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Abstract

This thesis is focused on models given by ordinary differential equations (ODEs) to describe
the temporal dynamics of epidemic outbreaks. Such studies and applications involve the use of
databases, statistical tools, and numerical simulations. The current pandemic situation of the
spread of the SARS-Cov2 virus has motivate us to dedicate part of this work to the modeling of
COVID-19 in Chile and Colombia. Specifically, the work considers two types of epidemiologic
models to capture the dynamics of growth and spread of infectious diseases, within these two
types, we have phenomenological models and mechanistic models. Specifically to the first
models we develop a comparative analysis and an analysis of the growth curves obtained for
the case of COVID-19 in Colombia, on the other hand, the second type of models is utilized to
describe initial outbreak COVID-19 in Chile.

As a quick overview of the thesis, we began by studying four different phenomenological models,
which we compared using 37 databases and different statistical measures to define which of these
models better capture the different dynamics, such development is exposed in Chapter 1. In
Chapter 2, to complement this comparative analysis, we extended the study using synthetic
databases and statistical tools to see which model is closer to the others, trying to capture the
advantages or disadvantages of each when fitting growth curves. Chapter 3 is developed with
COVID-19 data from Colombia. Various phenomenological models are applied to capture the
growth curves to national and regional levels, and then some short-term forecasts are obtained.
Besides, from the Colombia epidemic curves generated by GGM, the effective reproduction
number R, is computed. All this is to understand the transmission dynamics of COVID-19
in Colombia in both the early and final phases. In Chapter 4, we propose a compartmental
mechanistic model inspired by the initial spread of COVID-19 in Chile, to incorporate an
identifiability study, using synthethic and regional Chilean data. In Chapter 5 we summarize
the main conclusions obtained in the previous chapters and the topics that could be addressed
in future works. Finally, in Appendices A and B, we include Matlab programs, figures, and
tables that complement different results from our work.

In summary, the general objective of the thesis is divided into the following four specific objec-
tives that define the content of each of the developed chapters;

The first objective of this thesis is to compare the most common phenomenological models to
capture epidemic growths and see which are the most versatile to capture these outbreaks and
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see if the ability to fit well depends on the number of parameters that define each model.

The second objective of this thesis is, having already established a comparison between different
phenomenological models for the adjustment of real data, it seeks to quantify the distance
between two models as a measure of differences in the dynamics that each model is capable of
generating.

The third objective involves the application of phenomenological models to the study of the
epidemic growth dynamics presented in Colombia for the COVID-19 disease to analyze the
growth rates and the short-term forecasts, also involving a study to compare the effective
reproduction numbers obtained both at the national and regional levels.

The fourth and last objective is to propose an identifiability analysis for the parameters of
a mechanistic model by compartments that study the propagation dynamics in the Chilean
regions for the SARS-CoV?2 virus, considering the initial period of the outbreak and the quar-
antine measures independently applied in each Chilean region.



Resumen

Esta tesis se centra en modelos definidos por ecuaciones diferenciales ordinarias (EDOs) para
describir la dindmica temporal de los brotes epidémicos, los cuales son estudiados y aplicados
para comparar y modelar los brotes epidémicos de nuestro interés. Tales estudios y aplicaciones
involucran el uso de bases de datos, herramientas estadisticas y simulaciones o implementaciones
numeéricas. La actual situacion de pandemia por la propagaciéon del virus SARS-Cov2, nos per-
mitimos dedicar parte de este trabajo a la modelizacion de COVID-19 en Chile y Colombia.
Especificamente, el trabajo considera dos tipos de modelos epidemiolégicos para ajustar o cap-
turar la dindmica de crecimiento y propagacién de enfermedades infecciosas, dentro de estos
dos tipos, contamos con modelos fenomenologicos y modelos mecanicistas, donde especifica-
mente a los primeros modelos se desarrolla un anéalisis comparativo y un analisis de las curvas
de crecimiento obtenidas para el caso de COVID-19 en Colombia, por otro lado, el segundo
tipo de modelos, lo aplicamos estudiar la identificabilidad de los parametros del modelo para
el brote inicial de COVID-19 en Chile.

Haciendo un vista general de la tesis, comenzamos estudiando cuatro diferentes modelos fenome-
nologicos, los cuales comparamos usando 37 bases de datos reales y diferentes medidas estadis-
ticas para definir cuél de estos modelos logra capturar mejor diferentes dindmicas, tal desarrollo
es expuesto en el Capitulo 1. En el Capitulo 2, para ampliar este anélsis comparativo, ex-
tendimos el estudio usando bases de datos sintéticos, y herramientas estadisticas para ver qué
modelo se aproxima més a los otros, tratando de capturar las ventajas o desventajas de cada
uno al momento de ajustar curvas de crecimiento. El Capitulo 3 se desarrolla con datos de
COVID-19 de Colombia, donde se emplean diferentes modelos fenomenologicos para capturar
las dinamicas de crecimiento a nivel nacional y regional, que permiten hacer proyecciones a
corto plazo. Ademas de las curvas epidémicas generadas para Colombia por el método de crec-
imiento generalizado (GGM), el nimero efectivo de reproduccion es calculado. Todo esto para
entender la dindmica de transmision del COVID-19 en Colombia tanto en la fase inicial como el
la final considerada en el estudio. En el Capitulo 4 proponemos un modelo mecanistico com-
partimental inspirado en la propagacion inicial del COVID-19 en Chile, con el cual buscamos
incorporar un estudio de identificabilidad usando datos sintéticos y datos regionales chilenos.
En el Capitulo 5 resumimos las principales conclusiones obtenidas en cada unos los capitulos
anteriores, asi como los temas que pueden ser extendidos y los posibles trabajos futuros. Final-
mente en los Apéndices A y B, incluimos algunos programas de MATLAB, figuras y tablas
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que complementan differentes resultados de nuestro trabajo.

En resumen el objetivo general de la tesis se divide en los siguientes cuatro objetivos especificos
que definen el contenido de cada uno de los capitulos desarrollados;

El primer objetivo de esta tesis es comparar los modelos fenomenologicos mas comunes para
capturar los crecimientos epidémicos y ver cuédles son los mas versatiles para capturar los brotes
epidémicos, y ver si la capacidad de buen juste depende de la cantidad de pardmetros que definen
cada modelo.

El segundo objetivo de esta tesis es, ya teniendo establecida una comparacion entre dife-
rentes modelos fenomenologicos para el ajuste de datos reales, se busca cuantificar que tan
distantes son estos modelos entre si, midiendo las diferencias en las dindmicas que cada modelo
fenomenologico es capaz de generar.

El tercer objetivo consiste en la aplicacion de modelos fenomenologicos al estudio de la dindmica
de crecimiento epidémico presentado en Colombia por la enfermedad COVID-19 para analizar
las tasas de crecimiento y los pronosticos a corto plazo, involucrando ademas un estudio para
comparar los niimeros de reproduccion efectivos obtenidos tanto a nivel nacional como regional.

El cuarto y dltimo objetivo radica en proponer estudio de identificabilidad a los parametros de
un modelo mecanistico por compartimentos para estudiar las dindmicas de propagacion en las
regiones de Chile para el virus SARS-CoV2, teniendo en cuenta el periodo inicial del brote y las
medidas de cuarentena aplicadas en cada region, las cuales se dieron de manera independiente.
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Introduction

The COVID-19 pandemic use to be the main topic of daily news around the world. We recall
that the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was declared a global pandemic by the World Health Organization
(WHO) on March 11, 2020 [28, 185]. This highly contagious virus has impacted governments,
public institutions, and stressed health care systems, confining people to their homes and
causing country-wide lockdowns resulting in a global economic crisis. This situation has made
evident the great importance of theories, methodologies, techniques, and new models that allow
progress in the creation of theoretical and quantitative frameworks that guide scientists and
health control agencies to understand the epidemiological dynamics present in a population.
Moreover these frameworkers allows to explore possible scenarios by applying some control

measures, such as the use of face masks |31,108|, quarantines |26,81|, and vaccination campaigns
[20,21,49].

Various models are used for such studies, but we focus on phenomenological and mechanistic
models, both described mainly by ordinary differential equations (ODEs). The phenomenolog-
ical growth models (PGMs) help capture the dynamics of epidemic growth in a simple. Their
description involves few parameters, which often allow an explicit solution to be obtained.
Their equations have an empirical approach, i.e., without an explicit basis of physical laws or
mechanisms, which are often difficult to identify, making them a very efficient and fast tool for
forecasting with identifiable parameters. On the other hand, mechanistic models attempt to
describe the transmission of the disease in a population represented by the infection states by
compartments. Such an idea and characterization is developed thanks to the well-known work
of Kermack and McKendrick [85]. Within the compartmental models, [2,13,61,96,176,188] the
total population is subdivided into at least two compartments or epidemiological states (which
can be susceptible and infected; but many others can be considered). Tt is necessary to specify
the rates of progression between compartments, as well as the incidence and possibly of births
and deaths of individuals, that is, in this case, biological mechanisms are involved, being the
systems of ordinary differentiable equations (ODEs) those that describe the progression of the
epidemic. These models are often described with several parameters that define the dynamics
and biological phenomena. It is difficult to obtain an explicit solution, but they have been very
useful for estimating parameters of interest with the help of real data and the exploration of
possible scenarios.



Together with the models described previously, it is possible to define a parameter of great
interest in mathematical epidemiology, the basic reproductive number Ry. Epidemiologically
Ry gives the number of secondary infectious cases generated by a fully susceptible primary
infectious individual during the early transmission when the population is in the absence of
control interventions. This parameter plays a role of a threshold value for the dynamics of the
system, with which is possible to determine in a population whether or not there will be an
epidemic. Therefore these type of studies are of great interest and importance because all the
information that can be inferred with the help of models and data, being low-cost, fast and
timely tool when making decisions.

We introduce the three big questions that motivate our work and then we will give a descrip-
tion to solve them,

1) Growth dynamics models provide an important quantitative framework for characterizing
epidemic trajectories, generating estimates of key parameters, evaluating the impact of
control interventions, obtaining information on the contribution of different transmission
routes, and producing short- and long-term forecasts. These advantages motivated the
following question: can the most appropriate growth model be chosen for a given epidemic?
Which focused our first purpose in Chapter 1 and 2, trying to shed light on the performance
of different growth models in describing real epidemic outbreaks. Specifically, in Chapter
1, we employ four different growth models based on differential equations (two with two
parameters and two with three parameters), and we examine them using 37 databases of
different infectious outbreaks. That consists of a time series of incidence cases to identify
the best model to describe epidemic growth in each case. On the other hand, Chapter
2 attempts to answer which epidemic growth model is better for capturing the dynamics
generated by other growth models? For this, a methodology is created that helps quantify
the differences between the dynamics obtained from different models that capture processes
of epidemic growth.

2) With the emergency presented by COVID-19 and the knowledge gathered with the phe-
nomenological growth models, some questions appear, such as, for the COVID-19 disease,
do the generalized models capture better than simple models? Does the new sub-epidemic
model capture the multiple peaks evidenced by this epidemic? How good will their short-
term forecast be? What other contributions can the fitting curves from phenomenological
growth models make? This concern led us to work together with other colleagues. Using the
Colombia epidemic data, we apply various phenomenological models to compare their fits
and forecast and employ performance metrics between the data and the models to determine
the quality of fits. The effective reproduction number also is computed to understand the
epidemic impact evidenced in Colombia. Such development is presented in Chapter 3.

3) Knowing the compartmental epidemiological models, and the situation experimented in
Chile in the initial period, where quarantines were applied in different territorial units, with



different purposes, we are wondering what model of this type can help model the situation
presented in Chile, that involves the applied quarantines, and allows us to measure their
impact? A homogeneously mixed compartmental model is proposed with the quarantine
dynamics for the Chilean case (combining ideas from [31,81]). We also carry out a identifia-
bility study for some parameter sets to fitting, which we wish to capture for the different and
particular strategies applied in each Chilean region. Such advances are showed in Chapter
4.

Organization of this thesis

The present thesis is organized as follows:

In Chapter 1, for different phenomenological growth models, we propose a comparative
analysis between four parametric ODE-based models, namely the logistic and Gompertz model
with their respective generalizations that in each case consists in elevating the cumulative in-
cidence function to a power p € [0,1]. This parameter within the generalized models provides
a criterion on the early growth behavior of the epidemic between constant incidence for p = 0,
sub-exponential growth for 0 < p < 1 and exponential growth for p = 1.

The contents of Chapter 1 correspond to the article [22]:

e R. Biirger, G. Chowell, and L. Y. Lara-Diaz. (2019). Comparative analysis of phe-
nomenological growth models applied to epidemic outbreaks, Mathematical Biosciences
and Engineering: MBE, 16(5), 4250-4273. https://doi.org/10.3934/mbe.2019212.

In Chapter 2, we contribute to a systematic study of differences between models and how
such differences may explain the ability of centain models to provide a better fit to data than
others . To this end measures of the distance are defined that describe the differences in the
dynamics between different dynamics models. The distance of one growth model from another
one quantifies how well the former fits data generated by the latter. This concep of distance
is, however, not symmetric. The procedure of calculating distances is applied to synthetic data
and real data from influenza, Ebola and COVID-19 outbreaks.

The contents of Chapter 2 correspond to the article [16]:

e R. Biirger, G. Chowell, and L. Y. Lara-Diaz. (2021). Measuring differences between
phenomenological growth models applied to epidemiology, Mathematical Biosciences, 334,
108558. https://doi.org/10.1016/j.mbs.2021.108558.

In Chapter 3, We employ different phenomenological growth models to characterize the
COVID-19 outbreak in Colombia. The fits are applied to a national and regional level. Several
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estimations and fitting curves are obtained, with which the effective reproduction number R;
and sort-term forecasts can be calculated. This work is part of a collaboration with different
colleagues, where other concepts and calculations are also included.

The contents of Chapter 3 correspond to the article [150]:

e A. Tariq, T. Chakhaia, S. Dahal, A. Ewing, X. Hua, S. K. Ofori, O. Prince, A. Salin-
dri, A. E. Adeniyi, J. Banda, P. Skums, R. Luo, L.Y. Lara-Diaz, R. Biirger, [. C-
H. Fung, E. Shim, A. Kirpich, A. Srivastava, G. Chowell. (2022). An investigation of
spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia,
2020-2021, PLOS Neglected Tropical Diseases, 16(3), e0010228. https://doi.org/10.
1371/journal.pntd.0010228.

In Chapter 4, we introduce an adaptation to a computational approach to assessing parameter
identifiability in compartment models; for this work, we construct a model of the propagation
and control of COVID-19 inspired by the situation experimented in Chile at the beginning of
2020. We include an experimental route to verify if the estimated parameter set to fit the
model to a data curve is identifiable. Then, with this idea, we construct a methodology where
synthetic data generated from the same model are used to analyze a parameter set of interest,
how many parameters and combinations the compartmental model is capable of recovery, and
the fit times. With this strategy of mixing the parameter number to estimate and change
the fit times, we developed a route to determine the cases for which structural and practical
identifiability can be guaranteed. Finally, we test the result obtained using synthetic data
fitting Chilean data.

The contents of Chapter 4 correspond to research:

e R. Biirger, G. Chowell, I. Kroker and L. Y. Lara-Diaz, Sensitivity and identifiability ana-
lysis for a model of the propagation and control of COVID-19 in Chile, (in preparation).
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Introduccion

La pandemia de COVID-19 es actualmente el tema principal de las noticias diarias en todo
el mundo. Recordemos que la enfermedad por coronavirus 2019 (COVID-19), causada por
el sindrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2), fue declarada pandemia
mundial por la Organizacién Mundial de la Salud (OMS) el 11 de marzo de 2020 [28,185]. Este
virus sin precedentes altamente contagioso ha impactado a gobiernos, instituciones publicas
y ha estresado los sistemas de atencion médica, confinando a las personas en sus hogares y
provocando cierres en todos los paises, lo que ha generado una crisis econdmica mundial. Hecho
que ha dejamos més en evidencia la gran importancia y responsabilidad que trae el desarrollo de
teorias, metodologias, técnicas y nuevos modelos que permitan avanzar en la creacién de marcos
tedricos y cuantitativos que guien a los cientiticos y a los organismos de control sanitarios a
entender las dindmicas epideomiolégicas presentes en una poblacion, asi como el poder explorar
posibles escenarios al aplicar ciertass medidas de control, como lo han sido el uso de mascarillas
[31,108], las cuarentenas [26,81], y las jornadas de vacunacion [20,21,49].

Muchos modelos han sido usados para tales estudios, pero nosotros nos centramos en los mod-
elos fenomenologicos de crecimiento y los modelos mecanisticos, ambos descritos mayormente
con ecuaciones diferenciales ordinarias (EDOs). Los fenomenologicos describen principalmente
las dindmicas de crecimiento epidémico ofreciendo una forma simple para su descripcion donde
involucran pocos parametros, que muchas veces permiten obtener una solucion explicita, y
ademés sus ecuaciones evitan incorporar mecanismos biologicos, que muchas veces son dificiles
de identificar, lo que los hace ser una herramienta muy eficiente y rapida para realizar pronos-
ticos con parametros identificables. Por su parte, los modelos mecanisticos intentan describir
la transmision de la enfermedad en una poblacion representando los estados de infeccion por
compartimentos, tal idea y caracterizacion se desarrolla gracias al bien conocido trabajo de Ker-
mack y McKendrick [85]. En estos modelos compartimentales [2,13,61,96,176,188] la poblacion
total es subdividida en al menos dos compartimentos o estados epidemiolégicos (que puede ser
susceptibles e infectados, pero muchos otros pueden ser considerados), la tasas de progresion
entre los compartimentos asi como la incidencia y la posibilidad de nacimientos y muertes de
individuos, necesitan ser especificados, es decir, en este caso se involucran mecanismos biologi-
cos, y por tal hecho se trabajan con sistemas de ecuaciones diferenciables ordinarias (EDOs),
que muchas veces vienen descritas con un numero de parametros que definen las dindmicas
v los fenobmenos biologicos, siendo dificil obtener una solucién explicita, pero han sido muy



utiles para estimar parametros de interés con ayuda de datos reales, asi como la exploracion de
posibles escenarios.

Con la aplicacion de los modelos descritos anteriormente es posible definir un parametro de
mucho interés en la epidemiologia matematica, que es el ntumero reproductivo béasico Ry, el
cual representa el nimero de casos infecciosos secundarios generados por un individuo infec-
cioso primario en una poblacién totalmente susceptible, es decir, en ausencia de intervenciones
de control, con el cual es posible determinar si habr& o no una epidemia en una poblacion. Es
por ello que, este tipo se estudios son de gran interés e importancia, ya que con toda la infor-
macion que se puede inferir con ayuda de los modelos y los datos, los hace ser una herramienta
accesible, de bajo costo, ademés rapida al momento de tomar de decisiones en momentos de
una emegencia.

Introducimos los tres grandes problemas que motivaron nuestro trabajo y luego daremos una
descripcion para resolverlos,

1) Los modelos de dinamicas de crecimiento proveen un importante marco cuantitativo para
caracterizar trayectorias epidémicas, generar estimaciones de parametros claves, evaluar
el impacto de las intervenciones de control, obtener informacion sobre la contribucién de
las diferentes vias de transmision y producir pronésticos a corto y largo plazo. Estas
ventajas motivaron la siguiente pregunta ;se puede elegir el modelo de crecimiento més
adecuado para una epidemia determinada?, la cual centré nuestro primer proposito que
en el los Capitulos 1 y 2, intentan dar una luz sobre el desempeno de diferentes mod-
elos de crecimiento en la descripcién de brotes epidémicos reales. Especificamente, en el
Capitulo 1, empleamos cuatro diferentes modelos de crecimiento basados en ecuaciones
diferenciales (dos de estos con dos parametros y dos con tres parametros), y los exami-
namos usando 37 bases de datos de diferentes brotes infeciosos que consisten en series de
tiempo de casos de incidencia, para identificar en cada caso el mejor modelo para describir
los crecimientos epidémicos. Por otro lado en el Capitulo 2 se intenta responder, ;qué
modelo de crecimiento epidémico es mejor para capturar las dindmicas generadas por
otros modelos de crecimiento?, para ello se crea una metodologia que ayuda a cuantificar
las diferencias entre las dindamicas obtenidas de diferentes modelos que capturan procesos
de crecimiento epidémico.

2) Dada la emergencia presentada por el COVID-19, y el conocimiento recopilado con los
modelos fenomenologicos de crecimiento epidémico, surgen algunas inquietudes como,
(para la enfermedad del COVID-19 los modelos generalizados captura mejor que los
modelos simples? ;el nuevo modelo sub-epidémico captura los miiltiples peaks eviden-
ciados por esta epidemia? ;qué otros aportes nos puede entregar el ajuste de curvas de
crecimiento epidémico, usando los ajustes con modelos fenomenoldgicos de crecimiento?,
estas inquietudes nos llevo a trabajar junto a otros colegas, con quienes usamos datos
de la epidemia presentada en Colombia y le aplicamos varios modelos fenomenologicos
para comparar sus ajustes y pronosticos, y empleamos métricas de error entre los datos



y los ajustes de los modelos para determinar la calidad de los ajustes y sus pronésticos.
Ademés el numero efectivo de reproduccion es calculado para entender el impacto de la
epidemia evidenciado en Colombia. Tal desarrollo es presentado en el Capitulo 3.

3) Con respecto a los modelos epidemiologicos compartimentales y la situacion vivida en
Chile en el periodo inicial, donde las cuarentenas fueron aplicadas en diferentes unidades
territoriales, con propésitos diferentes, nos preguntamos ;qué modelo de ese tipo puede
ayudar a modelar la situacién presentada en Chile, que involucre las cuarentenas apli-
cadas, y nos permita medir su impacto? Es por ello que se propone un modelo compar-
timental homogeneamente mixto con las dindmicas de cuarentena para el caso chileno
(combinando ideas de [31,81]).. También realizamos un estudio de identificabilidad para
algunos conjuntos de pardmetros a ajustar, los cuales deseamos que capturen las diferentes
y particulares estrategias aplicadas en cada regién chilena.

Contribuciones de esta tesis

La presente tesis se organiza como sigue:

En el Capitulo 1, para diferentes modelos fenomelogicos de crecimiento, proponemos un
analisis comparativo entre cuatro modelos pardmetricos basados en ecuaciones diferenciables
ordinarias (ODEs), llamados modelo logistico y de Gompertz con sus respectivas generaliza-
ciones que en cada caso consisten en elevar la funcion de incidencia acumulada a una potencia
p € [0,1]. Este parametro dentro de los modelos generalizados proporciona un criterio so-
bre el comportamiento del crecimiento temprano de la epidemia entre la incidencia constante
para p = 0, crecimiento subexponencial para 0 < p < 1 y el crecimiento exponencial para p = 1.

Los contenidos del Capitulor 1 corresponden al articulo :

e R. Biirger, G. Chowell, and L. Y. Lara-Diaz. (2019). Comparative analysis of phe-
nomenological growth models applied to epidemic outbreaks, Mathematical Biosciences
and Engineering: MBE, 16(5), 4250-4273. https://doi.org/10.3934/mbe.2019212.

En el Capitulo 2 contribuimos a un estudio sisteméatico de las diferencias entre modelos
epidemiologicos y como tales diferencias pueden explicar la habilidad de ciertos modelos para
proporcionar un mejor ajuste a los datos que otros. Para este fin, se define la medida de las
distancias para describir las diferencias en las dinamicas entre diferentes modelos dinamicos.
La distancia de un modelo de crecimiento a otro cuantifica qué tan bien se ajusta el primero a
los datos generados por el segundo. Sin embargo, este concepto de distancia no es simétrico.
El procedimiento de calculo de distancias se aplica a datos sintéticos y a datos reales de brotes
de influenza, ébola y COVID-19.

Los contenidos del Capitulo 2 corresponden al articulo
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e R. Biirger, G. Chowell, and L. Y. Lara-Diaz. (2021). Measuring differences between
phenomenological growth models applied to epidemiology, Mathematical Biosciences, 334,
108558. https://doi.org/10.1016/j.mbs.2021.108558.

En el Capitulo 3 se emplean diferentes modelos fenomenologicos de creciemiento epidémicos
para modelar y caracterizar el brote de COVID-19 en Colombia, tales ajustes se realizan a
nivel nacional y regional, de las cuales se logran varias estimaciones y curvas de ajuste, que
luego permiten calcular el ntimero efectivo de reproduccion R, y hacer pronosticos a corto
plazo. Este trabajo se hizo con el aporte de varios colegas, donde otros conceptos y célculos
son también incluidos.

Los contenidos del Capitulo 3 corresponde al articulo [150]:

e A. Tariq, T. Chakhaia, S. Dahal, A. Ewing, X. Hua, S. K. Ofori, O. Prince, A. Salin-
dri, A. E. Adeniyi, J. Banda, P. Skums, R. Luo, L.Y. Lara-Diaz, R. Biirger, [. C-
H. Fung, E. Shim, A. Kirpich, A. Srivastava, G. Chowell. (2022). An investigation of
spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia,
2020-2021, PLOS Neglected Tropical Diseases, 16(3), e0010228. https://doi.org/10.
1371/journal.pntd.0010228.

En el Capitulo 4 introducimos una adaptacién a una aproximacién computacional para el
estudio de la identificabilidad de los pardmetros de un modelo compartimental, para este trabajo
definimos un modelo para la propagacion del COVID-19, inspirado en la situacion de Chile a
inicios del 2020, e incluimos una ruta de experimentacion para verificar si un conjunto de
parametros estimados al ajustar una curva de datos con el modelo son identificables. Con
esta idea se construye una metodologia, donde datos sintéticos son construidos a partir del
mismo modelo, y analizamos para un conjunto de parametros de interés, qué tantos parametros
y combinaciones de estos el modelo es capaz de recuperar, variando también los tiempo de
ajuste, con esta estrategia de combinar el nimero de parametros a estimar y el tiempo de
ajuste, desarrollamos una ruta para determinar los casos para los que se puede garantizar
identificabilidad estructural y practica. Al final, probamos para algunas regiones de Chile, los
casos en que se puede concluir alguna de estas identificabilidades.

Los contenidos del Capitulo 4 corresponde a la investigacion:

e R. Biirger, G. Chowell, [. Kroker and L. Y. Lara-Diaz, Sensitivity and identifiability anal-
ysis for a model of the propagation and control of COVID-19 in Chile, (en preparacion).
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CHAPTER 1

Comparative analysis of phenomenological growth models
applied to epidemic outbreaks

This chapter shows a comparative study of various phenomenological growth models
(PGMs) applied to 37 epidemic outbreaks to characterize the best model to capture
the most growth patterns. Being the best, the one with the minor error (RMSE) when
comparing the data and their best fits.

1.1 Introduction

1.1.1 Scope

Dynamic growth models provide an important quantitative framework for characterizing
epidemic trajectories, generating estimates of key transmission parameters, assessing the impact
of control interventions, gaining insight to the contribution of different transmission pathways,
and producing short- and long-term forecasts [32]. A natural question is that of the choice
of the best suitable growth model for a given epidemic. It is the purpose of this paper to
shed light on the performance of different growth models in describing different real epidemic
outbreaks. Specifically, we employ four different growth models based on differential equations
(two of them with two parameters, and two with three parameters), and apply them to a total
of 37 infectious disease outbreak datasets consisting of time series of case incidence for different
historic outbreaks comprising different diseases and settings.

The two-parameter models are the well-known logistic model (LM) [173] and Gompertz model
(GoM) [77], and the three-parameter models are generalizations for both models which we refer
to as the generalized logistic model (GLM) and the generalized Gompertz model (GGoM),
respectively. These models incorporate a parameter p, which is an exponent that provides a
criterion about the type of early growth dynamics, namely sub-exponential (0 < p < 1) or
exponential (p = 1) growth. (For p = 1, the GLM and GGoM models reduce to the LM and
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GoM models, respectively.) We explored the performance of these models in describing the
trajectory of 37 outbreaks by applying the methodology described by Chowell [32] to estimate
parameters with their confidence intervals. In this analysis, we analyzed how well models fitted
the 37 outbreaks using the root mean squared error (RMSE).

The particular choice of parametric models complements that of [32], where the well-known
exponential and Richards [127,179] growth models are employed along with their generalized
counterparts. Moreover, since that work is focused in detailing the methodology, the data set
in [32] is limited to the 2013-2016 Ebola outbreak in Sierra Leone, and no mechanism of choice
between two or more alternative models for the same data set is established. In this paper
we are particularly interested in gaining insight into the types of outbreaks where the different
model variants provide an enhanced description of the epidemic outbreaks.

1.1.2 Related work

This paper is focused on models given by ordinary differential equations (ODEs) to describe
the temporal dynamics of epidemic outbreaks. The properties of ODEs as models of growth
are treated in numerous monographs, see e.g. [13,14,17,61,82,110,141]. On the other hand,
the presence of the nonlinearity caused by the growth rate exponent p precludes in some cases
solutions of the corresponding ODE in closed form. Nevertheless, we mention that for p = 1,
the properties of the Richards, logistic, Gompertz, and related (e.g., von Bertalanffy [174,175])
models are broadly discussed in terms of closed algebraic expressions in [156-158] (see also the
references cited in these papers).

We use phenomenological models within an empirical approach (without an explicit basis
of physical laws or mechanisms) that are useful to reproduce the patterns observed in the
time series data [170]. The result is a fairly simple temporal description of epidemic growth
patterns [32]. For instance, epidemics display variable epidemic growth scaling (e.g., from sub-
exponential to exponential). Here we are particularly interested in the contribution of the pa-
rameter p as a corrector in the fit and the possible improvement in the forecasts. The relevance
of this parameter was recently highlighted by Chowell and Viboud [45] who demonstrated that
a generalized-growth model is a simple tool that can be used to characterize the early epidemic
growth profile from case incidence data as well as from synthetic data derived from transmission
models via stochastic simulation [170]. Related references to early epidemic growth models also
include [42,94]. For the connection between the growth rate and the reproductive number of
an epidemic, an aspect that is not discussed herein, we refer to [35,48,113,178|.

Finally, we mention that there are also stochastic models built to study sigmoidal behaviours.
In particular, in recent years there have been many advances in stochastic models based on
diffusion processes, particularly associated with the Gompertz and logistic curves. A general
procedure for obtaining and estimating this type of models is considered in [130], where also
further references can be found (see also [132]). As is discussed in the introduction of [130],
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considering particular choices of the time functions that define the exogenous factors has enabled
researchers to define diffusion processes associated to alternative expressions of already-known
growth curves [130, p. 2]. These processes include a Gompertz-type process [78] (applied to the
study of rabbit growth), a generalized von Bertalanffy diffusion process (with an application
to the growth of fish species) [129], a logistic-type process [131] (applied to the growth of a
microorganism culture), and a Richards-type diffusion process [133|. More recent contributions
to this line of research are [93] and [8].

1.2 Mathematical models

The general form of a phenomenological model is

da; .

da; = filz1,...,2,;0), i=1,...,n, (1.1)
where dz;/dt denotes the rate of change of the system state x;, ¢ = 1,...,n, and © =
(¥1,...,Yy,) is the set of model parameters, where the complexity of a model depends on

the number m of parameters that are needed to characterize the states of the system and the
spectrum of the dynamics that can be recovered from the model [32]. In this contribution we
highlight the logistic growth model (LM) and the Gompertz model (GoM) and their respective
generalizations, namely the generalized logistic model (GLM) and the generalized Gompertz
model (GGoM). The last two models incorporate a parameter p that indicates the kind of
scaling of growth. These models can be described as follows.

The logistic growth model (LM) relies on two parameters to characterize the trajectory of an
epidemic, where the model is given by the differential equation

ac C(t)
- =) =rc (1 - ?) , (1.2)

where t is time, C’(t) describes the incidence curve over time, C(t) is the cumulative number
of cases at time ¢, while the parameter r > 0 indicates the growth rate (its dimension is
1/time), and K is the size of the epidemic. During the initial stages of disease propagation,
when C(t) < K, this model assumes an exponential growth phase, as can be inferred from the
well-known explicit solution of (1.2),

_ KC(0)exp(rt)
K + C(0)(exp(rt) — 1)

C(t)

The two-parameter Gompertz model (GoM) is given by the ODE

% — C'(t) = rO(t) exp(—bt), (1.3)
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where the parameter b > 0 describes the exponential decay of the growth rate r, and the
quantities C' and C” have the same meaning as for the LM model. If C'(0) is the initial number
of cases, then the solution of (1.3) is

C(t) = C(0) exp((r/b)(l . exp(—bt))). (1.4)

We generalize the logistic and Gompertz models by incorporating a growth scaling parameter
p € [0,1] that indicates the kind of growth, where p = 0 corresponds to a constant incidence
over time, p = 1 corresponds to the exponential growth and recovers the logistic model, and
any value 0 < p < 1 leads to a model that describes a sub-exponential growth, a property
that leads to potentially more realistic models as shown in [170]. The model is given by the
differential equation

% _ O/(t) _ TCp(t) (1 _ %) ) (1.5)

Similarly, the Gompertz model leads to the following ODE that defines the Generalized Gom-
pertz Model (GGoM), where p plays the same role as in the GLM:
dC
5 = C'(t) = rCP(t) exp(—bt). (1.6)
It is worth noting that for general values p € (0, 1), (1.5) does not possess an explicit solution
in closed algebraic form. (For a detailed discussion of this point and further references we refer
to Ohnishi et al. [117], who deal with the Piitter-von Bertalanffy equation
dC
Db CA . OB
a ¢
with positive constants «, 5, A and B, which includes (1.5). Nevertheless, this equation admits
an analytical solution given in implicit form [117, Eq. (9)].)

In contrast to the GLM equation (1.5), one may easily integrate the GGoM equation (1.6)
for these values of p to get

1/(1-p)

O(t) = ((1 ) (%) (1 — exp(—bt)) + 0(0)1-p)

For this expression we get

C(t) — (@ + C(O)lp) e as t — oo. (1.7)

It is interesting to note that for the Gompertz model with p = 1, (1.3), the expression (1.4)
implies that
C(t) — C(0) exp(r/b)
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Growth model Parameters

Logistic growth model (LM) O={=rv=K}; rnK>0

Gompertz model (GoM) O={d =rd=0}; r,b>0

Generalized Logistic growth model (GLM) © = {¥; =r, ¥y =p,¥3=K}; r,K >0, p € [0,1]
Generalized Gompertz model (GGoM) O ={% =r,ds=0b,03=p}; r,b>0, pel0,1]

Table 1.1: Summary of information about models and parameters.

as t — oo so the limit value depends linearly on C'(0) (unless the initial population is absorbed
into b or r), while for 0 < p < 1, (1.7) means that the limit of C(t) still depends on C(0) but
does so in a nonlinear fashion.

Summarizing, we have two two-parameter models with their respective generalizations that
are three-parameter models, where the third parameter is the growth scaling parameter p €
[0,1], as we show in Table 2.1. Before we proceed, we illustrate by an example the effect of
varying p within the GLM and GGoM, see Figure 3.2. We start with the logistic model (1.2)
setting r = 1, C(0) = 10 and K = 1000. The solid red curve in Figure 3.2 (top left) shows the
incidence curve t — C’(t) corresponding to the solution ¢ — C(t) (Figure 3.2, top right). This
solution approximates the maximum (K = 1000). Now we pass to the GLM (1.5) by gradually
decreasing p from one to p = 0.995, p = 0.99, and so on (see the caption of Figure 3.2). We
observe that the maxima of the incidence C'(t) decrease (as follows easily from discussing the
extrema of C' — CP(1 — C'/K)), but their time of occurrence increases, as p is decreased.
Furthermore, the incidence curves stay fairly close to the curve for p = 1 for values of p close
to one, and all solutions behave like C'(t) — K as t — oc.

In order to compare these observations with those for the Gompertz and GGoM models, we
plot in Figure 3.2 (middle left) the incidence curve ¢ — C’(t) corresponding to the solution
t — C(t) (Figure 3.2, middle right) for the Gompertz model (1.3) with parameters C(0) = 10,

C(0

CO) 99 and b= — " ~ 02150, (1.8)
K In(K/C(0))

which have been chosen in such a way that C’(0) is the same as for the GLM as well as that
C(t) - K ast — oo (cf. (1.4)) for p = 1. Note that the maximum of C’(t) is smaller than

for the logistic model. As p is decreased, but all other parameters are kept, these maxima

r=1-—

become smaller (as with the GLM), but they appear each time earlier (in contrast to the
GLM). However, for ¢ — oo we observe that consistently with (1.7), C'(¢) approaches smaller
values than K as t — oo. If we wish to ensure that the GGoM with p € (0,1) has the same
value of C’(0) as the GLM (for the corresponding value of p) and C(t) — K as t — oo, then
we must also adjust b by setting

_ ¢ . rd-p)
r=le e b_(KLm_Cmyw) (1.9)

(which results from equating the limit in (1.7) with K). From the bottom plots of Figure 3.2

we observe that the joint variation of p and b produces curves similar to those of the GLM.
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Figure 1.1: Tllustration of the GLM model (top) and the GGoM model (middle and bottom),
showing in each case C'(t) (left) and C(¢) (right). The solid red curve corresponds to p = 1.
The arrow indicates decreasing values of p = 0.995, 0.99, 0.98, 0.95, 0.9, 0.8, 0.7, 0.6, and 0.5,
corresponding to the thin black curves. The plots in the middle correspond to fixed values of r
and b (see (1.8)), while in the bottom r is fixed but b is variable (see (1.9)).

Finally, let us emphasize once again that the exponent p is introduced in both (1.5) and (1.6)
in such a way that it affects the initial growth rate, corresponding to the early stage when
C(t)/K < 1 and therefore C'(t) ~ rCP(t), so that p characterizes sub-exponential growth
dynamics [170]. In particular, the identification of p at early stage of an epidemic is fundamental
for forecasting the outbreak [45]. Tt is therefore instructive to provide an example to compare
(1.5) with an alternative way of introducing an exponent p into (1.2), namely the well-known
Richards equation [127]

Figure 1.2 displays the incidence curves ¢t — C’(t) and the solution ¢t — C(t) for selected
values of p for both the GLM model (1.5) and the Richards equation (1.10). We observe that
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250
200 |
=150 |
© 100}
50 |

0 5 10 15 20
t
Richards model Richards model

250
200 |
= 150 |
© 100}
50 |

0 5 10 15 20
t

Figure 1.2: Illustration of the GLM model (top) and the Richards model (bottom), showing in
each case C'(t) (left) and C(t) (right), starting from C(0) = 10 with K = 1000. The solid red
curve corresponds to p = 1. The arrow indicates decreasing values of p = 0.99, 0.98, 0.95, 0.9,
0.8, 0.7, 0.6, and 0.5, corresponding to the thin black curves.

since C(0)/K < 1, the initial growth rates for (1.10) are very similar for all values of p, in
contrast to those of the GLM model. Thus, the variability of the exponent p in the Richards
equation (1.10) is not suitable for capturing sub-exponential initial growth.

On a similar note, we mention that the traditional form of the Gompertz ODE (cf., e.g., [78])

is

dC K

e C'(t) = aln (m) C(t) = (aln K)C(t) — aC(t) InC(t) (1.11)
with a constant o > 0, which is a nonlinear differential equation, in contrast to the linear
ODE (1.3) utilized herein. Our preference of (1.3) is based on the fact that this equation can
easily be equipped with the exponent p to give (1.6). Furthermore it is fairly easily possible to
compare (1.6) and its solutions with those of the sub-exponential growth equation

dC
— =rC(t)P

a ~ e

analyzed in [45,170], while the multiple, and nonlinear occurrence of C'(t) makes such a gener-
alization at least more complicated.
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Case Disease Outbreak Temporal Total Case Disease Outbreak Temporal Total
No. resolution data No. resolution data
1 Ebola Forecariah (GIN) weeks 51 20 Ebola Tonkolili (SLE) weeks 29
2 Ebola Gueckedou (GIN) weeks 49 21 Ebola Western Area Rural (SLE) weeks 51
3 Ebola Keroune (GIN) weeks 14 22 Ebola Western Area Urban (SLE))  weeks 55
4 Ebola Kindia (GIN) weeks 30 23 Ebola Grand Bassa (LBR) weeks 30
5 Ebola Macenta (GIN) weeks 32 24 Ebola Congo (1976) days 52
6 Ebola N’Zerekore (GIN) weeks 24 25 Ebola Uganda (2000) weeks 18
7 Ebola Bomi (LBR) weeks 33 26 Measles London (ING) (1948) weeks 40
8 Ebola Bong (LBR) weeks 17 27 Plague Bombay (IND) (1905-06) weeks 41
9 Ebola Grand Cape Mount (LBR)  weeks 29 28 Plague Madagascar (2017) weeks 50
10 Ebola Lofa (LBR) weeks 24 29 Smallpox Khulna (BGD) (1972) weeks 13
11 Ebola Margibi (LBR) weeks 40 30 Yellow fever Luanda (AGO) (2016) weeks 28
12 Ebola Montserrado (LBR) weeks 42 31 FMD UK (2001) days 121
13 Ebola Bo (SLE) (2014) weeks 39 32 FMD Uruguay (2001) days 27
14 Ebola Kailahun (SLE) weeks 33 33 Pandemic Influenza San Francisco (USA) (1918)  days 63
15 Ebola Kambia (SLE) weeks 45 34 Zika Antioquia (COL)(2016) days 105
16 Ebola Kenema (SLE) weeks 39 35 VIH-AIDS Japan (1985-2012) years 21
17 Ebola Kono (SLE) weeks 30 36 VIH-AIDS NYC (1982-2002) years 70
18 Ebola Moyamba (SLE) weeks 37 37 Cholera Aalborg (DNK) (1853) days 105

19 Ebola Port Loko (SLE) (2014) weeks 54

Table 1.2: Information on the 37 data sets of epidemic outbreaks obtained from the following
sources: Cases 1 to 23: [118], Case 24: [25,67], Case 25: [38,182], Case 26: [11], Case 27: [3],
Case 28: [184], Case 29: [144], Case 30: [183] , Cases 31 and 32: [40,41], Case 33: [39], Case 34:
[36], Cases 35 and 36: [73,79], Case 37: [121].

1.3 Materials and methods

In order to compare the mathematical models, we need time series data that describe the
temporal changes in one or more states of the system, whose temporal resolution varies among
daily, weekly or yearly and by the frequency at which the state of the system is measured. We
herein employ a data set for 37 different epidemic trajectories with different temporal resolutions
(see Table 1.2). Additionally we present the method for fitting the model to the data, that is, to
estimate the parameters as in [32]. Finally, to compare the models, we conduct a comparative
analysis of RMSEs for all models and epidemics. Then, to continue we present the materials
and methods that allow us to understand the methodology.

1.3.1 Datasets

Table 1.2 summarizes the information of the 37 epidemic outbreaks analyzed, including the
name of the disease associated with each epidemic, the location where the outbreak occurred,
the temporal resolution (by days, weeks, or years) of the time series, and the number of data
points. For each outbreak, the onset corresponds to the first observation associated with a
monotonic increase in incident cases, up to the peak incidence. We notice that for Ebola we
have more information about the outbreak in West Africa (see also [46,47,119]).
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1.3.2 The root mean square error (RMSE)

As in |32|, besides using the residuals for any systematic deviations for the model fit to the
data, it is also possible to quantify the error of the model fit to the data using performance
metrics [88]. These metrics are also useful to quantify the error associated with a forecast. A
widely used performance metric is the root mean squared error (RMSE) given by

n

RMSE = | - () =),

i3
where © is the set of parameter estimates, f(t;, é) denotes the best-fit model, and y;, (i =
1,...,n) is the time series data (for that specific epidemic outbreak) and n is the total number
of data points. In this work we employ the RMSE since this quantity naturally arises in the
context of least-squares methods. Other applicable performance metrics [32] include the mean
absolute error (MAE) and the mean absolute percentage error (MAPE), given by the respective

expressions

n

, MAPE:lZ

n <
=1

f(tla @) — Yt
Yt,

1< .
MAE = o ;}f(tu@) — Y,

While we have not applied any special treatment on outliers when calculating the RSME, the
sensitivity of each of these performance metrics to anomalous data is left as a topic for future
study.

1.3.3 Parameter estimation and confidence interval generation

Based on the description of the determination of the best fit in [32], we use the built-in
Matlab (The Mathworks, Inc.) function LSQCURVEFIT to obtain parameter estimates via
least-square fitting of the model solution to the observed data. This is achieved by searching for
the set of parameters © = (191, o ,@m) that minimizes the sum of squared differences between
the observed data y;, = y,, ..., v, and the corresponding model solution denoted by f(¢;, ©).
For the implementation for this function, we need the initial parameter guesses and the upper
and lower bounds for these parameters as well as the initial data point C(0) . The process for

the parameter estimation is summarized in the next steps:

1. Define the upper and lower bounds for each parameter.

2. Consider m sets of initial parameters defined with the Matlab function LSHDESING and
the upper and lower bounds defined in step 1.

3. Calculate the parameter estimation for each set of initial parameters with the function
LSQCURVEFIT.
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4. Measure the error RMSE and select the parameter estimates with lowest RMSE, in order
to ensure that the global minimum rather than a local minimum was found.

On the other hand, to generate the confidence interval, we use the parametric bootstrap
method [66] (see also [34,43]) with Poisson error structure that was implemented to generate
250 model realizations. This process can be summarized in the following steps:

1. With the parameter estimations © obtained by the least-squares fit of the model f(t;, ©)
to the time series data y,, ..., Y, we achieve the best-fit model f(¢;,©).

2. Then, we generate S-times replicated simulated datasets, using the best-fit model, which
we denote by fy(t;,0),...,fé(t;,©). To generate these simulated data sets, we first
use the best-fit model f(t;,0) to calculate the corresponding cumulative curve function

~

F(t;,0) defined as

A N

Moreover, f;(t1,0) = f(t1,0) for k =1,...,5. Besides, these data are generated assum-
ing a Poisson error structure as follows: we assume that

~

f,:(tj,é):PO(F@J',(:))—F@]‘,“@)), j:2,3,...,n, ]{721,2,...75,
where Po()) denotes the Poisson distribution with mean A.

3. We re-estimate parameters for each of the S simulated realizations, which are denoted by
O, fori=1,...,85.

4. Finally, using the set of re-estimated parameters (:)i, 1 = 1,...,5, we construct the
confidence interval, so the resulting uncertainty around the model fit is given by

~ A ~

f(t,©1), f(t,02),..., f(t,0s).

Then, for our case, from these S = 250 realizations, we calculate 95% confidence intervals
for model parameters.

1.3.4 Methodology: Analysis of the RMSE

In this section we summarize the methodology used to decide which is the best model for a
given outbreak, and to analyze the contribution of the parameter p. The definitions and theory
are taken from [32]. The methodology consists in an analysis of the RMSE error with the help
of bar and scatter charts.

For this purpose, we first explore the initial parameters for each model and epidemic in order
to ensure that the best fit of the model yields the smallest RMSE following the steps defined
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in the Section 3.3 for parameter estimation and considering 7,b € [0,5], K € [0,107] and the
known p € [0,1]. The above is an important process in order to ensure that we are obtaining
the best fit to the data using the LSQCURVEFIT function in Matlab. We then with the best
fits for each model and epidemic, we have their incidence curves and the lower RMSE. With
these values we obtain graphs that compare the fit with the data, bar charts and scatter plots,
which will be used for the error analysis (see Figure 1.3).

Data in time series

!

Selection of initial parameters

!

( )
( )
(" Fiing wit s v el )
( )
[ )

!

Parameter estimation and RMSE

Error analysis

Figure 1.3: Methodology for error analysis.

1.4 Results

1.4.1 Error analysis and comparison of fits for each epidemic

With the RMSE and the best fits obtained for each model, we obtain tables and graphics (see
Table 1.3 and Figures 1.4 to 1.8) to compare the sizes of the errors for each model and epidemic
outbreak, where the numbers from 1 to 37 in Table 1.3 identify the cases of outbreak (see Ta-
ble 1.2). In Table 1.3 we observe that (independently of the epidemic) the GLM method yields
the lowest RMSE in most of the cases (highlighted in green), and the LM yields the larger errors
(highlighted in yellow). Besides, whenever the GLM is not the “best” model, the GGoM follows.

Furthermore, we also observe that between LM and GoM, the GoM is better, because the
dynamics of this model are more closely aligned to the dynamics of the GGoM. Furthermore,
the LM is associated with the largest errors in the great majority of the cases of outbreaks.
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Case LM GLM GoM GGoM Case LM GLM GoM GGoM
No. No.

1 591840  [5.08749' 528578 528578 20 13.81574 10.44249  [10.33338  [10:33338]
2 536334  [A68065]  4.72246  4.71404 21 22.13303 13.31396  13.31396
3 6.80378 521596  5.21959  [50461 22 27.16583 26.48861  26.48861
4 3.07198  [B06984 322175  3.22175 23 3.01595 2.47452 2.57271 12.43990
5 16.02456  8.74242 873707  [SMO830] 24 3.03925 2.29532 2.29498
6 6.95680  [B27918] 536135  5.36135 25 9.36028 7.81157 7.81157
7 542450  3.96942 441215  [306189] 26  264.91368 147.87904  147.87904
8 7.01087 [BBIB03]  6.21805  5.81937 27 57.27638 154.36235  154.36234
9  [A79101 [479101  5.05457  5.05457 28 20.21720 8.50542 8.31521 7.87152
10 [858955 858955  14.88488  14.88488 29 31.10051 31.44816  31.44816
11 14.13951 [I1401560 17.78045  17.78045 30 16.22091 13.00660  13.00660
12 2289522 [MAN77254 37.63692 37.63692 31 7.59491 5.79428 5.79428
13 19.73810 [H0I0O88SY  12.70424  12.70424 32 265.53459 118.53622  79.95863
14 1794184 [0 12.98507 1193256 33 [137.38697 387.23469  387.23464
15 413574 [3B16490 335153  3.34541 34 10.15666 5.54259 5.54259
16 9.18180  [5580021  5.76447 574384 35  2174.08795 1493.07521  1493.07521
17 [1374655| [13.74655 17.83847  17.83847 36 11.13642 8.17479 7.64371
18 1177779 11.32307 [I1i31585] [i181585 37 31.65064 46.71374  46.71374
19 2611925 [I66I19 12.71813  12.71813

Table 1.3: RMSE using the total data for each model. For each outbreak, we highlight the
lowest RMSE (green) and the highest value (yellow) for the error sizes.
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Figure 1.5: Scatter plots for RMSE, where we verify that the pair of Gompertz models have a
closer behavior than the logistic models, where the variations are more marked. Additionally,

we also verify that the models incorporating the parameter p yield similar errors, in contrast

to the models with p = 1.
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Figures 1.4 and 1.5 display the RMSE for each model and dataset. In Figure 1.4 we can
see that although the GLM outperforms in most cases, we note that the error for the GLM is
higher for Cases 3, 5, 7, 18, 20, 23, and 28 compared to the GGoM. Yet, those error differences
are very small.

We also employ scatter plots to compare the errors yielded by a pair of models across all of
the epidemics (Figure 1.5). Therefore, we compare the models with or without the parameter
p, and then between the logistic and Gompertz models. For the first comparison we verify that
the GGoM has errors with sizes larger than the GLM, unlike the models without p, where the
behavior is different, since the LM has the errors with more scatter and below the line with
slope one. Moreover, for the second group of cases, we note that the logistic models have a
more scattered behavior above the diagonal line, where LM has errors with sizes greater than
the sizes for the GLM’s errors. This contrasts with the Gompertz models, where the scatter is
closer to the diagonal. This shows that the errors yielded by both Gompertz models are very
similar, and we can readily observe that these models are stable or closer to each other.

Having analyzed the RMSE for each model, now we study their respective fits for each
epidemic outbreak, where we obtain a graphic sample of the best fit that corresponds to the
RMSE, i.e., we will plot the best fits. These results are plotted in Figures 1.6 to 1.8. In these
figures we can observe and compare the quality of the fits and their erorrs, where can note that
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the best fits to the data correspond to the smaller errors in terms of the RMSE.

Having finalized our comparative analysis of the model fits and their corresponding errors,
we point out that for the Ebola epidemics (Cases 1 to 25), the GLM tends to yield an improved
description to the data because in those cases where the GGoM wins (in terms of smallness
of the RMSE), the corresponding errors do not differ by more than 0.6399. However, for the
rest of the cases of epidemic outbreaks, the best model remains the GLM which yields smaller
errors compared to the GGoM.

1.4.2 Parameter estimation

These results were obtained from the fits calculated in the previous section with the use of the
Matlab function LSDCURVEFIT. We summarize the results for all cases in Table 1.4. We note
that for the GGoM, there are 24 cases with p = 1, which means that these exhibit an initial
exponential growth, where moreover the Gompertz and GGoM models yield equal RSMEs for
that value of p. On the other hand for this same period of time and for the logistic models, we
notice that only for four epidemics we have p = 1 (exponential initial growth), and the others
give rise to initial sub-exponential growth with p € (0,1). There were a number of outbreaks
where the Gompertz models yield p = 1 (Gompertz and GGoM models are equivalent), for
which the differences between the corresponding RMSEs are negligible.

Additionally, we observe that for the cases of Ebola in Grand Cape Mount, Lofa, Kono and
Pandemic Influenza (Cases 9, 10, 17, and 33), we obtained p = 1 for the two generalized models.
Also, for epidemics when the value of p for GLM is near one, the corresponding value of the
parameter for the GGoM is one including the epidemics of Ebola (Kindia, Montserrado; Cases 4
and 12), Plague (Bombay; Case 27) and Cholera (Aalborg; Case 37), in Table 1.4. We also
observe that when the value of the parameter for GLM is small, for example the cases of Ebola
(Bomi, Bong; Cases 7 and 8), the value for the GGoM is also small, and for all cases when the
value of p =1 en GGoM, the values of p for GLM is greater than 0.6.

1.4.3 Confidence intervals

In this part, for the calculation of confidence intervals, we consider the generalized models
(GLM and GGoM), for which we can obtain another piece of information to compare both
models, and to decide which models best fit a given dataset. To this end we take the same initial
parameters obtained for the RMSE calculation, and we use the parametric bootstrap process
with 250 simulations with Poisson error structure, defined in Section 1.3, and summarize the
results in Tables 1.5 and 1.6. In these results we note that the intervals are narrower and contain
the mean value, suggesting that the parameters are identifiable (see [32]) for the GLM model.
On the other hand, for the GGoM model, this situation occurs in some cases, for example, see
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Figure 1.9, where for Case 1 the confidence interval obtained with GLM model has a bar chart
that is centred, while that for the GGoM model, the bar chart displays a distribution with two
modes. This behavior displayed by the GGoM model can be due to dependency or correlations
(presented in Section 1.2) between the parameters b and p.

Another observation is that the non-identifiability can be present in the results where the
upper and lower limit of the 95%CI intervals are not so close, and the mean is not a central
value inside the interval. This is observed for the GGoM in the Cases 1 and 24, and the opposite
situation can be observed, for instance, for Cases 12 and 19, where the mean value is a central
value inside the interval which has the extremes very close. This last situation also appears in
all the results derived from the GLM.
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Figure 1.6: Results of fits for epidemic

outbreaks (Cases 1 to 12).




1.4. Results

Incidence

Incidence

Incidence

Incidence

Incidence

Incidence

Case 13: Ebola (Bo)

Case 14:

25

Ebola (Kailahun)

Y

..o
e ag

™M

lin

Case 15:

150
Time

200

250

LM  GLM GoM GGoM
Model

Ebola (Kambia)

sof
70r ° -l
60 | ch N
™\
@50
2
840

M
GLM

-~ GoM |

—GGoM

° Data [

16
14
12

w
5 10
=
o

=

Model

20

5

ol

< LM
GLM
- GoM

e Data

4

3.5
3
25

RMSE

100

@
<}

40

AR
°ye
. e
ha 33 5908
150 200
Time

Case 17:

250

300

Ebola (Kono)

™M
GLM
- GoM
—GGoM
® Data

1~
50 - 8
7
401 S\
[} ° d
230t o
3 [ .
2 ¥ \ .
S20t o f f . .
1 \ °
10 4 e
] Y% °
. Y .
o oo Seoeaoy o
o 50 100 150 200
Model Time Model
Case 18: Ebola (Moyamba)
- LM
60 - GLM
= GoM 10
50 . —GGom!|
® Data
g 1 8
g =
Baot iz
H
0

o 50 100 150 LM GLM GoM GGoM
Time Model Time
Case 19: Ebola (Port Loko) Case 20: Ebola (Tonkolili)
160 [ A v [ 25 80
140 ,’ 1S - Stm H or
J —GGoM 20 60 L °
120 - W2 o Data_|{ S~
100 i e 1 ows §5° r 7 > ]
80 ! L8 1 2 g0t A, o i
60 | j N f 10 230} / L —
a0t . 7 L %enge ] 20t , ‘. . ]
20 . S 10 o N <
Feof » ° N Fq e . b
obttace” YO 22 o JI7 Temet e o
o 50 100 150 200 250 300 350 LM GLM GoM GGoM o 50 100 150 LM GLM GoM GGoM
Time Model Time Model
Case 21: Ebola (Western Area Rural) Case 22: Ebola (Western Area Urban)
T e =
120 - o0l \\ = S Sim
0\ = GoM 200 - PR = GoM |
100 - 3 —GGom|| X! —GGoM
, ool o Data MG ° Data
80 - [ . 1 8
: \ 3
60 goei WN . — 8
1 e =
40t ? . .
° IJ \
20 ° s AR 1
4 * 0% 5%eg2 ° .
oeatar” \"- Sece Zeae 0
o 50 100 150 200 250 300 350 LM GLM GoM GGoM LM GLM GoM GGoM
Time Model Time Model
Case 23: Ebola (Grand Bassa, 2014) Case 24: Ebola (Congo, 1976)
12 v 3 16 =™ s
* e GLM
10 ’I \ -~ GoM 25
s Lo ° © Data >
8 g
6 g 15 ._;-Ié
e
4
2 . 05
o e e
° ~~ . i3t ree 0
0 50 100 150 200 LM GLM GoM GGoM LM GLM GoM GGoM
Time Model Time Model

Figure 1.7: Results of fits for epidemic outbreaks (Cases 13 to 24).
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Figure 1.8: Results of fits for epidemic outbreaks (Cases 25 to 37).
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Case LM GLM GoM GGoM
no. P K P » K P b 7 b P
1 0.0515 349.7231 0.1166 0.7713 444.2758 0.1074 0.0195 0.1074 0.0195 1.0000
2 0.0272 312.0756 0.1333 0.6196 407.0675 0.0716 0.0129 0.0716 0.0119 0.9199
3 0.1395 103.0945 0.4286 0.6217 140.4582 0.3545 0.0636 0.3545 0.0580 0.9182
4 0.0661 96.5409 0.0761 0.9502 99.1794 0.1245 0.0307 0.1245 0.0307 1.0000
5 0.0895 447.7870 0.4231 0.6114 725.6594 0.2533 0.0334 0.2533 0.0293 0.8988
6 0.0824 181.5802 0.2410 0.6776 248.1927 0.1937 0.0350 0.1937 0.0350 1.0000
7 0.0794 125.5729 0.6590 0.3822 197.6517 0.5303 0.0376 0.5303 0.0229 0.5241
8 0.1022 112.4554 0.8366  0.3050 197.8649 0.7161 0.0421 0.7161 0.0188 0.3987
9 0.0563 126.3540 0.0563 1.0000 126.3550 0.1222 0.0243 0.1222 0.0243 1.0000
10  0.0801 449.7942 0.0801 1.0000 449.7945 0.1680 0.0300 0.1680 0.0300 1.0000
11 0.0860 717.8667 0.1321  0.8856 835.4420 0.2037 0.0295 0.2037 0.0295 1.0000
12 0.0781 2186.2506 0.1151 0.9075 2558.8591 0.1891 0.0234 0.1891 0.0234 1.0000
13 0.0580 1120.3306 0.1510 0.7861 1516.9220 0.1379 0.0205 0.1379 0.0205 1.0000
14 0.0881 460.4146 0.8746 0.4820 743.9952 0.5880 0.0371 0.5880 0.0249 0.6606
15  0.0397 209.5318 0.1488 0.6165 297.9425 0.0931 0.0162 0.0931 0.0151 0.9355
16 0.0937 348.5524 0.3352 0.6473 521.6719 0.2350 0.0344 0.2350 0.0324 0.9540
17 0.0488 588.5557 0.0488 1.0000 588.5585 0.1001 0.0183 0.1001 0.0183 1.0000
18 0.0481 233.1384 0.1574 0.6929 299.3579 0.0975 0.0224 0.0975 0.0224 1.0000
19 0.0704 1367.5564 0.2398 0.7224 2117.9765 0.1731 0.0225 0.1731 0.0225 1.0000
20  0.0713 462.3494 0.2765 0.6858 621.0968 0.1428 0.0306 0.1428 0.0306 1.0000
21 0.0704  1081.3964  0.2051 0.7484  1597.3617  0.1728 0.0232 0.1728 0.0232 1.0000
22 0.0544 2333.8907 0.1257 0.8349 2869.5270 0.1282 0.0191 0.1282 0.0191 1.0000
23 0.0881 71.3732 0.3692 0.4182 117.6898 0.2726 0.0351 0.2726 0.0219 0.6261
24  0.2489 184.6402 0.7254 0.6591 264.8534 0.5537 0.0970 0.5537 0.0955 0.9869
25  0.1320 321.0079 0.2531 0.7975 405.2692 0.2883 0.0471 0.2883 0.0471 1.0000
26 0.0464 22036.2242 0.3110 0.7547 28828.6606 0.1004 0.0178 0.1004 0.0178 1.0000
27 0.0619 8469.9885 0.0785 0.9599 8953.5581 0.1488 0.0205 0.1488 0.0205 1.0000
28 0.0447 1092.7766 0.2944 0.6104 1794.4156 0.1352 0.0163 0.1352 0.0141 0.8972
29  0.0897 1066.4611  0.1540 0.8772  1248.9623  0.1622 0.0283 0.1622 0.0283 1.0000
30 0.1175 676.3573 0.2210 0.8228 881.6454 0.2617 0.0378 0.2617 0.0378 1.0000
31  0.1672  1183.5522  0.3987 0.7918  1613.2740  0.4063 0.0542 0.4063 0.0542 1.0000
32 0.3065 20755.6167 5.8972 0.5830 95304.7125 4.9103 0.0845 4.9103 0.0178 0.6244
33 0.2818 26871.5921  0.2818 1.0000 26871.5957 0.7090 0.0776 0.7090 0.0776 1.0000
34 0.1643  1138.8055 0.6332 0.6874  1847.4319  0.3922 0.0521 0.3922 0.0521 1.0000
35 0.4780 108372.6501 3.6817 0.7742 144496.6825 1.0171 0.1613 1.0171 0.1613 1.0000
36  0.2301 621.0656 1.8679 0.5341  1057.3185  1.4274 0.0886 1.4274 0.0607 0.7021
37 0.2067 6151.3786 0.3366 0.9132 7000.0555 0.4765 0.0670 0.4765 0.0670 1.0000

Table 1.4: Parameter estimation for LM, GLM, GoM and GGoM with total data.
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Case r P K

no. mean 95%CI mean 95%CI mean 95%CI

1 0.115 (0.086,0.158) 0.776 (0.696,0.846) 443.49 (394.90,487.00)

2 0.131 (0.089,0.200) 0.626 (0.526,0.717) 406.78 (365.07,452.51)

3 0.423 (0.257,0.704) 0.627 (0.471,0.777) 139.71 (119.44,163.74)

4 0.073  (0.062,0.121) 0.965 (0.790,1.000) 98.86 (82.50,116.37)

5 0.431 (0.323,0.548) 0.605 (0.559,0.671) 726.36 (668.81,778.98)

6 0.240 (0.175,0.320) 0.678 (0.606,0.773) 246.65 (218.27,274.52)

7 0.642 (0.378,1.147) 0.384 (0.227,0.523) 196.30 (166.86,220.68)

8 0.840 (0.423,2.038) 0.313 (0.005,0.499) 199.49 (160.34,283.75)

9 0.058 (0.053,0.077) 1.000 (0.885,1.000) 129.27 (108.47,150.70)
10 0.081 (0.078,0.096) 1.000 (0.950,1.000) 451.77 (417.50,494.91)
11 0132 (0.115,0.149) 0.885 (0.853,0.922)  833.39 (775.85,804.77)
12 0.115 (0.105,0.122) 0.908 (0.894,0.928) 2556.08 (2451.96,2652.82)
13 0.152  (0.129,0.176) 0.785 (0.755,0.818) 1516.06 (1437.87,1598.21)
14 0.858 (0.638,1.192) 0.487 (0.418,0.547) 742.15 (691.23,794.99)
15 0.153 (0.098,0.216) 0.614 (0.521,0.729) 299.04 (262.92,333.23)
16 0.329 (0.252,0.443) 0.652 (0.587,0.714) 518.72 (473.90,565.42)
17 0.049 (0.047,0.059) 1.000 (0.954,1.000) 594.39 (551.33,647.65)
18 0.156  (0.100,0.235) 0.693 (0.597,0.813) 300.69 (267.36,329.84)
19 0.240 (0 216,0. 265) 0.722 (0.703,0.744) 2123.24 (2028.54,2209.52)
20 0.274 (0.194,0.374) 0.688 (0.618,0.760) 620.20 (570.91,671.19)
21 0.205 (0.183,0.232) 0.749 (0.720,0.771) 1598.77 (1509.05,1682.88)
22 0.126  (0.113,0.139) 0.835 (0.815,0.855) 2869.41 (2750.68,2980.44)
23 0.356 (0.161,0.796) 0.433 (0.162,0.683) 116.16 (94.65,141.21)
24 0.719 (0.514,1.012) 0.663 (0.567,0.761) 263.51 (227.52,299.68)
25 0.256  (0.196,0.308) 0.796 (0.740,0.873) 405.35 (361.75,440.83)
26 0.310 (0.289,0.330) 0.755 (0.747,0.764) 28794.12 (28454.39,29171.09)
27 0.078 (0.074,0.083) 0.961 (0.951,0.970) 8950.33 (8758.74,9158.87)
28 0.295 (0.245,0.353) 0.609 (0.576,0.645) 1794.21 (1700.83,1870.10)
29 0.153 (0.118,0.201) 0.879 (0.819,0.938) 1250.05 (1145.82,1369.44)
30 0.221 (0.185,0.260) 0.824 (0.786,0.869) 878.98 (821.33,929.29)
31 0.400 (0.353,0.452) 0.791 (0.765,0.820) 1618.73 (1522.17,1682.63)
32 5.8909 (5.227,6.851) 0.583 (0.562,0.600) 93958.96  (73179.88,139505.38)
33 3.288 (2.811,3.494) 0.639 (0.627,0.663) 26899.66 (23324.67,28492.81)
34 0.629 (0.552,0.716) 0.689 (0.665,0.714) 1848.41 (1745.74,1928.95)
35 3.700 (3.567,3.819) 0.774 (0.767,0.778) 144499.22 (88406.56,145514.69)
36 1.862 (1.483,2.435) 0.536 (0.482,0.585) 1057.80 (986.65,1116.99)
37 0.338 (0.312,0.358) 0.912 (0.902,0.927) 7016.81 (6840.94,7162.10)

Table 1.5: Confidence intervals for GLM parameters.
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Case r b P
no. mean 95%CI mean 95%CI mean 95%CI)
1 2.399 (0.103,2.934) 1.489 (0.017,8.886) 0.061 (0.008,1.000)
2 0.069 (0.016,0.178) 0.012 (0.010,9.034) 0.901 (0.010,1.000)
3 0.355 (0.292,0.670) 0.058 (0.043,0.074) 0.900 (0.589,1.000)
4 0.129  (0.050,0.302) 0.030 (0.020,9.357) 0.977 (0.041,1.000)
b) 0.254 (0.193,0.327) 0.029 (0.026,0.033) 0.900 (0.806,1.000)
6 0.200 (0.175,0.265) 0.034 (0.028,0.040) 1.000 (0.716,1.000)
7 0.523 (0.264,1.014) 0.023 (0.018,0.032) 0.535 (0.284,0.795)
8 0.687 (0.341,1.479) 0.020 (0.011,0.032) 0.416 (0.134,0.718)
9 0.125 (0.082,1.620) 0.025 (0.018,8.948) 0.877 (0.068,1.000)
10 0.174 (0.159,0.219) 0.029 (0.026,0.032) 1.000 (0.886,1.000)
11 0.208 (0.195,0.270) 0.029 (0.027,3.012) 0.994 (0.408,1.000)
12 0.191 (0.185,0.205) 0.023 (0.022,0.024) 0.999 (0.971,1.000)
13 0.139 (0.134,0.166) 0.020 (0.019,0.021) 1.000 (0.935,1.000)
14 0.570  (0.391,0.814) 0.025 (0.022,0.029) 0.667 (0.569,0.784)
15 3424 (0.071,4.404) 3.847 (0.014,9.774) 0.130 (0.005,0.943)
16 0.236  (0.206,0.294) 0.032 (0.029,0.036) 0.951 (0.858,1.000)
17 0.106 (0.096,0.983) 0.018 (0.015,5.936) 0.979 (0.260,1.000)
18 0.114 (0.091,3.443) 0.023 (0.018,9.747) 0.931 (0.004,1.000)
19 0.175 (0.170,0.195) 0.022 (0.021,0.023) 1.000 (0.955,1.000)
20 0.148 (0.136,0.215) 0.030 (0.026,0.032) 1.000 (0.871,1.000)
21 0.175 (0.169,0.193) 0.023 (0.021,0.024) 0.999 (0.948,1.000)
22 0.130 (0.126,0.146) 0.019 (0.018,0.019) 1.000 (0.963,1.000)
23 0.256 (0.122,0.671) 0.023 (0.014,0.035) 0.648 (0.242,1.000)
24 0.560 (0.109,3.233) 0.096 (0.077,9.604) 0.953 (0.037,1.000)
25 0.297 (0.273,0.363) 0.046 (0.040,0.050) 1.000 (0.890,1.000)
26 0.101  (0.100,0.112) 0.018 (0.017,0.018) 1.000 (0.984,1.000)
27 0.150 (0.148,0.162) 0.020 (0.020,0.021) 1.000 (0.980,1.000)
28 0.134 (0.104,0.168) 0.014 (0.013,0.016) 0.899 (0.839,0.973)
29 0.169 (0.155,0.268) 0.027 (0.019,0.030) 0.998 (0.830,1.000)
30 0.267 (0.253,0.306) 0.037 (0.034,0.039) 1.000 (0.929,1.000)
31 0.409 (0.006,3.851) 0.055 (0.050,9.469) 0.973 (0.005,1.000)
32 4.891 (3.893,6.247) 0.018 (0.011,0.025) 0.625 (0.584,0.664)
33 0.712  (0.705,0.744) 0.077 (0.076,0.078) 1.000 (0.989,1.000)
34 0559 (0.386,3.960) 5.605 (0.049,7.869) 0.305 (0.292,1.000)
35 1.020 (1.014,1.096) 0.161 (0.159,0.162) 1.000 (0.990,1.000)
36 1424 (1.114,1.798) 0.061 (0.054,0.069) 0.704 (0.632,0.774)
37 0.481 (0.471,0.542) 0.067 (0.065,0.068) 0.999 (0.970,1.000)

Table 1.6: Confidence intervals for GGoM parameters.
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Identifiability with GLM model
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Figure 1.9: Identifiability vs. non-identifiability of parameters for Case No 1.
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CHAPTER 2

Measuring differences between phenomenological growth
models applied to epidemiology

This chapter exhibits a methodology and a systematic study to measure the differences
between two phenomenological growth models (PGMs). Such measures explain how such
differences display the ability of certain growth models to provide a better fit to synthetic
and real epidemic data.

2.1 Introduction

2.1.1 Scope

A wide variety of mathematical models have been used to study the patterns of growth
processes of populations and epidemics in humans, animals, and plants [2,13,14,17,32,61,77,
82,110,127,141,163,173,179]. Here we are especially interested in dynamic growth models for
characterizing epidemic trajectories, estimating key transmission parameters, gaining insight
into the contribution of various transmission pathways, and providing long-term and short-term
forecasts. The recent monograph by Yan and Chowell [188| provides an introduction to the
topic. We herein focus on phenomenological growth models (PGMs) that only require a small
number of parameters are commonly used to describe epidemic growth patterns, and which can
be expressed by an ordinary differential equation (ODE) of the type

C'(t) := %}Et) = f(t,C;0), t>0;, C(0)=Cy, (2.1)
where ¢ is time, C'(t) is the total size of the epidemic (the cumulative number of cases) at time ¢,
Cy is the initial number of cases, f is an incidence function that is specific to each PGM under
study, and O is a vector of parameters. Such models have been used to study the epidemics
of influenza [5,22,39|, Ebola [46,47,119,171], Zika [19,36,191|, Chikungunya [165], and others
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of global interest. The current COVID-19 pandemic is a scenario for which such models are of
obvious importance |27, 55,69, 106,116, 135,168, 169].

In [22] we demonstrate that some models are better at fitting data of specific epidemic
outbreaks than others even when the models have the same number of parameters. Consider,
for instance, the three-parameter so-called generalized logistic model (GLM) specified by

f(t,C;0) =rC(t)? ( — %) , O=(rpK), (2.2)

K

where the parameter » > 0 indicates the growth rate (its dimension is 1/time), K is the size
of the epidemic, and p € [0, 1] is a growth scaling parameter that indicates the kind of growth
(e.g., exponential vs. sub-exponential). In the comparative analysis between two models and
their generalizations 22|, the GLM was able to capture the trajectories for 37 real datasets
describing the progression of epidemic outbreaks. In fact, this model showed to have the
smallest error between the data and the fit, and the estimated parameters were identifiable,
that is, the average value of each parameter was effectively a central value in the confidence
intervals, where we used the definitions and calculations introduced in [32]| for the error and
the confidence intervals.

Although several PGMs could be considered for a given dataset, little work has been con-
ducted to analyze the differences between models. Here we define the empirical directed distance
between two PGMs as a measure of differences in the dynamics that each model is capable of

generating. We address questions such as whether the dynamics of the logistic growth model
(LM), defined by

o)

f(t.C;0) :rC(t)( - 7) 0 = (1K), (2.3)

is more similar to that of the Gompertz model (GoM), corresponding to
f(t,C;0) =rC(t)exp(=bt), © = (r,b), (2.4)

where the parameter b > 0 describes the exponential decay of the growth rate r, or to that of
the Richards model (RM)

ct)\”
f(t,C;0)=rC(t) (1 - (7> ) , = (r,K,p). (2.5)
We emphasize that we use the terminologies “generalized logistic model” (GLM) and “Richards
model” (RM) to address different models, namely those given by (2.2) and (2.5), respectively.
Only the model (2.5) is the one proposed originally in Richards’ paper [127]. That said, we
are well aware that in parts of the literature, for instance in [63,90, 147|, the model (2.5) is
referred to as “a generalized logistic model” (cf., e.g., [90]), that is “generalized logistic” and
“Richards model” are used synonymously. We recall that our equation (2.2) is a generalization
of the logistic model (2.3) where the exponent p is applied to the first factor C(¢) in (2.3),
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while the Richards model (2.5) represents a different generalization that arises from applying
an exponent p to C(t)/K within the growth-limiting factor 1 — C(¢t)/K.

Before proceeding, we comment that it is arguable whether in the context of epidemiology the
scalar ODE (2.1) is really a phenomenological model or simply a generator of functions to be
fitted to the available data. Strictly speaking only the LM can be viewed as an epidemiological
model since it arises from the well-known susceptible-infectious (SI) compartmental model in the
absence of births and deaths (see, e.g., [17]). However, the use of the word ‘model’ for (2.1) is not
only very common in the epidemiological literature (including [22,27,32,32,36,46,47,55,119,179]
of the references cited so far), but we also mention that the various parameters carry relevant
information characterizing the strength of an epidemic outbreak, much in contrast, say, to
abstract coefficients of a function (e.g., spline function) to approximate data. That said, we
emphasize that the approach of the present work is one of statistics applied to medicine and
biology, and is independent of what one regards to be the ‘true’ status of (2.1).

There is a need to develop a methodology that helps quantify the differences in the dynamics
obtained from different models that aim to capture growth processes in the social and natural
sciences. Such a methodology can be helpful to assess which models are more parsimonious
than others in different contexts. In the context of epidemic modeling, many models have
been developed to investigate the transmission dynamics and control of infectious diseases
[2,61,176]. However, there has not been a systematic study of differences between models
and how differences in dynamics may explain the ability of certain models to provide a better
fit to data than others. Here we aim to make progress in this direction by focusing on simple
models that strive to capture many of the empirical patterns found in epidemic data. The main
practical reason why one would be interested in understanding the distance between models
stems from the need to understand how different the solutions from different models are. If
two models are able to reproduce the same temporal dynamics, the researcher would be better
off relying on the simpler model. Because a number of PGMs exist in the literature, we argue
that understanding their differences in terms of the dynamics that they can produce adds to
the literature and will help guide researchers in different applied disciplines select a reasonably
small set of models rather than considering a large set of models many of which produce very
similar results or fits to the data.

To address these questions we measure the differences in the dynamics between different
dynamics models of the form (2.1). Here we employ simulated data for three generalized growth
models (namely GLM, GGoM and RM), and with the help of mathematical and computational
methods we calculate the fit and performance errors in terms of which the empirical directed
distances (EDDs) are defined. As we will show, it turns out that the GLM is closer to the
dynamics of the RM. On the other hand, the generalized Gompertz model (GGoM) defined by

f(t,C;0) =rC(t)P exp(=bt), © = (r,b,p). (2.6)

is the farthest from the RM and GLM. This is because the scaling parameter (p in (2.2), (2.5)
and (2.6)) plays a more significant role in the GLM since its variation within the GLM causes
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more changes in its dynamics than for the other models.

The EDD between two PGMs, say A and B, is based on simulation study that we introduce
in the following sections. As the foregoing discussion shows, the word “distance” in this work is
not to be understood in the mathematical sense as distance function on a metric space; rather,
we employ it to characterize a measure of distance based on the mean squared error. The
terminology of “distance measure between models” has been employed elsewhere, cf., e.g., [159].

2.1.2 Related work

To illustrate how models can support different features of epidemic data, we can refer to
the scaling of epidemic growth that characterizes the early growth dynamics of epidemics.
While some epidemics spread rapidly through a population following an exponential growth
phase such as pandemic influenza or the ongoing epidemic of the novel coronavirus emerging
from China (COVID-19) [106], some outbreaks spread more slowly as a result of the mode
of transmission or the contact network through which the pathogen spreads. For instance,
sexually transmitted diseases and Ebola do not spread through the air, but require a specific
type of intimate contact to spread. In such situations the disease is expected to spread follow
sub-exponential growth patterns. When a model only supports exponential growth dynamics,
we could expect differences between such a model and more flexible models that can capture a
range of early epidemic growth dynamics [48].

The authors’ interest in PGMs is mainly motivated by epidemiological applications, where
the quantity that grows is usually the size of the population of infected humans. The same
models also arise in quite different contexts. In fact, PGMs are commonly used in fields such
as mathematical oncology and population dynamics because they consider in a simple but (up
tome extent and depending on the applications) effective way phenomena concerning the growth
of cells or of animal or human populations. In other words these models mirror in a simple way
phenomena pertaining to these population growth phenomena. In particular they are utilized
to describe the growth of a tumour where C(¢) is proportional to the number of cells in the
tumour.

We refer to textbook entries, e.g. [65, Ch. 6], [15, Sect. 1.8], [145, p. 39|, and [17, Sect. 8.2],
the monograph by T.E. Wheldon [181], as well as some classic references cited in most of
these works such as Aroesty et al. [6] and Newton [112]|. In particular, in the latter two works
it is demonstrated that the Gompertz model (2.4), under suitable choices of r and b, agrees
remarkably well with data on tumour growth as long as C' is not too small (as is pointed out
in [65,145]). More recent contributions that study, and compare, the applicability of various
PGMs to tumour growth include [60,62, 63,90, 147].

One important step in our treatment consists in generating a fit of one of the PGMs to
data that are either generated by another model or using real outbreak data. Since the para-
metric forms of PGMs are essentially non-linear, standard least-squares methods are often not
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applicable. Thus, to provide these fits, we resort to the Simulated Annealing (SA) method.
This method is defined in [172] as a powerful stochastic search method applicable to a wide
range of problems that occur in a variety of disciplines including physics, engineering problems,
mathematical programming, and statistics. In particular, in the context of epidemiological
models, SA has been applied to devise optimal time-profiles of public health intervention to
shape voluntary vaccination for childhood diseases, see Buonomo et al. [21].

The problem can be formulated as follows. Suppose we are given finite-dimensional solution
space S, and a function f : § — R, and we want find an optimal configuration z* € S such
that f(z*) = minges f(x). This method has become very popular because the algorithm can
solve unconstrained and bound-constrained optimization problems, especially in the multidi-
mensional case when the objective function may have many local extremes and may not be
smooth. In that case, SA is advantageous because it does not require calculation of derivatives,
and thus be considered as a derivative-free method. In papers including [87,128] this method
has been used for parameter estimation, which motivated our computation.

2.2 Distance between phenomenological growth models

2.2.1 Notation and solution of PGMs

We begin the discussion with a comment on notation. The notation chosen for the incidence
function f = f(t,C; ©) presupposes that ¢t and C' are independent arguments. In fact, it is also
possible to rewrite all models utilized herein as autonomous ordinary differential equations of
the form

C'(t) =¢(C;0), t>0; C(0)=Cy. (2.7)
This is directly obvious for the GLM (2.2) and the RM (2.5). Rewriting the ODEs for the GoM
and GGoM (with 0 < p < 1) as
1d 1 d
exp(—br) = e InC(r) and exp(—br) = mgcl—p for 0 <7 <t

integrating with respect to 7, and substituting the corresponding expression for exp(—bt) in
(2.4) and (2.6), respectively, one obtains

¢(C;0) = (r+bInCy)C —bCInC

for the GoM and

b _
0(C;0) =CP (—1(01_”—03 ) +7‘) ., 0<p<l,
p —
for the GGoM. The original and autonomous forms, (2.1) and (2.7), are of course equivalent in
all cases. However, one or another form is preferable depending on the context of application of
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Phenomenological growth model Parameters

Logistic growth model (LM) O=W1=rv2=K); r,K>0

Generalized Logistic growth model (GLM) © = (¢ =r,92 = K,¥3 =p); r,K >0, p € [0,1]
Richards model (RM) O=W=rt=Kds3=p); rnK>0, pel0,1]
Generalized Gompertz model (GGoM) O ={9 =r1Y2=0,093=p}; r,b>0, pe|0,]1]

Table 2.1: Summary of information on models and parameters.

the respective PGM, that is, on whether dependence of the growth rate on time or on the current
size of population should be emphasized. For instance, as is pointed out in [6], in the application
to tumour growth it considered more suggestive to relate the specific growth rate for a particular
tumour to its size. On the other hand, in the application to epidemiological data we wish to
compare model curves to given time series of data. Furthermore, we prefer a formulation that
allows one to include explicit time dependence of the incidence rate by external factors at a later
stage. One such external factor could be, for example, the seasonal variation of temperature. As
compromise between these different viewpoints, we have chosen the dependence f = f(t,C;0).
Finally, we mention that additional insight and comparison between different models can also
be achieved from considering the population size and its growth rate as separate state variables
and analyzing the fixed points and stability of the resulting dynamical system of two scalar
equations, as is done e.g. in [60]. For instance, the GGoM (2.6) can be written as the coupled
system C' = aC?, a’ = —ba with the initial conditions C'(0) = Cp, a(0) = r.

For the growth models summarized in Table 2.1, p = 0 corresponds to a constant incidence
over time, p = 1 corresponds to exponential growth, and any intermediate value 0 < p < 1 leads
to a model that describes initial sub-exponential growth dynamics [42,45,48,170]. In fact, in
prior work we have demonstrated that some epidemics are characterized by early slower-than-
exponential growth using flexible phenomenological models (see [45,170]).

Three of these models have an initial logistic growth because when p = 1 for the GLM and
RM, in other words the LM is recovered. In contrast, this is not the case for the GGoM. (The
RM and GLM show two forms of incorporating the parameter p to the LM model to obtain
the generalized growth form rC?(t).) We wish to measure how close the logistic models are
to each other and to the GGoM, and to assess whether two or three parameters are sufficient
to recover other dynamics. We recall the following explicit solutions. The solution of the LM
(2.1), (2.3) is given by

_ KC(0)exp(rt)
K + C(0)(exp(rt) — 1)’

O(t) (2.8)

that of the GoM (2.1), (2.4) (that is, the GGoM for p = 1) by

C(t) = C(0) exp((r/b) (1 — exp(—bt))), (2.9)



2.2. Distance between phenomenological growth models 37

while for the GGoM (2.1), (2.4) we get
C(t) = ((1 = p)(r/b) (1 — exp(=bt)) + C(0) )" (where 0 < p < 1), (2.10)
The solution of the RM (2.1), (2.5) is

KC(0)exp(rt)
(K7 + C(0)r(exp(prt) — 1))1/7"

C(t) = (2.11)
As is pointed out in [22], the GLM (2.1), (2.2) does not have a solution in closed algebraic
form for general values p € (0,1). (This point is also discussed in detail in [117]; the Piitter-
Bertalanffy growth equation studied in that paper includes (2.1), (2.2) as a special case.) For
the GLM we solve the initial-value problem (2.1) numerically whenever necessary.

Phenomenological growth models can capture epidemic growth patterns, through the rela-
tionship between the case incidence curve and the cumulative incidence curve. The integrated
version of (2.1), namely

C(t) = C(0) +/tf(T;C; O)dr, >0,

can be approximated by the following formula if we assume that values of the incidence function
f(t,C;©) are given at discrete times t = t, k = 1,...,n only:

k
O(tk) ~ C(O) + Z(tl - tl—l)f(th 07 @)7 k= ]-727 - N, 2('-0 = 07

=1

with ¢, € [0,7]. Thus, we may recover the cumulative curve ¢ — C(¢) in terms of tabulated
values of the incidence function f(t,C;0), and similarly we may approximate f(tx;C;0) in
terms of given discrete values C()) as follows:

C(ty) — C(tr-1)
ty — th—1

f(ty; ©) = , k=1,2,...,n, with f(to;C;0) = C(to). (2.12)

2.2.2 Measuring the distance between PGMs

To determine EDD(B — A), we start by defining S parameter sets ©;, j = 1,...,S for
model A for which we determine the incidence curves, that is, we compute the (exact or
numerical) solutions for the ODE (2.1) for model A for each parameter set O;, and these are
our datasets to fit model B. We fit model B to each of these curves by using @) different
initial parameter sets to execute a numerical program that applies a process of minimization to
estimate parameters of model B. These initial parameter sets, in turn, are created by using a
method of latin hypercube sampling that creates () random values within a defined range. For
instance, for the parameter K we create () = 10 values between 0 and 1000. Assume now that
Y, © = 1,...,n, are the points or data for each time t; of model A, and f(t;,C; @), are the
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Initial parameter sets to model B,
{@B,i}?:l

Fit with model B, using each ini-
tial parameter set {@Bﬂ-}?zl

Simulated Dataset gene-
rated with model A,
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for dataset fa(t,C;Os)

l

Obtain {f5(t,C;Op,i,5)} 2,
fits, with parameter es-
timations {©5,:,s}2

fa(t, C;0s)

To select the best fit to dataset,
calculate RMSEs for each fit
and take the smallest RMSE,
which will correspond to best
fit from model B to dataset

Figure 2.1: Process to fit the model B to dataset f4(t,C;Og) generated with model A.

values of fits obtained with model B, where © is the set of estimated parameters of model B.
Then we determine the root mean square error (RMSE)

RMSE := | - i(f(ti, C;0) —y,)"

n <
=1

to compute the distance between the data curve, tabulated at t1,...,t,, and a fit with model B
expressed by the values f(¢;,C;0),i=1,...,n. We select the best fit with the smallest RMSE
between the @ fits for each of the S data curves (see Figure 2.1), and then consider the mean
of the S best values of RSME as the distance from model B to model A. Besides, we will also
calculate the sum of squared errors (SSE) given by

o A 2

SSE =) (f(t:,C;0) — )",

i=1
because this quantity naturally arises in the context of least-squares methods. The necessary
computations are summarized in Algorithm 1 and in Figure 2.2.

2.2.3 Simulated Annealing method for parameter estimation

As we want know the distance between two PGMs, we need numerical methods to calcu-
late the fits from a model B to a model A and in some cases to determine solutions of the
ODEs. Then to achieve the best fit it is necessary to estimate parameters, for which we employ
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Algorithm 1: Calculating EDD(B — A)
Input:

e Parameter sets {O;},—1 ¢ of model A that define the incidence curves

.....

{fa(t,C;0;)} =15, t€]0,T]

(simulated data).

e Initial parameter sets {Op;}i—1. o of model B.

.....

e Sampling times ¢, k = 1,...,n at which the incidence curves (both of the simulated

data and the approximation) are evaluated.

for j =1to S do

i*(7) <1
for:=1,...,Q do
(1) Determine the vector of estimated parameters ©p; ; for the j-th data curve

based on the initial parameter vector ©p; by SimulatedAnnealing.

(2) Calculate

n

1 R
RMSE;; = n Z(fB(tm C; @Bm) — falty; C; @j)>2'

k=1

if RMSE;; < RMSE;-(;) ; then
() < i
end if
end for

end for
Output: the empirical directed distance from model B to model A,

S
1
EDD(B — A) ; RSME;. ;) ;-
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Select models A and B ]

Select S parameter sets
for model A and cal-

culate incidence curves

[ Select @ possible initial pa- }

rameter sets for model B

l

Fit each time series data ’

curve with each initial pa-
rameter set of model B

|

Calculate the RMSE between
each data curve and its fits

Select the best fit with the small-
est RMSE for each data curve

Calculate the mean of
the smallest RMSEs

l

{ The empirical directed dis- ’

tance from Model B to
Model A is equal to this mean

Figure 2.2: Step by step of measuring the empirical directed distance between two models.

the Simulated Annealing method to minimize the Euclidean distance between the curve from
model A and the fit with the estimation parameters of model B. The Simulated Annealing
(SA) method has been useful to solve optimization problems [18], in particular for parameter
estimation [1,50,128], as in our case, where the goal here is to minimize the function

n

0~ J(©) = | Y (f(tx; C;0) — datay, ),
k=1

being t — f(t,C;©) the incidence function of a PGM evaluated for a parameter vector © that
should satisfy © € S for some admissible set S compatible with the algebraic form of f for
n different time points ¢, where data,, correspond to data in time series. In our study, the
values {datas, }r—1, ., are the datasets generated by model A, and model B will define the
incidence function f and the set S. Hence, the optimization problem at hand can be defined
as follows:

find © € S such that J(0) = I@Ilelgl J(O). (2.13)

This problem is solved by employing the routines exposed in Appendix A.
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2.3 Application of the methodology

2.3.1 Parameters of specific phenomenological growth models

The methodology of Section 2.2.2 will allow us to determine the contribution of the scal-
ing parameter p and to observe the closeness between the dynamics of the models A and B,
where model A € {GLM, RM, GGoM} is used to generate simulated data or data curves and
model B € {LM, GLM,RM, GGoM}, B # A, is employed to calculate fits. To assess the con-
tribution of the parameter p, we select a set of values of p fairly close to 1 but leave other
parameters fixed (taking into account that the parameter b of the GGoM depends on the value
of p). Then, we analyze the distance of model B to curves generated with model A. For ex-
ample, if we consider B = LM and its fits to each data curve generated with model A, we can
calculate the RMSEs, and finally to have the distance from the LM to GLM, RM and GGoM
curves. Furthermore, we also calculate the distance from the GLM to RM and GGoM curves,
the RM to GLM and GGoM curves and finally from the GGoM m to GLM and RM curves.
These processes will be named Experiment 1, 2, 3, and 4, respectively. (All these distances are
to be understood in the sense of EDD, of course.)

For the experiments we consider the three parameters r, p, and K. To compare models
with equivalent parameters, we choose (as in |22, Sect. 1]) the following expressions for the
parameters b and r within the GGoM in terms of the parameter K and the initial value C(0):

e
r—1-99, (2.14)
B EE0 . o)
B r(1—p) . '
K7 — C(0)1= if0<p<l,

where the expression for p = 1 is the limit of that for 0 < p < 1, i.e.,

r : r(1—p)

) .
log(K/C(0)) ~ prip<t K17 — C(0)1—

Therefore, to standardize the analysis, we consider the parameter set © = (r,p, K) for all
models with K = 1000, C'(0) = 1, r determined by (2.14), and b calculated from (2.15) in
dependence of the value of the parameter p, which is allowed to assume one of the values

p € P :=1{1,0.995,0.99,0.98,0.95,0.85,0.8}.
Summarizing, we utilize the parameters

(r,p, K) = (0.999, p,1000) with p € P.
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Parameters for GGoM curves Parameters for RM curves Parameters for GLM curves

T b P r D K r P K
0.999 0.1446 1.000 0.999 1.000 1000 0.999 1.000 1000
0.999 0.1421 0.995 0.999 0.995 1000 0.999 0.995 1000
0.999 0.1397 0.990 0.999 0.990 1000 0.999 0.990 1000
0.999 0.1349 0.980 0.999 0.980 1000 0.999 0.980 1000
0.999 0.1211 0.950 0.999 0.950 1000 0.999 0.950 1000
0.999 0.0824 0.850 0.999 0.850 1000 0.999 0.850 1000
0.999 0.0670 0.800 0.999 0.800 1000 0.999 0.800 1000

Table 2.2: Summary of parameters for each model curve

These values are used directly for the GLM and RM, while for the GGoM we employ the co-
rresponding parameters (r,p,b) = (0.999, p, b) with b = 0.1446 if p = 1 and b = 0.1421, 0.1397,
0.1349, 0.1211, 0.0824, and 0.0670 for p = 0.995, 0.99, 0.98, 0.95, 0.85, and 0.8, respectively.

Curves GGoM Curves GLM Curves RM
25 L 60 L 60 Parame:terp ]
0.995
0.99
0.98
0.8
8 8 40 8401
c 15+ c c
S 3 S
g g 30+ g 30+
—_— 10 L —_— —_—
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51 10} ] 10}
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0 20 40 60 0 20 40 0 5 10 15
Time Time Time

Figure 2.3: Data curves for each growth model.

These parameters, listed also in Table 2.2, produce the data curves shown in Figure 2.3.
Roughly speaking, these curves illustrate that the role of the parameter p within the GGoM
and GLM is to describe the initial growth of the incidence curve, while within the RM the initial
phase of the curves, where values of C'(t) are still fairly small, is almost the same for all p-values.
Furthermore, we see that with decreasing values of p the extremal value (peak) of the incidence
curves of the GGoM and GLM decreases rapidly, while that of the RM model decreases only
slowly. In addition, the GGoM and GLM exhibit an appreciable shift of the timing of that
maximum (i.e., the peak time increases significantly with decreasing p) while this effect is not
much appreciable for the RM (with the chosen parameters). (For the GGoM and RM the
respective closed formulas for C(t), (2.10) and (2.11), may be utilized and differentiated to
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Model B
LM O =(K) GLM © = (r,p, K) RM © = (r,p, K) GGoM © = (r,b,p)
(0,4) x (0,1000]  (0,4) x (0,1] x (0,1000] (0,4) x (0,1] x (0,1000] (0,4) x (0,1] x (0,1]

Table 2.3: Initial parameter set for each model B

Model A . .
Model B GLM curves RM curves GGoM curves

LM (r, K) [0.5,1.1] x (700, 1010) [0.9,1.1] x (900, 1010) [0.2,0.5] x [400, 800]

[0.8,1] x [0.2, 1] x [500, 1010),
0.99 < p<1;
GLM (r, p, K) [0.5,1.5] x [0.4,0.85] x [800,1010), [1.5,1.6] X [0.5,0.7] X [800, 1000]
0.95 < p < 0.99;
[0.5,1] x [0.4,0.999] x [900, 1010),
0.8 <p<0.95

RM (r, p, K) [0.7,0.99] x [0.2,0.999] x [800, 1010) [1.8,1.9] x [0.05,0.08] x [800, 1000],
095<p<1

[1.8,2] x [0.05,0.08] x [800, 1010),
0.8<p<0.25

GGoM (r, b, p) (0,3) x (0,1] x (0,1] (0,3) x (0,1] x (0,1]

Table 2.4: Solution spaces for the parameter estimation with each model B and data curves.

discuss all these properties in explicit form, see [22].)

To help the fits, we generate the data curves from model A, with evaluations for every
0 < h < 1 time units to have more points or data for fit model B in each case, i.e. we select
t, = kh, k = 0,1,2,3,...,n. For example, we use temporal meshwidth of h = 0.25 for the
GLM curves.

2.3.2 Application of the Simulated Annealing (SA) method

The SA method will be used to estimate parameters, as presented in appendix A, where
we will use the Matlab function SIMULANNEALBND to implement the SA algorithm. The
objective function to minimize is (2.13) for parameter vectors © and functions f that depend
on the choice of model B in each case. For simplicity, the application of SA method, we will
use the solutions from model B, where by utilizing (2.12), we could recover f in terms of C.

For example, the function f within the objective function for B = LM is calculated by using
the solution C' to the LM presented in (2.8), i.e. we use the explicit solution of this model, as
we also do for the RM with (2.11) and the GGoM with (2.9) and (2.10) for the respective cases
p=1and 0 < p < 1. However, since the GLM does not have a solution in closed algebraic
form we employ a numerical approximation to solve the initial value problem to the GLM, as
is detailed in Appendix A.

Then, once the form of the algebraic model under study is given, we need to define the solution
spaces for each model which depend on the role of each parameter within each model function.
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Error RMSE to each fit with model B
Model B Model A p=1 p=0.99 p=0.99 p=0.98 p=0.95 p=0.85 p=0.8 EDD(B — A)

GGoM  5.2319  5.1864 5.1430  5.1163  5.0480  4.7069  4.4697 5.1163
LM GLM  0.1900  0.2455 0.4625 0.8184 1.7021  2.6900 2.6570 0.8184
RM 0.0568  0.0685 0.0955 0.1706  0.4099  1.1989 1.5615 0.1706

GGoM  0.6827  0.6804 0.7055  0.7668  0.9285  1.3375 1.4244 0.7668

M

R GLM  0.0037  0.0381 0.0741  0.1347 0.2638 0.3397 0.3066 0.1347

GLM GGoM 04712  0.4757 0.4556  0.4481 0.4284 0.3513 0.3015 0.4481
RM 0.0069  0.1536 0.0605  0.1993  0.2477  0.7268 1.6235 0.1993

GGoM GLM  12.1578 11.6221 11.1988 10.2038 7.8028  3.4788 1.8623 10.2038

RM 12.1667 12.1529 12.0017 12.0359 11.4630 10.1060 9.3656 12.0017

Table 2.5: RSME for each data curve, where columns 3 to 9 correspond to the error for the
indicated value of p, and column 10 shows the mean RMSE, that is, EDD(B — A).

Here the quantities K, C(0), and p are fixed and the expressions for the parameters r and b are
given by (2.14) and (2.15), respectively. To search the solution spaces for each parameter, we
consider the conditions summarized in Table 2.1 to define the sets specified in Table 2.3, where
we select the initial parameter to run the SA algorithm. This algorithm provides a solution
that varies from run to run since the algorithm consists in a random process that utilizes a
probability criterion to select the optimal value. However, if we apply the SA algorithm to
(Q possible initial parameter sets, then with these solutions we can reduce or limit the solution
space between the maximum and the minimum best parameters shown for the run. This new
solution space helps us to control results and improve the solution and the calculation time.
This process follows the idea shown in [128] concerning double-cycle application of SA. The
solution spaces that result from the fits for each model B with each data curve are summarized
in Table 2.4.
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2.3.3 Experiment 1: empirical directed distances from the logistic
model (LM) to other models
Fit with LM model to GGoM curves
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Figure 2.4: Experiment 1: results of fits of the LM (model B) to the curves of data generated
by the GGoM (top row), GLM (middle row), and GLM (bottom row), for the indicated values
of p.
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Parameter Estimation for LM

CURVES with GGoM curves with GLM curves with RM curves

with p r K r K r K
1 0.4193 621.2245 1.0017 1007.1734 1.0012 1001.6787
0.995 0.4149  617.9446 0.9836 997.3534 0.9999 998.2173
0.99 0.4105 617.1784 0.9662 992.6324 0.9989  999.1522
0.98 0.4018 610.0832 0.9310 969.1496 0.9965 996.8109
0.95 0.3756  598.7651 0.8341 941.6386 0.9888  987.6975
0.85 0.2931 554.6741 0.5643 806.5594 0.9600 959.6222
0.8 0.2550  535.9005 0.4597 754.1879 0.9433  946.7694

Table 2.6: Experiment 1: parameter estimation for LM with GGoM, GLM and RM data curves.

Figure 2.5: Experiment 1: illustrative diagram for the empirical directed distances EDD(LM —
GGoM), EDD(LM — RM), and EDD(LM — GLM) based on data curves.

With the best set of initial parameters and the best parameter estimation, we have Figure 2.4
with the best fits for the LM, where we can see that the LM is closer to the RM curves, since
it captures this dynamics better than for that of the other models. On the other hand, LM is
further from GGoM curves, this is due to the long time defined for GGoM data, that the LM
exceeds the maximum given by it. A similar situation occurs when the maximum decreases
for GLM curves and time increases. The RMSEs calculated to measure the EDD are shown in
Table 2.5 and Figure 2.5. It turns out that that when the value of p is decreased for the GLM
and RM, the error increases more for the GLM than for the RM while a different situation
occurs with the GGoM, since the error decreases when p is decreased, but this change is slower
than the increase of the error for the GLM and RM. The increase of the RMSE for data
generated by the LM is expected because when p = 1, the dynamics of the LM and that of
these models should be the same, where in Table 2.6 (first row) we can see that the parameter
estimation for GLM and RM data curves with p = 1 are closer to real parameters, i.e., to
© = (r=0.999,p = 1, K = 1000). Another observation about results for parameter estimation
summarized in Table 2.6 is that the growth rate r of the LM for data curves generated by the
GGoM is naturally smaller than the growth rate for data generated by the LM, because the
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Fit with RM model to GGoM curves
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Figure 2.6: Experiment 2: results of fits of the RM (model B) to the curves of data generated
by the GGoM (top row) and the GLM (bottom row), for the indicated values of p.

GGoM has a slower increase, where for the same reason for GLM data with p = 0.8 the growth
rate decreases to 0.4597.

2.3.4 Experiment 2: empirical directed distances from the Richards
model (RM) to other models

We follow the structure of presentation of results of Experiment 1. In Figure 2.6 we can
observe that the RM (in the role of model B) is closer to the GLM than to the GGoM,
where the fits captures almost all the dynamics presented for the GLM data curves. Now
with the RMSE calculated, we have effectively the smallest errors for the fit to GLM data,
where in Table 2.5 we see that the RMSE increases faster with GGoM data than with GLM
data. Besides, the RMSEs for GLM curves are less than 0.5, evidencing relative closeness
between the logistic models. Concerning the parameter estimation (Table 2.7), we have a good
approximation between the parameters for GLM when p = 1, where the estimated parameter p
varies more than the growth rate r to capture the decrease of the maximum value, evidencing
a good contribution of this parameter. On the other hand the variation of the parameter r is
smaller than that of p and K when the RM is used to fit the GGoM curves.
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Parameter Estimation for RM

CURVES with GGoM curves with GLM curves

with p r P K r D K
1 1.9998 0.0800 954.1139 0.9990 0.9999 1000.0513
0.995 1.9999 0.0798 957.9978 0.9876 0.9732 999.5539
0.99 1.9973 0.0789 953.8977 0.9763 0.9476 999.4866
0.98 1.9912 0.0771 944.5345 0.9547 0.8976 997.8995
0.95 1.9431 0.0740 937.1508 0.9000 0.7532 1000.3445
0.85 1.8952 0.0593 892.6791 0.8000 0.4048 998.1613
0.8 1.9238 0.0500 869.3741 0.8551 0.2612 1003.6135

48

Table 2.7: Experiment 2: parameter estimation for RM with GGoM and GLM data curves.

2.3.5 Experiment 3: empirical directed distances from the generalized
logistic model (GLM) to other models

Fit with GLM model to GGoM curves
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Figure 2.7: Experiment 3: results of fits of the GLM (model B) to the curves of data generated

by the GGoM (top row) and the RM (bottom row), for the indicated values of p.
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Parameter Estimation for GLM

CURVES with GGoM curves with RM curves
with p r P K r D K
1 1.5402 0.6744 998.0430 0.9994 0.9999 1000.1965

0.995 1.5293 0.6734 986.8504 1.0000 0.9999 999.3734
0.99 1.5054 0.6743 989.5241 1.0000 0.9991 1000.4114
0.98 1.5221 0.6670 992.3809 1.0000 0.9984 1003.5106
0.95 1.5278 0.6508 992.7939 1.0000 0.9961 992.1099
0.85 1.5204 0.5962 994.5254 1.0000 0.9876 971.7100
0.8 1.5112 0.5678 989.0751 0.9888 0.9850 915.3278

Table 2.8: Experiment 3: parameter estimation for GLM with GGoM and RM data curves.

In Figure 2.7, we can see a performance closer to both dynamics with GLM, where this
model captures fairly well the maximum value and the length time. Observing the RMSEs
(2.5), we can see that these are smalller than 1.6, as expected when we consider the fits shown
in Figure 2.7. Now, analyzing Table 2.5 we observe that the errors increase faster for RM
(when p decreases) than with GGoM, where the errors decrease slowly when p decreases. This
behavior may be due to the dynamics of the GLM, where if the maximum value decreases,
the time length increases, but for the RM data curves, the time length and maximum value
are closer to each other. About parameter estimation (see Table 2.8), we have that for the
parameter set with the RM curves the values are closer to parameters of the GLM with p = 1,
i.e, © =(0.999,1,1000). This, because, the RM curves vary little of the RM initial curve with
p = 1. The previous result contrasts with the fit for GGoM curves, because when the parameter
p varies for GGoM curves, the maximum value decreases and the time length increases, where
with the GGoM the length time is the same when the parameter p decreases. For this reason
the parameter estimation for the GGoM curves varies the parameter p more than others.
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Parameter estimation for GGoM

CURVES with GLM curves with RM curves

with p r b P r b P
1 2.3207 0.3237 1.0000 2.3516 0.3279 1.0000
0.995 2.3068 0.3220 1.0000 2.2635 0.3159 1.0000
0.99 2.2932 0.3201 1.0000 2.2761 0.3178 1.0000
0.98 2.1953 0.3068 1.0000 2.4303 0.3326 0.9948
0.95 1.9338 0.2712 1.0000 2.2822 0.3187 1.0000
0.85 1.2596 0.1678 0.9823 2.2986 0.3214 1.0000
0.8 1.2670 0.1500 0.9496 2.2716 0.3180 1.0000

20

Table 2.9: Experiment 4: parameter estimation for GGoM with GLM and RM data curves.

2.3.6 Experiment 4: empirical directed distances from the generalized
Gompertz model (GGoM) to other models

Fit with GGoM model to RM curves
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Figure 2.8: Experiment 4: results of fits of the GGoM (model B) to the curves of data generated

by the RM (top row) and the GLM (bottom row), for the indicated values of p.
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For this experiment, we consider the GGoM model as model B, and the models A are RM
and GLM, with the parameters summarized in Table 2.2. In Figure 2.8 we can see the fits for
RM and GLM data curves. This figure indicates that the GGoM does not capture the dynamics
of the logistic models, where the maximum values are very large for the period of time defined
in these data curves. The RMSEs in Table 2.5 are very large if compared with the previous
experiments. The errors decrease when the parameter p is decreased, but this situation is due
to approximation between the maximum values of the data curves and the maximum value that
the GGoM can reach with the given period of time.

Figure 2.9: Comparative graph for each EDD and model.

Finally, the parameter estimation obtained for each fit is summarized in Table 2.9, where we
observe that the parameter p is almost fixed. Being for the RM curves the other parameters
almost equally fixed, this is due to the slow decrease for the maximum value. This contrasts
with the result for the GLM, where the maximum value decreases faster than for the RM.
For this reason the parameters r and b are varying. Summarizing, we have in Figure 2.9 the
distances presented among the models studied, where each arrow indicates the direction of the
distance from model B to model A.
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Influenza Ebola COVID-19
Model Interpolation No interpolation Interpolation No interpolation Interpolation No interpolation
LM 28.4864 55.5662 44.5472 90.0674 59.6479 108.9944
GLM 26.2694 49.7601 24.4430 47.8958 21.2940 45.4623
GGoM 52.7972 113.9227 51.8345 94.6347 174.9620 356.6672
RM 29.1628 55.8399 26.2160 53.3493 54.9620 109.9705

Table 2.10: Application to real data: RSME for different time refinements.

Influenza Ebola COVID-19
Model Interpolation
LM (0.5561,2467.9) (0.3141,8988.2) (0.3413,9074.6586)

GLM (0.5964,1,2228.8) (0.7481,0.8546,10989) (3.6232,0.6869, 12963.9057)
GGoM (1.244,0.1809,1) (1.0000,0.0897,0.9487) (5.7818,0.0989,0.6709)
RM  (0.5603,1,2655.7) (0.4189,0.4273,11057) (0.4188,0.6302,9196.4353)

No interpolation

LM (0.5565,2475.9) (0.3127,8327.7) (0.3426,9844.7509)
GLM  (0.6003,1,2363.1) (0.7640,0.8515,11212) (2.7782,0.7213,12316.4258)
GGoM (1.2434,0.1800,1) (0.8134,0.0968,1.0000)  (5.0086,0.1020,0.6931)
RM  (0.55451,2392.5) (0.4326,0.4000,11698) (0.4133,0.6472,9145.3252)

Table 2.11: Application to real data: parameter estimation for fit with real data

2.4 Examples: application to real data
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Figure 2.10: Application to real data: bar charts for the RMSE for each real data and refinement
time.
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Figure 2.11: Application to raw data: fits to influenza, Ebola and COVID-19 data.
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Figure 2.12: Application to interpolated data: fits to influenza, Ebola and COVID-19 data.

In order to see the best performance evidenced by the GLM model when capturing the other

dynamics studied in the experiments performed, we present three examples with real data.

In this case, we consider the data of weekly cases of influenza in Chile (24 data points in
total) produced between autumn and winter of 2009 [59], Ebola (51 data points in total) in
Sierra Leone dating from 2014 [118] and recent outbreak of COVID-19 [53] presented in various
provinces of China (excluding Hubei province) (52 data points in total). Since we consider real
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data, for the application of the procedure of Section 2.3 we replace model A by real data but
keep employing the same methodology of Section 2.3 with model B, where we also create a
refinement of the real data by interpolation from the cumulative curve C', achieving for these
examples twice the original number of points. From the RMSEs calculated and registered in
Table 2.10 and the bar chart of Figure 2.10 we observe that the RMSEs for the non-interpolated
data are close to the double from the RMSEs for the interpolated data, where effectively GLM
meets be the best model with the smaller RMSE to the three examples.

From the figures of the fits, with and without interpolation (see Figures 2.11 and 2.12)
for three examples, we can observe that the refinement from real data does not have a great
impact on the performance of the GGoM (red), but in the Ebola case this model for early
growth produces a better fit than others. For the fits made with the LM, we can observe that
for the case of influenza the refinement leaves the fit similar to a fit without interpolation where
for this case, the LM is better than the RM. A different situation occurs for the Ebola and
COVID-19 cases where for Ebola the maximum value for the incidence curve increases and the
cumulative curve increases close to real cumulative curve, though this is not better than the
fits by the GLM and the RM. For COVID-19 the LM decreases the maximum value for the
incidence curve and the cumulative curve decreases close to the cumulative curve of the RM,
although this is not better than the fits by the GLM and RM. Now if we observe the fits with
the RM and the GLM, we see that their fits though very similar for Ebola data, the GLM fits
are better where the RMSE is smaller. On the other hand, with influenza data, we can see that
for RM and GLM models, the curve with GLM is above the RM curve, staying in the middle
the LM curve, and the situation changes when the data are interpolated, where the RM curve
turns out to be above the GLM and LM curves, but the GLM produces the best fit with the
smallest RMSE. In the case of COVID-19, the fits with the GLM with and without interpolated
data are very close. A different situation occurs with the RM where the fits to the interpolated
and non-interpolated data are below the data and therefore with RMSEs bigger than those for
the GLM. Furthermore, Table 2.11 indicates that for the parameter estimation the values are
very close between the real data and interpolated data, where for the LM this shows smaller
variations and the GGoM model shows more variations with Ebola data.
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Influenza Ebola COVID-19
Results Interpolation
RMSE 17.2332 26.2223 46, 9405
Parameter
Estimation (0.4883, 3,1993.2) (0.4173,0.4308,11036)  (0.4551,0.5408, 9895.1873)
No interpolation
RMSE 28.7735 51.6678
Parameter
Estimation (0.49,2.6641,2068.1)

100, 3531
(0.4228,0.4191,11182)

(0.4350, 0.5877, 9556.1028)
Table 2.12: Application to real data: results for different time refinements and real data for
RM model with p > 1.
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Figure 2.13: Application to real data: fits with Richards Model (p > 1) for influenza data.



CHAPTER 3

Modeling and forecasting of the transmission dynamics of
the coronavirus 2019 pandemic in Colombia during
2020-2021

This chapter contributes to the study of transmission dynamics of SARS-Cov-2 in Colom-
bia, using phenomenological growth models (PGMs) with case incidence and mortality
data to estimate the potential transmission parameters and perform short-term forecasts
of this epidemic’s trajectory in Colombia. This chapter concentrates on the contributions
presented in the work [150], which also gathers the contributions of other colleagues.

3.1 Introduction

We recall that the coronavirus disease 2019 (COVID-19) pandemic continues to threaten
the world [125]. The non-pharmaceutical public health measures, including social distanc-
ing mandates and intermittent lockdowns, have been the principal strategies applied to fight
COVID-19 [140]. Moreover, the rapid evolution of the SARS-CoV-2 virus contribute to the
emergence of new variants amidst vaccination campaigns globally, making it more unclear how
the COVID-19 pandemic will unfold [24,138]. Therefore, the mortality and morbidity of the
COVID-19 pandemic continue to overwhelm the health care systems of many nations, including
the United States, Colombia, Mexico, Brazil, and Argentina in the Americas [64]

The pandemic emergency response, which includes the implementation and lifting of dy-
namic lockdowns [137], social distancing, mask mandates, population testing, and provision
of vaccinations, has varied across countries in the same region and different cities within the
same country [146]|. For example, in Latin America, which is one of the epicenters of the pan-
demic [167], the evolution of the pandemic and the quality of public health responses have
been different in each country. Colombia, despite aiming to contain virus transmission in the
country, became the second country in Latin America and eighth globally to reach one million
cases by the end of October 2020 [123]. Colombia has also seen the fastest increase in total

o6
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COVID-19 associated deaths compared to other Latin American countries, as reported by the
end of the year 2020 [9].

Since the first confirmed case on March 6, 2020, Colombia has observed three epidemic peaks.
On March 12, 2020 a national emergency status was declared, and educational institutions were
closed by March 16, 2020, followed by the closure of the country’s borders the next day [57,167].

Rappidly on March 23, 2020, as cases continued to increase rapidly, the domestic and inter-
national flights were suspended, and the next day, and a national quarantine was declared, to
limit virus transmission within the country. Meanwhile, a phased reopening of the economy was
initiated as early as April 27, 2020, under strict protocols to support the country’s declining
economy |[4].

The evolution of the pandemic in Colombia has justified the five extensions of the mandatory
quarantine that lasted until August 31, 2020 [160]. At this point, the country transitioned into
a period of selective isolation with responsible individual distancing as the daily incidence in the
country’s main cities, including Bogota, Medellin, Cali, Bucaramanga, and Pasto, leveled off
and eventually leaned towards a downward trend [52,99]. Moreover, Barranquilla, Cartagena,
Leticia, and Quibdé had overcome the worst part of the first wave by August 25, 2020 [99].
The chosen selective isolation strategy prioritized tracing suspected cases, those with infection,
and their contacts while reactivating the social and economic life of the country. As the cases
continued to increase in the subsequent months, the government imposed and lifted dynamic
lockdowns in multiple cities. By the end of the year 2020, COVID-19 cases were mainly concen-
trated in Bogotd, the capital city of Colombia, followed by the Antioquia and Valle del Cauca
departments. [52].

The government announced a mass vaccination strategy that began on February 20, 2021
[155], and on February 25, 2021, an extension until May 31, 2021, of the national health
emergency was declared, [122]. From March to June 2021, Colombia experienced a massive
third wave of the COVID-19 pandemic, which evolved into a two-stage peak-within-a -peak
surge [143]. The month of May 2021 was reported to be the deadliest month resulting in an
average of 20000 cases and 500 deaths per day [83]. Bogota, Antioquia, and Valle del Cauca
have been the hardest-hit areas in Colombia [80] which is evidence that the impact of the
COVID-19 pandemic was not uniform across the entire country.

Colombia is one of the first countries in Latin America to offer diagnostic tests for COVID-
19 [51]; the testing and vaccination rate for Colombians remains low [95|, with 0.79 tests
per 1000 people per day and 0.39 vaccine doses administered per 100 people as of October
31, 2021. [186]. The factors contributing to the current COVID-19 outbreak are countless.
However, three different events have particularly interacted synergistically to add to the com-
plexity of the pandemic in Colombia. These include the COVID-19 outbreaks in prisons and
nursing homes that affected the vulnerable communities of the society [72,124] and the April
2021 Colombian protests provoked by the government policy proposals [143]. The COVID-19
pandemic severely impacted the Colombian prisons in Cali, Villavicencio, and Bogota due to
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overcrowding, inadequate medical supplies, and unhygienic conditions of facilities, which led to
many infected inmates [72]

The COVID-19 pandemic in Colombia presents complex risk dynamics of SARS-CoV-2 trans-
mission with a simultaneous interplay of epidemiological, behavioral, and political factors.
Forecasting the COVID-19 trajectory can help understand the disease trends and estimate
its potential burden. As the epidemic trajectory of the COVID-19 pandemic continues to un-
fold, we forecast the COVID-19 course in near-real-time utilizing the mathematical models
that have been validated for previous infectious disease outbreaks such as Ebola, Zika, and the
COVID-19 pandemic [36,119,151,153]. Moreover, we specifically investigate the transmission
dynamics of SARS-CoV-2 at the national and regional levels, using the compute of the effective
reproduction number, which allows us to observe the impact of the different control measures
and social dynamics that occurred in Colombia during the 2020 and 2021.

3.2 Phenomenological Growth Models (PGMs)

In this contribution we highlight the generalized growth model (GGM), the generalized lo-
gistic growth model (GLM), Richards model (RM) and the novel sub-epidemic model. The
first two models incoporate a parameter p that indicates the kind of scaling of growth. These
models can be describe as follows;

The generalized growth model (GGM) relieson two parameters to characterize the early
ascending phase of an epidemic where the model is given by the differential equation

dC(t)
——= =C'(t) = rC(t)?,
=0 = o)
where t is the time, C’ describes the incidence curve over time, C' is the cumulative number
of cases at time while r > 0 indicates the intrinsic growth rate and p € [0, 1] is the modulating
deceleration of growth parameter, where p = 0 correspond to constant incidence over time,
p = 1 correspond to the exponential growth and the model shows sub-exponential growth

dynamics if p is in the range 0 < p < 1 [32,170].

Similarly, the generalized logistic growth model (GLM) [142] incorporates the parameter p €
[0, 1] to displays a range of epidemic growth patterns including the polynomial and exponental
growth patterns. But GLM is defined by three parameters, the intrinsic growth rate r > 0, the
growth scaling parameter, (p € [0, 1]) and the final epidemic size Ky. During the initial stages
of disease propagation, when C(t) < Ky and p = 1 this model assumes the simple logistic
growth model. The following differential equation gives the GLM model

dc (. C)
(O =rC() (1 - 70) . (3.1)

where C(t) and C’(t) have the same meaning as for the GGM.
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The well-known Richards model (RM) [127] is a extension of the logistic model that relies on
three parameters, the growth rate, » > 0, the final epidemic size, K, and the scaling parameter,
a, which measures the deviation from the symmetric S- shaped dynamics shown by the simple
logistic growth curve [16,32,127,180]. The Richards model is given by the differential equation:

0= enfi- ()]

being C’(t) like in the previous models. We remark that the Richards growth model has the
explicit solution 2.11,

KoC(0) exp(rt)
(K¢ + C*(0)(exp(art) — 1))V’

Ct) =

while the GLM does not admit a close-form solution. For a unified treatment of all phe-
nomenological growth models (PGMs), we always refer to the corresponding differential equa-
tion in each case irrespective of the existence of a closed-form solution. Details are provided in
a prior study [16].

Finally, the sub-epidemic model [44] is based on the premise that various profiles of overlap-
ping sub-epidemics shape the aggregated reported epidemic wave. In particular, this modeling
approach supports complex temporal dynamic patterns, such as oscillating dynamics leading to
damped oscillations or endemic states. This model characterizes each group sub-epidemic by
a three-parameter generalized logistic growth model as explained above and given in equation
3.1.

An epidemic wave comprising of n overlapping sub-epidemics is modeled using a system of
coupled differential equations, as follows,

dC;(t) P 2
5= rAi (1) Ci(t) (1_ K; )

where C;(t) describes the cumulative cases for i-th sub-epidemic, and K is the size of sub-
epidemic ¢ = 1....n. Parameters r and p are the same across the sub-epidemics. Therefore,
when n =1 and p = 1, the sub-epidemic model becomes the simple logistic model. A;(t) is an
indicator variable that models the onset timing of (i + 1)-th sub-epidemic, making sure that
sub-epidemics comprising an epidemic wave follow a regular structure.

Therefore,

17 Ol(t) > Othr .
A (t) = =1,2,3,... 2
i () { 0, Otherwise i=123,...n (3:2)

with 1 < Cyp,. < Ko and A; (t) = 1 for the first sub-epidemic.

Moreover, for the subsequently occurring sub-epidemics, the size of i-th sub-epidemic (K;)
declines exponentially at a rate ¢, i.e.,

K; = Kyexp(—q(i — 1)),
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Growth model Parameters

Generalized growth model (GGM) O = {v) =r,9 =p}

Generalized Logistic growth model (GLM) © = {0, = r,¥s = p, V3 = Ky}

Richards model (RM) O ={d =r1y=a,93 = Ky}

Sub-epidemic model O ={0 =719y =p, V3 = Ko, ¥y = q,95 = Cypy-}

Table 3.1: Summary of information about models and parameters. Being, r,p,q, Ko > 0, p €
[0,1] and 1 < Cyp,, < K.

with K the initial sub-epidemic. The exponential decline in the size of the i-th sub-epidemic
can occur due to multiple factors, including the effect of interventions, changes in disease
transmission dependent on seasonality and behavior changes [44].

These models have been applied to various infectious diseases including SARS, foot and
mouth disease, Ebola [22, 44, 142] and the current COVID-19 outbreak |16, 109, 149]. For
our study we utilize these PGMs to fit data and to generate short-term (i.e., 30-day ahead)
forecasts for Colombia. The forecasts obtained from these dynamic growth models can assess
the potential scope of the pandemic in near real-time, provide insights on the contribution
of disease transmission pathways, predict the impact of control interventions and evaluate
optimal resource allocation to inform public health policies. The following section summarize
the material and methods used to study the COVID-19 epidemic in Colombia, such as the data,
the performance metrics, the calibration process, among other topics.

3.3 Materials and methods

To understand the transmission dynamics of COVID-19 in Colombia, we need time series
data, we herein employ the daily incidence case and death data. Adittionally, we will apply
the models described in Section 3.2 to fit and calibrate regional and national data in different
periods of the epidemic. Then with these results, we evaluate the best fits and diverse short-
term forecasts generated with the same models using the performance metrics that will be
defined in this section, together with the methodology of fitting, calibration, and forecasting.

3.3.1 Data

We wish to obtain information about the effectiveness of intervention strategies applied in
Colombia and the effect of other social dynamics. Then, we decided to use two types of data, the
case incidence data and mortality data, both retrieved from the Colombian Ministery of Health
as of October 31, 2021 [52]. Specifically, the case incidence data based on symptom onset date
is used to generate the epidemic curve, the short-term forecasts, and estimate the national and
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Number Department v
1 San Andrés y Providencia

Atlantico

3 |Bolivar

4  |Cesar

5 |Cdrdoba

6 La Guajira

7

8

Legend

[ Andean_Region
[ Caribbean_Region
[ Amazon_Region
I Pacific_Region
[ Orinoquia_Region

Magdalena
Sucre

9  |Antioguia

10 |Boyaca

11  |Caldas

12 [Cauca

13 |Cundinamarca
14 |Huila

15 |Norte de Santander
16 |Quindio

17 |Risaralda

18 |Bogota DC
19 |Santander
20 [Tolima

21 [Chocd

22 |Narifio

23 |Valle del Cauca
24 |Arauca

25 |Casanare
26 |Meta

27 |Vichada
28 |Amazonas
29 [Caqueta
30 |Guania

31 |Guaviare
32  |Putumayo
33 |Vaupés

2m A

Figure 3.1: Geographical Colombia distribution consists of 32 departments and a capital dis-
trict, listed and referenced with a number on the Colombian map. Additionally, the departments
from each Colombia region are identified with colors. Map edited by the author and used as Sup-
porting information of work [150] https://doi.org/10.1371/journal.pntd.0010228.s005.

regional reproduction numbers. Additionally, the mortality data based on the date of death is
used to generate a national short-term forecast and estimate the national reproduction number.
Details of the geographical distribution of the Colombian regions see the map in Figure 3.1.

3.3.2 Performance metrics

With the performance metrics, we can quantify the error of the model fit to the data, such
as in mentioned in [89] and is applied in [32]. Then we incorporate five performance metrics to
assess the quality of our model fit and the 30-day ahead short-term forecasts. These are the
mean absolute error (MAE), the root mean squared error (RMSE), the coverage of the 95%
prediction intervals (95% PI), the mean interval score (MIS), and the weighted score (WIS)
(more details see [76]). Below is a summary of each metric.

The root mean squared error (RMSE) and the mean absolute error (MAE) assess the average
deviations of the model fit to the observed data. The root mean squared error (RMSE) is given


https://doi.org/10.1371/journal.pntd.0010228.s005

3.3. Materials and methods 62

by

n

RMSE = (f(t, é) —Ui,)?,

=1

SR

and the mean absolute error (MAE) is given by

1 — .
MAE = - E | f(t:,©) — ;|- (3.3)
=1

In both these cases equations O s the set of parameter estimated, f(t;, é) denotes the best-fit
model, and y;, (i = 1,...,n) is the time series of cases by date of onset, t; is the time stamp
and n is the total number of data points, for the calibration period, and for the forecasting
period, n = 30 for the 30-day ahead short-term forecast.

Moreover, to assess the model uncertainty and performance of prediction interval, we use
the coverage of the 95% prediction intervals (95% PI), the mean interval score (MIS), and the
weighted score (WIS). The prediction coverage is defined as the proportion of observations that
fall within 95% PI, and it is calculated as,

1 n
PI coverage = - ;I {ye, > Ly, N yy, < Uy, }

where v, are the case incidence data,L;, and Uy, are the lower and upper bounds of the 95%
PIs, respectively, n is the length of the period, and I is an indicator variable that equals 1 if
value of y;, is in the specified interval and 0 otherwise

The MIS addresses the width of the PI as well as the coverage, and it is given by,

n

1 2 2
MIS = — Uy, — Ly,) + —=(Lt,—ye, ) I 1y, < L, + ——= (U, —ye,) Ly, > Uy},
n i21< t; t) 0‘05( t—Ye) L {w, 6} 0.05 (Ut = ye) L {ys, 6}
in this equation L, U;,, yi,, n and I are as specified above for PI coverage. Therefore, if the PI
coverage is 1, the MIS is the average width of the interval across each time point. For two models
that have an equivalent PI coverage, a lower value of MIS indicates narrower intervals [76].

Finally, the Weighted interval score (WIS) is a proper score that provides quantiles of predic-
tive forecast distribution by combining a set of interval scores (IS) for probabilistic forecasts.
An interval score is simple proper score requires only a central (1—a) x 100% prediction interval
(PI) [76] and is described as

ISa(Fyy) = (= 1) + (1= 9)I (g < 1)+ = (5~ u) Iy > u)

where I refers to the indicator function, meaning that I (y < 1) = 1 if y < [ and 0 otherwise.
The terms [ and u represent the («/2) and (1 — «/2) quantiles of F'. The IS consists of three
distinct quantities,
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1. The sharpness of I, given by the width u — [ of the central (1 — «)P1I.

2. A penalty term 2(I —y) I(y < 1) for the observations that fall below the lower end point
[ of the (1 — a) x 100%PI. This penalty terms directly proportional to the distance
betweem the lower end [ of the PI and y. The stregth of the penalty depends on the level
a.

3. An analogous penalty term 2(I — u) I(y > l) for all the observations that fall above the

upper end u of the PI.

To provide more detailed and accurate information on the entire predictive distribution, we
report several central Pls at different intervals (1 — ;) < (1 —ag) < --- < (1 — ay) along with
the predictive median, m, which can be seen as a central prediction interval at level 1 —ay — 0.
The WIS as a particular linear combination of K intervals scores is defined as follows,

K
1
WIS&Q:K(Fa y) = K—-f-l (w0|y - m| + Z ('U)k[Sak(F, y))) )

2 k=1

where w, = % for k =1,2,..., K, and wy = % Hence, WIS can be interpreted as a measure
of how close the entire distribution is to the observation, in units on the scale of the observed
data [12,56].

3.3.3 Model calibration and forecasting approach

We utilize the national and regional level case incidence data and national level mortality
data to obtain the best-fits using each model detailed in Section 3.2. Specifically, each forecast
is fitted to the daily case counts based on the dates of symptom onset and daily death counts
based on the date of death between July 4, 2021 and October 1, 2021 (90 days calibration
period) to conduct a 30-day ahead short-term forecast for each model. The data from October
2, 2020, to October 31, 2021, is utilized to assess the performance of our 30-day ahead short-
term forecasts.

The best-fit solution for each model (i.e., the GLM, RM and sub-epidemic models) f(t, ©) is
obtained using a non-linear least squares fitting procedure [7]. This process yields the best set
of parameter estimates © = (U1, s, ..., U,,) (where m is the number of parameters of interest),
that minimizes the sum of squared errors between the model fit, f(¢,©) and the observed data,
v, (1 =1,2,...,n). That is summarize in the objective funtion given by,

where t; is the timestamps at which time series data are observed, and n is the number of data
points available for inference.
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Concretely in our study, we have the following parameter sets, © = (r,p, Ky) for the GLM
model, © = (r, Ky, a) for the RM model and © = (r, p, Ko, q, Cy,,) for the sub-epidemic model,
more details in Table 3.1.

For the sub-epidemic wave model, we determine the initial best guesses of parameter esti-
mates. However, for the GLM and RM we initialize the parameter estimates for the nonlinear
least squares method [7] over a wide range of plausible parameters from a uniform distribution
using Latin hypercube sampling provided by Matlab fuction 1hsdesign(). This allows us to
test the uniqueness of the best model fit. The initial conditions are set at the first data point
for each of the three models [32].

Using a parametric bootstrap approach with data replacement are generated uncertainty
bounds around the best-fit solution. We assume a negative binomial error structure for the
PGMs considered for the fitting process. For case incidence data, the variance (for the negative
binomial error) is assumed to be 488.85 times the mean for national data, 11.59 times the mean
for the Amazon region, 356.8 times the mean for the Andean region, 69.72 times the mean
for the Caribbean region, 77.93 times the mean for the Pacific region, and 22.17 times of the
mean for the Orinoquia region. The variance is assumed to be 17.95 times the mean for the
mortality data. The variance is based on data noise and calculated by averaging the mean to
variance ratio obtained from the data. A detailed description of this method is provided in a
prior study [32].

From the parametric bootstrap approach are obtained .S = 300 best-fit parameter sets, which
are used to construct each parameter’s 95% confidence intervals. Further, for each S best fit
model solution, s = 30 additional simulations are generated with a negative binomial error
structure for each PGM extended through a 30-day forecasting period. Finally, we construct
the 95% prediction intervals with these 9000(S x s) curves for the forecasting period. More
details about the methods of parameter estimation and bootstrap approach can be found in
references (32,134, 136].

3.4 Reproduction number

The effective reproduction number R; is the key parameter that characterizes the average
number of secondary cases generated by a primary case at calendar time ¢ during an outbreak.
This quantity is crucial for identifying the magnitude of public health interventions required
to contain an epidemic [2,33,114]. The estimates of R; indicate whether widespread disease
transmission continues (R; > 1) or disease transmission declines (R; < 1). Therefore, to contain
an outbreak, it is vital to maintain R; < 1.

In light of the properties of the effective reproduction number and our interest in under-
standing the transmission dynamics of COVID-19 in Colombia, we estimate it for two phases,
the first in the early ascending phase between February 27, 2020, and March 27, 2020, and the
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other throughout the pandemic for the national and regional COVID-19 epidemic curves. A
way was applied to compute this reproduction number, the GGM (as in [170]) is explained in
the following subsection.

3.4.1 Effective Reproduction Number R; using the GGM

The national and regional reproduction numbers are estimated by calibrating the GGM to
the early growth phase of the pandemic [170]. We first characterize the daily incidence of local
cases using the GGM. The progression of local incidence cases by dates of symptom onset, I;, is
simulated using the calibrated GGM model and accounts for the daily series of imported cases
by dates of symptom onset, J;, into the renewal equation to estimate the effective reproduction,

Ry, as
I
Rt,- - - )

(Ii—j + adij)p;
=0

where the factor J; represents the imported cases at time ¢;, I; denotes the local case incidence
at calendar time ¢;, and p; represents the discretized probability distribution of the generation
interval, besides the factor 0 < o < 1 represents the relative contribution of imported cases
to secondary disease transmission. Therefore, in the numerator, we have the total new cases
I;, and in the denominator, the total number of primary cases contributes to the generation
of secondary cases [; at time ¢;. Hence, R; represents the average number of secondary cases
generated by a single case at calendar time ¢. Additionally, the generation interval of the SARS-
Cov-2 virus is modeled with the assumption of a Gamma distribution with a mean of 5.2 days
and a standard deviation of 1.72 days [148].

The uncertainty bounds around the curve of R, are derived directly from the uncertainty
associated with the parameter estimates from the GGM, and this uncertainty is generated
using S = 300 bootstrapping samples from GLM with a negative binomial error structure
and a variance three times the mean based on the noise of the data [32]. For each sample a
parameter pair (7;,p;) i@ = 1,...S is estimated. This method is utilized to derive the early
estimates of reproduction numbers and has been employed in several prior studies [32,109,152].

Since the national and regional epidemic curves have a different onset date according to the
first local case’s generating, R; for the national and regional level is estimated starting on the
onset of the first local case. For the national epidemic curve, we estimate R, for the first 30
days, following the distribution shown in Table 3.2.

Finally, we include a sensitivity analysis to assess the relative contribution of the imported
cases to the secondary transmission [151], setting three values for a = {0.00,0.15,1.00} in the
computation of R;.
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Region Dates(2020) Month/DD
National February 28 - March 28
Orinoquia region March 17 - April 17
Amazon region March 25 - April 23
Caribbean region February 29 - March 29
Andean region March 01 - March 30
Pacific region February 28 - March 28

Table 3.2: Dates for R; estimation for the national and regional epidemic curves for the first
30 epidemic days

3.5 Results

As of October 31, 2021, Colombia has reported 5.002.387 cases based on symptom onset
dates. Andean region concentrates about 64% of total cases, followed by the Caribbean region
with around 20%, the Pacific with 12%, the Orinoquia with 3% and finally the Amazon only
with 1%. The COVID-19 epidemic curve in Colombia shows a five-modal pattern, with the first
peak occurring in mid-July 2020 after the phased reopening of the country. In mid-October
2020, a slight surge occurred after selective isolation and social distancing interventions. The
second peak occurred at the beginning of January 2021, and the third occurred from March
through June 2021. While the mortality curve shows a three-modal pattern, the first peak
occurred in July 2020, followed by a second peak in January 2021, and a third more prominent
peak from April through June 2021, which coincide with the three epidemic waves observed in
the case incidence data (Information illustrated in Figures 2 and S2 of [150]).

A timeline showing the major events during the COVID-19 pandemic in Colombia is presented
in 3.2.

3.5.1 Model calibration and forecasting performance

We compare the results from model calibration by 90 epidemic days and 30-day ahead fore-
casting across the GLM, RM and the sub-epidemic wave model. Model calibration, using 90
days of the epidemic data, between July 4, 2021 and October 1, 2021 shows that at the regional
and national levels, the sub-epidemic model outperformed the GLM and RM in terms of the
all five performance metrics (see Table 3.3) using the case incidence data. Therefore, the sub-
epidemic wave model can be declared the most accurate model for the calibration period. The
model fits exhibited sub-exponential growth dynamics [22,170] for three models (p ~ 0.6 —0.8)
at the national and regional levels. The calibration performances for each region and the na-
tional data are listed in Table 3.3. Calibrating the three models to the mortality data also
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2020
Outbreak in
Clousure Declaration of Outbreak in Outbreak in the nursing
Index case of of country nationwide Nation wide Villavicencio Villahermosa home un
coronavirus borders quarantine lockdown prision prision Manizales
3/06/20 3/16/20 3/20/20 4/06/20 4/29/20 6/05/20 8/20/20
Closure of Dlecaration First death Phased Outbreak in
schools and of Nationaal 3/21/20 reopening La Picota
universities Emergency 4/27/20 prision
3/11/20 3/17/20 5/15/20
2021
New measures
to curtail third Alpha variant Beta variant of
Vaccination epidemic of SARS Cov-2 SARS Cov-2
began wave detected detected
2/20/21 4/04/21 4/16/21 7/24/21
PIvariant of Curvefews Colombia Total deaths Total deaths
SARS-CoV-2 4/05/21 protest 2021 87.774 and 127.281 and
detected 4/28/21 Total cases Total cases
1/30/21 42.40.982 5.002.387

6/30/21 10/31/21

Figure 3.2: Timeline of the COVID-19 pandemic in Colombia as of October 31, 2021. Figure
adapted from https://doi.org/10.1371/journal.pntd.0010228.g001 in [150]

shows that the sub-epidemic model outperforms the other two models (Table B.1) and exhibits
sub-exponential growth dynamics.

In terms of the forecasting performance, again, the sub-epidemic wave model performed
better than the GLM and RM for the national and regional case incidence data (Table 3.4) and
the mortality curve (Table B.2). Hence, the sub-epidemic model can be considered the most
accurate model to forecast the epidemic trajectory for incidence and mortality cases.

3.5.2 30-day ahead forecasts

Calibrating our models from July 04 to October 1, 2021, and generating the 30-day ahead
forecasts from October 2 to October 31, 2021, utilizing the GLM and RM indicates a down-
wards trend for the national and regional case incidence data, as is shown in Figures 3.3 and
3.4). On the other hand, the sub-epidemic wave model captures the multiple sub-epidemics
comprising the course COVID-19 epidemic wave of Colombia. The sub-epidemic model pre-
dicts a downward trend for the Amazon and Orinoquia region, consistent with the findings of
the GLM and RM. While, for the national, Andean, Caribbean, and the Pacific region, the
sub-epidemic model predicts a stable case incidence pattern as evidenced in Figure 3.5.

According to the forecasts obtained by GLM and RM, the COVID-19 pandemic in Colombia
would decline to zero during the month of October while the sub-epidemic wave model predicts
an accumulation of 24525 (95% PIL:13677,44515) cases at the national level for the month of
October, 2021.


https://doi.org/10.1371/journal.pntd.0010228.g001
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RMSE MAE MIS 95% PI WIS
GLM

National — 884.72  1315.3 18776 47.78 993.90
Pacific 97.36 15217 197040  56.67 116.65
Caribbean 166.11  265.68  4457.80  61.10 207.89
Andean  467.69  738.12 61.11 542.25
Amazon  [I0%  11.70 86.04 .

Orinoquia [19M8] 34.25 338.41 57.78 25.49

Region

o
=
ot

Richards model

National 1236.7  1643.5 31087 31.11 1323.2
Pacific 166.66  221.63 4186.9 31.11 180.51
Caribbean 300.60  372.66 9517.4 25.56 320.68
Andean 714.72  989.42 16221 37.78 77177
Amazon 12.75 21.50 294.10 44.44 16.02
Orinoqufa  40.90 93.87 1231.6 16.67 45.58

National
Pacific
Caribbean
Andean

Amazon

Orinoquia

Table 3.3: Performance metrics by calibrating the GLM, RM and the sub-epidemic model for
90 epidemic days (July 4, 2021 to October 1, 2021) at the national and regional level. Higher
95% PI coverage and lower RMSE, MAE, WIS and MIS represent better performance. We
highlight best performing model with green color.

At the regional level, RM and GLM predict zero cases for the month of October (Figures 3.3-
3.4). However, the sub-epidemic model predicts 59 (95% PI: 0, 507) cases for the Amazon region
in the month of October. The sub-epidemic model also predicts 12186 (95% PI1:7107,19235)
cases for the Caribbean region, 18165 (95% P1:9205,31205) cases for the Andean region, 5039
(95% PI1:2517,8725) cases for the Pacific region and 510 (95% PI1:87,1456) cases for the Orino-
quia region (Figure 3.5). The 30-day ahead forecast of the national mortality data generated
by GLM and RM indicate a decline in the number of deaths, and the sub-epidemic wave model
indicates an upward trend in the mortality curve with 2893 (95% PI1:1860, 5325) deaths that
can accumulate in the month of October 2021 (Figure B.1).
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Region RMSE MAE MIS 95% PI WIS
GLM

National ~ 1328.1  1312.5 [i018000 o© 1037.8

Pacific 144.09 141.42 10682 0 115

Caribbean 30368 61.1 279.17

Andean 43420 0 609

Amazon 33739 17.24 424

Orinoquia 1537.6 0 17
Richards model

National 130740 0 1038

Pacific 16478 0 115

Caribbean 45484 0 219

Andean 63713 0 609

Amazon 1075.2 0 6

Orinoquia 3214.3 0 17

National

Pacific

Caribbean

Andean

Amazon

Orinoquia

Table 3.4: 30-day ahead forecasting performance (October 2, 2021 to October 31, 2021) by
calibrating the GLM, RM and the sub-epidemic model for 90 epidemic days (July 4, 2021 to
October 1, 2021 ) at the national and regional level. Higher 95% PI coverage and lower RMSE,
MAE, WIS and MIS represent better performance. We highlight best performing model with
green color.

3.6 Reproduction number

3.6.1 Estimate of the effective reproduction number, R; from case
incidence data

The reproduction number for the early ascending growth phase of the epidemic from the case
incidence data (February 27, 2020 to March 27, 2020) using GGM was estimated at R, ~ 1.30
(95% CI1:1.20,1.50) at « = 0.15 for the national data. The growth rate parameter, r, was
estimated at 1.40 (95% CI:0.91, 2.0) and the deceleration of growth parameter, p, was estimated
at 0.64 (95% CI: 0.56,0.71), indicating early sub-exponential growth dynamics of the epidemic
(see Figure 3.6). Simultaneously, the estimates of R, for all the regions remained consistently
above 1.2 (between ~ 1.20 — 2.22) for the early ascending phase of the pandemic with the
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Figure 3.3: 30-days ahead forecasts of the national and regional COVID-19 epidemic curves
in Colombia by calibrating the GLM model from July 4, 2021 to October 1, 2021. Here and
Figures 3.4 and 3.4 the blue circles correspond to the data points; the solid red line indicates
the best model fit, and the red dashed lines represent the 95% PI. The vertical black dashed line
represents the time of the start of the forecast period. The figure is taken from the published
article [150].

Amazon region showing the highest estimate of reproduction number, R, ~ 2.2 followed by
Orinoquia region with R; ~ 1.8. The estimates of R; for the Andean, Pacific and Caribbean
regions remained between R; ~ 1.2 — 1.4. All regions except the Amazon region depict sub-
exponential growth dynamics for the COVID-19 pandemic in Colombia with the deceleration
of growth parameter, p, estimated between p ~ 0.54 — 0.86. The Amazon region shows almost
exponential growth dynamics with the deceleration of growth parameter, p ~ 0.95 (95% CI:
0.74, 1.00). In contrast, Andean and Caribbean regions show an almost linear pattern of the
epidemic trajectory with the deceleration of growth parameter, p ~ 0.58 (95% CI:0.48- 0.69) and
p ~ 0.59 (95% CI: 0.34, 0.87) respectively. The sensitivity analysis shows that the estimates
of reproduction numbers do not vary significantly at o« = 0.15 and a = 1.00 (Table 3.5).
Moreover, setting a = 0.00, thereby assuming that there is no contribution of imported cases
to the disease transmission process or generation of secondary cases also does not substantially
change the estimates of reproduction number.
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Figure 3.4: 30-days ahead forecast of the national and regional COVID-19 epidemic curves in
Colombia by calibrating the Richards model from July 4, 2021 to October 1, 2021. The figure
is taken from the published document. [150].
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Figure 3.5: 30-days ahead forecast of the national and regional COVID-19 epidemic curves in

Colombia by calibrating the sub-epidemic wave model from July 4, 2021 to October 1, 2021.
The figure is taken from the published article [150].
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Region ! P I
& mean  95%CI mean  95%CI  mean 95%CIT
a=0.15
National 140 (0.91,2.0) 0.64 (0.56,0.71) 13  (1.2,L.5)
Amazon 023  (0.18,04) 095 (0.74,1.0) 2.2  (1.5.2.6)
Andean 170 (0.88,2.8) 058 (0.48,0.69) 1.2  (1.1,1.4)
Caribbean  0.85 (0.27,1.90) 0.59 (0.34,0.87) 1.3  (1.1,1.8)
Pacific ~ 0.63 (0.27,1.9) 0.69 (0.48,0.9) 14 (1.1,2.0))
Orinoquia  0.25  (0.16,0.59) 087 (0.58,1.0) 18  (1.3,2.4)
a=1.00
National 1.40 (0.87,2.1) 0.64 (0.56,0.72) 11 (0.97,1.2)
Amazon 0.23 (0.18,0.39) 0.94 (0.77,1.0) 2.1 (1.4,2.5)
Andean 170 (1.0,2.8) 058 (0.48,0.67) 1.0 (0.94,1.2)
Caribbean  0.82  (0.19,2.00) 0.61 (0.34,099) 13  (1.0,2.3)
Pacific 0.6  (0.23,1.2) 0.69 (0.51,0.95) 12  (0.93,1.9)
Orinoquia  0.26  (0.16,0.53) 0.86  (0.6,1.0) 1.8  (1.3,2.4)
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Table 3.5: Parameters estimates from the renewal equation method utilizing the GGM for the

early ascending phase of the epidemic (30 days) at the national and regional level.
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Figure 3.6: Upper panel: Reproduction number for Colombia with 95% CI estimated using the
GGM model. The estimated reproduction number of the COVID-19 epidemic in Colombia as
of March 27, 2020, is 1.30 (95% CI:1.20,1.50). The growth rate parameter, r, is estimated at
1.40 (95% CI:0.91,2.0) and the deceleration of the growth parameter, p, is estimated at 0.64
(95% CI:0.56,0.71) at a = 0.15. Lower panel: The lower panel shows the GGM fit to the
case incidence data for the first 30 days from February 27, 2020 to March 27, 2020. The blue
circles correspond to the data points; the solid red line indicates the best model fit, and the red
dashed lines represent the 95% confidence interval. The cyan lines are the model fits obtained
via bootstrapping. The figure is taken from the published article [150].



CHAPTER 4

Sensitivity and identifiability analysis for a model of the
propagation and control of COVID-19 in Chile

This chapter shows an extension of an identifiability analysis applied to compartmental
models verified in the literature, to be applied to a complex compartmental model inspired
by the transmission of COVID-19. This extension incorporates a computational approach
and parameter estimation of a variable number of parameters to characterize structural
and practical identifiability. Some applications to Chilean regional data are developed.

4.1 Introduction

4.1.1 Scope

The COVID-19 pandemic is currently the main topic of daily news worldwide. We recall
that the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was declared a global pandemic by the World Health Organization
(WHO) on March 11, 2020 |28,185]. This highly contagious unprecedented virus has impacted
government and public institutions, strained the health care systems, restricted people in their
homes, and caused country-wide lockdowns resulting in a global economic crisis [71,91,177].
The impact of COVID-19 at the time of revision of this work (May 3, 2022) amounts to roughly
514 million cases and 6.24 million deaths worldwide of which 2.72 millon have been reported
in the Americas.

The morbidity, mortality, and economic indicators associated with the COVID-19 pandemic
point to a devastating picture for Latin American countries. High poverty rates, poor leadership,
high prevalence of underlying health conditions such as obesity and diabetes, and frail health-
care systems have exacerbated the impact of the novel coronavirus in this region [23,75,86,111].
In Chile, the Ministry of Health reported the first COVID-19 case on March 3, 2020, becom-
ing the fifth country in Latin America after Brazil, Mexico, Ecuador and Argentina to report

74
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COVID-19 cases. Soon after, the Chilean government put in place a number of interventions
including the closure of all daycares, schools, and universities (March 16), border controls,
telework recommendations (March 18), closure of non-essential businesses (March 19), national
night curfews (March 22), as well as targeted lockdowns at the level of municipalities since
March 26, 2020. As of May 03, 2022, Chile has accumulated a total of 3563650 cases and 57544
deaths [104]. Tt is also worth noting that Chile has tested at a higher rate than any other Latin
American country [164]|. Fortunately, Chile’s mass COVID-19 vaccination campaign with the
goal of immunizing about 80% of the total population started in February 2021, and meanwhile
more than 90% of that target population have been fully vaccinated as of May 03, 2022.

A way to understand and explain these epidemic phenomena is by applying a mathematical
model to fit data. Still, within the context of outbreaks of infectious diseases, the informa-
tion recovered by these epidemic models needs to have guaranteed accuracy or confidence to
understand the biological mechanisms and then develop optimal strategies for public health.
However, the successful application of such epidemic models depends upon our ability to esti-
mate transmission parameters key, subject to two principal sources of uncertainty: the data’s
noise and the assumptions built in the model. Ignoring these factors can result in misleading
inferences and potentially incorrect public health policy decisions [29,32,134].

We inspired by the dynamics of COVID-19 that occurred in Chile in the initial phase of 2020
to explore these factors in parameter estimation. Then, we propose a compartmental model
with nonlinear differential equations for the Chilean dynamics, and we use it to analyze the
noise from the data and the structure. With this in mind, we developed an identifiability study,
employing a computational approach, such as is defined in ref [134]. The identifiability analysis,
as explained in ref. [126], determines how well the parameters of a model can be estimated
from experimental data, so it is crucial for interpreting and determining confidence in model
parameter values. Mainly, the structural identifiability focuses on a mathematical model and the
practical identifiability on the data. Hence a model with structurally identifiable parameters
may still be nonidentifiable in practice due to a lack of information in real-world data. For
that reason, it is essential to understand both identifications to apply an epidemic model at
the time [84,102,134|. Therefore, we use the compartmental model and the computational
approach to investigate the identifications of the parameters. Specifically, we employ synthetic
data generated from our model, and we select different sets of parameters to estimate with the
help of a defined optimization process with the simulated annealing method. Fitting all data
points, we desire to recover the parameters assumed to create synthetic data. If it occurs, it
can suggest structural identifiability, which we pretend to validate by adding an uncertainty
study with a bootstrapping process [32,134]. For the case of practical identifiability, we use
the same synthetic data but fit only initial phases (e.g., pre-peak). We applied our parameter
sets identifiable to fit regional Chilean data to corroborate the conclusions derived from the
previous analysis with synthetic data.



4.1. Introduction 76

4.1.2 Related work

To put the paper into the proper perspective, we first recall that introductions to compart-
mental epidemiological models are provided in [2,13,61,96,176,188]. This class of models goes
back to the well-known work by Kermack and McKendrick [85]. Within a compartmental model
the total population is subdivided into at least two epidemiological compartments (say, suscep-
tible and infected; but many others can be considered). The rates of progression between the
compartments, as well as the incidence and possibly birth and death of individuals, need to be
specified, which leads to a system of coupled, and mostly nonlinear ordinary differential equa-
tions (ODEs) that describe the progression of the epidemic. In many cases, the compartmental
approach in conjunction with suitable assumptions on the rates of progression between the com-
partments and formulated as a dynamical system provides indications of the basic reproduction
number Ry, where this parameter plays the role of a threshold value for the dynamics of the
system. FEpidemiologically, Ry gives the number of secondary cases one infectious individual
will produce in a population consisting only of susceptible individuals [96, p. 21].

But the conclusions obtained by a compartment model are derived from parameters estimated
and allow describing the progression or dynamics to be present in a data set. Then, the identi-
fiability analysis surge as a need to guarantee the good representation given by the parameters
estimates. Specifically, the identifiability analysis addresses the question of whether the pa-
rameters of a compartment model can be uniquely identified. There are different strategies for
the identifiability, for example, for models expressed by linear differential equations [101, 187],
nonlinear differential equations [102|, or partial differential equations [126], even so, the type
of data to fits also plays an essential role, for example, select between incidence or prevalence
curves 29,68, 162]. In this theory are considered two identifiability, one structural and the
other practical. The first involves the model and its structure, and the study can be centered
on theoretical or computational techniques (e.g., [30,68,102,126]), and the second involves the
data (e.g., [84,162]). The analysis is separate because a model can be structurally identifiable,
but the real-world data employed to fit the model results in uncertain parameters.

Consequently, understanding the importance of the identifiability study, we decide to extend
the computational approach developed in [134] to assess parameters identifiability in a com-
partmental model defined by nonlinear ordinary differential equations. Then, the computa-
tional approach that combines the optimization process determined by the simulated annealing
method and a bootstrap process allows us to access the analysis of the estimated parameter
sets. In particular, the structural is assessed by employing synthetic data with parameters
known, and the practical, with the same synthetic data, but to fit only initial phases of curve
data (e.g., pre-peak moment). In both compute, we wait to recover the parameter set assumed
together to a low uncertain and an error small, which traduce in a model with parameters
identifiable.

Finally, the identifiability analysis is applied to different parameter sets to estimate. We vary
their elements in an increasing number, intending to observe the model’s ability to estimate
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the different sets fitting the data curves generated with assumed parameters. Here we have a
sensitivity analysis.

In an application to the Chilean data, we consider the parameter sets identifiable from our
computational approach (with synthetic data) and fit some Regional Chile data. We hope to
confirm the conclusions from the identifiability study with our application to the Chilean case.

4.2 Methods

4.2.1 Compartmental model

We apply our methodology to a complex compartmental transmission model, whose design
is inspired to model by the strategies implemented by the Chilean government to mitigate the
COVID-19 emergency in the initial phase of the outbreak. For this purpose, we consider a
single population and adopt a simplified version of the model described in ref. [31]|, combined
with the way individuals in quarantine are described in [81]. Individuals within the model
are classified as susceptible (S), in home quarantine (Q), latent (E;), partially infectious but
not yet symptomatic (FEs), asymptomatic (A), infectious and will not be tested (I,,), infectious
and will be tested and isolated (), hospitalized /isolated infectious (J), recovered (R), and
deceased (D). Constant population size is assumed, i.e.,

N=S+Q+FE +E+A+1I,+I,+J+ R+ D = const. (4.1)

Note that we stipulate one single class of asymptomatic individuals, while in [31] a distinction
is made between individuals that are “asymptomatic and will not be tested” and those that are
“asymptomatic and will be tested and will be isolated”.

It is assumed that for the home-quarantined individuals, due to severe travel restrictions
and rigorous supervision by their local communities, they do not have contact with infected
individuals. The parameters p and 1/\ represent the percentage of individuals in quarantine
and the quarantine duration, respectively. Therefore, the class ) has the effect of removing
susceptible individuals from the infection dynamics, when p, A # 0, and there is no quarantine
when p =\ = 0.

Five classes can contribute to new infections, namely Fs, A, I, I, and J. If we denote by
rx_y the rate at which individuals move from class X to class Y, then susceptible individuals
move to E; at rate

rsS—p, — %(qug + qagA + gl + gl + hJ)7

where [ denotes the overall transmission rate. Individuals in E; progress to F, at rate kq.
Individuals from FE, are partially infectious, with relative transmissibility ¢., and progress at
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rate k2, where a proportion p, become asymptomatic and partially infectious (relative trans-
missibility ¢,), and 1 — p, become fully infectious. Among the proportion 1 — p, that become
fully infectious, ps will be tested, while 1 — p; will be undetected. Asymptomatic individuals
who are not tested and symptomatic individuals wear personal protective equipment (PPE)
(such as wearing masks in public, handwashing, etc.) and thus have relative transmissibility g,
which quantifies the effectiveness of those protective behaviors. Individuals within classes A
and I, (who are not tested) recover at rate 7;. Those who are tested (class I5) will progress to
the hospitalized and isolated class at diagnosis rate «. Relative transmission within hospitals
and isolated places may occur, but we assume perfect isolation in our analysis. Individuals who
are hospitalized and isolated progress to the recovered class at rate v, or to the deceased class
at rate 0. Therefore, the model is defined by the following system of non-linear differential
equations for a single population, where all variables in capital letters are functions of time t,
i.e. it is understood that S = S(t), £y = Ei(t), etc., and a prime denotes the derivative, that
is §' = dS/dt, etc.

S
S = _W(quQ + qaqA + qly + qls + hJ) — pS + \Q, (4.2a)
Q =pS —\Q, (4.2b)
S
By = %(quQ + GaqA + gl + qls + hJ) — k1 B, (4.2c)
Eé = :‘ilEl — KQEQ, (4 2d)
A" = KopaEs — A, (4.2e)
I = ka(1 = pa) (1 — ps) By — mln, (4.2)
IL = k(1 = pa) ps By — o, (4.2g)
J =aly— (v +6)J, (4.2h)
R =y(A+ 1) + 7, (4.21)
D' =6J, (4.2j)
C' = al.. (4.2k)

The auxiliary variable C' tracks the cumulative number of diagnosed /reported cases from the
start of the outbreak, and C’ represents the new diagnosed cases. It is not a state of the system
of equations, but symply a class to track the cumulative incidences cases; meaning, individuals
from population are not moving to the class C. The initial conditions of these state variables
are denoted by S(0 ) Q(0), E1(0), E5(0), A(0), 1,(0), I5(0), J(0), R(0), D(0), and C(0), where
S(0) =N —Q(0) — Ey(0) — E5(0) — A(0) — 1,(0) — I5(0) — J(0) — R(0) — D(0). A schematic of
the transmissions is provided in Figure 4.1.

The basic, control, and effective control reproduction numbers Ry, R and RS are quantities
that allow us to measure the epidemic impact of infectious disease in a population as well as
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Figure 4.1: Schematic of the transmission of COVID-19 for one population

measuring the effectiveness of control measures. The basic reproduction number R, defines
the average number of secondary cases generated by primary infectious individuals during the
early transmission period when the population is completely susceptible and in the absence of
control interventions. The control reproduction number R defines the average number of new
cases generated by infectious individuals when the population susceptible is with some control
measure or intervention. The effective control reproduction number R{ is the reproduction
number that varies with time, and it is defined to partially susceptible population, where if
RS > 1, the disease transmission continues, and if R < 1 the disease transmission declines.
Therefore, while the basic reproduction number R, and control reproduction number Rf cap-
ture the transmission potential of infectious disease during the early epidemic, the effective
control reproduction number RS, captures changes in the transmission potential over time.

To calculate these numbers, we employ the well-known next-generation matrix approach [166].
This yields the expression

Rs = p(FV)

where p denotes the spectral radius and for the present model, the matrices F and V are given
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e a4 Fa 1 - S 1- a s 1— a h S 1- a
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K9 Y1 Y1 (0% Y2 + )
Moreover, the corresponding effective reproduction number is defined as
Re(t) = RgS(t)/N, (4.4)

where S(t)/N is the proportion of susceptible individuals in the population at time ¢ and we
recall that the total population N is assumed to be constant (see (4.1)). From the explicit
expression (4.3) we can deduce the following contributions of the individual compartments:

per_ Bde pa_ Paaap pr Bl = p)(1 = pa)

Y

Y

2 N !
R]S = —qus(l — pa) RJ _ 5hps(1 B pa)
Q ’ Yo+
where
R§ = R + R*+ R" + R* + R’. (4.5)

This parameter R is a key epidemic parameter to measure the transmissibility of a pathogen;
by the expression (4.3) we can see that this parameter is a function of several parameters of our
epidemic model (4.2), including transmission rates and infectious periods of the epidemiological
states that contribute to new contagious.

In addition, we can observe that the basic reproduction number R corresponds to the control
reproduction number R§ with absence of interventions, i.e., when ¢ =1, h =0, ps =0, (q is
interpreted as the level of no protection, and (1 — ¢) is the level of protection due to the use of
PPE), obtaining the following expression,

e aMa 1_ a
Rozﬁ(q—+qp+( p)). (4.6)
K2 N Al
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Parameter Description Value Source

B8 transmission rate 1.0676, 1.2435, 1.7794 Assumed

h relative isolation transmissibility of infected 0 Assumed
individuals

o relative transmissibility of exposed individuals 0.1 [37]

Ga relative transmissibility of asymptomatic cases 0.4 [37]

q relative transmissibility of asymptomatic 0.4 Assumed
and infected cases that wear PPE

1/k1 length of latent period 2.5 [120,194]

1/kKa length of infectiousness prior to symptom onset 2.5 [120,194]

Pa proportion of exposed individuals who 0.4 [107,115]
become asymptomatically infected

Ds proportion of fully infectious individuals 0.6 Assumed
who undergo testing

1/a time from symptom onset to isolation 10 Assumed
or hospitalization

1/m time from illness onset to recovery 7 [120, 193]

1/72 time from diagnosis to recovery 5 [154]

o death rate within hospitals 0.021 Computed Chilean data

P proportion of the susceptible population in 0.01, 0.05 Assumed
quarantine declared

/A duration of quarantine 15 Assumed

RS control reproduction number 34,5 Assumed

Table 4.1: Model parameters values selected to generate the simulated data of our study. The
parameter I7j is fixed, and the expression 3 is computed for each one using the expression 4.3

4.2.2 Simulated data

Using our mode proposal for COVID-19, we simulate different scenarios fixing their param-
eters and initial conditions. These curves will help analyze the performance of our model to
capture such dynamics. Then a parameter estimation process is necessary together with a
bootstrapping approach to examine the identifiability of several of its parameters, as will be
explained in the following

For this, we assume the values and references summarized in the Table 4.1 for the parameters,
and for the initial conditions the values J(0) = C(0) =1, Q(0) = D(0) = R(0) =0, 1,,(0) =1,
1(0) = 20, E4(0) = 2J(0), FE5(0)=4J(0)— E1(0), A(0) =4, and S(0) = N — E;(0) — E»(0) —
I,(0) — I(0) — A(0) — J(0) — R(0) — D(0), being the population N = 500000. All to simulate
the following scenarios.

Scenario 1: Initial phase for three Rf values without quarantine.

We consider three values for R, which are generating three values for 3, using the expression
(4.3), such values together with other parameters are summarized in Table 4.1, and their
incidences curves, C" are generated for ¢t € [0,200], as we can see in the Figure 4.2. These
incidence curves will be our datasets for the identifiability study. Observing these curves, we
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Figure 4.2: Synthetic data to Scenario 1 using the parameters summarized in Table 4.1 where
magenta, green and blue lines correspond to the curves generated assumed R equal to 3, 4,
and b5, respectively.

note that to R = 3, the curve effectively grows more slowly than the other curves, being its
maximum value lower than the maximums of the curves with Rj = 4 and Rf = 5.

Scenario 2: Initial phase for three R values with quarantine.

For this scenario, we consider the same three values for R{, which produce the same 3 to
scenario 1, because expression (4.3) does not depend of p and A parameters, then assumed the
pairs (p = 0.01, A =1/15 ), and (p = 0.05, A = 1/15) with the rest of the parameters assumed
in Table 4.1, we have the datasets present in Figures 4.3 (A)-(B).

We can observe that curves with Rj = 3 grow more slowly than the other curves, being its
maximum value lower than the maximums of the curves with R§ = 4 and Rj = 5. Besides,
curves with p = 0.05 their maximum values are lower than maximums with p = 0.01, which
evidences the effect of the quarantine modeled by our model.

We pretend to use these curves defined for each scenario to generate multiple samples from the
best-fit model using the bootstrapping approach. But, before we need to define the parameter
estimation process to explain the bootstrap approach and finally the identifiability study.

4.2.3 Parameter Estimation

To estimate parameter values of our COVID-19 model, we need to use one optimization
process to fit the model to each simulated data. Then, the method used for this purpose is
outlined as follows, executed in Matlab (Mathworks, Inc).
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Figure 4.3: Synthetic data to Scenario 2 with p = 0.01 (A) and p = 0.05 (B) , using the
parameters summarize in Table 4.1. The magenta, green and blue lines correspond to the
curves generated assumed Rj equal to 3, 4, and 5 respectively.

Mixed simulated annealing method with a least-squares approach (SA-LSQ)

To estimate the parameters, we start by defining the parameter set to estimate as ©, then
using LHS latin hypercube sampling provided by lhsdesign() we generate an initial guess
denoted by © which the simulated annealing method (SA) is applied to minimize the squared
Euclidean distance between the C” curve of our model (4.2) and the data, denoted by datay,,
that corresponds to data in series time with ¢ € [0, 7], with T final date. Therefore, we obtain
a best-fit parameter set o. Specifically, we uses the Matlab function simulannealbnd() to
minimize the objective function

£(O,R) = }l% SO |C! (1, 0) — data, |

t<T

based on an initial guess O for given norming coefficient R. The initial temperature (within the
SA approach) is set to 100, and the number of steps is limited to 1000. Further, the parameters
optimized are recalled to the unit-hypercube. Finally this process is applied Runs times (a
number proportional to the length of the parameter vector ©) and the best-fit parameter set
obtained is verifying with the application of LeastSquares (data, 0, using the Matlab func-
tion lsqcurvefit ().

The step-by-step procedure is summarized in Algorithm 2.

This method is a powerful tool for optimization, in particular for fitting models that describe
epidemic phenomena with real data, such as those developed in [16,97,190,192] Additionally; the
SA technique was inspired by Metropolis et al. [100], for the selection of the new characterized
solutions. Even so, its adaptation allows the application to a frequentist paradigm.
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Algorithm 2: Region-wise mixed simulated annealing/least-squares approach.
load data
R<+1
© «LHS
© < argming g (O, R)
R+ f(©,R)
res <— 00
for 1 =1 to 7 < Runs do
p < N(0,0)
res;, ©; < SimulatedAnnealing(data, O; 2PR)
if res; - 2PR < res then
res < res; - 2PR
O« O,
end if
end for
© +LeastSquares(data, ©)
return ©

Specifically, to study parameter identifiability, we define different experiments, which use
the generated curves in scenarios 1 and 2, and we pretend to estimate or recover from these
curves some parameters of interest. Therefore, between the parameters of interest we have set,
{a, B, ps, I5(0), J(0), p}, being the rest permanently fixed according to the values registered in
Table 4.1.

For the data generated using scenario 1, we define the following parameter sets to estimate,

1. Parameter 5. Parameters (3, I5(0), J(0))

2. Parameters (a, 3) 6. Parameters (o, 3, 15(0), J(0))

3. Parameters (53, ps) 7. Parameters (53, ps, 15(0), J(0))
4. Parameters (a, 3, ps) 8. Parameters (a, 3, ps, 15(0), J(0))

And using the scenario 2, the following parameter set,

1. Parameter 3 5. Parameters (3, p)
2. Parameters («, ) 6. Parameters (a, 3, p)
3. Parameters (f3, ps) 7. Parameters (3, a, ps, )

4. Parameters (a, 3, ps) 8. Parameters (3, 15(0), J(0))
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9. Parameters (a, 3, I5(0), J(0)) 12. Parameters (53, 15(0), J(0),p)
10. Parameters (5, ps, 15(0), J(0)) 13. Parameters (3, a, 15(0), J(0), p)
11. Parameters (a, 5, ps, I;(0), J(0)) 14. Parameters (o, 3, ps, I5(0), J(0), p)

Each combination explored will be mentioned as an experiment. For example, Experiment
101 and Experiment 201-1, where the first case corresponds to data from Scenario 1 to estimate
the parameter set 1, and the second case to Scenario 2 with p = 0.01 to estimate the respective
parameter set 1.

Therefore, for Scenario 1, we have 24 experiments, 3 for each R{ assumed and 8 for the
number of parameters to estimate. Moreover, for Scenario 2, we have 84 experiments, 3 for
each R{, 2 for each p, and 14 for the number of parameters to estimate.

4.2.4 Bootstrapping method

This method uses the parametric bootstrapping approach with Poisson error structure (see
[32,134]) to repeatedly sample observations from the best-fit obtained by the SA-LSQ fit of
our COVID-19 model to an time series data. This process can be summarized in the following
steps:

1. Obtain the deterministic model solution C'(¢, @) or total daily incidence series from the
best-fit obtined using the SA-LSQ estimation .

2. Generate S replicates datasets assuming the Poisson error structure. To generate these
simulated data , we incorporing the Poisson error structure using the incidence curve
C'(t, @), where for each time ¢; we generate a new incidence value using a Poisson random
variable with mean C’(t;,©). Therefore, this new dataset represents an incidence curve
for the system, assuming the time series follows a Poisson distribution centered on the
mean at time points ;.

3. Re-estimate model parameters for each of the S simulated realizations (using the SA-LQS
method), which are denoted by ©; fori =1,...,S.

4. Finally, using the set of O, for i = 1,...,.5, we construct the confidence intervals for each
estimated parameter. Also, for each set of estimated paramters, Rf is calculated to obtain
a distribution of R{j values as well.

4.2.5 Parameter identifiability

The complexity from our mathematical model involves ten epidemiological states or com-
partments and the auxiliary variable C(t) that indicates the symptomatic cumulative number
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of diagnosed or reported new cases of the outbreak. In addition to the 10 system states, our
model consists of 15 parameters (one-time-dependent and the rest constants), where 5 classes
are contributing to a new infection (FEs, A, I,,, I5, J), which also contribute to the representation
of R§ in these classes, see (4.3) and (4.5). Using these expressions, R§ is not directly estimated
from our model because it is a composite parameter that can be calculated using the individual
parameters estimated.

Some model’s initial conditions are unknown and maybe need to be estimated, along with
the other model parameters. For our case we consider the values I4(0), and J(0) to estimate
together to the parameters a, 3, ps and p, then, we have the set from parameters to estimate,
as follows,

{a, 8, ps, 0. 1,(0), J(0)},

being the rest parameters, and initial condition values known or assumed.

To estimate the parameter sets, we fit the model (with other parameters and initial values
fixed) to each dataset using the auxiliary variable C” and the curve of the daily cases generated.
The parameter estimation procedure employs the methods detailed in Subsection 4.2.3. The
initial parameter prediction affects the solution for the model as local minima occur. One way to
guarantee the global minimum obtained in the optimization processes, we decided to generate a
multi-start (using LHS in Algorithms) repeating these processes for a random amount of initial
parameters, whose ranges are defined as follows:

0<p<b, 0l<a<2, 0<J(0)<C(0),
0<I0) <300, 0<ps<1l, andO0<p<l.

We are focusing the parameter identifiability study for our COVID-19 model (4.2) on char-
acterizing the identifiable parameters using uncertainty studies to assess the stability of the
parameters estimated. Then, the goal is to evaluate the identifiability using the mean value,
the 95% confidence intervals, and the Mean Square Error (MSE).

The step-by-step to study the identifiability is detailed in the next subsection.

Identifiability analysis process

In the study of identifiability, we must follow the following steps that rely on definitions and
computations presented in detail in [32] and [134]:

1. Being © = {«, 3, ps,p, I5(0), J(0)}, the parameter set to estimate and O, their initial
guesses.

2. Estimate © fitting our model to the dataset generated, using the SA-LSQ procedure
with the values of the initial conditions and parameters given. The symbol " indicates an
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estimated parameter. Then, we have the following set,

A ~

0 = {a, 3, ps, b, L,(0), J(0)}.

3. Using the bootstrapping process we obtain the 95% confidence intervals and their fre-
quency distributions for each parameter estimated.

4. Compute the mean squared error (MSE) for each parameter estimated. This quantity is
calculated as

|

S
MSE = =Y (@ - 6,7,
j=1

where © represents the true parameter value, and éj represents the estimated value of
the parameter for the jth bootstrap realization.

5. For each set of estimated parameters, R is calculated to obtain a distribution of If values
as well.

Following the process described, we say that a model parameter is identifiable if its confidence
interval lies in a finite range of values and contains the parameter estimated, preferably if its
value has a central position or is close to the mean value. Besides, a small confidence interval
indicates that the parameter can be precisely identified, while a broader range could indicate a
lack of identifiability. When a parameter can be estimated with low MSE and little confidence
interval, the parameter is identifiable from the model. On the other hand, larger confidence
intervals or larger MSE values may suggest non-identifiability.

Specifically, to analyze the structural identifiability, we will fit the entire curves generated
for each scenario to recover the values from the parameters assumed in each case. Moreover,
to investigate the practical identifiability, we will consider different fit times, representing the
situation when only existing data of the initial phase (before peak or maximum value).

4.3 Results

4.3.1 Structural analysis

Applied the identifiability methodology, we obtain results for each step, i.e., the first results
correspond to the parameter estimation process, which gets the best-fit model solution. Second,
we have 250 replicated datasets applying the bootstrap process to re-estimate model parameters.
Figures B.3-B.4 show the confidence intervals (represented by vertical lines) and the MSE bar
plots for experiment scenario 1, and Figures B.4-B.6 the same graphs-type but for experiments
scenario 2.
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Observing the results obtained and registered in the figures mentioned, we concentrate our
investigation in the Tables 4.2 and 4.3, in which we classify the parameters estimated between
identifiable and non-identifiable. We use the green color in the first situation, and it occurs
when the parameter estimated has a narrow confidence interval, a mean value-centered and
close to real value, and the MSE is small. Furthermore, the second situation is colored red and
occurs when at least one identifiability criteria are not satisfied.

From Table 4.2, we conclude that for experiments 1-4, i,e., without initial conditions to fit, we
have that all these estimated parameters are identifiable. However, for experiments 5-7, where
the initial conditions are estimated, we note that all the parameters except the initial condition
J(0) are identifiable, maintaining mainly the identifiability of the parameter of interest Rf.
Only experiment 8 shows non-identifiability situations for all the parameters, except for the
dataset generated assuming Rj = 5. We can suspect that the identifiability improves when
the epidemic overgrows, as in this last case. Nevertheless, we will continue to explore this part
later. Another observation is that the estimated Rf can be robust to variation or bias in the
other estimated parameters.

In the same way from Table 4.3, we conclude that the parameters estimated in experiments
1, 2, 3, and 5 are identifiable, besides the parameters except for the initial condition J(0) in the
experiments 8, 9, 10, and 12 are also identifiable. For experiments 4, 7, and 9, the parameter
R; is identifiable even though none of its other parameters are identifiable. Particularly in
experiment 7, all the rest parameters are non-identifiable. Other situations occur; for example,
in experiment 6, all parameters estimated except using the data generated with R§ = 3,p = 0.05
are identifiable. For experiment 13, all parameters estimated using data generated using Rj =
and 5 are identifiable. For experiment 14, the results are not good, but the R{ estimated using
data generated with p = 0.01 are identifiable. A similar situation occurs with R{ in experiment
11, where it is identifiable only fitting the data generated with R§ = 5, and p = 0.1.

4.3.2 Practical analysis

The results obtained for this part are in the Appendix B, where colored tables were created
using the same definitions and criteria as for Tables 4.2 and 4.3. Then in Tables B.3-B.4 from
Appendix B, we can analyze the identifiability. For this study, we investigate the performance
of our model to capture the initial phases of an epidemic disease, establishing three fit times,
that is, 20, 30, and 40 days.

Observing Table B.3, we can see that in experiment 1, the parameters estimated are identifi-
able. In experiments 3 and 5 with fit times 30 and 40, their parameters R are identifiable, even
though not all parameters estimated are identifiable. In contrast to this result, in experiment 2,
fitting a time of 20 days, the parameters that define R{ are identifiable, but the R{ computed is
not. Notably, for this experiment, the confidence intervals and the MSE are plotted in Figure
B.7, which we can see that these intervals are not very large but lack precision, mainly when
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Par. Experiment
Est. 1/2|3[4]5]6|7]8

S

Ps

U | W[ O | W O | Q| O | W O | W O | W

Table 4.2: Summarize of results obtained for Scenario 1. The green box represents that the
parameter estimated satisfies the parameter identifiability conditions, i.e., this has small interval
confidence with mean value-centered and a low MSE. The parameter that does not meet the
identifiability criteria is colored red boxes.

are used 20 days in the fit, and the epidemic growth is given by Rf = 3, and 4. Apparently,
for this and other experiments, the parameter Rf tends to be identifiable when fit times are
greater than 20 days, and the growth assumed Rj is lower or equal to 4.

Parameters p,, and the initial condition ,(0) and J(0) for all experiments from this scenario
1 are not identifiable. Suggesting a lack of identifiability, mainly from parameter p; when we
have fewer data to fit.

Table B.4 also notes that the parameters estimated for experiment 1 are identifiable. It
is different from experiments 12, 13, and 14, where all their parameters are non-identifiable.
For this scenario 2, we can observe that for most experiments with a time of 20 days to
fitting (except experiments 1 and 9 with R§ = 3), the R§ is non-identifiable. Moreover, all
parameters estimated are also non-identifiable, especially for these cases, excluding experiment
2. Suggesting perhaps the necessity of more fit data to guarantee the identifiability, such as we
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can see occur more frequently in experiments with more fit times.

Another situation to comment on here is that for most experiments where the quarantine
parameter p is estimated, the results mainly for Rf result non-identifiable, excluding only
experiment 5 for fit time 40, and R{ assumed as 4 and 5, and experiment 6 for fit time 40, and

G = 3, and 4. Besides, for some quarantine parameters estimated from experiments 5 and
6 with fit time 40, the result is identifiable, mostly when the fit data are generated assuming
p = 0.01. We can think that when more population is quarantined in the initial phase, the lack
of identifiability increases.

4.4 Application to regional Chilean data

We decided to apply our methodology to the data collected for some Chilean regions. From
the structural and practical results obtained for our model, we will apply the study to two
cases, one to scan the initial phase (first 30 days) and another for an intermediate phase (first
120 days), considering the data before the change of quarantine criteria applied by the Chilean
government. To explain the region selection and the phenomena of the COVID-19 in Chile, we
include the following Subsection.

4.4.1 The early transmission of COVID-19 in Chile

We wish to apply the COVID-19 model of Section 4.2.1 to some administrative regions
of Chile (see Figure 4.4), where there are regions without quarantine periods, others with
more than one quarantine period, a situation that the Chilean government named “dynamical
quarantines”. This policy was in effect until July 27 2020. In addition, this measure was
applied only to municipalities with a greater incidence of positive cases for COVID-19. For
this reason, we consider a decoupled analysis to select the regions to analyze until July 27
2020, assuming the day of the first positive case as the first day for the timeline of each region
and July 27 2020 as the last day. Since the onset of COVID-19 in Chile, the Ministry of
Health has been reporting new cases of infection and death daily for each region and new cases
of recovered persons at the national level. The official information (see [103,105] for official
details) also includes the daily numbers of polymerase chain reaction (PCR) tests applied, as
well as the daily numbers of critical patients and occupancy of intensive care units (ICUs).
A timeline of strategies and measures implemented to contain the pandemic is summarized in
Table 4.4. Several times the Chilean Ministry of Health changed the case and death definitions.
Table 4.5 lists the most relevant of these changes along with their dates. Considering the
difficulties associated with the changes in case definitions, we decided to include data reported
for symptomatic and asymptomatic in the COVID-19 model. Total data correspond to the
addition of symptomatic and asymptomatic cases reported because an asymptomatic (tested)
case may become symptomatic later.
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Par. R Experiment
Est. | P | [1[2[3]4[5]6[7[8[9[10[11][12]13]14
3
001 | 4
5
“ 3
0.05| 4
5
3
001 | 4
5
g 3
005 | 4
5
3
001 | 4
5
Ps 3
0.05| 4
5
3
001 | 4
5
1,(0) 3
0.05| 4
5
3
001 | 4
5
J(0) 3
0.05| 4
5
3
001 | 4
5
b 3
0.05| 4
5
3
001 | 4
5
R() 3
0.05| 4
5

Table 4.3: Summarize of results obtained for Scenario 2. The green box represents that the
parameter estimated satisfies the parameter identifiability conditions, i.e., this has small interval
confidence with mean value-centered and a low MSE. The parameter that does not meet the
identifiability criteria is colored red boxes.
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Date  Measure

16 Mar Closing of schools and universities

18 Mar Declaration of national emergency and border closure
Massive tests using the PCR test in each region

19Mar Store closings except for pharmacies, banks, and supermarkets

21 Mar Closing of entertainment centers

22 Mar Declaration of national curfew between 10:00 PM and 5:00 AM

26 Mar Start of lockdown and quarantine in different municipalities

8 Apr  Mandatory use of face masks in public spaces

25Jul  The Chilean government declared a gradual re-opening plan (“Paso a Paso”)
with different levels of permitted activities at each step. Municipalities may
move forward or backward in steps, depending on local conditions

Table 4.4: The Chilean government applied the following public health interventions during
the first wave in 2020 to contain the COVID-19 epidemic.

Date New criterion

29 Apr Incorporation status “asymptomatic,” i.e., people without
symptoms but with PCR positive.

1Jun Deaths without a diagnosis but with suspected symptoms of COVID-19
or indeterminate PCR are added to official daily reports.

2Jun  Report of PCR tests applied for each region is suspended (for approx. a week).

3Jun Report of recovered cases is suspended.

7Jun 653 deaths added as possible cases of COVID-19 (patients with indeterminate PCR
or with symptoms similar to those caused by COVID-19), and 96 deaths
of people diagnosed do not have a precise regional distribution in the
reports, due to a change in the region of residence

17 Jun The status “without notifying” is created in the daily reports, summing 31422 cases of
people with PCR + who were not reported in the system on diagnosis (reports delayed).

Table 4.5: Changes in criteria of reported data

4.4.2 Experiments applied to regional data

Understanding and analyzing the type of information and data published by the Chilean
government, we find regions with more than one quarantine period. Now, comparing it with
the conclusions obtained by our identifiability study, where we have results from experiments
with a population without quarantine periods and only one quarantine. Then, with this in
mind, we select administrative regions that satisfy some of these conduct,

1. Have one unique quarantine period for the first 30 days or 120 days.

2. The first 30 days or 120 days do not have quarantine periods.

We desire that the data has a growing number of reported cases in both situations, i.e., do not
have consecutive zeros cases (robust data).
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Figure 4.4: The 16 administrative regions of Chile [54] and their population according to the
2017 census [58]. The Roman numbers are the official administrative numbers of the geographic
regions. The greater Santiago area is the Metropolitan region (RM) and counted as region 13.
Note that numbering is not strictly ordered from north to south; regions 14 to 16 have been
created by dividing existing regions. The total population at the end of 2020 is estimated at
19.1 million.

Overall, the experimental results, using simulated data to analyze the identifiability of the
parameters (structural and practical), the best results are achieved when are estimated the sets
(B, R§), and (B,J(0),I5(0), R;). However, we will try to observe the quarantine parameter,
estimating the sets (8,p, RS), and (8,p, J(0), 15(0), R;), for the case that the region has a
single quarantine period, even knowing that these parameters are not always identifiable from
the experimental results in the initial phase. However, we will try to observe the quarantine
parameter, estimating the sets (5, p, R§), and (5, p, J(0), I5(0), RS), for the case that the region
has a single quarantine period, even knowing that these parameters are not always identifiable
from the experimental results. Particularly in the initial phase, more details in the Table 4.6.

Subsequently, we filter the regional data for two periods, one for the first 30 days and the
other for 120 days, and we select some of those that meet the conditions numbered before. We
have established the following regions for our application.
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Without Quarantine With Quarantine
Parameter set - -
Structural ‘ Practical Structural ‘ Practical
(8, R§) Identifiable  Identifiable  Identifiable Identifiable
Identifiable Identifiable
, ,15(0), RS Identifiabl Identifiable
(8,J(0),I5(0), R) dentifiable Tpy > 20 days entifiable Ty > 20 days
. . Identifiable T'y;, = 40
(B,p, RS) Identifiable Rt =5 and p = 001
(B,p, J(0),15(0), RS) Identifiable Nonidentifiable

Table 4.6: Summary of the identifiable parameters concluded from the structural and practical
identifiability study used in the application to Chilean data.

e Regions 1 (Tarapaca) and 8 (Bio-Bio), without quarantine periods in the initial phase
and one quarantine in the final phase.

e Regions 3 (Atacama) and 4 (Coquimbo) were without quarantine during the 120 days.

e Region 10 (Los Lagos) had one quarantine in the initial phase.

Then, with this regional data, we applied our identifiability study to two events,

1. Regions without quarantine, estimating the following sets

Experiment 1: (5, RS)
Experiment 2: (5, J(0), I5(0), R§)

Depending on the phase analyzed, we selected the time of 30 or 120 days to fit.

2. Regions with quarantine, estimating the following sets

Experiment 1: (8, p, Rf)
Experiment 2: (5, p, J(0), 15(0), R§)

We are preserving the same consideration for the time fit.

Left plot in figures 4.5, and 4.6 displays the regional data distributions, including some dates
of quarantine measures and important holidays.

Establishing the experiments and the Chilean data for the analysis process, we need to fix
the values of the parameters which are not estimated. We consider the same parameters taken
for the analysis with synthetic data, only including the values for 1/a = 5 and ps = 0.5, like
averages. These assumptions are in Table B.5 in Appendix B.

Quarantine parameters A and p are assumed as zero when the experiment does not involve
quarantine periods. Alternatively, the parameter p is estimated depending on the region, and
the parameter 1/\ takes values about the quarantine duration applied to it (See Appendix B,
Table B.6).
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Initial contiditions satisfy the considerations assumed in the identifiabilty study, i.e.,
R(0) = Q(0) = D(0) =0, E1(0) =2J(0), Ey(0) =4J(0) — E1(0), 1,(0) = min J(0), 1,

S(0) = N — E1(0) - Ex(0) — L,(0) - 1,(0) — A(0) — J(0),

where for the case when J(0), I5(0) are estimated, these comply 0 < J(0) < C(0), and 0 <
I4(0) < 300. But, when these are assumed, we consider their values as J(0) = 1 and [,(0) = 10.

4.4.3 Application results

Finally, applying our methodology to Chilean regions data selected for the experiments de-
fined, we obtained the fits plotted in Figure 4.5-4.6, the colored Table 4.8 which we constructed
following the same procedure as the last colored tables for the structural and practical analysis.
Where are observed the 95% confidence intervals obtained by the 250 replicate of Bootstrap-
ping process and the MSE (See Tables B.8-B.9, and Figures B.10-B.16). Studying the colored
table, we note that in most cases, the parameters § and R§ (computed) are identifiable, except
Region 10, which has a quarantine period in the first 30 days. Maybe having one quarantine
with few points to fit, our model does not have success, and the estimations generated are
non-identifiable. As expected, given the results summary in the table 4.6. Region 8 has a
short quarantine period in the middle of the final phase, and fitting it region to 120 days from
data has difficulty estimating the parameter sets identifiable. On the other hand, Region 1
with a lengthy quarantine period in the final phase has trouble estimating the parameters in
experiment 2. Perhaps the initial conditions include more noise in the estimation. In short of
these two last regions, we can see that the duration of quarantine and the phase analyzed can
be decisive when estimating parameters; these examples suggest that we need to explore more
combinations of quarantine periods in our COVID-19 model. In addition to this, the parameters
estimated from experiments applied to Regions 3 and 4 are identifiable, as expected, given the
structural and practical identifiability demonstrated for our model using our methodology. In
the same way, we verify the identifiability obtained for experiments 1 and 2 applied to Region
8, and Region 1 has only parameters identifiable when we use experiment 2. However, their
confidence intervals are not distant when we apply experiment 1. Maybe the noise contributed
by initial conditions is more prevalent in Region 1 than in Region 8.
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Exp. Tj region B p 15(0) J(0)  R§comp presnorm
without quarantine

30 1 1.10459 2.30859  1.40E+02

1 30 8 1.55171 3.24307  3.17E+03
120 3 0.69428 1.45104  5.28E-+03

120 4 0.73344 1.53288 8.88E-+04

30 1 1.08156 11.23401  1.00000 2.26045 1.40E+02

5 30 8 1.12597 52.89334  1.00000 2.35327 2.37E+03
120 3 0.68112 14.52313 0.99994 1.42353 5.23E-+03

120 4 0.61346 148.95176 2.00000 1.28214 5.63E+04

with quarantine

30 10 2.80707 0.08965 5.86678  9.20E+02

1 120 1 2.54383 0.05503 5.31660 1.21E+05
120 8 5.00000 0.54340 10.45000 1.44E-+05

30 10 3.70074 0.12446  5.43419  0.99998 7.73455 9.11E+02

2 120 1 1.50472 0.03014 53.68752 0.61428 3.14486 1.05E+05
120 8 3.53811 0.41259 62.03312 0.98066 7.39466 1.10E+05

Table 4.7: Parameter estimation results for the application with Chilean data.
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Figure 4.5: The left plot has blue bars representing the daily cases reported in the region con-

sidered to apply experiments 1 and 2. The magenta and cyan lines show a proportion between
symptomatic and asymptomatic patients. The plots in the middle and right represent the re-
gional data (blue points) and the best-fit (red line) obtained by each experiment (estimated
parameter sets are summarized in Table 4.7).
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Figure 4.6: The left plot has blue bars representing the daily cases reported in the region con-
sidered to apply experiments 1 and 2. The magenta and cyan lines show a proportion between
symptomatic and asymptomatic patients. The blue shaded areas indicate the quarantine period
declared. The plots in the middle and right represent the regional data (blue points) and the
best-fit (red line) obtained by each experiment (estimated parameter sets are summarized in
Table 4.7).
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Table 4.8: Parameter identifiability verification. The parameter sets estimated in the experi-
ments fitting regional Chilean data are classified between identifiable and non-identifiable. The

green box represents that the parameter estimated satisfies the parameter identifiability con-

ditions, i.e., the confidence intervals (obtained through the Bootstrapping process) are narrow

and their mean values have a central position in the gap; furthermore, its MSE is small. The
parameter that does not meet the identifiability criteria is colored red boxes and the cases not

studied are painted gray.



CHAPTER 5

Conclusions and future works

Conclusions

Here we present a summary with the main contributions and conclusions of the thesis.

e In Chapter 1 our systematic comparison of a number of epidemic outbreaks using phe-
nomenological growth models indicates that the GLM outperformed the other models in
describing the great majority of the epidemic trajectories. In a few cases (such as Cases 3,
4, 23, and 28) the GGoM outperformed the other models. These findings indicate that
the parameter p plays a much more significant role in shaping the dynamic trajectories
supported by the GLM compared to the GoM since we observed that the errors of the
GoM and GGoM models stay fairly close to each other and the contribution of the ad-
justment of p remains subtle in some cases. In fact, a closer examination of the parameter
estimates derived from both models GoM and GGoM indicates that parameter p is close
to 1 in these models, which explains the similarity in the fits derived from these models.
So the GGoM model could be reduced to GoM without much impact on the model fit.
This is in sharp contrast to what is happening with the logistic models where both the
LM and GLM models only yield similar fits for three epidemics. Future research could be
directed at determining which of the models equipped with generalized growth are easier
to calibrate than the other, considering the initial or final parts of the dynamics and with
the aim to improve predictions.

Referring to the parameter estimation procedure and the need to provide an initial so-
lution to the optimization numerical methods, we have found that Matlab functions and
the steps defined in the section 1.3.3, are sufficient for the present study, in agreement
with the experience made in [32,170]. However, since there is a limited range for some
of the parameters (as is the case of parameter p, but not of the others) it might be
interesting in future work to use metaheuristic procedures to the parameter estimation
that possibly guarantee in an appropriate form that the parameters found are indeed
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optimal globally. As is mentioned in [130], such procedures include simulated annealing
(see, e.g., [128,132,133]), variable neighborhood search (VNS) [132,133], and the so-called
firefly algorithm [8].

While we compared phenomenological growth models based on their ability to describe
empirical trajectories of real epidemics, our methodology could be extended to assess
the “distance" between models in terms of the range of dynamics supported by model
A that can also be supported by model B and vice versa. For instance, based on our
empirical findings we hypothesize that the distance between the LM and GLM models is
larger compared to the distance between the GoM and GGoM models. Importantly such
distance could be derived for any pair of models regardless of model complexity. Future
work could explore this research direction by analyzing a larger set of dynamic models
including phenomenological and mechanistic models.

In Chapter 2, first of all, let us recall that the purpose of this work is not primarily a fit of
determined phenomenological growth models to specific data but to introduce a general
methodology of applying statistics to medicine and biology. Nevertheless, we may briefly
comment the specific outcome for the five models studied in this paper before coming to
possible extensions.

Overall, we can say that in light of the results of the application of the methodology
to different types of growth curves, the GLM produces curves that are closer to the
(simulated) data than other models, and the curves produced by the GGoM are most
distant to the other models. Besides, the results indicate that introducing the parameter p
within the GLM and RM significantly improves the adjustment compared with the original
logistic model (LM), while most results obtained with the GGoM lead to parameters p ~ 1
in most fits, that is, the GGoM is essentially reduced to the GoM with parameters © =
(r,b) with p = 1. To further highlight the value of the GLM, we mention that this model
does not only better approximate the dynamics of data obtained by simulation with other
models but as Section 2.4 illustrates, also captures better real data due the advantageous
contribution of the growth scaling parameter p. This fact is also demonstrated in our
previous work [22|. A possible “mechanistic” explanation of the superiority of the GLM
could be related to the different degrees of influence of the parameters. For example,
within the GLM we have C(t) — K as t — 00, so we simply need to adjust K to specify
a final size of the epidemic while varying r and p does not affect this property. In contrast,
as follows from (2.10) (see also |22]), for the GGoM with 0 < p < 1 we have

Ct) = (1 =p)(r/b) + CO )P as i — oo,

which means that the final size of the epidemic depends on a number of parameters, in
particular the exponent p that is supposed to characterize early growth, and on the initial
size of the epidemic C'(0), which is usually a small number that can hardly be determined
with certainty. Probably the fact that within the GLM the early and late stages of the
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epidemic are dominantly influenced by different parameters, namely p and r; and K,
respectively, provides an advantage for reliable parameter identification.

Our interest in the range 0 < p < 1 for the GLM and GGoM comes from the wish
to characterize sub-exponential initial growth, as is motivated in [42,45, 170]. However,
this same parameter p can have another nature in the RM, where there are studies with
p > 1, for example, the papers [10,161|, where we recall that in [22] it was stated that the
parameter p within the RM does not serve as an adjustable parameter to capture sub-
exponential initial growth. Rather, by its position within the RM the parameter p could
allow the shape of upper part of the cumulative curve to be independent of the shape of
the lower part, i.e., measures the extent of deviation from the S-shaped dynamics of the
classical logistic growth model. Besides, as the parameter p tends to zero, the RM curve
tends towards the Gompertz growth curve in the sense dC/dt = rC(t) In(K/C(t)) (see our
discussion of the autonomous form of the Gompertz differential equation in Sect. 2.2.1).
There are other studies on different forms to generalize PGMs, as [161] which shows for
case of logistic growth, different to our idea of generalized growth model with rC(¢)?,
where p is a scaling parameter. Therefore future work will study the EDDs distances
between other generalized PGMs. Then if we consider the range p > 1 for the RM, we
can see that this model captures the dynamics of influenza data better than the GLM, as
is evidenced in Figure 2.13 and Table 2.12.

We emphasize that our restriction to just five PGMs (namely the LM, GLM, GoM, GGoM,
and RM) does in no way represent a limitation inherent to the present approach. In fact,
it is not the intention of the present work to provide an exhaustive survey of PGMs in
epidemiology but to introduce a methodology to compare PGMs within a small selection
with each other. In this sense, other models could be examined as well with the same

methodology. For instance, one could consider the four-parameter so-called generalized
Richards model (GRM; see 32,36,119|) given by

f(t.C;0)=rC?(1-(C/K)"), ©=(rpqK), rq¢gK>0 0<p<l1

that combines the generalizations of the GLM (2.2) and the RM (2.5).

Finally, we remark that the methodology of the present work could also be applied to
other applications where describing growth by phenomenological models is of interest. As
an example, we mentioned in Section 2.1.2 the growth of tumours. In fact, there there is a
wealth of alternative phenomenological growth models designed for that application, and
to which the present methodology could be applied in future work. We refer to [60,63,147]
for overviews, and as one specific example the so-called Gomp-ex law (proposed in [181];
see [63]) that for the autonomous form (2.7) can be specified as

Cla—0bInCuy) if 0 < C < Cui,

0= (CL, b, Ccrit)a
C(a—blnC) if C' > Cly,

¢(C;0) = (t,C;0) :{
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where the Gompertz law (under suitable choices of the constants a and b) comes into
effect only for sufficiently large populations (i.e., whose size is larger or equal to a given
critical size Cqy;), but below Cyyy growth is exponential [63].

Chapter 3 characterizes the transmission dynamics of the COVID-19 pandemic in Colom-
bia by fitting mathematical models to national and regional data. Besides, the forecasts
are also included. Our results indicate that the sub-epidemic model is the most accurate
in terms of calibration and forecasting performances. More importantly, the regional and
national level GLM and RM forecasts point towards a continuous declining trend in the
epidemic trajectory compared to the sub-epidemic model that can reproduce the sus-
tained growth pattern particularly distinguishable for the national, Caribbean Andean,
and the Pacific region. Overall, the transmission dynamics show sustained disease trans-
mission during the early phase of the COVID-19 pandemic exhibiting sub-exponential
growth dynamics at the regional and national levels. As the epidemic progressed, fluctua-
tions in R; we observed, with the most recent estimates that R, < 1.00 indicating disease
containment.

Appropriate short-term forecasts at the national and regional levels can help guide the
intensity and magnitude of public health interventions required to contain the epidemic.
The short-term forecasts from the GLM and RM indicate a sustained decline in the overall
case counts like the forecast produced by the sub-epidemic wave model for the Amazon
and Orinoquia region. However, the sub-epidemic model predicts the stabilization in case
incidence for the national, Andean, Caribbean, and Pacific region. On the contrary, the
mortality curve forecast predicted by the sub-epidemic wave model shows an increase in
death. The different projections obtained should be interpreted with caution, given the
instability in the reporting patterns and reporting delays. Our analysis shows that the
sub-epidemic wave model performs better than the GLM and RM in short-term forecasts
based on the performance metrics (Tables 3.4-B.2). This same situation occurs in the
short term forecasting of the COVID-19 pandemic applied to México in [149] The sub-
epidemic wave model is also a better fit to the epidemic trajectories during the calibration
period compared to the other two models (Tables 3.3-B.1).

The early transmission dynamics of SARS-CoV-2 exhibit similarity at the national and
regional levels. The COVID-19 pandemic in Colombia exhibited sub-exponential growth
dynamics (0 < p < 1) during the early ascending phase of the outbreak at the national and
regional levels. Results are consistent with the sub-exponential growth patterns observed
in other Latin American countries, including México [98] and Chile [153] which also
implemented mask mandates and social distancing interventions along with restricting
mobility during the early growth phase of the pandemic. Simultaneously, the estimates
of early transmission potential (R;) indicate sustained disease transmission in Colombia
at the national and regional levels with 2, > 1. These estimates suggest that although
containment strategies were implemented during the first thirty days to mitigate the
impact of the pandemic (Figure 3.2), additional interventions should be prioritized, such
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as obligatory social distancing and intensified case surveillance. The results of our analysis
are compatible with the estimates of early reproduction numbers retrieved from other
countries, including Peru, Chile, Brazil, and Mexico, which followed similar COVID-19
outbreaks around the same period [70,109,149,153].

This study has some limitations. Such as, the last 11-day case counts are excluded where
we utilize the case counts based on the onset dates in this study because delays in case
reporting, testing rates, and factors related to the surveillance systems can influence our
epidemic projections. Secondly, we relied on the daily updates of cases in the official
surveillance system of Colombia, which can sometimes underreport. Third, the PGMs
applied in this study do not explicitly account for behavioral changes. Thus the results
such as the predicted decline or stability in the epidemic trajectory should interpret with
caution. Lastly, the unpredictable social component of the epidemic on the ground was
also a limiting factor for the study. When the forecasts were generated, we did not know
the ground truth epidemic pattern.

The forecasts need to be interpreted with caution given the spatial heterogeneity in trans-
mission rates and dynamic implementation and lifting of the social distancing measures.
The PGMs employed in this study to forecast and estimate reproduction numbers are
valuable for providing rapid predictions of the epidemics in complex scenarios that can
be used in real-time because these models do not require specific disease transmission
processes to account for the interventions.

In Chapter 4, we present and apply a computational approach developed in ref [134] for
simple epidemic models. However, we propose adapting it to a complex compartmental
model inspired by the first wave of the COVID-19 outbreak in Chile, where quarantines
were declared involving different Chilean regions in early phases. Specifically, we pro-
pose a methodology to analyze the structural and practical parameter identifiability in
a COVID-19 model. We explore the parameter uncertainty computationally through a
parametric bootstrapping approach to achieve that goal. In that exploration, we involve
synthetic data generated with the same COVID-19 model to measure the capability of our
model to recover the parameters assumed to satisfy the criteria for identifiability struc-
tural and practical. Those criteria involve observing the 95% confidence intervals and
the MSE (Mean square error), constructed from empirical distributions resulting from
Bootstrapping process. In this first attempt, we selected some experiments that would
allow us to validate the structural and practical parameter identifiability. We consider
different variables, for example, the number of parameters to fit, the time to fit, and the
quarantine periods. Then, in our methodology, we construct colored tables (e.g., 4.2)
to visualize these qualities. Overall in the results obtained, we observe that parameter
S, and in consequence, R§ are identifiable (when the rest parameters are known). But,
if one more parameter is included, the uncertainty in some cases increases, making the
parameter set non-identifiable. Maybe for dependences between it. The following best
parameter sets in terms of structural identifiability are the sets without initial conditions
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to estimate, especially in the case without quarantines involved. Wherein the cases with
quarantine are more sensitive as a percentage of the population in quarantine increases
and the epidemic growth is Ry < 4, evidence of a lack of identifiability in the model
when the quarantine dynamics are considered. Then, I would take quarantine periods
studied in the models with caution. Expanding the analysis to practical identifiability
in the initial phases, we find a significant loss of parameter identifiability. It compared
with the structural results. Verifying maybe the conclusion shown in ref [139] indicates
the non-identifiability in pre-peak moments. But, we have an interest in analyzing the
initial period to recover the control reproduction number. We consider applying our
methodology in different epidemic periods to evaluate our model parameters a process
essential. In our experiments, we confirm that the § parameter is recovered, and in the
cases when the initial conditions are also estimated, the identifiability is a guarantee for
curves with a growth from ¢ > 20 days. Show another exciting characteristic, the depen-
dence between the fit times and the growth rates, besides quarantine periods, which also
affect the identifiability, but maintain the § parameter identifiable. Finally, collecting
the conclusions from the experiment with synthetic data, we select the parameter sets
(8), and (B, J(0), I5(0)) for periods without quarantine, and (53, p), and (8, p, J(0), 15(0))
for periods with quarantine, to be fitting with Chilean data for some regions. We find
that the model parameters are not identifiable in the Chilean regions with a quarantine
period in the initial phase. On the other hand, the regions without quarantine periods
have better results, where between more data points are fitted, better estimations. For
future work, we see the necessity of selecting the fit times for each Chilean region because
each one has a particular quarantine declared; besides, the quality data also is variable.
Then we can compare the fit times exposed here |74] and compare the results. Currently,
the values to [ parameter for Region 8 in the initial phase are closed.

Future Work

In general terms we can indicate that the probable scenarios for future research are:

e Increase the comparative study of PGMs to other models not considered, which may be
helpful in mathematical epidemiology or another line of application.

e Mathematically structure the distance between PGMs, which allows better characteriza-
tion of such models for adjusting infectious diseases.

e Likewise, from what has been seen so far for the study of COVID-19 in Chile, it is
necessary to consider quarantine periods in a discrete timeline to recover the reproduction
number more reliably.

e Include a sensitivity study for the estimated parameters, which allows us to understand
their dependencies.
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e Deepen the study of parameter identification in compartmental models to establish a gen-
eralized methodology for the computational analysis. Maybe looking for new processes to
improve the Bootstrapping execution times and new algorithms for estimating parame-
ters, such as the Markov chain Monte Carlo technique (MCMC) or the recent Hamiltonian
Monte Carlo.



CHAPTER O

Conclusiones Generales y Trabajos Futuros

Conclusiones

A continuacion, se presenta un resumen con los principales aportes y conclusciones generadas
en esta tesis.

e En el Capitulo 1 nuestra comparacion sistematica de un nimero de brotes epidémicos,
usando modelos de crecimiento fenomenolégicos indica que el GLM describiendo la gran
mayoria de trayectorias epidémicas se comporta mejor que los otros modelo. En algunos
casos (como los Casos 3, 4, 23, and 28) el GGoM superd a los otros modelos. Estos
hallazgos indican que el parametro p juega un papel mucho mas importante en la con-
figuracion de las trayectorias dindmicas respaldadas por el GLM en comparaciéon con el
GoM, ya que, observamos que los errores de los modelos GoM y GGoM permanecen bas-
tante cerca uno del otro y la contribuciéon del ajuste de p sigue siendo sutil en algunos
casos. De hecho, un examen mas detallado de las estimaciones de pardmetros derivadas
de ambos modelos, GoM y GGoM, indica que el parametro p esta cerca de 1 en estos
modelos, lo que explica la similitud en los ajustes derivados de estos modelos. Entonces,
el modelo GGoM podria reducirse a GoM sin mucho impacto en el ajuste del modelo.
Esto contrasta marcadamente con lo que sucede con los modelos logisticos, donde tanto
el modelo LM como el GLM solo arrojan ajustes similares para tres epidemias. Futuras
investigaciones podrian estar dirigidas a determinar cuales de los modelos equipados con
crecimiento generalizado son mas faciles de calibrar que otros, considerando las partes
inicial o final de la dindmica y con el fin de mejorar las predicciones.

En referencia al procedimiento de estimacion de parametros y la necesidad de dar una
solucion inicial a los métodos numéricos de optimizacion, hemos encontrado que las fun-
ciones de Matlab y los pasos definidos en la seccionl.3.3, son suficientes para el presente
estudio, de acuerdo con la experiencia realizada en [32,170]. Sin embargo, dado que hay
un rango limitado para algunos de los parametros (como es el caso de parametro p, pero
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no de los otros) podria ser interesante en trabajos futuros usar procedimientos meta-
heuristicos para la estimacion de pardmetros que posiblemente garanticen en forma ade-
cuada que los pardmetros encontrados son efectivamente 6ptimos globalmente. Como
se menciona en [130], dichos procedimientos incluyen recocido simulado (ver, por ejem-
plo, [128,132,133]), blisqueda de vecindad variable (VNS) [132,133], y el llamado algoritmo
firefly [8].

Si bien comparamos modelos de crecimiento fenomenolégico en funcién de su capacidad
para describir trayectorias empiricas de epidemias reales, nuestra metodologia podria
extenderse para evaluar la “distancia” entre modelos en términos del rango de dindmica
respaldado por el modelo A que también puede ser respaldado por el modelo B y viceversa.
Por ejemplo, con base en nuestros hallazgos empiricos, planteamos la hipdtesis de que
la distancia entre los modelos LM y GLM es mayor en comparacién con la distancia
entre los modelos GoM y GGoM. Es importante destacar que dicha distancia podria
derivarse para cualquier par de modelos, independientemente de complejidad del modelo.
Un trabajo futuro podria ser explorar esta direccion de investigacion mediante el anéalisis
de un conjunto mas amplio de modelos dinamicos, incluidos los modelos fenomenolégicos
y mecanicistas.

En el Capitulo 2 En primer lugar, recordemos que el proposito de este trabajo no es
principalmente un ajuste de determinados modelos de crecimiento fenomenologico a datos
especificos, sino introducir una metodologia general de aplicacion de la estadistica a la
medicina y la biologia. Sin embargo, podemos comentar brevemente el resultado especifico
de los cinco modelos estudiados en este trabajo antes de llegar a posibles extensiones.

En general, podemos decir que a la luz de los resultados de la aplicacion de la metodologia
a diferentes tipos de curvas de crecimiento, el GLM produce curvas que estan mas cerca
de los datos (simulados) que otros modelos, y las curvas producidas por el GGoM son
mas distanted a las otros modelos. Ademaés, los resultados indican que introduciendo el
parametro p dentro del GLM y RM mejoran significativamente el ajuste en comparacion
con el modelo logistico original (LM), mientras que la mayoria de los resultados obtenidos
con el GGoM conducen a parametros p =~ 1 en la mayoria de los ajustes, es decir, el GGoM
se reduce esencialmente al GoM con parametros © = (r,b) con p = 1. Para resaltar atin
més el valor del GLM, mencionamos que este modelo no solo se aproxima mejor a la
dindmica de datos obtenidos por simulacién con otros modelos pero, como ilustra la
Secciéon 2.4, también captura mejores datos reales debido a la contribucion ventajosa del
parametro de escala de crecimiento p. Este hecho también se demuestra en nuestro trabajo
anterior [22]. Una posible explicacién "mecanicista" de la la superioridad del GLM podria
estar relacionada con los diferentes grados de influencia de los parametros. Por ejemplo,
dentro del GLM tenemos C(t) — K como t — oo, por lo que simplemente necesitamos
ajustar K para especificar el tamano final de la epidemia mientras que variar r y p no
afecta esta propiedad. En contraste, como sigue de (2.10) (ver también [22]), para el
GGoM con 0 < p < 1 tenemos
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C(t) = (1= p)(r/b) + C0) )™ agt — oo,

lo que significa que el tamano final de la epidemia depende de una serie de parametros,
en particular del exponente p que se supone caracteriza el crecimiento temprano, y en el
tamano inicial de la epidemia C(0), que suele ser un nimero pequenio que dificilmente
se puede determinar con certeza. Probablemente el hecho de que dentro del GLM las
primeras y tltimas etapas de la epidemia esta predominantemente influenciada por difer-
entes parametros, a saber, p y r; y K, respectivamente, proporciona una ventaja para
una identificacion fiable de los parametros.

Nuestro interés en el rango 0 < p < 1 para GLM y GGoM proviene del deseo de caracteri-
zar el crecimiento inicial sub-exponencial, como se motiva en [42,45,170]. Sin embargo,
este mismo parametro p puede tener otra naturaleza en la RM, donde hay estudios con
p > 1, por ejemplo, los trabajos [10,161], donde recordamos que en [22] se indicd que el
parametro p dentro del RM no sirve como un parametro ajustable para capturar el crec-
imiento inicial subexponencial. Mas bien, por su posicion dentro del RM, el parametro p
podria permitir que la forma de la parte superior de la curva acumulativa sea independi-
ente de la forma de la parte inferior, es decir, mide el grado de desviaciéon de la dindmica
en forma de S de el modelo de crecimiento logistico clasico. Ademas, como el parametro p
tiende a cero, la curva RM tiende hacia la curva de crecimiento de Gompertz en el sentido
dC/dt = rC(t) In(K/C(t)) (ver nuestra discusion de la forma auténoma de la ecuacion
diferencial de Gompertz en la Secc. 2.2.1). Hay otros estudios sobre diferentes formas
de generalizar PGMs, como [161] que muestran una idea para el crecimiento logistico,
diferente a nuestra idea de modelo de crecimiento generalizado, con rC(t)?, donde p es
un parametro de escalamiento. Por lo tanto, un trabajo futuro podria ser estudiar las
distancias EDD entre otros PGM generalizados. Entonces si consideramos el rango p > 1
para el RM, podemos ver que este modelo captura la dindmica de los datos de influenza
mejor que el GLM, como es evidenciado en la figura 2.13 y Tabla 2.12.

Hacemos hincapié en que nuestra restriccion a solo cinco PGMs (a saber, LM, GLM,
GoM, GGoM y RM) no representa de ninguna manera una limitaciéon inherente al pre-
sente enfoque. De hecho, no es la intencion del presente trabajo proporcionar un estudio
exhaustivo de los PGMs en epidemiologia, sino introducir una metodologia para comparar
PGMs dentro de una pequena seleccion entre si. En este sentido, otros modelos podrian
ser examinados también con la misma metodologia. Por ejemplo, se podria considerar el
llamado modelo de Richards generalizado (GRM; ver [32,36,119]) de cuatro parametros
dado por

f(t,C;0)=rC?(1-(C/K)?), ©=(rpq¢K), rq¢K>0 0<p<l1

que combina las generalizaciones del GLM (2.2) y el RM (2.5).
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Finalmente, remarcar que la metodologia del presente trabajo también podria aplicarse a
otras aplicaciones, donde es de interés describir el crecimiento mediante modelos fenomenologi-
cos. Como ejemplo, mencionamos en la Seccion 2.1.2 el crecimiento de tumores, de hecho,
hay una gran cantidad de modelos alternativos de crecimiento fenomenologico disenado
para esta aplicacion, y en la cual la metodologia actual podria aplicarse en trabajos fu-
turos. Nos referimos a [60, 63, 147] para obtener informacion general, y como ejemplo
especifico de la llamada ley Gomp-ex (propuesta en [181]; ver [63]) que para la forma
auténoma (2.7) puede especificarse como

O(CL —bln Ccrit) if0<C < Ccrit;

@ == (CL, b, Ccrit>a
Ca—0bInC) if C' > Clit,

p(C;0) = (t,C;0) = {
donde la ley de Gompertz (bajo elecciones adecuadas de las constantes a y b) entra en
vigor solo para poblaciones grandes (es decir, cuyo tamafio es mayor o igual a un tamano
critico dado Cq), pero por debajo de Cy el crecimiento es [63] exponencial.

En el Capitulo 3 se caracteriza la dindmica de transmision de la pandemia de COVID-19 en
Colombia ajustando modelos mateméaticos a datos nacionales y regionales. Ademas, tam-
bién se incluyen las previsiones. Nuestros resultados indican que el modelo subepidémico
es el més preciso en términos de desempeno de calibracion y prondstico. Mas impor-
tante atn, los pronosticos GLM y RM a nivel regional y nacional apuntan hacia una
tendencia descendente continua en la trayectoria epidémica en comparacion con el mod-
elo subepidémico que puede reproducir el patréon de crecimiento sostenido particular-
mente distinguible para la region nacional, el Caribe Andino y el Pacifico. En general, la
dindmica de transmisiéon muestra una transmisiéon sostenida de la enfermedad durante la
fase inicial de la pandemia de COVID-19, mostrando una dinidmica de crecimiento subex-
ponencial a nivel regional y nacional. A medida que avanzaba la epidemia, observamos
fluctuaciones en Ry, y las estimaciones mas recientes de R; < 1,00 indican contenciéon de
la enfermedad.

Los pronésticos a corto plazo apropiados a nivel nacional y regional pueden ayudar a
orientar la intensidad y la magnitud de las intervenciones de salud piblica necesarias
para contener la epidemia. Los pronésticos a corto plazo del GLM y RM indican una
disminuciéon sostenida en el conteo general de casos como el pronostico producido por el
modelo de onda subepidémica para la Amazonia y la Orinoquia. Sin embargo, el modelo
subepidémico predice la estabilizacion de la incidencia de casos para la region nacional,
Andina, Caribe y Pacifico. Por el contrario, la curva de mortalidad prevista por el mod-
elo de onda subepidémica muestra un aumento de la muerte. Las diferentes proyecciones
obtenidas deben interpretarse con cautela, dada la inestabilidad en los patrones de no-
tificacion y los retrasos en la notificacion. Nuestro anélisis muestra que el modelo de
onda subepidémica funciona mejor que el GLM y el RM en los pronoésticos a corto plazo
basados en las métricas de rendimiento (Tablas 3.4-B.2). Esta misma situacion ocurre
en el pronostico de corto plazo de la pandemia de COVID-19 aplicado a México en [149|
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El modelo de onda subepidémica también se ajusta mejor a las trayectorias epidémi-
cas durante el periodo de calibracion en comparacion con los otros dos modelos (Tablas
3.3-B.1).

La dindamica de transmision temprana del SARS-CoV-2 exhibe similitudes a nivel nacional
y regional. La pandemia de COVID-19 en Colombia exhibié una dinamica de crecimiento
subexponencial (0 < p < 1) durante la fase ascendente temprana del brote a nivel nacional
y regional. Los resultados son consistentes con los patrones de crecimiento subexponen-
cial observados en otros paises de América Latina, incluidos México [98] y Chile [153],
que también implementaron mandatos de mascara e intervenciones de distanciamiento
social junto con la restriccion de la movilidad durante la fase inicial de crecimiento de la
pandemia Simultaneamente, las estimaciones del potencial de transmision temprana (Ry)
indican una transmision sostenida de la enfermedad en Colombia a nivel nacional y re-
gional con R; > 1. Estas estimaciones sugieren que aunque se implementaron estrategias
de contencién durante los primeros treinta dias para mitigar el impacto de la pandemia
(Figura 3.2), se deben priorizar intervenciones adicionales, como el distanciamiento so-
cial obligatorio y la intensificaciéon de la vigilancia de casos. Los resultados de nuestro
analisis son compatibles con las estimaciones de los nimeros de reproducciéon temprana
recuperados de otros paises, incluidos Pert, Chile, Brasil y México, que siguieron brotes
similares de COVID-19 en el mismo periodo [70,109, 149, 153].

Este estudio tiene algunas limitaciones. Por ejemplo, se excluyen los recuentos de casos
de los tultimos 11 dias cuando utilizamos los recuentos de casos en funcién de las fechas de
inicio en este estudio porque los retrasos en la notificacion de casos, las tasas de prueba y
los factores relacionados con los sistemas de vigilancia pueden influir en nuestras proyec-
ciones epidémicas. En segundo lugar, nos basamos en las actualizaciones diarias de casos
en el sistema de vigilancia oficial de Colombia, que en ocasiones pueden subregistrarse.
En tercer lugar, los PGM aplicados en este estudio no tienen en cuenta explicitamente los
cambios de comportamiento. Por lo tanto, los resultados como la disminucién prevista
o la estabilidad en la trayectoria de la epidemia deben interpretarse con cautela. Por
ultimo, el componente social impredecible de la epidemia sobre el terreno también fue un
factor limitante para el estudio. Cuando se generaron los prondsticos, no conociamos el
patrén epidémico real.

Los pronosticos deben interpretarse con cautela dada la heterogeneidad espacial en las
tasas de transmision y la implementacion dindmica y el levantamiento de las medidas de
distanciamiento social. Los PGM empleados en este estudio para pronosticar y estimar
los niimeros de reproduccion son valiosos para proporcionar predicciones rapidas de las
epidemias en escenarios complejos que se pueden usar en tiempo real porque estos modelos
no requieren procesos especificos de transmision de enfermedades para dar cuenta de las
intervenciones.

En el capitulo 4, presentamos y aplicamos un enfoque computacional desarrollado en
ref. [134] para modelos epidémicos simples. Sin embargo, proponemos adaptarlo a un
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modelo compartimental complejo inspirado en la primera ola del brote de COVID-19 en
Chile, donde se declararon cuarentenas que involucraron a diferentes regiones chilenas en
fases tempranas.

Especificamente, proponemos una metodologia para analizar la identificabilidad estruc-
tural y practica de pardmetros en un modelo COVID-19. Entonces para lograr ese ob-
jetivo, exploramos la incertidumbre de los parametros computacionalmente a través de
un enfoque de arranque paramétrico. En esa exploracién, involucramos datos sintéticos
generados con el mismo modelo COVID-19 para medir la capacidad de nuestro modelo
para recuperar los parametros asumidos satisfaciendo los criterios de identificabilidad es-
tructural y practica. Dichos criterios implican observar los intervalos de confianza de
95% y el MSE (Mean square error), construidos a partir de Iss distribuciones empiricas
resultantes del proceso Bootstrapping. En este primer intento, seleccionamos algunos
experimentos que nos permitieran validar la identificabilidad estructural y practica de los
parametros. Consideramos diferentes variables, por ejemplo, la cantidad de parametros a
ajustar, el tiempo de ajuste y los periodos de cuarentena. Luego, en nuestra metodologia,
construimos tablas de colores (e.g., 4.2) para visualizar estas cualidades. En general, en
los resultados obtenidos, observamos que el parametro /3 y, en consecuencia, R son iden-
tificables (cuando se conocen los demés parametros). Pero, si se incluye un pardmetro
més, la incertidumbre en algunos casos aumenta, haciendo que el conjunto de parametros
no sea identificable. Quiza por dependencias entre estos. Los siguientes mejores conjuntos
de pardametros en términos de identificabilidad estructural son los conjuntos sin estimar
las condiciones iniciales, especialmente en el caso sin cuarentenas involucradas. Donde
los casos con cuarentena son mas sensibles a medida que aumenta el porcentaje de la
poblacién en cuarentena y el crecimiento epidémico es Ry < 4, evidenciando de falta de
identificabilidad en el modelo cuando se considera la dindmica de la cuarentena. En-
tonces, tomaria con cautela los periodos de cuarentena estudiados en los modelos. Ahora,
ampliando el anélisis a la identificabilidad practica en las fases iniciales, encontramos una
pérdida importante de identificabilidad de los pardmetros, comparado con los resultados
estructurales. Verificando tal vez la conclusion que se muestra en la referencia [139] que
indica la no identificabilidad en los momentos previos al peak. Pero nos interesa analizar
el periodo inicial para recuperar el nimero de reproduccién con control Rf . Por lo que
consideramos esencial aplicar nuestra metodologia en diferentes periodos epidémicos para
evaluar los parametros de nuestro modelo. En nuestros experimentos, confirmamos que
el pardmetro [ se recupera, y en los casos en que también se estiman las condiciones
iniciales, la identificabilidad es una garantia para curvas con un crecimiento de t > 20
dias. Esto, muestran otra caracteristica interesante, la dependencia entre los tiempos de
ajuste y las tasas de crecimiento, ademas de los periodos de cuarentena, que también
afectan la identificabilidad, pero mantienen el parametro S identificable. Finalmente,
recogiendo las conclusiones del experimento con datos sintéticos, seleccionamos los con-
juntos de parametros (), y (8, J(0), I,(0)) para periodos sin cuarentena, y (3,p), v
(B,p,J(0),I5(0)) para periodos con cuarentena, para ajustarse a datos chilenos de algu-
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nas regiones. Encontramos que los paradmetros del modelo no son identificables en las
regiones chilenas con periodo de cuarentena en la fase inicial. Por otro lado, las regiones
sin periodos de cuarentena tienen mejores resultados, donde entre méas puntos de datos se
ajustan mejores estimaciones. Para trabajos futuros, vemos la necesidad de seleccionar
los tiempos adecuados para cada region chilena debido a que cada una tiene declarada
una cuarentena particular; ademaés, la calidad de los datos también es variable. Luego
podemos comparar los tiempos de ajuste expuestos aqui [74] y comparar los resultados.
Actualmente, los valores del parametro § para la Region 8 en la fase inicial estan cerrados.

Trabajo Futuro

En lineas generales podemos indicar que algunos escenarios de interés para futuras investiga-
ciones son:

e Aumentar el estudio comparativo de PGMs a otros modelos no considerados y que pueden
ser utiles en la epidemiologia matemaética, u otra linea de aplicacion.

e Estructurar matematicamente el concepto de distancia entre PGMs, que permitan cara-
terizar mejor tales modelos para el ajuste de enfermedades infecciosas.

e Por lo visto hasta ahora para el estudio del COVID-19 en Chile, se hace necesario con-
siderar periodos de cuarentena en una linea de tiempo discreta, para recuperar de una
forma més confiable en ntimero de reproduccion.

e Incluir un estudio de sensibilidad para los parametros esitmados, que nos permita tener
una conocimiento sobre las dependencias entres estos.

e Profundizar el estudio para establecer una metodologia generalizada para el analisis com-
putacional de la identificabilidad de pardmetros en modelos compartimentales, donde se
involucren nuevos procesos para mejorar los tiempos de ejecucion del Bootstrapping, asi
como nuevos algoritmos para la estimacion de pardmetros, como lo puede ser las técnicas
de Monte Carlo con cadenas de Markov o el reciente Monte Carlo hamiltoniano.



APPENDIX A

MATLAB Programs

Several numerical calculations contained in this work have been performed by using MAT-
LAB routines, in particular, to implement Simulated Annealing we used different MATLAB
functions, such as SIMULANNEALBND, LHSDESIGN, and ODE23S. In the following we ex-

pose the codes used to compute the parameter estimation, errors, and the plots presented in

Section 2.3.2.

clear

close all

for

j=1:7

%Calling to data curves generated with a growth model (model A) using 7 different
selection of parameter p

load (sprintf('Curves—(% d).mat",j))

TTTTTSIISISTTTTTTTT TSI TTITS SIS TTTITTTTT IS IS STS IS TTTTTTTTTSTo

% Data curves are generated replacing the model A solution

% with the parameters summarized in Table 2.

TSI STTSTT TS TSI TSI TSI TS STTISTISTIS TSI TS STSIS TSI TS ST

%Data identification
X0=data(1,2); timevect=data(:,1); CURVES=data(:,2);
%Generating random 10 sets for the initial parameters(theta 1 ,theta 2 ,theta 3)

lhsi=1lhsdesign(10,3); %Latin hypercube sample of 10 values on each of 3 variables, <

assuming in this case O<theta 1 ,theta_2<3, and O<theta_ 3<1
for i=1:3
theta_1s=3%1lhs1(i,1); theta_2s=1x1lhs1(i,2); theta_3s=1hs1(i,3);

thetal—[theta_1s theta_2s theta_3s];

%Fit data curves using another Growth model (Model B)

LB=[0,0,0]; UB=[3,3,1];%Defining Lower and Upper Boundaries for each parameter of <

model B

%Implementation of Simulated Annealing algorithm to function objective to parameter <

estimation of model B
ObjectiveFunction = @(x) min_func(x,timevect ,CURVES ,X0,j);
[P,FVAL ,EXITFLAG ,0UTPUT| = simulannealbnd(0ObjectiveFunction ,thetal ,LB,UB);

%Parameter Estimation results
theta_hat =[];
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theta_hat (1)=P(1); theta_hat(2)=P(2); theta_hat(3)=P(3);

%Compute the incidence curve to Model B with theta hat

[t, G]=slnModelB(theta_hat ,timevect ,X0);

Incidence(:,i)=G;

SIS TTTTT TSI SIITTTT TS ST TTTTTTSI SIS TTTIT TSI SIIT T
% As the GGoM, RM and LM models have explicit solutions ,

% the function slnModelB for these situations correspond

% to their solution expression, but to GLM we used the

% MATLAB function ODE23s to solve their ODE equation.
TSI TIT TSI SIITTTT TSI TTTTSITSISSSITITITTTSISISIS SIS T o

%Compute errors

RMSEB (: ,i)=sqrt (mean((Incidence (:,i)—CURVES)."2));
SSEB (:,i)=sum((Incidence (:,i)—CURVES)."2);

MAEB (:,i)=mean(abs(Incidence (:,i)—CURVES));

%Generated results
Phats(i,:,j)=P;
InitialParameter(i,:,j)—thetal;

%Saved results

save(sprintf('Incidences —(%d).mat',i), 'Incidence")
end
save(sprintf ( 'RMSE—~(%d).mat',j), 'RMSEB'")

save (sprintf( 'SSE—(%d) .mat',j), 'SSEB')

save (sprintf( 'MAE—(%d) .mat',j), 'MAEB'
end
save('ParametersEstimation.mat', 'Phats')
save('InitialParameters.mat', 'InitialParameter')

%% Function objective
function Z = min_func(p,t,CURVES ,X0,i)
[t,CP]=s1nModelB(p,t,X0);

Z = sum((CP—CURVES)."2,1)."(1/2);
end

%% Compute of errors, parameters, and incidence for the smaller RMSEs

clear
load ('ParametersEstimation.mat', 'Phats')
for k=1:7
load (sprintf( 'RMSE—(%d) .mat' ,k), 'RMSEB')
load (sprintf('SSE—(%d) .mat',k), 'SSEB')
load (sprintf( 'MAE-(%d) .mat "' k), 'MAEB')
(

load(sprintf('Incidences —(%d) .mat',k), 'Incidence")

%coordinates to smaller RMSE

[7,r]=find (RMSEB=—min (RMSEB) ) ;

RMSEMin (: ,k)=RMSEB(r);

SSEMin (:,k)=SSEB(r);

MAEMin (: ,k)=MAEB(r);

CoordinatesRMSE (:,:,k)=r;

%Selection of Parameter estimation and incidence with smaller RMSE
ParameterEstimationMin(k,:)=Phats(r,: ,k);

IncidencesMIN= Incidence(:,r);

save(sprintf('IncidencesMIN —(%d) .mat' k), 'IncidencesMIN ")
end
save('ParametersEstimationMIN .mat ', 'ParameterEstimationMin ')

%% Plotting of curves and their fits showed in Figures 4, 6, 7 and 8
clear
close all
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p=[1,0.995,0.99,0.98,0.95,0.85,0.8];
figure (1)
for i=1:7
load (sprintf('Curves—(%d).mat',i))
load (sprintf('IncidencesMINB—(%d) .mat',i), 'IncidencesMIN ")
hold on
subplot (1,7,1)
plot (data(:,1) ,data(:,2),'kx"','LineWidth' ,f2)
hold on
plot(data(:,1) ,IncidencesMIN, 'r','LineWidth',2)
set (gca, 'FontSize', 10);
xlabel ('t ', 'Fontsize',10);
axis ([0 inf 0 65]);
set (gca, 'fontsize ' ,12);
title (num2str(p(i)))
xticks ([0 5 10 15 20 30 40 50 60 ])
end
suptitle('Fit with Model B to Model A curves')
set (gef, "color ', 'white")
fig = gcf;
fig.Units = 'pixels';
fig.Position = [1 1 2000 400];

%% Calculation of the solution to GLM
Y%0ODE model definition

function dx=GLM(t,x,r,p,k)
dx=r*(1—(x/k)).*x."p;

end

%Application numerical method to approximate the solution of model GLM
function [t,CP]=s1nGLM(P,t,X0)
%Parameters definition

r=P(1); p=P(2); Kk=P(3);

[r p K];

%Application of method to solve ODE
[t,x]=0de23s(QGLM,t,X0,[] ,r,p,K);
%Generation incidence curve
CP=[x(1);diff(x)];

end
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Figure B.1: 30-days ahead forecast of the national COVID-19 mortality curve in Colombia by
calibrating the Richards, GLM and sub-epidemic wave model from July 04, 2021 to October
01, 2021.Blue circles correspond to the data points; the solid red line indicates the best model
fit, and the red dashed lines represent the 95% PI. The vertical black dashed line represents the
time of the start of the forecast period. The figure is taken from the published document. [150]

Model RMSE | MAE | MIS | 95% PI | WIS

GLM 14.37 | 29,8 | 225,95 | 93,33 | 23,03

Richards model 57,31 | 79,99 | 1365,8 | 42,22 | 62,44
Sub-epidemic wave model | 18,08 | [13.4 | 80.06 98.88 8.52

Table B.1: Comparison of model performance metrics by calibrating the GLM, RM and the
sub-epidemic model for 90 days of mortality data (July 4, 2021 to October 1, 2021). Higher
95%P1 coverage and lower RMSE, MAE, WIS and MIS represent better performance. We
highlight best performing model with green color.
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Figure B.2: Instantaneous reproduction number with 95% credible intervals for the COVID-19
mortality curve in Colombia as of October 31, 2021. The black solid line represents the mean
reproduction number for Colombia and the black shaded area represents the 95% credible
interval around it. The figure is taken from the published document. [150]

Model RMSE | MAE | MIS | 95% PI | WIS
GLM 58,79 | 58,26 | 1529,1 0 54,21

Richards model 66,04 | 65,58 | 5340,1 0 66
Sub-epidemic wave model | 46.89 | [38.3 | 296.8 60 23.9

Table B.2: Comparison of 30-day ahead forecasting performance (October 2, 2021 to October
31, 2021) by calibrating the GLM, RM and the sub-epidemic model for 90 days of mortality
data (July 4, 2021 to October 1, 2021). Higher 95% PI coverage and lower RMSE, MAE, WIS
and MIS represent better performance. We highlight best performing model with green color.
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Figure B.3: Summary of results using conditions of experiment of scenario 1 (Parameters (c,
B, ps)). Here and in Figures B.4, B.5 and B.6 in per row, the left plot corresponds to the 95%
confidence intervals (vertical lines) for the distributions of each estimated parameter obtained
through 250 realizations of the synthetic data generated for Scenario 1. Each red point denotes
the mean estimated parameter value. The light-blue dashed horizontal line represents the true
value (or assumed) for each parameter estimated; the experiments applied to each parameter are
fixed on the x-axis. The right plot corresponds to the mean squared error (MSE) distribution
of parameter estimates considering each experiment and dataset. Finally, Yellow, blue, and
green lines or bars are grouped for each experiment and represent each R assumed for creating
the synthetic data, i.e., R = 3, 4, and 5, respectively.
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Figure B.6: Summary of results using conditions of scenario 2 (Parameters (J(0), p, R§)).
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Experiments applied to each fit times
Par. | R 1 2 3 1 5 6 7 8
Est. | ref. [20[30] 40203040 |20 |30 |40 |20 |30 ][40 |20 [30[40|20[30[40[20][30][40]20]30]40
3
o 4
5
3
B | 4
5
3
ps | 4
5
3
L,(0) | 4
5
3
J(O) | 4
5
3
Ry | 4
5

Table B.3: Summarize of results obtained for Scenario 1. The green box represents that the

parameter estimated satisfies the parameter identifiability conditions, i.e., this has small interval
confidence with mean value-centered and a low MSE. While the red box, the parameter does
not satisfy the identifiability criteria
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Parameter Selected for simulations Source
h 0 Assumed
Qo 0.1 [37]

Ga 0.4 [37]

q 0.4 Assumed
1/K4 2.5 [120,194]
1/ka 2.5 [92,189]
Pa 0.4 [107,115]
Ps 0.5 Assumed
l/a 5 Assumed
1/m 7 [120, 193]
1/79 5 [154]

) 0.021 National death case data

Table B.5: Fixed parameters for running experiments.

Region Initial phase Final phase

1/ 1/
1 0 67
8 0 11
10 21 -

Table B.6: Duration of quatantine periods.
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B.8: Summary of results using regional Chilean data (Region 1 and 8). Here and in
Figure B.9 the left plot corresponds to the 95% confidence intervals (vertical lines) for the dis-

tributions of each estimated parameter obtained through 250 realizations of the synthetic data
generated for the best fit using the Chilean data. Each red left-pointing trianglet denotes the
mean estimated parameter value. The dashed horizontal line represents the value estimated for
each parameter in the best-fit. The experiments applied to each parameter set are fixed on the
x-axis. The right plot corresponds to the mean squared error (MSE) distribution of parameter
estimates considering each experiment. Finally, blue, and green lines or bars represent each

experiment.
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Figure B.9: Summary of results using regional Chilean data (Region 3, 4 and 10).
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Experiment 1: Region 1, 30 days
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Figure B.10: Results of the bootstrapping process to the parameters estimated for Experiment
1 (B) for Regions 1 and 8, in the initial phase of 30 days. Here and Figures B.11-B.16, the
histograms display the empirical distribution of the parameters estimated using 250 bootstrap
realizations. Their confidence intervals appear as a horizontal red line, the mean value as a
vertical red line, and the value estimated corresponds to a vertical dashed red line. The bottom
panel with curves shows the fit of the COVID-19 model to the 200 days Chilean data. The
blue line with circles is the daily data, while the solid red line corresponds to the best fit using
the SA-LSQ between our model and the dataset. The dashed red lines correspond to the 95%
confidence bands around the best fit of the model to the data. Observation: Some experiments
have parameters fixed, then its histograms appear with values set.
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Experiment 2: Region 1, 30 days
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Figure B.11: Results of the bootstrapping process to the parameters estimated for Experiment
2 (B, J(0), 15(0)) for Regions 1 and 8, in the initial phase of 30 days.



Case incidence

Case incidence

ﬁu =2.81 (95% CI:1.77,4.02)

Experiment 1: Region 10, 30 days

p=0.09 (95% C1:0.02,0.16)

(0)=1.00 (95% CI:1.00,1.00)
25{5 ) ( )

1_(0)=10.00 (95% CI:10.00,10.00)
350

50

Frequency
w B
o o

N
o

-
o

o

50
200 200
40
3 3150 3 150
830 5 5
= =z =
PN © 100 © 100
w w [T
10 50 50
0 0
0 0.5 0 0.5 0 100 200 300

1,(0)

R ,=5.87 (95% C1:3.69,8.40)

N
o

w
o

n
o

[
o

/3,=3.70 (95% CI:1.65,5.00)

80 |
|
|
|

[}
o

—
|

Frequency
ey
o

N
o

15
time [days]

Experiment 2: Region 10, 30 days

40

Frequency
N w
o o

i
o

=0.12 (95% C1:0.02,0.19)
sd ( )

Frequency
B (2]
o o

N
o

Frequency

J(0)=1.00 (95% CI:0.00,1.02)
0

[N
o
o

a
o

1,(0)=5.43 (95% C1:2.67,14.03)
120

100

fos]
o

60

Frequency

40

20

|

0
0 100 200 300
1,0)

R ,=7.73 (95% C1:3.44,10.45)

N
o

w
o

N
o

=
o

Y 15
time [days]

—

10

1 and 2 with quarantine, applied to Region 10, in the initial phase of 30 days.

132

Figure B.12: Results of the bootstrapping process to the parameters estimated for Experiments
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Experiment 1: Region 3, 120 days
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Figure B.13: Results of the bootstrapping process to the parameters estimated for Experiment
1 (B) for Regions 3 and 4, in the final phase of 120 days.
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Figure B.14: Results of the bootstrapping process to the parameters estimated for Experiment
2 (B, J(0), 15(0)) for Regions 3 and 4, in the final phase of 120 days.
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Experiment 1: Region 1, 120 days
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Figure B.15: Results of the bootstrapping process to the parameters estimated for Experiment
1 (B, p) for Regions 1 and 8, in the final phase of 120 days.
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Figure B.16: Results of the bootstrapping process to the parameters estimated for Experiment
2 (B, p, J(0), 15(0)) for Regions 1 and 8, in the final phase of 120 days.
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