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Abstract

In this thesis we analyze the coupling of the Stokes equations with a transport problem mod-

elled by a scalar nonlinear convection-diffusion equation, where the viscosity of the fluid and the

diffusion coefficient depend on the solution to the transport problem and its gradient, respec-

tively. An augmented mixed variational formulation for both the fluid flow and the transport

model is proposed. As a consequence, no discrete inf-sup conditions are required for the sta-

bility of the associated Galerkin scheme, and therefore arbitrary finite element subspaces can

be used, which constitutes one of the main advantages of the present approach. In particular,

the resulting fully-mixed finite element method can employ Raviart-Thomas spaces of order k

for the Cauchy stress, continuous piecewise polynomials of degree k + 1 for the velocity and for

the scalar field, and discontinuous piecewise polynomial approximations for the gradient of the

concentration. In turn, the Lax-Milgram lemma, monotone operators theory, and the classical

Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the

continuous and discrete formulations. In addition, suitable estimates arising from the combined

use of a regularity assumption with the Sobolev embedding and Rellich-Kondrachov compact-

ness theorems, are also required for the continuous analysis. Then, sufficiently small data allow

us to prove uniqueness of solution and to derive optimal a priori error estimates. Finally, several

numerical tests, illustrating the performance of our method and confirming the predicted rates

of convergence, are reported.
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Resumen

En esta tesis se analiza el acoplamiento de las ecuaciones de Stokes con un problema de trans-

porte modelado por una ecuación escalar de convección-difusión no lineal, donde la viscosidad

del fluido y el coeficiente de difusión dependen de la solución del problema de transporte y su

gradiente, respectivamente. Se propone una formulación variacional mixta aumentada tanto

para el fluido como para el modelo de transporte. Como consecuencia de esto, no se requieren

condiciones inf-sup discretas para la estabilidad del esquema de Galerkin asociado, y por lo

tanto se pueden utilizar subespacios arbitrarios de elementos finitos, lo cual constituye una de

las principales ventajas de este enfoque. En particular, el método de elementos finitos mixtos

resultante puede emplear espacios de Raviart-Thomas de orden k para el tensor de esfuerzos

de Cauchy, polinomios continuos a trozos de grado k + 1 para la velocidad y para el campo

escalar, y polinomios discontinuos a trozos para el gradiente de la concentración. A su vez,

el lema de Lax-Milgram, teoría de operadores monótonos, y los clásicos teoremas del punto

fijo de Schauder y Brouwer se usan para establecer la existencia de solución de las formula-

ciones continua y discreta. Además, estimaciones adecuadas, derivadas del uso combinado de

un supuesto de regularidad con el teorema de inclusión de Sobolev y el teorema de compacidad

de Rellich-Kondrachov, se requieren también para el análisis continuo. Luego, datos suficiente-

mente pequeños permiten probar la unicidad de la solución y derivar estimaciones de error a

priori óptimas. Finalmente, se presentan varias pruebas numéricas, que ilustran el desempeño

de nuestro método y confirman las razones de convergencia previstas.
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Chapter 1
Introduction

In recent years there has been an increasing interest in studying finite element approximations

to simulate the transport of a species density in an immiscible fluid. In particular, the continuous

and discrete solvability of a flow-transport model given by the coupling of the Stokes equations

with a scalar nonlinear convection-diffusion equation, in which the viscosity of the fluid and the

effective diffusivity depend on the solution to the transport problem and its gradient, respec-

tively, was recently analyzed in [2] by using a mixed-primal variational approach. Regarding

the underlying coupled model, and while the original unknowns of it are the velocity of the

flow, the pressure, and the local solids concentration, it is well known that other variables, such

as stress tensors, vorticity, and the aforementioned gradient, are also of great interest in appli-

cations, which include natural and thermal convection, sedimentation-consolidation processes,

and granular flows, among others. According to this motivation, the model is reformulated in

[2] as an augmented dual-mixed formulation for the fluid flow, coupled with the usual primal

method for the transport model. As a consequence, the Cauchy stress and the velocity of the

fluid are sought in H(div; Ω) and H1(Ω), respectively, whereas the concentration lies in H1(Ω).

In this way, each row of the stress tensor is approximated with Raviart-Thomas elements of order

k, whereas the other two unknowns are approximated with continuous piecewise polynomials

of degree ≤ k+ 1. Furthermore, fixed point arguments, suitable regularity hypotheses, the well-

10



CHAPTER 1. INTRODUCTION 11

know Lax-Milgram theorem, classical results on monotone operators, the Sobolev embedding

and Rellich-Kondrachov compactness theorems, and sufficiently small data assumptions, consti-

tute the main tools yielding well-posedness of the continuous and Galerkin schemes, and the

associated optimal a priori error estimates.

Other contributions concerning the solvability of flow-transport problems are certainly avail-

able in the literature as well. For example, the technique of parabolic regularization has been

employed in [8] for the case of large fluid viscosity, whereas the existence of solutions to a

model of chemically reacting non-Newtonian fluid with the effective diffusivity depending also

on the gradient of the concentration, has been established in [7]. In turn, the extension of the

approach from [2] to the more realistic case of steady sedimentation-consolidation systems, in

which both the viscosity and the diffusivity depend only on the scalar value of the concentration,

and hence neither of them on the concentration gradient (as in [2] and [7] for the latter), was

developed in [3]. In this case, the model consist in the Brinkman problem with variable viscos-

ity, written in terms of Cauchy pseudo-stresses and bulk velocity of the mixture, coupled with a

nonlinear advection – diffusion equation describing the transport of the solids volume fraction.

Then, similarly to [2], the variational formulation is based on an augmented mixed approach for

the Brinkman equations and the usual primal approach for the transport equation. In addition,

the solvability analyses make use of basically the same arguments from [2], the finite element

subspaces employed are exactly those from [2], and suitable Strang-type inequalities are utilized

to derive optimal error estimates in the natural norms.

On the other hand, it is worth mentioning that flow-transport models, and specially those

involving sedimentation-consolidation processes, share some analytical similarities with Boussi-

nesq and related problems, for which several mixed-primal and fully-mixed formulations have

been proposed in recent years (see, e.g. [11], [12], [13], [15], [16], and [24]). In particular,

the mixed finite element method for the Boussinesq problem developed in [15] introduces the

gradient of velocity as an auxiliary unknown. In turn, following [9], the approach from [11]

employs the nonlinear pseudostress tensor linking the pseudostress and the convective term,
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and then augment the resulting mixed formulation of the stationary Boussinesq problem with

suitable Galerkin type terms. Furthermore, the technique of [12] proceeds similarly to [11],

but in contrast to the latter, an augmented mixed formulation for the equation modelling the

temperature is also proposed. More precisely, a new auxiliary vector unknown, involving the

temperature, its gradient and the velocity, is introduced, and then the resulting new mixed for-

mulation for the convection–diffusion equation is augmented with alternative testings of the

constitutive and equilibrium temperature equations. In this way, classical fixed point theorems,

together with the Lax-Milgram lemma and the Babuška-Brezzi theory, are applied to prove the

well-posedness of the continuous and discrete formulations in [11] and [12]. However, up to

our knowledge, fully-mixed formulations specifically designed for flow-transport models, and

aiming to introduce further unknows of physical interest, are not yet available in the literature.

According to the previous bibliographic discussion, the purpose of the present paper is to

keep contributing in the direction of [2] and [3] by applying now an augmented mixed varia-

tional formulation to both the fluid flow and the transport model. In this way, and besides the

incorporation of other unknowns of physical interest, such as the gradient of concentration, the

resulting decoupled problems yield a strongly elliptic bilinear form and a strongly monotone

operator equation, respectively, and hence arbitrary finite element subspaces can be employed

for defining the associated discrete schemes. The contents of the paper are organized as fol-

lows. The remainder of this section introduces some standard notation and functional spaces.

In Section 2 we first describe the boundary value problem of interest, then slightly simplify it

by eliminating the pressure unknown in the fluid and defining the gradient of the concentra-

tion as a new unknown variable. Next, in Section 3 we introduce and analyze the continuous

formulation, which is defined by an augmented mixed approach in both media. The necessity

of augmentation is clearly justified, and the solvability analysis is based on a fixed point strat-

egy that makes use of the Lax-Milgran lemma, the Schauder theorem, and a well-known result

on strongly monotone operators. We prove existence of solution and for sufficiently small data

we derive uniqueness. The associated Galerkin scheme is introduced in Section 4 by employing

Raviart-Thomas elements for the stress, continuous piecewise polynomial approximations for the
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velocity and concentration, and discontinuous piecewise polynomial approximations for the gra-

dient of the concentration. Here the solvability is established by applying now the Brouwer fixed

point theorem and analogue arguments to those employed in Section 3. In Section 5 we assume

again sufficiently small data and, using a suitable Strang-type estimate for nonlinear problems,

provide optimal a priori error estimates. Finally, in Section 6 we present numerical examples il-

lustrating the good performance of the fully-mixed method and confirming the theoretical rates

of convergence.

1.1 Preliminary notations

Let Ω ⊆ Rn, n = 2, 3, be a given bounded domain with polyhedral boundary Γ = Γ̄D ∪ Γ̄N , with

|ΓD|, |ΓN | > 0, ΓD ∩ ΓN = ∅ and denote by ν the outward unit normal vector on Γ. A standard

notation will be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω

and seminorm | · |s,Ω. In particular, H1/2(Γ) is the space of traces of functions of H1(Ω) and

H−1/2(Γ) denotes its dual. In addition, given Γ∗ ⊆ Γ with ∗ ∈ {D,N}, denote by 〈·, ·〉Γ∗ the

duality pairing between H1/2(Γ∗) and H−1/2(Γ∗). Also, we let M and M be the vectorial and

tensorial counterparts of a generic scalar functional space M. In turn, I stands for the identity

tensor in Rn×n, and | · | denotes both the euclidean norm in Rn and the Frobenius norm in Rn×n.

On the other hand, for any vector field υ = (vi)i=1,n we set ∇υ :=
( ∂vi
∂xj

)
i,j=1,n

and divυ :=

n∑
j=1

∂vj
∂xj

. Additionaly, for any tensor fields τ = (τi,j)i,j=1,n and ζ = (ζij)i,j=1,n, we let div τ be

the divergence operator div acting along the rows of τ , and define the transpose, the trace, the

tensor product, and the deviatoric tensor, respectively, as

τ t := (τji)i,j=1,n, tr(τ ) :=
n∑

i=1

τii, τ : ζ :=
n∑

i,j=1

τijζij and τ d := τ − 1

n
tr(τ )I .
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Furthermore, we recall that the space

H(div,Ω) :=
{
τ ∈ L2(Ω) : div τ ∈ L2(Ω)

}
,

equipped with the usual norm ‖τ‖2
div ;Ω := ‖τ‖2

0,Ω + ‖divτ‖2
0,Ω, is a Hilbert space.



Chapter 2
The Coupled Flow-Transport Problem

The following system of partial differential equations, written as to apply a fully-mixed approach,

describes the stationary state of the transport of species in an immiscible fluid occupying the

domain Ω ⊆ Rn:

σ = µ(φ)∇u− pI, in Ω ,

−div σ = fφ, in Ω ,

div u = 0 in Ω ,

p = θ(|∇φ|)∇φ− φu− γ(φ)k in Ω ,

div p = −g in Ω ,

u = uD on ΓD ,

σν = 0 on ΓN ,

φ = φD on ΓD ,

p · ν = 0 on ΓN ,

(2.1)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of

the fluid u, the pressure p, and the local concentration of species φ. Regarding this study, we will

restrict ourselves to a specific physical scenario corresponding to the process of sedimentation-

consolidation of a mixture. Also, µ : R+ → R+ is the kinematic effective viscosity, θ : R+ → R+

is the diffusion term modelling e.g. sediment compressibility, and γ : R+ → R is the one

15
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dimensional flux describing hindered settling, all them nonlinear functions. In addition, k is a

constant vector pointing in the direction of gravity, and f ∈ L∞(Ω), g ∈ L2(Ω), uD ∈ H1/2(ΓD)

and φD ∈ H1/2(ΓD) are given functions. We assume that:

i) there exist µ1, µ2, γ1, γ2 > 0 such that

µ1 ≤ µ(φ) ≤ µ2 and γ1 ≤ γ(φ) ≤ γ2 ∀φ ∈ R+ , (2.2)

ii) θ ∈ C1(R+) and there exist θ1, θ2 > 0 such that

θ1 ≤ θ(s) ≤ θ2 and θ1 ≤ θ(s) + sθ′(s) ≤ θ2 ∀ s ∈ R+ , (2.3)

iii) there exist Lµ, Lγ > 0 such that

|µ(s)− µ(t)| ≤ Lµ|s− t| and |γ(s)− γ(t)| ≤ Lγ|s− t| ∀ s, t ∈ R+ . (2.4)

Now, following the approach employed in [2] y [3] , it can be seen from the first and third

equations of (2.1) that

p = − 1

n
tr (σ) in Ω, (2.5)

which allows us to eliminate the pressure. Next, introducing the auxiliary unknown t := ∇φ in

Ω, the fourth equation of (2.1) is rewritten as

p = θ(|t|) t− φu− γ(φ)k in Ω ,
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and hence, the coupled problem (2.1) becomes

1

µ(φ)
σd = ∇u in Ω ,

−div σ = fφ, in Ω ,

t = ∇φ in Ω ,

p = θ(|t|) t− φu− γ(φ)k in Ω ,

div p = −g in Ω ,

u = uD on ΓD ,

σν = 0 on ΓN ,

φ = φD on ΓD ,

p · ν = 0 on ΓN .

(2.6)

We remark here that the incompressibility constraint div u = 0 in Ω is implicitly present in

the first equation of (2.6), that is in the constitutive equation relating σ and u. Also, we observe

that the pressure can be approximated later on through the post-process suggested by (2.5).



Chapter 3
The continuous formulation

3.1 The augmented fully-mixed formulation

We begin by observing that the homogeneous Neumann boundary conditions for σ and p in ΓN

suggest the introduction of the following spaces

HN(div,Ω) :=
{
τ ∈ H(div,Ω) : τν = 0 on ΓN

}
,

HN(div,Ω) :=
{

q ∈ H(div,Ω) : q · ν = 0 on ΓN

}
.

Then, multiplying the first equation of (2.6) by τ ∈ HN(div,Ω), integrating by parts, and using

the Dirichlet boundary condition for u, we obtain

∫
Ω

1

µ(φ)
σd : τ d +

∫
Ω

u · div τ = 〈τν,uD〉ΓD ∀ τ ∈ HN(div,Ω) . (3.1)

In addition, the equilibrium equation, that is the second equation of (2.6), is rewritten as

∫
Ω

υ · divσ = −
∫

Ω

fφ · υ ∀υ ∈ L2(Ω) . (3.2)

18
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Similarly for deriving the weak formulation of the transport equation we multiply by q ∈

HN(div,Ω) the third equation of (2.6), integrate by parts, and use the Dirichlet boundary condi-

tion for φ, to yield

∫
Ω

t · q +

∫
Ω

φdiv q = 〈q · ν, φD〉ΓD ∀q ∈ HN(div,Ω) . (3.3)

Also, the corresponding equilibrium equation is stated as

∫
Ω

ϕdiv p = −
∫

Ω

g ϕ ∀ϕ ∈ L2(Ω) . (3.4)

Finally, multiplying by s ∈ L2(Ω) the fourth equation of (2.1) and integrating, we arrive at

∫
Ω

θ(|t|)t · s−
∫

Ω

p · s−
∫

Ω

φu · s =

∫
Ω

γ(φ)k · s ∀s ∈ L2(Ω) . (3.5)

Summarizing, given φ ∈ L2(Ω), we obtain form (3.1) and (3.2) the following mixed formulation

for the flow equations: Find (σ,u) ∈ HN(div,Ω)× L2(Ω) such that

aφ(σ, τ ) + b(τ ,u) = 〈τν,uD〉ΓD ∀τ ∈ HN(div,Ω) ,

b(σ,υ) = −
∫

Ω

f φ̃ · υ ∀υ ∈ L2(Ω) ,
(3.6)

where aφ : HN(div,Ω) × HN(div,Ω) → R and b : HN(div,Ω) × L2(Ω) → R are the bounded

bilinear forms defined by

aφ(ζ, τ ) :=

∫
Ω

1

µ(φ)
ζd : τ d and b(τ ,υ) :=

∫
Ω

υ · div τ ,

for ζ, τ ∈ HN(div,Ω) and υ ∈ L2(Ω).

In turn, given u ∈ L2(Ω), at first instance we get from (3.3), (3.4) and (3.5) the following

mixed formulation for the transport equations: Find (t,p, φ) ∈ L2(Ω)×HN(div,Ω)×L2(Ω) such
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that ∫
Ω

t · q +

∫
Ω

φdiv q = 〈q · ν, φD〉ΓD ∀q ∈ HN(div,Ω),∫
Ω

θ(|t|)t · s−
∫

Ω

p · s−
∫

Ω

φu · s =

∫
Ω

γ(φ)k · s ∀s ∈ L2(Ω) ,∫
Ω

ϕdiv p = −
∫

Ω

g ϕ ∀ϕ ∈ L2(Ω) .

(3.7)

Then, we observe that the assumption on µ given by (2.2) and the Babuska-Brezzi theory suffice

to show that (3.6) is well-possed (see, e.g. [18, Thm. 2.1] for details). However, in order to

deal with the analysis of (3.7), particularly to handle the third term of the second equation, it is

required that actually u and φ belong to H1(Ω) and H1(Ω) respectively. In fact, using Cauchy-

Schwarz’s inequality and the continuous injections i : H1(Ω) → L4(Ω) and i : H1(Ω) → L4(Ω),

we have that

∣∣∣∣∫
Ω

ϕυ · s
∣∣∣∣ ≤ c(Ω)‖υ‖1,Ω ‖ϕ‖1,Ω ‖s‖0,Ω ∀ (υ, ϕ, s) ∈ H1(Ω)×H1(Ω)× L2(Ω) , (3.8)

with c(Ω) := ‖i‖ ‖i‖. Furthermore, while the exact solutions of (3.6) and (3.7) satisfy
1

µ(φ)
σd =

∇u in D′(Ω) and t = ∇φ in D′(Ω), which implies that u ∈ H1(Ω) and φ ∈ H1(Ω), these distri-

butional identities do not necessarily extend to the discrete cases of (3.6) and (3.7). Therefore,

proceeding as in [2], we now incorporate the following redundant Galerkin terms

k1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇υ = 0 ∀υ ∈ H1(Ω) ,

k2

∫
Ω

divσ · div τ = −k2

∫
Ω

fφ · div τ ∀ τ ∈ HN(div,Ω) ,

k3

∫
ΓD

u · υ = k3

∫
ΓD

uD · υ ∀υ ∈ H1(Ω) ,

(3.9)

where (k1, k2, k3) is a vector of positive parameters to be specified later on. Notice that the first

and third equations in (3.9) implicitly require the velocity u to belong to H1(Ω). In this way,

instead of (3.6), from now on we consider the following augmented mixed formulation: Find



CHAPTER 3. THE CONTINUOUS FORMULATION 21

(σ,u) ∈ H1 := HN(div,Ω)×H1(Ω) such that

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 , (3.10)

where

Bφ((σ,u), (τ ,υ)) := aφ(σ, τ ) + b(τ ,u)− b(σ,υ) + k1

∫
Ω

(
∇u− 1

µ(φ)
σd

)
: ∇υ

+ k2

∫
Ω

divσ · div τ + k3

∫
ΓD

u · υ
(3.11)

and

Fφ(τ ,υ) := 〈τ ,uD〉ΓD +

∫
Ω

fφ · υ − k2

∫
Ω

fφ · div τ + k3

∫
ΓD

uD · υ . (3.12)

Similarly, the transport formulation (3.7) is augmented with the following redundant Galerkin

terms
l1

∫
Ω

(p− θ(|t|)t + φu) · q = −l1
∫

Ω

γ(φ) k · q ∀q ∈ HN(div,Ω) ,

l2

∫
Ω

div p div q = −l2
∫

Ω

g div q ∀q ∈ HN(div,Ω) ,

l3

∫
Ω

(∇φ− t) · ∇ϕ = 0 ∀ϕ ∈ H1(Ω) ,

l4

∫
ΓD

φϕ = l4

∫
ΓD

φD ϕ ∀ϕ ∈ H1(Ω) ,

(3.13)

where (l1, l2, l3, l4) is a vector of positive parameters to be specified later on. Analogously as

before, the third and fourth equations of (3.13) require that φ belongs to H1(Ω). In this way,

instead of (3.7), we consider from now on the following augmented mixed formulation: Find

(t,p, φ) ∈ H2 := L2(Ω)×HN(div,Ω)×H1(Ω) such that

[(A+ B̃u)(t,p, φ), (s,q, ϕ)] = F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ L2(Ω)×HN(div,Ω)×H1(Ω) (3.14)

where [·, ·] stands for the duality pairing between H2 and H ′2, A : H ′2 → H2 and B̃u : H ′2 → H2
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are the nonlinear and linear operators, respectively, given by

[A(t,p, φ), (s,q, ϕ)] :=

∫
Ω

θ(|t|)t · s−
∫

Ω

p · s +

∫
Ω

t · q +

∫
Ω

φdiv q−
∫

Ω

ϕdiv p

+ l1

∫
Ω

(p− θ(|t|)t) · q + l2

∫
Ω

div p div q + l3

∫
Ω

(∇φ− t) · ∇ϕ+ l4

∫
ΓD

φϕ ,

(3.15)

and

[B̃u(t,p, φ), (s,q, ϕ)] :=

∫
Ω

φu · (l1q− s) , (3.16)

and F̃φ ∈ H ′2 is defined by

F̃φ(s,q, ϕ) := 〈q · ν, φD〉ΓD +

∫
Ω

γ(φ)k · (s− l1q) +

∫
Ω

ϕ g − l2
∫

Ω

gdiv q + l4

∫
ΓD

φDϕ (3.17)

for all (s,q, ϕ) ∈ H2. The well-posedness of (3.10) and (3.14) is proved below in Section 3.3.

Consequently, the augmented fully mixed formulation of the coupled problem (2.6) reduces to:

Find ((σ,u), (t,p, φ)) ∈ H1 ×H2 such that

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 ,[
(A+ B̃u)(t,p, φ), (s,q, ϕ)

]
= F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ H2 .

(3.18)

3.2 A fixed point strategy

According to the alternative formulations (3.10) and (3.14), and proceeding as in [2] and [3]

(se also, [11] and [12]), we suggest a fixed point strategy to analyze (3.18). Indeed, let S :

H1(Ω)→ H1 be the operator defined by

S(ψ) = (S1(ψ),S2(ψ)) := (σ,u) ∈ H1 ∀ψ ∈ H1(Ω) ,
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where (σ,u) is the unique solution of (3.10) with the given φ = ψ. In turn, let S̃ : H1(Ω) ×

H1(Ω)→ H2 be the operator defined by

S̃(ψ,u) = (S̃1(ψ,u), S̃2(ψ,u), S̃3(ψ,u)) := (t,p, φ̃) ∈ H2 ,

where (t,p, φ) is the unique solution of (3.14) with φ and u given. Then, we define the operator

T : H1(Ω)→ H1(Ω) by

T(ψ) := S̃3(ψ,S2(ψ)) (3.19)

and realize that solving (3.18) is equivalent to seeking a fixed point of T, that is : Find ψ ∈ H1(Ω)

such that

T(ψ) = ψ . (3.20)

3.3 Well-posedness of the uncoupled problems

In this section, we show that the operators S and S̃ are well defined, that is that the uncoupled

problems (3.10) and (3.14) are in fact well-posed. We begin by recalling (see, e.g. [6]) that

H(div,Ω) = H0(div,Ω)⊕ RI , where H0(div,Ω) :=
{
ζ ∈ H(div,Ω) :

∫
Ω

tr (ζ) = 0
}
.

More precisely, for each ζ ∈ H(div,Ω) there exists unique ζ0 := ζ−
{ 1

n|Ω|

∫
Ω

tr (ζ)
}
I ∈ H0(div,Ω)

and d :=
1

n|Ω|

∫
Ω

tr (ζ) ∈ R such that ζ = ζ0 +dI. The following three lemmas from [6], [19] and

[17], which concern the above decomposition and an equivalence of norm, will be employed to

show the well-posedness of (3.10) and (3.14).

Lemma 3.3.1. There exists c1 = c1(Ω) > 0 such that

c1‖τ 0‖2
0,Ω ≤ ‖τ d‖2

0,Ω + ‖div (τ )‖2
0,Ω ∀ τ = τ 0 + cI ∈ H(div,Ω) ,
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with τ 0 ∈ H0(div,Ω) and c ∈ R.

Proof. See [6, Proposition 3.1].

Lemma 3.3.2. There exists c2 = c2(Ω,ΓN) > 0) such that

c2‖τ‖2
div ;Ω ≤ ‖τ 0‖2

div ;Ω ∀ τ = τ 0 + cI ∈ HN(div,Ω)

with τ 0 ∈ H0(div,Ω) and c ∈ R.

Proof. See [19, Lemma 2.2].

Lemma 3.3.3. There exists ci = ci(Ω,ΓD) > 0 , with i ∈ {3, 4} such that

|υ|21,Ω + ‖υ‖2
0,ΓD
≥ c3‖υ‖2

1,Ω ∀υ ∈ H1(Ω)

|ϕ|21,Ω + ‖ϕ‖2
0,ΓD
≥ c4‖ϕ‖2

1,Ω ∀ϕ ∈ H1(Ω)

Proof. It corresponds to a slight modification of the proof of [17, Lemma 3.3].

On the other hand, the following results refers to the nonlinear term forming part of A (cf.

(3.15)).

Lemma 3.3.4. Let θ̃2 := max{θ2, 2θ2 − θ1} (cf. (2.3)). Then

‖θ(|r|)r− θ(|s|)s‖0,Ω ≤ θ̃2‖r− s‖0,Ω

∫
Ω

{θ(|r|)r− θ(|s|)s} · (r− s) ≥ θ1‖r− s‖0,Ω
2

for all r, s ∈ L2(Ω).

Proof. See [20, Theorem 3.8] for details.
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In what follows, we consider

‖(τ ,υ)‖H1 :=
{
‖τ‖2

div ;Ω + ‖υ‖2
1,Ω

}1/2

∀ (τ ,υ) ∈ H1

and

‖(s,q, ϕ)‖H2 :=
{
‖s‖2

0,Ω + ‖q‖2
div ;Ω + ‖ϕ‖2

1,Ω

}1/2

∀ (s,q, ϕ) ∈ H2 .

We now prove the well-definiteness of S.

Lemma 3.3.5. Assume that k1 ∈
(

0,
2δµ1

µ2

)
with δ ∈ (0, 2µ1), and that 0 < k2, k3. Then, for each

φ ∈ H1(Ω) the problem (3.10) has a unique solution S(φ) := (σ,u) ∈ H1. Moreover, there exists

CS > 0, independent of φ, such that

‖S(φ)‖H1 = ‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
∀φ ∈ H1(Ω) . (3.21)

Proof. It reduces to show that, under the stipulated ranges for the parameters κ1, κ2, κ3, and δ,

the bilinear form Bφ becomes H1-elliptic with an ellipticity constant independent of φ ∈ H1(Ω).

We omit details and refer to [2, Lemma 3.4].

Throughout the rest of the paper, a regularity assumption will be made for the problem

defining the operator S. More precisely, we assume that uD ∈ H1/2+ε(ΓD) for some

ε ∈

 (0, 1) if n = 2 ,

(1
2
, 1) if n = 3 ,

(3.22)

and that for each φ ∈ H1(Ω) with ‖φ‖1,Ω ≤ r, r > 0, there holds S(φ) = (ζ, s) ∈ (HN(div,Ω)

∩Hε(Ω)) ×(H1(Ω) ∩H1+ε(Ω)) and

‖ζ‖ε,Ω + ‖s‖1+ε,Ω ≤ C̃S̃(r)
{
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

}
, (3.23)

with a positive constant C̃S̃(r) independent of the given φ but depending on the upper bound r



CHAPTER 3. THE CONTINUOUS FORMULATION 26

of its H1-norm. We remark that the reason of the stipulated ranges for ε will be clarified in the

forthcoming analysis (see below proof of Lemma 3.4.3). For more details see [2].

Next, in order to demonstrate that S is well-posed, we need the following two previous

Lemmas.

Lemma 3.3.6. For each u ∈ H1(Ω), A+ B̃u is Lipschitz-continuous.

Proof. Given (t,p, φ̃), (r,o, ψ) and (s,q, ϕ) ∈ H2, we first notice that

∣∣[A(t,p, φ̃)− A(r,o, ψ), (s,q, ϕ)]
∣∣ =

∣∣∣ ∫Ω
{θ(|t|)t− θ(|r|)r} · s +

∫
Ω

(o− p) · s +
∫

Ω
(t− r) · q

+
∫

Ω
(φ− ψ) · q +

∫
Ω
ϕ div (o− p) + l1

∫
Ω

(o− p) · q + l1
∫

Ω
{θ(|t|)t− θ(|r|)r} · q

+l2
∫

Ω
div (p− q) div q + l3

∫
Ω
∇(φ− ψ) · ∇ϕ+ l3

∫
Ω

(r− t) · ∇ϕ+ l4
∫

ΓD
(φ− ψ)ϕ

∣∣∣
Now, using the Cauchy-Schwarz inequality, the Lipschitz-continuity of the operator induced by

θ (cf. Lemma 3.3.4) and the trace theorem (with constant c0 ), we deduce from the foregoing

equation that

∣∣[A(t,p, φ̃)− A(r,o, ψ), (s,q, ϕ)]
∣∣ ≤ ‖θ(|t|)t− θ(|r|)r‖0,Ω‖s‖0,Ω + ‖o− p‖0,Ω‖s‖0,Ω

+ ‖t− r‖0,Ω‖q‖0,Ω + ‖φ̃− ψ‖0,Ω‖q‖0,Ω + ‖ϕ‖0,Ω‖div (o− p)‖0,Ω

+ l1‖o− p‖0,Ω‖q‖0,Ω + l1‖θ(|t|)t− θ(|r|)r‖0,Ω‖q‖0,Ω + l2‖div (p− q)‖0,Ω‖div q‖0,Ω

+ l3|φ̃− ψ|1,Ω|ϕ|1,Ω + l3‖r− t‖0,Ω|ϕ|1,Ω + l4‖φ̃− ψ‖0,ΓD‖ϕ‖0,ΓD

≤ L̃A(4‖t− r‖2
0,Ω + 2‖p− o‖2

0,Ω + 2‖φ̃− ψ‖2
1,Ω

+ 2‖div (p− o)‖2
0,Ω + |φ̃− ψ|21,Ω)1/2(2‖s‖2

0,Ω + 4‖q‖2
0,Ω + ‖ϕ‖2

0,Ω + ‖div q‖2
0,Ω

+ 2|ϕ|21,Ω + ‖ϕ‖2
1,Ω)1/2 ,
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with L̃A = max{θ̃2, 1, l1, l1θ̃2, l2, l3, l4c0}, which yields

∣∣[A(t,p, φ̃)− A(r,o, ψ), (s,q, ϕ)]
∣∣ ≤ LA‖(t,p, φ̃)− (r,o, ψ)‖H2‖(s,q, ϕ)‖H2 (3.24)

for all (t,p, φ̃), (r,o, ψ), (s,q, ϕ) ∈ H2, with LA := 4L̃A. In turn, it readily follows from (3.8)

and (3.16) that

|[B̃u(s,q, ϕ), (r,o, ψ)]| =
∣∣∣ ∫

Ω

ϕu · (l1o− r)
∣∣∣

≤ ‖ϕ‖L4(Ω)‖u‖L4(Ω)(l
2
1 + 1)1/2

{
‖r‖2

0,Ω + ‖o‖2
div ;Ω

}1/2

≤ c(Ω)(l22 + 1)1/2‖u‖1,Ω‖ϕ‖1,Ω‖(r,o, ψ)‖H2

≤ c(Ω)(l22 + 1)1/2‖u‖1,Ω‖(s,q, ϕ)‖H2‖(r,o, ψ)‖H2 ,

(3.25)

which, thanks to the linearity of B̃u, and together with (3.24), confirms that A+ B̃u is Lipschitz-

continuous with constant LC := LA + c(Ω)(l22 + 1)1/2‖u‖1,Ω.

The strong monotonicity of the operator A+ B̃u is established next.

Lemma 3.3.7. Assume that l1 ∈
(

0, 2θ1δ

θ̃2

)
and l3 ∈

(
0, 2δ̃

(
θ1 − θ̃2l1

2δ
)
)
, with δ ∈

(
0, 2

θ̃2

)
and

δ̃ ∈ (0, 2), and that l2, l4 > 0. Then, for each u ∈ H1(Ω) such that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
,

A+ B̃u is strongly monotone.

Proof. Given (s,q, ϕ), (r,o, ψ) ∈ H2, we first observe that

[A(s,q, ϕ)− A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] =

∫
Ω

{
θ(|s|)s− θ(|r|)r

}
· (s− r) + l1‖q− o‖2

0,Ω

−l1
∫

Ω

(θ(|s|)s− θ(|r|)r) · (q− o) + l2‖div (q− o)‖2
0,Ω + l3|ϕ− ψ|21,Ω

−l3
∫

Ω

(s− r) · ∇(ϕ− ψ) + l4‖ϕ− ψ‖2
0,ΓD

.
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Then, thanks to Lemma 3.3.4 and the Cauchy-Schwarz and Young inequalities, we obtain

[A(s,q, ϕ)− A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ θ1‖s− r‖2
0,Ω + l1‖q− o‖2

0,Ω + l2‖div (q− o)‖2
0,Ω

− l1‖θ(|s|)s− θ(|r|)r‖0,Ω‖q− o‖0,Ω + l3|ϕ− ψ|21,Ω − l3‖s− r‖0,Ω|ϕ− ψ|1,Ω + l4‖ϕ− ψ‖0,ΓD

≥ θ1‖s− r‖2
0,Ω + l1‖q− o‖2

0,Ω − l1θ̃2‖s− r‖0,Ω‖q− o‖0,Ω + l2‖div (q− o)‖2
0,Ω + l3|ϕ− ψ|21,Ω

− l3‖s− r‖0,Ω|ϕ− ψ|1,Ω + l4‖ϕ− ψ‖0,ΓD

≥ θ1‖s− r‖2
0,Ω + l1‖q− o‖2

0,Ω − l1θ̃2
1

2δ
‖s− r‖2

0,Ω − l1θ̃2
δ

2
‖q− o‖2

0,Ω + l2‖div (q− o)‖2
0,Ω

+ l3|ϕ− ψ|21,Ω − l3
1

2δ̃
‖s− r‖2

0,Ω − l3
δ̃

2
|ϕ− ψ|21,Ω + l4‖ϕ− ψ‖0,ΓD ,

which gives

[A(s,q, ϕ)− A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥
(
θ1 − l1θ̃2

1
2δ
− l3 1

2δ̃

)
‖s− r‖2

0,Ω

+l1

(
1− θ̃2δ

2

)
‖q− o‖2

0,Ω + l2‖div (q− o)‖2
0,Ω + l3

(
1− δ̃

2

)
|ϕ− ψ|21,Ω + l4‖ϕ− ψ‖0,ΓD

(3.26)

In this way, assuming the stipulated hypotheses on δ, l1, l2, l3, l4, we can define the positive

constants

α0(Ω) :=
(
θ1 − l1θ̃2

1

2δ
− l3

1

2δ̃

)
, α1(Ω) := min

{
l1

(
1− θ̃2δ

2

)
, l2

}
,

and

α2(Ω) := min
{
l3

(
1− δ̃

2

)
, l4

}
,

which, together with (3.26), imply that

[A(s,q, ϕ)− A(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ α(Ω)‖(s,q, ϕ)− (r,o, ψ)‖2
H2
, (3.27)

with

α(Ω) := min
{
α0(Ω), α1(Ω), c4α2(Ω)

}
. (3.28)
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Moreover, by combining (3.25) and (3.27), we obtain

[(A+B̃u)(s,q, ϕ)− (A+ B̃u)(r,o, ψ), (s,q, ϕ)− (r,o, ψ)]

≥
{
α(Ω)− (1 + l21)1/2c(Ω)‖u‖1,Ω

}
‖(s,q, ϕ)− (r,o, ψ)‖2

H2
,

(3.29)

and assuming that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
we conclude that

[(A+ B̃u)(s,q, ϕ)− (A+ B̃u)(r,o, ψ), (s,q, ϕ)− (r,o, ψ)] ≥ α(Ω)

2
‖(s,q, ϕ)− (r,o, ψ)‖2

H2
,

(3.30)

which shows the strong monotonicity of A+ B̃u with constant α(Ω)
2

.

Having proved the properties of A + B̃u given by the previous Lemmas 3.3.6 and 3.3.7, we

are now in a position to show the well-posedness of the operator S̃.

Lemma 3.3.8. Assume that l1 ∈
(

0, 2θ1δ

θ̃2

)
and l3 ∈

(
0, 2δ̃

(
θ1 − θ̃2l1

2δ
)
)
, with δ ∈

(
0, 2

θ̃2

)
and

δ̃ ∈ (0, 2), and that l2, l4 > 0. Then given φ ∈ H1(Ω) and u ∈ H1(Ω) such that ‖u‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there exists a unique S̃(φ,u) := (t,p, φ̃) ∈ H2 solution of (3.14) and there holds

‖S̃(φ,u)‖H2 = ‖(t,p, φ̃)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
, (3.31)

where CS̃ =
2

α(Ω)
CF̃φ and CF̃φ = max

{
1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
.

Proof. Given φ ∈ H1(Ω), we begin by noticing that the Cauchy-Schwarz inequality and the trace
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theorems imply

|F̃φ(s,q, ϕ)| ≤ |〈q · ν, φD〉ΓD |+
∣∣∣∣∫

Ω

γ(φ)k · (s− l1q)

∣∣∣∣+

∣∣∣∣∫
Ω

ϕg

∣∣∣∣+ l2

∣∣∣∣∫
Ω

gdiv q

∣∣∣∣+ l4

∣∣∣∣∫
ΓD

φDϕ

∣∣∣∣
≤ ‖q‖−1/2,ΓD‖φD‖1/2,ΓD + γ2|Ω|1/2‖k‖‖s− l1q‖0,Ω + ‖g‖0,Ω‖ϕ‖0,Ω

+ l2‖g‖0,Ω‖div q‖0,Ω + l4‖φD‖0,ΓD‖ϕ‖0,ΓD

≤ ‖q‖div ;Ω‖φD‖1/2,ΓD + γ2|Ω|1/2‖k‖(‖s‖0,Ω + l1‖q‖div ;Ω) + ‖g‖0,Ω‖ϕ‖1,Ω

+ l2‖g‖0,Ω‖q‖div ;Ω + l4c0‖φD‖0,ΓD‖ϕ‖1,Ω

≤ CF̃φ

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
‖(s,q, ϕ)‖H2 ,

(3.32)

with CF̃φ = max
{

1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
, which shows that F̃φ ∈ H ′2. In this way,

knowing from Lemmas 3.3.6 and 3.3.7 that for each u ∈ H1(Ω) the operator A+ B̃u is Lipschitz-

continuous and strongly monotone, a classical result on the bijectivity of monotone operators

(see e.g. [23, Theorem 3.3.23]) allows us to conclude that there exists a unique solution

S̃(φ,u) := (t,p, φ̃) ∈ H2 of (3.14). Then, by applying (3.30) with (s,q, ϕ) = (t,p, φ̃) and

(r,o, ψ) = (0,0, 0), we obtain

α(Ω)

2
‖(t,p, φ̃)‖2

H2
≤ [(A+ B̃u)(t,p, φ̃), (t,p, φ̃)] ≤ |F̃φ(t,p, φ̃)|

≤ CF̃φ

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
‖(t,p, φ̃)‖H2 ,

which yields

‖(t,p, φ̃)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
.

We end this section by remarking that a suitable constant α0(Ω) can be computed by taking

the parameters δ, l1, δ̃ and l3 as the middle points of their feasible ranges. Then we choose l2 and
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l4 so that the minima defining α1(Ω) and α2(Ω) are maximized. More precisely, we simply take

δ =
1

θ̃2

and δ̃ = 1, which implies l1 =
θ1

θ̃2
2

, and l3 =
θ1

2
, and then we set l2 = l1

(
1− θ̃2δ

2

)
= l1

2
, and

l4 = l3

(
1− δ̃

2

)
= l3

2
, whence

α0(Ω) =
(
θ1 − l1θ̃2

1

2δ
− l3

1

2δ̃

)
=
θ1

2
,

α1(Ω) = min{l1
(

1− θ̃2δ

2

)
, l2} =

l1
2

=
θ1

4θ̃2
2

,

α2(Ω) = min{l3
(

1− δ̃

2

)
, l4} =

l3
2

=
θ1

4
,

and

α(Ω) = min
{
α0(Ω), α1(Ω), c4α2(Ω)

}
= min

{θ1

2
,
θ1

4θ̃2
2

, c4
θ1

4

}
.

The foregoing explicit values of the stabilization parameters li, i ∈ {1, ..., 4}, will be employed in

Section 5 for the corresponding numerical experiments.

3.4 Solvability analysis of the fixed point equation

Having established in the previous section the well-posedness of the uncoupled problems (3.10)

and (3.14), thus showing that the operators S, S̃ and T are well defined, we now address the

solvability analysis of the fixed point equation (3.20). For this purpose, in what follows we verify

the hypotheses of the Schauder fixed point theorem, which is recalled next (cf. [10, Theorem.

9.12-1(b)]).

Theorem 3.4.1. Let W be a closed and convex subset of a Banach space X and let T : W→W be

a continuous mapping such that T(W) is compact. Then T has at least one fixed point.

We start with the following result.
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Lemma 3.4.2. Given r > 0, set W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.33)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.34)

Then T(W) ⊆W.

Proof. Given φ ∈W, we get from (3.21) (cf. Lemma 3.3.5) that

‖S(φ)‖H1 = ‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}

and hence, thanks to the restriction (3.33), we observe that u = S2(φ) satisfies the assumption

requested in the statement of Lemma 3.3.8. Moreover, the corresponding estimate (3.31) gives

‖T(φ)‖1,Ω = ‖S̃3(φ,u)‖1,Ω ≤ ‖S̃(φ,u)‖H2 = ‖(t,p, φ̃)‖H1

≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
,

(3.35)

which, according to the hypothesis (3.34), guarantees that ‖T(φ)‖1,Ω ≤ r, and hence T(W) ⊆

W.

Next, we will demonstrate the continuity and compactness of T, which will be consequence

of the following Lemmas proving the continuity of S and S̃.

Lemma 3.4.3. There exists a constant C > 0, depending on µ1, k1, k2, Lµ the ellipticity constant α

of Bφ (cf. [2, eq. (3.19)]), and the regularity parameter ε (cf. (3.23)), such that

‖S(φ)− S(ϕ)‖H1 ≤ C
{
‖f‖∞,Ω‖φ− ϕ‖0,Ω + ‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

}
∀φ , ϕ ∈ H1(Ω) . (3.36)

Proof. It follows exactly as in ([2, Lemma 3.9]) irrespective of the fact that now φ ∈ H1(Ω).
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Lemma 3.4.4. There exists C̃ :=
2

α(Ω)
(1 + l21)1/2 max

{
c(Ω), Lγ

}
(cf. (3.8), (3.28)) such that for

all (φ1,u1), (φ2,u2) ∈ H1(Ω)×H1(Ω) with ‖u1‖1,Ω , ‖u2‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there holds

‖S̃(φ1,u1)− S̃(φ2,u2)‖H2 ≤ C̃
{
‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + ‖k‖‖φ1 − φ2‖0,Ω

}
. (3.37)

Proof. Given (φ1,u1), (φ2,u2) ∈ H1(Ω)×H1(Ω) such that ‖u1‖1,Ω and ‖u2‖1,Ω are bounded above

by (3.21), we let

(t1,p1, φ̃1) = S̃(φ1,u1) = (S̃1(φ1,u1), S̃2(φ1,u1), S̃3(φ1,u1)) ∈ H2

and

(t2,p2, φ̃2) = S̃(φ2,u2) = (S̃1(φ2,u2), S̃2(φ2,u2), S̃3(φ2,u2)) ∈ H2 ,

which means

[(A+ B̃u1)(t1,p1, φ̃1), (s,q, ϕ)] = F̃φ1(s,q, ϕ)

and

[(A+ B̃u2)(t2,p2, φ̃2), (s,q, ϕ)] = F̃φ2(s,q, ϕ)

for all (s,q, ϕ) ∈ H2. Then, thanks to the strong monotonicity of A+ B̃u1, we have

α(Ω)

2
‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖2

H2

≤ [(A+ B̃u1)(t1,p1, φ̃1)− (A+ B̃u1)(t2,p2, φ̃2), (t1,p1, φ̃1)− (t2,p2, φ̃2)] ,

(3.38)
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from which, adding and subtracting B̃u2(t2,p2, φ̃2), we find that

α(Ω)

2
‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖2

H2

≤ [(A+ B̃u1)(t1,p1, φ̃1) + B̃u2(t2,p2, φ̃2)− B̃u2(t2,p2, φ̃2)

−(A+ B̃u1)(t2,p2, φ̃2), (t1,p1, φ̃1)− (t2,p2, φ̃2)]

≤ F̃φ1((t1,p1, φ̃1)− (t2,p2, φ̃2))− F̃φ2((t1,p1, φ̃1)− (t2,p2, φ̃2))

+[B̃u2−u1(t2,p2, φ̃2), (t1,p1, φ̃1)− (t2,p2, φ̃2)] .

In this way, using the injections of i : H1(Ω) → L4(Ω) and i : H1(Ω) → L4, and denoting again

c(Ω) := ‖i‖‖i‖ as we did in (3.8), we get

|[B̃u2−u1(t2,p2, φ̃2), (t1,p1, φ̃1)− (t2,p2, φ̃2)]| =
∣∣∣ ∫

Ω

φ̃2(u1 − u2) · {l1(p1 − p2)− (t1 − t2)}
∣∣∣

≤ ‖φ̃2‖L4(Ω)‖u1 − u2‖L4(Ω)(1 + l21)1/2
{
‖p1 − p2‖2

0,Ω + ‖t1 − t2‖2
0,Ω

}1/2

≤ c(Ω)(1 + l21)1/2‖φ̃2‖1,Ω‖u2 − u1‖1,Ω‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖H2

= c(Ω)(1 + l21)1/2‖S̃3(φ2,u2)‖1,Ω‖u2 − u1‖1,Ω‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖H2 ,

(3.39)

whereas the Lipchitz continuity of γ (cf. (2.4)) yields

|F̃φ1((t1,p1, φ̃1)− (t2,p2, φ̃2))− F̃φ2((t1,p1, φ̃1)− (t2,p2, φ̃2))|

=
∣∣∣ ∫

Ω

(γ(φ1)− γ(φ2))k · ((t1 − t2)− l1(p1 − p2))
∣∣∣

≤ Lγ(1 + l21)1/2‖k‖‖φ1 − φ2‖0,Ω‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖H2 .

(3.40)
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In this way, it follows from (3.39) and (3.40) that

‖S̃(φ1,u1)− S̃(φ2,u2)‖H2 = ‖(t1,p1, φ̃1)− (t2,p2, φ̃2)‖H2

≤ 2

α(Ω)
(1 + l21)1/2

{
c(Ω)‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + Lγ‖k‖‖φ1 − φ2‖0,Ω

}
≤ C̃

{
‖S̃3(φ2,u2)‖1,Ω‖u1 − u2‖1,Ω + ‖k‖‖φ1 − φ2‖0,Ω

}
,

with C̃ as indicated, which finishes the proof.

As a consequence of Lemmas 3.4.3 and 3.4.4, we obtain the Lipschitz-continuity of T. More

precisely, we have the following result.

Lemma 3.4.5. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.41)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.42)

Then, with the constants C and C̃ from Lemmas 3.4.3 and 3.4.4, there holds

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

(3.43)

for all φ, ϕ ∈W.

Proof. Given φ and ϕ in W, we first recall from (3.20) that T(φ) := S̃3(φ,S2(φ)) and T(ϕ) :=
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S̃3(ϕ,S2(ϕ)). Then, using Lemmas 3.4.3 and 3.4.4, we deduce that

‖T(φ)−T(ϕ)‖1,Ω = ‖S̃3(φ,S2(φ))− S̃3(ϕ,S2(ϕ))‖1,Ω

≤ ‖S̃(φ,S2(φ))− S̃(ϕ,S2(ϕ))‖H2

≤ C̃
{
‖S̃3(ϕ,υ)‖1,Ω‖u− υ‖1,Ω + ‖k‖‖φ− ϕ‖0,Ω

}
= C̃

{
‖T(ϕ)‖1,Ω‖S2(φ)− S2(ϕ)‖1,Ω + ‖k‖‖φ− ϕ‖0,Ω

}
≤ C̃

{
‖T(ϕ)‖1,Ω‖S(φ)− S(ϕ)‖H1 + ‖k‖‖φ− ϕ‖0,Ω

}
≤ C̃

{
‖T(ϕ)‖1,ΩC

{
‖f‖∞,Ω‖φ− ϕ‖0,Ω + ‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω)

}
+ ‖k‖‖φ− ϕ‖0,Ω

}
= C̃

{
C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖

}
‖φ− ϕ‖0,Ω + CC̃‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖Ln/ε(Ω) ,

which is the required estimate, thus completing the proof.

Next, we prove the required compactness property of T.

Lemma 3.4.6. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.44)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.45)

Then T : W→W is continuous and T(W) is compact.

Proof. We first recall, thanks now to the Rellich-Kondrachov compactness Theorem (cf. [1, The-

orem 3.7]) that the injection i : H1(Ω) → Ls(Ω) is compact, and hence continuous, for each

s ≥ 1 (when n = 2), and for each s ∈ [1, 6) (when n = 3). Then, according to the assumptions

on the further regularity ε (cf. 3.23), that is ε ∈ (0, 1) in R2 and ε ∈ (1
2
, 1) in R3, we realize that n

ε

belongs to the indicated ranges for s. It follows that H1(Ω) is compactly, and hence continuously,
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embedded in Ln/ε(Ω), with constant Ĉ, which together with (3.43) imply

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃Ĉ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖1,Ω ,

(3.46)

from which the continuity of T is obtained. In turn, let {φk}k∈N a sequence that live in W, which

is clearly bounded. It follows that there exist a subsequence {φ(1)
k }k∈N ⊆ {φk}k∈N and φ ∈ H1(Ω)

such that φ(1)
k

w−→ φ. Then, since the injections i : H1(Ω) → L2(Ω) and ĩ : H1(Ω) → Ln/ε(Ω) are

compact, we deduce that φ(1)
k → φ in L2(Ω) and in Ln/ε(Ω), which thanks again to (3.43), implies

that T(φ
(1)
k )→ T(φ) in H1(Ω). This proves the compactness of T(W) and finishes the proof.

Finally, the main result of the section is given as follows.

Theorem 3.4.7. Given r > 0, let W :=
{
φ ∈ H1(Ω) : ‖φ‖1,Ω ≤ r

}
, and assume that the data

satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(3.47)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (3.48)

Then, the augmented fully mixed problem (3.18) has at least one solution
(
(σ,u), (t,p, φ)

)
∈

H1 ×H2 with φ ∈W, and there holds

‖(t,p, φ)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
(3.49)

and

‖(σ,u)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
. (3.50)

Moreover, if the data k, f and uD are sufficiently small so that, with the constant C, C̃ and CS(r)

from Lemmas 3.4.3 and 3.4.4 and the estimate (3.23), there holds

C̃
{
C r
(
‖f‖∞,Ω + ĈC̃S̃(r)

(
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

))
+ ‖k‖

}
< 1 , (3.51)
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then the solution φ is unique in W.

Proof. According to the equivalence between (3.18) and the fixed point equation (3.20), and

thanks to Lemmas 3.4.2 and 3.4.6, the existence of a solution is just a straightforward application

of the Schauder fixed point Theorem (cf. Theorem 3.4.1). In turn, the estimates (3.49) and

(3.50) follow from (3.21) and (3.31), respectively. Furthermore, according to (3.46) we have

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃(C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φ− ϕ‖0,Ω + CC̃Ĉ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω‖φ− ϕ‖1,Ω

≤ C̃
{
C‖T(ϕ)‖1,Ω‖f‖∞,Ω + ‖k‖+ CĈ‖T(ϕ)‖1,Ω‖S1(ϕ)‖ε,Ω

}
‖φ− ϕ‖1,Ω

= C̃
{
C‖T(ϕ)‖1,Ω(‖f‖∞,Ω + Ĉ‖S1(ϕ)‖ε,Ω) + ‖k‖

}
‖φ− ϕ‖1,Ω ,

(3.52)

which, using from (3.35) and (3.23), that

‖T(ϕ)‖1,Ω ≤ ‖S̃(ϕ,S2(ϕ))‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r ,

and

‖S1(ϕ)‖ε,Ω ≤ C̃S̃(r){‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω} ,

leads to

‖T(φ)−T(ϕ)‖1,Ω

≤ C̃
{
C r
(
‖f‖∞,Ω + ĈC̃S̃(r)

(
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

))
+ ‖k‖

}
‖φ− ϕ‖1,Ω.

The foregoing inequality shows that T is a contraction if the condition (3.51) is satisfied, and

hence by the Banach fixed point Theorems we get that φ ∈ H1(Ω) is unique.

We end this section by remarking that the foregoing theorem ensures that, under the assump-

tions (3.47), (3.48) and (3.51) on the data, there exists a unique solution
(
(σ,u), (t,p, φ)

)
∈
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H1 ×H2 of problem (3.18) such that φ ∈W.



Chapter 4
The Galerkin scheme

In this chapter we introduce the Galerkin scheme of the augmented fully mixed formulation

(3.18), and analyze its solvability by employing a discrete version of the fixed point strategy de-

veloped in Section 3.2. To this end, we now let Hσ
h ⊆ HN(div,Ω), Xu

h ⊆ H1(Ω), Yt
h ⊆ L2(Ω),

Hp
h ⊆ HN(div,Ω), and Xφ

h ⊆ H1(Ω), be arbitrary finite element subspaces for approximating

the unknowns σ, u, t, p and φ, respectively, and set H1,h := Hσ
h ×Xu

h and H2,h := Yt
h×Hp

h×X
φ
h .

In this way, the underlying Galerkin scheme, given by the discrete counterpart of (3.18), reads:

Find
(
(σh,uh), (th,ph, φ̃h)

)
∈ H1,h ×H2,h such that

Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h ,[
(A+ B̃uh)(th,ph, φ̃h), (sh,qh, ϕh)

]
= F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h.

(4.1)

Throughout the rest of this section, we adopt the discrete analogue of the fixed point strategy

introduced in Section 3.2. In fact, we now let Sh : Xφ
h → H1,h be the operator defined by

Sh(φh) = (S1,h(φh),S2,h(φh)) := (σh,uh) ∈ H1,h ∀φh ∈ Xφ
h ,

40
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where (σh,uh) ∈ H2,h is the unique solution of the problem

Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h , (4.2)

and Bφh and Fφh are defined by (3.11) and (3.12), respectively, with φ = φh. In addition, we let

S̃h : Xφ
h ×Xu

h → H2,h be the operator defined by

S̃h(φh,uh) = (S̃1,h(φh,uh), S̃2,h(φh,uh), S̃3,h(φh,uh)) := (th,ph, φ̃h) ∈ H2,h ∀(φh,uh) ∈ Xu
h ×X

φ
h ,

where (th,ph, φ̃h) ∈ H2,h is the the unique solution of

[
(A+ B̃uh)(th,ph, φ̃h), (sh,qh, ϕh)

]
= F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h , (4.3)

and B̃uh and F̃φh are defined by (3.16) and (3.17), respectively, with u = uh and φ = φh. Finally,

we define the operator Th : Xφ
h → Xφ

h by

Th(φh) := S̃3,h(φh,S2,h(φh)) ∀φh ∈ Xφ
h , (4.4)

and realize that (4.1) can be rewritten, equivalently, as the fixed point equation: Find φh ∈ Xφ
h

such that

Th(φh) = φh . (4.5)

At this point we remark that all the above makes sense if the discrete problems (4.2) and

(4.3) are well-possed. Indeed, it is easy to see that the respective proofs are almost verbatim as

the continuous versions provided in Section 3 (cf. Lemmas 3.3.5 and 3.3.8). More precisely, we

obtain the following results.

Lemma 4.0.1. Assume that k1 ∈
(

0, 2δµ1
µ2

)
with δ ∈ (0, 2µ1), and that k2, k3 > 0. Then, for each

φh ∈ Xφ
h the problem (4.2) has a unique solution Sh(φh) := (σh,uh) ∈ H1,h. Moreover, with the
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same constant CS > 0 from Lemma 3.3.5, there holds

‖Sh(φh)‖H1 = ‖(σh,uh)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φh‖1,Ω

}
∀φh ∈ Xφ

h .

Proof. Similarly to the proof of Lemma 3.3.5, it is consequence of the uniform H1,h-ellipticity of

the bilinear form Bφh for each φh ∈ Xφ
h . We omit further details and refer to [2, Lemma 4.1].

Lemma 4.0.2. Assume that l1 ∈
(

0, θ1δ
θ̃2

)
and l3 ∈

(
0, θ1δ̃

)
, with δ ∈

(
0, 2

θ̃2

)
and δ̃ ∈ (0, 2), and

that l2, l4 > 0. In addition, let φh ∈ Xφ
h and uh ∈ Xu

h be such that ‖uh‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
. Then

there exists a unique S̃(φh,uh) = (th,ph, φ̃h) ∈ H2,h solution of (3.14), and there holds

‖S̃(φh,uh)‖H2 = ‖(th,ph, φ̃h)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
, (4.6)

where CS̃ =
2

α(Ω)
CF̃φ and CF̃φ = max

{
1, γ2|Ω|1/2‖k‖, γ2|Ω|1/2‖k‖l1, l2, c0l4

}
.

Proof. Similarly to the proof of Lemma 3.3.8, it basically follows by observing that, under the

assumption on ‖uh‖1,Ω, A+ B̃uh : H2,h → H ′2,h becomes Lipschitz-continuous and strongly mono-

tone with the same constants LC := LA + c(Ω)(l22 + 1)1/2‖uh‖1,Ω and
α(Ω)

2
, respectively, given in

the proofs of Lemmas 3.3.6 and 3.3.7. Further details are omitted.

We now aim to show the solvability of (4.1) by analyzing the equivalent fixed point equation

(4.5). To this end, in what follows we verify the hypotheses of the Brouwer fixed point theorem,

which is given as follows (see e.g. [10, Theorem. 9.9-2]).

Theorem 4.0.3. Let W be a compact and convex subset of a finite dimensional Banach space X and

let T : W → W be a continuous mapping. Then T has at least one fixed point.

Then, the discrete form of Lemma 3.4.2 is established next.

Lemma 4.0.4. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.7)
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and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.8)

Then Th(Wh) ⊆Wh.

Proof. It follows directly from Lemmas 4.0.1 and 4.0.2.

The discrete form of Lemma 3.4.3 is provided next. We notice in advance that, instead of

the regularity assumption employed in the proof of that result, which actually is not needed nor

could be applied in the present discrete case, we simply utilize a L4 − L4 − L2 factorization.

Lemma 4.0.5. There exists a constant C > 0, depending on µ1, k1, k2, Lµ the ellipticity constant α

of Bφ (cf. [2, eq. (3.19)]), and the regularity parameter ε (cf. (3.23)), such that

‖Sh(φh)− Sh(ϕh)‖H1 ≤ C
{
‖f‖∞,Ω‖φh − ϕh‖0,Ω + ‖S1,h(ϕh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

}
(4.9)

for all φh , ϕh ∈ Xφ
h .

Proof. The proof is the same as in [2, Lemma 4.5] .

Now, the discrete analogue of Lemma 3.4.4 is stated as follows.

Lemma 4.0.6. There exists C̃ :=
2

α(Ω)
(1 + l21)1/2 max

{
c(Ω), Lγ

}
(cf. (3.8), (3.28)) such that for

all (φ1,h,u1,h), (φ2,h,u2,h) ∈ Xφ
h ×Xu

h with ‖u1,h‖1,Ω , ‖u2,h‖1,Ω ≤
α(Ω)

2c(Ω)(1 + l21)1/2
, there holds

‖S̃h(φ1,h,u1,h)− S̃h(φ2,h,u2,h)‖H2

≤ C̃
{
‖S̃3,h(φ2,h,u2,h)‖1,Ω‖u1,h − u2,h‖1,Ω + ‖k‖‖φ1,h − φ2,h‖0,Ω

}
.

(4.10)

Proof. The proof is analogous to the one of Lemma 3.4.4.

Then, using Lemmas 4.0.5 and 4.0.6, the following result is proved.
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Lemma 4.0.7. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

, and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.11)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.12)

Then, with the constants C and C̃ from, Lemmas 4.0.5 and 4.0.6, there holds

‖Th(φh)−Th(ϕh)‖1,Ω ≤ C̃(C‖Th(ϕh)‖1,Ω‖f‖∞,Ω + ‖k‖)‖φh − ϕh‖0,Ω

+ C C̃‖Th(ϕh)‖1,Ω‖S1,h(ϕh)‖L4(Ω)‖φh − ϕh‖L4(Ω)

(4.13)

for all φh, ϕh ∈ Xφ
h .

Therefore, using Lemma 4.0.7 and the continuous injection of H1(Ω) in L4(Ω), we deduce

that Th is continuous, and hence, thanks to the Brouwer fixed point theorem (cf. Theorem

4.0.3), and Lemmas 4.0.4 and 4.0.7, we obtain the main result of this section.

Theorem 4.0.8. Given r > 0, let Wh :=
{
φh ∈ Xφ

h : ‖φh‖1,Ω ≤ r
}

and assume that the data satisfy

CS

{
‖uD‖1/2,ΓD + r‖f‖∞,Ω

}
≤ α(Ω)

2c(Ω)(1 + l21)1/2
(4.14)

and

CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
≤ r . (4.15)

Then, the augment fully mixed scheme (4.1) has at least one solution
(
(σh,uh), (th,ph, φ̃h)

)
∈

H1,h ×H2,h with φ̃h ∈Wh, and there holds

‖(th,ph, φh)‖H2 ≤ CS̃

{
‖φD‖1/2,ΓD + 2‖k‖+ 2‖g‖0,Ω + ‖φD‖0,ΓD

}
(4.16)



CHAPTER 4. THE GALERKIN SCHEME 45

and

‖(σh,uh)‖H1 ≤ CS

{
‖uD‖1/2,ΓD + ‖f‖∞,Ω‖φ‖1,Ω

}
. (4.17)



Chapter 5
A priori error analysis

Let
(
(σ,u), (t,p, φ)

)
∈ H1 × H2, with φ ∈ W, and

(
(σh,uh), (th,ph, φh)

)
∈ H1,h × H2,h, with

φh ∈Wh, be solutions of (3.18) and (4.1), respectively, that is

Bφ((σ,u), (τ ,υ)) = Fφ(τ ,υ) ∀ (τ ,υ) ∈ H1 ,

Bφh((σh,uh), (τ h,υh)) = Fφh(τ h,υh) ∀ (τ h,υh) ∈ H1,h ,
(5.1)

and

[(A+ B̃u)(t,p, φ), (s,q, ϕ)] = F̃φ(s,q, ϕ) ∀ (s,q, ϕ) ∈ H2 ,

[(A+ B̃uh)(th,ph, φh), (sh,qh, ϕh)] = F̃φh(sh,qh, ϕh) ∀ (sh,qh, ϕh) ∈ H2,h .

(5.2)

We now aim to derive a corresponding a priori error estimate. For this purpose, we recall from

[21] a Strang-type lemma, which will be utilized in our subsequent analysis.

Lemma 5.0.1. Let H be a Hilbert space, F ∈ H ′, and A : H → H ′ a nonlinear operator. In

addition, let {Hn}n∈N be a sequence of finite dimensional subspaces of H, and for each n ∈ N

consider a nonlinear operator An : Hn → Hn and a functional Fn ∈ H ′n. Assume that the family

{A} ∪ {An}n∈N is uniformly Lipschitz continuous and strongly monotone with constants ΛLC and

46
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ΛSM , respectively. In turn, let u ∈ H and un ∈ Hn such that

[A(u), v] = [F, v] ∀ v ∈ H and [An(un), vn] = [Fn, vn] ∀ vn ∈ Hn ,

where [·, ·] denotes the duality pairings of both H ′ ×H and H ′n ×Hn . Then for each n ∈ N there

holds

‖u− un‖H ≤ ΛST

{
sup
wn∈Hn
wn 6=0

|[F,wn]− [Fn, wn]|
‖wn‖H

+ inf
vn∈Hn
vn 6=0

‖u− vn‖H + sup
wn∈Hn
wn 6=0

|[A(vn), wn]− [An(vn), wn]|
‖wn‖H

} ,
with ΛST := Λ−1

SM max {1, ΛSM + ΛLC}.

Proof. It is a particular case of [21, Theorem. 6.4].

We begin our analysis defining and denoting as usual

dist((σ,u), H1,h) := inf
(τ h,υh)∈H1,h

‖(σ,u)− (τ h,υh)‖H1

dist((t,p, φ), H2,h) := inf
(sh,qh,ϕh)∈H2,h

‖(t,p, φ)− (sh,qh, ϕh)‖H2 .

Then, we have the following result concerning the error ‖(t,p, φ)− (th,ph, φh)‖H1.

Lemma 5.0.2. Let C̃ST := 2
α(Ω)

max
{

1, α(Ω)
2

+ LA

}
(cf. Lemmas 3.3.6 and 3.3.7). Then, there

holds
‖(t,p, φ)− (th,ph, φh)‖H1 ≤ C̃ST

{
Lγ‖k‖(1 + l21)1/2‖φ̃− φ̃h‖0,Ω

+ (1 + l21)1/2c(Ω)‖u− uh‖1,Ω‖φ̃‖1,Ω

+
(

1 + (1 + l21)1/2c(Ω)‖u− uh‖1,Ω

)
dist((t,p, φ), H2,h)

}
.

(5.3)

Proof. We begin by observing, thanks to Lemmas 3.3.6, 3.3.7 and 4.0.2, that A+ B̃u and A+ B̃uh
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are Lipschitz-continuous and strongly monotone with constants LA := 4 max{θ̃2, 1, l1, l1θ̃2, l2, l3, l4c0}

and α(Ω)
2

, respectively. Then, by applying the abstract Lemma 5.0.1 to the context given by (5.2)

we have

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C̃ST

{
sup

(sh,qh,ϕh)∈H2,h

wn 6=0

|F̃φ(sh,qh, ϕh)− F̃φh(sh,qh, ϕh)|
‖(sh,qh, ϕh)‖H2

+ inf
(rh,oh,ψh)∈H2,h

(rh,oh,ψh) 6=0

(
‖(t,p, φ)− (rh,oh, ψh)‖H2

+ sup
(sh,qh,ϕh)∈H2,h

(sh,qh,ϕh) 6=0

|[(A+ B̃u)(rh,oh, ψh), (sh,qh, ϕh)]− [(A+ B̃uh)(rh,oh, ψh), (sh,qh, ϕh)]|
‖(sh,qh, ϕh)‖H2

)}
,

(5.4)

where C̃ST := 2
α(Ω)

max
{

1, α(Ω)
2

+ LA

}
. Then, using the Cauchy Schwarz inequality, we obtain

that

|F̃φ((sh,qh, ϕh)) − F̃φh((sh,qh, ϕh))| =
∣∣∣ ∫

Ω

(γ(φ)− γ(φh))k · (sh − l1qh)
∣∣∣

≤ Lγ ‖k‖
∫

Ω

|φ− φh| |sh − l1qh|

≤ Lγ ‖k‖ (1 + l21)1/2 ‖φ− φh‖0,Ω ‖(sh,qh, ϕh)‖H2 ,

and hence

sup
(sh,qh,ϕh)∈H2,h

wn 6=0

|F̃φ((sh,qh, ϕh))− F̃φh((sh,qh, ϕh))|
‖(sh,qh, ϕh)‖H2

≤ Lγ‖k‖(1 + l21)1/2‖φ− φh‖0,Ω. (5.5)

In order to estimate the supreme, we notice that adding and subtracting B̃u−uh(t,p, φ), we find
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that

|[(A+ B̃u)(rh,oh, ψh), (sh,qh, ϕh)]− [(A+ B̃uh)(rh,oh, ψh), (sh,qh, ϕh)]|

= [B̃u−uh(rh,oh, ψh), (sh,qh, ϕh)]

= [B̃u−uh(rh,oh, ψh), (sh,qh, ϕh)] + [B̃u−uh(t,p, φ), (sh,qh, ϕh)]− [B̃u−uh(t,p, φ), (sh,qh, ϕh)]

=

∫
Ω

(ψh − φ)(u− uh) · (l1q− sh) +

∫
Ω

φ(u− uh) · (l1q− sh)

≤ c(Ω)(1 + l21)1/2‖u− uh‖1,Ω

{
‖ψh − φ‖1,Ω + ‖φ‖1,Ω

}
‖(sh,qh, ϕh)‖H2 .

(5.6)

In this way, replacing (5.5) and (5.6) back into (5.4), we arrive to (5.3) and conclude the

proof.

The following lemma provides a preliminary estimate for the error ‖(σ,u)− (σh,uh)‖H1.

Lemma 5.0.3. Let CST := α−1 max
{

1, α + ‖B‖
}

, where ‖B‖ and α are the boundedness and

ellipticity constants, respectively, of the bilinear forms Bφ (cf. [2, Lemma 3.9]). Then there holds

‖(σ,u)− (σh,uh)‖H1 ≤ CST

{(
1 + 2‖B‖

)
dist((σ,u), H1,h)

+(1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

Cε‖σ‖ε,Ω‖φ− φh‖Ln/ε(Ω)

}
.

(5.7)

Proof. See the proof in [2, Lemma 5.3].

Now, combining the inequalities provided by Lemmas 5.0.2 and 5.0.3 we obtain the Cea

estimate for the total error ‖(σ,u)− (σh,uh)‖H1 + ‖(t,p, φ)− (th,ph, φh)‖H2.

Theorem 5.0.4. Assume that the data k, f and uD are sufficiently small so that

C1‖k‖+ Ĉ2‖f‖∞,Ω + Ĉ3‖uD‖1/2+ε,ΓD <
1

2
, (5.8)

where the constants C1, Ĉ2, and Ĉ3 will be defined along the proof below. Then, there exist positive
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constants Ĉ4 and Ĉ5, depending only on parameters, data, and other constants, all them indepen-

dent of h, such that

‖(σ,u)− (σh,uh)‖H1 + ‖(t,p, φ)− (th,ph, φh)‖H2

≤ Ĉ4 dist((σ,u), H1,h) + Ĉ5 dist((t,p, φ), H2,h).

(5.9)

Proof. In order to simplify the subsequent writing, we first introduce the following constants

C1 := Lγ(1 + l21)1/2C̃ST , and C2 := (1 + l21)1/2c(Ω)C̃ST .

Therefore (5.3) becomes

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω

+C2‖φ‖1,Ω‖u− uh‖1,Ω + C̃ST dist((t,p, φ), H2,h) + C2‖u− uh‖1,Ω dist((t,p, φ), H2,h).

Now, replacing the second term ‖u− uh‖1,Ω by the bound given by (5.7), and noticing that

thanks to (3.23)

‖σ‖ε,Ω ≤ C̃(r)
{
‖uD‖1/2+ε,ΓD + ‖f‖∞,Ω‖φ‖0,Ω

}
,

and that ‖φ‖1,Ω ≤ r, we get

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω + C2rCST

{
(1 + 2‖B‖)dist((σ,u), H1,h)

+ (1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

CεC̃(r)
{
‖uD‖1/2+ε,ΓD

+ r‖f‖∞,Ω
}
‖φ− φh‖Ln/ε(Ω)

}
+ C̃ST dist((t,p, φ), H2,h) + C2‖u− uh‖1,Ω dist((t,p, φ), H2,h).

Besides, since u and uh are controled by the data according to (3.50) and (4.17), we obtain from
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the foregoing inequality that

‖(t,p, φ)− (th,ph, φh)‖H2 ≤ C1‖k‖‖φ− φh‖0,Ω + C2rCST

{
(1 + 2‖B‖)dist((σ,u), H1,h)

+(1 + k2
2)1/2‖f‖∞,Ω‖φ− φh‖0,Ω +

Lµ(1 + k2
1)1/2

µ2
1

CεC̃(r)
{
‖uD‖1/2+ε,ΓD

+ r‖f‖∞,Ω
}
‖φ− φh‖Ln/ε(Ω)

}
+ C̃ST dist((t,p, φ), H2,h) + 2C2CS

(
‖uD‖1/2,ΓD

+ r‖f‖∞,Ω
)

dist((t,p, φ), H2,h)

(5.10)

Then, utilizing the continuous injection of H1(Ω) into Ln/ε(Ω), with constant C̃ε, and defining

the constants

C3 :=
Lµ(1 + k2

1)1/2

µ2
1

CεC̃εC̃(r) and C4 := CST (1 + 2‖B‖) ,

the estimate (5.10) yields

‖(t,p, φ)− (th,ph, φh)‖H2 ≤
(
C1‖k‖+ rC2CST

{
(1 + k2

2)1/2 + rC3

}
‖f‖∞,Ω

+rC2C3CST‖uD‖1/2+ε,ΓD

)
‖(t,p, φ)− (th,ph, φh)‖H2 + rC2C4 dist((σ,u), H1,h)

+
(
C̃ST + 2C2CS{‖uD‖1/2,ΓD + r‖f‖∞,Ω}

)
dist((t,p, φ), H2,h)

(5.11)

On the other hand, the error estimate (5.7) can be rewritten as

‖(σ,u)− (σh,uh)‖H1 ≤ C4 dist((σ,u), H1,h) + CST

({
1 + k2

2)1/2 + rC3

}
‖f‖∞,Ω

+ C3‖uD‖1/2+ε,ΓD

)
‖(t,p, φ)− (th,ph, φh)‖H2 .

(5.12)

Consequently, combining the foregoing inequalities and defining the constants

Ĉ2 := CST{(1 + k2
2)1/2 + rC3}(rC2 + 1) and Ĉ3 := CSTC3(1 + rC2),

we arrive at (5.9) and conclude the proof.

At this point we highlight that the well-posedness of the decoupled discrete problems (4.2)

and (4.3) (cf. Lemmas 4.0.1 and 4.0.2), as well as the existence of solution of the resulting aug-
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mented fully-mixed scheme (4.1) (cf. Theorem 4.0.8), and the associated a priori error estimate

provided by Theorem 5.0.4, are all valid for arbitrary finite element subspaces approximating

the corresponding unknowns. As previously remarked, we stress once again that this fact is

consequence of the properties satisfied by the continuous and discrete bilinear forms and non-

linear operators involved, thanks to which no discrete inf-sup conditions to be satisfied by the

aforementioned subspaces are required.

Having said the above, we now let Th be a regular triangulation of Ω by triangles K (or

tetrahedra in R3) of diameter hK , and define the mesh size h := max {hK : K ∈ Th}. In addition,

given a generic integer ` ≥ 0, for each K ∈ Th we let P`(K) be the space of polynomial functions

on K of degree ≤ `, and define the corresponding local Raviart-Thomas space of order ` as

RT`(K) := P`(K)⊕P`(K) x, where, according to the notations described in Section 1, P`(K) =

[P`(K)]n and x is the generic vector in Rn. Then, given a particular integer k ≥ 0, we introduce

next the explicit finite element subspaces to be employed in the numerical results reported below

in Section 6:

Hσ
h :=

{
τ h ∈ HN(div,Ω) : ctτ h|K ∈ RTk(K) ∀c ∈ Rn ∀K ∈ Th

}
, (5.13)

Xu
h :=

{
υh ∈ C(Ω) : υh|K ∈ Pk+1(K) ∀K ∈ Th

}
, (5.14)

Yt
h :=

{
sh ∈ L2(Ω) : sh|K ∈ Pk(K) ∀K ∈ Th

}
, (5.15)

Hp
h :=

{
τ h ∈ HN(div,Ω) : τ h|K ∈ RTk(K) ∀K ∈ Th

}
, (5.16)

Xφ
h :=

{
ϕ ∈ C(Ω) : ϕ|K ∈ Pk+1(K) ∀K ∈ Th

}
. (5.17)

In turn, the corresponding approximation properties are as follows:

(APσ
h ) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each
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τ ∈ Hs(Ω) ∩HN(div,Ω) with div τ ∈ Hs(Ω), there holds

dist(τ ,Hσ
h ) ≤ Chs

{
‖τ‖s,Ω + ‖div τ‖s,Ω

}
.

(APu
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

υ ∈ Hs+1(Ω), there holds

dist(υ,Xu
h) ≤ Chs‖υ‖s+1,Ω .

(APt
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

r ∈ Hs(Ω), there holds

dist(r,Yt
h) ≤ Chs‖r‖s,Ω .

(APp
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

q ∈ Hs(Ω) ∩HN(div,Ω) with div q ∈ Hs(Ω), there holds

dist(q,Hp
h) ≤ Chs

{
‖q‖s,Ω + ‖div q‖s,Ω

}
.

(APφ
h) there exists C > 0, independent of h, such that for each s ∈ (0, k + 1], and for each

ϕ ∈ Hs+1(Ω), there holds

dist(ϕ,Xφ
h ) ≤ Chs‖ϕ‖s+1,Ω .

In this way, the convergence rates of the Galerkin scheme are stated as follows.

Theorem 5.0.5. In adition to the hypotheses of Theorems 3.4.7, 4.0.8 and 5.0.4, assume that

there exists s > 0 such that σ ∈ Hs(Ω), divσ ∈ Hs(Ω), u ∈ Hs+1(Ω), t ∈ Hs(Ω), p ∈ Hs(Ω),

div p ∈ Hs(Ω) and φ ∈ Hs+1(Ω). Then, there exists Ĉ > 0, independent of h, such that, with the
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finite element subspaces defined by (5.13) – (5.17), there holds

‖(t,p, φ)− (th,ph, φh)‖H1 + ‖(σ,u)− (σh,uh)‖H2 ≤ Ĉhmin{s,k+1}
{
‖σ‖s,Ω

+‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖p‖s,Ω + ‖div p‖s,Ω + ‖t‖s,Ω + ‖φ‖1+s,Ω

} (5.18)

Proof. It follows directly from the Cea estimate (5.8) and the above approximation properties.



Chapter 6
Numerical results

In this section we present some examples illustrating the performance of our augmented fully-

mixed finite element 4.1 on a set of quasi-uniform triangulations of the corresponding domains

and considering the finite element spaces introduced in Section 5. Our implementation is based

on a FreeFem++ code (see [22]), in conjuntion with the direct nonlinear solvers UMFPACK (see

[14]) and MUMPS. A Newton algorithm with a fixed given tolerance tol has been used for the

corresponding fixed-point problem (4.5) and the iterations are terminated once the relative error

of the entire coefficient vectors between two consecutive iterates, say coeffm and coeffm+1, is

sufficiently small, i.e.,
‖coeffm+1 − coeffm‖

‖coeffm+1‖
≤ tol ,

where ‖ · ‖ stands for the usual euclidean norm in RN , with N denoting the total number of

degrees of freedom defining the finite element subspaces Hσ
h , Xu

h , Yt
h, Hp

h and Xφ
h . The stabi-

lization parameters are chosen according to the ranges indicated in Lemmas 4.0.1 and 4.0.2 (see

also Lemmas 3.3.5 and 3.3.7).

We now introduce some additional notation. The individual and total errors are denoted by:

e(σ) := ‖σ − σh‖div ;Ω , e(u) := ‖u− uh‖1,Ω ,
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e(t) := ‖t− th‖0,Ω , e(p) := ‖p− ph‖div ;Ω , e(φ) := ‖φ− φh‖1,Ω .

Next, as usual, we let r(·) be the experimental rate of convergence given by

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(σ) :=

log(e(u)/ê(u))

log(h/ĥ)
,

r(t) :=
log(e(t)/ê(t))

log(h/ĥ)
, r(p) :=

log(e(p)ê(p))

log(h/ĥ)
, r(φ) :=

log(e(φ)/ê(φ))

log(h/ĥ)
,

where h and ĥ denote two consecutive meshsizes with errors e and ê, respectively.

Example 1. In our first example we illustrate the accuracy of our method in 2D by con-

sidering a manufactured exact solution defined on Ω := (0, 1)2. We introduce the coefficients

µ(φ) = (1− cφ)−2, γ(φ) = cφ(1− cφ)2, ϑ(|t|) = m1 +m2(1 + |t|2)m3/2−1, and the source terms on

the right hand sides are adjusted in such a way that the exact solutions are given by the smooth

functions

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)) , t = ∇φ ,

u(x1, x2) =

 sin(2πx1) cos(2πx2)

− cos(2πx1) sin(2πx2)

 , σ = µ(φ)∇u− (x2
1 − x2

2)I ,

for (x1, x2) ∈ Ω. We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2 and set ΓD = ∂Ω, where φ

vanishes and uD is imposed accordingly to the exact solution. The mean value of trσh over Ω

is fixed via Lagrange multiplier strategy. As defined above, the scalar field φ is bounded in Ω

and so the coefficients are also bounded. In particular we have µ1 = 0.99, µ2 = 3.35, ϑ1 = 0.81,

ϑ2 = 1 and ϑ̃2 = 1.19. Therefore, the stabilization constants are chosen as κ1 = µ2
1/µ2 = 0.2976,

κ2 = 1/µ2 = 0.2985, κ3 = κ1/2 = 0.1488, l1 = ϑ1/ϑ̃
2
2 = 0.5720, l2 = l1/2 = 0.2860, l3 =

ϑ1/2 = 0.4050 and l4 = 0.2025. The domain is partitioned into quasi-uniform meshes with 2n+ 3,

n=0,1,...,8 vertices on each side of the domain. Values and plots of errors and corresponding

rates associated to RTk − Pk+1 − Pk − RTk − Pk+1 approximations with k = 0 and k = 1 are

summarized in Table 6.0.1 and Figure 6.0.1, respectively, where we observe convergence rates of

O(hk+1) for stresses, velocities, gradient of velocities and the scalar fields in the relevant norms.
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These findings are in agreement with the theoretical error bounds of Section 5 (cf. 5.18).

Example 2. Our second test focuses on the case where, under quasi-uniform mesh refinement

the convergence rates are affected by a non-convex domain Ω = (0, 1)2 \ [0.5, 1]2, where an

exact solution to (2.6) and the functions µ, ϑ and γ are given as in the previous test. In this

case, b = 3, c = m1 = m2 = 1/2, m3 = 3/2. Now the boundary is indeed split into ΓN =

(0.5, 1)×(0.5, 1)∪(0.5, 1)×(0.5, 1) and ΓD = ∂Ω\ΓN . Values and plots of errors and corresponding

rates associated to RTk − Pk+1 − Pk − RTk − Pk+1 approximations with k = 0 and k = 1 are

summarized in Table 6.0.2 and Figure 6.0.2. We can see that with respect to Example 1, a more

refined mesh is required to reach the convergence orders indicated by the theory.

Example 3. In this example, we consider Ω = (0, 1)3. The functions µ, ϑ and γ are established

as in Example 1. With respect to boundary conditions, we impose Neumann conditions on

ΓN := [0, 1]2 × {1} and Dirichlet conditions on the rest of the boundary, that is, ΓD := ∂Ω \ ΓN .

We consider boundary data φD and source therms f and g such that the exact solution is given

by

φ(x1, x2, x3) = b− b exp(x1(x1 − 1)x2(x2 − 1)x3(x3 − 1)) , t = ∇φ ,

u(x1, x2, x3) =


sin(πx1) cos(πx2)cos(πx3)

− cos(πx1) sin(πx2)cos(πx3)

cos(πx1) cos(πx2) sin(πx3)

 , σ = µ(φ)∇u− (x1 − 0.5)3 sin(x3 + x2)I ,

We take b = 15, c = m1 = m2 = 1/2, m3 = 3/2. Concerning the stabilization parameters, we take

them again as in Example 1. Part of the solution is show in Figure 6.0.3, and a convergence his-

tory for a set of quasi-uniform mesh refinements is shown in Table 6.0.3,thus showing also that,

having the problem a smooth exact solution, this fully-mixed finite element method converges

optimally with order O(h) (when using a first order element).

Example 4. To conclude, we replicate Example 2 in a three-dimensional setting. The domain

consists on the polyhedral region Ω = (0, 1)3 \ [0.5, 1]3, where we impose Neumann conditions

on ΓN := [0.5, 1]3 and ΓD = Ω \ ΓN . All parameters and functions are taken as in the previous
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Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)
307 58.1408 7.5339 0.6924 1.4120 0.8780
463 48.2946 6.0966 0.5832 1.1562 0.7111
871 35.2493 4.0013 0.2765 0.8584 0.5127

2071 22.6828 2.2054 0.1594 0.5616 0.3278
6007 13.1637 1.1324 0.0862 0.3291 0.1899
20023 7.1376 0.5799 0.1792 0.1792 0.1031

h r(σ) r(u) r(t) r(p) r(φ)
0.3536 - - - - -
0.2828 0.8315 0.9486 0.7691 0.8957 0.9451
0.2020 0.9358 1.2516 0.8973 0.8852 0.9718
0.1286 0.9753 1.3179 0.9827 0.9386 0.9899
0.0744 0.9956 1.2196 1.0082 0.9775 0.9983
0.0404 1.0019 1.0955 1.0050 0.9944 0.9999

Augmented RT1 −P2 −P1 −RT1 − P2

DOF e(σ) e(u) e(t) e(p) e(φ)
821 19.8155 1.8648 0.1152 0.3691 0.1282
1245 13.5241 1.1568 0.0736 0.2709 0.0821
2357 7.2093 0.5596 0.0375 0.1557 0.0418
5637 2.9893 0.2150 0.0151 0.0692 0.0168

16421 1.0124 0.0694 0.0051 0.0232 0.0056
54885 0.2993 0.0201 0.0014 0.0067 0.0016

h r(σ) r(u) r(t) r(p) r(φ)
0.3536 - - - - -
0.2828 1.7118 2.1398 2.0101 1.3860 1.9978
0.2020 1.8697 2.1584 2.0047 1.6472 2.0094
0.1286 1.9477 2.1162 2.0057 1.7938 2.0105
0.0744 1.9810 2.0680 2.0009 2.0015 2.0056
0.0404 1.9985 2.0086 1.9999 1.9924 2.0004

Table 6.0.1: Convergence history for Example 1, with a quasi-uniform mesh refinement and a
tolerance of 10−6. For the first order approximation, the first and second simulations took 8
fixed-point iterations, the third took 7 fixed-point iterations and the last three simulations took 6
fixed-point iterations. For the second order approximation all the simulations took 6 fixed-point
iterations.

Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)
297 33.0811 4.1740 0.1191 0.2584 0.1388
625 21.0794 2.6568 0.0759 0.1784 0.0774

1585 13.0911 1.4813 0.0481 0.1082 0.0487
4769 7.3657 0.7983 0.0278 0.0642 0.0281
16753 3.8631 0.4073 0.0145 0.0332 0.0145
60465 1.9959 0.2113 0.0075 0.0173 0.0075

230321 1.0120 0.1079 0.0038 0.0088 0.0038
907393 0.5099 0.0544 0.0019 0.0044 0.0019

h r(σ) r(u) r(t) r(p) r(φ)
0.3601 - - - - -
0.2372 1.0797 1.0823 1.0801 0.8871 1.3973
0.1491 1.0266 1.2589 0.9799 1.0785 0.9980
0.0855 1.0328 1.1102 0.9817 0.9369 0.9838
0.0452 1.9810 1.0578 1.0261 1.0338 1.0392
0.0264 1.2293 1.2218 1.2127 1.2112 1.2124
0.0152 1.2379 1.2247 1.2248 1.2301 1.2297
0.0072 0.9223 0.9196 0.9259 0.9299 0.9253

Augmented RT1 −P2 −P1 −RT1 − P2

DOF e(σ) e(u) e(t) e(p) e(φ)
791 9.0327 1.0919 0.0169 0.0525 0.0166
1683 3.9097 0.4354 0.0075 0.0201 0.0074
4303 1.5381 0.1594 0.0028 0.0076 0.0027

13019 0.4787 0.0486 0.0009 0.0025 0.0008
45895 0.1304 0.0135 0.0002 0.0006 0.0002
165943 0.0364 0.0036 6.8348e-05 0.0001 6.5972e-05
632727 0.0094 0.0009 1.8102e-05 4.8961e-05 1.7185e-05

2494035 0.0024 0.0002 4.5159e-05 1.2450e-05 4.3366e-06
h r(σ) r(u) r(t) r(p) r(φ)

0.3601 - - - - -
0.2372 2.0062 2.2026 1.9655 2.2902 1.9391
0.1491 2.2547 2.2547 2.1678 2.1729 2.2159
0.0855 2.0640 2.0640 1.9845 1.9029 1.9925
0.0452 2.0137 2.0137 2.0442 2.0466 2.0291
0.0264 2.4374 2.4374 2.4015 2.4169 2.4171
0.0154 2.5301 2.5620 2.4866 2.5427 2.5177
0.0072 1.8050 1.8023 1.8330 1.8076 1.8178

Table 6.0.2: Convergence history for Example 2, with a quasi-uniform mesh refinement and a
tolerance of 10−6. For the first and second order approximation, all simulations took 7 fixed-point
iterations.

test. Part of the solution is show in Figure 6.0.4, and a convergence history for a set of quasi-

uniform mesh refinements is shown in Table 6.0.4. We can see that with respect to Example 3,

the convergence rate of σ is affected.
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Figure 6.0.1: Numerical Results for Example 1: From left to right and from up to down: ap-
proximation of scalar field concentration φh , gradient component of concentration th, stress
components σh and velocity components uh. Snapshots obtained from a simulation with 54 885
DOF.
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Figure 6.0.2: Numerical Results for Example 2: From left to right and from up to down: ap-
proximation of scalar field concentration φh , gradient component of concentration th, stress
components σh and velocity components uh. Snapshots obtained from a simulation with 230 321
DOF.
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Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)
5108 18.9903 2.5832 0.1557 0.5325 0.2445
9714 16.7408 2.0745 0.1265 0.4308 0.1997
25862 13.2246 1.4643 0.0917 0.3106 0.1452
97662 9.0988 0.9101 0.0589 0.1987 0.0935

493358 5.5202 0.5155 0.0342 0.1153 0.0544
h r(σ) r(u) r(t) r(p) r(φ)

0.3601 - - - - -
0.2372 0.5650 0.9828 0.9282 0.9497 0.9081
0.1491 0.7007 1.0352 0.9562 0.9722 0.9454
0.0855 0.8273 1.0522 0.9788 0.9877 0.9741
0.0452 0.9143 1.0398 0.9919 0.9901 0.9901

Table 6.0.3: Convergence history for Example 3, with a quasi-uniform mesh refinement and
first order approximation. The first simulatons took 9 fixed-point iterations and the rest took 8
fixed-point iterations with a tolerance tol= 10−8.

Augmented RT0 −P1 −P0 −RT0 − P1

DOF e(σ) e(u) e(t) e(p) e(φ)
2032 19.8915 2.7683 0.1885 0.6237 0.3009
4548 16.7019 2.1680 0.1468 0.4790 0.2369
14602 12.6054 1.4720 0.1006 0.3255 0.1620
64974 8.4005 0.8881 0.0613 0.1970 0.0984

369094 5.0242 0.4943 0.0342 0.1098 0.0549
h r(σ) r(u) r(t) r(p) r(φ)

0.4714 - - - - -
0.3535 0.6075 0.8496 0.8699 0.9174 0.8305
0.2357 0.6940 0.9549 0.9314 0.9530 0.9378
0.1414 0.7944 0.9890 0.9696 0.9821 0.9757
0.0785 0.8744 0.9968 0.9892 0.9941 0.9919

Table 6.0.4: Convergence history for Example 4, with a quasi-uniform mesh refinement and first
order approximation. All simulatons took 6 fixed-point iterations with a tolerance tol= 10−8.
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Figure 6.0.3: Numerical Results for Example 3: From left to right and from up to down: ap-
proximation of scalar field concentration φh , gradient of concentration th, velocity uh and stress
components σh. Snapshots obtained from a simulation with 493 358 DOF.



CHAPTER 6. NUMERICAL RESULTS 63

0.0572 0.114 0.172 -7.02e-35 0.229
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Figure 6.0.4: Numerical Results for Example 4: From left to right and from up to down: approx-
imation of scalar field concentration φh , gradient of concentration th, velocity components uh,
stress components σh. Snapshots obtained from a simulation with 369 094 DOF.



Chapter 7
Conclusions and Future Work

7.1 Conclusions

According to the results presented in this thesis, we can state the following conclusions:

• We developed a new fully-mixed formulation for the coupled problem given by the Stokes

and transport equations, which has the advantage of approximating additional variables

that are of physical interest, such as the gradient of the concentration.

• We derived sufficient conditions guaranteing the well-posedness of this new continuous

formulation.

• We showed that discrete inf-sup conditions are not required for the stability of the associ-

ated Galerkin scheme, and therefore arbitrary finite element subspaces can be used, which

is one of the main advantages of this approach.

• We proved that the augmented mixed-primal finite element method proposed here is opti-

mally convergent, which has been confirmed by several numerical examples.
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7.2 Future Work

Future work related to these results may include:

• To apply the approach carried out in this work to the sedimentation-consolidation system

studied in [3].

• To develop the corresponding a posteriori error analysis.

• To extend the analysis and results to the unsteady state case.
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