equation: Find w € H such that

T(u) = u. (3.12)
The following result establishes the existence of solution to the fixed-point equation (3.12).

Theorem 3.2. Under data assumptions (3.5), the operator T has at least one fized point. Moreover,
if aCpLp < 1, the fized point is unique.

Proof. See [13, Theorem 3]. [ |

3.3.2 DIR mixed formulation

In what follows we introduce a mixed variational formulation of (3.3). We begin by defining an
auxiliary field as the skew symmetric component of the displacement field gradient

1
p = §(Vu — Vau').

We note that from a continuum mechanics perspective, p corresponds to the rotation tensor, which
accounts for displacement gradients that do not induce deformation energy. We further define the
auxiliary stress tensor field o := Ce(u). Further, we note that the constitutive relation (3.2) can be

inverted (cf. [16] or [49]) as
2 2u(21 + nA)

Then, the strong form of the mixed registration BVP associated with (3.3) becomes: Find u, o and

tr(o)l.

p such that
Clo = Vu—p in {2,
div(ie) = afu in (2,
o = ot in {2, (3.13)
ov = 0 on 012

Introducing the spaces
Ho(div; 2) = {7 € H(div; 2) : 7,7 =0},
and

Q = L2(Q) x L (2),

skew
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where

Liew(2) i={n € L*(2): n* = —n},
and using a standard integration by parts procedure, the weak formulation of the mixed DIR problem
(3.13) reads: Find (o, (u, p)) € Ho(div; £2) x Q such that

a(o, )+ b(t,(u,p)) = 0 V1 € Hy(div; 2),
blo,(v,n) = aFu(v,n) V(v,n)€q,
where a : Hy(div; 2) x Hy(div; £2) — R and b : Hy(div; £2) x Q@ — R are the bilinear forms defined by

(3.14)

alo,T) = / Clo:7m Vo, e Hy(div; 2), (3.15)
n
b(t,(v,m)) = / v-divr +/ n:7 V7 e Hy(div;2), Y(v,n) € Q. (3.16)
2 Q

In turn, given w € L(£2), F, : Q — R is the linear functional defined by
Fuwn) = [ furv Ve Q.

In order to have unisolvency of (3.14), we define the auxiliary problem: Given z € L?(£2), find
(o, (u, p)) € Hy(div; 2) x Q such that
a(o,T) +b(t,(u,p)) = 0 V1 € Hy(div; £2),
b(o,(v,m)) = alF:(v,n) V(v,m) € Q,

which corresponds to a mixed formulation of the linear elasticity problem with pure traction boundary

(3.17)

conditions. Since this problem does not yield unique solvability, we impose weak orthogonality to the
rigid motions space RM({2) (c.f. (3.10)). Defining H := Hy(div; 2) x RM(S2), we arrive at the
following equivalent mixed variational formulation of (3.17): Given z € L?(£2), find ((o, X), (u, p)) €
H x @ such that

A0, (1,€)) + B((7,€), (w,p)) = 0 V(r.€) € H, 5.15)
B((U7X)7 <U777)> - an(vv T’) V(U, 77) €Q, ‘
where A: H x H — R and B : H X Q — R are the bilinear forms given by
Al ). (r.8) i=alo7)+ [ x-¢ V(o). (r.6) € H,
B((7,£), (v,n)) :=b(7,(v,n)) +/9€ ‘v V((7,€),(v,m) € H x Q.

The following two lemmas are needed to establish the well-posedness of (3.18).
Lemma 3.1. Let V:={(7,§) € H: B((7,£),(v,n)) =0, V(v,n) € Q}. Then V=1V x {0}, with
Vi={r € H(div; ) :divr =0 and T = 7" in 02}, (3.19)
and there exists a > 0, such that

all(r, &)l < A((T.€),(1,€)) V(T8 e V.
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Proof. See [50, Lemma 3.3]. [ ]

Lemma 3.2. There exists B > 0, such that

|B((T,€), (v,1))]

Bl(v,mlig < sup V(v,m) € Q.
Imle = e, e &)l
(7,6)#0
Proof. See [50, Lemma 3.4]. [ |

The well-posedness of the variational formulation (3.18) is stated as follows.

Theorem 3.3. There exists a unique solution ((o,x), (u,p)) € H x Q of (3.18). In addition, x =0
and there exist Cyp, > 0, such that

I((e;x), (w, p)) | Ex@ < aCnl| Fz g -

Proof. See [50, Theorem 3.1]. [ |

The treatment above allows us to define a fixed-point operator. Let T : L*(£2) — L*(§2) given by
T(z) := u Yz € L*(2), where u is the displacement component of the unique solution of problem
(3.18), and so the mixed formulation (3.14) can be restated as: Find w € L?(£2) such that

T(u)=u. (3.20)
The following result establishes the existence of solution to the fixed-point problem (3.20):

Theorem 3.4. Under data conditions (3.5) and assuming aCp, Ly < 1, there is a unique fixed point
for (3.20). With this, the mized formulation (3.14) has a unique solution (o, (u, p)) € Hy(div; 2) x Q.
Furthermore

H(O’, (uv p))”HQ(div;Q)XQ < aCp Mp.

Proof. See [13, Theorem 12]. [ |

3.3.3 The primal Galerkin finite-element scheme

Let H}, be a finite dimensional subspace of H 1((2) and define Hj, := RM™ N H},. Then the primal
nonlinear discrete problem is: Find u; € Hj, such that

a(uh,vh) = aFuh (Uh), vy, € Hy,. (3.21)

Analogously to the continuous case, we consider the auxiliary problem: Given z;, € Hy, find u, € Hy,
such that
a(uh,’vh) = Oéth ('vh), vy € Hh, (3.22)

and also let T}, : Hp — Hpy, be the discrete operator given by Ty (zp) = up, where uy, is the solution
to problem (3.22). Considering the same data assumptions as in the continuous case, as well as the
continuity and bound obtained before, we arrive at the following result.
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Theorem 3.5. Assume that data assumptions (3.5) hold. Then, the operator Ty, has at least one fixed
point. Moreover, if aC,Lr < 1, then such fized point is unique.

Proof. See [13, Theorem 5]. [ ]

3.3.4 The mixed Galerkin finite-element scheme

In this section we recall the Galerkin finite-element scheme for (3.14). First, let {7, }n>0 be a regular
family of triangulations of the polygonal region {2 by triangles K of diameter hx with global mesh
size h := max{hg : K € T}, such that they are quasi-uniform around I'. Let us consider finite
dimensional subspaces HZ, Q¥, and Qf of H(div; £2), L*(£2), and 12

skew

(£2), respectively. Then we
introduce the product spaces

H), = (H7 NHy(div; 2)) x RM, Q) = Q} x Q%

and define the discrete version of (3.18): Given zj € Q}, find ((on, xn), (un, py)) € Hp x Qy, such
that

A((oh, xn)s (Thy &r)) + B((Th,&p)s (un, pp)) = 0 V(7Th,&n) € Hp,

(3.23)
B((on, Xn), (Vn:smp)) = ol (vn,mp)  V(vkmy) € Q.

The unique solvability and stability of (3.23), being the Galerkin scheme of a linear elasticity problem
with pure traction boundary conditions, has already been established in [50, Theorem 4.1]. This allows
us to define the discrete operator T}, : Q) — Q) given by T'(zp) := up, where uy, is the unique
displacement from (3.23), and then we rewrite the discrete nonlinear problem as: Find u;, € Q} such
that

Th(uh) = Up. (3.24)

Now we establish the well-posedness of problem (3.24).

Theorem 3.6. Assuming (3.5) and aCp, Lrp < 1, the problem (3.24) has a unique solution up, € Q},
which yields ((oh, X3), (Un, pp)) € Hp, X Qy, the unique solution of (3.23) with zp = wp, which satifies

(s x1): (wns pp)) | Hx@ < @Crn M.

Proof. See [13, Theorem 14]. [ ]

3.4 Residual-based a posteriori error estimators

In this section we derive a reliable and efficient residual-based a posteriori error estimator for each
one of the Galerkin finite-element schemes (3.21) and (3.23).
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3.4.1 Preliminaries

We first let &, be the set of all edges of the triangulation 7j, and given K € T, we let £(K) be
the set of its edges. Then we decompose &, as &, = Ep(2) U ER(I7), where E,(12) :={e € &, : e C N2}
and & (") := {e € &, : e C I'}. Further, h, stands for the length of a given edge e. Also, for each
edge e € &, we fix a unit normal vector v, := (v1,v3)" and let s, := (—v2,v1)" be the corresponding
fixed unit tangential vector along e. However, when no confusion arises, we simple write v and s
instead of v, and s, respectively. Now, let 7 € L2(§2) such that 7| € C(K) on each K € Tj,.
Then, given e € &,(12), we denote by [T s] and [T v| the tangential and normal jumps of T across e,
that is, [T s] := (7|k — T|k)|es and [T v] := (7|x — T|k’)|eV, respectively, where K and K’ are the
triangles of 7;, having e as a common edge. Additionally, given scalar, vector and tensor valued fields
v, @ = (p1,2)" and T := (7;5)1<i j<2, respectively, we let

Ov. 9p1 _Op1 Omz _ 9ty
curl(v) := j%i , curl(yp) = % _% , curl(r):= 373_”212 B 8679'6221 .
ox1 Oxo ox1 ox1 Oxo

Next, we collect a few preliminary definitions and results that we need in what follows. Given an
integer £ < 0 and S C R?, we let Py(S) be the space of polynomials of degree < k. Then, we let
I, : HY(2) — X}, be the usual Clément interpolation operator (cf. [31]), where

Xy = {’UhGC(.Q): vh\KePl(K), VKE’EL}

The following lemma establishes the local approximation properties of Ij,.

Lemma 3.3. There exist constants c1,co > 0, independent of h, such that for all v € H'(£2) there
holds

o= I (@)lo.x < exhic lelloa) YK €T
o= I (@)l < eahl® [0la@) Ve € En(R) UED),

where A(K):=U{K' e T: K'NK #0} and A(e):=U{K' €T: K'ne#0}.
Proof. See [31]. [ ]

The main techniques involved below in the proof of efficiency include the localization technique
based on element-bubble and edge-bubble functions. Given K € T, and e € £(K), we let i and
e be the usual triangle-bubble and edge-bubble functions [89, egs. (1.5)-(1.6)], respectively, which
satisfy:

(i) Y € P3(K), vg =0 on 0K, supp(¢¥g) C K, and 0 < ¢ <1 in K,

(ﬁ) e € P2(K)> e = 0 on 0K, SuPp(we) C we, and 0 < 9P < 1 in we,

where w, := U{K’' € T, : e € £(K')}. Additional properties of ¥; and 1. are collected in the
following lemma (c.f. [88, Lemma 1.3], [89, Section 3.4] or [90, Section 4]).
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Lemma 3.4. Given k € NU {0}, there exist positive constants 1, v2, 73, Y4 and s, depending only
on k and the shape regularity of the triangulations, such that for each K € Ty and e € E(K), there
hold

nlalx < ‘)¢%2qHzK Vq € Py(K),
lralx < whildlox V€ PuK),
wlplg, < ‘ 2/217’26 Vp € Pi(e), (3.25)
leepln, < b lplo. V€ Pile),
lepllye, < sheIpllo. Vo€ Pile).

3.4.2 A posteriori error analysis for the primal finite-element scheme

We now derive a reliable and efficient residual-based a posteriori error estimator for (3.21). We
draw ideas from [6,7] (see also the monograph [91]). Letting u;, € Hj, be the unique solution of (3.21),
we define for each K € T, the a posteriori error indicator:

. 2
O% =Nk ||af, —div(Ce(un))|f , + > hellCe(un)velfe+ Y. hellCe(un)veld,,
e€E(K)NER(R) e€E(K)NEL(I)
(3.26)

where, according to (3.4),
fuh’K (x) = {T(m +up(x)) — R(m)}VT(:I; +up(x)) Ve K,

and introduce the global a posteriori error estimator

1/2

O:=4 Y 6%

KeTy,
The following theorem constitutes the main result of this section.

Theorem 3.7. Let u € H and uy, € Hy, be the solutions of (3.6) and (3.21), respectively, and assume
that aCp,Lp < 1/2. Then, there exist constants hg, Crel, Ceg > 0, independent of h, such that for
h < hg there holds

Cet® < ||lu — up||lg < CraO. (3.27)

The reliability of the global a posteriori error estimator (upper bound in (3.27)) and the corres-
ponding efficiency (lower bound in (3.27)) are established in Sections 3.4.2 and 3.4.2, respectively.

Reliability

The upper bound for (3.27) is established as follows.



3.4. Residual-based a posteriori error estimators 92

Lemma 3.5. Assume that aCpLr < 1/2. Then, there exist hg, Crel > 0, independent of h, such that
for h < hg there holds
H’U, - uhHH < C'rel 6.
Proof. Let us first define
Ry(w — wp) = aFy(w — wy) — a(up, w —wy) Ywy € Hy,.

As a consequence of the ellipticity of a (c.f (3.7)) with ellipticity constant & (c.f. [20, Corollary 11.2.22]),
we obtain the following condition

allv||i,e < sup a(v, w) Vv € H.
wek [wl| e

In particular, for v = u —u, € H, we notice from (3.6) and (3.21) that a(u — up, wy) = 0 Ywy, € Hy,
and hence we obtain a(u — up, w) = a(u — up, w — wyp) = Rp(w — wy), which yields

R (w —
allu — upllg < sup Rnlw = wp) Vwy, € Hp,. (3.28)
weH ”wHH
w#0

From the definition of Ry (w — wy,), integrating by parts on each K € 7Tp,, and adding and subtracting
a suitable term, we can write

Rp(w —wp) = aFy, (w— wp) + aFy(w —wp) — a(up, w — wp) — aFy, (w —wp),
= a{Fy(w —wy) — Fy, (w—wp)} — a/Q Fu, - (w—wp) — Z / Ce(up) : e(w —wy),

= al(Fu = Fu)w = wn)} ~a [ o, w-w) o
-> { [ aivicetun) - wn)+ [ Cefunv)-w—wn)}.
= o{(Fu — Fu)(w - w)} + 3 / (div(Ce(un)) — af,) - (w - wy)
KeTy,

(3.29)
Then, choosing wy, as the Clément interpolant of w, that is wy, := I (w), the approximation properties
of I, (cf. Lemma 3.3) yield

|w —wally x <cibk lwlly Ak (3.30)
lw — wh”o,e <cahe ||w||1,A(e)

In this way, applying the Cauchy-Schwarz inequality to each term (3.29), and making use of (3.30)
together with the Lipschitz continuity of F,, (cf. (3.8)), we obtain

Ri(w —wp) < aciLrhg|u —wy | mllw|

1/2 1/2

1LY 0% Do lwlf s+ Do Ml ae e

KeT, KeTh c€EL ()
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where C is a constant depending on ¢; and ¢z and ©% defined by (3.26). Additionally using the fact
that the number of triangles in A(K) and A(e) are bounded, we have

> llwl s < Cillwli,  and 0wl o < Collwli g
KeTh c€ER ()

where C, Cy are positive constant, and using that aCp,Lp < 1/2, it follows that hg := 1/(2ciaLp),
finally substituting in (3.28), we conclude that

|lu —upl|g < Cral O,

where C,¢ is independent of h. |

Efficiency

Now we focus on establish the lower bound in (3.27). We begin with the following lemma whose
proof is a slight modification of [90, Section 6].

Lemma 3.6. There exist constants n1,m2,m3 > 0, independent of h, but depending on ~y1,v2,73, V4
and s (c.f. (3.25)), such that for each K € Ty there holds

hic ||afu, — div(Ce(un))|ly ;o < mlu—unlox,

hi?|[Ce(un) - vellloe < ma {llu —pllow. + Y hilu— uh||o,K} »
KEwe

he!?|[Ce(un) - velloe < msllu — up)|
where we == U{K' € T}, : ec E(K')}.

0,K>»

Proof. Using the first inequality in (3.25), and let R (up) := af,, —div(Ce(uy)) we have

Rictunl e < ot orlRuctan) [

v /K i Ric(un) {0, — div(Ce(un))},
it [ avkBuctun{Fu, ~ fub =" [ icRiclun){diviCe(ur) ~ Ce(w)),
K K

= /I(Q¢KRK(uh){fu,L —ful ot /K(Ce(uh) —Ce(u)) - V(¢ R (un)),

0.5 + 71 "rehi ICe(un) — Ce(uw) ok || Ri (wn) ok

< oy Rk (un) o | fuy, — Faa

where, for the last inequality we used the inverse inequality (second relation in (3.25)). Next, we have

hic|Ri (wn) o, < abgeyy | Fuy — Fullox + 77 2lICe(ur) — Ce(w) o,k

now, using (3.5) and grouping terms, we conclude with 7; > 0 independent of h, that
hic [|efu, — div(Ce(un))|g , < mlw — unllox,

We omit further details and repeating arguments used for the remaining inequalities. |
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3.4.3 A posteriori error analysis for the mixed finite-element scheme

In this section we derive a reliable and efficient residual-based a posteriori error estimator for (3.23).
Throughout the rest of this section we let ((o, x), (u, p)) € HxQ and ((op, x3), (un, py)) € HpxQ),
be the solutions of the continuous and discrete formulations (3.18) and (3.23), respectively. We
introduce the global a posteriori error estimator

1/2

Wi=< > TRy

KeTy
where we define for each K € T,
. 2 _
Ui =|lafy, —divon||g o +llon — ohlf & + Ixalls x + hicllewl € on + pp) 6«
FHIC o bl Y kel on + puslIE, )
e€E(K)NER (1) ’
+ ). hel€ton+ ppslloe

e€E(K)NEL(T)
The following theorem constitutes the main result of this section.

Theorem 3.8. Assume that aCyp,Lp < 1/2. Then, there exist Cyel, Cog > 0 independent of h, such
that

Cet? < [(0x) = (an: xp) |1z + [[(w, p) = (un, p1)ll@ < Cra?V. (3.32)

The reliability of the global error estimator (upper bound in (3.32)) and the corresponding efficiency
(lower bound in (3.32)) are established in Sections 3.4.3 and 3.4.3, respectively.

Reliability

We begin by establishing a more general result due to Lemmas 3.1, 3.2 and Theorem 3.4, and that
we will use to establish the upper bound in (3.32). This result we establish in the following theorem.

Theorem 3.9. Given F € H' and Gy € Q', there exists a unique ((&,%), (w,p)) € H x Q such that

A((5,%), (T,6)) + B((1,€),(a,p)) = F((T,§))  ¥(r.,§) c H, (3.33)
B((6,x): (v,n)) = Gu((v,m)  V(v,n) €Q.
In addition, there exists C' > 0, depending only on a, B, llal|, and ||b||, such that
1@, 2) |l + (@, p)ll@ < C{IIFla + |Gullg}- (3.34)

To derive an upper bound for |[(o,x) — (o'n, X1,)|| i Wwe consider the functional S, : H(div; 2) — R
defined by
Su(r) 1= alon, ) + b(r, (wn,py) ¥ € H(div; 2), (3.35)
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where a and b are the bilinear forms defined in (3.15) and (3.16), respectively, and let Sy|y be the
restriction of S to V, the first component of the kernel V of B (cf. (3.19)) We note that Sy (75) = 0
for each T, € Hf.

Now, we make use of a particular problem of the form (3.33) with F € H' and G, € Q' defined by
F((r,€) =0V (r,§) € H and Gu((v,n)):=B((o,x) ~ (on,Xn). (v.n)) ¥(v,0) € Q,
and let ((a,x), (w,p)) € H x Q be the unique solution of this particular problem. We note that
Gulto.) = [ (afu—divn) o= [ x 0= [ onin,
[0} 2 2

this conforming the definition of B and the second equation of (3.18). Adding and subtracting a
suitable term we can rewrite the above equation as:

Gullom) = [ (afu, ~dive) o= [ xiv= [ oninta [ (fu=tu) v

Applying Cauchy-Schwarz inequality and noting that o : n = %(a’h —o}) : m, together with the
condition (3.5), we can establish

1Gullg < C{ [[afu, = divonlly o+ llon = oo + Ixalloe +aLrlu — uallon}

by the previous estimate and the continuous dependence results (3.34), we have
(&, X))l < C{ |efu, —divor|, o + lon = ahlloe + Ixuloe + alplu - Uhllo,n} . (3.36)
Now, applying the triangle inequality we obtain

(e x) = (o xp) 1 < [l(o,x) = (on,x1) = (@ X) | + (&, X)| &, (3.37)

and hence, it remains to estimate ||(o, x) — (o°n, X) — (6, X)|| ;. First observe that (o, x) — (o, X1,) —
(,x) € V, hence applying the ellipticity of A in V' (cf. Lemma 3.1) and analogously to [43, Lemma
4.6], we obtain an estimate for this term that replacing together with (3.36) in (3.37), allows us to
establish that

(@30 = (@n )l <C {ISulvllve + [|af, — divan]l, o+ lon = oo + 1

(3.38)
To estimate [|Sp|v ||y, (cf. (3.35)) in (3.38), we have the following result
Lemma 3.7. There exists C' > 0, such that
IShlvilv: <C S hicllewlC'on +pn)l§x + D hellC o+ pu)slllEe
ecE(K)NEL(S2

+ > hlClon+pp)sllo
e€E(K)NER(T)

0,2 +aLlplu— uhHo,Q} -
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Proof. See [43, Lemma 4.7] for details. [ ]

From the above, the following lemma is configured.

Lemma 3.8. Assume that aCy, Ly < 1/2. Then, there exists C > 0 such that

1/2
(o) = (@nxw)la <C4 > Vo
KeTy
where
U = hillewd(C 'on+pp)lo + D hellClon+on)sllie+ D, hell€ lon+pr)slie
€€ (K)NER(R) ec€(K)NER(T)
+llafu —divorlly o + lon = ahlloe + [xalloe + aLrllu — uslloe.
Proof. Tt follows straightforwardly from (3.38) and (3.39). [ |

Now we proceed to obtain the corresponding upper bound for ||(u, p) — (un, p)llQ-

Lemma 3.9. Assume that aCy, Ly < 1/2. Then, there exists C > 0 such that

1/2
I(w,p) = (un,pp)llg <CQ > Wiy
KeT,
where W3- is the local indicator defined in (3.31).
Proof. The proof follows directly from [43, Lemma 4.9] with small modifications. |

The reliability of ¥, is a straightforward consequence of Lemmas 3.8 and 3.9, assuming aCy,Lr <
1/2.

Efficiency

In this section, we provide upper bounds depending on the actual errors for the seven terms defining
the local indicator W2 (c.f. (3.31)). For this, analogously to [43, Section 4.3] we begin with the first
three ones appearing there, more precisely, since div(o) = af, in {2, we have that

. 2
lafu = diveylly - < llo = onlGiv. k-
Next, adding and subtracting o, and we use that o = o' in {2, we see that
lon = a3k < 4lo = onl§ «-

Finally, since x = 0, we obtain
IxalI6.5 = 1 = xull6 -

The upper bounds for the terms involving only the tensor C~ 1o, +p},, are established in the following
result.
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Lemma 3.10. There exist C1,Cy,Cs,Cy > 0, independent of h, such that for each K € Ty, there holds

hicllewrl(C™ oy + pp)lls i < Ciille — anlld i + llp — pulld i }
IC™ e + pulld i < Co{llu — wnllf i + hillo — onlls k + hiclle — pulld i }

helllCon+pn)dlle <Cs > {llo—onllsx + Il — prnlld x}
KCwe

S ohellCron+p)sli. <Ci Y {lo—onlix+ e —puld k]
e€&p (D) ec&n(I)

where we := U{K' € T, : e E(K')}.

Proof. See [43, Section 4.3]. [ |

3.5 Applications and performance assessment

3.5.1 Numerical implementation

We now turn to the implementation of some numerical tests that confirm the predicted reliability
and efficiency of the a posteriori error estimators (3.26) and (3.31). The DIR problem is in all cases
restricted to images mapped to the unit square 2 = (0,1)2, and uniform triangular partitions are
employed for all initial meshes. The discretization of the primal problem is done with continuous
piecewise linear and continuous piecewise quadratic approximations for displacement. For the case
of the mixed formulation we consider the lowest-order family of Brezzi-Douglas-Marini elements for
the rows of the Cauchy stress tensor, and piecewise constant approximations of the entries of the
displacement vector and the rotation tensor [49]. The Picard method is used to linearize the problem
and we set a fixed tolerance of le-5 on the energy norm of the difference between two consecutive
solutions. Unless otherwise specified, all linear solves related to the fixed-point iteration (in both
primal and mixed formulations) are carried out with the stabilized bi-conjugated gradient method
(BiCGStab) using an incomplete LU decomposition as preconditioner.

Mesh adaptation guided by the a posteriori error estimators is carried out by a classical conforming
partitioning. No coarsening is applied (mainly due to the capabilities of the current version of the finite
element library we use herein [4]). After computing locally the error indicators, we proceed to tag
elements for refinement using the Dorfler strategy [44], where we mark sufficiently many elements so
that one establishes equi-distribution of the error indicator mass, and then the diameter of each triangle
in the new adapted mesh (contained in a generic element K on the initial grid) is set proportional
to the diameter of the initial element times the ratio (j,/Cx, where (j, is the mean value of a generic
error estimator ¢ over the initial mesh (see for instance, [88]). In each of the accuracy tests below,
these ratios are multiplied by a constant 7;atio that is arbitrarily chosen so as to generate either a
roughly similar number of degrees of freedom, or similar individual error magnitudes than in the case
of uniform refinement. The density of the refinement process is tuned at will.

Let us also recall from [13] that the implementation of the fixed-point scheme includes an additional
stabilization term associated with dynamic gradient flows, that essentially translates in having a
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pseudo-time step in the Euler-Lagrange equations (3.3), that then read: knowing w®, for k = 1,...,

solve
u

b k+1 uk
50 div(Ce(u"")) = 55

Further details can be found in [13, Appendix C]. Therefore the primal and mixed Galerkin methods,

—ofn-

as well as the a posteriori error indicators © and ¥ are modified accordingly, and only affecting
the residual terms associated with the momentum equation. The Picard iterations with pseudo time-
stepping are located inside the adaptive refinement loop which consists in solving, estimating, marking
and refining.

3.5.2 Example 1: Registration of smooth synthetic images

We assess the accuracy of the primal and mixed DIR methods using a smooth synthetic image under
a smooth transformation. To this end, we define the reference image R : [0,1]> — R by

R(x1,x9) = sin(27mxy) sin(27xe).

We further define a manufactured displacement and the corresponding stress and rotation tensor fields
by

0.1 cos(mzy) sin(rzs) + x%(l—m);i%(l—@p

u(x17x2) - 5 o ,
—0.1sin(7xq) cos(maa) + 901(1—961);2(1—962)

1
o(z1,22) =Ce(u),  and  p(z1,22) = (V- Va').

Then, we construct a synthetic target image via composition of the reference image and the inverse
warping, namely T'= R o (id + u)~!. An initial target in the fixed-point scheme is a perturbation of
the reference image, that is To(x1, x2) = sin(27zy ) sin(27[zs + 0.01]). These manufactured solutions
satisfy the zero-traction boundary condition, and they are used to construct an additional body load
(apart from f,,) that needs to be incorporated as right-hand side in the discrete problems, as well
as in the residual term associated with the momentum conservation equation in the definition of the
error indicators. The model parameters employed in this test are Young modulus £ = 1000, Poisson
ratio v = 0.4 (used to obtain the Lamé constants of the solid, A = (Hyf(ﬁ and p = H%)’ a weight
constant o = 100, and pseudo time-step 6t = a2,

On sequences of uniformly or adaptive refined meshes, we solve the DIR problem with primal and
mixed methods and compute (non-normalized) errors between the approximate and exact solutions in
their natural norms, that is, for the primal method e, = ||u — uy||1,0; whereas for the mixed method
ey = [[u — upllo,0 and ep = |[p — py, fe als
adaptive mesh refinement, the experimental rates of convergence rate are computed differently than

l0.2, e = ||l — oh]|div,2. We also point out that in the case of

in the uniform case
rate = log(e/d)[log(h/h)]!,  rate = —2log(e/s)[log(DoF/DoF)] !,

where e and € denote errors produced on two consecutive meshes. These grids have respective mesh
sizes h and h' (needed to compute the experimental order of convergence rate), or they are asso-
ciated with DoF and DoF degrees of freedom, respectively (in when computing r/aaa). In addition,
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the effectivity index associated with the global estimators for the primal and mixed discretizations is
computed as

ey

2 2 211/2
+ey +
eff(O) = R eff(¥) = {6 +eut ey}

W Y
where the additional scaling (with the dilation modulus \) for the indicator @ is motivated by the

fact that the efficiency bound arising from the proof of Lemma 3.6 is proportional to A due to the
definition of the Hooke tensor C. Such an explicit scaling is however not required for the a posterior:
estimation in the mixed method.

In Figure 3.1(a,b) we show the reference image Ry, and the resampled image T}, = T'(x +up(x)), and
the panels (c-h) show examples of meshes adaptively refined guided by the estimators. We note that
the primal method refines largely around the center of the domain. We also show in panels (i,j,k) the
approximate solutions (the Frobenius norm of stress, displacement magnitude, and Frobenius norm of
the rotation matrix) generated with the mixed method at the final refinement level.

The numerical convergence of the primal and mixed DIR methods are shown in Figure 3.2(a)
and Figure 3.2(b), respectively. We observe that both methods do exhibit monotonic convergence.
For this particular example, no major differences arise between the uniform and adaptive refinement
schemes. Convergence rates for both methods are reported in Table Table 3.1, where we verify that
optimal convergence are achieved with O(h*). No differences were observed in the number of Picard
iterations required by the uniform and adaptive refinement strategies. The mixed DIR method also
displays optimal convergence rates, see Table 3.2. We further note that the effectivity index values
for the mixed scheme are roughly constant and close to 0.43, and that the convergence rate is not
substantially improved by the adaptivity in this example.

(a) Primal method, uniform refinement (b) Primal method, adaptive refinement

k DoF h  rate iter k' DOF hppn rate eff(©) iter
1 53 0.3536 0.561 4 1 53 0.3536 1.123 0.6984 4
165 0.1768 0.931 4 165 0.1768 1.123 0.7083 4

581 0.0884 1.116 4 557 0.0884 1.123 0.6964 4
2181 0.0442 1.082 4 2101 0.0442 1.041 0.6962 4
8453 0.0221 1.030 4 8149 0.0221 1.022 0.6950 4

2 165 0.3536 1.649 4 2 165 0.3536 2.177 0.3599 4
581 0.1768 1.945 4 581 0.1768 2.026 0.3675 4
2181 0.0884 2.025 4 2181 0.0884 2.088 0.3602 4
8453 0.0442 2.031 4 8453 0.0442 2.045 0.3546 4
33285 0.0221 2.041 4 32933 0.0221 2.061 0.3457 4

Table 3.1: Example 1: Smooth synthetic image registration example. Error measures, convergence
rates, and Picard iteration count for the approximate displacements w; produced with the primal
method (of polynomial degrees k = 1 and k = 2); and tabulated according to the resolution level. (a)
Uniform mesh refinement, (b) adaptive mesh refinement based on error estimator @, with “yatic = 0.1,
also displaying the rescaled effectivity index.
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Figure 3.1: Example 1: Adaptive mesh refinement in the registration of a smooth synthetic images.
(a,b) Projected fields of the reference R and composed T'(x + up(x)) images; (c,d,e) evolution of
the mesh adaption for the primal scheme using the error indicator ©; (f,g,h) evolution of the mesh
adaption for the mixed scheme using the error indicator ¥; (i,j,k) Stress, displacement and rotation

norm fields predicted by the mixed scheme using mesh adaptivity.

3.5.3 Example 2: Registration of smooth synthetic images with high gradients

Next, we modify the closed-form displacement of Example 1 to produce higher gradients in the

reference image and initial target image. To this end, we consider the following image and displacement
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Figure 3.2: Example 1: Smooth synthetic image registration example. Error convergence with respect

to the number of degrees of freedom for both (a) primal, and (b) mixed DIR formulations. Uniform
refinement is shown in solid lines, while the adaptive refinement is shown in dotted lines.

field expressions:

x%(lfxl)ng(lfzg)Q

0.1 cos(mx1) sin(mza) + r1xe(ry — 1) (22 — 1)

R —
(@1:22) = 30,0107 & (g £ 0011

u(x1,x9) =

—0.1sin(7w) cos(mza) + x?(l—x1)32z§(1—z2)3

T0(1U17x2) — 6750[@170,2)2+(362,0_2)2]'

All other remaining model parameters are kept the same as in Example 1.
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(a) Mixed method, uniform refinement

DoF h rate, rate, rate, iter
323 0.3536 1.016 0.932 1.125 7
1219 0.1768 1.101 0.994 1.049 8
4739 0.0884 1.051 1.000 1.017 8
18691 0.0442 1.015 1.000 1.006 8
74243 0.0221 1.004 1.000 1.002 10

(b) Mixed method, adaptive refinement

———

DoF Bmin rate, rate, rate, eff(¥) iter
323  0.3536 1.251 1.015 1.195 0.4281
1219  0.1768 1.005 1.037 1.114 0.4257
4739 0.08839 1.085 1.020 1.038 0.4219
18603 0.04419 1.030 1.004 0.998 0.4222
73635  0.0221 1.001 1.001 1.000 0.4217

© © 0 o

Table 3.2: Example 1: Smooth synthetic image registration example. Convergence rates, and Picard
iteration count for the approximate Cauchy stress, displacements, and rotation oy, up, p;, for the
mixed formulations. (a) Uniform mesh refinement, (b) adaptive mesh refinement guided by ¥, with
Yratio = 0.05.

We show in Figure 3.3(a,b) synthetic images projected onto the space of piecewise linear and con-
tinuous functions, as well as a few adapted meshes produced with the indicators (c-h), where one
sees that the agglomeration of vertices occurs not so much due to the high gradients of the synthetic
images, but mainly because of the features in the solutions to the elasticity problem. Panels (i,j.k)
have snapshots of approximate solutions generated with the mixed method after five steps of adaptive
refinement, and plotted on the deformed domain. We note that, for the adaptive algorithm with
Yratio = 0.01, the error indicator makes the refinement to be applied uniformly for the first three
iterations, after which localized meshing takes place in certain regions of the domain.

Figure 3.4(a) shows the numerical convergence of the primal DIR method under uniform and ad-
aptive refinement. We observe monotonic convergence for all displacement field error as the number of
DoF's increases. A notable improvement in convergence is observed for the particular case of the ad-
aptive refinement scheme using second-order element interpolations. Convergence rates for the primal
DIR method using uniform and adaptive refinement are reported in Table 3.3, where we observe that
the case of adaptive refinement using second-order elements results in convergence rates that reach
k = 2, which is notoriously higher than the convergence rate of k = 1.5 reached by the primal method
under uniform refinement. For the case of the mixed method, adaptive refinement always result in
better convergence than uniform refinement for the displacement, stress and rotation fields, see Figure
3.4(b). Table 3.4 reports the convergence rates of the mixed method, where we note that the adaptive
refinement always results in rates that are greater than those obtained under uniform refinement. Fur-
ther, we observe that in systems with roughly similar number of DoF's, the number of Picard iterations
needed to reach the tolerance are smaller in the case of adaptive refinement.
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Figure 3.3: Example 2: Adaptive mesh refinement in the registration of smooth synthetic images with
high gradients. (a,b) Reference image R and composed Target image T'(z + up(x)); (c,d,e) evolution
of the mesh adaption for the primal DIR method using the error indicator ©; (f,g,h) evolution of the
mesh adaption for the mixed DIR method using the error indicator ¥; (i,j,k) Stress, displacement and
rotation norm fields predicted by the mixed scheme using mesh adaptivity.

3.5.4 Example 3: Registration of brain medical images

We now turn to the application of the adaptive primal and mixed DIR methods in the registration
of medical images of human brains [33]. The reference and target images for the brain have dimensions
258 x 258 and the voxel resolution corresponds to 1 mm, see top panels in Figure 3.5. We proceed
to solve the DIR problem using both primal and mixed adaptive schemes, starting from structured
meshes with 32768 triangular elements. The elasticity parameters are set to £ = 15, v = 0.3, the
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Figure 3.4: Example 2: Error convergence for (a) primal DIR method and (b) mixed DIR method
under uniform and adaptive mesh refinement.

weight constant is & = 50, and the pseudo timestep is 6t = 0.01/«. The tolerance for the Picard
scheme is increased to 1e-04, and for the mixed method the refinement density proportion is ruled by
the constant Jyatic = 0.1. The primal method requires an average (over the number of mesh refinement
steps, here assigned to 4) of 19 Picard steps to reach convergence, which is slightly larger for the mixed
method (22 iterations). The first two plots on the middle row of Figure 3.5 depict the composed images
T o (id+up) generated with the primal and mixed methods, where we can notice very similar patterns
in both cases. The two other figures on the right show the similarity between reference and warped
images, |R(x) — T'(x + up(x))| resulting from both methods.
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(a) Primal method, uniform refinement  (b) Primal method, adaptive refinement

k  DoF h rate iter k' DoF hpn, rate eff(O) iter
1 53 0.3536 0.481 4 1 53 0.3536 0.617 0.8314 4
165 0.1768 0.526 6 165 0.1768 1.277 0.8282 6
581 0.0884 0.859 19 581 0.0884 1.037 0.8205 11
2181 0.0442 0.793 24 2105 0.0442 1.084 0.8187 15
8453 0.0221 0.620 28 8177 0.0221 1.099 0.8219 18
2 165 0.3536 0.844 4 2 165 0.3536 1.398 1.6422 4
581 0.1768 0.529 6 581 0.1768 1.489 1.6926 6
2181 0.0884 0.900 20 2181 0.0884 1.891 1.6360 12
8453 0.0442 1.169 25 4959 0.0442 1.786 1.6799 15
33285 0.0221 1.564 29 13129 0.0221 2.097 1.6492 18

Table 3.3: Example 2. Convergence rates, and Picard iteration count for the approximate displace-
ments w; produced with the first and second-order primal method; and tabulated according to the
resolution level, under uniform (a) and adaptive mesh refinement guided by @, with ~yatic = 0.01 ((b)
also displaying the rescaled effectivity index).

(a) Mixed method, uniform refinement

DoF h rate, rate, rate, iter
323 0.3536 0.552 0.278 1.174 7
1219 0.1768 0.278  0.728 0.674 13
4739 0.0884 0.443 0.846 0.882 28
18691 0.0442 0.741 1.183 0.658 45
74243 0.0221 0.598 1.235 0.606 50

(b) Mixed method, adaptive refinement

—

DoF  Amin huax  Tatey Tatey rate, eff(¥) iter
323 0.3536 0.3536 0.965 0.518 1.169 0.5333 5
1219 0.1768 0.1768 0.955 0.725 0.869 0.5272 8
4692 0.0742 0.1250 0.952 0.946 1.002 0.5188 19
6277 0.0264 0.1250 1.066 1.114 1.106 0.5139 21
18884 0.0107 0.0817 1.052 1.039 1.067 0.5205 24
32998 0.0051 0.0730 0.98 0.958 0.975 0.5216 30
94153 0.0020 0.0601 0.961 0.963 0.959 0.5210 30

Table 3.4: Example 2: Convergence rates, and Picard iteration count for the approximate Cauchy
stress, displacements, and rotation o, up, p;, produced with the lowest-order mixed method; and
tabulated according to the resolution level, under uniform (a) and adaptive mesh refinement guided
by ¥, with ratio = 0.009 ((b) also displaying the effectivity index).
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Figure 3.5: Example 3. Registration of brain medical images. (a) Reference image, (b) target image;

(c,d) resampled (composed) (c,d) images from solutions using primal and mixed schemes, respectively;
(e,f) similarity plots resulting from primal and mixed schemes, respectively; (g,h,i) stress, displacement
and rotation norm fields resulting from the mixed DIR scheme using adaptive mesh refinement.

We also plot an example of a mesh obtained after four steps of adaptive refinement with the primal
and mixed methods (see Figure 3.6). For illustration purposes we initiate the process from a coarse
mesh of 8196 triangles (corresponding to a low resolution image of 64x64 pixels. Starting with images
of higher resolution imply that the meshes obtained after adaptive refinement are too dense to be easily
visualized). The figures exemplify the concentration of refinement near the skull, which is consistently
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Figure 3.6: Example 3. Adaptive mesh refinement in the registration of brain medical images. (a)
Mesh after four steps of adaptive refinement using the error indicator @ for the primal DIR method;
(b) Mesh after four steps of adaptive refinement using the error indicator ¥ for the mixed DIR method.

the zone with highest gradients in the reference and target images, as well as in stress and rotations (as
inferred from panels (g,h,i) in Figure 3.5, where the Frobenius norm of the rotation tensor is plotted
in log-scale for clarity). On the other hand, the displacements are, in comparison, rather smooth and
they seem not to contribute substantially to the local error indicators.

In Table 3.5 we report information about the CPU time required in each step of the overall solution
algorithm. We record the wall-time during the execution of the mixed and primal DIR methods, when
starting from a coarse grid (representing 8715 DoFs for the primal method and 76573 DoF's for the
mixed scheme) and in both cases applying five iterations of adaptive mesh refinement. An average of
17 fixed-point iterations are needed for the primal approximations and 25 for the mixed scheme.

3.5.5 Example 4: Registration of binary images under large deformation

The last example of application adressed in this study consists in a classic benchmark in DIR which
introduces two important challenges. First, reference and target images are binary-composed, i.e. they
have intensity values of either 0 or 1, which creates steep numerical gradients at the binary interface
of order 1/h. Thus, the images do not satisfy condition (3.5). Second, the deformation required for a
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refin.  matrix solution I0 and  evaluation  marking and
level assembly computation residual of estimator  refinement

Primal method 1 0.101 0.075 (avg) 0.102 0.096 0.544
(total CPU time: 73.16) 2 0.099 0.163 (avg) 0.110 0.130 0.757
3 0.162 0.312 (avg) 0.192 0.235 1.284
4 0.489 1.127 (avg) 0.481 0.704 3.351
5 0.853 2.093 (avg) 0.758 0.812 5.246
Mixed method 1 0.418 1.445 (avg) 0.101 0.099 0.530
(total CPU time: 997.83) 2 0.443 2.373 (avg) 0.109 0.141 0.668
3 0.578 4.746 (avg) 0.135 0.154 0.719
4 0.704 8.390 (avg) 0.204 0.237 1.298
5 0.921 22.45 (avg) 0.439 0.304 2.616

Table 3.5: Example 3. CPU time (in [s]) of each step of the adaptive finite element method for
the DIR problem, measured for the primal and mixed methods, starting from coarse meshes. The
time associated with the solution of the linear systems is averaged over the number of inner Picard
iterations.

satisfactory registration is large, so that the validity of the elastic potential is not clear from a physical
viewpoint. We define the ball B(zx,7) = {x € R?: |x| < r} to set the images as

R(w) {1 z € B(0.5,0.32) N [B(0.5,0.16)]° N [{z1 > 0.5} N {0.4 < x5 < 0.6}]°,

0 otherwise,

T(z) 1 x € B(0.5,0.25),
€r) =
0 otherwise.

Both methods consider quadrature rules of sixth order, with an initial mesh given by a unit square
with 20 elements per side, which yields a total of 800 triangular elements. We consider the parameters
a = 1000, F = 15,v = 0.3 and set the pseudo timestep to dt = h?nin/oe for the primal case and
5t = 0.01 k2. /o, where hyi, is the minimum characteristic length of the mesh. This was motivated
by a possible CFL condition on the timestep arising from the explicit treatment of the nonlinearity
and proved effective during numerical tests. The convergence was set through the £*° norm of the
increment |uk — uk_1|goo with a tolerance of hnin, so that iterations stop when the displacement
changes by less than the smallest element. A maximum number of 100 iterations was always achieved,
following previous works adressing this problem [74]. Both the primal and mixed DIR problems for this
example were solved in serial with the iterative scheme BiCGStab preconditioned with an incomplete
LU factorization, using the default parameters available in FEniCS. The solution of the mixed DIR
problem required a considerable numerical effort to converge to a solution that met the error criterion.
To overcome this difficulty, we used at each refinement level the solution of the primal formulation as
an initial solution for the mixed case, and then employed 5 iterations of the mixed formulation only.
This was already implemented in [13] to substantially improve the registration of lung images in a

mixed formulation.
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refin.  matrix solution I0 and  evaluation  marking and
level assembly computation residual of estimator  refinement

Primal method 1 0.018 0.036 (avg) 0.024 0.017 0.010
(total CPU time: 261.83) 2 0.031 0.076 (avg) 0.029 0.023 0.023
3 0.293 0.181 (avg) 0.049 0.054 0.081
4 0.293 0.627 (avg) 0.130 0.140 0.202
5 0.751 2.381 (avg) 0.338 0.466 0.799
Mixed method 1 0.04 0.051 (avg) 0.058 0.016 0.006
(total CPU time: 326.61) 2 0.248 0.112 (avg) 0.037 0.047 0.064
3 0.777 0.361 (avg) 0.037 0.047 0.064
4 2.781 1.256 (avg) 0.142 0.147 0.243
5 10.725 5.104 (avg) 0.464 0.545 1.031

Table 3.6: Example 4. CPU time (in [s]) of each step of the adaptive finite element method for
the DIR problem, measured for the primal and mixed methods, starting from coarse meshes. The
time associated with the solution of the linear systems is averaged over the number of inner Picard
iterations.

We report the solution with its components in Figure 3.7. In the first row we show the reference (a)
and target (b) images, constructed as in [74], with the solution reported in the second row together
with its absolute error |R(x) — T'(x + up(x))| in primal (c, e) and mixed (d, f) form. We note that
the mixed DIR performs slightly worse than the primal DIR method, which is to be expected due
to the lower order of approximation used. The last row shows the magnitude of all components of
the solution, in both primal (j) and mixed (g,h,i) formulations. Also, in Figure 3.8 we present the
refined mesh after three steps, where it can be observed how the mixed scheme yields a more localized
refinement even though the amount of refined elements is the same in both schemes. Finally, we
provide information on the CPU time required in each step of the overall solution algorithm in Table
3.6.
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Figure 3.7: Example 4. Registration of binary images (O-C). (a) Reference image, (b) target image;

(c,d) resampled (composed) images from solutions using primal and mixed schemes, respectively; (e,f)
similarity images resulting from the primal and mixed methods, respectively; (g,h,i) stress, displace-
ment and rotation norm fields using the adaptive mixed DIR method; (j) displacement norm field
using the adaptive primal DIR method.
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Figure 3.8: Example 4. Registration of binary images. Mesh after three steps of adaptive refinement
for (a) primal DIR problem, and (b) mixed DIR problem.



Conclusions and future work

Conclusions

In this thesis we have developed primal and mixed finite element methods for a set of partial
differential equations of physical interest in Biology and Biomedicine, more precisely, the bioconvective
flows problem and deformable image registration problem. We have proved the solvability of the
continuous and discrete problems as well as their convergence results, and we have also provided
corresponding numerical examples and simulations. The main conclusions for each one of the models
are:

1. We introduced a fully-mixed finite element method for the bioconvective flows problem. For
convenience of the analysis, we introduced the strain tensor, vorticity, and pseudo-stress as ad-
ditional unknowns (besides the pseudo-concentration gradient, the velocity, the pressure, and the
concentration). This allows us to eliminate the pressure from the system, which is then recovered
using an appropriate postprocessing formula, together with the concentration gradient. The ori-
ginal problem was reformulated as an augmented variational approach in the incompressible
viscous fluid modelled by a Navier-Stokes type-system (with non-linear viscosity) coupled with
an advection-diffusion equation. Then, through a fixed-point strategy together with sufficiently
small data assumptions, the solvability analysis of both the continuous and discrete problems
as well as its corresponding a priori estimate were developed. Finally, several numerical experi-
ments were reported in order to validate the good performance of the method and confirm the
corresponding order of convergence.

2. We presented a way to formulate deformable image registration problems with Neumann bound-
ary conditions in a mathematically consistent way so as not to lose information from the images
but still keeping all the degrees of freedom from the original problem in both primal and mixed
formulations, the latter being particularly important in the quasi-incompressible case. This
method presents clear advantages for capturing rigid motions, i.e translations and rotations.
The results of well-posedness of the continuous and discrete formulations, a priori error estim-
ates, and the respective rates of convergence, were obtained by using the Babuska-Brezzi theory
and duality arguments.

3. We established an adaptive mesh-refinement scheme for the numerical solution of primal and
mixed DIR problems. Our method hinges upon the development of a posteriori error estimators
for both the primal and mixed finite-element formulations that are reliable and efficient, and at
the same time, they are easily computed. These estimators allow for an optimal refinement of
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the mesh in zones where the accuracy of the numerical approximation does not perform well.
Thus, one distinctive feature of our work is the effectiveness of the mesh-adaption strategy,
as they are justified on selectively reducing the local approximation error made by the finite-
element schemes employed. This contrasts with current methods of mesh adaption employed in
DIR problems, which either refine the discretization uniformly or rely on heuristic grounds to
select regions that are refined. To assess the numerical performance of the proposed method,
we employ uniform and adaptive mesh refinement to solve a DIR problem based on smooth
synthetic images where the displacement solution is known in advance and to demonstrate the
applicability of the method in medical images, we perform DIR on human brain images.

Future work

The methods developed and the results obtained in this thesis have motivated several ongoing and
future projects. Some of them are described below:

1. A posteriori error analysis of the augmented fully-mixed formulation for bioconvective flows
problem: We are interested in developing a posteriori error analysis for the method studied
in Chapter 1 in order to improve its robustness in the context of problems involving complex
geometries or solutions with high gradients.

2. Analysis of an augmented mixed-primal formulation for the bioconvective flow model: As an
alternative to our fully-mixed method presented in Chapter 1, we are interested in studying a
mixed formulation for the fluid (without considering the vorticity as an unknown of the system)
and a primal formulation for the concentration equation.

3. Finite element methods for inelastic deformable image registration problem: We are interested
in extending the results and techniques of Chapters 2 and 3 to the inelastic case. For this model,
we consider the problem of elastoplasticity with internal hardening &, in which we assume that
the strain tensor e can be decomposed as e(u) = €°(u) + eP(u), where €® and eP are the elastic
and plastic part of the strain tensor, respectively. The main unknowns of the model are the
displacement u, the plastic strain eP and the internal hardening &, whereas the equations reduce
to

dive + af, =0, o=C(e(u) —eP), x=-H¢ in 0,

(3.40)
u =0, ov=0 on 91,

where x is the force conjugate to € and H represents a hardening modulus. Further, this model
considers a flow law which governs the evolution of the plastic strain and internal hardening.
The relevance of this kind of model is due to that certain human tissues, such as lung tissue,
can exhibit plasticity behavior when they are subjected to stresses above their elastic range.



Conclusiones y trabajo futuro

Conclusiones

En esta tesis hemos desarrollado métodos de elementos finitos primales y mixtos para sistemas
de ecuaciones diferenciales parciales de interés fisico en Biologia y Biomedicina, més precisamente, el
problema de fluidos bioconvectivos y problema de registro deformable de imagenes. Hemos demostrado
solubilidad de los problemas continuo y discreto, asi como sus resultados de convergencia, para luego
proporcionar ejemplos numéricos y simulaciones correspondientes. Las principales conclusiones para
cada uno de los modelos son:

1. Introdujimos un método de elementos finitos completamente mixto para el problema de fluidos
bioconvectivos. Por conveniencia del anélisis, introdujimos el tensor de esfuerzo, la vorticidad, y
el pseudo-estrés como incégnitas adicionales (ademds de la pseudo-concentracién, la velocidad,
la presién y la concentracién). Esto nos permite eliminar la presiéon en el sistema, la cual
es recuperada a través de una férmula de postproceso adecuada, junto con el gradiente de la
concentracién. El problema original fue reformulado mediante un enfoque variacional aumentado
para el fluido viscoso incompresible modelado por un sistema de ecuaciones de tipo Navier-Stokes
(con viscosidad no lineal) acoplado con una ecuacién de adveccién-difusién. Seguidamente, a
través de una estrategia de punto fijo junto con supuestos de datos suficientemente pequenos,
se desarrollé el andlisis de solubilidad de los problemas continuo y discreto, con su estimacién a
priori correspondiente. Finalmente, se reportaron varios experimentos numéricos que validaron
el buen desempenio del método y que confirmaron los érdenes de convergencia correspondientes.

2. Presentamos una manera de formular problemas de registro deformable de imagenes con condi-
ciones de frontera Neumann de una manera matematicamente consistente para para no perder
informacién de las imagenes pero manteniendo todos los grados de libertad del problema original
tanto en la formulacién primal como mixta, siendo este tltimo particularmente importante en
el caso cuasi-incompresible. Este método presenta claras ventajas para capturar movimientos
rigidos, es decir, traslaciones y rotaciones. Los resultados de solubilidad de las formulaciones
continua y discreta, estimaciones de error a priori y la respectiva tasa de convergencia, fueron
obtenidos usando la teoria de Babuska-Brezzi y argumentos de dualidad.

3. Establecimos un esquema de refinamiento adaptativo de malla para la solucién numérica para
los problemas de registro deformable de imagenes primal y mixto. Nuestro método depende
del desarrollo de estimadores de error a posteriori, para las formulaciones de elementos finitos
primal y mixta, los cuales son confiable y eficiente, y al mismo tiempo, se calculan facilmente.
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Estos estimadores permiten un refinamiento 6ptimo de la malla en zonas donde la precisiéon de
la aproximacién numeérica no funciona bien. Asi, una caracteristica distintiva de nuestro trabajo
es la efectividad de la estrategia de adaptacién de la malla, ya que se justifica en la reducciéon
selectiva del error de aproximacion local de los esquemas de elementos finitos empleados. Esto
contrasta con los métodos actuales de adaptacién de malla empleados en los problemas de DIR,
que refinan la discretizacion de manera uniforme o dependen de bases heuristicas para seleccionar
regiones que se refinan. Para evaluar el desempeno numérico del método propuesto, empleamos
un refinamiento de malla uniforme y adaptativo para resolver un problema de DIR basado en
imagenes sintéticas suaves donde el desplazamiento se conoce de antemano y para demostrar la
aplicabilidad del método en iméagenes médicas, realizamos DIR en imagenes del cerebro humano.

Trabajo futuro

Los métodos desarrollados y los resultados obtenidos en esta tesis han motivado varios proyectos en
proceso y a futuro. Algunos de ellos son descritos a continuacion:

1. Analisis de error a posteriori para la formulaciéon completamente mixta del problema de fluidos
bioconvectivos: Estamos interesados en desarrollar el andlisis de error a posteriori para el método
estudiado en el Capitulo 1, y de esta forma, mejorar su solidez en el contexto de problemas que

involucran geometrias complejas o soluciones con altos gradientes.

2. Anélisis de una formulacién mixta-primal aumentada para el modelo bioconvectivo: Como al-
ternativa a nuestro método completamente mixto presentado en el Capitulo 1, nos interesa
estudiar una formulacién mixta para el fluido (sin considerar la vorticidad como incégnita del
sistema) y una formulacién primal para la ecuacién de concentracion.

3. Métodos de elementos finitos para el problema de registro deformable de imagenes ineldstico:
Estamos interesados en extender los contenidos de los Capitulos 2 y 3, al caso inelastico. Para
este caso se estudia el problema de elastoplasticidad con endurecimiento interno &, en el cual se
asume que el tensor de esfuerzo e puede ser descompuesto como e(u) = e®(u)+e”(u), donde e y
eP representan la parte eldstica y plastica del tensor de esfuerzo, respectivamente. Las incégnitas
principales del modelo son el desplazamiento u, la deformacion plastica eP y el endurecimiento
interno &, mientras que las ecuaciones se reducen a

dive + af, =0, o=C(e(u) —eP), x=—-H¢ in (2

(3.41)
u = 0’ ocv=0 on aQ,

donde x es la fuerza conjugada a & y H representa el médulo del endurecimiento. Adicion-
almente, el modelo considera una ley de flujo que gobierna la evoluciéon de las variables de
deformacion plastica y endurecimiento interno. La importancia de un modelo de este tipo, es
debido a que ciertos tejidos humanos, como por ejemplo el tejido pulmonar, pueden presentar
un comportamiento de plasticidad cuando estan sometidos a tensiones por encima de su rango
elastico.
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