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Abstract

In this thesis, a newly developed dynamic one-dimensional model formulated in terms of PDEs
is used to predict the process of simultaneous flotation of bubbles and sedimentation of particles
that are not attached to bubbles. The governing model is a triangular system of conservation
laws for the primary phase (aggregates, bubbles with particles attached) and secondary phase
(solids) volume fractions as functions of height and time. The thesis has the following objectives.

The first objective of this thesis is to demonstrate that the model and numerical scheme
provide a tool for the simulation of the operation of a flotation column in the case of a common
feed inlet of the three phases and when no aggregation occurs in the column. In particular,
responses of the unit to changes in operating conditions such as changes in the rates and
composition of feed flows as well as transitions between operating conditions are illustrated.

The second objective of this thesis is to show applications of the model and numerical scheme
to the wastewater treatment industry and identify desired steady states for the dissolved air
flotation application analyzing the non-linear ingredients of the governing equations.

The third objective of this thesis is to generalize the triangular system of conservation laws
and show that the numerical scheme is monotone and satisfies an invariant-region property,
i.e., the volume fractions of the three phases stay between zero and one.

The fourth objective of this thesis is to demonstrate that the numerical scheme for the primary
and secondary phases converge to a solution under certain simplifying assumptions.

The fifth goal of this thesis is to extend the one-dimensional hyperbolic model of the hydrody-
namics of a flotation column into one that include capillarity, which means that the governing
PDE is of parabolic type in the froth region, whereas it is hyperbolic in regions without froth.
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Resumen

En esta tesis, se utiliza un modelo unidimensional dindmico desarrollado recientemente, for-
mulado en términos de EDPs para predecir el proceso simultaneo de flotacion de burbujas y
sedimentacion de particulas que no estan adheridas a las burbujas. El modelo governante es
un sistema triangular de dos leyes de conservacion para las fracciones de volumen de la fase
primaria (agregados, burbujas cargadas de particulas) y la fase secundaria (solidos) en funciéon
de la altura y el tiempo. La tesis tiene los siguientes objetivos.

El primer objetivo de esta tesis es demostrar que el modelo y el esquema numérico proporcionan
una herramienta para la simulacion del funcionamiento de una columna de flotaciéon en el caso
de una entrada de alimentaciéon comun de las tres fases y cuando no se produce agregacion en la
columna. En particular, se ilustran las respuestas de la unidad a los cambios en las condiciones
de operacion, como los cambios en las tasas y la composiciéon de los flujos de alimentacion, asi
como las transiciones entre las condiciones de funcionamiento.

El segundo objetivo de esta tesis es mostrar aplicaciones del modelo y del esquema numérico
a la industria de tratamiento de aguas servidas e identificar los estados estacionarios deseados
para la aplicacion de flotacion por aire disuelto analizando los ingredientes no lineales de las
ecuaciones gobernantes.

El tercer objetivo de esta tesis es generalizar el sistema triangular de leyes de conservacion y
demostrar que el esquema numérico es monotono y satisface la propiedad de regiéon invariante,
es decir, las fracciones de volumen de las tres fases permanecen entre cero y uno.

El cuarto objetivo de esta tesis es demostrar que los esquemas numéricos para las fases primaria
y secundaria, bajos ciertas suposiciones, convergen a una solucion.

El quinto objetivo de esta tesis es extender el modelo hiperbdlico unidimensional de la hidrod-
indmica de una columna de flotaciéon a uno que incluya capilaridad, lo que significa que la
EDP gobernante es del tipo parabdlica en la regién con espuma, mientras que es hiperbolica
en regiones sin espuma.
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profiles of the primary phase ¢ (left) and secondary phase ¢ (right) from time
t =0s to ¢t = 1800s seen from two different angles (first and second rows).

Example 3.3: Co-current flows. Time evolution of the volume fraction profiles
of primary phase ¢ (left) and secondary phase 1 (right) from time ¢ = 0s to
t = 1500s seen from two different angles (first and second rows). . . . . . . . ..
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Left: Schematic of a flotation column; cf. the Reflux Flotation Cell by [38]. Right:
The corresponding one-dimensional conceptual model with a non-constant cross-
sectional area A(z). Wash water is sprinkled at the effluent level z = zg and a
mixture of aggregates and feed slurry is fed at z = 2z, where 2y < 2p < zg divide
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the real line into the zones inside the column and the underflow and effluent zones.104

Left: function j,(¢) = ¢0(¢). Right: diffusion function D(¢) modelling capillar-

ity. Note the behaviour of these functions at the critical concentration ¢. = 0.74.

Evolution of the inflection points of j; and jy,,. The literature values 2 < n,, <
3.2 give an interval (solid black) of possible ¢, that lie entirely below ¢, = 0.74
(red line). With ng = 0.46, the inflection point (blue dot) ¢man = 1/(ng + 1) =~
0.685 < ¢; hence, jyy, is strictly convex for ¢ > .. . . . . . . ..o

Plots of ji,(¢) (left) and j{(¢) (right) for ng = 0.46, Vierm = 0.3718 and various
values of ny, that satisfy (5.24). . . . . . . ... Lo

Possible steady-state values for zone 2 with (a, b) ga > 0 and (¢, d) g2 < 0. The
case ¢ > ¢. is shown in (a) and (c), where there is a continuously increasing
solution ¢par(2) € (P, ¢r), while ¢pg < ¢, in (b) and (d), where the solution in
zone 2 is the constant ¢,. For all the cases, we have ¢, = 0.74, ny, = 2.5 and
ng = 0.46. For (a) and (b), Q2 := ¢2Ag = 3.6 x 107°m?/s, sp = 4.21 x 102 m/s
and (a) Qw = 2 x 107°m?/s, (b) Qw = 8 x 107 °m3/s. For (c) we let Q; =
—2x107°m3/s, Qw = 2x 107%m?/s and sp = 2.07 x 10~* m/s, while for (d) we
used Qy = =5 x 1075m?/s, Qw = 10°m?/s and sp = 7.1 x 10" m/s. . .. ..

Examples of desired steady states given by (5.32) and (5.33). We use fixed values
of pp = 0.3, Yp = 0.2, Qp = 8.9927 x 10> m?/s and Qw = 2 x 107°m?/s and
vary Qu, choosing: (a) Qu = 5.9972 x 107> m?3 /s, (b) Qu = 6.0083 x 1075 m?/s,
(c) Qu =6.0155 x 107°m?/s and (d) Qu = 6.0171 x 10~>m?/s. Once the values
of ¢r, Qu, Qr and Qw are chosen, the values of the effluent concentration ¢g
are given by (5.29) and used as input in the ODE (5.31) to calculate the value of
2. In particular, we get (a) ¢p = 0.8443, (b) ¢g = 0.8472, (c) ¢r = 0.8491 and
(d) ¢r = 0.8495. The values of ¢p, Vg, Qu, Qr and Qw chosen here are used in
Example 1 in Section 5.6 to recover these profiles using the numerical method
proposed in Section 5.5. . . . . ... L

(a—c) Visualization of the conditions of Theorem 5.1 for Qw = 2 x 107 m3/s,
¢p = 0.3 and Yp = 0.2. (d) Operating chart showing the intersection of all the
conditions, which are true in the white region. . . . . . . . .. ... ... ...

Dependence of the operating chart on the wash water flow Qw for ¢ = 0.3 and
Yr = 0.2, e
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Operating charts for Qw = 2 x 107°m3/s and ¢r = 0.2 with (a, ¢) ¢p = 0.3

and (b, d) ¢r = 0.45, showing the graphs of (Qr, Qu) — Zi(dr, Qr, Qu, Qw)
obtained by (5.31). The small rectangles in (a, b) are enlarged in Figure 5.10.

Enlarged views of the small rectangles marked in Figure 5.9 (a) and (b), re-
spectively, showing contours of the function (Qr, Qu) — Zi(or, Qr, Qu, Qw)-

Grid covering the flotation column for the discretization of ¢ and 1. The outlets
zy and zg are each fixed on the boundaries between two cells and the feed inlet zg
is then located ina cell. . . . . . . . . . ...

Example 5.1: (a) Contour lines of (Qr, Qu) — Zu(¢r, Qr, Qu, Qw) for Qw =
2 x 107%m3/s, ¥p = 0.2 and ¢p = 0.3. (b) Approximate volume fraction of

solids ¢ computed with N = 3200. (¢) Approximate solution (dots) versus exact
solution (solid lines) of volume fraction of aggregates ¢ corresponding to the four
point in plot (a) computed with N = 3200. (d) Enlarged view of (¢). . ... ..

Example 5.1: (a) Approximate solution for the point represented by a dot in
Figure 5.12(a) with various values of N. (b) Enlarged view of (a). . . ... ..

Example 5.2: An operating charts for ¢p = 0.3 and ¢p = 0.2. The point
(Qu, Qr) = (5.85,8.846) x 107° m? /s marked with a diamond in the white region
results in a desired steady state with a froth layer at the top of the column. The
points marked with a square (Qu,Qr) = (5.0,8.846) x 107> m?/s and a circle
(Qu, Qr) = (6.3,8.84) x 107°m?/s result in no froth (Figure 5.15) or a tank full
of froth (Figure 5.16), respectively. (The plot is a zoom of Figure 5.8 (b) and the
black curves are smoother than they here appear due to numerical resolution.)

Example 5.2: Simulation with N = 1600 of the volume fractions of (a) aggregates
¢ and (b) solids ¢ from a tank filled of only water. The initial operating point
(Qu, Qr) = (5.85,8.846) x 107°m?3/s (diamond in Figure 5.14) is at ¢ = 500
changed to (5.0,8.846) x 107°m?/s (square in Figure 5.14). . . . . . .. ... ..

Example 5.2: Simulation with N = 1600 of the volume fractions of (a) aggregates
¢ and (b) solids ¢ from a tank filled of only water. The initial operating point
(Qu,Qr) = (5.85,8.846) x 107°m? /s (diamond in Figure 5.14) is at t = 500
changed to (6.3,8.846) x 107> m?/s (circle in Figure 5.14). . . . .. ... .. ..

Example 5.3. Operating charts for ¢p = 0.3 and Yr = 0.2 with (a) Qw =
3.15 x 107°m?3/s, (b) Qw = 3.0 x 107°m?/s. The initial point (Qu,Qr) =
(3.15,4.5) x 107° m? /s is marked with a circle and the one after the control action
(Qu, Qr) = (3.0,4.5) x 1075 m?/s with a diamod. (The curves are smoother than
they appear here due to numerical resolution.) . . . . ... ... .. ... ...
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(b,d) solids ¢ computed with N = 1600 and seen from two different angles. A
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Introduction

Motivation

Froth flotation is commonly used in mineral processing for the recovery of valuable minerals,
such as copper and lead-bearing minerals, from low-grade ores; and in industrial wastewater
treatment to remove contaminants that are otherwise difficult to separate such as floating solids,
residual chemicals, and droplets of oil and fat. This process selectively separates hydrophobic
materials (repelled by water) from hydrophilic (attracted to water), where both are suspended in
a viscous fluid. It is well known that this physico-chemical separation process functions roughly
as follows: gas is introduced close to the bottom of a column, and the bubbles generated rise
upwards throughout the pulp that contains the solid particles, which can be divided into two
main groups. The hydrophobic particles (minerals or ores that should be recovered) attach to
the bubbles that float to the top of the column, forming foam or froth carrying the valuable
material that is removed usually through a launder. On the other hand, the hydrophilic particles
(slimes or gangue) do not attach to bubbles, but settle to the bottom of the vessel, unless they
are trapped in the bulk upflow. Close to the top, additional wash water can be injected to assist
with the rejection of entrained impurities [111] and to increase the froth stability and improve
recovery [53,91]. Mathematical models are required for the design, simulation, and eventually
control of flotation columns.

Motivated by [38, 54, 106], Biirger et al. [17] presented a one-dimensional two-phase model
describing only the movement of gas bubbles and fluid. The flotation column modeled in that
work has a separate gas inlet near the bottom, which is commonly used in mineral processing
so that a collection zone is created in which the hydrophobic particles attach to the gas bubbles
inside the column. Other devices have a common feed inlet for both slurry and gas bubbles,
so that the aggregation process (the attachment of hydrophobic particles to bubbles) mostly
occurs in the inlet pipe. (These variants are illustrated e.g. in Figure 1 of [18].) Here, we model
such a column (see Figure 1) and assume that the bubbles are fully loaded with hydrophobic
particles as the mixture enters the column, so that the aggregation process is concluded when
particles and bubbles enter the column.

The governing equation of the two-phase model studied by [17] is a scalar, quasilinear first-
order partial differential equation (PDE) (known as conservation law; see, e.g., [60] or [77] for the
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Figure 1: Left: Schematic of a flotation column with non-constant cross-sectional area A(z) (Ay
below and Ag above the feed level) utilized for numerical simulations in this thesis (Chapters
1-4). Right: corresponding one-dimensional conceptual model. The unit is fed with wash water
at level z = zw and a mixture of aggregates and feed slurry at z = zp, where zy < zrp < 2w < 2g
divide the real line into the zones inside the column and the underflow and effluent zones. The
volumetric flows correspond to the injection of wash water (Qw > 0) and feed slurry (Qr > 0).
These quantities and the volumetric underflow rate Qy > 0 are assumed to be chosen such that
the efluent volumetric overflow Qg = Qw + Qr — Qu is nonnegative, Qg > 0.

background). A non-standard ingredient of that model is a flux function that is discontinuous
at several spatial positions due to the feed sources of gas, slurry, and wash water, and the lower
and upper outlets of tailings and concentrate. That formulation was recently extended in [18]
to a three-phase model that also includes the settling of solid particles within the flotation
column. The three-phase flow of solids, gas (bubbles or aggregates) and fluid is modelled in one
space dimension. We herein utilize that same model of [18] and present new numerical results
relevant to applications.

To state the governing PDEs of our approach, we assume that the independent variables
are time ¢ > 0 and height z, i.e., z is a scalar spatial coordinate that increases in the upward
direction, and that the unknowns are the volume fraction of aggregates ¢ = ¢(z,t) and the
volume fraction of solids in the solid-liquid suspension ¢ = ¢(z,t), where

v
LA (1)

with 1) = (2, t) is the volume fraction of (hydrophilic) solids and 1—¢ = 1—¢(z, t) is the volume



fraction of the suspension outside the aggregates. (Equation 1 means that if a small volume V'
is given, then ¢ is the local ratio of the volume occupied by the solids ¥V and the volume
occupied by the suspension (1—¢)V.) Moreover, we assume that the rise of bubbles and settling
of solids is described by given flux functions J(¢, z,t) and F(p, ¢, 2, t), respectively, that involve
nonlinear constitutive functions of ¢ and ¢ and whose precise definition will be made explicit
later. The fluxes J and F' are discontinuous in z at several positions (namely at z = zy, zp, 2w
and zg) associated with singular feed sources, the underflow and the effluent, and in general
depend on t through the control of in- and -outflows; see Figure 1. The level zp is associated
with a singular feed source with nonnegative feed volume fractions of the aggregates ¢r and
solids ¢p. Finally, we consider that the (possibly variable) cross-sectional area at height z is
given by A(z). Then the governing PDEs can be written as the system

96 0

A(2) 57 + 5-(A2) (6, 2,1)) = Qr(t)dr(1)d(z — 2r), (2a)

AG) g (1 0)09) = 5 (AR)F(2,6,7,6) = Qe ()5(z — 2r). (2b)

where the right-hand sides of the equations contain the Dirac function. The model is complete
with initial conditions ¢(z,0) = ¢o(z) and ¢ (z,0) = 9y(2) for all z € R. No boundary conditions
are required: the bounds of the vessel at z = zy and z = zg are captured by discontinuities
of J(¢,z,t) and F (¢, ¢, z,t). Equations (2) have been specified in such a way that away from
the feed level, J(¢, z,t) > 0 (J(¢, z,t) < 0) means that at position z and time ¢, bubbles move
upward (downward), while F(p, ¢,2,t) > 0 (F(p, ¢, 2,t) < 0) means that at position z and
time ¢, solid particles move downward (upward).

Related Work

Modelling flotation and developing strategies to control this process are research areas that
have generated many contributions. Cruz [36] advanced a dynamic model of flotation with
many ingredients, which is also based on the division of the tank into three regions: a collection
region, a stabilized froth, and a draining froth. Those models incorporate numerous additional
equations for subprocesses that require calibration of further parameters. See also the review by
Quintanilla [95] and references therein. The development of control strategies requires dynamic
models along with a categorization of steady-state (stationary) solutions of such models. Since
the volume fractions depend on both time and space, the resulting governing equations are
PDEs. With the aim of developing controllers, the authors of [109,110] and [4,5] use hyperbolic
systems of PDEs for the froth or pulp regions coupled to ODEs for the lower part of the
column. They include the attachment and detachment processes; however, the phases seem to
have constant velocities, which is not in agreement with the established drift-flux theory by
Wallis [113], see, e.g., [13,36,38,47,54,55,62,75,99,106,111,115]. The theory considers the
relationships between the nonlinear flux of bubbles relative to the fluid (denoted here the batch
drift flux) and the applied bulk flows that arise due to the inlets and outlets of the column that



theory has mostly been used for steady-state investigations of flotation columns [38,54,55,106,
111]. Models of and numerical schemes for column froth flotation with the drift-flux assumption
and possibly simultaneous sedimentation have been presented by Biirger et al. [17,18, 20, 28].

The analogy of the drift-flux theory for sedimentation is the established solids-flux theory [41,
44,49,50,73,74]. With an additional constitutive assumption on sediment compressibility, the
model becomes a second-order degenerate parabolic PDE [29]. Sedimentation in a clarifier-
thickener unit is mathematically similar to the column-flotation case. A full PDE model of
such a vessel necessarily contains source terms and spatial discontinuities at both inlets and
outlets. Steady-state analyses, numerical schemes, dynamic simulations and control of such
models can be found in [16,22,24-26] and [39-43]. The model of flotation proposed herein is
based on this experience. Because of the discontinuous coefficients and degenerate diffusion
term of the PDE, so-called entropy conditions are needed to guarantee a unique physically
relevant solution [26,45,52]. Those results will be utilized in this thesis.

The one-dimensional formulation chosen here has the advantage that only equations for the
gas and solids concentrations need to be solved, while two- or three-dimensional formulations
invariably require solving additional equations for the flow of the mixture. However, the one-
dimensional setting requires to describe the feed mechanism and diverging bulk flows by discon-
tinuities with respect to z in the definitions of ' and .J. These abrupt changes, in combination
with the nonlinearities of these constitutive functions arising from the drift- and solid-flux the-
ories, cause the principal mathematical difficulty for the construction of connections of ¢, ¢
and ¢ (or ¢g) values across jumps in the definitions of F' and J. An in-depth discussion of these
mathematical issues along with a comprehensive analysis and detailed descriptions on how to
obtain and categorize the steady states are given by Biirger et al. [18].

Phenomenological models for two-phase systems with bubbles rising (or, analogously, par-
ticles settling) in a liquid, are derived from physical laws of conservation of mass and mo-
mentum |6, 13,29, 30]. Under certain simplifying assumptions on the stress tensor and partial
pressure of the bubbles/solids, one can obtain first- or second-order PDEs involving one or two
constitutive (material specific) functions, respectively. Tian et al. [109] advance a hyperbolic
system that includes the attachment process; however, they assume that the flux functions are
linear. In particular, their approach does not constitute an extension of the drift- or solids-flux
theories, in contrast to the one presented in this work. While the vast majority of references
to flotation processes are related to mineral processing, we mention that flotation processes are
also used for removing other small particles, oil droplets, printing ink and organic matter in
diverse processes such as wastewater treatment, Rubio et al. [100].

For oil-water separation in wastewater treatment, there exist several induced and dissolved
air flotation (DAF) technologies [102]; see also handbook entries [48,61,81,114]. DAF has been
used for many years for the thickening of waste activated sludge (WAS) [31,33,58]. One of
many advantages is that DAF can thicken sludge to concentrations at least a factor two higher
than gravity settling (96, 114].



The systems presented in this thesis model the evolution of the primary unknown ¢ inde-
pendently of the secondary unknown . Various applications of such triangular systems can
be found in the literature. Two-component chromatography, which describes the evolution of
the concentration of two solutes, can be written as a triangular system; see e.g. Andreianov et
al. [1]. Polymer flooding in oil recovery is modelled by a 2 x 2 system (e.g. [63]), which can
be converted to a triangular system in Lagrange coordinates [103]. In [37,83,101], the authors
study the delta shock wave formation in solutions of triangular system of conservation laws
from the so-called generalized pressureless gas dynamics model. Bressan et al. [14] established
the existence and uniqueness of vanishing viscosity solutions for scalar conservation laws for
a Cauchy problem and their results can be applied to a triangular system under suitable as-
sumptions. The results of Karlsen et al. [64,67] for general triangular systems can be applied
to models of three-phase flows in porous media, for example, in oil-recovery processes.

Numerical simulations were performed with a staggered-grid scheme that utilizes the trian-
gular structure of (2). Such a semi-Godunov scheme for general triangular hyperbolic systems
is one of the two suggested schemes by Karlsen et al. [64,67], who proved convergence of the
numerical solutions under certain assumptions on the flux functions. We here propose a sim-
pler numerical scheme (on a single grid) that is easier to implement and analyze. The analysis
(of the scheme proposed under simplifying assumptions) relies on the aligned version of the
scheme introduced in [67] and in particular on the convergence analysis of an Engquist-Osher
scheme for multi-dimensional triangular system of conservation laws by Coclite et al. [34]. These
analyses, and the present treatment, rely on compactness techniques that use discrete entropy
inequalities and the compensated compactness framework.

A well-known alternative approach to modeling froth flotation is provided by Neethling and
Cilliers [89], see also [86-88|. This approach is fundamentally based on microscopical structural
properties of the foam as consisting of thin films (lamellae) separating bubbles from each other.
Three of these films meet to form so-called Plateau borders that form a branched network of
channels through the froth. Without going into detail, the cited works provide an accurate
description of the behaviour of froths including coalescence of bubbles, liquid drainage, and
motion of attached and non-attached particles through the froth (see [87,88]| for details). Cap-
illarity in the foam effect have been studied intensively by Neethling and Cilliers [89,90] and
Neethling and Brito-Parada [85]; see more references in [95].

Organization of this thesis

The present thesis is organized as follows:

In Chapter 1, we present a spatially one-dimensional model for the hydrodynamics of a
flotation column based on one continuous phase, the fluid, and two disperse phases: the aggre-
gates, that is, bubbles with attached hydrophobic valuable particles, and the solid particles that
form the gangue. A common feed inlet for slurry mixture and gas is considered and the bubbles



are assumed to be fully aggregated with hydrophobic particles as they enter the column. The
conservation law of the three phases yields a model expressed as a system of partial differential
equations where the nonlinear constitutive flux functions come from the drift-flux and solids-
flux theories. In addition, the total flux functions are discontinuous in the spatial (height)
coordinate because of two inlets (slurry and wash water) and outlets at the top and bottom.
The desired stationary solutions of this model can be characterized by operating charts. A
novel numerical method is used for simulations of the hydrodynamics under variable operating
conditions such as control actions that drive the process to desired states of operation. The
numerical simulations illustrate applications in mineral processing.

The contents of Chapter 1 correspond to the article [20]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Véasquez, Flotation with sedimentation: Steady
states and numerical simulation of transient operation, Min. Eng. 157 (2020), p.106419.

In Chapter 2, we show applications of flotation processes that include dissolved air flotation
(DAF) in industrial wastewater treatment and column froth flotation (CFF) in wastewater
treatment and mineral processing as we mentioned in Chapter 1. The one-dimensional model
is the same mentioned in the previous chapter and an analysis of nonlinear ingredients of the
governing equations helps to identify desired steady-state operating conditions, this is detailed
for the DAF thickening process. Dynamic simulations are obtained with the previously devel-
oped numerical method. Responses to control action are demostrated with scenarios in CFF
and DAF.

The contents of Chapter 2 correspond to the article [28]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, Simulation and control of dissolved air
flotation and column froth flotation with simultaneous sedimentation, Water Sci. Tech.
81 (2020), 1723-1732.

In Chapter 3, we present a generalization of the model discussed in Chapters 1 and 2
made up of a triangular system of conservation laws with discontinuous flow that arises in the
aforementioned applications and explore the mathematical properties of the numerical method.
A monotone numerical scheme to approximate solutions to this model is formulated and it is
proven that it satisfies an invariant-region property, i.e., the approximate volume fractions of
the three phases stay between zero and one. Some numerical examples, along with error and
convergence-order estimations, are presented for counter-current and co-current flows of the
two disperse phases.

The contents of Chapter 3 correspond to part of the following manuscript [21]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, A difference scheme for a triangular system
of conservation laws with discontinuous flux modelling three-phase flows, in preparation.



In Chapter 4, under the assumption of flow in a column with constant cross-sectional area
it is shown that the scheme for the primary phase converges to an entropy solution. Under the
additional assumption of absence of flux discontinuities it is further demonstrated, by invoking
arguments of compensated compactness, that the scheme for the secondary disperse phase
converges to a weak solution of the corresponding conservation law.

The contents of Chapter 4 correspond to part of the following manuscript (see Chapter
3) [21]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Véasquez, A difference scheme for a triangular system
of conservation laws with discontinuous flux modelling three-phase flows, in preparation.

In Chapter 5, we study the drainage of liquid in the flotation process due to capillarity, which
is essential for the formation of a stable froth layer. This effect is included into previously
formulated hyperbolic system of partial differential equations used in Chapter 3 that models
the volume fractions of floating aggregates and settling hydrophilic solids [18|. The construction
of desired steady-state solutions with a froth layer is detailed and feasibility conditions on the
feed volume fractions and the volumetric flows of feed, underflow and wash water are visualized
in so-called operating charts. A monotone numerical scheme is derived and employed to simulate
the dynamic behaviour of a flotation column. It is also proven that, under a suitable Courant-
Friedrichs-Lewy (CFL) condition, the approximate volume fractions are bounded between zero
and one when the initial data are.

The contents of Chapter 5 correspond to the following submitted manuscript [19]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, A degenerating convection-diffusion sys-
tem modelling froth flotation with drainage Centro de Investigacion en Ingenieria Math-
emdtica (CIFMA), Preprint 2022, Universidad de Concepcion, Chile 2022.



Introducciéon

Motivacion

La flotacion por espuma se usa comtunmente en el procesamiento de minerales para la re-
cuperacion de minerales valiosos, como cobre y minerales que contienen plomo, a partir de
minerales de baja ley; y en el tratamiento de aguas residuales industriales para eliminar con-
taminantes que de otro modo serian dificiles de separar como sélidos flotantes, productos quimi-
cos residuales y gotitas de aceite y grasa. Este proceso separa selectivamente los materiales
hidrofébicos (que son repelidos por el agua) de los hidrofilicos (que serfan atraidos por el agua),
donde ambos quedan suspendidos en un fluido viscoso. Es bien sabido que este proceso de sepa-
racion fisico-quimico funciona més o menos de la siguiente manera: el gas se introduce cerca del
fondo de una columna y las burbujas generadas ascienden hacia arriba por toda la pulpa que
contiene las particulas solidas, que se pueden dividir en dos grupos principales. Las partculas
hidrofébicas (minerales o menas que deben recuperarse) se adhieren a las burbujas que flotan a
la parte superior de la columna, formando una capa espuma que transporta el material valioso
que generalmente se remueve a través de un lavado. Por otro lado, las particulas hidrofilicas
(limos o ganga) no se adhieren a las burbujas, sino que sedimentan en el fondo del recipiente,
a menos que queden atrapadas en el flujo ascendente a granel. Cerca de la parte superior,
se puede inyectar agua de lavado adicional para ayudar con el rechazo de las impurezas ar-
rastradas [111] y para aumentar la estabilidad de la espuma y mejorar la recuperacion [53,91].
Por lo tanto, modelos matematicos son necesarios para el diseno, simulaciéon y eventual control
de columnas de flotacion.

Motivado por [38,54,106|, Biirger y compania |17] presentaron un modelo uni-dimensional de
dos fases donde se describe solo el movimiento de las burbujas de gas y el fluido. La columna de
flotacion modelada en ese trabajo tiene una entrada de gas separada cerca del fondo, la cual es
comunmente usada en el procesamiento de minerales de modo que se crea una zona de coleccién
en la cual las particulas hidrofébicas se adhieren a las burbujas de gas dentro de la columna.
Otros dispositivos tienen una entrada de alimentaciéon comin tanto para lodos como para las
burbujas de gas, de modo que el proceso de agregacion (la union de particulas hidrofobicas a
las burbujas) ocurre principalmente en la tuberia de entrada. (Estas variantes se ilustran, por
ejemplo, en la Figura 1 de [18]). Aqui, modelamos una columna de este tipo (ver Figura 1) y



[ <—air supply < |
; QE
effluent zone
3 oo 3 |T|
oS R®E T T T~ T TFEAT T
' %\concen- q=qs3
froth  trate zone 3 A= Ag
e 3| region
wash _BOEO[") | (58 —
water Rl SRl T T T 7 TAW - Qw=77771}
ol 10K
q=qz
bubbly H zone 2 A= Ag
region
(o0] JE——
e - - - tor 4= - Qe =H+H
: settling q=aq
2o, o region zone 1 A=Ay
e L oy g----- |
SRS underflow underflow zone Qu

Figure 1: Izquierda: Esquema de una columna de flotacion con area de seccién transversal no
constante A(z) (Ay por debajo y Ag por encima del nivel de alimentacion) utilizada para simu-
laciones numéricas en esta tesis (Capitulos 1-4). Derecha: modelo conceptual unidimensional
correspondiente. La unidad se alimenta con agua de lavado en el nivel z = zw y una mezcla
de agregados y lodos de alimentacion en z = zp, donde zy < zp < 2w < zg divide la linea real
en las zonas dentro de la columna y las zonas de subdesbordamiento y efluentes. Los flujos
volumeétricos corresponden a la inyeccion de agua de lavado (Qw > 0) y lodo de alimentacion
(Qr > 0). Se supone que estas cantidades y la tasa de subdesbordamiento volumétrico Qu > 0
se eligen de tal manera que el desbordamiento volumétrico del efluente Qg = Qw + Qr — Qu
es no negativo, Qg > 0.

asumimos que las burbujas estan completamente cargadas con particulas hidrofébicas cuando
la mezcla ingresa a la columna, de modo que el proceso de agregaciéon concluye cuando las
particulas y las burbujas ingresan a la columna.

La ecuaciéon gobernante del modelo de dos fases estudiado por [17] es una ecuacion diferencial
parcial (EDP) de primer orden escalar, cuasi-lineal (conocida como ley de conservacion; véase,
por ejemplo, [60] o [77] para el antecedente). Un ingrediente no estandar de ese modelo es
una funciéon de flujo que es discontinua en varias posiciones espaciales debido a las fuentes
de alimentaciéon de gas, lodo y agua de lavado, y las salidas inferior y superior de relaves
y concentrado. Esa formulacion se ampli6 recientemente en [18] a un modelo de tres fases
que también incluye la sedimentacion de particulas sélidas dentro de la columna de flotacion.
El flujo trifasico de solidos, gas (burbujas o agregados) y fluido se modela en una dimensiéon
espacial. Aqui utilizamos el mismo modelo de [18] y presentamos nuevos resultados numéricos
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relevantes para las aplicaciones.

Para enunciar las EDPs gobernantes de nuestro enfoque, suponemos que las variables inde-
pendientes son el tiempo ¢t > 0 y la altura z, es decir, z es una coordenada espacial escalar
que aumenta en direccidon ascendente, y que las incognitas son la fraccion de volumen de los
agregados ¢ = ¢(z,t) y la fraccion de volumen de los sélidos en la suspension solido-liquido
© = p(z,t), donde

o=1os )

donde 1 = ¥(z,t) es la fraccion de volumen de solidos (hidrofilicos) y 1 — ¢ = 1 — ¢(z,1)
es la fraccion de volumen de la suspension fuera de los agregados. (La ecuaciéon 1 significa
que si se da un volumen pequeno V', entonces ¢ es la relacion local del volumen ocupado por
los solidos 9V y el volumen ocupado por la suspension (1 — ¢)V.) Ademés, asumimos que
el ascenso de las burbujas y el asentamiento de los soélidos se describe mediante funciones de
flujo dadas J(¢, z,t) y F(p, ¢, z,t), respectivamente, que involucran funciones constitutivas no
lineales de ¢ y ¢ y cuya definicién precisa se explicitarda més adelante. Los flujos J y F
son discontinuos en z en varias posiciones (es decir, en z = zy, zr, 2w v 2g) asociados con
fuentes de alimentacion singulares, el flujo inferior y el efluente, y en general dependen de t
a través del control de flujos de entrada y salida ; ver Figura 1. El nivel zp esta asociado con
una fuente de alimentaciéon tnica con fracciones de volumen de alimentacién no negativas de
los agregados ¢r y solidos ¥r. Finalmente, consideramos que el area de seccién transversal
(posiblemente variable) en la altura z viene dada por A(z). Entonces las EDPs gobernantes se
pueden escribir como el sistema

A 4 T (4(2)7(6,2.1)) = Qel)or ()3 — ). (20)
A(z)%((l — ¢)p) — %(A(z)F(so, ¢,2,1)) = Qr(t)r (1) (z — 2r), (2b)

donde los lados derechos de las ecuaciones contienen la funciéon de Dirac. El modelo se completa
con las condiciones iniciales ¢(z,0) = ¢o(2) v ¥(2,0) = ¢o(2) para todo z € R. No se requieren
condiciones de contorno: los limites del recipiente en z = zy y 2 = zg son capturados por
discontinuidades de J(¢,z,t) v F(p,¢,z,t). Las ecuaciones (2) se han especificado de tal
manera que fuera del nivel de alimentacion, J(¢,z,t) > 0 (J(¢, z,t) < 0 ) significa que en la
posicion z y en el tiempo ¢, las burbujas se mueven hacia arriba (hacia abajo), mientras que
F(p,¢,2,t) >0 (F(p,0,z,t) <0) significa que en la posicion z y en el tiempo ¢, las particulas
solidas se mueven hacia abajo (hacia arriba).

Trabajo relacionado

Modelar la flotacion y desarrollar estrategias para controlar este proceso son areas de inves-
tigacion que han generado muchas contribuciones; Cruz [36] propuso un modelo de flotacion
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con muchos ingredientes, que también se basa en dividir el tanque en tres regiones: una region
de recolecciéon, una de espuma estabilizada y una espuma de drenaje. Esos modelos incor-
poran numerosas ecuaciones adicionales para subprocesos que requieren calibraciéon de otros
parametros. Véase la recopilacion hecha por Quintanilla en [95] y las referencias que contiene.
El desarrollo de estrategias de control requiere modelos dindmicos junto con una categorizacion
de soluciones de estado estacionario de tales modelos. Dado que las fracciones de volumen
dependen tanto del tiempo como del espacio, las ecuaciones gobernantes resultantes son EDPs.
Con el objetivo de desarrollar controladores, los autores de [109,110] y [4, 5] utilizan sistemas
hiperbolicos de EDPs para las regiones de espuma o pulpa acopladas a ecuaciones diferen-
ciales ordinarias para la parte inferior de la columna. Incluyen los procesos de adhesion y no
adhesion a las burbujas; sin embargo, las fases parecen tener velocidades constantes, lo que
no esta en acuerdo con la teoria del flujo de deriva establecida por Wallis [113], véase, por
ejemplo, [13,36,38,47,54,55,62,75,99,106,111,115]. La teoria considera las relaciones entre
el flujo no lineal de burbujas relativo al fluido (denotado aqui el flujo de deriva del lote) y
los flujos a granel aplicados que surgen debido a las entradas y salidas de la columna; esta
teoria se ha utilizado principalmente para investigaciones de estado estacionario en columnas
de flotacion (38,54, 55,106, 111]. Biirger y compaiia [17, 18,20, 28] han presentado modelos
y esquemas numéricos para la flotacion por espuma de columnas con el supuesto de flujo de
deriva y posiblemente sedimentacién simultanea.

La analogia de la teoria del flujo de deriva para la sedimentacion establece la teoria del flujo
de solidos [41,44,49,50,73,74]. Con una suposicion constitutiva adicional sobre la compresibil-
idad de los sedimentos, el modelo se convierte en una EDP parabdlica degenerada de segundo
orden [29]. La sedimentacion en una unidad clarificador-espesador es mateméaticamente similar
al caso de flotaciéon en una columna. Un modelo EDP completo de tal recipiente necesaria-
mente contiene términos fuente y discontinuidades espaciales tanto en las entradas como en las
salidas. Los analisis de estado estacionario, los esquemas numéricos, las simulaciones dindmicas
y el control de tales modelos se pueden encontrar en [16,22,24-26] y [39-43]. El modelo de
flotacion que aqui se propone se basa en esta experiencia. Debido a los coeficientes discontin-
uos y al término de difusion degenerado de la EDP, se necesitan las llamadas condiciones de
entropia para garantizar una solucion tnica fisicamente relevante [26,45,52]. Esos resultados
seran utilizados en esta tesis.

La formulacion unidimensional escogida aqui tiene la ventaja de que solo es necesario resolver
ecuaciones para las concentraciones de gas y solidos, mientras que las formulaciones bidimen-
sionales o tridimensionales invariablemente requieren resolver ecuaciones adicionales para el
flujo de la mezcla. Sin embargo, la configuracién unidimensional requiere describir el mecan-
ismo de alimentacion y los flujos a granel divergentes, por discontinuidades con respecto a z en
las definiciones de F'y J. Estos cambios abruptos, en combinacién con las no linealidades de
estas funciones constitutivas que surgen de las teorias de flujo de deriva y flujo de sélidos, cau-
san la principal dificultad matematica para la construcciéon de conexiones de los valores ¢, ¢ y
¢ a través de saltos en las definiciones de F'y J. El analisis y las descripciones detalladas sobre
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como obtener y categorizar los estados estacionarios se dan por Biirger y compania en [18].

Los modelos fenomenolégicos para sistemas de dos fases con burbujas que ascienden (o, de
manera anéloga, particulas que sedimentan) en un liquido, se derivan de las leyes fisicas de
conservacion de la masa y el momento [6,13,29,30]. Bajo ciertas suposiciones simplificadoras
sobre el tensor de tension y la presion parcial de las burbujas/solidos, se pueden obtener EDPs
de primer o segundo orden que involucran una o dos funciones constitutivas (especificas del
material), respectivamente. Tian et al. [109] anticipa un sistema hiperboélico que incluye el
proceso de adhesion; sin embargo, asume que las funciones de flujo son lineales. En particular,
su enfoque no constituye una extension de las teorfas del flujo de deriva o del flujo de s6lidos,
en contraste con el nuestro. Si bien la gran mayoria de las referencias a los procesos de flotacion
estén relacionadas con el procesamiento de minerales, mencionamos que los procesos de flotacion
también se utilizan para eliminar otras particulas pequenas, gotas de aceite, tinta de impresion y
materia organica en diversos procesos, como el tratamiento de aguas servidas, Rubio y compania
[100].

Para la separacion de agua y aceite en el tratamiento de aguas residuales, existen varias
tecnologias de flotacion por aire disuelto (DAF, por sus siglas en inglés) e inducido [102];
véanse también [48,61,81,114]. La flotacion por aire disuelto se ha utilizado durante muchos
anos para el espesamiento de lodos residuales activados (WAS) [31,33,58|. Una de las muchas
ventajas es que la flotacion por aire disuelto (DAF) puede espesar el lodo a concentraciones de
al menos un factor dos veces mas alto que la sedimentacion por gravedad (96, 114].

Los sistemas presentados en esta tesis modelan la evolucion de la incognita primaria ¢ inde-
pendientemente de la incognita secundaria ). Varias aplicaciones de tales sistemas triangulares
se pueden encontrar en la literatura. La cromatografia de dos componentes, que describe la
evolucién de la concentracion de dos solutos, se puede escribir como un sistema triangular; ver
por ejemplo Andreianov y compania [1|. El crecimiento de polimeros en la recuperacion de
petroleo se modela mediante un sistema 2 x 2 (por ejemplo, [63]), que se puede convertir en un
sistema triangular en coordenadas de Lagrange [103]. En [37,83,101], los autores estudian la
formacion de "delta shock wave” en soluciones de un sistema triangular de leyes de conservacion
del llamado modelo de dinamica de gas sin presion generalizada. Bressan y compania [14] es-
tablecié la existencia y unicidad de soluciones de viscosidad nula para leyes de conservaciéon
escalares para un problema de Cauchy y sus resultados se pueden aplicar a un sistema triangular
bajo suposiciones adecuadas. Los resultados de Karlsen y colaboradores [64,67| para sistemas
triangulares generales se pueden aplicar a modelos de flujos trifasicos en medios porosos, por
ejemplo, en procesos de recuperacion de petroleo.

Las simulaciones numéricas se realizaron con un esquema de malla escalonada que utiliza
la estructura triangular de (2). Tal esquema semi-Godunov para sistemas hiperbolicos trian-
gulares generales es uno de los dos esquemas sugeridos por Karlsen y colaboradores [64,67],
quienes demostraron la convergencia de las soluciones numéricas bajo ciertas suposiciones so-
bre las funciones de flujo. Aqui proponemos un esquema numérico méas simple (en una sola
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malla) que es mas facil de implementar y analizar. El anélisis (del esquema propuesto bajo
supuestos simplificadores) se basa en la version alineada del esquema presentado en [67] y en
particular en el analisis de convergencia de un esquema de Engquist-Osher para un sistema
triangular multi-dimensional de leyes de conservacion por Coclite et al. [34]. Estos anélisis,
y el presente tratamiento, se basan en técnicas de compacidad que utilizan desigualdades de
entropia discretas y el marco de compacidad compensada.

Neethling y Cilliers [89] proporcionan un enfoque alternativo para modelar la flotacion por
espuma, véase también [86-88]. Este enfoque se basa fundamentalmente en las propiedades
estructurales microscopicas de la espuma que consiste en peliculas delgadas (laminillas) que
separan las burbujas entre si. Tres de estas peliculas se unen para formar los llamados bordes
de meseta que forman una red ramificada de canales a través de la espuma. Sin entrar en de-
talles, los trabajos citados brindan una descripciéon precisa del comportamiento de las espumas,
incluida la coalescencia de las burbujas, el drenaje de liquidos y el movimiento de particulas
adheridas y no adheridas a través de la espuma (ver [87,88| para méas detalles). La capilaridad
en el efecto espuma ha sido estudiada intensamente por Neethling y Cilliers [89,90] y Neethling
y Brito-Parada [85]; ver mas referencias en [95].

Organizacion de esta tesis

La presente tesis se organiza como sigue:

En el Capitulo 1, presentamos un modelo espacialmente unidimensional para la hidrod-
indmica de una columna de flotacion basado en una fase continua, la fluida y dos fases dis-
persas: los agregados, es decir, burbujas cargadas con particulas valiosas hidrofébicas, y las
particulas solidas que forman la ganga. Se considera una entrada comun de alimentacién para
la mezcla de suspension y gas y se supone que las burbujas estan completamente agregadas
con particulas hidrofébicas a medida que ingresan a la columna. La ley de conservacion de las
tres fases produce un modelo expresado como un sistema de ecuaciones diferenciales parciales
donde las funciones de flujo constitutivas no lineales provienen de las teorias de flujo de deriva y
flujo de so6lidos. Ademas, las funciones de flujo total son discontinuas en la coordenada espacial
(altura) debido a dos entradas (lodo y agua de lavado) y salidas en la parte superior e inferior.
Las soluciones estacionarias deseadas de este modelo se pueden caracterizar mediante gréaficos
operativos. Se utiliza un método numérico novedoso para simulaciones de la hidrodinamica
bajo condiciones de operacién variables, como acciones de control que conducen el proceso
a los estados de operacion deseados. Las simulaciones numéricas ilustran aplicaciones en el
procesamiento de minerales.

Los contenidos del Capitulo 1 corresponden al articulo [20]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vésquez, Flotation with sedimentation: Steady
states and numerical simulation of transient operation, Min. Eng. 157 (2020), p.106419.
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En el Capitulo 2, mostramos las aplicaciones del proceso de flotaciéon que incluyen la
flotacion por aire disuelto (DAF) en el tratamiento de aguas residuales industriales y la flotacion
por espuma de columna (CFF, column froth flotation) en el tratamiento de aguas residuales y el
procesamiento de minerales, como mencionamos en el Capitulo 1. El modelo unidimensional es
el mismo mencionado en el capitulo anterior y un analisis de los ingredientes no lineales de las
ecuaciones gobernantes ayuda a identificar las condiciones operativas de estados estacionarios
deseados, esto se detalla para el proceso de espesamiento DAF. Las simulaciones dindmicas se
obtienen con el método numérico desarrollado anteriormente. Las respuestas a la accién de
control se demuestran con escenarios en CFF y DAF.

Los contenidos del Capitulo 2 corresponden al articulo [28]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, Simulation and control of dissolved air
flotation and column froth flotation with simultaneous sedimentation, Water Sci. Tech.
81 (2020), 1723-1732.

En el Capitulo 3, presentamos una generalizacion del modelo discutido en los Capitulos 1
y 2 compuesto por un sistema triangular de leyes de conservacion con flujo discontinuo que
surge en las aplicaciones antes mencionadas y exploramos las propiedades matematicas del
método numeérico. Se formula un esquema numérico mondtono para aproximar soluciones a
este modelo y se prueba que satisface la propiedad de region invariante, es decir, las fracciones
de volumen aproximadas de las tres fases se mantienen entre cero y uno. Se presentan algunos
ejemplos numéricos, junto con estimaciones de error y orden de convergencia, para flujos en
contracorriente y co-corriente de las dos fases dispersas.

El contenido del Capitulo 3 corresponde a parte del siguiente manuscrito [21]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Véasquez, A difference scheme for a triangular system
of conservation laws with discontinuous flux modelling three-phase flows, in preparation.

En el Capitulo 4, bajo el supuesto de flujo en una columna con area de seccién transversal
constante, se muestra que el esquema para la fase primaria converge a una solucién de entropia.
Bajo el supuesto adicional de ausencia de discontinuidades de flujo, se demuestra ademas, invo-
cando argumentos de compacidad compensada, que el esquema para la fase dispersa secundaria
converge a una solucion débil de la ley de conservacion correspondiente.

El contenido del Capitulo 4 corresponde a parte del siguiente manuscrito (ver Capitulo
3) [21]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, A difference scheme for a triangular system
of conservation laws with discontinuous flux modelling three-phase flows, in preparation.
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En el Capitulo 5, estudiamos el drenaje de liquido en el proceso de flotacion debido a que la
capilaridad es fundamental para la formacién de una capa de espuma estable. Este efecto se
incluye en un sistema hiperbolico de ecuaciones diferenciales parciales previamente formulado
que se usa en el Capitulo 3 que modela las fracciones de volumen de agregados flotantes y
sedimentacion de solidos hidrofilicos [R. Biirger, S. Diehl y M.C. Marti, IMA J. Appl. Math.
84 (2019) 930-973|. Se detalla la construccion de las soluciones de estado estacionario deseados
con una capa de espuma y se visualizan las condiciones de viabilidad en las fracciones de volumen
de alimentacion y los flujos volumétricos de alimentacion, subdesbordamiento y agua de lavado
en los llamados graficos operativos. Se deriva y emplea un esquema numérico monétono para
simular el comportamiento dindmico de una columna de flotaciéon. También se demuestra que,
bajo una condicion adecuada de Courant-Friedrichs-Lewy (CFL), las fracciones de volumen
aproximadas estan acotadas entre cero y uno cuando los datos iniciales lo estan.

El contenido del Capitulo 5 corresponde al siguiente manuscrito sometido [19]:

e R. Biirger, S. Diehl, M. C. Marti, Y. Vasquez, A degenerating convection-diffusion sys-
tem modelling froth flotation with drainage Centro de Investigacion en Ingenieria Math-
emdtica (CIPMA), Preprint 2022, Universidad de Concepcion, Chile 2022.



CHAPTER 1

Flotation with sedimentation: steady states and numerical

simulation of transient operation

1.1 Introduction

1.1.1 Scope

In this chapter, we summarize from [18] the derivation of the governing triangular PDE system
(2), present a new numerical method, and give examples on control actions for obtaining desired
steady states. These are time-independent (stationary) solutions of (2). Among the variety
of theoretically possible steady states we select those for discussion that are most relevant for
practical applications, namely those that have a high concentration of aggregates at the top,
the foam and no bubbles at the lower part of the column, and conversely for the solids gangue.
These steady states represent the stationary modes of operation of a flotation column without
changing control parameters. It turns out that such desired steady states need some wash water
to be injected, i.e., Qw > 0. We provide conditions (for steady-state operation) on how much
wash water can be used for the process to be efficient, i.e., how much can flow down through
the foam. Applying more wash water will only mean that it is wasted through the effluent.

Both transient and stationary solutions have layers of different concentrations of bubbles
(foam) and particles separated by discontinuities in concentration. Equation (2a) depends only
on the unknown ¢. Our approach is to solve each equation locally as a scalar conservation law
with discontinuous flux. The feasible steady states relevant for operation in real applications
can be visualized by so-called operating charts that illustrate the necessary constraints for the
control of the volumetric flows.

We present here a new numerical scheme for (2), which is easier to implement than the one
presented by [18]. The numerical scheme produces approximate solutions that take physically
relevant values only (volume fractions between zero and one). It is the purpose of this chapter
to demonstrate that the model and numerical scheme provide a useful tool for the simulation

16
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of the operation of a flotation column in the case of a common feed inlet of the three phases
and when no aggregation occurs in the column. In particular, responses of the unit to changes
in operating conditions (such as the rates and composition of feed flows) are illustrated.

1.1.2 Outline of the chapter

The remainder of the chapter is organized as follows. The mathematical model is outlined
in Section 1.2, starting with some general assumptions (in Section 1.2.1) and a description of
the batch-drift and batch-settling flux functions (Section 1.2.2), which introduce nonlinearity
into the fluxes J and F. Then, in Section 1.2.3, we outline the derivation of the governing
equations (2) from the conservation of mass equations of the gas (aggregates), the solid and
the fluid. The existence of stationary and transient solutions depends on geometric properties
of the nonlinear flux functions, such as the locations of extrema and inflection points, which
are outlined in Section 1.2.4. In Section 1.2.5 we briefly comment on the condition imposed
at the effluent level zg. In Section 1.3, the desired steady states and their characterization
are presented. We extract in Section 1.3.1 the most interesting and usable results. The most
desired steady states and their operating charts for given values on ¢r and g are presented
in Section 1.3.2. The new numerical scheme is summarized in Section 1.4. In Section 1.5, we
present numerical solutions of (2) that illustrate the transient behaviour of the model. After
stating some preliminaries (in Section 1.5), we present in Sections 1.5.2 to 1.5.3 two examples of
simulations that illustrate the model predictions, in particular the formation of and transitions
between steady states and the response of the system to changes of operating conditions.

1.2 Mathematical model

1.2.1 Assumptions

Figure 1 shows the flotation column studied in this chapter and introduces the distinguished
heights zy, zr, 2w and zg along with the associated volume flows Qu, Qr, Qw and (. The
volumetric feed flows of wash water, Qw > 0, and of feed slurry, Qr > 0, are given func-
tions of time, as is the volumetric underflow rate Quy > 0. The resulting effluent volumetric
overflow Qg = Qw + Qr — Qu is assumed to be nonnegative, Qg > 0, so that the mixture is
conserved and the vessel is always completely filled with mixture.

To model a feed inlet pipe located in the upper part and centre of a cylindrical column, the
cross-sectional area A = A(z) is assumed to have a discontinuity at the feed inlet (Figure 1):

Ag f >
A(z) = { BOTESS Ghere Ag < Ay. (1.1)

Ay for z < zp,
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We mention that our numerical method can handle any other variation in the cross-sectional
area, for example, a conical bottom.

We distinguish three phases: the fluid phase (index f), the solid phase (index s), which
models solid particles that are suspended in the fluid, and the aggregate phase (index a), which
models gas bubbles fully loaded with hydrophobic particles. We let ¢; = ¢;(z,t) denote the
volume fraction of phase i € {a,f,s}, where ¢, + ¢¢ + ¢ = 1. The maximum volume fraction
for any phase is one. In what follows, we will use the simpler notation ¢ := ¢, and 1 := ¢s;
cf. (2). Furthermore, we assume constant phase densities p, < pr < ps, consistently with the
assumption that bubbles rise (float) and particles settle (sink). Finally, the aggregate bubbles
and the solid particles are assumed to be monosized. We also suppose that gas bubbles do not
coalesce or break.

1.2.2 Batch-drift- and batch-settling-flux functions

The drift-flux and the solids-flux theories stipulate a batch-drift-flux function j,(¢) and a
batch-settling-flux function f,(¢), respectively:

]b(¢) = ¢Uterm,ava(¢)7 (12)
folp) = SOUterm,sVS(Qp)a (1.3)

where Vierma and verm s are the terminal velocities of a single aggregate and a single solid
particle, respectively, in an unbounded fluid, and V, and V; are dimensionless hindered bubbling
and settling functions, respectively. The fluxes ji,(¢) and f,,(¢) express the movement (“drift”)
of bubbles relative to the bulk motion of the solid-fluid-gas mixture and the movement of solid
particles relative to the motion of the solid-fluid suspension that fills the interstices between the
gas bubbles, respectively. The discussion of the velocities Vterm s and vVierm s is beyond our focus
(but see Stevenson et al., 2008 [106]); here it suffices to assume that viem, > 0 and vgerms > 0 are
set constants for a given material. (Both these constants are assumed positive while aggregates
usually float upward and solid particles settle downward. That these directions are opposed
will eventually be handled by the different signs associated with the 0/0z(...) terms in (2a)
and (2b), respectively.)

The functions j,, and f;, are assumed to have the same qualitative properties, namely ji,(0) =
Jb(1) = 0, and we assume that there exists precisely one inflection point ¢y,g such that j7/(¢) < 0
for 0 < ¢ < ¢ipa and 7 (¢) > 0 for giua < ¢ < 1. We also assume that ji (1) = 0. In particular,
these assumptions are satisfied for the fluxes (1.2) and (1.3) and the functions V, and Vj given
by the Richardson-Zaki (1954) expression

Val@)=(1—=¢)" for0< ¢ <1,n, >1,

(1.4)
Valp) = (1 =)™ for 0 <o <1,n> 1L

Realistic values of the parameter n, range from 2 to 3.2 [38,54,91,111]. We use n, = 3.2 and
Uterm,a = 2.7 cm/s for all plots and simulations in the present chapter along with ng = 2.5 [38]
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and vterms = 0.5cm/s. That said, we emphasize that our approach is by no means tied to the
use of the functions (1.4) and these parameters; other functions could be used as long as the
resulting functions j, and f;, have the properties stated above.

Inside the column, the aggregates and hydrophilic solids are transported by both the local
bulk flow and the batch fluxes relative to the bulk flow. Outside the flotation column, we
assume that all three phases have the same velocity, i.e., the particles are transported only by
the bulk flow. Mathematically, this means that our problem can be defined on the real line z
with batch fluxes ji, and f, present only for zy < z < zg.

1.2.3 Governing equations

Conservation of mass for each phase implies the following system of balance equations,

%(A(z)gzﬁ) + %(A(z)(ﬁva) = Qrorod(z — zr), (1.5)
9 (AGRE) + o (A(ons) = Qeted(z — 22), (16)
%(A(Z)be) + %(A(Z>¢fvf) = Qrorrd(z — 2r) + Qworwi(z — 2w), (1.7)

where the right-hand sides contain Dirac functions, volumetric flows and the incoming volume
fractions of aggregates ¢, solids ¢p and fluid ¢rw = 1. We assume that ¢p + Yp + ¢rp = 1
with 0 < ¢p,¥r, ¢rr < 1. In terms of the volume-average velocity, or bulk velocity, of the
mixture q := ¢v, + Vs + ¢pvg, the sum of (1.5)—(1.7) can be written as

0

52 (A(2)a) = Qrd(z — 2r) + Qwd(z — 2w). (1.8)

Consequently, in the flotation column, ¢ varies with height z because of the two inlet flows
and (1.1). Since A(z)q(z,t) = —Qu(t) for z < zp, we can integrate (1.8) to obtain

¢ = —Qu/Au in the underflow zone and zone 1,
q(2,1) = § ¢2 == (—Qu + Qr)/Ag in zone 2, (1.9)
g3 := (—Qu + Qr + Qw)/Ag in zone 3 and the effluent zone.

Hence, this identity replaces (1.7). We recall that Qu > 0, Qr > 0, and Qw > 0, with the
additional assumption that Qg = Qw + Qr — Qu > 0 (see Section 1.2.1), such that ¢; < 0,
@2 may have either sign, and g3 > 0.

We may now rewrite the fluxes ¢uv, and s in (1.5) and (1.6) in terms of ¢ and the two
constitutive functions 7, and f},, and obtain the following expressions inside the vessel:

Pva = 0q + Ju(9) = J (9, 2, 1),

. (1.10)
¢’Us = (1 - ¢)90q - (1 - ¢)fb(90) - @]b(qs) =. —F(QO,QS,Z,t),
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where the minus sign is to have F' positive in the direction of sedimentation. (A full derivation
of (1.10), based on appropriate definitions of relative velocities, is provided in [18].) Inserting
these expressions into (1.5) and (1.6) we get a system of PDEs in a zone within the vessel.
With the assumptions in Section 1.2.2 that all relative velocities are zero outside the vessel,
i.e., in the efluent and underflow zones of the mathematical model, the relative fluxes j;, and
fov are set to zero there. We can now state the total flux functions of the model (2). The total
flux function of the first equation (2a) is given by

(

Je(o,t) == qs(t)o in the effluent zone,
Js(o,t) == q3(t)¢ + jn(¢) in zone 3,
J(d,2,t) = { ja(,t) := qa(t)d + ji(¢) in zone 2, (1.11)
J1(@,t) == q1(t)¢ + ju(¢) in zone 1,
Lu(@,t) == qi(t)¢ in the underflow zone.

In zone k, the aggregate flux jj (positive upwards) consists of the hindered drift-flux j, relative
to the bulk flow and the bulk flow component gx¢. The total flux function in (2b) is given by

(fE(go, ¢,t) .= —(1 —@)gz(t)¢ in the effluent zone,

f3(p, 9,1) in zone 3,
F(p,0,2,t) = < falg, ¢, 1) in zone 2, (1.12)
filp, ¢,t) in zone 1,

| fulp, ¢,t) == —(1 = d)q1(t)¢ in the underflow zone,

where the zone fluxes (positive downwards) are given by

file,0,1) :=(1 = 8) fu(9) + (7b(0) — (1 — B)a(t)) ¢

The first term, (1—¢) f,(¢), is the hindered-settling flux of solids relative to the bulk movement
outside the aggregates, which explains the factor (1 — ¢). The second term is the bulk flux
of solids downwards, which has the overall bulk flow component —g; enhanced by the aggre-
gate movement upwards that forces the surrounding suspension to move downwards with the
velocity jg.

1.2.4 Zone flux functions

The zone flux functions, j for the aggregates and f(-, ¢) for the solids, have an additional
linear term due to the bulk velocity of the zone, see Figure 1.1. We temporarily skip the time
dependence (that is, we treat ¢ as a constant) and let j(¢) = ji,(¢) + g¢ denote a general zone
flux function. (The case for the settling zone flux function f(-,¢) is similar; however, with an
additional dependence on ¢.) The flux function j has the following distinguished values; see
Figure 1.1:
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0.8
04 —31(6) = 3u(0) + 16, @ <0
—j2(8) = jv(¢) + @26, @2 >0
03 ; 0.6 |—J3(9) = jn(9) + 46, g5 >> 0
0.2 | )
0.1 s
0 —f=—
0.1+ e uy
—1(6) = ju(¢) + ao }
—Js(@) = ju(6) + s | | | | | | ‘
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

Volume fraction ¢

Volume fraction ¢

Figure 1.1: Flux functions of the aggregate phase and specific volume fractions. Left: Drift-flux
function 7, and flux curves for zones 1 and 3. Right: In red colour, the local minimum ¢y and
the lower volume fraction ¢y, with the same flux value (see (1.13)) for the flux j, in zone 2
where ¢ > 0. In blue colour, the local maximum ¢} and zero ¢ for flux j; with ¢ < 0. In
black we have represented a zone flux j3 with a higher value of g3 > 0, so that ¢ = @3 = ding.
In these and other plots, we have used the expression (1.4) with vema = 2.7cm/s and n, = 3.2
in the drift-flux function j,. The unit on the vertical axis is cm/s.

e The flux j(¢) has the same inflection point ¢, as jy(¢) for any value of g.

e If j(¢) has a zero in the interval (0, 1), which happens only for ¢ < 0, we denote it by
o7 = dz(q). If j(¢) < 0 for all ¢ € (0,1], we set ¢z := 0.

e There is a local minimum point ¢y = ¢ni(q) in the interval (¢iug, 1), which decreases with
increasing ¢ > 0 until ¢y reaches the inflection point. For higher values of ¢, j(¢) is an

increasing function and we define ¢y := ¢ig. For ¢ < 0, we set ¢y := 1.

e Given ¢y and ¢ > 0, we define ¢, = ¢ (q) as the unique value satisfying

J(@m) = j(dm),

where 0 < ¢, < Ping.

(1.13)

e For realistic values of ¢, there is a local maximum ¢™ = ¢M(q) in the interval [0, ging).

Sometimes we write out the dependence on ¢ of the flux function, i.e. j(¢;q) and f(p, ¢;q).

1.2.5 A comment on the condition at effluent level

We comment that there is no explicit boundary condition for the bubble volume fraction ¢
associated with the effluent level zg other than the change from the flux J = j3, corresponding
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to zone 3, to the convective flux J = jg in the (one-sidedly unbounded) effluent region, see
(1.11). This jump in the algebraic definition in combination with the continuity of the aggregate
flux J means that if we denote by ¢(z,t) and ¢ (2%, t) the limits of ¢(-, ) at z = 2g from below
(zone 3) and above (effluent zone), respectively, then for the corresponding limits of J must
satisfy J(¢(zg,t), 25,t) = J(d(24, 1), 25, t) at all times. In light of the definition of J, (1.11),
this means that

93@)@5(257 t) + jb (¢<Z]57 t)) =43 (t)(b(ZE ) t)

such that

g3(t) (p(z5,1) — ¢(25, 1)) = jn(¢(25,1)) > 0. (1.14)

Since g3(t) > 0, (1.14) means that ¢(zg,t) < ¢(z4, 1), that is, the aggregate volume fraction ¢
increases (upward) across the effluent level zg. If we (for simplicity) assume that no hydrophilic
solids are present in zone 3 and the effluent zone (this is usually the case under standard
operating conditions), then we conclude that the fluid content 1— ¢ decreases upward across zg,
ie.,

?bf(zg?t) =1- Qb(ZIg?t) >1- ¢(ZE7 ) (bf(ZE’ ) (1'15)

We come back to the significance of this observation in conclusions.

1.3 Steady states

1.3.1 Desired steady states

Generally, a steady-state solution consists of piecewise constant values of ¢ and ¢ (or, equiv-
alently 1), generally with discontinuities at the locations of the inlet and outlets, and in each
zone there is at most one discontinuity. We are only interested in the desired steady states
that have a high concentration of aggregates at the top, so that a layer of foam exists, and
zero at the bottom. Furthermore, in a desired steady state, we require in addition that the
hydrophilic solids settle directly and be present only below the feed level. The different steady
states depend on the values of the feed input volume fractions of the aggregates ¢p and the
solids ¢r, and on the volumetric flow rates Qr, Qu and Qw. There are several equalities and
inequalities involving these variables and the nonlinear flux functions 7, and f;,. We will state
the conditions that are needed here and refer to [18| for all details. Theoretically, there exist
many steady states; however, a main conclusion is that all desired steady states that should be
able to exist for all volumetric feed flows Qr > 0 require wash water, i.e., Qw > 0. It turns out
that the desired aggregate steady states that are possible for a range of volumetric flows down
to zero are those described in Table 1.1. They differ only in zone 2, where the solution ¢ can
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Table 1.1: Desired aggregate steady states that are possible for a range of volumetric flows
down to zero. The states differ only in zone 2, where the solution ¢ can be constant low
(SS1), constant high (SSh), or have a discontinuity separating these two values (SSd). Here, ¢
denotes a constant solution in the entire zone 3, ¢sy is the minimum point of j5(¢), and ¢} and
gzﬁ% denote the values above and below, respectively, a discontinuity located at z = zq within

zone 2.
Pssi(2) Pssn(2) Pssa(z)
effluent zone or = Apjs(93)/Qr = d3m
zone 3 3 = P3M > P2
¢} € (@31, ¢omt]  for z > zq,
2 m M M’
zone Py € [¢2 5 ] P2 € [¢2 ¢2M] {gb% c [¢2m7 gbg/l] for = < 24
zone 1 & underflow zone 0

be constant low (SSI), constant high (SSh), or have a discontinuity separating these two values

(SS4).

For the solids, the following steady state is the most interesting one:

0 in the effluent zone and zones 2 and 3,
pss(2) == { 1 € [0, p1m] in zone 1, (1.16)
wu =1+ Avufu(p1)/Qu in the underflow zone.

The necessary conditions for these steady states to exist involve the following conditions,
where we now write out the dependencies on the volumetric flow rates; see (1.9). The conser-
vation of mass across the feed and wash water levels yields the following jump conditions:

Qror = Arj2(d2; ¢2), (FIJC)
Qrvr = Aufi(e1,0;q1), (FJCs)
AgJa(d2;q2) = Arjs(3; q3)- (WJIC)

(Since pgs = 0 above and below z = zy, the jump condition there for the solid phase is always
satisfied.) For ¢gsq, ¢o should be replaced by ¢5 in (FJC) and by ¢} in (WJC). We note that
for given feed volume fractions ¢r and ¥, and volumetric flows Qu and Qp, the values ¢ (or
@5 or ¢b) and ¢, are uniquely given by (FJC) and (FJCs), respectively, for the restrictions
given in the solutions ¢sgi(z), ¢ssn(z) and ¢ssq(z) given in Table 1.1 and ¢gg(2) given in (1.16).
Then Qw is given as the unique solution of the following equation (cf. (FJC) and (WJC)):

Arjs <¢M (_QU +£§ - QW) ; Qv +1§2EF - QW) = Qror. (1.17)
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(The function ¢p(q) is defined in Section 1.2.4.) Then ¢3 = ¢sm(gs) is uniquely determined.
The choices of Qu and Qg are given by (some of, depending on the steady state; see Sec-
tion 1.3.2) the following inequalities:

Agja (93 (42); 42) > Qror, (Fla)
¢2 < d1z(q1), where ¢y < @5 (go) is defined by (FJC), (FIb)
Agja(P2m(g2); ¢2) < Qror, (Flla)
¢2 < ¢1z(q1), where ¢ € [95'(¢2), Pom(g2)] is defined by (FJC), (FIIb)
Qu > Qr(1 — ¢p), (CFIIIa)
Avfilpim(qr), 0;q1) > Qrtp. (Flas)

If Qu and Qr are chosen so that condition (CFIIIa) is satisfied (and other conditions depending
on the feed volume fractions), then the wash water injected at the rate Qw calculated by (1.17)
is effective in the meaning that it flows downwards through the foam. Furthermore, Qg > 0.

1.3.2 Operating charts

Case SSI: ¢gg and ¢gg

The necessary conditions are (Fla), (FIb), (Flas) and (CFIIIa) along with the jump condi-
tions. The first four conditions involve only QQu and @y, and these conditions are visualized
in Figure 1.2 for ¢ = 0.3 and ¢)p = 0.1. The white region in the fifth subplot of Figure 1.2
shows the possible values for (Qu,Qr). In each such point, there is a unique value of Q.
In the fifth subplot of Figure 1.2, we have drawn red dashed curves; each for a fixed value of
Qw = 0,10,20, ... cm?/s, defined by (1.17). The value of Qw for a specific curve can be read
off at the intersection of the curve with the Qu-axis. This is because Qr = 0 in (1.17) gives

om((—Qu + Qw)/AU) = Gmax, which is equivalent to Qw = Qu.

Case SSh: ¢gg;, and pgg

The conditions are (Fla), (FIIa), (FIIb), (Flas) and (CFIIla) and the jump conditions. For
¢r = 0.3 and ¢yp = 0.1 we get the regions shown in Figure 1.3, where we show the new conditions
that are not shown in Figure 1.2.

Case SSd: ¢gsq and pgg

The necessary conditions for this solution are the same as in case SSh; hence, the operating
charts coincide with those in Figure 1.3.
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Figure 1.2: Operating charts in the case SSI with ¢p = 0.3 and ¢p = 0.1. The four first plots
show where each condition is satisfied (white regions). The last plot shows all four conditions
superimposed and curves (red dashed) along which Qw (obtained from (1.17)) is constant with
Qw = 0,10,20,... cm?/s. The value of Qw can be read off on the Qu-axis. (In this and other
figures, the values n, = 3.2, Uteyma = 2.7 cm/s, ng = 2.5 and Verms = 0.5 cm/s have been used
for the drift-flux j;, and hindered-settling flux f;, functions.)

1.4 Numerical scheme

For the numerical simulation of nonlinear hyperbolic systems of PDEs like (2), which have
coefficients that depend discontinuously on space, there exists no standard textbook method.
We present here a new explicit numerical scheme for obtaining approximate solutions of the
model (2) expressed in the conservative variables ¢ and :

96 0

A(Z)E + g(A(z)J(qﬁ, z,t)) = Qr(t)or(t)d(z — zr), (1.18a)
A+ L (AP, 0,2,1) = Qelt)e(0)3(z — =), (1.180)
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(FIIa)

100+

80+

60|

Qr [cm?/s]

40+

20}

50 100
Qu [cm? /s
Figure 1.3: Operating charts in the cases SSh and SSd with ¢p = 0.3 and ¢¥p = 0.1. The
conditions (FIIa) and (FIIb) are shown (see Figure 1.2 for the others), and in the third plot all
conditions together with the red dashed lines showing the values of Qw = 0, 10,20, ... cm?/s.

where
N —F(Lgﬁzt) fo<¢<1
F(p, ¢, 2,t) = L—¢ 777 - ’
44
—F (fgont) =va o) (v (125) + ).
and (cf. (1.2) and (1.3))
W (o) = ViermaVa(9), V() := VtermsVs()- (1.19)

The discretization of the system of balance laws (1.18) exploits that this is triangular. We first
obtain discrete values ¢} ~ ¢(z;, t,), which approximate the solution ¢ of (1.18a) as a piecewise
constant function in space and time. This is then used as a known function in (1.18b), which
solution is approximated by the values ¥ ~ 1(z;,t,). We have a proof (not yet published)
that the first update formula produces discrete values 0 < ¢! < 1, and that the second one
implies 7 > 0 and 0 < ¢ + v < 1. This property reflects that only physically relevant
discrete solution values are generated, since from the natural bounds 0 < ¢ <land 0 < p <1
(see Section 1.1.1) at every point (z,t) and the relation (1) we obtain that ¢ + ¢ satisfies

0<¢+v=0+(1-d)p<od+1-0¢=1

1.4.1 Spatial discretization

We define a computational domain of N cells by covering the vessel with N — 2 cells and
placing one cell each below and above for the calculation of the outlet volume fractions; see
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T AN+1/2

o - - - -+ 2Nn-1/2- - effluent

PN-1 level zp
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T 25/2
03
L - - -1+ 23/2- - - - underflow
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Figure 1.4: Grid defined for the discretization of the flotation column. Both inlets zp and zw
are fixed inside a cell while the outlets, zy and zg, are on the boundary of a cell. The grid for
the discretization of v is the same.

Figure 1.4. Given the column height H, we define Az := H/(N — 2) the cell boundaries
Zig1j2 = Az, i = 0,1,..., N, and the cell intervals [2z;_1/2,2+1/2). We place the column
between zy 1= Az = 23/5 and 2 := 2y +H = (N —1)Az = zx_15. Each of the injection points
zp and zw is assumed to belong to one interval [z; 4 /25 Zit1 /2) and we define the dimensionless
symbol

Fit1/2 1 if zp € [2i21/0, 2 ,
R (e
Zi_1/2 0 otherwise.
The cross-sectional area A = A(z), which is allowed to have a finite number of discontinuities,
is discretized by cell-wise averages, namely we calculate

) 1 Zit1)2 A A 1 (i+1/2)Az A
i = d 5 i == dz. 1.2
) Ad A= g [ AG: (1.20)

Zi—1/2
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Furthermore, we determine from these values the constants

Ai—l/? Ai+1/2 .
M := l:{r’l;}X’N {T? TZ ) Amin = ZZ%}H’N A@ (121)

1.4.2 Time discretization

We use the uniform step length At and simulate Ny time steps up to the final time T :=
NrpAt, and we set t, := nAt forn =0,1,..., Np. The time step At should satisfy the Courant-
Friedrichs-Lewy (CFL) condition

2]Q|
(2L at (s (V0 IV + IV o+ 1) ) <820 (122

where the constants are given by (1.21) and

1Qlle.r == max (Qp(t) + Qw(t)), V']l := max [V'(g)].

0<t<T 0<p<1

The CFL condition (1.22) is a well-known stability condition that usually arises in the context
of explicit discretizations of time-dependent PDEs (see, e.g., [77]) and limits At for given Az.

The time-dependent feed functions are discretized as
1 tna1 1 tn+1

Qp = At Qr(t) dt, op = At ¢r(t) dt,

and the same is made for the other volumetric flows and .

1.4.3 Marching formula

Assume that Az is the spatial mesh width (“layer thickness”) specified above and At is the
time step chosen such that (1.22) is in effect. The numerical approximations of the PDE
solutions are defined as follows. Firstly, the initial data are discretized by

o L[ A d 0o L 0)A()d
i—1/2 i—1/2

To advance from ¢, to t,.1, we assume that ¢', i = 1,..., N, are given and set the boundary
values

Py =91, DOy = O,

Vo =01, YN = UK
To present the final marching formula, we calculate (for i = 0,..., N)

glax,i+1/2 = min{l — ¢}, 1 — ¢}y, } = 1 — max{¢}, ¢ }- (1.23)
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For the calculation of some numerical fluxes, we define the function

: - v - o V(u) if u<1,
() =V (—n ) ;o V(w) = {o Fus 1

max,i+1/2

(1.24)

We denote by 1&1."“ /o the (unique) maximum point of the function f, , Then we calculate (the
Godunov numerical flux on the function f}, ) [56]

G?+1/2 = min{fﬁ1/2 (min{z/;?, 1%11/2})7 fﬁm/z (max{winJrla 1%;1/2})}- (1.25)
We use the notation v;y1/2 := 7(zit1/2) and Q(z,t) := A(2)q(z,t), where ¢ is defined by (1.9).
The marching formulas are the following (for i = 1,..., N):
oIt =g + A <¢” max{Q;_, 5,0} + ¢ min{Q?"_, ,,0}
i i AZAZ i—1 i—1/2» i i—1/2»
- o7 maX{Q?H/Q, 0} — ¢y min{foH/% 0}
+ Aic1y2%ic1207 A W(@]) — Aiy12%is120; W(97 1) + QW%FJ)»
n+1 n At n n n._. : n
v =+ A2 ity maX{Qifl/% 0} + 1 mm{@iq/za 0}

— 7 maX{Q?+1/27 0} — iy min{Q?H/g, 0}

— Ais1)2%i-1)2 (Gi_1/2 + (,bi_l—l — ¢RW(¢1 )
+ Aiv1/27it1/2 (G?H/z + ¢?—1 _iﬁ W ( ?+1)> + Q?iﬁg(sF,i) -
i+1

Finally, the underflow and effluent concentrations are obtained by

oy = 1, = O

1.5 Numerical simulations

1.5.1 Preliminaries

In our examples we will use the dimensions of the flotation column that is part of the Reflux
Flotation Cell used in [38,54]. The flotation column is H = 1m high with Ay = 83.65 cm?.
Feed slurry and gas bubbles are pumped through a downcomer of external diameter 3.81 cm,
which forms an annulus around a 2.54 cm-diameter tube incorporating a porous sparger for
bubble creation. Hence, the effective horizontal cross-sectional area above the feed inlet is
Ag = 72.25 cm?. The outlet of the downcomer is positioned 66.7 cm below the top of the vessel,
hence a vertical distance of 33.3 cm separates the downcomer outlet from the bottom of the
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Figure 1.5: Examples 1.1 and 1.2. Operating charts for a steady state of type SSI with ¢p = 0.3,
Y = 0.1 (left) and ¢ = 0.4, p = 0.1 (middle) and for a steady state of type SSh with ¢p = 0.4,
Yp = 0.1 (right). The point (Qu,Qr) = (56.3,64.6) cm?/s is marked in blue (asterisk) while
(Qu, Qr) = (42,55) cm?/s is marked in black (solid point). The red dashed curves correspond
to constant values of Qw = 0, 10,20, ...cm3/s where the washing process is effective.

column. The new numerical method used for the simulations is given in Section 1.4. All the
numerical results have been obtained with a spatial discretization of N = 1600 computational
cells, which means a spatial step size Az = 0.0626 cm and a time step At = 0.004 s satisfying
the CFL condition (1.22). Note that for the three-dimensional plots in Figures 1.6, 1.7, 1.8,
1.9, 1.11, and 1.12, we have used a visual grid of only 100 spatial points.

1.5.2 Example 1.1

We start from a tank filled only with fluid at time t = 0's, when we start pumping aggregates,
solids, fluid and wash water, with ¢p = 0.3 and ¥r = 0.1. From the corresponding operating
chart, see Figure 1.5 (left), we choose the operating point of volumetric flows (Qu,Qr) =
(56.3,64.6) cm? /s lying in the white region and choose Qw = 15.3cm?/s by (1.17) to guarantee
effective washing, i.e., this is the maximum flow of wash water injected that will flow downwards;
applying a higher value will mean an overflow through the effluent. Then a steady-state of type
SSl is feasible with the effluent volumetric flow Qg = 23.6 cm?/s.

As can be seen in Figure 1.6, a first steady state arises after about ¢ = 130s with a low
concentration of aggregates in zones 2 and 3; hence, there is no foam and this is an undesired
solution. To obtain the desired steady state ¢gs, we ‘close’ the top of the tank at ¢ = 150s by
setting Qu = Qr + Qw = 79.9cm?/s, so that Qg = 0cm?3/s. Then aggregates accumulate at
the top forming a layer of foam which grows downwards. After 80s, at ¢ = 2305, the top of the
column is opened again and a desired steady state of type SSl is reached after ¢t = 530s.
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Figure 1.6: Example 1.1. Time evolution from ¢ = 0 to t = 530s of the volume fraction

profiles of aggregates ¢ (left) and solids ¢ (right). As it can be seen, the inlets are located at
zp = 33.3cm and zw = 66.6 cm.

Example 1.1a (no control action)

Once the system is in steady state, we assume that, at t = 530s, the feed volume fraction of
aggregates changes from ¢p = 0.3 to 0.4, and simulate first the reaction of the system without
making any control action. In the corresponding operating chart for this new set of variables,

the point (Qu, Qr) = (56.3,64.6) cm? /s is no longer in the white region; see Figure 1.5 (middle),
and no steady state of type SSI is feasible.

Figure 1.7 shows in detail the dynamics from ¢ = 530 s to 830 s, while the system evolves from
a desired steady state to a non-desired one. The aggregates fill the column downwards through
zones 2 and 1 until they leave the tank through the underflow outlet, reaching a non-desired
steady state. It can also be seen how the solids volume fraction adapts to the movement of
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Figure 1.7: Example 1.1a. Time evolution from ¢ = 530 to t = 830s of the volume fraction
profiles of aggregates ¢ (left) and solids ¢ (right) after a change in the feed volume fraction of
aggregates from ¢p = 0.3 to 0.4.

aggregates in zone 1.

Example 1.1b (with control action)

To avoid losing aggregates through the underflow, we simulate also the case when we make
a control action directly at ¢ = 530s as a response to the change of the feed volume fraction
of aggregates from ¢p = 0.3 to 0.4. We close the top of the tank for only 4.5s and then,
at t = 534.5s, change the volumetric flows so that the new point (Qu,Qr) = (42,55)cm3/s
lies inside the white region of the corresponding operating chart in Figure 1.5 (middle), with
Qw = 14.3cm3/s given by (1.17). Figure 1.8 shows that a second steady state of type SSI is
reached after t = 834.5s. The entire simulation with the control action is shown in Figures 1.9
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Figure 1.8: Example 1.1b. Time evolution of the volume fraction profiles of aggregates ¢ (left),
and solids ¢ (right) from time ¢ = 530s to 834.5s, after making a control action

and Figure 1.10.

1.5.3 Example 1.2

We demonstrate the cases SSd and SSh. In Figure 1.5 (middle) and (right), we see that the
point (Qu, Qr) = (42,55) cm?®/s lies in the white regions of both feasible steady states SSI and
SSh (and SSd). We consider the simulation in Example 1 up to ¢ = 530 s when a first desired
steady state of type SSI is reached.
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Figure 1.9: Example 1.1b. Time evolution of the volume fraction profiles of aggregates ¢ (left),
and solids v (right) from ¢t = 0s to 834.5s.

Example 1.2a (demonstration of SSd)

At that time point, we close the top of the tank for a longer period (15s) than we did
in Example 1.1, until ¢ = 5455, when we simultaneously change the feed volume fraction of
aggregates from ¢p = 0.3 to 0.4 and adjust the volumetric flows as in Example 1.1b. Figure 1.11
shows that a steady state of type SSd is reached after ¢ = 845 s, with a stationary discontinuity
in zone 2 at zq &~ 42 cm, above and below which the volume fractions are

o) = 0.3382 € [8), pon] = [0.2697,0.8032] for z > 24,
05 = 0.2104 € [¢hom, BM] = [0.0665, 0.2697] for z < zq,

satisfying jg(gzﬁg) = j2(¢$)-

Example 1.2b (demonstration of SSh)

If we perform the same actions except that the top is closed for 18s instead of 15s, then
a steady state of type SSh is reached after ¢ = 848s; see Figure 1.12. The entire simulation
for this case is shown in Figure 1.13. The “stationary” value of the effluent volume fraction of
aggregates can be calculated to ¢ = Qpor/Qr = 0.8212 before the disturbance and 0.8061
after.
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Figure 1.10: Example 1.1b. Dynamics of the entire simulation during 834.5s with a control
action at t = 530s. Here and in Figure 1.13, the panels show (from top to bottom) the aggregate
volume fraction ¢; the solids volume fraction ¢; the volumetric flows Qu, Qr and Qw; the
volume fractions of aggregates and solids of the feed (¢r and 1g); and the volume fractions of
aggregates and solids of the underflow (¢y and ¢y) and the effluent (¢ and ¢g).
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Figure 1.11: Example 1.2a. Transient solution between the steady states SSI and SSd, where
the latter has a discontinuity in the aggregate volume fraction in zone 2. The location of this
discontinuity depends on the transient solution before, hence, on the control actions made.
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Figure 1.12: Example 1.2b. Transient solution between the steady states SSI and SSh.

37
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Figure 1.13: Example 1.2b. Dynamics of various variables from the initial time ¢t = 0s to
t = 848s.



CHAPTER 2

Simulation and control of dissolved air flotation and
column froth flotation with simultaneous sedimentation

2.1 Introduction

2.1.1 Scope

Gas flotation is a process to separate particles or droplets from a suspension when the parti-
cles/droplets are either too small or have a density too close to that of water to settle efficiently.
The gas bubbles and particles/droplets form aggregates which rise to the top of a flotation tank
where a layer of froth is skimmed off; see Figures 2.1 and 2.2 for two applications. The suspen-
sion may also contain hydrophilic particles that do not attach to bubbles and, if their density
is larger than that of water, settle to the bottom where they are removed in the underflow.

In column froth flotation (CFF), a stable foam or froth at the top is required; see Figure
2.1. This can be utilized in the removal of metal ions from wastewater [8,79,93,100], removal
of emulsified oil from wastewater [32], or recovery of riboflavin from wastewater [94]. Another
application is mineral processing as we mentioned in Chapter 1. In the process of DAF
thickening, no stable foam layer is needed; however, while WAS (waste activated sludge) floats,
grit and other substances may settle simultaneously [31,114]; see Figure 2.2. Small air bubbles
are trapped with the larger WAS flocs, which then float. In other applications, very small
hydrophobic oil droplets attach to the air bubbles, while the grit settles. Remember that the
simultaneous flotation—sedimentation process means that three phases are involved: liquid,
buoyant aggregates and settling solids.

In this chapter we demostrate that the three-phase flow PDE model mentioned in Section 1.2
of Chapter 1 for one-dimensional (1D) modelling of simultaneous flotation and sedimentation
can be utilized for different flotation applications with or without a layer of froth at the top.
We refer to Biirger et al. (2019) [18] for the derivation of the PDE model, the mathematical
and numerical analyses behind the steady states and the numerical method. Our purpose
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is thus not to fit the model to specific data in a specific application. While Chapter 1
focus on the application to CFF in mineral processing, we present here new results for the
DAF thickening process with the possible simultaneous sedimentation of solid particles. In
particular, we present a new operating chart for the control of steady states of DAF thickening
with sedimentation. The designs of flotation columns and DAF tanks are variable and since
the purpose here is to advance a conceptual general model, we demonstrate its applicability
to two different dimensioned tanks shown in Figures 2.1 and 2.2, and drift- and settling-flux
functions in agreement with literature on CFF [38,54].

To put this contribution into the proper perspective, we mention that 1D models of flotation
columns for the two—phase flow of aggregates and fluid have been based on the drift-flux theory
[38,113], or empirical relationships [12]|, which can model steady-state situations only. Dynamic
models of flotation are few in the literature. The two-phase PDE framework by Bascur (1991)
[6] is applicable to one of the zones of the column (Figure 2.1) and was extend [7] by several
empirical equations for subprocesses, such as attachment and detachment in the froth and pulp
regions.

The present approach differs from the models referred to above. Apart from the tank dimen-
sions, the only model inputs in our 1D model are two constitutive functions for the aggregate
rise velocity and the particle sedimentation velocity, respectively. An advantage of this model is
that the interfaces of pulp/froth and liquid/particles appear naturally as discontinuities in the
solution and need not be tracked explicitly. The description of the rise of aggregates in a fluid
is conceptually similar to the settling of particles described by a batch settling—flux function.
Widely accepted dynamic 1D simulation models for continuous sedimentation based on PDEs
have been developed since the 1990s ( [16,39,46]). This contrasts with the case of flotation, for
which the potential of 1D PDE-based models has not yet been exploited fully.

Many of the properties defined in Chapter 1 will be used in this chapter.

2.1.2 Outline of the chapter

The remainder of the chapter is organized as follows. Some general assumptions of the PDE
model is presented in Section 2.2. In Section 2.3, the necessary conditions for the desired steady
states solutions and their operating charts are given for the DAF thickening case. In Section
2.4, we present numerical solutions of (2.1) for CFF and DAF applications that illustrate the
behaviour of the model using the numerical scheme mentioned in Chapter 1.

2.2 PDE model and dynamic solutions

We assume that all aggregation of (hydrophobic) particles and bubbles occurs before the
slurry is fed into the column, e.g. in the incoming pipe [54]. This assumption is also consistent



2.2. PDE model and dynamic solutions 41

feed EW z Qe

rel
e 3 W [N . T‘—
S ] q=qs zone 3

zone 2
q=q2

A= Ag

O .
oo bubbly region

SIS 115 R <11 SO W1 1131}
FETTEY AAARAALI
= ¢ clsettling region |t * o« °* fsettling region q=q
L %0 o0 0 L "0, 0 ¢ A= Ay |ZOme 1
Qu

SR S B R L . I
@w&c—» underflow %underﬁow

Figure 2.1: Schematic of CFF with a feed inlet for slurry mixture and gas (cf. [18]). At the top,
wash water can be injected for desliming of unwanted particles. We simulate here the second
column where the fluid-gas-particle slurry is fed through a downcomer pipe, which makes the
cross-sectional area vary with height z.

with the principle of operation of dissolved air flotation (i.e. there is one feed stream that
also contains the air in dissolved form), as opposed to dispersed air flotation. The distinction
between both is clearly made, for instance, by Metcalf and Eddy [81]. Figure 2.1 shows a
typical vessel for froth flotation, where wash water can be injected at the top, while Figure 2.2
shows a DAF thickener which has no wash water. Remember that the system of PDEs of the
conservation of mass for the three phases of aggregates, fluid and (hydrophilic) settling solids
as we mentioned in Chapter 1 is:

AP+ D (A I0,2.0) = Qeor(o= — =), (21
A (1= 6)0) — S(ARIF(p,6.2.1) = Qelor(o(= — ). (2.1b)

The unknowns ¢ and ¢ depend on height z and time ¢. The volume fractions of aggregates
are ¢ and solids 1), respectively. The variable ¢ = 1/(1 — ¢) is the volume fraction of settling
solids within the suspension. The cross—sectional area A(z) may depend on z in any way;
however, for the scenarios here we let it be piecewise constant and take at most two values (Ay
and Ag); see Figure 2.1. With the given inlet volumetric flows Qr and Qw, we then define the

zone bulk velocities ¢ = —Qu/Au, ¢ = (—Qu + Qr)/Ag and ¢z = (—Qu + Qr + Qw)/Ag for
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Figure 2.2: Schematic of a DAF thickener (cf. [114]) with constant cross-sectional area and two
zZones.

CFF (Figure 2.1). For DAF (Figure 2.2), we let A = Ay = Ag. The total flux functions for
the rising aggregates J(gb, z,t) and settling solids F((p, 0, z,t) are given by (1.11) and (1.12),
respectively.

In Section 1.2.2 we defined the batch drift-flux function j,(¢) for the rising aggregates and
the batch settling-flux function f,(¢) for the settling solids contained in the total flux functions
J and F. Both functions principally have the same concave-convex form with one inflection
point. The choice of explicit expression (polynomial, exponential, power law, etc.) for j,(¢)
and fi,(¢) depends on the materials and belongs to the model calibration step. The choice does
not influence the qualitative behaviour of the process.

For the batch-drift-flux function j,(¢) the terminal velocity of a single bubble in water is
Uterm,a = 2.7 cm/s and the dimensionless parameter n, is chosen here as n, = 3.2 [38|. For the
batch-settling flux fi,(¢), we have chosen vterms = 0.5 cm/s (Scenario DAF1), vterms = 0.1cm/s
(Scenario DAF2), and ny = 2.5. We neglect, for simplicity, compression effects.

We utilize the triangular property of the system (2.1) in the classification of desired steady
states for the derivation of operating charts and the numerical method for the PDE system.
The latter has been adapted from a general treatment by Karlsen et al. [67]. The numerical
method is the same as the one presented in Section 1.4 and has been implemented in MATLAB
(2019).

2.3 Steady states and construction of an operating chart
for DAF

The analysis of the stationary solutions of (2.1a) and (2.1b) is delicate and invokes a so-called
entropy condition [39] to obtain physically correct solutions. For given feed volume fractions ¢p
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and v, several nonlinear conditions on the volumetric flows have to be satisfied for a certain
steady state to exist because of the feed inlets and discontinuities of the solution. The local
maxima and minima of the zone flux functions appear in the inequalities (see [18] and Section
1.3 for all details). The nonlinear conditions can be visualized in operating charts (cf. Figures
2.3 and 2.6), where an operating point (Qu, Qr) in the admissible white region means that all
conditions are satisfied. For CFF with wash water, the value of Qv is calculated from a global
mass balance. An operating chart depends on the values of ¢ and ¥p, as can be seen from
the difference between the left and right plots in Figure 2.3. We emphasize that the conditions
for obtaining a certain steady state are only necessary; the actual state depends also on the
dynamic history of the process.

A desired steady-state solution in DAF thickening (where there is no wash water), is one
where aggregates are only present above the feed level and settling solids only below. The
necessary conditions on the operating point (Qu,Qr) in the DAF case are four inequalities,
which we now state and which are visualized in Figure 2.6. We assume, for simplicity, that
the cross-sectional area A is constant. The fluid flow in zone 2 above the feed inlet should be
upwards. This first constraint can be written as

Qr —Qu —¢Qr >0 (2.2)

and for given ¢ this means an (upper left) triangular region in the operating chart; see two
such in Figure 2.6. For the derivation of (2.2), we refer to [18]; see condition (FIIIa) therein.
Condition (2.2) implies that the effluent volumetric flow satisfies Qr = Q¢ — Qu > 0. The
other three curves that define the white region in the operating chart are given by the following
nonlinear inequalities ( [18]: conditions Fla, FIb and Flas (Section 1.3.1)):

() + a0 (an) > T,
®2 < P17,
Qrr

fo(om(q1)) — qrpn(aqn) > 1
These formulas involve four volume fractions that are calculated as follows:

e ¢3(g) is the local maximum point (located below the inflection point) of the function

jb(gb) + (]2¢»

e ¢, is the solution (located to the left of the maximum point ¢3'(gs) of the equation

Jb(®) + 20 = Qror/A,
e ¢z is the solution of the equation j,(¢) + ¢1¢ = 0,

e o1v(q1) is the local minimum point (located to the right of the inflection point) of the
function fy(¢) + g1

where we recall that ¢; = —Qu/A and ¢ = (—Qu + Qr)/A.
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Figure 2.3: Example 2.1: Scenario CFF. Operating charts for CFF showing the intersection of
several nonlinear inequalities for given feed volume fractions of aggregates ¢r and solids p.
The white region shows the values of (Qu,Qr) that can be chosen to obtain a desired steady
state. The top corner of the white region indicates the maximum possible value for Qr, which
is the optimal handling capacity. Along each dashed curve the volumetric wash water flow
Qw is constant and its value can be read off on the (Quy-axis. That is, on the leftmost curve
Qw = 0cm?3/s, on the next one Qw = 10cm?/s, etc.

2.4 Numerical simulations

2.4.1 Preliminaries

2 and

For the case study of CFF in Figure 2.1, we have used the values A = 72.25cm
Ay = 83.65cm? |, and consider a laboratory scale column of height 1m with zp = 33 cm and
zw = 90 cm. Two operating charts are shown in Figure 2.3 for a desired steady-state solution
having a layer of froth in zone 3, a possible froth discontinuity in zone 2, and solids only in

zone 1 ( [18]: case SS31).

For the case study of a DAF thickener in Figure 2.2, we have used the constant cross-sectional
area A = 72.52m? = 19.635 m?, height H = 2m and feed inlet at zp = 1 m.

2.4.2 Example 2.1: Scenario CFF

We assume that the feed volume fractions are ¢ = 0.4 and ¢ = 0.2. In Figure 2.3 (right),
we choose the operating point (Qu, Qr) = (40,50) cm?/s in the white region; see the asterisk.
The wash water volumetric flow is calculated to Qw = 14.46 cm?3/s, which is the maximum
that can flow downwards through the foam. A larger value would cause an overflow of wash
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Figure 2.4: Example 2.1: Scenario CFF. Simulation results with volume fractions of aggregates
(left) and solids (right) as functions of height z [cm| and time ¢ [s].

water through the efluent. Figures 2.4 and 2.5 show a simulation when the column initially
contains only water. Very quickly, a steady state is reached at t = 180's; see Figures 2.4 (left)
and 2.5(a). This has a low concentration of aggregates at the top and we perform some control
actions. At ¢t = 180s, the top is closed until ¢ = 200s by temporarily setting Qu = 64.46 cm3 /s
(so that the effluent volumetric flow is Qg = 0cm?/s). Aggregates will then accumulate at the
top of the column and around the feed inlet. At ¢ = 200s, we reopen the effluent by setting
back Qu = 40cm?®/s. The aggregates then move upwards; compare Figure 2.5(b) and 2.5(c).
At about ¢ = 400s, an approximate steady state is reached (Figure 2.5(d)), which has a high
concentration of froth only in the small zone 3. If we close the top of the tank again during
20's more, another steady state is reached at about ¢ = 620s with a high froth concentration
also in the upper part of zone 2, which is a desired steady state in mineral processing.

2.4.3 Example 2.2: Scenario DAF1

We simulate a DAF tank that initially contains only water and the feed volume fractions
are ¢ = 0.2 and ¢¥p = 0.2. The operating chart can be seen in Figure 2.6 (left). Choosing
the operating point (Qu,Qr) = (300,450) m?/h in the white region, one gets the simulation
shown in Figure 2.7. A first desired steady state, with aggregates only above the feed inlet and
solids only below it, appears quickly after about t = 0.07h = 4.2min. Then, we change the
feed volume fraction of aggregates from ¢r = 0.2 to ¢r = 0.4 and simulate the reaction of the
system; see Figure 2.7(a) and 2.7(b). As Figure 2.7(a) shows, aggregates accumulate at the top
of the vessel and a growing layer reaches and passes below the feed point. In the corresponding
operating chart for this new set of variables, in Figure 2.6 (right), the operating point, marked
with a blue asterisk, lies now outside the admissible white region. To avoid this situation, we
resimulate the scenario and perform a control action at ¢ = 0.27h = 16.2 min by choosing a new
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Figure 2.5: Example 2.1: Scenario CFF. Snapshots of the simulation shown in Figure 2.4 at
t = 180, 200, 300, 400, 420 and 620s for the volume fractions of the aggregates ¢r (solid) and
solids 9 (dashed).

operating point (Qu, Qr) = (250,600) m?/h inside the white area in Figure 2.6 (right), marked
with a red point. In Figure 2.7(c) and 2.7(d) the reaction of the system is shown. The layer of
aggregates that was increasing downwards now turns upwards, eventually leaving through the
effluent. In this case, a desired steady state is finally reached after ¢ = 0.5h = 30 min.

2.4.4 Example 2.3: Scenario DAF2

In this example, we focus on the solids behaviour. We consider solid particles whose density
is slightly larger than that of water so they can easily be caught in an upstream towards
the effluent. To simulate this, we choose the lower value vierms = 0.1 cm/s and consider a tank
initially filled with water when aggregates and solids are fed with volume fractions ¢r = 0.3 and



2.4. Numerical simulations 47

Figure 2.6: Example 2.2: Scenario DAF1. Operating charts before ¢t = 0.27h = 16.2 min (left)
and after (right), where the feed volume fractions ¢r and 1)p make a step change. The blue
asterisk marks the first operating point and the red dot the second one considered after the
control action at ¢ = 0.27h = 16.2 min.

¢ = 0.1. The point (Qu, Qr) = (100,400) m?3/h is chosen in the white region of the operating
chart in Figure 2.8, which is a necessary condition for a desired steady state, but not sufficient,
as can be seen for small times in the simulation result in Figure 2.9. A steady state is quickly
reached for the aggregates while solid particles start settling but also move upwards, leaving
through the effluent after ¢t = 0.2h = 12min. This is not a desired steady state. Therefore, at
t = 0.2h = 12min we make a control action by setting (Qu, Qr) = (250,400) m3/h. Figure 2.9
shows how the aggregates quickly reach a desired steady state with a high concentration in the
effluent while the solids that where on the upper part of the tank slowly settle to the bottom,
reaching a steady state with solids present only below the feed inlet after t = 2h.
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Figure 2.7: Example 2.2: Scenario DAF1. The first row shows a simulation of aggregates (a)
and solids (b) volume fraction without control action. A layer of aggregates is built up and
grows into the thickening zone below the feed level (zone 1). The second row (c, d) shows a
simulation with control action at t = 0.27h = 16.2 min.
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Figure 2.8: Example 2.3: Scenario DAF2. Operating chart for feed volume fractions of aggre-
gates ¢ = 0.3 and solids v = 0.1. The blue asterisk marks the first operating point and the
red dot the second one considered after the control action.
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Figure 2.9: Example 2.3: Scenario DAF2. Simulation of aggregates (left) and solids (right)
volume fraction with a control action taken at ¢ = 0.2h = 12min. The final steady state has

a desired large jump in the volume fraction of aggregates at the top of the tank and all slowly
settling particles leave through the underflow.



CHAPTER 3

A difference scheme for a triangular system of conservation
laws with discontinuous flux modeling three-phase flows

3.1 Introduction

3.1.1 Scope

It is the purpose of this chapter and Chapter 4 to generalize, and in part analyze, the
numerical scheme for a system of conservation laws with source terms of the type presented in
Chapter 1

(109 o (30 (100) - S ()

where ¢ is time, z is spatial position, ¢ is the concentration (volume fraction or density) of the
primary disperse phase, and v is the volume fraction of the secondary disperse phase. Both
disperse phases move within the continuous phase of the one-dimensional flow. We let A(z)
denote a variable cross-sectional area, and assume that z = 2y < 2p; < -+ < 2p g < 2 are
positions across which the flux functions J and F are discontinuous. These fluxes contain the
constitutive assumptions of the model and therefore are nonlinear functions of ¢ and . The
right-hand side of (3.1) describes the effect of singular sources located at z = zp, k =1,..., K,
and is composed of given functions. It is assumed that Qg (?) is the volumetric bulk flow of
the mixture (the continuous and the two disperse phases) injected at z = zp, and that ¢p (¢)
and Yy ,(t) are the volume fractions of the primary and secondary disperse phases in the feed
flow, respectively. System (3.1) is posed on the domain II := R x (0,7") together with initial
conditions

#(2,0) = ¢o(z) forall z € R, (3.2a)
¥(2,0) =1o(z) forall z € R, (3.2b)

50
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where we assume that
0<¢o(2) <1, 0<1p(z) <1—ep(z) forall zeR. (3.3)
Likewise, we assume that
0<opi(t) <1, 0<tpi(t)<1—¢pi(t) forallk=1,...,K andt € [0,T]. (3.4)

System (3.1) models the flow of three phases, namely the continuous phase and two disperse
phases. If # denotes the volume fraction of the continuous phase, then we assume that

0<¢,,0<1; ¢o+y+60=1, (3.5)

which motivates assumptions (3.3) and (3.4). (Of course, satisfaction of (3.5) by exact or
numerical solutions of (3.1), (3.2) on Il needs to be proved; this issue is addressed within this
chapter.)

System (3.1) could also apply to other unit operations and, as we mentioned in Chapters
1-2, it serves as a model of a flotation column [17, 18], where ¢ denotes the volume fraction
of bubbles (specifically, aggregate bubbles) and 1 that of solid particles (Figure 3.1). The
bottom of the column has the coordinate zy (the underflow) and the top zg (the effluent). The
primary phase of bubbles is assumed to flow through the suspension of solid particles and liquid
independently of the volume fraction of solids. The solid particles move in the remaining space
outside the bubbles and make up the secondary phase. If the solid particles of the secondary
phase have a density larger than that of the fluid, we have counter-current flow of the two
phases; otherwise co-current flow. The distinction between primary and secondary disperse
phase also becomes evident in the components of the flux functions: the flux J of the primary
phase depends on ¢ only (besides z and t), while that of the secondary phase, F', depends
both on ¢ and its own volume fraction ¢. Thus, the system (3.1) is triangular; however, it
is generally non-strictly hyperbolic; see [18], which presents the counter-current model of the
form (3.1).

The main contribution of this chapter is an easily implemented explicit numerical scheme
for (3.1) that provably satisfies an invariant-region property, namely that the volume fractions
of the three phases stay between zero and one.

3.1.2 Outline of the chapter

The remainder of this chapter is organized as follows. In Section 3.2, the model from [18] is
written in a slightly more general form. We outline the derivation of the fluxes of the governing
PDE system (3.1) from the balance equations of the three phases.

In Section 3.3 the proposed numerical method is detailed. The discretization of the model is
introduced in Section 3.3.1 while the numerical fluxes and update formulas for both disperse
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Figure 3.1: Schematic of a one-dimensional column with K = 3 inlets and K + 1 = 4 zones,
where Qy is the downwards volumetric outflow, Q ; is the volumetric flow at the inlet zp ;, for
each j =1,..., K, and Qg is the upwards volumetric outflow. Note that the distances between
the inlets/outlets are arbitrary and the cross-sectional area A = A(z) may vary piecewise
continuously (although the figure shows a piecewise constant example).

phases are described in Sections 3.3.2 and 3.3.3. In Section 3.3.4, we prove that the numerical
method is monotone and that the approximated solutions obtained by the numerical method
proposed in this work satisfy a so-called invariant-region property, i.e., the approximations of
both phases ¢ and 1 are bounded between zero and one, given that the initial data also satisfy
this.

Estimations of errors and convergence order of the numerical method can be found in Sec-
tion 3.4.1. Some numerical examples are presented in Section 3.4. First, in Section 3.4.3, we
use a smooth solution to estimate the order of convergence. Later on, we present two numerical
examples that illustrate the model predictions for counter-current (Section 3.4.4) and co-current
flows (Section 3.4.5).
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3.2 Three-phase flow model

The density of each phase is assumed constant, so the conservation of mass of each phase
can be expressed as the system of balance equations

0 (A(2)0) + 2)pug) Z Qr r(t)orr(1)0(z — 2r k), (3.6)
0 (A(2)¢) + (2)¢vy) Z Qr () Vrx(t)0(2 — zr1), (3.7)

0 (A(2)0) + 8. (A(2)0ve) Z Qri() (1 — drr(t) — Yri(t))6(z — 2e8), (3.8)

where the right-hand sides contain Dirac functions, the feed volume fractions ¢pj and ¥p of
the disperse phases, and the corresponding volume fraction 1 —¢p (t) —9p i (t) of the continuous
phase, at the inlet located at z = zpy, k=1,..., K.

We define the volume-average velocity, or bulk velocity, of the mixture by

q = QU + Yy + vy,

and replace (3.8) by the sum of (3.6)—(3.8), which is

=" Qru()3(z — 2p)- (3.9)
k=1

Consequently, within the unit ¢ varies with distance z due to the K inlet flows and the variable
cross-sectional area. We define Q(z,t) := A(z)q(z,t) and integrate (3.9) from any point zy < zy
to obtain

Q(z,t) = Q(z0,t) + ZQFk (2 — 2zrk),

where H(-) is the Heaviside function. If the volumetric underflow Qy(t) is given, then Q(z,t) =
—Qu(t) for z < zy, and

Q(z,t) = —Qul(t +ZQFk H(z—zpk) = —Qu(t) + Y Qra(t)

kizp >z

This is the continuity equation of the mixture, which replaces (3.8). We next rewrite (3.6)
and (3.7) in terms of ¢ and two constitutive functions. We refer to the continuous phase and
the secondary disperse phase as “secondary mixture”, and define the volume fraction of the
secondary disperse phase within the secondary mixture as

v
v+ 1—¢

P = (When qb < 1),
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where 0 < ¢ < 1 by (3.5). The volume-average velocity of the secondary mixture is

¢U¢ + QUQ 1 — QZS — 770
= = oy ———T g = vy + (1 — ©)vg.
q i wranl oy + (1 = @)
It is then assumed that within [zy, 2g), the relative velocity vgs = vg — g5 of the primary

disperse phase with respect to the secondary mixture is a given constitutive function vs(¢),
while outside that interval, both phases move at the same velocity, so their velocity difference
is zero. Thus, defining the characteristic function

1 for z € [zy, 28),

7(2) = X[zu,ZE)(Z) - {0 for z ¢ [ZU,ZE)a

we have vg = 7(2)0gs(¢). Within [zy, zg), the relative velocity of the secondary disperse phase
with respect to the continuous phase vy := vy, — vy is supposed to be a given function vy of ¢,
that is, we employ vyg = 7(2)0ye(¢).

The definitions of all velocities imply the identities
Pvp = ¢q +7(2)P(1 — @) Ugs(0),
bvy =g+ ()Y (1 = ) gelp) — dUss(0)).

for the (unweighted) fluxes ¢v, and vy, arising in (3.6) and (3.7), respectively. It is then useful

(3.10)

to introduce the velocity and flux functions
W(g) = (1= 9)ogs(@),  V(p) :=0(l—p)oywlp), (3.11)
j(¢) = oW (0), fle) ==V (p),

where 0 = £1 is chosen depending on the application such that V(¢), f(¢) > 0 (for standard
convenience, e.g., when plotting their graphs); o = 1 for co-current flows (upwards) and o = —1
for counter-current flows. The velocity and flux of the secondary phase with respect to the z-
coordinate are therefore oV (¢) and of(p), respectively. We assume that W/, V' < 0 and
V(1) = W(1) =0, as well as that

f has one local maximum w and one inflection point @, 0 < w < w < 1. (3.12)

Combining (3.10) and (3.11) yields the expressions

vy = g + Y(2)oW (¢) =: J(9, 2,1), (3.13)
vy = (1= @)eq +7(2) (1 — )V () — poW (9)) =: F(p, ¢, 2,t)

for the total fluxes of (3.6) and (3.7). For ¢ < 1, we define the final flux function

F(¢,0,2,t) = F(¢, £—¢,¢,z,t) =Yg +7(2) (wv <1 f ¢) - wfv_vibgz’)) . (3.14)
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whereas for ¢ = 1, we set F(i,1,2,t) := 0 (since F(yp,1,2,t) = 0 for all ¢ € [0,1]). Sub-
stituting (3.13) and (3.14) into (3.6) and (3.7), respectively, yields the final governing PDE
system (3.1).

For illustrations and numerical examples, we use the Richardson-Zaki expressions [98|
W(¢p) = Vtermp(l — @)™ for 0 < ¢ <1, n,>1, (3.15)
V(@) = Vterms(1 — )™ for 0< o<1, ng>1, (3.16)

where Vierm,p and Vierms are the terminal velocities of a single particle of the primary and
secondary phases, respectively, in an unbounded fluid.

In Figure 3.2, we illustrate the non-linearities of the flux functions J(¢, z,t) and F (P, 1, 2,1)
in the different zones of the column. We set n, = 3.2 and vtemp = 2.7cm/s for the primary
phase velocity function W and ng = 2.5 and vierm s = 0.5 cm/s for the secondary phase velocity

function V' and consider ¢ = —1. The values choosen here are used in Examples 3.2 and 3.3 in
Section 3.4.

3.3 Numerical method

3.3.1 Discretization and CFL condition

The discretization of the model is based on the triangularity of the system of conservation
laws (3.1). The numerical fluxes are based on the particular treatment of conservation laws
arising in kinematic modelling with fluxes having an explicit “concentration times velocity”
structure [23| and obtain an approximate solution ¢ of the first PDE of (3.1). Then ¢ is used
as a given piecewise constant function in space and time in the second PDE of (3.1), which is
updated accordingly.

We define a computational domain [0, zenq) (to be used for the error calculation; see Sec-
tion 3.4.1) consisting of N cells by covering the vessel with N — 2 cells and placing one cell each
below and above; see Figure 3.3. This setup, with a finite spatial domain, is introduced for
practical reasons and is the minimal spatial domain that captures the interior of the tank and
the concentrations found in the underflow and effluent zones. The formulation of the scheme
and subsequent proof of invariant region property are referred to this computational domain.

Given the column height H, we define Az := H/(N —2) and the cell boundaries z; := iAz, i =
0,1,...,N. Furthermore, we define the cell intervals I; 1o := [z_1, %) and I; := [2;_1/2, Zit1/2)-
We place the column between zy := Az = 2y and zg := 2y + H = (N — 1)Az = zy_;. Then
the length of the interval of error calculation is zenq := H + 2Az = NAz. Each injection point
zr ) is assumed to belong to one cell I;_;/, and we define the dimensionless function

1 if el 1/,
Sri1ys = / by (2)dz = { L TEE A (3.17)
Ii—1/2 7 0 otherwise.
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Figure 3.2: Illustration of the non-linearities of the flux functions J(¢, z) and F(¢, 1, z) in the
different zones of the column at a fixed z in each zone.
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Figure 3.3: Grid for the discretization of ¢ and ¢ in the application to flotation, where the
height of the vessel is H = zg — zy, there are K inlets, and we exemplify here with a cross-
sectional area A(z) with two values separated by a discontinuity at z = zpo; cf. the examples
in Sections 3.4.4 and 3.4.5.

The cross-sectional area A = A(z) is allowed to have a finite number of discontinuities and it
is discretized by

1 1
= A_z . A(Z) dZ, Ai+1/2 = A_Z /I A(Z) dz.

i+1/2

A

We simulate Np time steps up to the final time T' := NpAt, with the fixed time step At
satisfying the Courant-Friedrichs-Lewy (CFL) condition

2||Q
(ML= M (e (VO VY ¢ W+ W) S As (319

where

Ai—l Az .
M := max , , Anin = min Apg,
i=1,2,...,.N Ai_l/Q Ai_l/Q k=0,1/2,1,3/2,...,.N

K
1Qllsor = max > Qualt), W] := max [W(9)].
k=1

0<t<T 0<p<1
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Finally, we set t" := nAt forn=0,1,..., Np.

The time-dependent feed functions are discretized as

1 tn+1 1 25n+1
= —— t)dt n = —— t)dt
QF,k At i QFJC( ) ) ¢F,k At /tn (bF,k( ) )
for k=1,..., K, and the same is made for ¢y .

3.3.2 Update of ¢

The first equation of (3.1) depends only on ¢ and is discretized by a scheme that combines
upwind discretizations of the term g¢ with the particular numerical scheme proposed in [23]
suitable for kinematic flow models with a “concentration times velocity” flux, as is the case for

the term ¢W (¢).
The initial data are discretized by

1 /
0
19 = (z,0)A(z) dz.
12 Ai12Az Ii 1)z
To advance from " to "™, we assume that ¢7 | /2 1=1,..., N, are given. With the notation

a”:=max{a, 0}, a =min{a,0}, 7 :=7(z), and ¢ = (q(z,1"))",

we define the numerical flux at z = z; by

D120 for i =0,
Ji = ?_I/Qq;”r + Ol 10l N W (D1 pp) fori=1,...,N—1, (3.19)
¢?V71/2q7]i,+ forv= N.

Since the bulk fluxes above and below the tank are directed away from it, we have
¢Tﬁ1/2qg+ =0 and @yyi0gy =0 for any values of ¢%; , and @R s.

To simplify the presentation, we use the middle line of (3.19) as the definition of J* together
with Py =0 and P2 = 0. With the notation A := At/Az and Q7" := A;q!'" etc., the
conservation law on I;_;/, implies the update formula

K
n n A n n n 7n
i_+11/2 = Pi—1/2 + A - (Ailsz‘l o Ai:]i + Z QF,k¢F,k6k,i—1/2> (3 20)

i—1/2 P
= Hio12 (D 50, O 120 Plape), i=1,...,N.

Then we define the piecewise constant approximate solution ¢** on R x [0,7T) by

¢AZ(27 t) = Z XIi71/2 (’Z)X[tn,tn+1)(t>¢?—l/27

where yqo denotes the characteristic function of the set (2.
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Figure 3.4: Comparison of the results obtained by the Godunov and Engquist-Osher methods
operating under the same CFL condition. We can see that the results are quite similar.

3.3.3 Update of ¢

We discretize the initial data by
0 ;/ W(z,0)A(2) dz.
i—1/ Ai_1/2AZ Ii_1/2 )

For the invariat-region proof in Section 3.3.4 we use the well-known Engquist-Osher numerical
flux [51] for a given continuous, piecewise differentiable flux function g and real values a and b
on the left /right is given by

a b
G(g;a,b) :=g(0) + / max{0, ¢'(s) } ds —I—/ min{0, ¢'(s) } ds. (3.21)

0 0
instead the Godunov numerical flux (1.25) used in Chapter 1, Figure 3.4 shows that this
change does not affect our results.

Then a consistent numerical flux corresponding to (3.14) is, for i = 0,..., N,
Fiti= 1/%‘”71/2(1?+ + ¢?+1/2qzn7
¢?+1/2

+ v (G;1 (¢?_1/27¢?+1/2) - ?—1/21_—n
i+1/2

Wit ),

where we set ¢, ;o =0 and ¥y, o =0 with the same motivation as for ¢ above (these values
are irrelevant). Here

G?( i1/25 zn+1/2) ::g(a z‘n§¢?—1/2a¢?+1/2) (3.22)
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Figure 3.5: Graphical representation of Lemma 3.1.

is the Engquist-Osher numerical flux associated with the function

o) mou? (), Vi (329

max,i

V(u) foru <1,
0 for u > 1,

where we define

¢gqax,i = min{l - ¢?—1/27 I ¢?+1/2} =1- max{gb?_l/z, ¢?+1/2}-

The function ¢ — o f"(¢)) is unimodal. Let qﬂ? denote the maximum point of f'. For a given
function V' the values Y and ] ; are related by the following lemma.

max,i

Lemma 3.1. Assume that 0 < w < @ < 1 are the unique local maximum and inflection point,
respectively, of f(p) = @V (p) (cf. (3.12)). Then ¢ = wil.., for all i and n and all possible

max,?

values 0 < 9. . < 1. Moreover, the unique inflection point jq; € ( pn ahm ) of fI' satisfies

max,? 4 ) Y'max,?

= WP o for alli and n and all possible values 0 < Yy < 1. (See Figure 3.5.)

max,?

n
infl,2

Proof. Assume that 0 < ¢ . < 1. Since 1/3? is the unique solution 1&? <Y f

max,i

d ~ 77/J . ) ¢ ¢ (7! w _
@(wv( glax,i)> =0 = V< glax,i) " glax,iv ( IrIllaX,i) N 0’

it follows that w is the unique solution in (0,1) of V(w) + wV'(w) = 0 (cf. (3.12)). By a similar
argument, @ is the unique solution of 2V'(@) + @V" (@) = 0. O

n
max,?t 0
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The Engquist-Osher numerical flux (3.22) can now be computed as follows, where we recall
that f7(0) = 0. For o =1 we get

Vs FEW ) AUy <7
0’ Zn / ds — Az /2 1—1/2 A
/0 maX{ (f ) (S)} S {fzn(wgz) if @0?71/2 > r

. . (3.24)
i- 0 if " ., <
[ minfo. (7Y (s) s = { s =
0 fil ?-5-1/2) — firp) if w?+1/2 > Y7,
hence
G ¢?—1/27¢?+1/2)
F o) i 7y < OF and Y7, < U7,
PP g0) + P Waye) = SR Uy < 07 and 9, > 4T, (3.25)
F7) i 07, > 0 and 07,y < 07,
S Wi s) iy o >4t and O7 > P
By analogous reasoning we obtain for o = —1
G(— f;w?—l/%w?—kl/?)
—fi( :L+1/2) if %11/2 < @&Ln and ¢?+1/2 < @ijnv
- i g7y < O and 47,y > O, (3.26)
f,"(wf) - fzn( ?71/2) - fzn( ?Jrl/z) if 1/)?71/2 > %D? and ¢?+1/2 S @Z}zna
- ?(w?_l/g) if 1/’?—1/2 > it and P 5 > U
The marching formula is (for i =1,..., N)
A\ K
W%ZWM+Z7i&ﬂ%—&H+ZQW%%UJ
= k=1
n A n n+ n n—
I, A9 0@ + 9k @
(3.27)

+ (A’Y)z(Gi (%71/2;%“/2) - i71/21_;n/w( i+1/2))>

i+1/2
K
—Z%wwmm)

k=1

Then we define the piecewise constant approximate solution 1** on R x [0,7T') by

¢AZ(Z7 t) = Z XIi_1/2 (Z>X[t",tn+1) <t>¢?—1/2‘ (3.28)
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3.3.4 Monotonicity and invariant-region principle

We prove that the update formulas (3.20) and (3.27) are monotone, a property which then
is used to prove the invariant-region property that the approximate solutions are positive and
bounded.

Theorem 3.1. If the CFL condition (3.18) is satisfied, then the update formula for ¢ (3.20) is

monotone and
0<¢lyp<1 fori=1,...,Nandn=1,..., Np.

Proof. We recall that the initial function ¢y is assumed to satisfy (3.3). We first prove mono-
tonicity of the three-point scheme for ¢ (3.20), i.e, that 8@5?:1/2/&52_1/2 >0foralli=1,...,N
and k=14 —1,4,7+ 1. We have

0 @+1 A

i—1/2

8@713/2 B Airj (
a n+11 A
i—1/2 n— n 1(n
= —Q7 — (A 1¥i— W 7 Z Oa
a¢?+1/2 A, 1/2( Q; ( 7) o 1/2 (Cb +1/2))
aﬁb?j_ll/Q /\ ( n

=1+ L+ (AY)ia ] s W (0]
8¢?_1/2 Ai 1) (A7)i-16 3/2 (¢ 1/2)

+ (A7) W (o 1/2)) > 0,

- Q?Jr - (A’y)iW(<b?+1/2))

2 00 ,
R G e (L L)

where we have used the CFL condition (3.18).

We now prove that if 0 < ¢}, , <1 for all 4, then 0 < ¢"+11/2 <1 for all i. Clearly, (3.3)
implies that 0 < gbofl /2 <1 for all i. Since the scheme (3.20) is monotone, H;_1/, is non-
decreasing in each argument. Since by assumption W (1) = 0, we get the following estimation

(where we use ™ +a~ = a):

Z Qb 0% 40kim12 = Hiz12(0,0,0) < 71,

7, 1/2 1
= Hi1/2(B /20 O 120 Pitynja) < Hicaya(1,1,1)

A K
i1 — Q)+ F o OF Ok, i—
Ai—1/2 <( ! Q ) ZQF7k¢F7k k, 1/2>
K
< (S e ) 1

k=1

=1+
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Lemma 3.2. The function f}* defined by (3.23) satisfies
1) [l < max {V(0), |Vl } -

Proof. By (3.12), the function f(¢) = ¢V(g) has a single inflection point @ € (0,1) and
by Lemma 3.1, f" has the inflection point wy?, . € (0,¢%. . .). We have (f*)'(0) = V(0),

max,? ) ¥max,i

(f") () = 0 for ¢p, ; < ¢ <1 and the lowest (and negative) value of (f;*)" is obtained at its
only critical point wyy,. ;, for which

(f1) (@axs) = V(@) + V(@) > = V]| -
This concludes the proof of the lemma. O

Lemma 3.3. There holds G(1 — ¢}, 5,1 — &}, 5) = 0 for all i and n.

Proof. Assume that 0 < p,.; = (1 — ¢}, ») A (1= ¢}, ) < 1. By Lemma 3.1, P <

max,? max,s’

hence (3.25), (3.26), and

‘7((1 - ¢?—1/2)/wgax,i) = ‘7((1 - ¢?+1/2)/¢glax,i) =0

imply that

n n n fZ"(l—W;’ )=0 if o =1,
G (1 — ®i_12s 1— ¢i+1/2) = { n(1 +:L/2 o T
—fir (1= i—1/2) =0 ifo=-1

]

Theorem 3.2. Under the assumptions of Theorem 3.1, the update formula for ¢ (3.27) is
monotone and along with (3.20) produces approximate solutions that satisfy

Proof. By assumptions (3.3) and (3.4), we may assert that 0 < @Z)?fl/z <1- qb?ﬁlﬂ for all 7 and
VY < 1—¢p, foralln. (3.29)

To prove that the scheme (3.27) is monotone, we write (3.27) as
w?jf/z = Ki 1) (@ZJ?—:;/Q’ ViZ1/2, ¢?+1/2) (3.30)

and show that this expression is non-decreasing in each of its arguments.

Since 0 < @7 | <1 for a given n and all 7, and appealing to the definition of the Engquist-
Osher flux (3.21), we have

ot A oG
i—1/2 n-—+ i—1
= i— + A i— ) Z 07
OV 379 Ail/z( v+ (A7) ULy




3.3. Numerical method 64

ol A ( oGT o
i—1/2 n— i—1/2 n
12 QI ()i 4 (AW (6, ) 2 0
awi+1/2 Ai1y2 awz+1/2 I — i+1/2 e
a (H—l
ST R o1
877Di_1/2 Ai—1/2

oG O 5 WP )5) oGT
A i-1 7 3/2 i 1/2) A )
(A (fm w1 (A7) g
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By (3.21) and Lemma 3.2 we also obtain

aG? GG? 1 n\/ n + n\/ n - _ n\/ n
3¢?_1/z awl s = (f1") ( i—1/2) = (f") ( i—l/2) = |< ) ( i—1/2)|

<) lloe < max {V(0), [V},

and for the remaining term, we use that W (1) = 0 and the mean-value theorem to get, for
some £ € (¢, 1),

W) _ WO =W e
1 - 1 - ?—1/2 B

n
i—1/2

Hence, the CFL condition (3.18) implies

a n+1
Vilis g A(2|\@HOO,T

M / oo ' 0o > 0.
I s T2 M (max {V(0), [V} + W] ))_

The inequalities proved imply that K7 , /2 is non-decreasing in each of its arguments. Now we
use that 0 < w;"‘_l/z <1- gb?_l/z for all 7 and Lemma 3.3 to obtain

0<

Z@F WU aOkio12 = Mis12(0,0,0) <97t

1 1/2

= %i—lﬂ(wifi&/% wifl/% wi+1/2) < Hi—1/2(1 - ¢i73/27 - @7'11/2; 1 - ¢?+1/2)

A

=1—=¢7 1)+ ———| At F (1 =@ 55,1 — 9"
1/2 Ai 12 ( 174 ( 3/2 1/2)

K
— A -7:”( ¢z 1/2» 1- ¢:'L+1/2) + Z Q%,kd}g,kék,iqﬂ)
k=1

=1 ¢zn— + 1— ;1 ¢n n—
1/2 A (( 3/2) +(1 1/2)

_(A’Y)iﬂ(ﬁ?fspw( ?71/2) (1—o 1/2)Qn - (1= ?+1/2)Q?7
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K
+ (A7)idi=1 oW (D41 j2) + Z Qg,kd’g,kék,i—uz) :
k=1

Appealing to (3.29) and the update formula for ¢ (3.20), we get

K
n n >\ n n— n n— n
wijllﬂ <1- ¢ij_11/2 + A1y ( QL Qi QY+ ZQF,k(Sk,iUz)
= k=1

K
A
n+1 n n n n+1
=1- ¢ij1/2 + A—Uz{ i1 — QF + ZQF,k‘Sk,i—lﬂ} =1- i—+1/2'
o k=1

The last equality holds since {...} = 0 irrespective of whether there is a source in the cell;
P, —Qr+Qp, =0, 0rmnot; Q4 —Qr =0. -

We here conclude the discussion of the schemes for the full problem (3.1), (3.2).

3.4 Numerical results

3.4.1 Approximate numerical error

As it can be seen in Figure 3.3, the grid we have considered in our numerical scheme satisfies
that the boundaries of the tank agree with the boundaries of a cell. This will simplify the error
estimations.

Since an exact solution is frequently difficult to obtain, we use an approximate reference
solution obtained with a large number N, cells against which we measure the error of other
simulated solutions with N < N.¢. The error is estimated on a fixed interval [0, z.nq) a little
wider than the column of height H so that the outflow volume fractions are included. Given H,
we define the coarsest grid of Ny cells with Az := H/(Ny — 2) and place the column between
2y = Azp and zg 1= zy + H = (Ng — 1)Az. This corresponds to what is shown in Figure 3.3
with N = Ny. We define the length of the interval of error estimation as z.nq := H + 2Azp =
NoAzp.

To estimate the convergence order, we perform simulations with N, = 2FN, cells, k =
.= ket Ny
we use for the reference solution. Then we define Az, := zena/Ni, Az2" = Azy,, = Zend/Ni,., =
Azy/2%et and the factor of refinement from Ny cells to Nyt as my := Azp/Az" = N, /N;, =
2krer=k We note that Zn, = NpAz = Zenq for all k.

0,..., ket — 1, where k. is an integer that defines the number of cells N, := N

ref

We will now measure the error between the piecewise constant numerical solution obtained
by N = Ny cells (we skip the index k for a moment) and the reference solution obtained with
Nyt cells on the grid refined by a factor m = Az/Az". The refined grid satisfies 2, := zy = 0
and we have z; = 1Az = imAz" =: 2 .. The corresponding numerical solutions on the refined
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Figure 3.6: The cell division for error calculations with a refined grid on the left and the coarsest
grid on the right.

grids are denoted by (skipping the time index n) ¢, Jar Yiv1 /2
means of Az". The numbering of the refined cells is defined such that the first cell for ¢ above
2y = 0 contains the value ¢} J2- Then zeng = NmAZz'. This means that the cells within [0, zenq)

etc., where Aj /o A€ defined by

contain the values ¢} PIEEE s @Nm—1/9- and analogously for ¢. See Figure 3.6 for a schematic of
the refined mesh compared with the coarsest one.

Note that the location of the spatial discontinuities zy and zp will coincide with a cell
boundary for any mesh considered in the refinement process while the locations of the inlets
zp 1, ete. will be chosen so that each of them lays inside a cell for the finest grid; hence, they

do this for all the coarser meshes. In this way, the numerical fluxes at cell boundaries are well
defined.

We compute the estimated error at a time point ¢ =T and define

Zend
0

o) = [ A 0% (1)

The L!-difference between two numerical solutions computed on grids with cell sizes Az and
AZz" is calculated as follows for ¢:

N-1
B(Az, A2, T) = [[625(, 1) — 6 ()| = 3 12, o(T)
=0

with the subintegrals defined by

12, ,(T) = / | T AG)[6 (5, T) — 627 (,T)| d
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mol e e r
- / A(z) |¢i+1/2 - ¢z‘m+1/2+k| dz

r
k=0 im+k

The approximate relative error for ¢ in the interval [0, zenq) is then defined as

E¢(Azk’Azr7T) _ ||¢Azk<'7T) - QSAzr('?T)H
o2 (-, T o2 (-, T)|

We define elf\’, (t) analogously and hence, the total relative error can be defined as

e%k (T) :=

e (T) = e}, (T) + ey, (T)
and the observed convergence order between two discretizations Ny_; and N, with k& =

1,... ket — 1, as
log(ey,_,(T)/ e, (T))

@k(T) =T 10g(Nk_1/Nk)

For smooth solutions, we can use an alternative way of calculating approximate errors and
convergence orders in which a reference solution is not needed. In [11], the authors proposed

to use cubic mterpolatlon to compute the quantities gzﬁ from a grid with N1 = 2 Ny, cells,

i+1)2

k =0,...,k with k an integer, taking into consideration that Z+1/2 (z§z+1/2 + z22+3/2)/2

Then, ¢ i1 /2 is given by
TAz Az Az 1 Az Az )
¢z+1k/2 16 (¢2i+k3+/12 + ¢2¢+k1+/12) 16 (¢2i+k5+/12 T ¢2i—k1+/12)’ p=1e, N

The alternative approximate relative L!-error for ¢ can then be calculated as

eNk = N ZW@AJrZIkﬂ o ¢iA+Z1k/2('a T)‘

We can define &ﬁ’“l /2 and é}f,k (T') analogously, and define the alternative total approximate
L'-error as

S (T) o= &%, (T) + &4 (T),

Finally, the alternative convergence order can be computed by

A

OK(T) = log, (e (T) /et (T)) for k=0,...,k.

Nk+1
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3.4.2 Preliminaries for numerical tests

For the first example, in Section 3.4.3, we use a smooth solution away from spatial disconti-
nuities, to estimate the order of convergence of the numerical scheme. For this example, we use
Ny =500, N, = 28N, for k=0,1,...,5 and ke = 8; hence, N5 = 16000 and N,s = 128 000.

In Sections 3.4.4 and 3.4.5, we exemplify counter- and co-current flows of the primary and
secondary phases, respectively. For these two examples, we use Ny = 100, and k,of = 7. We set
three inlets zg 1, zr 2 and zp 3 dividing the tank into four equal parts each with the height H/4,
where H = 1m is used. These three inlets are defined so that they lie inside a cell for any mesh
size considered. A fixed quantity of the primary phase is introduced through inlet zp;, a fixed
quantity of the secondary phase through inlet zp o and some wash water through inlet zp 3.

Tables 3.1, 3.2 and 3.3 show the estimated errors and convergence orders for the three esce-
narios studied. In the calculations of the alternative approximate error €' (7") and convergence

order ©4(T) in Table 3.1, we use k = 6.

For all examples the column flotation is H = 100 cm high.

3.4.3 Example 3.1: Smooth solution

For this first example, we consider a vessel with a constant cross-sectional area of A(z) =
83.65 cm?, and we set all inlet and outlet volumetric flows to zero, i.e, Qr1 = Qr2 = Qrs =
Qu = Qg = 0cm?/s. For the velocity functions W and V', given by (3.15) and (3.16), respec-
tively, we use the parameters n, = 2.2, vUtermp = 1.5cm/s, ng = 2.2 and Veems = 1.5 cm/s, and
consider 0 = —1 (counter-current flow). As initial data, we choose a sinusoidal function for
both phases with support in the interval |zy, zg[; see Figure 3.7.

We simulate a short time, until ¢ = 9s, before the first discontinuity appears. Figure 3.8
shows the time evolution of the primary and secondary phases for N = 1000 in the first row.
In the second row, we compare two approximate solutions obtained with a coarse mesh with
N =500 and a finer one with N = 8000.

Table 3.1 shows the estimated errors and convergence orders. We observe that both ©(7")
and Oy, (T') assume values close to one as N, increases, as it was expected, confirming that the
scheme is first-order accurate for smooth solution.

3.4.4 Example 3.2: Counter-current fluxes

We consider now a full tank with ¢ = —1; hence, the primary phase will move upwards and
the secondary phase downwards with respect to the volume average velocity ¢ of the mixture.
A straightforward interpretation of this scenario is the flotation process used in the mineral
industry to recover valuable minerals from crushed ore; see the model in [17,18]. In that model,
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Figure 3.7: Example 3.1: Simulation of a smooth solution. Smooth initial data for the example

in Section 3.4.3.

Table 3.1: Example 3.1: Simulation of a smooth solution. Total estimated relative L'-error

tot ; stot
e, (T') and alternative ey>

(T') and estimated convergence order ©(7") and its alternative coun-
terpart é)k(T), calculated with N, = 128000 and 7" = 9s.

N, ‘ ew (T) Or(T) ‘ en, (T) Ox(T)
500 3.7212 x 1072 — 1.3041 x 1073 0.9513
1000 | 1.8985 x 1072 0.9709 | 6.7443 x 10~* 0.9657
2000 | 9.5710 x 10~ 0.9881 | 3.4533 x 10~* 0.9781
4000 | 4.7582 x 1073 1.0083 | 1.7531 x 10=* 0.9870
8000 | 2.3174 x 10™2 1.0379 | 8.8448 x 10~° 0.9927
16000 | 1.0867 x 1072 1.0926 | 4.4447 x 10~° —

the primary phase consists of aggregates, which are air bubbles fully loaded with hydrophobic

minerals, and the secondary phase is the tailings, consisting of hydrophilic particles suspended
in the fluid that do not attach to air bubbles.

Following the numerical experiments carried out in [17,18], we set here n, = 3.2 and vieym,p =

2.7cm/s for the primary phase (aggregates) velocity function W and ng = 2.5 and vierms =

0.5 cm/s for the secondary phase (solids) velocity function V; see (3.15) and (3.16). We consider

three inlets 2zp 1, 2zr2 and zp3, dividing the tank into four regions with equal height. At zp;,

only gas is fed, at zp 3 only wash water, while at zp 5 a slurry of solids and water is fed into the

column.

The cross-sectional area of the tank is discontinuous because of a centered pipe going from
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Figure 3.8: Example 3.1: Simulation of a smooth solution. First row: Time evolution of the
volume fraction of the primary phase ¢ (left) and the secondary phase 1) (right) from time
t =0s tot=9s. Second row: Approximate solutions at time ¢t = 9s computed with N = 500
(left) and N = 8000 (right).

the top down to zpo; cf. Figure 3.3, introducing material into the tank. It is defined by

72.25cm?  for z > 252,

83.65cm?  for z < zpo,

Az) =

These measurements come from the Reflux Flotation Cell developed by Galvin and Dickin-
son [54].

We consider that the column is filled only with fluid at time ¢t = 0, hence ¢(z,0) = 1(z,0) =
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Table 3.2: Example 3.2: Counter-current flows. Total estimated relative L'-error, e (T),

and estimated convergence orders, O(T'), calculated between consecutive values of Ni, with
Nyt = 12800, T' = 350s.

Ne | e o)

100 | 4.2032 x 107! —

200 | 2.5992 x 1071 0.6934
400 | 1.5820 x 107! 0.7163
800 | 9.4139 x 1072 0.7489
1600 | 5.3953 x 1072 0.8031
3200 | 2.8018 x 1072 0.9453

0 for all z, when we start pumping aggregates and solids with concentrations ¢p; = 1.0,
Yp1 =0, ¢ppa =0, Ypa = 0.4, ¢pr3 =0 and ¢p3 = 0, along with fluid and/or wash water. We
choose the volumetric flows (Qu, Qr .1, Qr2, Qr3) = (5,15,25,10) cm?/s, so that the mixture
flows in zones 2 and 3 are positive, i.e., directed upwards: Qr; — Qu = 10cm?®/s in zone 2 and
Qr2+ Qr1— Qu = 35cm?/s in zone 3.

Figure 3.9 shows the time evolution of the volume fractions of ¢ and 1. It can be seen that
the aggregates rise fast to the top, while the solids are travelling both up and down the vessel,
leaving through the effluent and the underflow.

At time ¢ = 350s, we change the volumetric flow from Qo = 25cm?/s to Qr2 = 7cm?/s.
After this change, the solids settle and we obtain a steady state. We mention that this is not
a desired steady state in the mining industry (the capacity of the device is not fully used);
see |18] for more examples.

Table 3.2 shows the estimated errors and convergence orders for this simulation. As in the
smooth example in Section 3.4.3, the convergence orders tend to one as Ny increases.

3.4.5 Example 3.3: Co-current fluxes

For the last example, we consider 0 = 1, which means that both the primary and secondary
phases have less density than the water and therefore move upwards relative the mixture motion.
An interpretation of this scenario is a flotation process with two buoyant phases differing in
density and possibly also in size.

We consider here the same flotation column as in Example 3.2 and choose the values n, = 3.2
and Viermp = 2.5cm/s for the primary phase and ns = 2.5 and vterms = 1.5cm/s for the
secondary phase so that we have two buoyant phases with different (upwards-directed) velocities
relative to the mixture. As in the previous example, only the primary phase is fed into the
tank at zp; and only the secondary at zp s.
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Figure 3.9: Example 3.2: Counter-current flows. Time evolution of the volume fraction profiles
of the primary phase ¢ (left) and secondary phase ¢ (right) from time ¢ = 0s to ¢ = 1800s
seen from two different angles (first and second rows).

The column is initially filled with only fluid at time ¢ = 0s, hence ¢(z,0) = ¥(z,0) = 0
for all z, when we start pumping both phases with the following volume fractions: ¢p; =
1.0, ¥p1 = 0.0, ¢p2 = 0.0, Yp2 = 0.6, ¢p3 = 0 and ¢Yp3 = 0. We choose the volumetric
flows (Qu, Qr .1, Qr.2, Qr.3) = (15,30, 20,10) cm?®/s, so that the volumetric flows in the tank are
positive in all zones but no in zone 1.

Figure 3.10 shows the time evolution of the volume fractions of both phases. It can be seen
that, for times ¢ < 350, the primary phase is leaving the tank through both the underflow and
efluent outlets, while the secondary phase have quickly risen to the top part of the tank and
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Figure 3.10: Example 3.3: Co-current flows. Time evolution of the volume fraction profiles of
primary phase ¢ (left) and secondary phase 1 (right) from time ¢ = 0s to ¢ = 1500s seen from
two different angles (first and second rows).

is leaving it just through the effluent outlet.

At t = 350s, we change the volumetric flow of the inlet zp; from Qp; = 30 to Q1 =
20 cm? /s, maintaining the other volumetric flows. As a consequence we can see that the primary
phase ¢ rises and leaves zone 1, exiting the tank only through the effluent while the secondary
phase maintains the same behaviour as before and is present only above the feed level zp 5.

Table 3.3 shows the estimated errors and convergence orders for this simulation, which have
the same behaviour as the ones showed in the numerical examples in Sections 3.4.3 and 3.4.4.
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Table 3.3: Example 3.3: Co-current flows.

Total estimated relative L!

-error, ey’

74

(T), and

estimated convergence orders, O (7'), calculated between consecutive values of Ny, with Nyef =

12800, T' = 500s.

Ny e, (T) Ox(T)
100 | 2.7733 x 107! —

200 | 1.7102 x 107! 0.6974
400 | 1.0504 x 107'  0.7032
800 | 6.2422 x 1072 0.7508
1600 | 3.4649 x 1072  0.8492
3200 | 1.6926 x 1072 1.0336




CHAPTER 4

Convergence analysis of a difference scheme for a
triangular system of conservation laws with discontinuous
flux in a column with constant cross-sectional area

4.1 Introduction

The purpose of this chapter is to contribute to the mathematical analysis of the numerical
scheme presented in Chapter 3, focusing on the structure of the numerical fluxes of the ¢—
and t—schemes that satisfy the region-invariant property and also allow the application of the
compensated compactness theory.

The steps of the convergence analysis are based on additional simplifying assumptions, namely
those of a constant cross-sectional area A and constant bulk and feed flows Qu, Qv x, ¢r i and
Ypr (k= 1,...,K). We can then prove convergence of the ¢-scheme (Section 4.2) and L!
Lipschitz continuity of the i-scheme (Section 4.3). If in addition all z-dependent flux disconti-
nuities are removed, we may apply compensated compactness techniques to prove convergence
of the 1-scheme (Section 4.4), to do this, it is used that the scheme converges to the only
entropy solution in the sense of Kruzkov. For the simplified problems, we assume that the
model is posed as initial value problem (3.1), (3.2) with the initial data posed on the real line
and assumptions (3.3) and (3.4) are imposed, so Theorems 3.1 and 3.2 remain in effect.

For ease of the argument, let us focus on the case of a constant interior cross-sectional area A.
That is, we assume

A =const.,, A>0. (4.1)

In addition, we assume that the feed volume flows and concentrations Qf;, ¢%, and ¥p,
(k=1,...,K) are constant and therefore do not depend on n. The same is assumed for the

75
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underflow volume rate Qu. Then (3.20) and (3.27) take the forms

K

n n n n — n n QF,k‘
Qbijll/g = @172 — AA (¢i71/2q;_ + ¢i+1/2qz‘ +’7i¢ifl/2w(¢i+l/2)) + /\Z A PP KOk i—1/2,
k=1

(4.2)

w?_ﬁl/g = ?71/2 — AA <¢?1/2qz‘+ + winJrl/Zq;

1 - ?+1/2

n(.n n n 77/)1” 1 ZW(QS? 1 2) ~ QFk n
+ Vi (Gz ( i—1/2» wi+1/2) - ¥i—1/2 ey +/ > + A Z TwF,kékui_l/Q' (43)
k=1

Furthermore, to be able to properly embed the treatment into available analyses of schemes
for conservation laws with discontinuous flux, we absorb the feed term into the numerical flux.
That is, we define i = iy, if 63 ;12 = 1 (see (3.17)). Then

—qu 1fl§l1—17
G=9y—qutaat--+ay Hu<i<ign-11=1... K-1, (4.4)
—qu+qr1+ -+ qrx fori>ig.

Furthermore, we define the feed flux

0 ifi<iy—1,
hyi = qridr1 + - + q@ridr, ify <i<in—-1,101=1,...,K—1, (4.5)
gra¢ra + -+ qrrorr  for i > ik,

such that
K
Q )
he; — hpi1 = — Z %(?F,k(sk,z’q/z-
k=1

Consequently, we may write the scheme as
?j_11/2 = @12 — AA_ (¢?+1/2q; + i joli + Vi1 W (D1 2) + hp). (4.6)
For later use we define the function
h(z,v,u) :=q (2)v + q* (2)u + v(2)ulW (v) + hg(2) (4.7)
that allows us to write (4.6) as

?;1/2 = ¢i1y2 — AA—h(Zi, Pi'1/2: ¢?_1/2)- (4.8)
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4.2 Convergence of the ¢-scheme

The partial differential equation for ¢, under the present simplification (4.1), is the conser-
vation law

aﬁb + @J(gb, Z) = 0, (Z, t) S HT (49)

with discontinuous flux

¢ K K
(_QU + > C]F,k) O+ > qrrdrk for z > zg,
k=1

k=1

K K
(—C]U + > C]F,k) O+ > qrrdrr+J(¢) for zp g < 2z < zg,
k=1 k=1

J _ ! ! , 4.10
(¢7 Z) (_qU + Z qu) Qﬁ + Z QF,k(bF,k —+ ](¢) for 2p] < 2 < 2R+, ( )
k=1 k=1
l=1,..., K —1,
—qu + () for 2y < z < 2p 1,
\—qub for z < zy.

posed along with the initial condition (3.2a).

The choice of the appropriate solution concept for weak solutions, and the ways we may
relate the model to the available mathematical theory of conservation laws with discontinuous
flux, requires that we verify whether J(¢, z) as given by (4.10) satisfies the so-called “crossing
condition” across each discontinuity z € Z := {2y, 2r1,...,2rK,25}. Certain early well-
posedness (existence, stability, and uniqueness) results for conservation laws with discontinuous
flux (and related equations) rely on satisfaction of this condition (cf., e.g., [69]), although later
developments advance solution concepts that do not rely on satisfaction of the crossing condition
(see [2,66,82]).

In the present context this condition is satisfied for a particular discontinuity at z if the
adjacent fluxes to the right and the left, J(¢, z") and J(¢, z7), satisfy

Vo1, ¢p € 0,1] 0 J(¢1,27) — J(¢1,27) <0 < J(P2, 27) — J(P2,27) = ¢1 < ¢a, (4.11)

which means either the graphs of J(-,27) and J(+, z7) do not intersect, or if they do, there is at
most one flux crossing ¢, and the graph of J(-, z7) lies above that of J(-, 2%) to the left of ¢,.
For J(¢,z) as given by (4.10) this condition is clearly satisfied for z € {zg, zy} (considering
that j(¢) > 0 for 0 < ¢ < 1 implies that J(-,z7) and J(-,2%) do not intersect in this case),
while

J(¢, Z?z) — J(o, ZF_,z) =qpi(¢p—opy) forl=1,... K.

Thus, the crossing condition is satisfied also for z = 2zp;, { = 1,..., K, since either ¢p; = 0 and
the adjacent fluxes do not intersect in (0,1), or the intersection takes place at ¢, = ¢p,; and
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(4.11) holds since gg; > 0 for all [. The preceding consideration is analogous to the one for the
simpler clarifier-thickener model (equivalent to the case K = 1 in the present notation) studied
e.g. in [24,25]. With the present analysis it is clear that the crossing condition is satisfied at
each flux discontinuity z € Z.

Some of the available analyses refer to initial-value problems of the type
O+ 0, F(u,x) =0 for (z,t) € g,
u(z,0) = up(x) for z € R, (4.12)
where F(u,z) := H(—x)g(u) + H(z)f(u)
where f and g are Lipschitz continuous functions of u denoting the “right” and “left” flux
adjacent to a flux discontinuity across + = 0 and H denotes the Heavyside function. The
model problem (4.12) features, of course, only one flux discontinuity (sitting at = = 0), while

(4.10), (3.2a) includes several of them at separate spatial locations. The study of (4.12) is,
however, sufficient for the analysis of each single flux discontinuity.

Here we start from the concept of entropy solutions of type V introduced by Karlsen and
Towers [70]. This concept does not appeal to the existence of traces of the unknown with
respect to the interfaces z € Z across which J(¢, 2z) is discontinuous. To state its adaptation
to the situation at hand, we define the sets

2, 00) % (0,T),

RZF K7ZE) (OaT)7

HK+3/2) (
= (

IF Y2 = (zpgr,ze0) x (0,T), k=2,... K,
= (
= (=

! (K+1/2) .

372 = (24, 2p4) x (0,7),
1/2) 00, zy) X (0,7).

Definition 4.2.1. A measurable function ¢ = ¢(z,t) € L*(Ily) is an entropy solution of type
V of the initial-value problem (4.9), (3.2a) if it satisfies the following conditions:

(i) The function ¢ belongs to L*°(Ily); for a.e. (z,t) € Iy there holds ¢(z,t) € [0, 1].

(ii) The function ¢ is a weak solution of (4.9), i.e., for all smooth test functions ¢ with
compact support in Ilp,

/ (00:C + J(9,2)0.¢) dzdt = 0. (4.13)
It

(iii) For all I = 0,...,K + 2, for any nonnegative smooth test function () with compact
support in H(l) and all ¢ € [0, 1] there holds

// |¢—C|3CZ)+SQ;H( ¢ —c)(J(¢,2) — J(c, 2))0.¢" )dzdt
o (4.14)

—I—/R|¢o—c|( (z,0)dt > 0.
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(iv) The following Kruzkov-type [72] entropy inequality holds for all nonnnegative smooth test
functions ¢ with compact support in Ilp and all constants ¢ € R:

//H |6 — ¢|:¢ + sgn(¢p — ) (J(¢, 2) — J(c, Z))@C) 4= dt
/ > (e, 2% = J(e,27)| ¢(z 1) dt > 0.

zEZ

(4.15)

Notice that the entropy inequality (4.15) does not imply the weak formulation (4.13). The
standard derivation of the weak formulation from the Kruzkov entropy inequality (cf., e.g., [60,
Sect. 2.1|) cannot be applied here since some of the flux differences |J(c, 2*) — J(¢, 27)| are not
compactly supported with respect to ¢, see [24, Rem. 1.1].

Lemma 4.1. There exists a constant Cy, depending on TV (¢y), such that
Az Z‘ﬁﬁ?jf/z - ¢?f1/2| <Az Z‘Qﬁq/z - ¢?71/2} < C1At.

i€Z i€Z
Proof. Subtracting from (4.2) its version from the previous time step, we get

¢?:L11/2 - ¢?—1/2 = (¢?—3/2 - ¢z 3/2>>‘Bz 1/2
+ (Ofyyp — O} 1/2){1 AB} 1o + MO 2 }
+ (¢?+1/2 - 14_1/2){ AC +1/2}

where we define

Binfl/2 = Q¢+—1 + ,yi—lw((b?fl/2)7

W( ?+1/2) - W( ?-:11/2)
n Qz + Vi i— 11/2 n _ an—1 1—0—1/2 7& ¢1+1/27
i+1/2 * T i+1/2 i+1/2

0 otherwise.

Clearly B! L1 20, Cr ., <0, and due to the CFL condition,

i+1/2

hence taking absolute values and summing over ¢ € Z we get, by appealing to standard argu-
ments, that

AZZW?_JTQ— i— 1/2| <AZZ}¢Z 1/2 — ¢Z 1/2| <AZZ}¢z 1/2 bi_ 1/2|
€7 €7 1€Z

Furthermore, following the lines e.g. of the proof of [24, Lemma 3.2|, we get that there exists a
constant Cy that is independent of (At, Az) such that

S0k — ¢ o] < Co(TV(6) +TV(g) + TV(%)),

€L

which completes the proof. ]
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A straightforward calculation yields that we can write the scheme in the form
?:1/2 = ?—1/2 + O?A+¢?f1/2 - DznflA*(ﬁ?fl/Z — 07,

where we define

A_W (9} 1/0)
NG — NVic1 @l g AT 0,
on = 4; Yi-19; 327 AL d +@ 1/2 7

i—1/2
otherwise,

D= Xg + NYiaW (971 9),
0; = A(¢?71/2quz‘i + ¢?73/2A*Qi+ + ¢?71/2W(¢?+1/2)A7% - AJLF,i)-

The incremental coefficients satisfy C7* > 0 and D} > 0; furthermore, the CFL condition ensures
that CI" + D <1 (in all cases for all ¢ and n). Notice that 0 = 0 with the possible exception
for those indices ¢ at which A_q; # 0, A_g;" # 0, or A_~; # 0. According to the definition
of 7; and that of ¢;, see (4.4), this may occur at most at a finite number of indices. Precisely,
we may assert that

6?20 if Zl',l,Zi%Z,

hence for all indices ¢ with the exception of finitely many indices ¢ such that |z; — (| < Az for
some ( € Z, the scheme is given by the incremental form

¢:'L—+11/2 = @21/2 + CZLA+¢?71/2 - D?flA—gb?flﬂ

with incremental coefficients C7* > 0, D > 0, and C" + D}* < 1. This property, in conjunction
with Lemma 4.1, shows that we may apply [27, Lemma 5.3] (which is essentially Lemma 4.2
of [23], where a proof can be found) to the situation at hand. We have therefore proved the
following lemma, where V’(g) denotes the total variation of a function z — g¢(z2) over the
interval (a,b).

Lemma 4.2. For any interval [a,b] such that [a,b] N Z = @ and any t € [0,T] there exists a
total variation bound of the form

V2 (0%, 1)) < Cla,b),

where C(a,b) is independent of (Ax, At) and t fort € [0,T].

Finally, we have shown in Theorem 3.1 that the scheme (3.20) is monotone. This applies,
in particular, to the reduced scheme (4.2) or equivalently, (4.6) or (4.8). Thus, the scheme
satisfies a discrete entropy inequality. The proof of the following lemma is identical to that
of [70, Lemma 5.2|, and is therefore omitted.
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Lemma 4.3. The scheme (4.8) satisfies the following entropy inequality for any c;_3/2, ¢;i—1/2, Civ1/2 €
[0, 1]:
‘¢?_+11/2 — Ci—1/2| < |¢?71/2 - Ci—1/2| —AA_H}
- )\Sgn(¢?j11/2 - Cz‘—l/z)AJl(Zz', ¢?+1/27 (bzn—l/Z)y
where the numerical entropy flux H is defined by

H = h(zi, ¢?+1/2 V Cit1/2, 925?71/2 \% Ci—l/2)
— (20, Bty 1 ja A Cigrya, 1o A Cicja).

We now may appeal to the results of [70] and argue as follows. Theorem 3.1 and Lemmas 4.1,
4.2 and 4.3 ensure convergence of the functions ¢® to a weak solution of (4.9), (3.2a) that
satisfies items (i), (ii) and (iii) of Definition 4.2.1. It also satisfies the entropy inquality (4.15)
arising in part (iv) of that definition by utilizing the discrete entropy inequality stated in
Lemma 4.3.

4.3 L' Lipschitz continuity in time of the i-scheme

Next, we deal with the marching formula (4.3). To this end, we define a feed flux hp,
exactly as in (4.5) but with ¢g; replaced by ¢r,; for i = 1,..., K. Furthermore, we recall that
Ugs(0) = W(¢)/(1 — ¢). Thus, the scheme can be written as

7,0?:“11/2 = ?—1/2 — AA (EFZ + 1/’?—1/2%’+ + ¢;L+1/2Qi_ (4.16)
+ 7% (G? (wzn—l/% ¢?+1/2) - ¢?—1/277¢s(¢?+1/2)¢?+1/2)>-

Lemma 4.4 (Crandall and Tartar [35]). Assume that (€, p) is some measure space and assume
that D is a subset of L*(Q2) with the property that if u,v € D, then (uV v) € D. Assume that
T isamapT:D>uw— T(u) €D such that

/T(u)duz/ud,u for all u € D.
Q Q

Then the following statements, valid for all w,v € D, are equivalent:
(i) If u <w, then T'(u) < T'(v).

(i) fo((T(u) = T()) vV 0)dpa < [o((u—v) v 0) dp.

(i), |T(u) = T(@)] dpr < fy [ — o] dp.
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Following, for instance, [34], we utilize Lemma 4.4 for the following mapping. Assume that
D C L'(R) is the set of piecewise constant functions and that are constant on the intervals I;_1 o
for i € Z, and that with the marching formula (3.30) we associate an operator K" : D — D
such that if 12%(-,t") is the piecewise constant function defined by (3.28) for ¢ = t,, we may
write the scheme as

VE( taen) = KM (055 1)),
Clearly, the monotonicity of the scheme implies that if u,v € D, then
u<v=K"(u) <K"(v).
Thus, Lemma 4.4 (i) holds. For u = ¢**(-,t,) and v = ¥**(-,t,_1), Lemma 4.4 (iii) implies
that
A S [, — v = /w oy tan) — 2% (2, 6)] dz

iE€EZ
/|wAz Z, t wAz Z ln—1 ‘dZ - AZZ|¢Z 1/2 wz 1/2
i€Z
and therefore
AZZW?_JT/Q i— 1/2‘ < Azzwz 1/2 — (O 1/2|
€L €L

However, we may assert that there exists a constant C'3, which is independent of (At, Ax), such
that

Z‘%’l—lp - w?_m\ = Z

1€EZ 1€EZ

A <¢z(')—1/2(li+ + w?+1/2q;

n @D? 1 ZW(¢7(,) 1 2>
(G ) — o )

z+1/2

< Cs.

=~ Q
F k
—A Z T%Q,kfsk,i—uz
=1

A sufficient condition for this bound on the initial discrete divergence to hold is
V(¢°) < o0, TV(°) < oc.

Thus,

At
AZZW:L—T/Q - wﬁl/z‘ < AzCq = _C3

i€Z
Consequently, we have proved the following lemma.

Lemma 4.5. There exists a constant Cy that is independent of (At, Az) such that

AZZ’ ;z_+11/2 - ?—1/2‘ < CyAt.

1EL
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4.4 Compensated compactness

To write down the scheme in the simplest setting possible, we consider the model and nu-
merical scheme under the assumptions before, and additionally assume the case of a constant
bulk velocity ¢, assume that the feed terms (giving rise to the singular source) are zero, and
that v plays the role of a parameter that can be either 0 or 1. Thus, the model reduces to the
triangular system of conservation laws

0w+ 0.J(¢) =0, (4.17)

Ob+0:F(¢,9) =0, (2,1) €Iy, (4.18)

where J and F are defined as before and we assume that (4.17), (4.18) is equipped with the
initial conditions (3.2), where we assume that assumptions (3.3) are in effect. For ease of

reference we state the definition of a weak solution of the initial-value problem (4.17), (4.18),

(3.2).
Definition 4.4.1. The pair (¢,v) is called a weak solution of the initial-value problem (4.17),
(4.18), (3.2) if

(i) The functions ¢ and 1) belong to L>°(Ily).

(ii) The functions ¢ and 1 satisfy (4.17), (4.18), (3.2) in the sense of distributions on I, that
is, for each smooth test function ¢ with compact support in Ir, the following identities
hold:

//HT (00C + J(9)0:¢) dzdt + /Rgbo(z) dz =0, (4.19)
/ /H ] (V0 + F(6,9)0:¢) dzdt + /R to(z)dz = 0. (4.20)

(iii) The function ¢ is an entropy solution of the single conservation law (4.17), that is, for
each smooth and nonnegative test function ( with compact support in Iy, the following
wmequality holds for all ¢ € R:

// (|¢ — ¢|0C + sgn(¢ — ) (J(¢) — J(k))0:¢) dzdt
v (4.21)

+ /R’gbo(z) —c[dz > 0.

Assume now that n = n(¢)) is a smooth convex entropy function and @ = Q(¢,v) is the
corresponding compatible entropy flux compatible with (4.18), i.e., the function @ satisfies

95Q(0,¢) = 0/ (V) F (4, 1). (4.22)
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In what follows, we refer to (n,Q) as an entropy pair for (4.18). In particular we denote by
(10, Qo) the Kruzkov entropy pair [72|, that is

m(¥) =¥ —c, Qu(d,v)=sgn(¥ —c)(F(¢,¥) — F(¢,c)), (4.23)

where ¢ € R is a constant.

The convergence proof is based on the following lemma, slightly adapted from [34, Lemma 2.2],
which in turn is an adaptation of [92, Theorem 5].

Lemma 4.6. Let ¢ be the unique entropy solution of the initial-value problem (4.17), (3.2a),
and assume that {"},~o is a family of functions defined on Up. If {¢*} is bounded in L*°(Ily)
and

{615770(77/}1/) + 83@0(“? wy) }y>0

lies in a compact set of Hy,}(Ily) for all constants c¢ (cf. (4.23)), then there exists a sequence
{Vn}nen such that v, — 0 as n — oo and a function ¥ € L>(Ily) such that

P — 1 a.e.and in L} (II7), 1 < p < oo.

loc

Consistently with (4.7), (4.8) we assume that the scheme employed to approximate entropy
solutions of (4.17) is

¢?_+11/2 = ?—1/2 - )‘A—h( ?+1/2, ?—1/2)- (4‘24)
with the numerical flux
h(z,v,u) :=q v+ ¢ u+yuW(v). (4.25)

Clearly, under a suitable CFL condition, the scheme converges to the unique entropy solution
of (4.17), (3.2a). Our goal is to establish convergence of the corresponding scheme for 1. We
here write the scheme as

1#?:1/2 = 1y = AMA_F (112 O1 20 Ui 120 i1 )2)

. L (4.26)
= 1/%‘—1/2 — AA_F(}, 7)),
where we define the four-argument numerical flux
Fla,b,u,v) :=q u+q v+ V(G(a, b, u,v) — a@¢s(b)v), (4.27)

and denote pairs of neighboring ¢- and -values by

@) = ( ?71/27¢:'L+1/2) and ) = (1/’?71/271/1:11/2) )
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and replace the arguments “¢; , , ¢}, ; " by ¢;' (analogously for v). In (4.27) a and b play the
roles of ¢ | /2 and @7, /2> and u and v those of 9" /o and ¢ 5, respectively, and we define
G(a,b,u,v) as follows. Let

) =0 (s )

(see (1.24)), then G(a,b, -, -) is the Engquist-Osher numerical flux [51] associated with f(a,b,-).

We multiply the scheme (4.26) by 7’ (wl”jllm), where 77 is a smooth convex entropy function,
and utilize the Taylor expansion

1 n n n
il (1/’7—+11/2) (wznj_ll/2 - ¢zn—1/2) = 77( zn—+11/2> - 77(7,0?_1/2) + 577” (€Z_+11//22) (%—4—11/2 - i—1/2)27

where fz 1 /2 is an intermediate value between " | /2 and Zz_+11/2 Then we get

1 n "
n(6i ) = (0 ) + 5 (€ (W — i)

= N (U1) A F (97, 957) (4:28)

i—1/2

= —)\77 ( i— I/Z)A—‘F(¢?7’¢);ﬂ) - /\(77/( ZZ_+11/Q> n (¢z 1/2))A ‘F(d)z 7170 )
We now define the functions f and f as the partial derivatives

fla,b,u) == 8,F(a,b,u,v) = ¢" + 8,G(a,b,u,v) >0,
f(a, b,v) := 0, F(a,b,u,v) =q  + 0,G(a,b,u,v) — adys(b) < 0.

The dependence of 0,F (a, b, u,v) and 9,F (a, b, u,v) on u and v only, respectively, is crucial for
the subsequent analysis. We define the functions

]:"(a,b,u) = /Ouf(a,b,s)ds, Fla,b,v) = /va(a,b,s)ds

Fla,b,u,v) = Fla,b,u) + F(a,b,v). (4.29)

and note that

Next, we define

¥ ) ¥ _
Q" (a,b, ) ::/ n'(uw)f(a,b,u)du, Q (a,b,) := / 7 (v)f(a,b,v)dv,
0 0
Q(a>b7 wlan) = QJr(aab? ¢1) + Qi(a,b, w2)

The function Q is a consistent numerical entropy flux for the scheme (4.26) for the entropy

(4.30)

function 7 since

L4 . _
Qa.a.v.0) = [ /() (Fa ) + fla.a,w) du
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” » .
= / 1 (w)0uF (a; a,u, u) du = / 1 (u)F(a,u) du = Q(a, ¥).
0 0
Furthermore, integration by parts yields

Q™ (a,b,v) — QT (a,b, 1))

. . N ¥ . . _
= n’(w)(f(a, b, ) — F(a,b, w)) — /w 'r]”(u)(}"(a, b,u) — F(a,b, 2/1)) du, (4.31)
Q_ (av ba ¢) - Q_ (aa b7 %E)
- Y . . -
= 77’(@[1)(]:"((1, b,v) — Fla,b, w)) — /w n"(u)(]—"(a, b,u) — F(a,b, @D)) du (4.32)
~. 5 _ 4 5 5
= n'(@b)(}—(a, b,v) — F(a,b, @Z))) — /1[) n"(u)(F(a, b,u) — F(a,b, ¢)) du. (4.33)

Now, denoting by A? and AY difference operators that act on both ¢- and 1-arguments only,
respectively (leaving the two others unchanged), we observe that

A_F(¢7, 7)) = ALF($], 7) + ATF (S, ). (4.34)
Utilizing (4.31) and (4.33) we can then write

77,( i— 1/2)A F(o, ¥} )
= Q+(¢z 7wz 1/2) - (¢z 71/11 3/2) 7(¢?71/1?+1/2) - Qi (q’)??w?fl/Z)

- (n,(¢?—1/2)( (7, ¥ 1/2) (d’?, ?—3/2))

Vi1 . .
_/w / 1" (u) (-7'—( N0 _]:(¢?>¢?—3/2)) du)

?73/2
- (77/(@0?—1/2)( (¢17¢1+1/2) (qbf, ?—1/2))

Yit1/2 5 y
+/ / n//(u)(]:(¢?au) _‘F(¢:la z‘n+1/2)) du)
P

n
i+1/2

+77/( ?—1/2) (ﬁ((ﬁ?aw?—lﬂ) - ﬁ(¢?a¢?—3/2)
+f(¢?, zn—i-l/Q) _]:—(Gb?,@/f?—yz))
= Q(¢?,¢211/27W+1/2) - Q(Cﬁ?ﬂ/}ﬁs/sz?q/z) + @?71/2
=AY Q(¢r, }) + SHEWY (4.35)

where the notation for evaluations and differences for Q is the same as for F and

?—1/2 = (0)"+(6])",
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where

L .
O = [ @ F( ) - P8 r) du
i—3/2
L .
@) = / P ) (F (@) — F (@000 ) du

n
i+1/2

Since F is increasing and F is decreasing in the respective third argument, there holds
(©71)". (67)"

and therefore OF | /2 > 0. Furthermore, we notice that

0 (1) ALF (71,91 1) = AL (0 (11)2) F (11 974)). (4.36)
From (4.34) we obtain by taking into account (4.35) and (4.36)
( i— 1/2) 7 7110
=AYQ Qo7 ¢} )"‘U(WL 1/2)A F(pii¥iy) + O 1/2
=A_Q(¢7, ;) — AL Q(d) 17¢¢_1)+77( i— 1/2)A¢ Floii¥i,) + O 1/2
= A_Q(} >+A¢’( (1) F(@ia i) — Q@1 910)) + O ).

Consequently, (4.28) can be written as

1 n mn n n
(¢?+11/2) o (¢?—1/2> + 577” (5111//22) (wijll/Z - Qzbz'—1/2)2 + )‘61‘—1/2
= “MA_Q(Gr, ) — A (W) — 0 (¢ 0) ) A_F (), ) (4.37)

= AL (0 (Vi 1) (S0 911) — Q1. ¥i4)).
Multiplying (4.37) by Az and summing over (n,i) € Z;, where
Zi :={(n,i) [ n=0,...,Np — k, i € Z},

we get

A Z n n n
Az 277(%]\11/2) — Az Z 77(%071/2) + 72 Z U (fzjll/;)( z—+11/2 - 1'71/2)2

1€EZ 1EL I

+AAZY O,
I

= —)\AZZA (@i, P') — ANAz Z(U’( lell/g) - U/(Qﬂ?—l/z))A—}—@?a’P?)

Iy

- )\AZZA z 1/2 (¢?—17’¢’?—1) - Q(¢?_1,¢?_1)),
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which implies the inequality

A (T n
Az Z 77(1/%]\11/2) + TZ Z n (5111/22) (%jll/z — Wi 1/2) +AAz Z o5 1/2

€7 A

<AZZ?7 z 1/2)+2H7] HLC’OA’ZAtZ_‘A ‘F 17¢z)|

€L

+ CAzAtZ —‘Ad)( (i 1/2)]:(95?—171/’?—1) - Q(¢?_1,’¢?_1))|-

The last term on the right-hand side is uniformly bounded since we know that ¢** has bounded
variation. Now let us choose n(v) = v? and take into account (cf. [65]) that there exists a
constant C'r such that

1 . 2 1 . 2
(O11)" 2 o (ALF (o1 b)) o (O1) = G (ALF (@] vimrps) )

Noticing that Lemma 4.5, applied to the present scheme, implies the bound on the discrete
divergence of the numerical flux

1
A - B i mn n < .
z§' AT )| < G (4.38)
€L
we obtain from (4.37)

Az 277(%]\11/2) + Az Z( zn—+11/2 B ?—1/2)2

i€Z v

A . .
+ C'_]:AZ Z((Azﬁf(d)?a %‘—1/2))2 + (Af]:(d)?, M;ll/z))Z) (4.39)

11

S AZZ( ,?71/2)2 + CT.

i€z
Inequality (4.39) implies the following estimate.

Lemma 4.7. There exists a constant C7 that is independent of (Az, At) such that

Np—1

AtAz YN (U, —wty)" < CrAz, (4.40)

n=0 €Z

Proof. The estimate for the “time variation” of ¢*#, (4.40), follows immediately from (4.39) if
we consider that its right-hand side is uniformly bounded. O]
Before proceeding, we prove the following lemma.

Lemma 4.8. There ezist constants Cs and Cy that are independent of (Az, At) such that for
all 1,

(A7, 9})] < Cs[(AY + A F(o}, )| + Co(|A G| + | A0l o). (441)
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Proof. We note that

A_Q(@},Y)) = AV Q@] 4)) + AL Q(d] 1, ¥l y). (4.42)

For ease of notation we denote the difference operatos A(i?’ ) and A(f ) that only act on the third
or fourth argument of a function, respectively. We first discuss the term

AP Q@7 ) = AP QT (7wl ) + AP O (@7, 00 ).

From (4.31) we get

|AYQF (7,071 0)]

Vi1/2 . .
= () AV Fr ) — [ (F(6 )~ F(60 ) ) du
i—3/2
Vi1/2
< I )| [ADF (@ w0+ | [ ) dul |AP F g7 w7
wi—3/2

< 3|17 || o,y | AP F (@7, 7))

and analogously

1A (@7, w1 )0) | < Bl [l o) | AY F (7, 7))
hence
A (e}, 7] < 3l [0 [ (A + AL) F (g7, 97 (4.43)
On the other hand, we take into account that

ALQ(Pr 1, ) y) = ALQT (11, ¥ 5)0) + ALQT (S, U1 1)

Now

Vit 32 . .
A? Q+(¢z 17%‘—3/2) = /0 / n'(u)(f(qb?,u) - f(@ U )) du

u=Pi 50

~

_ [n’(u) (F(opr,u) — F (d’?—vu))hzo
1/’?73 2 ~ -
_ /0 / n"(u) (f( ?,U) - F(d)?—lvu)) du

(4.44)

and analogously

LU . .
ALQ (01,0 ) = / o () (F (@2, 0) — F(1,0)) dv
= [r@)(F(er0) - F(or )]

v=0
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IR . .
- / o' () (F (@7, v) — F (¢, v)) do.

Consequently,
\AﬁQ+(¢$1,¢ﬁg/z)| < 3||77/”L°°(071) max ‘ﬁ((j)?,u) _ﬁ(d)?fl’u)}’ (4'45)
0<usyi’ 5 9
and by analogous reasoning for 9,
1AL Q™ (11, 071 0) | < 3l ll o) e 02 | F (@, v) — F(dry,0)]. (4.46)
1/2

To estimate the right-hand side of (4.45), we recall that

F(¢0u) — F(@0yu) = /0“(<<fi">'>+<s>—<< m ) (s)) ds = DYy

We now assume that ¢ = 1 and use (3.24). To estimate 25?71 /o We will appeal to the trivial
but useful inequality

[(@Va) = (BVy)| <la—B|+ ]z -yl
We proceed by discussing all possible cases of the location of u in relation to the extrema 1&?
and " | of f* and f]*,, respectively, and assume that o = 1.

1. Assume that u < ¢ A" . Since )™ < ¢ and " | < Yl axi_1, i this case 15?_1/2 =0

max ’L

Y00 i = Umax,i—1 and otherwise
}Dz 1/2’ - ‘fzn<u) - ’ - ulv(u/wmax 7,) - (u/wmaxz 1)‘
2 ~
< #Hwnmwgw — Wit

max,?  max,i—1

< ||V,||OO‘¢maxz naxz 1‘

Noticing that

Wmaxz max,i— 1‘ ‘¢?—1/2 \% ¢?+1/2 - (%5?—3/2 \ ¢?—1/2|

2 ' (4.47)
< ‘A—@;l/z‘ + ‘Aﬂbifl/? ’

we conclude that
‘Dz 1/2| < HV’HOO(|A,¢?,1/2| + ‘A+¢?71/2‘)-
2. If Y7 < u < 97, then

|Dz 1/2‘ = ‘f”@,” i (U)‘
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<) = Fa () |+ [ () = )],

Since f*(¢r) = ¢n,, wV (w) for all i, we conclude that

max,?

‘fn(¢n zn )’ < WHVHOO ’wmaxz - glax,i—l’
< ||V||OO(‘A—¢i—1/2} + ‘A+¢?_1/2‘)'

On the other hand, in the present case
|fznl 7 )_ zn—l(u” = in—l(Azn—l) — fiti(w) < fiy ( 7 )
Since for s € [0,47 ] there holds (f™,)(s) < (f,)(0) = V(0), we get

)

91

(4.48)

Fa ().

¥y i
) = ) = [ e s [ e ds

Lemma 3.1 (a) implies that

‘@Z)ZL_ | _w‘wmaxz

hence

|Dz 1/2‘ < 2H‘~/Hoo(\A,¢?,1/2‘ + |A+¢§11/2|).
The same estimate holds for w;"‘_l <u< 1&{‘.

3. If uw > " V4", then utilizing (4.48) we get

(4.49)

1DE o] = [ (00) = 1y ()] < IV oo (JAZB1 o] + | Ay o)

Combining all possible cases we deduce that
“5?—1/2‘ < (||‘~//||oo + 2||‘~/||oo) (‘A—@n—ug‘ + |A+¢?—1/2|)-
Next, we deal with (4.46), recalling that (see (4.27))
ﬁ( ) ﬁ((ﬁz 1,V ): b?—l/Q‘*’gz‘n—l/za
where we define
o= [ ()7 = () () s

1'711/2 = (¢?71/27~)¢S<¢?+1/2) - ¢?73/277¢s<¢?71/2))v'

The discussion of all possible cases of the location of v in relation to @Zf and @&?—1

the following cases for the estimation of T)?fl Jo-

(4.50)

gives rise to
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1. vag%?/\l/; 101"U>¢ vwmaxz lthenDz 1/27O

max, 7

2. To handle the case 7,@2” A Q/JZn <v< 1/1” vV @D ' | we assume that wn < @D ', and @@Z" <v< z@f’_l.
Then

‘Dz 1/2’ = ‘fzn('U) - fl”(zﬂf)‘ = '/;((ff)’)(s) ds

< mas | @[ - o]

= ‘( )| [ — L .
By Lemma 3.1 (ii),
U W) = (1) (@haxs) = V(@) + &V (@),

o (fi*) (¥iq,) does not depend on ¢y, ; and we conclude that

max, 7

D2 12| < (V1o + 1V loo) |45 = 5L ].
Applying the argument of (4.47) and (4.49) yields
D1 o] < (IVlloo + 1V lloo) (| A-671j0] + | A1 6710
The same inequality is also valid if @/AJ;L_I < 1&? and @&?_1 <v< Qﬁf .
3. Finally, assume that v > z/}? \Y% zﬂ;ll. In this case
|75?71/2‘ = ‘fzn(v) - fi (U) - fn(ijn) + fit 1(&” 1)|
< |FPw) = Fa @)+ [ W) = () ]

Taking into account that ff(@/?ln) =" wf/(w), we get

max,i

‘fln('(;ln)_ - ( )‘_wv ‘wmaxz_ maxz 1‘
< HVHoo ‘Af¢i—l/2‘ + ’A+¢i—1/2‘)' (4.51)

Ifv>yp, Vi1, then fi{(v) = fi*(v) = 0, hence (4.51) means that
’ﬁ?—uz‘ < H‘N/HOO(|A,¢?_1/2| + }A+¢?_1/z|)'
Suppose now that

PPV SR SO U (4.52)

max,i — — ¥max,i—1

Since we know that v = ¢ 2 S 1—9, /2 the inequality ¢}, ; < v can only be satisfied
if

Zlax,’i = (1 - ?71/2) N (1 - ?+1/2) =1- ?71/2-
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On the other hand,

glax7i—1 = (1 - ?—1/2) N (1 - ?—3/2) <1- ¢?—1/2a

o (4.52) is only possible when ¢, ; =v =1}; 1 =1— ¢}, which means that
D? 12 = = 0.
If instead of (4.52) we have
JJ? N QZJ? < wmaxz 1 S v < wmax ) (453)

|fzn(v) - ﬁl(lv)| = U‘V(U/wglaxi) - (U/wmaxz 1)|
) ¢maxz - axz vl 00 n
< UQ”V “OO| 1| H H |wmaxz ~ ¥Ymax,i 1|

n n
max,t ' max,;i—1

The remainder of the estimate is based on (4.47). Since w < 1, we conclude that if (4.52)
holds, then

-
7200 — )] < e (g 4 A,

In combination with (4.51) we obtain in this case

HV [

DI | < (Wnoo ) (1862 ] + D462 1)) (4.54)

Next, suppose that instead of (4.52) or (4.53) there holds

n< maxz<¢ S/U</I7Z)

max,i—1

then the discussion of (4.52) can be applied again and we get that this ordering is only
feasible if all terms are equal and zero, and therefore 75?_1 o= 0. On the other hand, let
us assume that

wznfl S wglax,ifl S wzn S v S wrrrllax,i‘

In this case there exists £ € [ v] such that

7

P2l =| [ () 010
< [l las

wglaxz
S/ ’ f”l ‘dS < (HV||OO+ ||V,HOO)( max,i Zla)gi—l)

n
max,i—1
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< (Vs + 1V llso) (| A0y o] + [ A4 0T o))

It remains to treat the case V™, < v < Yr AP io1- We then have v /(U7 i 1 W) < 1,

max,? max,i/ —

and analogously to the derivation of (4.54) we get
D sja] < (IVllse + 1V lloo) (12611 2] + 2461 ).
Collecting all estimates for 15?71 /o5 We see that
D1y < BIIV oo + (14 L/ IV [loo) (|A- 1 o] + [A1671 o] )- (4.55)
Furthermore, we obtain
‘5f_1/2| < ”6:1)s||00}A+¢?—1/2| + [[0gslloc| A=} 5. (4.56)
Combining the estimates (4.50), (4.55) and (4.56), we obtain from (4.45) and (4.46) the bounds

]:—(gb?,U) _ﬁ(d)?flvu)}a ﬁ(gb?ﬂ]) _‘F(¢?717U)|
< Clo(|A*¢?fl/2’ + |A+¢?71/2|)

(4.57)

and therefore

|A? Q@7 ¥7)| < Cua(|A—dly o] + |AL0lys]).-

with constants Cjy and C};. Combining the last inequality with (4.42) and (4.43) we arrive at
the desired estimate (4.41). O

From (4.41), and considering that 0 < ¢7 , =1 for all 7 and n, we obtain
(A_Q(er 4!))* < 2C2((AY + AU F(d2, 4p2))* + 203 (| ALy o] + |Ard 1)
<43 ((AYF(r, g + (A F (g w1)’)
HAC(|AZ | + AL o] )
< Cio (A F (@, 1)) + (AVF (@7 1))+ [A iy o| + Aol ).

Summing over (i,n) € Zy we get

S (A QUar ) < On ST ((ADF@E w) + (ADFE ) )+ 200 S[A 6L |

IO IO Il
N
< Cu Y ((AYF@rwh)" + (A F (@), ¢?))2 +2C1 Y TV(").
To n=0

Multiplying this inequality by AtAz and taking into account (4.39) and the uniform bound on
TV(¢™) we have proved the following lemma.
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Lemma 4.9. There exists a constant C' = C(T) that is independent on At or Az such that the
following estimate holds:

AtAz ZT Y (A-Q(e} w})” < C(T)Az. (4.58)

n=0 i€Z

In part following the proofs of Lemmas 5.5 and 5.9 in [67] and Lemma 3.4 in [34] we now
prove the ngcl compactness result.

Lemma 4.10. Assume that 1>% is generated by the scheme (4.26), and that ¢ is the unique
entropy solution of (4.17), (3.2a) on Ilp. Furthermore, we denote by (ny, Qo) the Kruzkov
entropy pair (4.23), and the distribution

P = 0o (V%) + 0.Qo (67,957, (4.59)

Then the sequence {1™*}a.=o belongs to a compact subset of H_ ! (Ily).

Proof. Following [34], we work with smooth entropies instead of 7y, so we denote by na, a
smooth convex approximation to 7y, so that 7a.(0) = 0 and |na.| < 1, and ||[9a. — 1o/~ < Az.
Moreover, if Qa, is the entropy flux associated with na, then there also holds ||Qa. — Q| L~ —
0 as Az — 0. Then we split u®* as u* = pf* + p2*, where we define

ue® = 0y (o (™) — na-(v™)),
,MQAz = atnAz(¢Az) + 8zQ0(¢sz 77Z)Az)'

If ¢ € C3(I17) denotes a test function with compact support, then as in [34], one verifies that

‘(:ulAZvC>| S /H |77Az(wAz) _n0(¢Az)||Ct|dZdt
< Con ||l 2y lInaz — mollLe — 0 as Az — 0,

hence {1{*}a,~0 is compact in H, ! (Il7). By an integration by parts we get

(Wo*.0) = — / / (na: (627)C, + Qo(¢™%, 57)C.) dz dt

Np—1 tnt1 Nr—1 g
= — Az . A Az
= nZ:; /R/tn Na=(Y=7)¢ dt dz ; /tn /RQO(¢ A, dzdt
Np—1
- _ Z /nAz(wAz(z,tn))(C(z,th) —((z,t,)) dz
n=0 YR
Nr—1 tn+1

- i Z/t Q0(¢?—1/2awﬁm)(@(zi,t) — (221, 1)) dz dt,
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so we may finally write

Np—2
(3", Z Z Nz (" 1/2 77Az(¢?—1/2))/[ (2, tps1) dz
n=0 i€Z i—1/2
N1 s (4.60)
3 S (A Qo 6 ) / (e t)
n=1 i€Z
We define the cell average

j—1/2
Replacing the integral in the first term of the right-hand side of (4.60) by Az(™ /2 produces
the following error, where we follow the derivation of (3.27) in [34]:

Z(nAz(l/’?_ﬁl/z) - 77Az(¢?—1/2)) (/ C(2tny1) dz — AZC?—1/2> ‘
I 10

Iy

< Vbl Sl — anlig [ Iestun) = lant] st
1>

n+1
< Z}@Z’?—Jrll/z_ i I/Z‘At // / ’Q (z,8) ‘dsdzdt

tn+1 tnt1 9 1/2
< ZW?—T/Q — Y- 1/2‘At // / tny1 — 1) 1/2 (/t |Ct(z,5)‘ ds) dz dt
Zs —1/2 n

2 1 tni1 ) 1/2
<{ Tt vmalar [ ([ ol as)
TIo i—1/2 n
2 ) 1/2
< 2D Ui, = [ AL PAL (//n (Ct(z7s)) dz dt>
Iy

2
§<Auﬂ§: 7@¢—M2ﬂy> (E:// (2. )) dz&)

i—1/2
2
< 22l
(see (4.40)). By similar arguments we obtain the bound

Z(A+QO(¢ 1/27%”—1/2)) (/t " C(Zi+1/27t) dt — Atgzn—l/2)‘

T

< CrAZ 2| ¢ -

Consequently, and further following [34|, we have shown that

n+1 n n n
Az . Z N i—1/2) — 1a:( i—1/2) A+Q0(¢i—1/27wi—1/2) n
<M2 7C> - AZAt =~ { At + AZ g’i—l/Q
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+ terms which are compact in H_! (Il7).
We now utilize the “scheme for 7", (4.37), to rewrite the term in curled brackets as
{' - } = A?—1/2 + B?—1/2 + Cin—1/2 + D;Z—I/Q’

where we define

n L 1 17 (£n+1/2>( n+1 n )2 1 n

i=1/2 77 T oAy 18z\5i-1)2 i-1/2 ~ Yim1/2) TS Dy
1
e i= = (0 (00) =0 (V112)) A-F (87, 47),

1
?_1/2 = _EAﬁ (77/(1/}?—1/2)]:(¢?—171/’?—1) - Q(¢?—1)¢?—1))7
1
?—1/2 = _A_z(A*Q«b?a’lp?) - AJrc20 (¢?—1/27 w?—l/?))' (462)

Thus, (457, ¢) = (A, ¢) + (B,¢) + (C,¢) + (D,¢) + compact terms, where

(A, Q) = AzALY AL 10C

and (B, (), (C,(), and (D, () are defined analogously. In view of Lemma 4.7, we get

A 7 n mn n n
(A, Q)] < ¢z (7 DR E) (Ui = i)+ ALY @im)
I

I
< Crl|¢ll e ir)

and therefore A € M,,.(Il7). Appealing to the divergence bound of the numerical flux (4.38)
and taking into account the BV bound on ¢*7 it also follows that [(B + C, ()| < Cr||¢|| 2o 1s)
and therefore B+ C € M,,.(Il7).

Finally, to deal with (D, ¢) we consider first ¢ > 0 and let Q., QF and Q. denote the entropy
and numerical entropy fluxes calculated from (4.22) and (4.30), respectively, where n = 7..
Since Q. is consistent with @),

Q: (¢, ¢, Y1, 1Y) — Q=(0, 1)
1 .
= Q8(¢7 ¢, ¢17 ¢2) - Q6(¢7 ¢, ¢27 ¢2) = / nfs(s)f(gb’ Qb, S) ds

1
= n;<w1)(f(¢7 ¢7 1/}1) - f(gb? ¢7 ¢2)) - / 77;/(5) (‘;E.((b7 ¢7 S) - f(¢7 ¢7 1/}1)) ds

(cf. (4.32)). By using the monotonicity of F with respect to its 1-argument we get

Q= (¢, &, U1, ¥2) — Q=(6,2)| < 3||nll| | F (o, ¢, 902) — F(, ¢,41)]
< S‘ﬁ(QS? ¢7 wZ) - ﬁ(¢a ¢,¢1)|>
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so in the limit € — 0,

‘Q(¢7 ¢7 77Z)17 ¢2) - Q0(¢7 ¢2)’ S 3}]}(¢7 Qb, 1/}2) - f(gb, d)a ¢1)’ (463)

Noticing that

A_Q(P},7) — Ay Qo(df 1) Ui 1)2) = A_(Q(DF, U7 1j2: Vi 1j2) — Qo(@Fy1 /2 Vivasa))
=A_ (Q< z+1/2a¢z+1/27¢ ) QD(¢?+1/27¢?+1/2))
+ A (Q(d’?a@b?) - Q(¢i+1/27¢?+1/27¢?>)

we get from (4.62)

AzAt ZD?—I/QC[L—U2

Iy

1
< AZAtZEA—(Q( ?.;.1/27 7,+1/27’l1b) Q0(¢?+1/2: ;‘+1/2))CZ’_1/2
Iy

AzAtZ A Q(cﬁz ,1/)?) - Q( ?+1/27¢?+1/271/J?))<£1/2 = ’SI‘ + |’S2|‘

By a summation by parts and applying (4.63) we get

AL
[Sil = |AZALY (Q(S711 /0 Ofarjor ¥F) — QoD ”1/2))%
T
= n n n |A ;i ‘
< 3AzAt Z‘Af)}"(@ﬂ/g, Di'v1/2; ¢i—1/2) }% (4.64)

I
We now write
(3 3) ¥ n n
Al )]:( z+1/27¢i+1/2a¢?—1/2) = AS-)]:(¢1' 7%1_1/2) + yz‘n+1/2 - yi—1/27
where
z’nﬂ/Q = -7}(¢?+1/27¢?+1/27¢?¢1/2) - ﬁ(d’?ﬂﬁﬂ/z)'

From (4.57), and considering ¢? , /2= o /o In that bound, we deduce there exists a constant
C' such that |V}, 5| < C|AL @], |, therefore there exists (another) constant C' such that

Viijp = Viiapa] < ClALGL, ol (4.65)

Consequently, from (4.64) we deduce that

|S1] < 3AzZAt <Z|A d)z? " 1/2) ’ +C 1/2| Z|A+¢n 1/2 AL 1/2’)

Iy
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1/2
= (AZAt (Z(Af)f(ﬁb?ﬂ/m Orirym Vi) +C Y TV<¢n)>> ’

(Mtz( 2l ) ’

From (4.39) we infer that there exists a constant C7 such that
3) ([ n n n 2
ALY (AP F (02 0120 ¥ 2))” < O
I

Noticing that also

AtZTV ) < Ciy

we conclude that there exists a constant Cy, such that

’(517@’ < CTNAzl/ZHazCHLQ(HT)'

Next, we deal with S,. Applying again a summation by parts yields

+Gily o

AT
|So| = AzAtZ qbl ! ) (¢?+1/27¢?+1/2>¢?)>T :

The definition of Q (see (4.30)) we get

1Q(1,¥7) — QD1 /0> Bt jor 1) | < | QH(DF W1 j0) — QD1 j2r D jor V71 0) |
+ |Q z7 z+1/2> - Q_(¢?+1/27(/5;'11/2;1??71/2)“

By a computation similar to (4.44) we get

|o* (@7 0y )n) — QF (¢?+1/27¢?+1/27¢?_1/2)| < 3||77,||00|Xin—1/2 ;

where we define
Xz'n—l/2 = -7:—(¢?7¢?—1/2) ﬁ(¢z+1/2a ¢i+1/2’¢?—1/2)‘
The discussion of X", /2 is similar to that of Y ; /2 above, and appealing to (4.57) we see that
|X¢n_1/2‘ < C|A+¢?_1/2|‘

On the other hand, (4.65) implies that

‘Q_ (d)?v ?—1/2) -9 (¢?+1/2a¢?+1/2a¢? 1/2)‘
< 3107 oo | F (07, 11 j2) — F (07120 D120 Uiy o) | < CALGE ).
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Thus

‘Q((ﬁ??lp?) - Q(¢?+l/27¢?+1/27¢?)| S C‘AJr(b?fl/Q‘?

and we deduce that Sy can be bounded in a similar way as S;. In particular,

/2

|52|g3<AzAtc§n:TV(¢n))>l (A AtZ( m—ath 1”')) ,

and we conclude that also
(82, Q)| < CrAZY2|0.¢]| 2 m2 s+

so D is compact in H,_ ! (Ilz). Thus, the sequence {15} A->0, and therefore also the sequence
{u?*} a-0 belong to a compact subset of H, ! (Ilr). O

Since ¢ — ¢ strongly in LP, we obtain that there exists a constant C' such that

(0:(Q(6%%,9%%) = Q(¢,9)), ()] < Cll¢>* = @l 2 €Il 1y = 0 as Az — 0,

hence the sequence {ji®*} a.~0, where we define

IQAZ = E?tno(@bm) + azQ(¢a ¢A2)7

is compact in H_!(Il7). Now, by Lemma 4.6 there exists a subsequence {)**} (which we do
not relabel) and a function ¢ € L*(Il7) such that
Y™ =1 as Az — 0, a.e. and in L

loc

(Il7) for any p € [1, 00). (4.66)

Lemma 4.11. Assume that the maps ¢ and v are the limit functions of ¢* and of V™% as
Az — 0 (the latter one being defined by (4.66)). Then (¢,1) is a weak solution of the initial-
value problem (4.17), (4.18), (3.2) in the sense of Definition 4.4.1.

Proof. The proof follows that of |34, Lemma 3.5]. We only need to verify that ¢ is a weak
solution of (4.18), that is, that (4.20) holds. To this end, we choose a test function ¢ € C3°(Ily),
recall the definition (4.61) of cell averages (" , /9> multiply the ¢-scheme (4.26) by Az, Jg» SUIL
over ¢ and n, and apply a summation by parts to obtain an identity Jy + J1 + J2 = 0, where

Jo :Asz?_l/2C?_1/2, Ji = AZZZ% 1/2 1/2 ?7_11/2)7

€L i€Z n=1
Nr—1

= A8t YN For gy *C 1/2

n=0 icZ
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By exactly following the estimates of terms Iy and I; in the proof of [34, Lemma 3.5] and
appealing to the bounded convergence theorem we may prove that

AlizrilojO:/R%(z)C(z’o) dz, Ah,glojl :/ Y0, dz dt. (4.67)

Iy

The treatment of 7, differs from that of the term I in [34, Lemma 3.5] since here the numerical
flux depends on four arguments (not three, as in [34]). We here get

Jo = // F(qﬁAz, IDAZ)@C dzdt + Joq + Jo2 + J2.3,
IIr

where we define

[ B2 aZC(Z7t)_aZC(Z+£7t>
= = F(6) o 0 dedzd
‘7271 - (¢z—1/2’¢z—1/2) /\/]" /0 Az f z dt,

i—1/2

n
+5i—1/2

- A
Jop = —AZAtZ(F(Gb?_mW?_m) - f(¢?7¢?—1/27¢?—1/2))T7
I

A+CZ?11/2

Tos = =Dzt Y (F(OF 0110, 010) = F (01, 91)) — =
T

A+sz1—1/2

= AzArYy APF(G] 0 1g)

I

The term Jo; can be estimated by choosing a constant M such that ((z,¢) = 0 for |z| > M
and noting that

| Tl < AZH@?CIILooIIF(ch,wA)IIqu_MM]X[O,TD —0as Az — 0. (4.68)
Furthermore, in light of (4.29) the difference arising in J2 2 can be written as

F(& 1007 1 5) — F (1010 71 12)
= F(O 12 1o V1 os V1 0) — F (D120 Dir 0 Vi1 20 Vi1 2)
- ]}(¢?_1/2a O 1oy U1 y0) — -7:-(05?_1/2’ D1 o V1))

+ f(¢?—1/27¢?—1/2>¢?—1/2) - -7}(¢?—1/2a ¢?+1/27¢?—1/2)-

Utilizing the estimate (4.57) with ¢7 , /2 = o /2 yields that there exists a constant C'5 such
that

|F (011 001 0) — F (D107 10 U 1)) | < Cra| Ay 0],
hence

- ALl 1/2
Uz,z\ < CpAzAL Z TV(¢") i-1/

n=0

T < CAZHazC”LOO —0as Az — 0. (469)
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To estimate J3, we utilize (4.39). Then

1/2

1/2
(AzAtZ( +Gin 1/2)) )

< C;’/ZAZWH@CHL?(HT) —0as Az — 0.

| Tos| < (AzAtZ ¢z i 1/2))2>

Iy

From (4.68), (4.69) and (4.70) and appealing to the strong convergence of ¢** and ¥>* we
deduce that

dim Ty = / /H ) F(p,1)0.¢ dzdt. (4.71)

The limits (4.67) and (4.71) imply that the limit 1 is a weak solution. O



CHAPTER D

A degenerating convection-diffusion system modelling
froth flotation with drainage

5.1 Introduction

5.1.1 Scope

As we stated in previous chapters, flotation is a separation process where air bubbles are used
to attract hydrophobic particles or droplets from a mixture of solids in water. The process is
often applied in a column to which both a mixture of particles (or droplets) and air bubbles are
injected. The effluent at the top should consist of a concentrate of hydrophobic particles that
are attached to the bubbles, while the hydrophilic particles settle to the bottom, where they are
removed (see Figure 5.1). A layer of froth at the top is preferred since the effluent then consists
of a minimum amount of water and the froth works as a filter enhancing the separation process.
In our previous models of column froth flotation (with or without simultaneous sedimentation
of hydrophilic particles) Biirger et al. [17, 18,20, 28], a particular constitutive assumption on
the bubble velocity leads to a hyperbolic system of partial differential equations (PDEs) that
models the layer of froth with a constant horizontal average volume fraction of bubbles ¢, or
equivalently, the volume fraction e = 1 — ¢ of liquid (or suspension with hydrophilic particles)
that fills the interstices outside the bubbles. It is however known that e varies with the height
in the froth because of capillarity and drainage of liquid; see Neethling and Brito-Parada [85]
and references therein.

It is the purpose of this chapter to extend the hyperbolic model presented in Chapter 3 to one
that includes capillarity. To this end we partly generalize the well-known drainage equation to
hold for all bubble volume fractions, and partly generalize our previous model of column froth
flotation with simultaneous sedimentation. The latter is a nonlinear system of PDEs where
the unknowns are the volume fractions of aggregates (bubbles/droplets loaded with hydropho-
bic particles) and solid hydrophilic particles. A numerical scheme for the new governing PDE
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Figure 5.1: Left: Schematic of a flotation column; cf. the Reflux Flotation Cell by [38]. Right:
The corresponding one-dimensional conceptual model with a non-constant cross-sectional area
A(z). Wash water is sprinkled at the effluent level z = 2z and a mixture of aggregates and feed
slurry is fed at z = zp, where 2y < zp < zg divide the real line into the zones inside the column
and the underflow and efHuent zones.

system is presented. We show that the approximate volume fractions stay between zero and
one if a suitable Courant-Friedrichs-Lewy (CFL) condition is used. Furthermore, we construct
desired steady-state solutions and provide algebraic equations and inequalities that establish
the dependence of steady states on the input and control variables. Such dependences are
conveniently visualized in so-called operating charts that constitute a graphical tool for con-
trolling the process. The particular importance of steady states comes from the application
under study; namely they describe the ability of the model to capture steady operation of the
flotation device without the necessity of permanent control actions.

5.1.2 Some preliminaries

Froth is assumed to form when the volume fraction of bubbles ¢ is above a critical value ¢, =
1 — . when the bubbles are in contact with each other. Then capillarity forces are involved,
which means that the governing PDE is parabolic, whereas it is hyperbolic in regions without
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froth. The present derivation is based on the traditional one by Goldfarb et al. [57], Leonard
and Lemlich [76], and Verbist et al. [112], leading to the drainage equation for low liquid
content . We then combine results of [90] and [107] to obtain a constitutive relationship
between the relative fluid-gas velocity u and the liquid volume fraction € < . when capillarity
forces are present. With a compatibility condition at ., we obtain a constitutive relationship
of the relative fluid-bubble velocity u as a function of ¢ € [0,1], which for ¢ > e. is the
common Richardson and Zaki [98] power-law expression for separated bubbles (Galvin and
Dickinson [54])‘. The resulting generalized drainage PDE is (in a closed vessel)

Oe — 0. (cti(e)) = 92D(e), (5.1)

where ¢ is time, z is height, ¥ (¢) is a nonlinear fluid-velocity function, and D(e) an integrated
diffusion function modelling capillarity, which is zero for € > e..

Equation (5.1) can alternatively be written in terms of the volume fraction of bubbles ¢.
We assume that ¢ denotes the volume fraction of aggregates, by which we mean bubbles that
are fully loaded with hydrophobic particles. Under a common constitutive assumption for the
settling of hydrophilic particles within the liquid outside the bubbles, the following system of
PDEs models the combined flotation-drainage-sedimentation process in a vertical column with
a feed inlet of air-slurry mixture at the height z = zp with the volumetric flow Qg(t) (see

Figure 5.1):
aea () vo- (40 (L7057 )

=0, (427:00.00) (1)) + @0 (1) 0

Here, 1 is the volume fraction of solids, A(z) the cross-sectional area of the tank, and J and F

(5.2)

are convective flux functions that depend discontinuously on z at the locations of the feed and
wash water inlets and the outlets at the top and bottom. The system (5.2) is valid for ¢ > 0
and all z € R where the characteristic function y(z) = 1 indicates the interior of the tank and
v(z) = 0 outside, and § is the delta function. Outside the tank, the mixture is assumed to
follow the outlet streams; consequently, boundary conditions are not needed; conservation of
mass determines the outlet volume fractions in a natural way.

Similarly to the role of D in (5.1), the nonlinear function D models the capillarity present
when bubbles are in contact. Precisely, with a function d(¢) (specified later) we define

@
D(6) = /0 d(s) ds. (5.3)

e )0 for 0 < ¢ < @,
d(¢)_D<¢)_{>o for ¢ < & < 1. (5:4)
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Consequently, at each point (z,t) where ¢(z,t) < ¢, there holds D(¢(z,t)) = 0, and therefore
(5.2) degenerates at such points into a first-order system of conservation laws of hyperbolic type
(as was shown in [18]). Since this degeneration occurs for 0 < ¢ < ¢, and 0 < ) < 1 — ¢, that
is, on a set of positive two-dimensional measure, (5.2) is called strongly degenerate. While it is
clear that the first PDE in (5.2) is parabolic for ¢. < ¢ < 1 and this PDE, as well as (5.1), are
scalar strongly degenerate parabolic equations, the same cannot be said about the system. We
observe namely that with A = v = 1, the diffusion term on the right-hand side can be written
as

). (d(¢)8z¢ (_ e @)) —o, <B(¢,w) (gz)) B(6,v) = d(9) {—w o 8} -

Since at least one of the eigenvalues of B(¢,) is always zero, we observe that even when
d(¢) > 0, the system (5.2) is not strictly parabolic.

5.1.3 Outline of the chapter

In Section 5.2, we consider a simplified two-phase bubble-fluid system in a closed vessel and
derive a generalized drainage equation governing the flotation of the bubbles with formation
of froth and drainage of liquid from it. In Section 5.3, we extend the equation derived to the
process of column flotation with sedimentation of solid particles and with froth drainage at the
top. The treatment of the feed inlets and the definition of the flux density functions in each zone
(see Figure 5.1) are detailed. Section 5.4 is devoted to the construction of steady-state solutions
having a froth layer at the top of the tank and bubble-free underflow. Necessary conditions for
those so-called desired steady-states to appear, in terms of inequalities involving the volumetric
flows Qu, Qr and Qw and the incoming volume fractions of aggregates ¢r and solids ¢, are
derived in Sections 5.4.4 and 5.4.5. In Section 5.5, the numerical scheme for simulation of
the process is introduced. It is proven that under a CFL condition, the approximate volume
fractions of aggregates and solids remain between zero and one provided that the initial data
do. Some simulations are provided in Section 5.6. They show fill-up of a flotation column and
froth formation, illustrating the response of the system to changes of operating conditions.

5.2 A generalized drainage equation in a closed tank

The two-phase system has bubbles of volume fraction ¢ and phase velocity v, and fluid of
volume fraction € = 1 — ¢ and phase velocity v, where 0 < ¢, < 1. When the bubbles are
mono-sized and separated from each other (i.e., there is no froth), a common expression for
their velocity in a closed container without any bulk flow is [91,111]

v(¢) = Vterm(1 — @)™ (separated bubbles),
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where Ve s the velocity of a single bubble far away from others (¢ & 0) and n;, a dimensionless
parameter (similar to the Richardson-Zaki exponent within the analogous expression for the
sedimentation of mono-sized and equal-density particles in a liquid, see Section 5.3.3). We thus
let velocities be positive in the upward direction of the z-axis. The relative velocity of fluid
to bubbles is u := vy — v. In a closed container, the volume-average velocity is zero; hence,
0 = ¢v + evg, and we get

(1—¢e)

S S U — VpermE™ ! (separated bubbles), (5.5)
5 5

which is negative because the fluid flows downwards. We also obtain the identities v = (1 —¢)u
and v = —(1 — @)u.

If ¢ exceeds a certain critical volume fraction ¢. = 1 — €., the bubbles touch each other and
a foam is formed. The larger ¢ > ¢., or smaller ¢ < ¢., the more deformed are the bubbles.
Randomly packed rigid spheres leave a volume fraction of e. = 1—0.64 = 0.36; cf. [15, Table 1].
For froth, we assume the value €. = 0.26 [89, Eq. (21)] and Narsimhan [84].

We discuss below the most difficult intermediate fluid volume fractions when ¢ is smaller
than, but close to .. We consider, however, first a layer of foam with a very low volume
fraction of liquid € and recall the derivation of the drainage equation [57,76,112]. In this case
the deformed bubbles are separated by very thin lamellae, which are separated by channels, so
called Plateau borders, which are connected at vertices, or nodes, so that a network is formed.
It is assumed that almost all the liquid is contained in the Plateau borders, whose cross section
is the plane region bounded by three externally tangential circles all of radius r. This deformed
triangular-shaped region has the area

1/2

A=C%? with C:= (\/§ —7/2) (5.6)

If the radius r changes along the Plateau border, this is related to a pressure difference according

to the Young-Laplace law: y
bt = Db — _Wa
r
where py and py, are the fluid and bubble pressure, respectively, and -, is the surface tension

of water. The bubble pressure py, is assumed to be constant.

There are three forces acting per volume fraction of the Plateau border:

gravity: 0tg,
dissipation: — CPBMu = — CPB'uu
. A C2p2 7
capillarity:  — Vpr = —V—VQVVT.
T

Here, g is the gravity acceleration vector, w the fluid-bubble relative velocity, u the fluid
viscosity, and Cpgthe dimensionless Plateau border drag coefficient, which can be inferred to
be 49.3 from the numerical calculations by Leonard and Lemlich [76]. The value Cpg = 50 is
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often used in the literature. The sum of the three forces is zero if one neglects inertial forces.
Along a Plateau border tilted an angle 6 from the vertical z-axis, we place a zy-axis with the
coordinate relation z = zycos . The force balance along the zp-axis is

Cppit Y
2,2 Uy — T—28297’ = 07

where the relative fluid-gas velocity in the channel is uy = upp/cosf and upp is its vertical

—prgcosf —

contribution from one Plateau border of angle 6, which thus is

02 2 -
Upg = — ! <pfg + 7—@r> cos? 0.
Cpat 2

Under the assumption of randomly distributed Plateau borders with respect to the angle 0 <
6 < 7, the likelihood that a Plateau border has an angle in the interval (6,6 + df) is the area
27 sin 6 df of the circular strip of the unit sphere divided by its total area 4mw. Since

m 27 si 1
{cos?) ::/ cos? 0 7rs1n9d9 =-,
0

47 3

the relative vertical velocity u is defined as the average vertical relative fluid-gas velocity for
many Plateau borders:
C*r?pryg

u= (upp) = — "> (1 + g r) . (5.7)

e r2prg

This velocity can be expressed in A by (5.6), and substituting the resulting expression into the
conservation law 0, A + 0,(A(1 — €)u) = 0 and setting ¢ = 0 (recall that vy = (1 — €)u) one
obtains the classical drainage equation for low liquid content.

We want an equation for the volume fraction e, which is equal to A times the length of Plateau
borders per unit volume; cf. [85]. Then the length L and number of such channels should be
estimated. Since we also want an equation for all 0 < ¢ < g, the estimation of such numbers
becomes difficult since the Plateau borders are only narrow channels for small €, their lengths
are not well defined and the volume and dissipation effect in the nodes varies. [71] presented a
relationship between e, L and r, valid for at least € up to 0.1. They derived a generalized foam
drainage equation which covers the two limiting cases of channel- and node-dominated models,
respectively. To remove the variable L, Neethling et al. [90] made the common assumption
that for small €, bubbles can be assumed to have the form of a tetrakaidecahedron (Kelvin cell)
and used the equation 4777 /3 = (1 — €)2%7L3, where n, is the bubble radius. Thereby, they
obtained the algebraic equation

2 3
e =0.3316 (i) (1 —¢)%? 4+ 0.5402 (i) (1—c¢), (5.8)
(A% (A%

which is implicit in all its variables. Containing these three variables, they derived a PDE
valid for 0 < ¢ < ¢, by considering dissipation both from the Plateau borders and the nodes.
Assuming 7y, is constant, their PDE and algebraic equation defines the unknowns ¢ and r.



5.2. A generalized drainage equation in a closed tank 109

Stevenson [104] demonstrated that the effective relative fluid-gas velocity u could be very
well approximated by a power law of the type (5.5), at least for fluid volume fraction up to
e &~ 0.2. In particular, Stevenson and Stevanov [107]| approximated Equation (5.8) by

T e, with m = 1.28, ng = 0.46.
T

This equation can be substituted into (5.7) to give
U = —Vgpaine " (1 + dcape_(H"S)@Zs) for 0 < e < e, (5.9)

where the drainage velocity vgain (With respect to gravity and dissipation) and the dimensionless
capillarity-to-gravity parameter dc,, are given by

m?C*riprg NS
Vdrain ‘= —5 ~ dcap = .

3CppH mrypeg
The derivative term in (5.9) models the capillarity that is not present for separated bubbles;
see (5.5). Hence, we suggest the relative fluid-gas velocity

/Udrain€2nS (1 + dcapg_(1+n8)az€) for 0 <e< Ec,
U= —
Utermgnb_l for e S IS S 1
with the compatibility condition (continuity across € = ¢.)
— Udrai —1-
Udraingzns = /Utermg"c’bb ! -~ s - 5? ! 27’15‘ (510)
Vterm

Values for ny, in the literature range from 2 to 3.2 [38,54,91,111].
Recalling once again that vy = (1 — €)u, we now define the velocity function
B Vdrain (1 — €)™ for 0 < e < &,
Ug(e) == .
Verm (1 — €)™ fore, <e <1
and the diffusion function

raindca 1 - "s for 0 S < &g,
d(e) = Ud o(l—e)e or £<e€

0 fore. <e <1,
so that the liquid flux (in a closed vessel) becomes

ev = (1 — e)u = —et¢(e) — di(e)0,e = —et¢(e) — 0,D(e), (5.11)

where the integrated diffusion function is

5n8+1 67’Ls+2
R € Udraindcaup(nS 1 - ns + 2) for 0 <e<eg,
D) = [ ar(e)ae =
raindca < — == f c<e<1.
vd p(ns+1 ns—|—2> Offe=e>

(Notice that D(e) is constant, and therefore D'(¢) = 0, for e, < € < 1.) Inserting the expression
(5.11) into the conservation law for the fluid phase die + 0. (ev¢) = 0, we obtain the generalized
Equation (5.1) modelling both rising bubbles and drainage of froth in a closed container.
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5.3 A model of flotation including froth drainage

5.3.1 Assumption on the tank and mixture

We use a one-dimensional setup of the Reflux Flotation Cell by Dickinson and Galvin [38];
see Figure 5.1. A mixture of slurry and aggregates is fed at the height z = zp at the volumetric
flow Qr > 0 and wash water is injected at the top effluent level z = zg at Qw > 0. At
z = zy, a volumetric flow QQy > 0 is taken out. In the one-dimensional model on the real line,
there are four zones, two inside the vessel plus the underflow and effluent zones. The resulting
effluent volumetric overflow Qr = Qw + Qr — Qu is assumed to be positive so that the
mixture is conserved and the vessel is always completely filled. In comparison to the previous
treatments [18,20], here we do not separate the wash water inlet and the effluent level, i.e.,
zw = zg. The cross-sectional area is assumed to satisfy

Alz) = {AE for z > zp,

Ay for z < zp.

Particles trapped in the froth region influence the drainage of fluid [3,59], but for simplicity we
nevertheless assume that the volume fraction of aggregates (bubbles with attached hydrophobic
particles) can be determined as a function of height and time by a single equation. Thus,
the suspension in the interstices outside the bubbles is assumed to behave independently of
the volume fraction of (hydrophilic) particles. Such particles may however settle within the
suspension, which undergoes bulk transport. From now on we denote by ¢ = 1 — ¢ the volume
fraction of aggregates. As a first approximation in a closed vessel, ¢ can be obtained by
solving (5.1) for € and setting ¢ = 1 — &, but we proceed to derive an explicit equation for ¢
since that will be extended to the more complicated model of a flotation column with in- and
outlets.

5.3.2 Equation for aggregates with froth drainage in a closed tank

We recall the gas-phase velocity v = —(1 — ¢)u and the compatibility condition (5.10), and
define

T — for 0< 6 < 6,

0= (L — 95 = vy = ;?): for ¢ < 6 < 1, (512
0 for 0 < ¢ < ¢,

MO =) vindean (1 = ) = ey =20 g co<r. 1)

(1 _ ¢c)2n8+1_nb
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Figure 5.2: Left: function j,(¢) = ¢0(¢). Right: diffusion function D(¢) modelling capillarity.
Note the behaviour of these functions at the critical concentration ¢. = 0.74.

With the batch-drift flux function j,(¢) := ¢0(¢), where 0(¢) is given by (5.12), we can write
the aggregate-phase flux (in a closed container) as

v = —¢(1 = p)u = ¢i(9) + d(¢)0:(1 — ¢) = ¢v(¢) — d(¢).¢ = jn() — 0-D(9),

where D(¢) is defined by (5.3). In light of (5.13) we obtain

0 for 0 < ¢ < ¢,

D(¢) = w(e) — w() (5.14)
'Udraindcap (ns + 1)(”8 + 2) for ¢C < ¢ S 17

where w(¢) := (1—¢)" % ((ng+1)¢+1) and we reconfirm the property (5.4). The conservation
law 0;+0.(¢v) = 0 now yields the following equation for the volume fraction ¢ = ¢(z,t) € [0, 1]
of aggregates in a closed vessel:

0o + 0.jb(¢) = 92D(9). (5.15)

The graphs of the constitutive functions j,(¢) and D(¢) are drawn in Figure 5.2.

5.3.3 Three phases and constitutive assumptions

The three phases and their volume fractions are the fluid ¢¢, the solids 1, and the aggregates ¢,
where ¢¢ + 1 + ¢ = 1. By suspension we mean the fluid and solid phases. The volume fraction
of solids within the suspension ¢ is defined by

_ %Y
vV+dr 1—0¢

@
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The drift-flux and solids-flux theories utilize constitutive functions for the aggregate upward
batch flux j,(¢) and the solids batch sedimentation flux f,(¢) := pvns(¢), where vyps(p) is the
hindered-settling function. For simplicity, we employ the common expression [98]

Uns() = Voo (1 — @)"®%  where ngy > 1. (5.16)

Applying the conservation of mass to each of the three phases, introducing the volume-average
velocity, or bulk velocity, of the mixture ¢ and the relative velocities of both the aggregate-
suspension and the solid-fluid, Biirger et al. [18] derived the PDE model (5.2) without the
capillarity function D(¢). In particular, the volumetric flows in and out of the flotation column
define explicitly

¢e = (—Qu + Qr + Qw)/Ag  for z > zg,
q(z,t) == @2 := (—Qu + Qr)/Ax for zp < 2z < 2, (5.17)
q1 = qu ‘= _QU/AU for z < 2F-

In the underflow and effluent zones all phases are assumed to have the same velocity, i.e., they
follow the bulk flow. Then the total convective fluxes for ¢ and ¢ are given by

Je(o,t) == qr(t)o for z > 2,
J(6.2.1) = Jo(d, 1) := q2(t)p + ju(@p) for zp < 2 < zg,
J1(o,t) == qi(t)p + ju(p) for 2y < 2z < zp,
LJu(d,t) == qi(t)¢ for z < 2y,
(fE(QOJ ¢7 t) = _(1 - Qb)QE(t)QO for z Z ZE,
fa(p, o, 1) for zr < z < zg,
F =
(90’ ¢’ Z’t) f1<907 ¢7 t) fOI' ZU S z < ZF,
\fU(QO7¢a t) = _(1 - ¢)Q1<t)@ for z < ZU

with the zone-settling flux functions (positive in the direction of sedimentation (decreasing z))

file,8.1) = (1= &) fu(9) + (7u(0) — (1 — D)an(t))
(1 - ¢)fb(90) + (]k(¢7 t) - Qk(t))SO, k= 17 2.

With the capillarity function D(¢), the batch flux j,(¢) is extended to j,(¢) —0.D(9); cf. (5.15).
Hence, the total flux of the aggregates for any z € R is

CI)(QS, 8z¢’ Z, t) = J(¢7 2 t) - ’7(2)8zD(¢)u

where the characteristic function is

(z) = {1 for z € [zy, 2r),

0 for z ¢ [zu, 2R),
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and the total flux of the solids in the z-direction is (F' and F are positive in the downwards
direction of sedimentation, which is opposite to the z-direction)

(), 0.0, ¢, 2,t) = —F (¥, ¢, 2,t) +7(2)

v
—50-D(9), (5.18)

where

v .
F(zﬁ,gb,z,t):z F<ﬂ,¢,z,t) if0<op<1,

0 if ¢ =1.

The conservation law applied on the two phases with the total fluxes ® and ¥ yields the
governing system of equations (5.2) in the case capillarity are included. That system defines
solutions on the real line and next we define the outlet concentrations of the flotation column.

5.3.4 Outlet concentrations

Given the PDE solutions ¢ = ¢(z,t) and ¢ = ¢(z,t) of (5.2), we define the boundary
concentrations at each in- or outlet by ¢ = ¢35(t) := ¢(zi5, 1), etc. Conservation of mass across
z = zy yields

filed,t) — ot 0:D(9)]._s = fuley,t). (5.20)
The underflow concentrations of the flotation column are defined by ¢y(t) := ¢y (¢) and py(t) =

@y (t). These concentrations can in fact be obtained from the solution inside the column
(zu < z < zg) from (5.19) and (5.20) together with a uniqueness condition; see [45].

For the effluent level z = zg, the analogous situation holds:

Jold 1) = 0D, = jn(di. 1), (5.21)
f2(@0]?37 QSITZ’ t) - SO]TZ aZD(¢)|z:Z]5 = fE(QO]—gv ¢Evt)7 (5'22)

In the one-dimensional PDE model (5.2) without boundary conditions, the solution ¢ = ¢(z,t)
(analogously for ¢) in the interval z > zg is governed by the linear transport PDE 0,¢ +
(Qr/Ar)0.¢ = 0 and the boundary value ¢;; (). The effluent outlet concentrations are defined
by ¢ := ¢, and g := ;. In the concluding section, we discuss how bursting bubbles at the
top can be incorporated in the model.
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5.4 Steady-state analysis

5.4.1 Definition of a desired steady state

In the case of no capillarity, Biirger et al. in [18] provided detailed constructions of all steady
states, and Biirger et al. [20,28| sorted out the most interesting steady states for the applications
and how to control these by letting the volumetric flows satisfy certain nonlinear inequalities,
which can be visualized in so-called operating charts. We assume that Qg, ¢r, and Yp are
given variables and that QQy and Qw are control variables. The purpose here is to provide an
improved model of the froth region and we therefore focus on the steady states when a layer
of froth in zone 2 is possible. We consider only solutions where the froth layer does not fill
the entire zone 2, so that there is at least a small region above the feed inlet with aggregate
volume fraction below the critical one. As mentioned before, it is assumed that the wash water
is sprinkled at the top of the column, which is commonly done and gives fewer steady states to
analyse. A desired steady state is defined to be a stationary solution that has

no aggregates below the feed level = ¢y =0,
no solids above the feed level = ¢p=0, (5.23)
a froth layer that does not fill the entire zone 2 = @(2) < .

The reversed implications do not hold in the two first statements for the following reasons.
Since the bulk flow in zone 1 is directed downwards, there exist steady-state solutions with
a standing layer of aggregates below the feed level. Analogously, if the bulk flow in zone 2 is
directed upwards, there may be a layer of standing solids when their settling velocity is balanced
by the upward bulk velocity; see [18].

5.4.2 Properties of the batch-flux density functions

With o given by (5.12), the continuous batch-drift flux function is

jbl((b) = (bvterm(l - ¢)nb fOI' 0 S ¢ S (bca

. — D _ o 2ng+1
]b((b) ¢U(¢) ]bh(¢) = (bvterm(l(i ¢ q)bgns—i-l—nb for (bc < ¢ S 17

where we have introduced the low j,; and high ji;, parts of it. Any function u +— u(1 —u)™ has
a unique inflection point at ui,gn = 2/(n + 1). Figure 5.3 shows the inflection points

2 butn(ns) ’ !
— infi,n(1g) = =
ny +1° S e+ 141 ng+1

Gins1(np) =

of 7p1 and juy, as functions of the exponents n and ng, respectively. With the values ¢. = 0.74
and ng = 0.46 suggested in the literature (see Section 5.2), and the interval 2 < n;, < 3.2, there



5.4. Steady-state analysis 115

1 | ‘
“ | — ¢inﬁ,1(nb) (0 < ¢ < @ )
“\ \‘\ T ¢inﬂ,h(nS) (¢ S (b S )
0.8} e = 0.74
\b\ \\\
< 06F \
04r
0.2r -----
0 1 2 X 4 5 |
Ny, Ny

Figure 5.3: Evolution of the inflection points of j,,; and jy,. The literature values 2 < ny, < 3.2
give an interval (solid black) of possible ¢i,q; that lie entirely below ¢. = 0.74 (red line). With
ns = 0.46, the inflection point (blue dot) ¢iwan = 1/(ns+1) ~ 0.685 < ¢.; hence, jyy, is strictly
convex for ¢ > ¢..

is only one inflection point of j, in 0 < ¢ < 1 and this lies below ¢.; see Figure 5.4, which also
shows that there may be a jump in the derivative of ji, at ¢ = ¢.. Since

Vterm (1 — @)™ (1 — (1 4+ np)¢)  for 0 < ¢ < ¢,

Jn(®) = 1—¢)?"s(1 — (2 4 2ng)¢
b 'Uterm( (i _ ;C)Qng—‘rl—nbnS) ) fOI' ¢c < ¢ < 17
we get that
J(6s) <gh(6f) e np>142ng ~ 1.92. (5.24)

When this is satisfied, the exponent in the compatibility condition (5.10) is nonnegative and
the entire j;, has only one inflection point ¢ina = @iy € (0, d¢)-

5.4.3 Properties of the zone flux functions

The zone flux functions ji, fx(-,®), k = 1,2, have an additional linear term due to the bulk
velocity of the zone. Let j(¢) = ju(¢) + q¢ denote a general zone flux function, where we drop
the t-variable when considering steady states. We will sometimes write out the dependence on ¢;
j(¢;q). The inflection point ¢ of j is independent of ¢, however, the local maximum ¢™ =
™ (q) < ¢. depends on q. To provide an explicit definition, we first define

qneg = _jll)(o)a q: = _jl/)((binﬁ)-

For ¢ < @neg, j(+,q) is decreasing and for ¢ > ¢, j(-,¢) is increasing. For intermediate values
of g, the local maximum exists and satisfies 0 = j'(¢M) = j| (™) + ¢. Since the restriction
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Figure 5.4: Plots of j,(¢) (left) and j|(¢) (right) for ng = 0.46, Verm = 0.3718 and various
values of ny, that satisfy (5.24).

(7bl(0,6ma))" 1s @ strictly decreasing function, we can define
0 it q S Gneg)
¢M = ¢M(Q) = ((jb’(&d)inﬂ)),)_l(_Q) if Qneg < q < (i
¢inﬂ if q Z 5

For gueg < q < 0, there is a zero of j(+; ¢) which we denote by ¢z = ¢z(q) € (0,1). For a specific
zone flux functions j;,, we use the notation ¢} = ¢M(gi.) and ¢z = dm(qr).-

In a similar way, one can define the local minimum point, greater than the inflection point, for
0 < ¢ < g. We denote it by ¢ = dm(qr). For ¢ > G, we define ¢pni(q) := ¢in. Furthermore,
for a given ¢\, we define ¢p,, as the unique value that satisfies

Je(Drms @) = Jr(drnt; ) 0 < rm < Ping.- (5.25)

Analogous definitions can be made for the flux functions fi(, ¢,t), k = 1,2.

5.4.4 Construction of steady states

We seek piecewise smooth and piecewise monotone steady-state solutions ¢ = ¢(z) of (5.2).
Such solutions may contain jump discontinuities within or between the zones. In the case D = 0,
Biirger et al. [18| outlined the details on how to construct unique steady-state solutions and we
will not go through the entire machinery here. The basic idea is to glue together solutions within
each zone in a unique way so that the conservation of mass holds across the zone borders. Two
such so-called Rankine-Hugoniot conditions (jump conditions) are (5.21) and (5.22). Since each
such equation has two unknowns; for example, ¢y and ¢ in (5.21), another so-called entropy
condition in the theory of degenerate parabolic PDEs with spatially discontinuous coefficients
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is needed to establish a unique pair of boundary values [45]. Furthermore, as the values ¢ and
¢y are obtained, these are substituted into (5.22) and a similar procedure yields ¢ and ¢y

The new ingredient due to the drainage is the term 8ZD(¢)|z:zg in (5.21) and (5.22). The
property (5.4) implies the following (see [45, 52| for further details). A discontinuity of the
solution ¢(-,t), within or between zones, is possible only between two values in the interval
0 < ¢ < ¢.. Furthermore, since we are seeking piecewise smooth and piecewise monotone
steady-state solutions, the fact d(¢) > 0 implies that if one of the values of the discontinuity
is ¢., this must be the larger value and located on the right; i.e., the left value of the jump
¢~ < ¢e. Furthermore, ja(¢) > ja(¢c) for o= < ¢ < ¢, and in a right neighbourhood of the

jump, ¢'(z) > 0.

With these facts in mind, we now construct steady-state solutions. Let H(z) denote the
Heaviside function and assume that all volumetric flows and feed volume fractions are time
independent. A stationary solution ¢ = ¢(z) of (5.2) satisfies, in the weak sense,

% (A(z) (J(¢, 2) — 7(2)%55)) — QrorH (z — zF)) =0, z€R.

Integrating this identity with respect to z yields

A(2)(J (¢, 2) —v(2)d(9)d' (2)) — QropH(z — 2p) = M, z€R, (5.26)

where the constant mass flux M can be determined by setting z to a value either less than zy
or greater than zg; then one gets

M = Ayju(ou) = —Quou,
M = Agjr(ér) — Qror =: Mg — Qror,

where the effluent constant mass flux of aggregates Mg = Agjr(¢r) = Qror is also the
constant mass flux above the feed inlet. For a desired steady state satisfying (5.23), we have
¢u = 0; hence, M = 0 and the feed mass flux equals the effluent:

pv=0 <& Qror =Mz

It is convenient to define the feed mass flux per area unit by

_ Qrér

With z in zone 2, (5.26) gives M = Ag(ja2(¢) — D(¢)') — Qr¢r, which with M = 0 and (5.27)

implies that the solution ¢ in zone 2 satisfies

J2(¢) —d(0)¢'(2) = sp, 2r <2< 2,

5.28
SF = QEQE. (5-28)
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The boundary condition in (5.28) also implies that ¢r can be expressed in terms of given and
control variables (recall that Qg > 0):

b = Agsy _ QF¢F
. Qr Qw +Qr — Qu’

(5.29)

Since we require that there be no aggregates in zone 1, the steady-state solution there is zero.
For any jump across z = zp from this zero volume fraction to any larger value ¢,, from which
there should be a discontinuity in zone 2 at z = zg, the bottom of the froth layer, the uniqueness
condition [45] implies that ¢, has to lie on an increasing part of ja(-;¢). This corresponds to
cases (a) and (c) in [18, Section 3.2|. The latter case can only occur under special circumstances
with a large ¢ > ¢ (see definition in Section 5.4.3). Any small disturbance in a volumetric
flow will make the case impossible and we therefore ignore that case. Consequently, we consider
only ¢, € [0, ¢3!]. Then ¢, is the smallest positive solution of the jump condition equation at
the feed level, namely

se = j2(9: g2), (FJC)

under the conditions [18]
sp < Ja(62'5 @), (FTa)
¢ < 1z, (FIb)

where ¢3! and ¢z are defined in Section 5.4.3. By the properties of ja, we have ¢3! < ¢ < @..
Therefore, ¢y < ¢3! < ¢.. Then d(¢py) = 0, and the equation in (5.28) reduces to (FJC). Again
with reference to [45] and without going into details, we claim that the solution in zone 2 is

(527 ZF <z < ZE, lf ¢E S ¢C7
z) = b <2< 2, 5.30
¢2(2) b2, TEES Ay ér > ¢ and zg > 2F, (5:50)
¢2par(z>7 2 < Z S ZE,
where ¢apar(2) is the strictly increasing solution of the ordinary differential equation (see (5.28)):
¢'(2) = J2(9; @) — SF7
d(¢) (5.31)

¢(Zfr) = ¢c; ¢(ZE) = ¢E7

and where zg is the unknown location of the pulp-froth interface ¢ = ¢, which depends on sg

and ¢g.

See Figure 5.5 for illustrations of some steady-state solutions in zone 2. In (5.30) lies the fact
that if ¢ > ¢, then there is no discontinuity at z = 2g, so that ¢opar(2g) = ¢g = ¢p = .
The boundary value problem (5.31) defines a function Z, via

2 = Zp(or, Qr, Qu, Qw).
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Figure 5.5: Possible steady-state values for zone 2 with (a, b) ¢ > 0 and (¢, d) ¢ < 0.
The case ¢ > ¢. is shown in (a) and (c), where there is a continuously increasing solution
Gpar(2) € (¢, or), While ¢ < @ in (b) and (d), where the solution in zone 2 is the constant ¢s.
For all the cases, we have ¢. = 0.74, n,, = 2.5 and ng = 0.46. For (a) and (b), Qs := @A =
3.6 x 107°m3/s, sp = 4.21 x 1072 m/s and (a) Qw =2 x 107°m?/s, (b) Qw = 8 x 107 m?/s.
For (c) we let Q2 = —2 x 107°m3/s, Qw = 2 x 107°m?/s and sp = 2.07 x 10~* m/s, while for
(d) we used Qo = —5 x 1075m3 /s, Qw = 107°m?/s and sp = 7.1 x 10~ m/s.

In light of (5.29) and (5.30), necessary conditions for a steady-state solution with a froth region
are the inequalities

¢ <Pp <1 <& Qr (1 - %) < Qu — Qw < Qr(1 — ¢p), (Frothl)

2p < Zi(¢r, Qr, Qu, Qw) (Froth2)

that should be satisfied for a steady-state solution with a froth-pulp interface in zone 2. The
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requirement that ¢op.(2) is strictly increasing from ¢. to ¢ means that the left inequality
of (Frothl) is equivalent to Zy(¢r, Qr, Qu, @w) < zg; hence, the latter inequality need not be
invoked.

That ¢opar(2) is strictly increasing, required by the entropy condition in [45], means that
the right-hand side of (5.31) is positive in the interval [¢, ¢g). Furthermore, a discontinuity
at z = 2z from ¢, up to ¢. can only occur (according to the entropy condition) if the graph
of ja(+; q2) lies above sp in the interval (¢, ¢.). These conditions imply (FIa), which we can
abandon. The properties of ja(+, ; g2) (see Section 5.4.3) imply that we can write these necessary
conditions for a solution with a froth region:

< j2(dam; q2) if dom < @m,

(Froth3)
< jo(¢m;q2)  if dam > o,

sp < Ja2(¢;q2) for all ¢ € ( 1347¢E) <  SF {

where equality holds if and only if ¢oy = ¢g.

5.4.5 Desired steady states and operating charts

From the derivation above concerning the aggregates and from the treatment in [18] concern-
ing the solids, we here summarize the desired steady states that satisfy (5.23):

(

0 for zy < z < zp,
ses() = { for a2 < (5.32)
Gapar(2)  for zp < 2 < 2,
[ o6 for z > zg,
(0 for z > zp,
pss(z) = € @1 €10, i) for zy < z < zp, (5.33)

(YU =¥1+ Aufole1)/Qu  for z < zy.

Here, ¢opar(2) is the solution of the ODE problem (5.31), ¢g is given by (5.29), ¢ is given
by (5.25) and ¢; > 0 satisfies the jump condition at the feed level z = zp (¢ is unique if
condition (FIas) below holds; see [18])

Qvr = Aufi(p1,0;q1). (FJCs)

In Figure 5.6, we have represented some examples of desired steady states with different values
of zg obtained by fixing the values of the parameters ¢r, ¥r, Qr and Qw and choosing different
values for QQy. As it can be seen, the location of z; is very sensitive to the choice of Qy. For
instance, it changes from z5 = 0.8027m in (c) to z; = 0.7081m in (d) with a small variation
in Qu of —1.6 x 107®m?3/s. We now collect the conditions for obtaining a desired steady state
in terms of the input and control variables.
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Figure 5.6: Examples of desired steady states given by (5.32) and (5.33). We use fixed values of
or = 0.3, Yr = 0.2, Qr = 8.9927 x 107° m?/s and Qw = 2 x 107 m3/s and vary Qy, choosing:
(a) Qu = 5.9972x 1075 m3/s, (b) Qu = 6.0083 x 105 m?/s, (¢) Qu = 6.0155x 1075 m? /s and (d)
Qu = 6.0171 x 107°m?/s. Once the values of ¢r, Qu, Qr and Qw are chosen, the values of the
effluent concentration ¢ are given by (5.29) and used as input in the ODE (5.31) to calculate
the value of zg. In particular, we get (a) ¢p = 0.8443, (b) ¢ = 0.8472, (c) ¢ = 0.8491 and
(d) ¢r = 0.8495. The values of ¢r, Yr, Qu, Qr and Qw chosen here are used in Example 1 in
Section 5.6 to recover these profiles using the numerical method proposed in Section 5.5.

Theorem 5.1. The desired steady-state solution (5.32) and (5.33) of the PDE system (5.2) is
possible only if the following inequalities are satisfied:

¢2 < dz(—Qu/Av),
Ay f1(em(=Qu/Av), 0; —Qu/Au) > Qrtr.

Qr (1—@) < Qu — Qw < Qr(1 — ¢p),

Pe

2r < Zi(¢r, Qr, Qu, Qw),

where we recall the definitions of g2 (5.17) and ¢r (5.29):

~ —Qu+Qr

g2 =

< Jodam; @2)  if Pamt < @m,
< jo(Pr;q2)  if pamt > g,

o

Qror

Ag 7

:QW‘FQF_QU.

(FIb)
(Flas)

(Frothl)

(Froth2)

(Froth3)

Inequalities (FIb) and (Flas) can also be found in [18]. We visualize them together with
(Frothl), (Froth2) and (Froth3) in the (Qu, Qr)-plane for fixed values of Qw, ¢r, Yr and zp;
see Figure 5.7 for the choices Qw = 2 x 1075m?/s, ¢p = 0.3, ¥p = 0.2, and 2zp = 0.33m. All
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Figure 5.7: (a—c) Visualization of the conditions of Theorem 5.1 for Qw = 2 x 1075m?/s,
¢r = 0.3 and ¥ = 0.2. (d) Operating chart showing the intersection of all the conditions,
which are true in the white region.

the conditions are shown together in Figure 5.7 (d), which we call an operating chart. For any
chosen point (Qu, Qr) in the white region, where all conditions in Theorem 5.1 are satisfied, a
desired steady-state solution given by (5.32) and (5.33) can be reached.

The two inequalities in (Frothl) give rise to a wedge-shaped region with vertex at (Qu, Qr) =
(Qw, 0); see Figure 5.7 (c¢). Thus, each wedge displayed in Figure 5.8 corresponds to a fixed
value of Qw, which can be read off at its vertex on the Qu-axis. The strict inequality of (Frothl)
corresponds to the lower dashed line of a wedge, and its slope is positive or negative depending
on whether ¢ is greater or less than ¢.. The difference in slope of the two lines is ¢p(1/p. — 1),
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Figure 5.8: Dependence of the operating chart on the wash water flow Qw for ¢r = 0.3 and
Yp = 0.2.

so the angle of the wedge increases with ¢r and decreases with ¢.. The lower part of the wedge
is, however, cut off by conditions (Froth2) and (Froth3); see Figure 5.7 (c¢). Figure 5.8 shows
also that the white region of the operating chart thins and will eventually disappear as Qw
increases.

Inequality (Froth2) is more involved than the others. For every given set of input and control
values, one has to integrate the ODE of (5.31) backwards from z = zp for given ¢p towards
lower z-values until ¢. is reached; the corresponding location defines z = 2. In Figure 5.9, the
surface z = Zy(¢r, Qr, Qu, Qw) has been computed for two different values of ¢r and fixed
values of Qw and 1r. The same red and black curves as in Figures 5.7 and 5.8 of conditions
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Figure 5.9: Operating charts for Qw = 2 x 107°m?3 /s and ¢y = 0.2 with (a, ¢) ¢r = 0.3 and

(b, d) ¢p = 0.45, showing the graphs of (Qr, Qu) — Zu(¢r, Qr, Qu, Qw) obtained by (5.31).
The small rectangles in (a, b) are enlarged in Figure 5.10.

(Frothl) and (FIb), respectively, limit the white region in the operating charts. The study of
the surface Z (o, Qr, Qu, Qw) is crucial for the choice of values of Qr, Qu and Qw for which
we obtain a desired steady state with a froth region in z = z, with 2 a given value, as we will
see in the numerical results in Section 5.6.
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Figure 5.10: Enlarged views of the small rectangles marked in Figure 5.9 (a) and (b), respec-
tively, showing contours of the function (Qp, Qu) — Zn(¢r, Qr, Qu, Qw)-

5.5 Numerical method

5.5.1 Discretization and CFL condition

We define a computational domain of N cells by covering the vessel with N — 2 cells and
placing one cell each below and above for the calculation of the outlet volume fractions, see
Figure 5.11, we repeat this figure from Chapter 3 for the case K = 1 (Figure 3.3). Given the
column height H, we define Az := H/(N —2) and the cell boundaries z; := 1Az, ¢ =0,1,...,N.
Furthermore, we define the cell intervals I;_1/ := [2i-1,%) and I; := [2;_1/2, zi11/2). We place
the column between zy := Az = z; and zg := zy + H = (N — 1)Az = zy_1. The injection
point zp is assumed to belong to one cell I;_;/, and we define the dimensionless function

1 if Zr € Iz‘_ s
(5}771‘_1/2 = / 5ZF (Z) dz := ¥ 1/2
L1 0 otherwise.

The cross-sectional area A = A(z) is allowed to have a finite number of discontinuities and
it is discretized by

1 1
Ai = A_Z ; A(Z) dZ, Ai+1/2 = A_z /] A(Z) dz.

i+1/2

We simulate Np time steps up to the final time T := NpAt, with the fixed time step At
satisfying the Courant-Friedrichs-Lewy (CFL) condition

2 [e’e) ~/
(2t a0+ {2 ) < A (CFL)
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Figure 5.11: Grid covering the flotation column for the discretization of ¢ and 1. The outlets
zy and zg are each fixed on the boundaries between two cells and the feed inlet zp is then
located in a cell.

where

. d||oo
By i= Ml + MAD g, My i 1,0, e )} + M1 — 60)

Aiy A; A1 + A
M, = My = —_—
' 2=£n?aXN {Ail/Q’ A1 } ’ ? ‘ maxN{ Ai1y2 } ’
Au=  min A [Qleor = max (Qe(t) + Qu(t), ]l = max [d(é)]

_nl 3
k=0,5,1,5,...,N 0<¢<1

]|
Az’

Finally, we set t" := nAt forn =0,1,..., Np.
The time-dependent feed functions are discretized as
1 tn+1
Qr = At Qr(t) dt, Op = 13 or (1) dt,
tn

and the same is made for Y.



5.5. Numerical method 127

5.5.2 Update of ¢

The first equation of (5.2) depends only on ¢ and is discretized by a simple scheme on the
cells I;_1o. The initial data are discretized by

1 /
0
1)y = o #(2,0)A(2) dz.
1/2 Aifl/QAZ e ( ) ( )
To advance from t" to t"T!, we assume that o /2 1=1,..., N, are given. With the notation

at :=max{a,0}, a :=min{a,0}, v :=~(z), and ¢ :=q(z,t")",

we define the numerical total flux at z = z; at time ¢t = t" by

D120 for i =0,
D(¢?+1/2)_D<¢?—1/2)

n.__ n n n n— n ~ n )
P = ¢171/2% ++¢i+1/2qi +7i¢i71/20(¢i+1/2>_%' N fore=1,...,N—1,
¢?v71/2q]”v+ fori= N,

(5.34)
where 0(¢) is defined by (5.12). Since the bulk fluxes above and below the tank are directed
away from it, the following terms that appear in (5.34) are zero:

¢" g =0 and @y, pqy =0 for any values of ¢, 5 and @R, jo-

To simplify the presentation, we use the middle line of (5.34) as the definition of @7, i =
0,..., N, together with ¢’11/2 =0 and ¢?v+1/2 := 0. With the notation A := At/Az and with
QI := A;q" etc., the conservation law on the interval I;_;/» implies the update formula

A
Gy = Oyye + E(Ai—@?q — A} + Qdrdri1/2)
A n n n— n ~( AT
= ¢?—1/2 + A'—1/2 ( ?—3/2@2':’_1 + ¢i—1/2Qi—1 + (AV)i—1¢i—3/2v(¢i—1/2)
_(A’)/)Z—lD n — D(o™ _4n n+ 4 n "= _ (A~ % (AT
Az ( (¢i71/2) (¢i73/2)) ¢i71/2Qi ¢i+1/2Qi ( 7)Z¢i71/2v(¢i+1/2)

+ (AZ) (D(¢i+1/2> - D(¢i71/2>) + QF¢F6F7Z‘_1/2>7 1=1,..., N.

(5.35)

Theorem 5.2. [f the CFL condition (CFL) is satisfied and the initial data satisfy 0 < ¢(z,0) <
1, then the update formula for ¢, (5.35), is monotone and produces approximate solutions that
satisfy

0<¢i,<1 fori=1,...,Nandn=1,...,Nr. (5.36)

The outline of the proof is presented below.
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Proof. Details for the case D = 0 are provided by [21]. Assume that ¢! , /2 and (5?_1 RIS 7,
n = 0,1,2,... are two numerical solutions produced by the numerical scheme (5.35). Then
mon0t0n1c1ty means that if ¢} |, < o, J for all 7, then ¢”+11/2 ¢”+11/2
0,1,2,.... For the case of a three-point scheme such as (5.35) this property can be verified by

showing that 8¢>?f11/2/0¢}271/2 >0 forall?and k=17 —1,4,24 1. In fact, we have
0 A
8¢?_3/2 Ai—1/2

for all ¢, for all n =

( A (Ay)in (?7(#1—1/2) + d(¢?—3/z)/AZ)) >0,

¢?+11/2 A
= —QI + (Ay)i( — &1 0 (&F (" Az)) >0,
P} 1) A 1/2( Q7+ (A7)i( = 012V (Dfh1/2) + d(Dfs1/2)/AZ)) 2 0
n+1
i—1/2 A n— n -1 N .
a¢?—1/2 - Aio1y2 <Qi_1 N (Av)i_lqsi—ii/ﬂ (¢¢_1/2) - Q" - (A7)¢U(¢i+1/2)

— ((A7)is + (A7):)d(di112) /A2))

> 1o (T a0+ 1) 0815 ) 20

l'l’lln

where we have used the CFL condition (CFL). The rest of the proof, the boundedness 0 <
I 15 < 1, follows by standard arguments, namely one verifies that if ¢ , ;2 =0 for all 7, then

?fl /2= 0 for all ¢ and likewise that if ¢7 | o =1 for all ¢, then gb?fllﬁ =1 for all . Thus,
appealing to the monotonicity of the scheme, one deduces that if 0 < ¢ | <1 for all 4, then

0 < ¢, <1 for all 4, which proves (5.36). O

5.5.3 Update of ¢

We discretize the initial data by

1 /
0
i T (z,0)A(z) dz.
172 Ai—l/QAZ I 12
A consistent numerical flux corresponding to (5.18) is, for i = 0,..., N,

= ¢?—1/2%n+ + @Z’?H/QQ?_

n(,n n ln—i-l 2 n n AD:Lf ?_1 2 AD:L+
— i <Gi (U120 it o) + 1_—/< 120 0har2) = 4 > 1= / Az )

i+1/2

where AD}" := D(¢}',, 5) — D}, 5), AD}™ := (AD;')", and we set

Yy =0 and iy, =0

with the same motivation as for ¢ above (these values are irrelevant). Here G} (¢}, 5, ¥} 1 5)

n
i—1/2

is the Engquist-Osher numerical flux [51] associated with the function

o) == @g,@hs(nL)’ () = {vhs(U) for u < 1, (5.37)

max,i 0 for u > 1,
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where we recall that vy is given by (5.16), and we define

n

max,i min{l - ¢?—1/27 z+1/2} =1- max{gb?_lﬂ, ¢?+1/2}- (5.38)

It zﬂ[‘ is the maximum point of fi;, then the Engquist-Osher numerical flux is given by

G?( ?—1/2» ¢?+1/2)

fb z( z+1/2) if 1/}?71/27 1/&1/2 S 77;?7
_ sz(lpn) if Vg e ST <l
—Iv z(@/’n) + foa (i 1/2) + foul ?+1/2) if 12 = @Dn <Yt 1/2)
foi(Wil)5) if o < V12 Viayor
The marching formula is (for i =1,..., N)
Y,
A
=y + (A U — A7 + QRYpdr.io1)2)
Az 1/2

n A TL— n n n n— n n
=VYiye t A—m{% 3/2Qz U — i@ - ir12@Q T + QRURoFi—1/2

" o AD!" s ADM
—(Ay)i- 1<G (w7 3/27w?1/2)+1_—i/2<¢?3/2v(¢i1/2)_ A 1)—1 i 1>

i—1/2 i3/ Az

n i41/2 n ~tm AD!~ "1 ADPMT
+(A7)z<Gi (Vi 12, Vi1 2) + ﬁ( im120(0i1/2) — A ) - qb”/l/Q - .
(5.39)

Theorem 5.3. Assume that the assumptions of Theorem 5.2 are in effect. If the initial data
satisfy 0 < ¥(z,0) < 1 — ¢(2,0) and the feed volume fraction Yp(t) < 1 — ¢p(t), then the
update formula (5.39) is monotone and together with (5.35) it produces approximate solutions
that satisfy

0<9iy)y<1=0¢" ) foralliandn.
The outline of the proof is presented below.

Proof. The proof is similar to that of Theorem 5.2. We note that (5.39) is again a three-point
scheme, and show that 81/1;‘:“11/2/81/12_1/2 >0foralle=1,...,N and k =¢— 1,4, + 1. The
contributions of the terms that contain D to OY}, ,/0¢} 5, and OY;" 5 /OU} 5, are

A(AY)i- AD”+ A(AY); D!
Aicipp(1 =67 5,5) Az Aiy2(1 925 ) Az
respectively. Now we utilize the estimations similar to those in the previous proof (see [21])
and add the terms with D to obtain

I ) (Al
67/)?_1/2 a Amin

+ My (max {ons(0), [[visllo} + [17']lc)
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1 AD! ADI*
+ A . i—1 A ; 7 )) .

It is easy to estimate the integrated terms

AD} = D(¢4172) = D(02172) < [ld]loo(1 = o).

Hence, we obtain with (CFL)
s 2
awz 1/2

The inequalities proven imply that 2/1” RK! non-decreasing of each of v} /2 for k =i —
1,7,7 4+ 1, and therefore the scheme is monotone. Writing the scheme as

i = Kicaya (Vs Vi1 2 Vit j2)

assuming that 0 < 47" |, < 1—¢}", , for all i and using that (5.37) and (5.38) ensure that
Gy(L— SRV ?-H/z) = 0 (see [21]), we get

2/|Q|o. | ) n
>1— A(% + M (max {vas(0), [[vhslloot + [[8]|oo) + Ma(1 — &) |]A||z ) ~o

0< A
Az 1/2

= Kic12(V 32 Vi 172, Ui 2) S Kicaja(1 = 6150, 1 = 6119, 1 — 01 0)
n )\ n n n n—
=1- i—1/2 + A ((1 - i—3/2) ij_l + (1 - i—1/2) i—1

i—1/2
— (A7)i <¢?—3/2U(¢i—1/2) N - — As 1) —(1- ¢i—1/2)Qi+ —(1- ¢i+1/2)@i
+ (A7) (¢i1/2“(¢i+1/2) A, Al > + QFwFéF,i—1/2)~

Now we use that AD?™ +AD}'" = AD? = D(¢iv172) — D(¢i-1/2), that ¢g , < 1—¢%, and the
update formula for ¢ (5.35) to obtain

FROEi—1/2 = Kiz12(0,0,0) < ¢,

n n )\ mn n— n n— n
wz +11/2 ¢z +11/2 L A. —1/2 ( ijl + Qifl - Q@ i Qz + QF5F,i—1/2)

A
_ n+1 n n n _ n+1
=1- ¢i71/2 + Ai—1/2 ( i—1 Qz + QFé‘F,ifl/2> =1- ¢i71/2’
since the latter parenthesis is zero irrespective of whether there is a source in the cell; Q7" ; —

QF + Q% =0, or not; Q' ; — Q" = 0. Details for the case D = 0 are provided by [21]. ]

5.6 Numerical simulations

We simulate the flotation process in the column in Figure 5.1 with the specific measures
A = 7.225 x 102m? < Ay = 8365 x 107°m?, zy = Om, 2r = 0.33m, zg = 1lm and
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H = 1m. For all the examples, we use the parameters given in [15, Table 1] to define vgrain
and de.p in (5.12)-(5.14): pr = 10°kg/m?, p = 103 Pas, r, = 4.13 x 107" m, Cpg = 50,
Yo = 3.5 X 1072N/m, g = 9.81m/s?, and by [107], ng = 0.46 and m = 1.28, from which we
obtain de,, = 3.1045 x 10~® m. For the velocity functions ¢ and vy, given by (5.12) and (5.16),
respectively, we use ny, = 2.5, Vgerm = 2.7 X 1072 m/s, ngz = 1.5 and vy, = 5.0 x 1073 m/s. The
critical volume fraction is ¢. = 0.74 according to [89, Eq. (21)].

5.6.1 Example 5.1

We show steady-state solutions for fixed Qp = 8.9927 x 107°m?/s and Qw = 2.0 x 107 m3/s
for various values of Qu; see Figure 5.12(a). For these values and with the feed volume fractions
¢r = 0.3 and ¢p = 0.2, we solve the ODE (5.31) to obtain ‘exact’ solutions (i.e., the ODE is
solved numerically), and the value of z, for each point; see the solid lines in Figure 5.12(c) and
(d). The dots in the same plots show the numerical solutions, which are obtained by simulating
a long time from any initial data. All solutions have the same volume fraction ¢g at the top,
since this is given by the explicit formula (5.29). Figure 5.12(b) shows the steady state for the
solids with particles only below the feed level.

A clear difference between the two types of solution of ¢ can be seen near the discontinuity.
This is an inaccuracy of the numerical solution, which seems to converge to the exact one
as N — oo; see Figure 5.13, which shows the steady-state solution for the solid point in
Figure 5.12(a) for various values of N.

5.6.2 Example 5.2

We start from a tank filled with only water at time ¢t = 0, i.e., ¢(z,0) = ¢(z,0) = 0 for all z,
when we start pumping aggregates, solids, fluid and wash water with ¢p = 0.3 and ¢¥p = 0.2. In
the white region of the operating chart in Figure 5.14, we choose the point (diamond symbol)
(Qu,Qr) = (5.85,8.846) x 10> m?/s. The wash water volumetric flow is Qw = 2.0 x 107%m3 /s.
Then Qg = 1.4496 x 10~* m? /s and one obtains a desired steady state with a thin layer of froth
at the top and solids only below the feed level after about 5005s; see Figures 5.15 (a) and 5.16 (a).

Once the system is in steady state at ¢ = 500s, we perform two different changes corre-
sponding to the points marked with a square (left) and a circle (right) in the operating chart
in Figure 5.14 with the corresponding responses seen in Figures 5.15 and 5.16, respectively.
The jump from the middle point (diamond) to the left point (square) means a jump from
Qu = 5.85 x 107°m3/s to the smaller value 5.0 x 107° m?®/s and produces the solution in Fig-
ure 5.15. After t = 1000s, there is no froth in zone 2 and the solids volume fraction is slightly
higher in the new steady state.

If the jump from the middle point (diamond) instead goes to the right point (circle), i.e., the
new value at t = 5005 is the larger Qu = 6.3 x 107> m?3 /s, Figure 5.16 shows the reaction of the
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Figure 5.12: Example 5.1: (a) Contour lines of (Qp, Qu) — Zu(¢r, Qr, Qu, Qw) for Qw =
2 x 107%m?/s, ¥p = 0.2 and ¢r = 0.3. (b) Approximate volume fraction of solids 1) computed
with NV = 3200. (c¢) Approximate solution (dots) versus exact solution (solid lines) of volume
fraction of aggregates ¢ corresponding to the four point in plot (a) computed with N = 3200.
(d) Enlarged view of (c).

system until ¢ = 2000s. The aggregates fill the entire column while the solids volume fraction
has a lower value in the new steady state. We have demonstrated that operating points outside
the white region lead to non-desired steady states.
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Figure 5.13: Example 5.1: (a) Approximate solution for the point represented by a dot in
Figure 5.12(a) with various values of N. (b) Enlarged view of (a).

Figure 5.14: Example 5.2: An operating charts for ¢p = 0.3 and ¢ = 0.2. The point
(Qu, Qr) = (5.85,8.846) x 107°m?3/s marked with a diamond in the white region results in
a desired steady state with a froth layer at the top of the column. The points marked with
a square (Qu,Qr) = (5.0,8.846) x 107> m?3/s and a circle (Qu,Qr) = (6.3,8.84) x 107> m?3/s
result in no froth (Figure 5.15) or a tank full of froth (Figure 5.16), respectively. (The plot
is a zoom of Figure 5.8 (b) and the black curves are smoother than they here appear due to

numerical resolution.)

5.6.3 Example 5.3

Again, the tank is filled with only water at time ¢ = 0's when we start feeding it with ¢p = 0.3
and Yp = 0.2. The wash water flow is Qw = 4.0 x 107%m3 /s and hence the effluent volumetric
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(a) (b)

Figure 5.15: Example 5.2: Simulation with N' = 1600 of the volume fractions of (a) aggregates
¢ and (b) solids ¢ from a tank filled of only water. The initial operating point (Qu,Qr) =
(5.85,8.846) x 107°m?/s (diamond in Figure 5.14) is at ¢ = 500s changed to (5.0, 8.846) x
10~ m3/s (square in Figure 5.14).

(a) (b)

Figure 5.16: Example 5.2: Simulation with N' = 1600 of the volume fractions of (a) aggregates
¢ and (b) solids ¢ from a tank filled of only water. The initial operating point (Qu,Qr) =
(5.85,8.846) x 107°m?/s (diamond in Figure 5.14) is at ¢ = 500s changed to (6.3,8.846) x
107 m3/s (circle in Figure 5.14).

flow is Qg = 1.75 x 107> m3/s. From the corresponding operating chart in Figure 5.17 (a),
we choose the point of volumetric flows (Qu, Qr) = (3.15,4.5) x 1075 m?/s lying in the white
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(a) (b)

Figure 5.17: Example 5.3. Operating charts for ¢p = 0.3 and ¥p = 0.2 with (a) Qw =
3.15x107°m?3/s, (b) Qw = 3.0x107° m?/s. The initial point (Qu, Qr) = (3.15,4.5) x 107> m?3 /s
is marked with a circle and the one after the control action (Qu, Qr) = (3.0,4.5) x 107> m3/s
with a diamod. (The curves are smoother than they appear here due to numerical resolution.)

region. Then a desired steady state builds up quickly and at ¢ = 250s there is a thin froth layer
at the top of in zone 2 and with solids only in zone 1; see Figure 5.18.

Once the system is in steady state, we change at ¢t = 300s the volumetric flow of the
wash water from Qw = 4.0 x 107°m3/s to 1.0 x 107°m?®/s and simulate the reaction of
the system. In the corresponding operating chart for this new set of variables, the point
(Qu, Qr) = (3.15,4.5) x 107> m3 /s is no longer in the white region; see Figure 5.17 (b, cir-
cle point), and no desired steady state is feasible. As it can be seen in Figure 5.18 (a), with
less flow of wash water flushing the aggregates out at the top, the froth layer increases down-
wards. At time ¢ = 1000s, we make a control action and change the volumetric flow from
Qu =3.15x 107°m? /s to 3.0 x 107> m?/s so that the new point lies inside the white region of
the corresponding operating chart in Figure 5.17 (b, diamond point). Figures 5.18 (a) and (c)
show that a second desired steady state is reached after t = 1500s. Figures 5.18 (b) and (d)
show that the solids settle in any case.
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(a) (b)

Figure 5.18: Example 5.3: Time evolution of the volume fraction (a, c¢) of aggregates ¢ and
(b,d) solids ¢ computed with N = 1600 and seen from two different angles. A step change
down in Qw occurs at ¢ = 300s and a control action by decreasing @)y is made at ¢ = 1000s.
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Conclusions
Here we present a summary with the main contributions and conclusions of the thesis.

e In Chapter 1 we described a flotation column model that is consistent with the es-
tablished drift- and solids-flux theories, which have been proposed separately for the
bubble-liquid subsystem of a flotation column and for the settling of particles. The math-
ematical and numerical analysis provides a framework that complements the flux con-
structions done in some recent papers [38,54,106,111] and leads to a simple but formally
complete model of steady states and transient operation of the flotation column. The
novelty of the approach (for the application to flotation) consists in the implementation
of recently developed knowledge on the determination and well-posedness of solutions to
conservation laws with discontinuous flux. While some of the mathematical details and
a complete classification of steady states have been studied in [18|, the benefits of the
approach should become clear through the consistency between the operating charts and
the response of the system to changes in the feed inputs and control actions. That said,
we emphasize that the steady states and the nonlinear conditions behind the operating
charts in Section 1.3 are valid to any pair of functions j,, and f;, that satisfy the assump-
tions in Section 1.2.4. Of course, the operating charts, and in particular the existence,
size, and shape of the region of feasibility of the different steady states (the “white regions”
of the fifth plot of Figure 1.2, the third plot of Figure 1.3, and the plots of Figure 1.5)
depend on the particular choices of j, and f,,. In the same spirit we mention that the
flotation column has been subdivided into three zones of equal height (zones 1, 2 and 3)
for illustrative purposes only; the model allows any sizes of the zones and any variation
with height of the cross-sectional area.

We recall that the present model is a quasilinear first-order system of conservation laws,
whose solutions, that is the profiles of ¢ and ¢ (or ¢) in general has discontinuous, both
stationary ones at the boundaries between zones and possibly moving ones within zones.
The latter property is easily visible in the sharp discontinuities that travel at non-constant
speed; see Figures 1.6 to 1.12.

137
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Another simplification within the present approach that could give rise to further refine-
ment of the model concerns the assumption of a uniform bubble size, and hence unique
terminal settling velocity vierm . Of an aggregate. We have adapted this assumption from
works focussing on drift flux theory e.g., [38,54,105], but it is also present, for instance,
in [84,91]. That said, we are well aware that within the bubbly region, bubble diameters
are in fact distributed (a problem that was addressed early, see e.g. [47]). Within the
froth region, the bubble diameter, which strongly influences the factor vieym.a, is assumed
constant here but in reality is difficult to predict since it depends on a combination of
some inherent stability of the films between the bubbles and the liquid content (via the
capillary pressure that this exerts). This stability is crucially important to the perfor-
mance of the froth, but modelling it for transient simulations in a transient sense seems
to be a challenge.

e In Chapter 2 we have applied the three-phase flow model described in Chapter 1 with
specific constitutive relationships for the drift flux j,(¢) and settled flux fi(,). A concrete
outcome is that the DAF thickening process with additional sedimentation of particles
can be simulated dynamically and its stationary operation controlled via an operating
chart that visualizes a region of admissible values of the volumetric control flows of the
feed and of the underflow. Depending on the distribution of aggregates and solids in
the tank at a certain time point, one may have to perform several control actions where
the last of them is to choose (Qu,Qr) in the admissible region. On the other hand, if
(Qu, Qr) lies outside the admissible region, a desired steady state cannot be attained.
The model and the operating chart become particularly important if the density of the
particles is only slightly larger than that of water, which we have demonstrated in Section
2.4.4.

e Chapter 3 is mainly for the detailed presentation of the new numerical method for a
triangular system of two PDEs, whose flux functions have several spatial discontinuities
due to in- and outflows of a one-dimensional tank with possibly varying cross-sectional
area as described in Chapter 1. The triangular structure is utilized in the following
way in the numerical scheme. The numerical update formula corresponding to the first
scalar equation contains, for the nonlinear term, a numerical flux where the the volume
fraction in the left cell is multiplied with the velocity computed in the right cell; see [23].
The update formula for the second equation uses Engquist-Osher numerical flux for the
term modelling the nonlinear relative flux of the secondary phase, chosen in a particular
way since this flux also depends on the primary phase volume fraction. The other terms
of the second update formula are also chosen in such a way that the entire scheme is
proved to be monotone under a the CFL condition (3.18). We prove that the numerically
obtained volume fractions satisfy the invariant-region property that they stay between
zero and one, as it is physically expected. The numerical scheme is applied to simulate the
hydrodynamic movement of simultaneously rising aggregates (air bubbles with attached
hydrophobic particles) and settling hydrophilic particles in the fluid under in- and outflows
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of a flotation column. As a demonstration of the capabilities of the numerical method,
three different settings are simulated.

In [18], the authors proposed a staggered scheme to compute numerical solutions for a
flotation column, following the approach of Karlsen et al. [64,67]. Although the staggered
scheme worked for a single inlet for a mixture of aggregates and solids, we have, in the
case of several feed inlets, found it difficult to get consistent numerical solutions with
respect to different mesh sizes.

e Chapter 4 contains a convergence analysis for the approximate numerical solutions under
certain simplifying assumptions. We proved that if cross-sectional area is constant, then
the scheme for the primary phase, in the sense of Definition 4.2.1, converges to an entropy
solution. Assuming in addtion that there are no flux discontinities we used compensated
compactness to prove that the numerical solution of the secondary phase converges to a
weak solution. It remains to prove uniqueness.

e The one-dimensional model of a flotation column described in Chapters 1-3, is a trian-
gular hyperbolic 2 x 2 system of nonlinear PDEs of the first order. In Chapter 5, we
propose an extended model where the drainage of liquid in the froth layer due to capil-
larity is included. The traditional derivation of the drainage PDE, valid only within the
froth, is combined with further experimental findings from the literature to end up in a
constitutive relationship between the relative velocity of aggregates to fluid (or suspension
of hydrophilic solids), which in the governing equations yields a second-order-derivative
degenerate nonlinear term.

An analysis of the possible steady states with a froth layer at the top of the column
(desired steady states) leads to several inequalities involving the feed input variables and
other control volumetric flows; see Theorem 5.1. Those inequalities are visualized in
operating charts; see Figure 5.8, in which the white region shows the necessary location
of an operating point (Qu, Qr) for having a desired steady state after a time of transient
behaviour.

With parameters extracted from the literature, the white region of an operating chart is
quite small, meaning that the existence of a froth layer is very sensitive to small changes
in any of the control variables Qu and Q. Different operating points (Qu, @) in the
white region give rise to different thicknesses of the froth layer. Unfortunately, our model
anticipates a very sensitive dependence of the pulp-froth interface location z; on the
operating point; see Figure 5.9, where the yellow surface shows that the most common
values of zp, is close to one, meaning a thin froth layer. The surfaces seen in plots (c)
and (d) indicate a very large gradient from zg just below one down to zp = 0.33 = zp.
(Even finer resolutions indicate that the graph is continuous.) The numerical scheme
suggested resolves discontinuities well and numerical results (e.g., those of Figure 5.16)
show that the volume fractions, and their sum, stay between zero and one, as is proven
in Theorems 5.2 and 5.3.
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Overall, the steady-state analysis, boundedness properties of the numerical solutions, and
simulation results indicate that the model is useful for the simulation of flotation columns
and could be used, for example, to simulate the effect of various alternative control actions.
In light of this practical interest it would be desirable to obtain a well-posedness (existence
and uniqueness) result for the underlying model. The first equation of (5.2) (the one
for ¢) as a scalar strongly degenerate parabolic equation with discontinuous flux that
is independent of i can be handled by known arguments (cf., e.g., [26,68,69]). The
corresponding model for D = 0 (without capillarity) is a triangular system of conservation
laws for which convergence results of monotone schemes to a weak solution are available,
at least for the case of fluxes without spatial discontinuity [34,67]. It is not clear at the
moment whether the corresponding arguments, based on the compensated compactness
method, can also be applied to the system (5.2). Therefore, well-posedness of the model
is at the moment left as an open problem.

Future Work

e In most applications, the adhesion of hydrophobic particles to bubbles takes place in
collection region. This is a region of countercurrent flow: bubbles move upward and solid
particles settle [9,115] while the attachment of hydrophobic particles to bubbles occurs. In
future work, we will extend the model described in Chapter 1 into one that accounts for
the aggregation process. This requires including reaction terms. In addition, a separate
PDE needs to be introduced for a third field variable, for instance the number of solid
particles attached to a single bubble at each spatial position and time. The resulting 3 x 3
convection-reaction system is likely to form a model that could be used for design and
control simulations (so-called model-predictive control; see [10, 78, 80].

e As pointed out by [85], one important phenomenon that takes place on the surface of froth
is the bursting of bubbles, with the consequence that the average liquid content of the
froth that reaches the overflow lip cannot be lower than that of the froth flowing out of the
cell. The model of a flotation column with drainage can certainly be extended to include
this phenomenon. For instance, one could incorporate the possibility of bursting bubbles
at the top by assuming that the flotation column is constructed in a way such that a
portion « of the froth overflows with unbursting aggregates, whereas for the portion 1—a,
the aggregates burst. The latter means that the gas ‘disappears’ (i.e., is released into the
surrounding air), whereas the suspension and the hydrophobic particles attached to the
bursting bubbles follow the efluent stream. There is practical interest in quantifying this
effect [85]. Hence, the effluent volume fraction of aggregates would then be ¢g := agy;,
and the solids ¢g := ¢f;. Under the present assumptions, the factor @ does not influence
the solution inside the column. It could however depend on the wash water flow, and this
could be an extension of the model.
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e Another application with potential modelling advantages is counter-current“washing” of
solids, a process of solvent extraction in hydrometallurgy by coupling a series of clarifier-
thickeners [108]. The process is also known as leaching [97, Ch. 10]. Contrary to biological
applications, it seems that to model such applications, one has to include the effect of
mass transfer into the governing equations. In particular, counter current decantation
(CCD) thickener circuits are used to recover soluble metal as pregnant liquor solution
from ore leach residue. The basis of CCD operation is to concentrate suspended solids
thereby minimizing liquor content in underflow slurry that flow in one direction. Then
the underflow slurry liquor is diluted with wash liquor that flows in the opposite direction
and the suspended solids are concentrated again and again. The amount of liquor in
the thickener underflow contributes to determining the number of CCD stages required
to recover the desired amount of soluble metal. Furthermore, similar results could be
achieved at a lower wash quantity, reducing the size of downstream equipment. High
density thickeners (HDT) are designed to use gravity and compression, and minimize
the amount of liquor in the underflow thus minimizing the number of CCD stages. It
would be of interest to develop a networked model of several of these units (along with a
corrsponding numerical scheme, etc.), possibly extended to reactive settling, to arrive at
a mathematical model of CCD.
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Conclusiones

A continuacién, se presenta un resumen con los principales aportes y conclusiones generadas
en esta tesis.

e En el Capitulo 1 describimos un modelo de columna de flotacion que es consistente con
las teorias establecidas de flujo de sélidos y de deriva, que se han propuesto por separado
para el sub-sistema burbuja-liquido de una columna de flotaciéon y para la sedimentacion
de particulas. El anélisis matematico y numérico proporciona un marco que complementa
las construcciones de flujo realizadas en algunos trabajos recientes [38, 54,106, 111] y
conduce a un modelo simple pero formalmente completo de los estados estacionarios y el
funcionamiento transitorio de la columna de flotacién. La novedad del enfoque (para la
aplicacion a la flotacion) consiste en la implementacion de los conocimientos recientemente
desarrollados sobre la determinaciéon y el buen planteamiento de las soluciones de las
leyes de conservacion con flujo discontinuo. Aunque algunos de los detalles matemaéticos
y una clasificacion completa de los estados estacionarios han sido estudiados en [18], los
beneficios del enfoque deberian quedar claros a través de la consistencia entre los graficos
de operacion y la respuesta del sistema a los cambios en las entradas de alimentacion y
las acciones de control. Dicho esto, hacemos hincapié en que los estados estacionarios
y las condiciones no lineales detras de los gréaficos de operacion en la Seccion refsec:ss
son validos para cualquier par de funciones j, vy f, que satisfacen los supuestos de la
Seccién 1.2.4. Por supuesto, los graficos de operacion, y en particular la existencia, el
tamarnio y la forma de la region de viabilidad de los diferentes estados estacionarios (las
“regiones blancas” de la quinta gréafica de la Figura 1.2, la tercera grafica de la Figura 1.3,
y las gréficas de la Figura 1.5) dependen de las elecciones particulares de jy, v f,,. Con el
mismo espiritu, mencionamos que la columna de flotaciéon se ha dividida en tres zonas de
igual altura (zonas 1, 2 y 3) solo con fines ilustrativo; el modelo permite cualquier tamanio
de las zonas y cualquier variaciéon con la altura del area de la seccion transversal.

Recordemos que el presente modelo es un sistema cuasi-lineal de leyes de conservacion de
primer orden, cuyas soluciones, es decir los perfiles de ¢ y ¢ (0 1)) en general tienen discon-
tinuidad, tanto estacionaria en los limites entre zonas como posiblemente en movimiento
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dentro de las zonas. Esta tltima propiedad es facilmente visible en las discontinuidades
agudas que se desplazan a velocidad no constante; véanse las Figuras 1.6 a 1.12.

Otra simplificaciéon dentro del presente enfoque que podria dar lugar a un mayor refi-
namiento del modelo se refiere a la suposiciéon de un tamano de burbuja uniforme y, por
lo tanto, una velocidad de asentamiento terminal Unica vgerm o de un agregado. Hemos
adaptado esta suposicion de trabajos que se centran en la teoria del flujo de deriva, por
ejemplo, [38,54,105], pero también esta presente, por ejemplo, en [84,91]. Dicho esto, so-
mos muy conscientes de que dentro de la region burbujeante, los diametros de las burbujas
estan, de hecho, distribuidos (un problema que se abordé antes, véase, por ejemplo, [47]).
Dentro de la region de la espuma, el diametro de la burbuja, que influye fuertemente
en el factor viem,a, se asume constante aqui pero en realidad es dificil de predecir ya
que depende de una combinacién de cierta estabilidad inherente de las peliculas entre
las burbujas y el contenido liquido (a través de la presion capilar que esto ejerce). Esta
estabilidad es de vital importancia para el rendimiento de la espuma, pero modelarla para
simulaciones transitorias en un sentido pasajero parece ser un desafio.

e En el Capitulo 2 hemos aplicado el modelo de flujo trifasico descrito en el Capitulo 1 con
relaciones constitutivas especificas para el flujo de deriva j,(¢) y el flujo de solidos fi(,).
Un resultado concreto es que el proceso de espesamiento por flotacion de aire disuelto
(DAF por sus siglas en inglés, Dissolved Air Flotation) con sedimentacion adicional de
particulas puede simularse dinaAmicamente y su operacion estacionaria controlarse a través
de un grafico operativo que visualiza una regién de valores admisibles de los flujos de
control volumétrico de alimentaciéon y del flujo inferior. Dependiendo de la distribucién
de agregados y solidos en el tanque en un momento determinado, es posible que deba
realizar varias acciones de control donde la tultima de ellas es elegir (Qu, Qr) en la region
admisible. Por otro lado, si (Qu,Qr) se encuentra fuera de la region admisible, no se
puede alcanzar el estado estacionario deseado. El modelo y el grafico de operaciones se
vuelven particularmente importantes si la densidad de las particulas es solo un poco mas
grande que la del agua, lo cual demostramos en la Seccién 2.4.4.

e El Capitulo 3 es principalmente para la presentacion detallada del nuevo método numérico
para un sistema triangular de dos EDPs, cuyas funciones de flujo tienen varias discon-
tinuidades espaciales debido a flujos de entrada y salida de un tanque unidimensional
con area de seccion transversal posiblemente variable como se describe en el Capitulo
1. La estructura triangular se utiliza de la siguiente manera en el esquema numérico.
La formula de actualizacion numérica correspondiente a la primera ecuacion escalar con-
tiene, para el término no lineal, un flujo numérico donde la fracciéon de volumen en la
celda de la izquierda se multiplica por la velocidad calculada en la celda de la derecha;
ver [23]. La formula de actualizacion de la segunda ecuacion utiliza el flujo numérico de
Engquist-Osher para el término que modela el flujo relativo no lineal de la fase secun-
daria, elegido de manera particular ya que este flujo también depende de la fraccion de
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volumen de la fase primaria. Los otros términos de la segunda formula de actualizacion
también se eligen de tal manera que se demuestra que todo el esquema es mondtono bajo
la condicion CFL (3.18). Probamos que las fracciones volumétricas obtenidas numéri-
camente satisfacen la propiedad de region invariante, es decir, que se mantienen entre
cero y uno, como se espera fisicamente. El esquema numérico se aplica para simular
el movimiento hidrodinamico de agregados que ascienden simultaneamente (burbujas de
aire con particulas hidrofobicas adheridas) y particulas hidrofilicas que sedimentan en el
fluido bajo los flujos de entrada y salida de una columna de flotacion. Como demostracion
de las capacidades del método numérico, se simulan tres configuraciones diferentes.

En [18], los autores propusieron un esquema escalonado para calcular soluciones numeéricas
para una columna de flotacion, siguiendo el enfoque de Karlsen et al. [64,67]. Aunque
el esquema escalonado funcioné para una sola entrada para una mezcla de agregados y
sOlidos, en el caso de varias entradas de alimentacion, nos resulté dificil obtener soluciones
numeéricas consistentes con respecto a diferentes tamanos de malla.

e El Capitulo 4 contiene un analisis de convergencia para las soluciones numéricas aprox-
imadas bajo ciertas suposiciones simplificadas. Probamos que si el area de la seccion
transversal es constante, entonces el esquema para la fase primaria, en el sentido de la
Definicién 4.2.1, converge a una solucion de entropia. Suponiendo ademas que no hay
discontinuidades de flujo, usamos compacidad compensada para probar que la solucion
numérica de la fase secundaria converge a una solucion débil. Queda por probar la uni-

cidad.

e El modelo unidimensional de una columna de flotacion descrito en los Capitulos 1-3,
es un sistema triangular hiperbolico 2 x 2 de EDPs no lineales de primer orden. En el
Capitulo 5, proponemos un modelo extendido donde se incluye el drenaje de liquido
en la capa de espuma debido a la capilaridad. La derivaciéon tradicional de la EDP de
drenaje, valida solo dentro de la espuma, se combina con otros hallazgos experimentales
de la literatura para terminar en una relaciéon constitutiva entre la velocidad relativa
de los agregados al fluido (o suspension de solidos hidrofilicos), que en las ecuaciones
gobernantes lleva a un termino de derivadas de segundo orden degenerado y no-lineal.

Un analisis de los posibles estados estacionarios con una capa de espuma en la parte
superior de la columna (estados estacionarios deseados) conduce a varias desigualdades
que involucran las variables de entrada de alimentacién y otros flujos volumétricos de
control; ver Teorema 5.1. Esas desigualdades se visualizan en graficos de operacion;
consulte la Figura 5.8, en la que la region blanca muestra la ubicaciéon necesaria de un
punto de operacion (Qu, Qr) para tener un estado estacionario deseado después de un
tiempo de comportamiento transitorio.

Con parametros extraidos de la literatura, la regién blanca de un grafico operativo es
bastante pequena, lo que significa que la existencia de una capa de espuma es muy sensible
a pequenos cambios en cualquiera de las variables de control Qu y Qw. Diferentes puntos
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de operacion (Qu, @r) en la region blanca dan lugar a diferentes espesores de la capa de
espuma. Desafortunadamente, nuestro modelo anticipa una dependencia muy sensible de
la ubicacion de la interfaz pulpa-espuma zg en el punto de operacion; vea la Figura 5.9,
donde la superficie amarilla muestra que los valores mas comunes de zp estan cerca de
uno, lo que significa una capa delgada de espuma. Las superficies que se ven en los
graficos (c¢) y (d) indican un gradiente muy grande desde zg justo debajo de uno hasta
2z = 0.33 = zp. (Resoluciones atn mas finas indican que el grafico es continuo). El
esquema numeérico sugerido resuelve bien las discontinuidades y los resultados numéricos
(por ejemplo, los de la Figura 5.16) muestran que las fracciones de volumen, y su suma,
se mantienen entre cero y uno, como se demuestra en los Teoremas 5.2 y 5.3.

En general, el analisis de estados estacionarios, las propiedades de acotaciéon de las solu-
ciones numéricas y los resultados de la simulacién indican que el modelo es ttil para la
simulacion de columnas de flotacion y podria usarse, por ejemplo, para simular el efecto
de varias acciones de control alternativas. A la luz de este interés practico, seria deseable
obtener un resultado de buen planteamiento (existencia y unicidad) para el modelo sub-
yacente. La primera ecuacion de 5.2 (para ¢) como una ecuacion parabolica escalar
fuertemente degenerada con flujo discontinuo que es independiente de 1) puede manejarse
mediante argumentos conocidos (por ejemplo, [26,68,69]). El modelo correspondiente
para D = 0 (sin capilaridad) es un sistema triangular de leyes de conservacion para el
cual se dispone de resultados de convergencia de esquemas monotonos a una soluciéon dé-
bil, al menos para el caso de flujos sin discontinuidad espacial [34,67]. No esté claro por el
momento si los argumentos correspondientes, basados en el método de compacidad com-
pensada , también se pueden aplicar al sistema 5.2. Por lo tanto, el buen planteamiento
del modelo se deja por el momento como un problema abierto.

Trabajo Futuro

e En la mayoria de las aplicaciones, la adhesion de particulas hidrofébicas a las burbujas
tiene lugar en la region de recoleccion. Esta es una zona de flujo a contracorriente: las
burbujas se mueven hacia arriba y las particulas solidas se asientan |9, 115] mientras se
produce la unién de particulas hidrofébicas a las burbujas. En trabajos futuros, extender-
emos el modelo descrito en los Capitulos 1-3 a uno que tenga en cuenta el proceso de
agregacion. Esto requiere incluir términos de reaccion. Ademas, se debe introducir una
EDP separada para una tercera variable de campo, por ejemplo, el nimero de particu-
las solidas unidas a una sola burbuja en cada posiciéon espacial y tiempo. Es probable
que el sistema de conveccién-reaccion de 3 x 3 resultante forme un modelo que podria
usarse para simulaciones de diseno y control (el llamado control-predictivo del modelo;
consulte [10,78,80]).
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e Como se sefiala en [85], un fenémeno importante que tiene lugar en la superficie de la es-
puma es el estallido de burbujas, con la consecuencia de que el contenido medio de liquido
de la espuma que llega al borde de desbordamiento no puede ser inferior al del espuma que
sale de la celda. El modelo de una columna de flotacion con drenaje ciertamente puede
extenderse para incluir este fenémeno. Por ejemplo, se podria incorporar la posibilidad de
rompimiento de burbujas en la parte superior asumiendo que la columna de flotacion esta
construida de tal manera que una porcion « de la espuma se desborda con agregados que
no revientan, mientras que para la porciéon 1 — «, los agregados estallaron. Esto ultimo
significa que el gas "desaparece" (es decir, se libera en el aire circundante), mientras que
la suspension y las particulas hidrofobicas adheridas a las burbujas que revientan siguen
la corriente del efluente. Existe un interés practico en cuantificar este efecto [85]. Por lo
tanto, la fraccién de volumen de los agregados en el efluente serfa ¢ := oy, v los solidos
¢r := ¢p. Bajo las presentes suposiciones, el factor o no influye en la solucién dentro de
la columna. Sin embargo, podria depender del flujo de agua de lavado, y esto podria ser
una extension del modelo.

e Otra aplicacion con posibles ventajas de modelado es el “lavado” de solidos a contracorri-
ente, un proceso de extraccion por solvente en hidrometalurgia mediante el acoplamiento
de una serie de clarificadores-espesadores [108]. El proceso también se conoce como liz-
wiacion |97, Ch. 10]. Al contrario de las aplicaciones biologicas, parece que para modelar
tales procesos, uno tiene que incluir el efecto de la transferencia de masa en las ecuaciones
gobernantes. En particular, los circuitos espesadores de decantaciéon en contracorriente
(CCD por sus siglas en inglés, counter current decantation) se utilizan para recuperar
metal soluble como solucion de licor cargado de residuos de lixiviacion de minerales. La
base de la operacién CCD es concentrar los sélidos en suspension, minimizando asi el con-
tenido de licor en el lodo de desbordamiento inferior que fluye en una direccién. Luego,
el licor de suspension de flujo inferior se diluye con licor de lavado que fluye en la direc-
cion opuesta y los solidos en suspension se concentran una y otra vez. La cantidad de
licor en el flujo inferior del espesador contribuye a determinar el niimero de etapas CCD
requeridas para recuperar la cantidad deseada de metal soluble. Ademaés, se podrian lo-
grar resultados similares con una menor cantidad de lavado, reduciendo el tamano del
equipo corriente abajo. Los espesadores de alta densidad estan disenados para utilizar la
gravedad y la compresion, y minimizar la cantidad de licor en el flujo inferior, lo que min-
imiza el numero de etapas CCD. Seria interesante desarrollar un modelo en red de varias
de estas unidades (junto con un esquema numérico correspondiente, etc.), posiblemente
extendido a la decantacion reactiva, para llegar a un modelo matematico de CCD.
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