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que el documento se trata. Me disculpo por cualquier omisión.

Primeramente, quiero agradecer a mi familia, a mi madre Blanca Hidalgo y padre Leonel

Carrasco, quienes me apoyaron férreamente en todo este proceso, por todas las sopas de pollo
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Abstract

In this thesis we introduce and analyze new Banach spaces-based mixed finite element meth-

ods for the stationary nonlinear problem arising from the coupling of the convective Brinkman-

Forchheimer equations with a double diffusion phenomenon. Besides the velocity and pressure

variables, the symmetric stress and the skew-symmetric vorticity tensors are introduced as

auxiliary unknowns of the fluid. Thus, the incompressibility condition allows to eliminate the

pressure, which, along with the velocity gradient and the shear stress, can be computed af-

terwards via postprocessing formulae depending on the velocity and the aforementioned new

tensors. Regarding the diffusive part of the coupled model, and additionally to the tempera-

ture and concentration of the solute, their gradients and pseudoheat/pseudodiffusion vectors

are incorporated as further unknowns as well. The resulting mixed variational formulation,

settled within a Banach spaces framework, consists of a nonlinear perturbation of, in turn, a

nonlinearly perturbed saddle-point scheme, coupled with a usual saddle-point system. A fixed-

point strategy, combined with classical and recent solvability results for suitable linearizations

of the decoupled problems, including in particular, the Banach-Nečas-Babuška theorem and the

Babuška-Brezzi theory, are employed to prove, jointly with the Banach fixed-point theorem, the

well-posedness of the continuous and discrete formulations. Both PEERS and AFW elements

of order ℓ ě 0 for the fluid variables, and piecewise polynomials of degree ď ℓ together with

Raviart-Thomas elements of order ℓ for the unknowns of the diffusion equations, constitute

feasible choices for the Galerkin scheme. In turn, optimal a priori error estimates, including

those for the postprocessed unknowns, are derived, and corresponding rates of convergence are

established. Finally, several numerical experiments confirming the latter and illustrating the

good performance of the proposed methods, are reported.
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Resumen

En esta tesis introducimos y analizamos nuevos métodos de elementos finitos mixtos basados

en espacios de Banach para el problema estacionario no lineal que surge del acoplamiento de las

ecuaciones de Brinkman-Forchheimer convectivas con el fenómeno de doble diffusión. Además

de la velocidad y la presión, los tensores de esfuerzo y de vorticidad, los cuales son simétrico

y antisimétrico respectivamente, se introducen como incógnitas auxiliares del fluido. Aśı, la

condición de incompresibilidad permite eliminar la presión, la cual, junto con el gradiente de

velocidad y el esfuerzo de corte, pueden ser calculadas posteriormente mediante fórmulas de

postprocesado que dependen de la velocidad y de los nuevos tensores anteriormente menciona-

dos. En cuanto a la parte difusiva del modelo acoplado, y adicionalmente a la temperatura y

concentración del soluto, sus gradientes y vectores de pseudocalor/pseudodifusión se incorporan

también como incógnitas extra. La formulación variacional mixta resultante, en un marco de

espacios de Banach, consiste en una perturbación no lineal de, a su vez, un esquema de punto

de silla con una perturbación no lineal, acoplado con un esquema de punto de silla usual. Una

estrategia de punto fijo, combinado con resultados de solubilidad clásicas y recientes para lin-

ealizaciones adecuadas de los problemas desacoplados, incluyendo en particular, el teorema de

Banach-Nečas-Babuška y la teoŕıa de Babuška-Brezzi, se emplean para probar, junto con el teo-

rema de punto fijo de Banach, el buen planteamiento de las formulaciones continua y discreta.

Tanto los elementos PEERS como AFW de orden ℓ ě 0 para las variables correspondientes

al fluido, y polinomios a trozos de grado ď ℓ, junto con los elementos de Raviart-Thomas de

orden ℓ para las incógnitas de las ecuaciones de difusión, constituyen opciones factibles para el

esquema de Galerkin. A su vez, se derivan estimaciones óptimas del error a priori, incluyendo

las de las incógnitas postprocesadas, y se establecen las tasas de convergencia correspondientes.

Por último, varios experimentos numéricos confirman e ilustran el buen funcionamineto de los

métodos propuestos.
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CHAPTER 1

Introduction

The multiphysics problem of double-diffusive convection in which two scalar fields, such as

heat and concentration of a solute, affect the density distribution in a fluid-saturated highly

porous medium, has been intensively studied in recent years (see, e.g., [30], [33], [34], [15],

[13], and references therein). Applications include predicting and controlling processes arising

in geophysics, oceanography, chemical engineering, and energy technology, to name a few. In

particular, some of them includes groundwater system in karst aquifers, fast flows in fractured

or vuggy aquifers or reservoirs, chemical processing, convective flow of carbon nanotubes, and

propagation of biological fluids (see, for instance, [2], [6], [22], and [36]). In this regard, we

remark that much of the research in porous medium has been focused on the use of Darcy’s

law. However, this fundamental equation may be inaccurate for modeling fluid flow through

porous media with high Reynolds numbers or through media with high porosity. To overcome

this limitation, it is possible to consider the convective Brinkman–Forchheimer equations (see,

e.g., [17], [35], [31], [11], and [12]), where terms are added to Darcy’s equation in order to

take into account the above described physical aspects. Moreover, this fact has motivated the
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introduction of the corresponding coupling with a system of advection-diffusion equations (also

called double-diffusion equations), through convective terms and the body force.

Concerning literature devoted to studying the coupling of the Brinkman–Forchheimer and

double-diffusion equations, we first highlight that, up to the authors’ knowledge, [30] con-

stitutes one of the first works in analyzing the well-posedness and regularity of solution for

a velocity-pressure-temperature-concentration variational formulation. Later on, a finite vol-

ume method to solve the coupling of the time-dependent Brinkman–Forchheimer and double-

diffusion equations was adopted in [34]. The focus of this work was on the validity of the

Brinkman–Forchheimer model when various combinations of the thermal Rayleigh number,

permeability ratio, inclination angle, thermal conductivity and buoyancy ratio are considered.

More recently, an augmented fully-mixed formulation based on the introduction of the fluid

pseudostress tensor, and the pseudoheat and pseudodiffusive vectors (besides the velocity, tem-

perature and concentration fields) was analyzed in [15]. Meanwhile, a non-augmented Banach

spaces-based fully-mixed formulation was proposed and analyzed in [13]. In particular, this

latter scheme is written equivalently as a fixed-point equation, so that the well-known Banach

theorem, combined with classical results on nonlinear monotone operators and Babuška-Brezzi’s

theory in Banach spaces, are applied to prove the unique solvability of the continuous and dis-

crete systems.

Regarding literature focused on the analysis of the convective Brinkman–Forchheimer (CBF)

equations, we start referring to [17], where the authors analyze the continuous dependence of

solutions of the CBF equations written in velocity-pressure formulation on the Forchheimer

coefficient in H1 norm. In turn, an approximation of solutions for the incompressible CBF

equations via the artificial compressibility method was proposed and developed in [35], where

a family of perturbed compressible CBF equations that approximate the incompressible CBF

equations is introduced. Furthermore, the well-posedness of the corresponding velocity-pressure

variational formulation of the two-dimensional stationary CBF equations was analyzed in [31].

In addition, error estimates for a mixed finite element approximation were obtained, and a

one-step Newton iteration algorithm initialized using a fixed-point iteration, was proposed.

Recently, an augmented mixed pseudostress-velocity formulation was analyzed in [11]. In there,
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the well-posedness of the problem is achieved by combining a fixed-point strategy, the Lax–

Milgram theorem, and the well-known Schauder and Banach fixed-point theorems. We also

mention [12], where a Banach spaces-based mixed formulation was proposed and analyzed

for the CBF problem, but differently from the techniques previously developed in [11], no

augmentation procedure was needed for the formulation nor for the solvability analysis. The

resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that

results recently established in [19] for perturbed saddle-point problems in Banach spaces, along

with the well-known Banach–Nečas–Babuška and Banach theorems, are applied to prove the

well-posedness of the continuous and discrete systems.

We point out that the motivation of employing an augmented approach, as in [15] and [11],

is originated by the wish of performing the respective solvability analysis of the equations within

a Hilbertian framework. However, it is well known that the introduction of additional terms

into the formulation, while having some advantages, also leads to much more expensive schemes

in terms of complexity and computational implementation. In order to overcome this, in recent

years there has arisen an increasing development on Banach spaces-based mixed finite element

methods to solve a wide family of single and coupled nonlinear problems in continuum mechan-

ics. In particular, we refer to [9], [8], [16], [18], [5], [25], and [10], for the analysis of mixed for-

mulations within a Banach framework of the Poisson, Navier–Stokes, Brinkman–Forchheimer,

Boussinesq, coupled flow-transport, Navier–Stokes–Brinkman, and chemotaxis-Navier–Stokes

equations. This kind of procedures shows two advantages at least: no augmentation is re-

quired, and the spaces to which the unknowns belong are the natural ones arising from the

application of the Cauchy–Schwarz and Hölder inequalities to the terms resulting from the

testing and integration by parts of the equations of the model. As a consequence, simpler and

closer to the original physical model formulations are obtained.

According to the previous discussion, and aiming to continue extending the applicability

of the aforementioned framework, the goal of the present paper is to develop and analyze a

new Banach spaces-based fully-mixed formulation, augmentation free, for the coupling of the

convective Brinkman–Forchheimer and double-difusion equations, and study its numerical ap-

proximation by the associated mixed finite element method. To this end, and unlike [11] and
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[12], where only the pseudostress is employed, here we introduce the symmetric stress and

the skew-symmetric vorticity tensors as auxiliary unknowns in the CBF equations, and sub-

sequently eliminate the pressure unknown using the incompressibility condition. In turn, we

follow [13, 18] and adopt a dual-mixed formulation for the double-difussion equations making

use of the temperature/concentration gradients and the pseudoheat/pseudodiffusion vectors

as further unknowns. The resulting mixed formulation is written as a nonlinear perturbation

of, in turn, a nonlinearly perturbed saddle-point scheme, coupled with a usual saddle-point

system. Then, similarly to [13], [20], [25], and [10], we combine a fixed-point argument, the

abstract results provided in [19], the Banach–Nečas–Babuška theorem, Babuška-Brezzi’s theory

in Banach spaces, sufficiently small data assumptions, and the Banach theorem, to establish

existence and uniqueness of solution of both the continuous and discrete formulations. In this

regard, and since the formulation is similar to the ones considered in [13], [19], and [20], our

present analysis certainly makes use of the corresponding results available there. In addition,

applying an ad-hoc Strang-type lemma in Banach spaces established in [15], we are able to

derive the corresponding a priori error estimates for arbitrary discrete subspaces. Next, em-

ploying PEERS and AFW elements of order ℓ ě 0 for approximating the fluid variables, and

piecewise polynomials of degree ď ℓ together with Raviart–Thomas elements of order ℓ for the

unknowns of the double-diffusion equations, we prove that the corresponding discrete methods

are convergent with optimal rates.

The paper is organized as follows. The remainder of this section describes standard notation

and functional spaces to be employed throughout the paper. The model problem is introduced

in Chapter 2, and all the auxiliary variables to be employed in the setting of the formulation are

defined there. Next, in Chapter 3 we derive the corresponding fully-mixed variational formu-

lation in Banach spaces, whereas, the well-posedness of this continuous scheme is established

in Chapter 4. The corresponding Galerkin system is introduced and analyzed in Chapter 5,

where the discrete analogue of the theory used in the continuous case is employed to prove exis-

tence and uniqueness of solution. A priori error estimates for arbitrary finite element subspaces

are also obtained there. In Chapter 6 we establish the corresponding rates of convergence for

specific discrete subspaces. Finally, the performance of the method is illustrated in Chapter 7
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throughout several numerical examples in 2D and 3D, with and without manufactured solu-

tions, which confirm the accuracy and flexibility of our fully-mixed finite element method.

1.1 Preliminary notations

Let Ω Ă Rn, n P t2, 3u, be a bounded domain with polyhedral boundary Γ, and let ν be the

outward unit normal vector on Γ. Standard notation will be adopted for Lebesgue spaces LppΩq

and Sobolev spaces Ws,ppΩq, with s P R and p ą 1, whose corresponding norms, either for the

scalar, vectorial, or tensorial case, are denoted by }¨}0,p;Ω and }¨}s,p;Ω, respectively. In particular,

given a non-negative integer m, Wm,2pΩq is also denoted by HmpΩq, and the notations of its

norm and seminorm are simplified to || ¨ ||m,Ω and | ¨ |m,Ω, respectively. In addition, H1{2pΓq is

the space of traces of functions of H1pΩq, and H´1{2pΓq denotes its dual. On the other hand,

given any generic scalar functional space S, we let S and S be the corresponding vectorial and

tensorial counterparts, whereas } ¨ }, with no subscripts, will be employed for the norm of any

element or operator whenever there is no confusion about the space to which they belong. Also,

| ¨ | denotes the Euclidean norm in both Rn and Rnˆn, and as usual, I stands for the identity

tensor in Rnˆn. In turn, for any vector fields v “ pviqi“1,n and w “ pwiqi“1,n, we set the

gradient, divergence, and tensor product operators, as

∇v :“
ˆ

Bvi
Bxj

˙

i,j“1,n
, divpvq :“

n
ÿ

j“1

Bvj
Bxj

, and v b w :“ pviwjqi,j“1,n ,

whereas for any tensor fields τ “ pτijqi,j“1,n and ζ “ pζijqi,j“1,n, we let divpτ q be the divergence

operator div acting along the rows of τ , and define the transpose, the trace, the deviatoric

tensor, and the tensor inner product, respectively, as

τ t :“ pτjiqi,j“1,n, trpτ q :“
n
ÿ

i“1
τii, τ d :“ τ ´

1
n

trpτ q I, and τ : ζ :“
n
ÿ

i,j“1
τij ζij .

Furthermore, for each t P r1,`8q we introduce the Banach spaces

Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P LtpΩq

)

, and
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Hpdivt; Ωq :“
!

τ P L2
pΩq : divpτ q P Lt

pΩq

)

,

equipped with the natural norms

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq , and

}τ }divt;Ω :“ }τ }0,Ω ` }divpτ q}0,t;Ω @ τ P Hpdivt; Ωq .

Additionally, we recall that, proceeding as in [23, eq. (1.43), Section 1.3.4] (see also [9, Section

4.1] and [18, Section 3.1]), one can prove that for t P

$

&

%

p1,`8s in R2 ,

r6
5 ,`8s in R3 ,

there holds

⟨τ ¨ ν, v⟩ “

ż

Ω

!

τ ¨ ∇v ` v divpτ q

)

@ pτ , vq P Hpdivt; Ωq ˆ H1
pΩq , (1.1)

and

⟨τν,v⟩ “

ż

Ω

!

τ : ∇v ` v ¨ divpτ q

)

@ pτ ,vq P Hpdivt; Ωq ˆ H1
pΩq , (1.2)

where ⟨¨, ¨⟩ denotes in (1.1) (resp. (1.2)) the duality pairing between H1{2pΓq (resp. H1{2pΓq)

and H´1{2pΓq (resp. H1{2pΓq).



CHAPTER 2

The model problem

In what follows we consider the steady convective Brinkman–Forchheimer equations introduced

in [31] (see also [35, 12, 11]) coupled with double-diffusion equations, similarly as done in [13].

More precisely, we focus on finding a velocity field u, a pressure field p, a temperature field ϕ1,

and a concentration field ϕ2, the latter two defining a vector unknown ϕ :“ pϕ1, ϕ2q, such that

´ div
`

µ epuq
˘

` p∇uqu ` D u ` F |u|
ρ´2 u ` ∇p “ fpϕq in Ω ,

divpuq “ 0 in Ω ,

´ divpQ1 ∇ϕ1q ` R1 u ¨ ∇ϕ1 “ g1 in Ω ,

´ divpQ2 ∇ϕ2q ` R2 u ¨ ∇ϕ2 “ g2 in Ω ,

u “ uD , ϕ1 “ ϕ1,D , and ϕ2 “ ϕ2,D on Γ ,

(2.1)

7
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where µ is the Brinkman coefficient (or effective viscosity), which is assumed to be eventually

variable, and bounded, that is there exist constants µ0, µ1 ą 0, such that

µ0 ď µpxq ď µ1 @ x P Ω . (2.2)

In addition, epuq :“ 1
2

`

∇u`p∇uqt
˘

is the symmetric part of ∇u, also named strain rate tensor,

D ą 0 is the Darcy coefficient, F ą 0 is the Forchheimer coefficient, ρ is a given number in r3, 4s,

and fpϕq is an external force defined by

fpϕq :“ ´ pϕ1 ´ ϕ1,rq g `
1
ϱ

pϕ2 ´ ϕ2,rq g, (2.3)

where g represents the potential type gravitational acceleration, ϕ1,r and ϕ2,r are the reference

temperature and concentration of a solute, respectively, and ϱ is a parameter experimentally

valued that can be assumed to be ě 1 (see [30, Section 2] for details). The spaces to which

ϕ1,r and ϕ2,r belong will be specified later on. In turn, Q1 and Q2 denote the thermal and

concentration diffusion tensors, respectively, which are assumed to belong to L8pΩq, whereas

R1 is the thermal Rayleigh number and R2 is the solute Rayleigh number. In addition, Q1 and

Q2 are assumed to be uniformly positive definite tensors, which means that there exist positive

constants C1 and C2, such that

v ¨ Qjpxqv ě Cj |v|
2

@ v P Rn, @ x P Ω, j P t1, 2u , (2.4)

and g1 and g2 are given source terms in suitable spaces to be specified later on. Finally,

uD P H1{2pΓq and ϕi,D P H1{2pΓq, i P
␣

1, 2
(

, are given Dirichlet data.

Owing to the incompressibility of the fluid and the Dirichlet boundary condition for u, the

datum uD must satisfy the compatibility condition

ż

Γ
uD ¨ ν “ 0 . (2.5)

In addition, due to the pressure gradient in (2.1), and in order to guarantee uniqueness of this
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unknown, p will be sought in the space

L2
0pΩq :“

!

q P L2
pΩq :

ż

Ω
q “ 0

)

.

Now, in order to derive a fully mixed formulation for (2.1), thus yielding the Dirichlet

boundary conditions to become natural, we proceed similarly to [25] (see also [8] for related

approaches), and introduce as a further unknown the symmetric tensor σ defined by

σ :“ µ epuq ´ pu b uq ´ p I . (2.6)

In this way, the first equation of (2.1) can be rewritten as

D u ` F |u|
ρ´2 u ´ divpσq “ fpϕq in Ω , (2.7)

whereas applying the trace operator to σ and utilizing the incompressibility condition divpuq “

0 in Ω, we obtain

p “ ´
1
n

tr
`

σ ` pu b uq
˘

. (2.8)

Moreover, applying the deviatoric operator to (2.6) and dividing by µ, we find that

1
µ
σd

`
1
µ

pu b uq
d

“ epuq “ ∇u ´ γ , (2.9)

where the vorticity

γ :“ 1
2

´

∇u ´
`

∇u
˘t
¯

(2.10)

is introduced as a further unknown.

Next, for the double-diffusion equations we consider for each j P
␣

1, 2
(

the temperature

(or concentration) gradient tj, and the corresponding pseudoheat (or pseudodiffusion) ϑj, as

auxiliary unknowns, which are defined, respectively, by

tj :“ ∇ϕj , ϑj :“ Qj tj ´
1
2 Rj ϕj u, @ j P t1, 2u, in Ω , (2.11)
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whence the third and fourth equations of (2.1) can be rewritten as

1
2 Rj u ¨ tj ´ divpϑjq “ gj in Ω , j P

␣

1, 2
(

. (2.12)

Consequently, gathering (2.7), (2.9), (2.11), and (2.12), and incorporating the Dirichlet

boundary conditions, we find that (2.1) can be rewritten, equivalently, as follows: Find pσ,u,γq

and pϕj, tj,ϑjq, j P t1, 2u, in suitable spaces to be indicated below, such that

1
µ
σd

`
1
µ

pu b uq
d

` γ “ ∇u in Ω ,

D u ` F |u|
ρ´2u ´ divpσq “ fpϕq in Ω ,

tj “ ∇ϕj in Ω , j P
␣

1, 2
(

,

Qj tj ´
1
2 Rj ϕj u “ ϑj in Ω , j P

␣

1, 2
(

,

1
2 Rj u ¨ tj ´ divpϑjq “ gj in Ω , j P

␣

1, 2
(

,

u “ uD , ϕ1 “ ϕ1,D , and ϕ2 “ ϕ2,D on Γ ,
ż

Ω
tr
`

σ ` pu b uq
˘

“ 0 in Ω .

(2.13)

We stress here that, as suggested by (2.8), p is eliminated from the present formulation and

computed afterwards in terms of σ and u by using that identity. This fact justifies the last

equation in (2.13), which aims to ensure that the resulting p does belong to L2
0pΩq. Notice also

that further variables of interest, such as the velocity gradient ∇u, and the shear stress tensor

rσ :“ µ epuq ´ p I, can be easily computed, respectively, as follows

∇u “
1
µ
σd

`
1
µ

pu b uq
d

` γ and rσ “ σ ` pu b uq . (2.14)



CHAPTER 3

The continuous formulation

In this chapter we follow [8] and [18] (see also [12, 13, 25, 26, 27]) to derive a mixed formulation

for (2.13) within a Banach spaces framework. We begin by testing the first equation of (2.13)

against a tensor τ associated with the unknown σ, so that, using the identity σd : τ “ σd : τ d,

we formally get

ż

Ω

1
µ
σd : τ d

`

ż

Ω

1
µ

pu b uq
d : τ `

ż

Ω
γ : τ “

ż

Ω
∇u : τ . (3.1)

We observe that the first and third expressions on the left hand side of (3.1) make sense for

σ, τ , γ P L2pΩq. In turn, seeking originally u P H1pΩq, which is in line with the condition

that uD P H1{2pΓq, and assuming that τ is taken in Hpdivt; Ωq, with t fitting the ranges for

the validity of (1.1) and (1.2), we can apply the latter, and employ the Dirichlet boundary

condition on u, to obtain

ż

Ω
∇u : τ “ ´

ż

Ω
u ¨ divpτ q ` xτ ν,uDyΓ . (3.2)

11
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In this way, replacing (3.2) back into (3.1), we arrive at

ż

Ω

1
µ
σd : τ d

`

ż

Ω
u ¨ divpτ q `

ż

Ω

1
µ

pu b uq
d : τ `

ż

Ω
γ : τ “ xτ ν,uDyΓ (3.3)

for all τ P Hpdivt; Ωq. Now, knowing that divpτ q P LtpΩq, and using Hölder’s inequality, we

conclude from the second term in (3.3) that it suffices to look for u in Lt1pΩq instead of H1pΩq,

where t, t1 P p1,`8q are conjugate to each other. In addition, employing the Cauchy–Schwarz

and Hölder inequalities, we readily deduce that the convective nonlinear term is well defined if

u P L4pΩq, which yields to choose t1 “ 4, and thus t “ 4{3, whence the test space for τ becomes

Hpdiv4{3; Ωq.

On the other hand, linking the spaces to which the unknown σ and its test functions τ

belong, we impose to look for σ in Hpdiv4{3; Ωq as well. Hence, testing the second equation of

(2.13) against v P L4pΩq, formally yields

ż

Ω
v ¨ divpσq ´ D

ż

Ω
u ¨ v ´ F

ż

Ω
|u|

ρ´2u ¨ v “ ´

ż

Ω
fpϕq ¨ v (3.4)

for all v P L4pΩq, from which the first term is bounded thanks to the fact that divpσq P L4{3pΩq.

Next, noting that for ρ P r3, 4s there holds 2pρ ´ 2q ď 4, we consider the continuous injection

i2pρ´2q : L4pΩq Ñ L2pρ´2qpΩq and observe that }i2pρ´2q} ď |Ω|p4´ρq{4pρ´2q. In this way, applying

the Cauchy–Schwarz and Hölder inequalities to the third term on the left-hand side of (3.4),

we find that

ˇ

ˇ

ˇ

ˇ

ż

Ω
|w|

ρ´2u ¨ v
ˇ

ˇ

ˇ

ˇ

ď }w}
ρ´2
0,2pρ´2q;Ω }u}0,4;Ω }v}0,4;Ω ď |Ω|

p4´ρq{4
}w}

ρ´2
0,4;Ω }u}0,4;Ω }v}0,4;Ω ,

which proves that the aforementioned term is well-defined for u, w, v P L4pΩq. In turn, being

L4pΩq certainly contained in L2pΩq guarantees that the second term in (3.4) is bounded as well,

whereas the right hand side of (3.4) becomes well defined if fpϕq (cf. (2.3)) belongs to L4{3pΩq,

which is assumed from now on. We will refer again to this issue later on.
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Finally, the symmetry of σ (cf. (2.6)) is imposed weakly as

ż

Ω
δ : σ “ 0 @ δ P L2

skewpΩq , (3.5)

where

L2
skewpΩq :“

!

δ P L2
pΩq : δt

“ ´δ
)

.

According to the previous analysis, the weak formulation of the convective Brinkman–

Forchheimer problem (2.13) reduces at first instance to: Find pσ,γ,uq P Hpdiv4{3; Ωq ˆ

L2
skewpΩqˆL4pΩq such that (3.3), (3.4) and (3.5) hold for all pτ , δ,vq P Hpdiv4{3; ΩqˆL2

skewpΩqˆ

L4pΩq. However, similarly as in [8] (see also [12], [18]), we consider the decomposition

Hpdiv4{3; Ωq “ H0pdiv4{3; Ωq ‘ R I , (3.6)

where

H0pdiv4{3; Ωq :“
!

τ P Hpdiv4{3; Ωq :
ż

Ω
trpτ q “ 0

)

,

which means that each τ P Hpdiv4{3; Ωq can be uniquely decomposed as

τ “ τ0 ` d0 I with τ0 P H0pdiv4{3; Ωq and d0 :“ 1
n |Ω|

ż

Ω
trpτ q P R .

In particular, using the last equation of (2.13), we obtain

σ “ σ0 ` c0 I with σ0 P H0pdiv4{3; Ωq and c0 :“ ´
1

n |Ω|

ż

Ω
trpu b uq , (3.7)

which says that c0 is know explicitly in terms of u. Therefore, in order to fully determine σ, it

only remains to find its H0pdiv4{3; Ωq-component σ0, which is renamed from now on simply as

σ.

Next, using the compatibility condition (2.5), we observe that both sides of (3.3) vanish

when τ “ I, and hence testing against τ P Hpdiv4{3; Ωq is equivalent to doing it against
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τ P H0pdiv4{3; Ωq. Therefore, bearing in mind the foregoing discussion, denoting

H :“ H0pdiv4{3; Ωq , Q :“ L4
pΩq ˆ L2

skewpΩq ,

and setting

u⃗ “ pu,γq , v⃗ “ pv, δq , z⃗ “ pz,χq P Q ,

we arrive at the following mixed formulation for the convective Brinkman–Forchheimer equa-

tions: Find pσ, u⃗q P H ˆ Q such that

apσ, τ q ` bpτ , u⃗q ` bpu; u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpu; u⃗, v⃗q “ Fϕpv⃗q @ v⃗ P Q ,

(3.8)

where the bilinear forms a : H ˆ H Ñ R and b : H ˆ Q Ñ R are defined as

apζ, τ q :“
ż

Ω

1
µ
ζd : τ d

@ pζ, τ q P H ˆ H , (3.9)

and

bpτ , v⃗q :“
ż

Ω
v ¨ divpτ q `

ż

Ω
δ : τ @ pτ , v⃗q P H ˆ Q , (3.10)

whereas, for each w P L4pΩq, the bilinear forms bpw; ¨, ¨q : L4pΩq ˆ H0pdiv4{3; Ωq Ñ R and

cpw; ¨, ¨q : Q ˆ Q Ñ R are given by

bpw; v, τ q :“
ż

Ω

1
µ

pw b vq : τ @ pv, τ q P L4
pΩq ˆ H0pdiv4{3; Ωq , (3.11)

and

cpw; u⃗, v⃗q :“ D
ż

Ω
u ¨ v ` F

ż

Ω
|w|

ρ´2 u ¨ v @ pu⃗, v⃗q P Q ˆ Q . (3.12)

Finally, the linear and bounded functionals G : H Ñ R and Fϕ : Q Ñ R reduce to

Gpτ q :“ ⟨τ ν,uD⟩ @ τ P H and Fϕpv⃗q :“
ż

Ω
fpϕq ¨ v @ v⃗ P Q . (3.13)

On the other hand, for the double diffusion equations, which are described by the third up
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to the fifth rows of (2.13), we proceed similarly as for the convective Brinkman-Forchheimer

equations, and look originally for ϕj P H1pΩq, which, besides yielding tj P L2pΩq, is in line as

well with the fact that the data ϕi,D P H1{2pΓq, i P
␣

1, 2
(

. Then, testing the aforementioned

third equation against ηj P Hpdivt; Ωq, with t as before, applying now (1.1), and using the

Dirichlet boundary condition on ϕj, we get

ż

Ω
tj ¨ ηj `

ż

Ω
ϕj divpηjq “ ⟨ηj ¨ ν, ϕj,D⟩ j P t1, 2u . (3.14)

In this way, knowing that divpηjq P LtpΩq, we realize from the second term of (3.14) and

Hölder’s inequality that it suffices to look for ϕj in Lt1pΩq. Needless to say, it is clear that the

first term makes sense since both tj and ηj belong to L2pΩq. Next, letting L2pΩq be as well the

space of test functions associated with the unknown tj, the corresponding testing of the fourth

row of (2.13) formally gives

ż

Ω
Qj tj ¨ rj ´

1
2 Rj

ż

Ω
ϕj pu ¨ rjq ´

ż

Ω
ϑj ¨ rj “ 0 (3.15)

for all rj P L2pΩq, so that the third term of (3.15) is well-defined if ϑj P L2pΩq. In turn,

regarding the second term, and bearing in mind that from the analysis of the Brinkman–

Forchheimer equations we know that u must be sought in L4pΩq, direct applications of the

Cauchy–Schwarz and Hölder inequalities imply

ˇ

ˇ

ˇ

ż

Ω
ϕj pu ¨ rjq

ˇ

ˇ

ˇ
ď }ϕj}0,4;Ω }u}0,4;Ω }rj}0,Ω , (3.16)

from which it is natural to fix the seeking space for ϕj as L4pΩq, that is t1 “ 4, which yields

t “ 4{3. In this way, letting Hpdiv4{3; Ωq and L4pΩq be as well the spaces where ϑj is sought

and where the test functions associated with ϕj belong to, respectively, we can test the fifth

row of (2.13) against ψj P L4pΩq to obtain

1
2Rj

ż

Ω
ψj pu ¨ tjq ´

ż

Ω
ψj divpϑjq “

ż

Ω
gj ψj . (3.17)

Note that the first and second terms of (3.17) are well-defined thanks to the analogue estimate
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(3.16) and the fact that divpϑjq P L4{3pΩq, whereas the expression on the right-hand side makes

sense if gj P L4{3pΩq, which we assume from now on. Therefore, introducing the spaces

rH :“ L4
pΩq ˆ L2

pΩq and rQ :“ Hpdiv4{3; Ωq ,

setting the variables

ϕ⃗j “ pϕj, tjq , ψ⃗j “ pψj, rjq , ξ⃗j “ pξj, sjq P rH ,

and grouping conveniently (3.14), (3.15), and (3.17), we arrive at the weak formulation: Find

pϕ⃗j,ϑjq P rH ˆ rQ, j P t1, 2u, such that

rajpϕ⃗j, ψ⃗jq ` rcjpu; ϕ⃗j, ψ⃗jq ` rbpψ⃗j,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j,ηjq “ rGjpηjq @ηj P rQ ,
(3.18)

where, for j P t1, 2u, the bilinear forms raj : rH ˆ rH Ñ R, rb : rH ˆ rQ Ñ R, and the linear and

bounded functionals rFj : rH Ñ R and rGj : rQ Ñ R are defined, respectively, as:

rajpξ⃗j, ψ⃗jq :“
ż

Ω
Qj sj ¨ rj @ pξ⃗j, ψ⃗jq P rH ˆ rH , (3.19)

rbpξ⃗j,ηjq :“ ´

ż

Ω
sj ¨ ηj ´

ż

Ω
ξj divpηjq @ pξ⃗j,ηjq P rH ˆ rQ , (3.20)

rFjpψ⃗jq :“
ż

Ω
gj ψj @ ψ⃗j P rH , and (3.21)

rGjpηjq :“ ´ ⟨ηj ¨ ν, ϕj,D⟩ @ηj P rQ , (3.22)

whereas, given w P L4pΩq, the bilinear form rcjpw; ¨, ¨q : rH ˆ rH Ñ R is given by

rcjpw; ξ⃗j, ψ⃗jq :“ 1
2Rj

!

ż

Ω
ψj pw ¨ sjq ´

ż

Ω
ξj pw ¨ rjq

)

@ ξ⃗j , ψ⃗j P rH . (3.23)

Summarizing, the fully mixed formulation of the Brinkman–Forchheimer equations coupled
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with double diffusion equations (cf. (2.13)) reads: Find pσ, u⃗q P H ˆ Q and pϕ⃗j,ϑjq P rH ˆ rQ,

j P t1, 2u, such that

apσ, τ q ` bpτ , u⃗q ` bpu; u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpu; u⃗, v⃗q “ Fϕpv⃗q @ v⃗ P Q ,

rajpϕ⃗j, ψ⃗jq ` rcjpu; ϕ⃗j, ψ⃗jq ` rbpψ⃗j,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j,ηjq “ rGjpηjq @ηj P rQ .

(3.24)



CHAPTER 4

Analysis of the coupled problem

In this chapter we combine classical and new results on the solvability of variational formulations

in Banach spaces to establish the well-posedness of (3.24).

4.1 Preliminaries

The stability properties of the operators and functionals involved in (3.24) are provided first. In

fact, direct applications of the Cauchy-Schwarz and Hölder inequalities, along with the upper

bounds of µ (cf. (2.2)), the continuity of the normal trace operator in Hpdiv4{3; Ωq, and the

continuity of the injection i4 : H1pΩq Ñ L4pΩq and its vectorial version i4, yield the existence

18
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of positive constants, denoted and given as:

}a} :“ 1
µ0
, }b} :“ 1 , }raj} :“ }Qj}0,8;Ω , }rb} :“ 2 ,

}G} :“ }uD}1{2,Γ }i4} , }Fφ} :“ }g}0,Ω

!

}φ}0,4;Ω ` }ϕr}0,4;Ω

)

,

} rFj} :“ }gj}0,4{3;Ω , and } rGj} :“ }ϕj,D}1{2,Γ }i4} ,

(4.1)

where j P t1, 2u and φ “ pφ1, φ2q P L4pΩq ˆ L4pΩq, such that there hold

|apζ, τ q| ď }a} }ζ}H }τ }H @ ζ , τ P H ,

|bpτ , v⃗q| ď }b} }τ }H }v⃗}Q @ pτ , v⃗q P H ˆ Q ,

|rajpϕ⃗j, ψ⃗jq| ď }raj} }ϕ⃗j} rH }ψ⃗j} rH @ ϕ⃗j , ψ⃗j P rH ,

|rbpψ⃗j,ηjq| ď }rb} }ψ⃗j} rH }ηj} rQ @ pψ⃗j,ηjq P rH ˆ rQ ,

|Gpτ q| ď }G} }τ }H @ τ P H ,

|Fφpv⃗q| ď }Fφ} }v⃗}Q @ v⃗ P Q ,

| rFjpψ⃗jq| ď } rFj} }ψ⃗j} rH @ ψ⃗j P rH , and

| rGjpηjq| ď } rGj} }ηj} rQ @ηj P rQ .

(4.2)

In turn, given w P L4pΩq, we apply the Cauchy-Schwarz and Hölder inequalities, similarly

as we did in (4.1) - (4.2), and previously in (3.16), to derive the following bounds for b (cf.

(3.11)), c (cf. (3.12)), and rcj (cf. (3.23))

|bpw; v, τ q| ď
1
µ0

}w}0,4;Ω }v}0,4;Ω }τ }div4{3;Ω @ pv, τ q P L4pΩq ˆ H0pdiv4{3; Ωq ,

|cpw; v⃗, z⃗q| ď |Ω|1{2 `D ` F }w}
ρ´2
0,4;Ω

˘

}v⃗}Q }⃗z}Q @ v⃗ , z⃗ P Q , and

|rcjpw; ϕ⃗j, ψ⃗jq| ď Rj }w}0,4;Ω }ϕ⃗j} rH }ψ⃗j} rH @ ϕ⃗j , ψ⃗j P rH .

(4.3)

Moreover, noting from the definition of rcj (cf. (3.23)) that rcjp¨; ϕ⃗j, ψ⃗jq is linear, we readily
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deduce from the third row of (4.3) that

|rcjpw; ϕ⃗j, ψ⃗jq ´ rcjpz; ϕ⃗j, ψ⃗jq| ď Rj }w ´ z}0,4;Ω }ϕ⃗j} rH }ψ⃗j} rH (4.4)

for all w , z P L4pΩq and for all ϕ⃗j , ψ⃗j P rH, and it is also clear from (3.23) that there holds

rcjpw; ψ⃗j, ψ⃗jq “ 0 (4.5)

for all w P L4pΩq and for all ψ⃗j P rH.

4.2 A fixed point strategy

In what follows, we proceed similarly to [13] (see also [12]) and adopt a fixed-point strategy to

address the well–posedness of (3.24). We begin by letting S : L4pΩqˆpL4pΩqˆL4pΩqq Ñ L4pΩq

be the operator defined as

Spw,φq :“ u @ pw,φq P L4
pΩq ˆ pL4

pΩq ˆ L4
pΩqq , (4.6)

where pσ, u⃗q :“ pσ, pu,γqq P H ˆ Q is the unique solution (to be confirmed below) of the

problem arising from the first two rows of (3.24) after replacing bpu; ¨, ¨q, cpu; ¨, ¨q, and Fϕ by

bpw; ¨, ¨q, cpw; ¨, ¨q, and Fφ, respectively, that is

apσ, τ q ` bpτ , u⃗q ` bpw; u, τ q “ Gpτ q @ τ P H ,

bpσ, v⃗q ´ cpw; u⃗, v⃗q “ Fφpv⃗q @ v⃗ P Q .
(4.7)

Equivalently, introducing the bilinear form Aw : pH ˆ Qq ˆ pH ˆ Qq Ñ R given by

Awppσ, u⃗q, pτ , v⃗qq :“ apσ, τ q ` bpτ , u⃗q ` bpσ, v⃗q ´ cpw; u⃗, v⃗q (4.8)
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for all pσ, u⃗q, pτ , v⃗q P H ˆ Q, the uncoupled problem (4.7) can be rewritten as

Awppσ, u⃗q, pτ , v⃗qq ` bpw; u, τ q “ Gpτ q ` Fφpv⃗q @ pτ , v⃗q P H ˆ Q . (4.9)

In turn, for each j P
␣

1, 2
(

we define the operator rSj : L4pΩq Ñ L4pΩq given by

rSjpwq :“ ϕj @ w P L4
pΩq ,

where pϕ⃗j,ϑjq :“ ppϕj, tjq,ϑjq P rH ˆ rQ is the unique solution (to be confirmed below) of

the problem arising from the third and fourth rows of (3.24) after replacing rcjpu; ϕ⃗j, ψ⃗jq by

rcjpw; ϕ⃗j, ψ⃗jq, that is

rajpϕ⃗j, ψ⃗jq ` rcjpw; ϕ⃗j, ψ⃗jq ` rbpψ⃗j,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j,ηjq “ rGjpηjq @ηj P rQ .
(4.10)

Similarly as for (4.9), for each j P t1, 2u we define the bilinear form raj,w : rH ˆ rH Ñ R as

raj,wpϕ⃗j, ψ⃗jq :“ rajpϕ⃗j, ψ⃗jq ` rcjpw; ϕ⃗j, ψ⃗jq @ ϕ⃗j, ψ⃗j P rH , (4.11)

which allows us to restate (4.10) as

raj,wpϕ⃗j, ψ⃗jq ` rbpψ⃗j,ϑjq “ rFjpψ⃗jq @ ψ⃗j P rH ,

rbpϕ⃗j,ηjq “ rGjpηjq @ηj P rQ ,
(4.12)

Hence, defining rS : L4pΩq Ñ pL4pΩq ˆ L4pΩqq as

rSpwq :“
`

rS1pwq, rS2pwq
˘

@ w P L4
pΩq , (4.13)

and letting T : L4pΩq Ñ L4pΩq be the operator defined by

Tpwq :“ S
`

w, rSpwq
˘

@ w P L4
pΩq , (4.14)
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we see that solving (3.24) is equivalent to seeking a fixed-point of T, that is u P L4pΩq such

that

Tpuq “ u . (4.15)

4.3 Well posedness of the uncoupled problems

In this section we utilize the Banach–Nečas–Babuška Theorem (cf. [21, Theorem 2.6]), along

with recent solvability results for perturbed saddle-point problems in Banach spaces (cf. [19],

[20]), and the Banach version of the Babuška-Brezzi theory (cf. [21, Theorem 2.34]), to show

that the uncoupled problems (4.7) (or (4.9)) and (4.12) are well–posed, which means, equiv-

alently, that the operators S (cf. (4.6)) and rS (cf. (4.13)) are well–defined. We begin by

remarking that, being LppΩq reflexive for each p P p1,`8q, all the spaces involved in the formu-

lations (4.9) and (4.12), namely L2pΩq, L4pΩq, L2
skewpΩq, Hpdiv4{3; Ωq, and H0pdiv4{3; Ωq, are

easily shown to be reflexive as well.

In what follows we address the solvability of (4.7), for which we first show that the bilinear

forms a (cf. (3.9)), b (cf. (3.10)), and cpw; ¨, ¨q (cf. (3.12)), for each w P L4pΩq, which define

the bilinear form Aw (cf. (4.8)), satisfy the hypotheses of [19, Theorem 3.4]. In fact, it is clear

from their respective definitions that a and cpw; ¨, ¨q are symmetric and positive semi-definite,

which confirms the hypothesis i) of [19, Theorem 3.4]. Now, letting V be the null space of the

linear and bounded operator induced by b, we readily see (cf. (3.10)) that

V “

!

ζ P H : ζ “ ζt and divpζq “ 0
)

. (4.16)

In addition, it is already well-known that a slight modification of [23, Lemma 2.3] (see also [7,

Proposition IV.3.1], [24, Lemma 3.3], and [8, Lemma 3.1]) allows to prove the existence of a

positive constant c1, depending on Ω and the norm of the continuous injection i4 : H1pΩq Ñ

L4pΩq, such that

c1 }ζ}0,Ω ď }ζd
}0,Ω ` }divpζq}0,4{3;Ω @ ζ P H0pdiv4{3; Ωq . (4.17)
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Thus, thanks to the boundedness of µ (cf. (2.2)) and the inequality (4.17), we deduce that

apζ, ζq ě
1
µ1

}ζd
}

2
0,Ω ě α }ζ}

2
H @ ζ P V , (4.18)

with α :“ c2
1
µ1

, which easily implies the verification of the continuous inf-sup condition for a

required by the hypothesis ii) of [19, Theorem 3.4]. On the other hand, letting cP be the positive

constant yielding Poincaré’s inequality, that is such that }v}2
1,Ω ď cP |v|21,Ω @ v P H1

0pΩq, and

recalling that i4 is the continuous injection of H1pΩq into L4pΩq, it can be proved (cf. [27,

Lemma 3.5]) that there exists a positive constant β, depending only on cP and }i4}, such that

sup
τPV
τ‰0

bpτ , v⃗q

}τ }H
ě β }v⃗}Q @ v⃗ P Q ,

which accomplishes the hypothesis iii) of [19, Theorem 3.4]. Furthermore, letting δ ą 0 be an

arbitrary radius, we introduce the ball

Wpδq :“
!

w P L4
pΩq : }w}0,4;Ω ď δ

)

, (4.19)

so that for each w P Wpδq the boundedness estimate for cpw; ¨, ¨q becomes (cf. (4.3))

|cpw; v⃗, z⃗q| ď |Ω|
1{2 `D ` F δρ´2˘

}v⃗}Q }⃗z}Q @ v⃗ , z⃗ P Q . (4.20)

Hence, bearing also in mind the expression for }a} (cf. (4.1)), a straightforward application of

[19, Theorem 3.4] ensures the existence of a positive constant αA, depending only on µ0, |Ω|,

D, F, δ, ρ, α, and β, such that for each w P Wpδq there holds

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq

}pζ, z⃗q}HˆQ
ě αA }pτ , v⃗q}HˆQ @ pτ , v⃗q P H ˆ Q . (4.21)

Then, combining (4.21) with the boundedness estimate for bpw; ¨, ¨q (cf. (4.3)), we arrive at

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw; v, ζq

}pζ, z⃗q}HˆQ
ě

!

αA ´
1
µ0

}w}0,4;Ω

)

}pτ , v⃗q}HˆQ
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for all pτ , v⃗q P H ˆ Q, from which, under the additional assumption that }w}0,4;Ω ď
µ0 αA

2 ,

we conclude that

sup
pζ ,⃗zqPHˆQ

pζ ,⃗zq‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw; v, ζq

}pζ, z⃗q}HˆQ
ě

αA

2 }pτ , v⃗q}HˆQ (4.22)

for all pτ , v⃗q P H ˆ Q. Similarly, noting that Aw is symmetric (since a and c are), using again

the boundedness estimate for bpw; ¨, ¨q (cf. (4.3)), and under the same assumption on w, we

obtain

sup
pτ ,v⃗qPHˆQ

pτ ,v⃗q‰0

Awppτ , v⃗q, pζ, z⃗qq ` bpw; v, ζq

}pτ , v⃗q}HˆQ
ě

αA

2 }pζ, z⃗q}HˆQ (4.23)

for all pζ, z⃗q P H ˆ Q.

We are now in position of establishing next the well–posedness of (4.9), thanks to which

the operator S is well-defined.

Theorem 4.1. Given δ ą 0, let r P p0, r0s, with

r0 :“ min
!

δ,
µ0 αA

2

)

. (4.24)

Then, for each pw,φq P L4pΩq ˆ
`

L4pΩq ˆ L4pΩq
˘

such that }w}0,4;Ω ď r, (4.9) (equivalently,

(4.7)) has a unique solution pσ, u⃗q :“
`

σ, pu,γq
˘

P HˆQ, and hence one can define Spw,φq :“

u. Moreover, there exists a positive constant CS, depending only on }i4}, }g}0,Ω, and αA, such

that

}Spw,φq}0,4;Ω “ }u}0,4;Ω ď }pσ, u⃗q}HˆQ ď CS

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }φ}0,4;Ω

)

. (4.25)

Proof. It is clear from (4.22) and (4.23) that the bilinear form Aw ` bpw; ¨, ¨q satisfies the as-

sumptions of the Banach–Nečas–Babuška Theorem (cf. [21, Theorem 2.6]), and hence, knowing

from (4.1) and (4.2) that G P H1 and Fφ P Q1, the proof reduces to a straightforward applica-

tion of that theorem. In particular, the a priori estimate (4.25) follows from [21, Theorem 2.6,

eq. (2.5)] and the upper bounds for }G}H1 and }Fφ}Q1 (cf. (4.1)).
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On the other hand, in order to derive the well–posedness of (4.12), equivalently (4.10), we

aim to prove that the bilinear forms raj,w (cf. (4.11)) and rb (cf. (3.20)) satisfy the hypotheses of

[21, Theorem 2.34]. In this way, letting rV be the null space of the linear and bounded operator

induced by the bilinear form rb, we first observe that (cf. [13, eq. (3.35)])

rV “

!

ψ⃗ :“ pψ, rq P rH : ψ P H1
0pΩq and r “ ∇ψ

)

.

Next, according to the definition of raj,w (cf. (4.11)), with a given w P L4pΩq, and employing

(4.5) and (2.4), we obtain, similarly as in the proof of [13, Lemma 3.2], that for each ψ⃗j :“

pψj, rjq P rV there holds

raj,wpψ⃗j, ψ⃗jq “ rajpψ⃗j, ψ⃗jq “

ż

Ω
Qj |rj|2 ě rαj }ψ⃗j}

2
rH , (4.26)

where rαj is a positive constant depending only on Cj (cf. (2.4)), }i4}, and cP . Then, it is easily

seen that (4.26) implies the hypotheses on raj,w required in [21, Theorem 2.34, eq. (2.28)].

Furthermore, we recall from [18, Lemma 3.3] that rb satisfies the continuous inf-sup condition

required in [21, Theorem 2.34, eq. (2.29)], that is, there exists a positive constant rβ, depending

only on |Ω|, such that

sup
ψ⃗ P rH
ψ⃗‰ 0

rbpψ⃗,ηq

}ψ⃗}
rH

ě rβ }η}
rQ @η P rQ .

Consequently, the well-posedness of (4.12), and thus the well-definedness of the operator rS

(cf. (4.13)), is stated as follows.

Theorem 4.2. For each w P L4pΩq, and for each j P t1, 2u, there exists a unique pϕ⃗j,ϑjq :“
`

pϕj, tjq,ϑj
˘

P rH ˆ rQ solution to (4.12) (equivalently, (4.10)), and hence one can define
rSjpwq :“ ϕj. Moreover, there exists a positive constant C

rS, depending only on rαj, rβ, }Qj}0,8;Ω,

}i4}, and Rj, j P
␣

1, 2
(

, such that

}rSpwq}0,4;Ω :“ }
`

rS1pwq, rS2pwq
˘

}0,4;Ω

ď C
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

.

(4.27)
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Proof. Bearing in mind the previous discussion on raj,w and rb, for each w P L4pΩq and for each

j P t1, 2u, and recalling from (4.1) and (4.2) that rFj P rH1 and rGj P rQ1 , the proof follows from

a direct application of [21, Theorem 2.34]. In this way, the corresponding a priori estimate (cf.

[21, Theorem 2.34, eq. (2.30)]) yields

}rSjpwq}0,4;Ω “ }ϕj}0,4;Ω ď }ϕ⃗j} rH ď
1
rαj

} rFj} `
1
rβ

ˆ

1 `
}raj,w}

rαj

˙

} rGj} ,

so that, noting from (4.1) and (4.3) that }raj,w} ď }Qj}0,8;Ω ` Rj }w}0,4;Ω, and employing the

expressions for } rFj} and } rGj} provided in (4.1), the foregoing estimate becomes

}rSjpwq}0,4;Ω ď }ϕ⃗j} rH ď rCj

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (4.28)

where rCj is a positive constant depending on rαj, rβ, }Qj}0,8;Ω, }i4}, and Rj. Finally, summing

up in (4.28) over j P
␣

1, 2
(

, we arrive at (4.27) with C
rS “ rC1 ` rC2.

For sake of completeness, we provide next the upper bound for the component ϑj of the

solution of (4.12). In fact, according now to the second inequality in [21, Theorem 2.34, eq.

(2.30)], we find that

}ϑj} rQ ď
1
rβ

ˆ

1 `
}raj,w}

rαj

˙

} rFj} `
}raj,w}

rβ2

ˆ

1 `
}raj,w}

rαj

˙

} rGj} ,

which yields

}ϑj} rQ ď ĂMj

`

1 ` }w}0,4;Ω
˘

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (4.29)

with a positive constant ĂMj depending as well on rαj, rβ, }Qj}0,8;Ω, }i4}, and Rj.

4.4 Solvability analysis of the fixed–point equation

Having proved the well–posedness of the uncoupled problems (4.7) and (4.10), in particular the

former under the assumption on w specified in Theorem 4.1, thus ensuring that the operators
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S (cf. (4.6)), rS (cf. (4.13)), and hence T (cf. (4.14)), are well–defined, our next goal is to

establish the existence of a unique fixed–point of T. For this purpose, in what follows we aim

to verify the hypotheses of the Banach theorem, starting by providing a suitable condition

guaranteeing that T maps a ball into itself. Indeed, given r P p0, r0s, with r0 as in (4.24), we

let, as in (4.19),

Wprq :“
!

w P L4
pΩq : }w}0,4;Ω ď r

)

, (4.30)

and observe, thanks to the a priori estimates (4.25) and (4.27), that for each w P Wprq there

holds

}Tpwq}0,4;Ω “ }S
`

w, rSpwq
˘

}0,4;Ω ď CS

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }rSpwq}0,4;Ω

)

ď CT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,

(4.31)

where CT :“ CS max
␣

1, C
rS
(

. Then, we have the following result.

Lemma 4.1. Given r P p0, r0s, with r0 as in (4.24), assume that the data satisfy

CT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ď r . (4.32)

Then, there holds T
`

Wprq
˘

Ď Wprq.

Proof. It is a direct consequence of the estimate (4.31).

Next, we aim to show that the operator T is Lipschitz continuous, for which, according

to (4.14), it suffices to prove suitable continuity properties for S and rS. In order to derive

the corresponding result for S, we need the technical estimate for c provided by the following

lemma.

Lemma 4.2. For each ρ P r3, 4s there exists a positive constant Lc, depending only on F, |Ω|,

and ρ, such that

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Lc

!

}w}0,4;Ω ` }z}0,4;Ω

)ρ´3
}w ´ z}0,4;Ω }u}0,4;Ω }v}0,4;Ω (4.33)
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for all w, z P L4pΩq, and for all u⃗, v⃗ P Q.

Proof. We begin by noticing from the definition of c (cf. (3.12)) that, given w, z P L4pΩq, and

u⃗ :“ pu,γq, v⃗ :“ pv, δq P Q, there holds

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď F
ż

Ω

ˇ

ˇ|w|
ρ´2

´ |z|
ρ´2ˇ

ˇ |u ¨ v| . (4.34)

Next, defining rw :“
`

|w|,0
˘

, rz :“
`

|z|,0
˘

P Rn, with 0 P Rn´1, we observe that

ˇ

ˇ|w|
ρ´2

´ |z|
ρ´2ˇ

ˇ “
ˇ

ˇ|rw|
ρ´3

rw ´ |rz|
ρ´3

rz
ˇ

ˇ , (4.35)

and recall from [28, Lemma 5.3] that for each t ě 2 there exists a positive constant Ct such

that
ˇ

ˇ|x|
t´2 x ´ |y|

t´2 y
ˇ

ˇ ď Ct
`

|x| ` |y|
˘t´2

|x ´ y| @ x, y P Rn ,

so that applying the foregoing inequality with t “ ρ´1, and denoting Cpρq :“ Cρ´1, we deduce

that
ˇ

ˇ|rw|
ρ´3

rw ´ |rz|
ρ´3

rz
ˇ

ˇ ď Cpρq
`

|rw| ` |rz|
˘ρ´3

|rw ´ rz| . (4.36)

Thus, replacing (4.36) back into (4.35), and then the resulting estimate back into (4.34), re-

turning to the original variables, and using, in particular, that |rw ´ rz| “
ˇ

ˇ|w| ´ |z|
ˇ

ˇ ď |w ´ z|,

we arrive at

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Cpρq F
ż

Ω

`

|w| ` |z|
˘ρ´3

|w ´ z| |u ¨ v| ,

from which, applying Cauchy-Schwarz’s inequality, we deduce that

|cpw; u⃗, v⃗q ´ cpz; u⃗, v⃗q| ď Cpρq F
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω }w ´ z}0,4;Ω }u}0,4;Ω }v}0,4;Ω . (4.37)

It remains to estimate the expression
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω. The case ρ “ 3 is straightforward

since
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω becomes |Ω|1{4, which yields (4.33) with Lc :“ Cpρq F |Ω|1{4. In turn,

when ρ “ 4, we get by triangle inequality that
›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω “ } |w| ` |z| }0,4;Ω ď
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}w}0,4;Ω ` }z}0,4;Ω, which implies (4.33) with Lc :“ Cpρq F. Finally, if ρ P p3, 4q, we apply

Hölder’s inequality with r :“ 1
4´ρ

P p1,`8q and its conjugate r1 :“ 1
ρ´3 , to obtain

›

›

`

|w| ` |z|
˘ρ´3›

›

0,4;Ω ď |Ω|
p4´ρq{4

} |w| ` |z| }
ρ´3
0,4;Ω ď |Ω|

p4´ρq{4
´

}w}0,4;Ω ` }z}0,4;Ω

¯ρ´3
,

which, along with (4.37), gives (4.33) with Lc :“ Cpρq F |Ω|p4´ρq{4. Summarizing, (4.33) holds

with this latter value of Lc for all ρ P r3, 4s.

The announced property for S is established next.

Lemma 4.3. Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant LS,

depending only on αA, }g}0,Ω, µ0, Lc, and r, such that

}Spw,φq ´ Spz, ξq}0,4;Ω ď LS

!

}φ ´ ξ}0,4;Ω ` }Spz, ξq}0,4;Ω }w ´ z}0,4;Ω

)

(4.38)

for all pw,φq, pz, ξq P Wprq ˆ
`

L4pΩq ˆ L4pΩq
˘

.

Proof. Let pw,φq, pz, ξq P Wprq ˆ
`

L4pΩq ˆ L4pΩq
˘

such that Spw,φq “ u1 and Spz, ξq “ u2,

where, for each i P
␣

1, 2
(

, pσi, u⃗iq :“
`

σi, pui,γiq
˘

P H ˆ Q is the corresponding unique

solution of (4.9) (equivalently, (4.7)), that is

Aw
`

pσ1, u⃗1q, pτ , v⃗q
˘

` bpw; u1, τ q “ Fφpv⃗q ` Gpτ q @ pτ , v⃗q P H ˆ Q ,

Az
`

pσ2, u⃗2q, pτ , v⃗q
˘

` bpz; u2, τ q “ Fξpv⃗q ` Gpτ q @ pτ , v⃗q P H ˆ Q .

(4.39)

Then, applying (4.22) to pσ1, u⃗1q ´ pσ2, u⃗2q P H ˆ Q, we obtain

}Spw,φq ´ Spz, ξq}0,4;Ω “ }u1 ´ u2}0,4;Ω ď }pσ1, u⃗1q ´ pσ2, u⃗2q}HˆQ

ď
2
αA

sup
pτ ,v⃗qPHˆQ

pτ ,v⃗q‰0

Aw
`

pσ1, u⃗1q ´ pσ2, u⃗2q, pτ , v⃗q
˘

` bpw; u1 ´ u2, τ q

}pτ , v⃗q}HˆQ
.

(4.40)

Now, adding and subtracting Az
`

pσ2, u⃗2q, pτ , v⃗q
˘

, and using (4.39) and the fact that there

holds
`

Az ´ Aw
˘`

pσ2, u⃗2q, pτ , v⃗q
˘

“ cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q, we get after some algebraic
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manipulations

Aw
`

pσ1, u⃗1q ´ pσ2, u⃗2q, pτ , v⃗q
˘

` bpw; u1 ´ u2, τ q

“
`

Fφ ´ Fξ

˘

pv⃗q ` bpz ´ w; u2, τ q ` cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q .

(4.41)

Next, it readily follows from the definitions of the function f (cf. (2.3)) and the functional Fϕ

(cf. (3.13)) that
`

Fφ ´ Fξ

˘

pv⃗q ď }g}0,Ω }φ ´ ξ}0,4;Ω }v}0,4;Ω , (4.42)

whereas it is clear from the first row of (4.3) that

bpz ´ w; u2, τ q ď
1
µ0

}w ´ z}0,4;Ω }u2}0,4;Ω }τ }div4{3;Ω . (4.43)

In turn, applying Lemma 4.2, and using that both }w}0,4;Ω and }z}0,4;Ω are bounded by r, we

find that

cpw; u⃗2, v⃗q ´ cpz; u⃗2, v⃗q ď Lc

!

}w}0,4;Ω ` }z}0,4;Ω

)ρ´3
}w ´ z}0,4;Ω }u2}0,4;Ω }v}0,4;Ω

ď Lc p2rqρ´3
}w ´ z}0,4;Ω }u2}0,4;Ω }v}0,4;Ω .

(4.44)

Finally, replacing (4.41) back into (4.40), employing the upper bounds provided by (4.42),

(4.43), and (4.44), and recalling that u2 “ Spz, ξq, we arrive a the required inequality (4.38)

with a positive constant LS as indicated.

The following lemma proves the Lipschitz continuity of the operator rS.

Lemma 4.4. Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant L
rS,

depending only on rCj (cf. (4.28)), Rj, and rαj, j P
␣

1, 2
(

, such that

}rSpwq ´ rSpzq}0,4;Ω ď L
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω (4.45)

for all w, z P Wprq.

Proof. We proceed similarly to the proof of [13, Lemma 3.11]. Indeed, given r P p0, r0s and
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w, z P Wprq, we let rSpwq :“ pϕ1, ϕ2q P L4pΩq ˆ L4pΩq and rSpzq :“ pξ1, ξ2q P L4pΩq ˆ L4pΩq,

where, for each j P t1, 2u, pϕ⃗j,ϑjq :“
`

pϕj, tjq,ϑj
˘

P rHˆrQ and pξ⃗j, ζjq :“
`

pξj, sjq, ζj
˘

P rHˆrQ

are the unique solutions of (4.10) (equivalently, (4.12)) with rcjpw; ¨, ¨q and rcjpz; ¨, ¨q (equivalently,

with raj,w and raj,z), respectively. It follows from the subtraction of the corresponding second

equations of (4.10) that ϕ⃗j ´ ξ⃗j P rV. In addition, testing the first equations of (4.10) against

ψ⃗j “ ϕ⃗j ´ ξ⃗j, and then subtracting them, we deduce that

rajpϕ⃗j ´ ξ⃗j, ϕ⃗j ´ ξ⃗jq “ rcjpz; ξ⃗j, ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j, ϕ⃗j ´ ξ⃗jq ,

from which, subtracting and adding ϕ⃗j in the second component of the first term on the right

hand-side, and using the identity (4.5), we get

rajpϕ⃗j ´ ξ⃗j, ϕ⃗j ´ ξ⃗jq “ rcjpz; ϕ⃗j, ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j, ϕ⃗j ´ ξ⃗jq .

In this way, employing now the ellipticity of raj (cf. (4.26)), the foregoing identity, and the

continuity property for rcj provided by (4.4), we find that

rαj }ϕ⃗j ´ ξ⃗j}
2
rH ď rajpϕ⃗j ´ ξ⃗j, ϕ⃗j ´ ξ⃗jq “ rcjpz; ϕ⃗j, ϕ⃗j ´ ξ⃗jq ´ rcjpw; ϕ⃗j, ϕ⃗j ´ ξ⃗jq

ď Rj }w ´ z}0,4;Ω }ϕ⃗j} rH }ϕ⃗j ´ ξ⃗j} rH ,

which, along with the a priori estimate for }ϕ⃗j} rH given by (4.28), yields

}rSjpwq ´ rSjpzq}0,4;Ω “ }ϕj ´ ξj}0,4;Ω ď }ϕ⃗j ´ ξ⃗j} rH ď rα´1
j Rj }ϕ⃗j} rH }w ´ z}0,4;Ω

ď rα´1
j Rj

rCj

!

}gj}0,4{3;Ω `
`

1 ` }w}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω .

(4.46)

Finally, summing up in (4.46) over j P
␣

1, 2
(

, we get (4.45) with L
rS :“ max

jPt1,2u

␣

rα´1
j Rj rCj

(

.

As a consequence of Lemmas 4.3 and 4.4, we are able now to prove the Lipschitz continuity

of T.

Lemma 4.5. Let r P p0, r0s, with r0 as in (4.24). Then, there exists a positive constant LT,
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depending only on LS, L
rS, CS, and C

rS, such that

}Tpwq ´ Tpzq}0,4;Ω

ď LT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

}w ´ z}0,4;Ω

(4.47)

for all w, z P Wprq.

Proof. Given w, z P Wprq, we first deduce from the definition of T (cf. (4.14)) and the

continuity property of S (cf. Lemma 4.3) that

}Tpwq ´ Tpzq}0,4;Ω “ }S
`

w, rSpwq
˘

´ S
`

z, rSpzq
˘

}0,4;Ω

ď LS

!

}rSpwq ´ rSpzq}0,4;Ω ` }S
`

z, rSpzq
˘

}0,4;Ω }w ´ z}0,4;Ω

)

.

(4.48)

In turn, the Lipschitz-continuity of rS (cf. Lemma 4.4) yields

}rSpwq ´ rSpzq}0,4;Ω ď L
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

}w ´ z}0,4;Ω , (4.49)

whereas the a priori estimates for S (cf. (4.25)) and rS (cf. (4.27)) imply

}S
`

z, rSpzq
˘

}0,4;Ω

ď CS

"

}uD}1{2,Γ ` }ϕr}0,4;Ω ` C
rS

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,

(4.50)

where the fact that both }w}0,4;Ω and }z}0,4;Ω are bounded by r has been utilized in (4.49) and

(4.50), respectively. Finally, replacing the latter estimates back into (4.48), and performing

simple algebraic manipulations, we arrive at (4.47) and end the proof.

The main result of this section, which refers to the solvability of (4.15) (equivalently, (3.24)),

is stated as follows.

Theorem 4.6. Given r P p0, r0s, with r0 as in (4.24), assume that, in addition to the hypothesis
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of Lemma 4.1 (cf. (4.32)), the data satisfy

LT

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ă 1 . (4.51)

Then, there exists a unique u P Wprq (cf. (4.30)) fixed point of T (cf. (4.15)). Equivalently,

(3.24) has a unique solution pσ, u⃗q :“
`

σ, pu,γq
˘

P H ˆ Q and pϕ⃗j,ϑjq :“
`

pϕj, tjq,ϑj
˘

P

rH ˆ rQ, j P t1, 2u, with u P Wprq. Moreover, there exist positive constants C, C1, and C2,

depending on rα1, rα2, rβ, }Q1}0,8;Ω, }Q2}0,8;Ω, }i4}, R1, R2, r, }i4}, }g}0,Ω, and αA, such that

there hold the following a priori bounds

}pσ, u⃗q}HˆQ ď C
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

, (4.52)

and for each j P
␣

1, 2
(

}pϕ⃗j,ϑjq}
rHˆ rQ ď Cj

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

. (4.53)

Proof. It is clear from Lemma 4.1 and the assumption (4.51) that T is a contraction that

maps the ball Wprq into itself, and hence a straightforward application of the classical Banach

fixed–point theorem implies the indicated solvabilities of (4.15) and (3.24). Furthermore, since

u “ Tpuq “ S
`

u, rSpuq
˘

, we deduce that ϕ :“ pϕ1, ϕ2q “ rSpuq, whence (4.53) follows

from (4.28) and (4.29), whereas (4.52) is consequence of (4.25) and (4.53). We omit further

details.



CHAPTER 5

The Galerkin scheme

The Galerkin scheme of the fully–mixed formulation (3.24) is introduced and analyzed in this

chapter. In particular, regarding the solvability analyses of the discrete versions of the decoupled

problems studied in Section 4.3, we now apply [19, Theorem 3.5], [21, Theorem 2.22], and [21,

Proposition 2.42], which correspond to the discrete analogues of [19, Theorem 3.4], [21, Theorem

2.6], and [21, Theorem 2.34], respectively.

5.1 Preliminaries

We begin by letting
!

Th
)

hą0
be a regular family of triangulations of Ω̄ made up of triangles

K (when n “ 2) or tetrahedra K (when n “ 3) of diameter hK , and set h :“ max
!

hK :

K P Th
)

. Then, we let rHσ
h , Hu

h , Hγ
h , Hϕ

h, Ht
h, and Hϑ

h be arbitrary finite element subpaces of

Hpdiv4{3; Ωq, L4pΩq, L2
skewpΩq, L4pΩq, L2pΩq, and Hpdiv4{3; Ωq, respectively. Specific choices of

them, satisfying suitable hypotheses to be introduced along the discussion, will be described

later on in Chapter 6. Note that h stands for both, the size of the triangulation Th and the

34
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sub-index of each subspace. Then, defining

Hh :“ rHσ
h X H0pdiv4{3; Ωq , Qh :“ Hu

h ˆ Hγ
h , rHh :“ Hϕ

h ˆ Ht
h , rQh :“ Hϑ

h , (5.1)

and setting the notations

u⃗h “ puh,γhq , v⃗h “ pvh, δhq , z⃗h “ pzh, ζhq P Qh ,

and for j P t1, 2u

ϕ⃗j,h “ pϕj,h, tj,hq , ψ⃗j,h “ pψj,h, rj,hq , ξ⃗j,h “ pξj,h, sj,hq P rHh ,

the Galerkin scheme associated with (3.24) reads: Find pσh, u⃗hq P Hh ˆ Qh and pϕ⃗j,h,ϑj,hq P

rHh ˆ rQh, j P t1, 2u, such that

apσh, τhq ` bpτh, u⃗hq ` bpuh; uh, τhq “ Gpτhq @ τh P Hh ,

bpσh, v⃗hq ´ cpuh; u⃗h, v⃗hq “ Fϕh
pv⃗hq @ v⃗h P Qh ,

rajpϕ⃗j,h, ψ⃗j,hq ` rcjpuh; ϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj,hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh ,

(5.2)

where ϕh :“ pϕ1,h, ϕ2,hq P Hϕ
h ˆ Hϕ

h.

5.2 Discrete fixed point strategy

In order to address the solvability of (5.2), we adopt the discrete analogue of the fixed point

strategy employed in Section 4.2. Indeed, we start by introducing the operator Sh : Hu
h ˆ

`

Hϕ
hˆ

Hϕ
h

˘

Ñ Hu
h defined by

Shpwh,φhq :“ uh @ pwh,φhq P Hu
h ˆ

`

Hϕ
h ˆ Hϕ

h

˘

, (5.3)
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where pσh, u⃗hq :“
`

σh, puh,γhq
˘

P Hh ˆ Qh is the unique solution (to be confirmed below)

of the problem arising from the first two rows of (5.2) when bpuh; ¨, ¨q, cpuh; ¨, ¨q, and Fϕh
, are

replaced by bpwh; ¨, ¨q, cpwh; ¨, ¨q, and Fφh
, respectively, that is

apσh, τhq ` bpτh, u⃗hq ` bpwh; uh, τhq “ Gpτhq @ τh P Hh ,

bpσh, v⃗hq ´ cpwh; u⃗h, v⃗hq “ Fφh
pv⃗hq @ v⃗h P Qh ,

(5.4)

or, equivalently, as the discrete analogue of (4.9)

Awh

`

pσh, u⃗hq, pτh, v⃗hq
˘

` bpwh; uh, τhq “ Gpτhq ` Fφh
pv⃗hq @ pτh, v⃗hq P HhˆQh , (5.5)

where, given wh P Hu
h, Awh

:
`

Hh ˆ Qh

˘

ˆ
`

Hh ˆ Qh

˘

Ñ R is defined according to (4.8).

On the other hand, for each j P
␣

1, 2
(

we introduce the operator rSj,h : Hu
h Ñ Hϕ

h defined by

rSj,hpwhq :“ ϕj,h @ wh P Hu
h ,

where pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P rHhˆ rQh is the unique solution (to be confirmed below)

of the problem that arises from the third and fourth rows of (5.2) when rcjpuh; ¨, ¨q is replaced

by rcjpwh; ¨, ¨q, that is

rajpϕ⃗j,h, ψ⃗j,hq ` rcjpwh; ϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj,hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh .
(5.6)

Equivalently, defining raj,wh
: rHh ˆ rHh Ñ R, for each wh P Hh, as in (4.11), we can restate

(5.6) as
raj,wh

pϕ⃗j,h, ψ⃗j,hq ` rbpψ⃗j,h,ϑj.hq “ rFjpψ⃗j,hq @ ψ⃗j,h P rHh ,

rbpϕ⃗j,h,ηj,hq “ rGjpηj,hq @ηj,h P rQh .
(5.7)

In this way, defining rSh : Hu
h Ñ

`

Hϕ
h ˆ Hϕ

h

˘

as

rShpwhq :“
`

rS1,hpwhq, rS2,hpwhq
˘

@ wh P Hu
h , (5.8)
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and letting Th : Hu
h Ñ Hu

h be the operator given by

Thpwhq :“ Sh
`

wh, rShpwhq
˘

@ wh P Hu
h , (5.9)

we realize that solving (5.2) is equivalent to seeking a fixed-point of Th, that is uh P Hu
h such

that

Thpuhq “ uh . (5.10)

5.3 Discrete solvability analysis

In this section we address the solvability of (5.2) via the corresponding analysis of the equivalent

fixed–point equation (5.10), which previously requires to prove that the operators Sh (cf. (5.3))

and rSh (cf. (5.8)), and hence Th, are well-defined. Equivalently, that the uncoupled problems

(5.5) (or (5.4)) and (5.7) (or (5.6)) are well-posed.

We begin with the analysis of (5.5), for which we aim to prove that the bilinear forms a, b,

and cpwh; ¨, ¨q, for each wh P Hu
h , when restricted to the corresponding finite element subspaces,

satisfy the assumptions of [19, Theorem 3.5]. In fact, being the hypothesis i) of [19, Theorem

3.5] basically the same as the one of [19, Theorem 3.4], namely the symmetry and positive

semi-definedness of a and cpwh; ¨, ¨q, which was already clarified in Section 4.3, we only need to

concentrate here on ii) and iii) of [19, Theorem 3.5]. To this end, we first consider the following

hypotheses on rHσ
h and Hu

h :

(H.1) rHσ
h contains the multiplies of the identity tensor I, and

(H.2) div
`

rHσ
h

˘

Ď Hu
h .

It follows from (H.1) and the decomposition (3.6) that Hh (cf. (5.1)) can be redefined as

Hh :“
"

ζh ´

´ 1
n|Ω|

ż

Ω
trpζq

¯

I : ζh P rHσ
h

*

.

In turn, letting Vh be the kernel of b|HhˆQh
, we readily deduce, thanks to the definition of b
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(cf. (3.10)) and (H.2), that

Vh :“
!

ζh P Hh : divpζhq “ 0 and
ż

Ω
δh : ζh “ 0 @ δh P Hγ

h

)

.

Consequently, while Vh is not necessarily contained in V (cf. (4.16)), the fact that the elements

of Vh are still divergence–free, along with the inequality (4.17), suffice to conclude the discrete

analogue of (4.18), and with the same constant, namely

apζh, ζhq ě αd }ζh}
2
H @ ζh P Vh , (5.11)

with αd :“ c2
1
µ1

. Similarly as for the continuous case, it is easily seen that (5.11) yields the

discrete inf-sup condition for a required by the hypothesis ii) of [19, Theorem 3.5].

Furthermore, in order to continue the analysis, we introduce the discrete inf-sup condition

for b as a third hypothesis, that is:

(H.3) there exists a positive constant βd, independent of h, such that

sup
τhPHh
τh‰0

bpτh, v⃗hq

}τh}H
ě βd }v⃗h}Q @ v⃗h P Qh .

Next, proceeding analogously to the continuous case, we consider the same radius δ employed

in (4.19), and introduce now the discrete ball

Whpδq :“
!

wh P Hu
h : }wh}0,4;Ω ď δ

)

, (5.12)

so that the boundedness for cpwh; ¨, ¨q|QhˆQh
becomes exactly as in (4.20), that is

|cpwh; v⃗h, z⃗hq| ď |Ω|
1{2 `D ` F δρ´2˘

}v⃗h}Q }⃗zh}Q @ v⃗h , z⃗h P Qh .

Hence, having satisfied all the hypotheses of [19, Theorem 3.5], a straightforward application

of this result implies the existence of a positive constant αA,d, depending only on µ0, |Ω|, D, F,

δ, ρ, αd, and βd, such that for each wh P Whpδq there holds the discrete analogue of (4.21),
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that is

sup
pζh ,⃗zhqPHhˆQh

pζh ,⃗zhq‰0

Awh

`

pτh, v⃗hq, pζh, z⃗hq
˘

}pζh, z⃗hq}HˆQ
ě αA,d }pτh, v⃗hq}HˆQ @ pτh, v⃗hq P Hh ˆ Qh . (5.13)

Thus, using (5.13) and the boundedness property of bpw; ¨, ¨q (cf. (4.3)), similarly as for the

derivation of (4.22), we deduce that for each wh P Whpδq such that }wh}0,4;Ω ď
µ0 αA,d

2 , there

holds

sup
pζh ,⃗zhqPHhˆQh

pζh ,⃗zhq‰0

Awh
ppτh, v⃗hq, pζh, z⃗hqq ` bpwh; vh, ζhq

}pζh, z⃗hq}HˆQ
ě

αA,d

2 }pτh, v⃗hq}HˆQ

for all pτh, v⃗hq P Hh ˆ Qh.

Therefore, the well–posedness of (5.5) is established as follows.

Theorem 5.1. Given δ ą 0, let r P p0, r0,ds, with

r0,d :“ min
!

δ,
µ0 αA,d

2

)

. (5.14)

Then, for each pwh,φhq P Hu
hˆ

`

Hϕ
hˆHϕ

h

˘

such that }wh}0,4;Ω ď r, (5.5) (equivalently, (5.4)) has

a unique solution pσh, u⃗hq :“
`

σh, puh,γhq
˘

P Hh ˆ Qh, and hence one can define Shpwh,φhq

:“ uh. Moreover, there exists a positive constant CS,d, depending only on }i4}, }g}0,Ω, and

αA,d, such that
}Shpwh,φhq}0,4;Ω “ }uh}0,4;Ω ď }pσh, u⃗hq}HˆQ

ď CS,d

!

}uD}1{2,Γ ` }ϕr}0,4;Ω ` }φh}0,4;Ω

)

.

(5.15)

Proof. Similarly as for the proof of Theorem 4.1, we observe now that the bilinear form Awh
`

bpwh; ¨, ¨q satisfies the hypotheses of [21, Theorem 2.22], so that, noting in this case that

G|Hh
P H1

h and Fφh
|Qh

P Q1
h, an application of that theorem proves the present result.

On the other hand, in order to establish the well-posedness of (5.7) (equivalently, (5.6)), in

what follows we show that the bilinear forms raj,wh
|
rHhˆ rHh

and rb|
rHhˆ rQh

satisfy the hypotheses

of [21, Proposition 2.42]. To this end, we proceed as in [18, Section 5.5] (see also [5, Section

4.3, Lemma 4.2] and [13, Section 4.2, Lemmas 4.1 and 4.5]), and introduce first the kernel of
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rb|
rHhˆ rQh

, that is

rVh :“
!

ψ⃗h “ pψh, rhq P rHh : rbpψ⃗h,ηhq “ 0 @ηh P rQh

)

,

and

Z0,h :“
!

ηh P rQh : rb
`

ψ⃗h,ηh
˘

“ 0 @ ψ⃗h “ pψh, 0q P rHh

)

,

which become, respectively,

rVh :“
!

ψ⃗h “ pψh, rhq P rHh :
ż

Ω
rh ¨ ηh `

ż

Ω
ψh divpηhq “ 0 @ηh P Hϑ

h

)

,

and

Z0,h :“
!

ηh P Hϑ
h :

ż

Ω
ψh divpηhq “ 0 @ψh P Hϕ

h

)

. (5.16)

Next, we consider the following assumptions on the subspaces Hϕ
h, Ht

h, and Hϑ
h :

(H.4) divpHϑ
h q Ď Hϕ

h,

(H.5) Z0,h Ď Ht
h, and

(H.6) there exists a positive constant β1,d, independent of h, such that

sup
ηhPHϑ

h
ηh‰0

ż

Ω
ψh divpηhq

}ηh}
rQ

ě β1,d }ψh}0,4;Ω @ψh P Hϕ
h .

As a consequence of (H.4) we easily deduce from (5.16) that

Z0,h :“
!

ηh P Hϑ
h : divpηhq “ 0 in Ω

)

, (5.17)

and thus, given ηh P Z0,h, and using (H.5), we bound the supremum by below with rh :“
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ηh P Ht
h, to deduce that

sup
rhPHt

h
rh‰0

ż

Ω
rh ¨ ηh

}rh}0,Ω
ě }ηh}0,Ω “ β2,d }ηh}

rQ @ηh P Z0,h , (5.18)

with β2,d “ 1. Consequently, invoking [18, Lemma 5.1] with local notation there given by

X “ Hϕ
h, Y “ Y1 “ Ht

h, Y2 “
␣

0
(

, V “ rVh, Z “ Hϑ
h , and Z0 “ Z0,h, we conclude that (H.6)

and (5.18) are equivalent to the existence of positive constants rβd and rCd such that

sup
ψ⃗hP rHh

ψ⃗h‰0

rbpψ⃗h,ηhq

}ψ⃗h}
rH

ě rβd }ηh}
rQ @ηh P rQh , (5.19)

and

}rh}0,Ω ě rCd }ψh}0,4;Ω @ ψ⃗h “ pψh, rhq P rVh . (5.20)

Note that (5.19) constitutes the discrete inf-sup condition for rb required in [21, Proposition

2.42, eq. (2.36)]. In turn, given ψ⃗j,h “ pψj,h, rj,hq P rVh, we use (4.5) and (2.4), similarly to the

first part of the derivation of (4.26), but then, differently from there, employ (5.20) to conclude

that
raj,wh

pψ⃗j,h, ψ⃗j,hq “ rajpψ⃗j,h, ψ⃗j,hq “

ż

Ω
Qj |rj,h|

2
ě Cj }rj,h}

2
0,Ω ,

ě
Cj
2

!

rC2
d }ψj,h}

2
0,4;Ω ` }rj,h}

2
0,Ω

)

ě rαj,d }ψ⃗j,h}
2
rH ,

(5.21)

with rαj,d :“ Cj

2 min
␣

rC2
d , 1

(

. Then, analogously to the continuous case, it is readily seen that

(5.21) yields the discrete inf-sup condition for raj,wh
required in [21, Proposition 2.42, eq. (2.35)].

We are now in position to state the discrete analogue of Theorem 4.2.

Theorem 5.2. For each wh P Hu
h , and for each j P t1, 2u, (5.7) (equivalently, (5.6)) has a unique

solution pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P rHhˆ rQh, and hence one can define rSj,hpwhq :“ ϕj,h.

Moreover, there exists a positive constant C
rS,d, depending only on rαj,d, rβd, }Qj}0,8;Ω, }i4}, and
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Rj, j P
␣

1, 2
(

, such that

}rShpwq}0,4;Ω :“ }
`

rS1,hpwhq, rS2,hpwhq
˘

}0,4;Ω

ď C
rS,d

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

.

(5.22)

Proof. According to the previous discussion on rb and raj,wh
, for each wh P Hu

h , and bearing in

mind that raj,wh
|
rHhˆ rHh

, rb|
rHhˆ rQh

, rFj| rHh
, and rGj| rQh

are all bounded, the existence of a unique

solution of (5.7), for each j P
␣

1, 2
(

, follows from a direct application of [21, Proposition 2.42].

In turn, employing the discrete version of the first inequality in [21, Theorem 2.34, eq. (2.30)],

we get the a priori estimate for }rSj,hpwhq}0,4;Ω, from which, summing up over j P
␣

1, 2
(

, we

arrive at (5.22).

At this point we remark that, similarly as for the continuous case, the component ϑj,h of

the solution of (5.7) can be bounded employing the discrete version of the second inequality in

[21, Theorem 2.34, eq. (2.30)], which yields

}ϑj,h}
rQ ď ĂMj,d

`

1 ` }wh}0,4;Ω
˘

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

, (5.23)

where ĂMj,d is a positive constant depending on rαj,d, rβd, }Qj}0,8;Ω, }i4}, and Rj.

Having established, thanks to Theorems 5.1 and 5.2, that Sh (cf. (5.3)), rSh (cf. (5.8)), and

hence Th (cf. (5.9)), are well-defined, we now aim to show that Th has a unique fixed-point.

More precisely, analogously to the continuous case, in what follows we prove that Th verifies

the hypotheses of the Banach theorem. For this purpose, given r P p0, r0,ds, with r0,d as in

(5.14), we first follow (5.12) and define

Whprq :“
!

wh P Hu
h : }wh}0,4;Ω ď r

)

. (5.24)

Then, using now the a priori estimates (5.15) and (5.22), we easily deduce the existence of a

positive constant CT,d, depending only on CS,d and C
rS,d, such that for each wh P Whprq there



5.3. DISCRETE SOLVABILITY ANALYSIS 43

holds

}Thpwhq}0,4;Ω ď CT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

,

which constitutes the discrete version of (4.31). Hence, we are able to state next the discrete

analogue of Lemma 4.1

Lemma 5.3. Given r P p0, r0,ds, with r0,d as in (5.14), assume that the data satisfy

CT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ď r . (5.25)

Then, there holds Th

`

Whprq
˘

Ď Whprq.

In turn, employing similar arguments to those yielding Lemmas 4.3, 4.4, and 4.5, we are

able to show their discrete counterparts, that is the continuity properties of Sh, rSh, and Th.

However, being the respective proofs almost verbatim to the continuous ones, we omit the

details and just state the corresponding results as follows.

Lemma 5.4. Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant LS,d,

depending only on αA,d, }g}0,Ω, µ0, Lc (cf. Lemma 4.2), and r, such that

}Shpwh,φhq ´ Shpzh, ξhq}0,4;Ω ď LS,d

!

}φh ´ ξh}0,4;Ω ` }Shpzh, ξhq}0,4;Ω }wh ´ zh}0,4;Ω

)

for all pwh,φhq, pzh, ξhq P Whprq ˆ
`

Hϕ
h ˆ Hϕ

h

˘

.

Lemma 5.5. Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant L
rS,d,

depending only on rCj (cf. (4.28)), Rj, and rαj,d, j P
␣

1, 2
(

, such that

}rShpwhq ´ rShpzhq}0,4;Ω

ď L
rS,d

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` }wh}0,4;Ω
˘

}ϕj,D}1{2,Γ

)

}wh ´ zh}0,4;Ω

for all wh, zh P Whprq.
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Thanks to Lemmas 5.4 and 5.5, the Lipschitz continuity of Th (cf. (5.9)) is stated as follows.

Lemma 5.6. Let r P p0, r0,ds, with r0,d as in (5.14). Then, there exists a positive constant

LT,d, depending only on LS,d, LrS,d, CS,d, and C
rS,d, such that

}Thpwhq ´ Thpzhq}0,4;Ω

ď LT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

}wh ´ zh}0,4;Ω

for all wh, zh P Whprq.

We end this section with the solvability result for (5.10) (and hence for (5.2)).

Theorem 5.7. Given r P p0, r0,ds, with r0,d as in (5.14), assume that, in addition to the

hypothesis of Lemma 5.3 (cf. (5.25)), the data satisfy

LT,d

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω `
`

1 ` r
˘

}ϕj,D}1{2,Γ

)

*

ă 1 . (5.26)

Then, there exists a unique uh P Whprq (cf. (5.24)) fixed point of Th (cf. (5.10)). Equiv-

alently, (5.2) has a unique solution pσh, u⃗hq :“
`

σh, puh,γhq
˘

P Hh ˆ Qh and pϕ⃗j,h,ϑj,hq :“
`

pϕj,h, tj,hq,ϑj,h
˘

P rHh ˆ rQh, j P t1, 2u, with uh P Whprq. Moreover, there exist positive con-

stants Cd, C1,d, and C2,d, depending on rα1,d, rα2,d, rβd, }Q1}0,8;Ω, }Q2}0,8;Ω, }i4}, R1, R2, r, }i4},

}g}0,Ω, and αA,d, such that there hold the following a priori bounds

}pσh, u⃗hq}HˆQ ď Cd

"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

, (5.27)

and for each j P
␣

1, 2
(

}pϕ⃗j,h,ϑj,hq}
rHˆ rQ ď Cj,d

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

. (5.28)

Proof. It proceeds analogously to the proof of Theorem 4.6. Indeed, since Th is a contraction

that maps the ball Whprq into itself, which is consequence of Lemma 5.3 and assumption (5.26),
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a direct application of the Banach fixed-point theorem confirms the solvabilities of (5.10) and

(5.2). In turn, noting that uh “ Thpuhq “ Sh
`

uh, rShpuhq
˘

and ϕh :“ pϕ1,h, ϕ2,hq “ rShpuhq,

the a priori estimates (5.27) and (5.28) follow from (5.15), (5.22), and (5.23).

5.4 A priori error analysis

In this section we consider arbitrary finite element subspaces satisfying the hypotheses (H.1)

up to (H.6) introduced in Section 5.3, and derive the Céa estimate for the global error

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1
}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}

rHˆ rQ ,

where
`

pσ, u⃗q, pϕ⃗j,ϑjq
˘

:“
`

pσ, pu,γqq, ppϕj, tjq,ϑjq
˘

P
`

HˆQ
˘

ˆ
`

rHˆ rQ
˘

, j P t1, 2u, with u P

Wprq, is the unique solution of (3.24), and
`

pσh, u⃗hq, pϕ⃗j,h,ϑj,hq
˘

:“
`

pσh, puh,γhqq, ppϕj,h, tj,hq,ϑj,hq
˘

P
`

Hh ˆ Qh

˘

ˆ
`

rHh ˆ rQh

˘

, j P t1, 2u, with uh P Whprq, is the unique solution of (5.2). To this

end, in what follows we apply known Strang-type estimates to the pairs of associated continu-

ous and discrete schemes arising from (3.24) and (5.2), once they are split according to the two

decoupled problems. Hereafter, given a subspace Xh of an arbitrary Banach space pX, } ¨ }Xq,

we set

distpx,Xhq :“ inf
xhPXh

}x ´ xh}X .

We begin the analysis with the first two equations of (3.24) and (5.2), which can be rewritten

as
A
`

pσ, u⃗q, pτ , v⃗q
˘

“ F
`

pτ , v⃗q
˘

@ pτ , v⃗q P H ˆ Q , and

Ah

`

pσh, u⃗hq, pτh, v⃗hq
˘

“ Fh

`

pτh, v⃗hq
˘

@ pτh, v⃗hq P Hh ˆ Qh ,
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where
A
`

pζ, w⃗q, pτ , v⃗q
˘

:“ Auppζ, w⃗q, pτ , v⃗qq ` bpu; w, τ q ,

Ah

`

pζh, w⃗hq, pτh, v⃗hq
˘

:“ Auh
ppζh, w⃗hq, pτh, v⃗hqq ` bpuh; wh, τhq ,

F
`

τ , v⃗q
˘

:“ Gpτ q ` Fϕpv⃗q , and

Fh

`

τh, v⃗hq
˘

:“ Gpτhq ` Fϕh
pv⃗hq ,

for all pζ, w⃗q, pτ , v⃗q P H ˆ Q, for all pζh, w⃗hq, pτh, v⃗hq P Hh ˆ Qh. Then, applying the a

priori error bound provided by [15, Lemma 5.1], and then suitably bounding the resulting

consistency estimate, which is given by }A
`

pσ, u⃗q, p¨, ¨q
˘

´Ah

`

pσ, u⃗q, p¨, ¨q
˘

}`
HhˆQh

˘1 , we deduce

the existence of a positive constant CST, depending only on }A}, }Ah}, and αA,d, and thus, easily

shown to be independent of h, such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ ď CST

!

dist pσ,Hhq ` dist pu⃗,Qhq ` }Fϕ ´ Fϕh
}Q1

h

` }bpu; u, ¨q ´ bpuh; u, ¨q}H1
h

` }cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}Q1
h

)

.

(5.29)

Note, in particular, that }A} depends proportionally on }a} “ 1
µ0

, }b} “ 1, }bpu, ¨, ¨q} “

1
µ0

}u}0,4;Ω, and }cpu; ¨, ¨q} “ |Ω|1{2 `D ` F}u}
ρ´2
0,4;Ω

˘

, with }u}0,4;Ω bounded by r. An analogue

remark is valid for }Ah}. Next, proceeding as for the derivation of (4.42), we readily obtain

}Fϕ ´ Fϕh
}Q1

h
ď }g}0,Ω }ϕ ´ ϕh}0,4;Ω . (5.30)

In turn, bearing in mind the definition of b (cf. (3.11)), we find that for each τh P Hh there

holds

bpu; u, τhq ´ bpuh; u, τhq “ bpu ´ uh; u, τhq ,

from which, employing the boundedness property of b (cf. first row of (4.3)), we conclude that

}bpu; u, ¨q ´ bpuh; u, ¨q}H1
h

ď
1
µ0

}u}0,4;Ω }u ´ uh}0,4;Ω . (5.31)
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Similarly, using the continuity property of c provided by (4.33) (cf. Lemma 4.2), we get

}cpu; u⃗, ¨q ´ cpuh; u⃗, ¨q}Q1
h

ď Lc

!

}u}0,4;Ω ` }uh}0,4;Ω

)ρ´3
}u}0,4;Ω }u ´ uh}0,4;Ω

ď Lc
`

2r
˘ρ´3

}u}0,4;Ω }u ´ uh}0,4;Ω .

(5.32)

In this way, replacing the bounds given by (5.30), (5.31), and (5.32), back into (5.29), we arrive

at
}pσ, u⃗q ´ pσh, u⃗hq}HˆQ ď pCST

!

dist pσ,Hhq ` dist pu⃗,Qhq

` }ϕ ´ ϕh}0,4;Ω ` }u}0,4;Ω }u ´ uh}0,4;Ω

)

,

(5.33)

where pCST is a positive constant depending only on CST, }g}0,Ω, µ0, Lc, r, and ρ.

On the other hand, proceeding analogously with the third and fourth equations of (3.24) and

(5.2), but using now the particular Strang-type estimate provided by [18, Lemma 6.1] (see also

[5, Lemma 5.1] for a slightly more general result), we deduce, for each j P
␣

1, 2
(

, the existence of

a positive constant Cj,ST depending only on rαj,d, rβd, }raj} “ }Qj}0,8;Ω, }rcjpu; ¨, ¨q} “ Rj }u}0,4;Ω,

}rcjpuh; ¨, ¨q} “ Rj }uh}0,4;Ω, and }rb} “ 2, and hence, easily shown to be independent of h, such

that
}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}

rHˆ rQ ď Cj,ST

!

dist pϕ⃗j, rHhq ` dist pϑj, rQhq

` }rcjpu; ϕ⃗j, ¨q ´ rcjpuh; ϕ⃗j, ¨q}
rH1

h

)

.

(5.34)

Now, bearing in mind the definition of rcj (cf. (3.23)), we obtain for each ψ⃗j,h P rHh

rcjpu; ϕ⃗j, ψ⃗j,hq ´ rcjpuh; ϕ⃗j, ψ⃗j,hq “ rcjpu ´ uh; ϕ⃗j, ψ⃗j,hq ,

from which, using the boundedness property of rcj (cf. third row of (4.3)), we deduce that

}rcjpu; ϕ⃗j, ¨q ´ rcjpuh; ϕ⃗j, ¨q}
rH1

h
ď Rj }ϕ⃗j} rH }u ´ uh}0,4;Ω ,

so that (5.34) becomes

}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}
rHˆ rQ ď pCj,ST

!

dist pϕ⃗j, rHhq `dist pϑj, rQhq ` }ϕ⃗j} rH }u´uh}0,4;Ω

)

, (5.35)



5.4. A PRIORI ERROR ANALYSIS 48

where pCj,ST is a positive constant depending only on Cj,ST and Rj.

We now proceed to suitably combine (5.33) and (5.35) to derive the final Céa estimate.

Indeed, multiplying (5.33) by 1
2 pCST

, summing up in (5.35) over j P
␣

1, 2
(

, adding the resulting

inequalities, bounding }u⃗}0,4;Ω and }ϕ⃗j} rH by the right hand sides of (4.52) and (4.53), respec-

tively, and then performing some algebraic manipulations, we find that

1
2 pCST

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1
}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}

rHˆ rQ ď
1
2 }ϕ ´ ϕh}0,4;Ω

`
1
2

!

dist pσ,Hhq ` dist pu⃗,Qhq

)

`

2
ÿ

j“1

pCj,ST

!

dist pϕ⃗j, rHhq ` dist pϑj, rQhq

)

` pC
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

}u ´ uh}0,4;Ω ,

(5.36)

where pC is a positive constant depending only on C (cf. (4.52)), Cj (cf. (4.53)), and pCj,ST,

j P
␣

1, 2
(

.

Having established (5.36), the announced Céa estimate is stated as follows.

Theorem 5.1. Assume that the data satisfy

pC
"

}uD}1{2,Γ ` }ϕr}0,4;Ω `

2
ÿ

j“1

!

}gj}0,4{3;Ω ` }ϕj,D}1{2,Γ

)

*

ď
1

4 pCST
. (5.37)

Then, there exists a positive constant rC, depending only on pCST and pCj,ST, j P
␣

1, 2
(

, and hence,

independent of h, such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1
}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}

rHˆ rQ

ď rC
"

dist pσ,Hhq ` dist pu⃗,Qhq `

2
ÿ

j“1

!

dist pϕ⃗j, rHhq ` dist pϑj, rQhq

)

*

.

(5.38)

Proof. It follows directly from (5.36) after realizing that the first term on its right hand side

can be subtracted from the second one on the left hand side, whereas, under (5.37), a similar

procedure applies to the corresponding last and first terms.
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Furthermore, as suggested by (2.8), (2.14), and (3.7), we can approximate the pressure

p, the velocity gradient ∇u, and the shear stress tensor rσ, by the following postprocessing

formulae:

ph :“ ´
1
n

tr
`

σh ` puh b uhq
˘

`
1

n |Ω|

ż

Ω
trpuh b uhq , (5.39)

`

∇u
˘

h
:“ 1

µ
σd
h `

1
µ

puh b uhq
d

` γh , and (5.40)

rσh :“ σh ´

ˆ

1
n |Ω|

ż

Ω
trpuh b uhq

˙

I ` puh b uhq . (5.41)

Thus, is is not difficult to show that there exists a positive constant c, independent of h, though

depending either on r or the data providing the a priori bounds for }u}0,4;Ω and }uh}0,4;Ω, such

that
}p ´ ph}0,Ω ` }∇u ´

`

∇u
˘

h
}0,Ω ` }rσ ´ rσh}0,Ω

ď c
!

}σ ´ σh}H ` }u ´ uh}0,4;Ω ` }γ ´ γh}0,Ω

)

,
(5.42)

which, certainly, is bounded by the right hand side of (5.38) as well.



CHAPTER 6

Specific finite element subspaces

In this chapter we resort to [27, Section 4.4] and [26, Section 4.5] to specify two examples of

finite element subspaces rHσ
h , Hu

h , Hγ
h , Hϕ

h, Ht
h, and Hϑ

h satisfying the hypotheses (H.1) up

to (H.6) stated in Section 5.3, and then establish the associated rates of convergence for the

Galerkin scheme (5.2). Although it will become clear below, we remark in advance that the

two aforementioned examples are actually determined by two possible choices for the first three

subspaces since the remaining three are kept the same in both cases.

6.1 Preliminaries

Given an integer k ě 0 and K P Th, we let PkpKq be the space of polynomials of degree at

most k defined on K with vector and tensorial counterparts PkpKq :“ rPkpKqsn and PkpKq :“

rPkpKqsnˆn, respectively. In addition, we let RTkpKq :“ PkpKq ` PkpKqx be the local Raviart–

Thomas space of order k defined on K, where x stands for a generic vector in Rn. Furthermore,

denoting by bK the bubble function on K, which is given by the product of its n`1 barycentric

50
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coordinates, we set the local bubble space of order k as

BkpKq :“ curlpbK PkpKqq if n “ 2 , and

BkpKq :“ curlpbK PkpKqq if n “ 3 ,
(6.1)

where curlpvq :“ p Bv
Bx2
,´ Bv

Bx1
q if n “ 2 and v : K Ñ R, and curlpvq “ ∇ ˆ v if n “ 3 and

v : K Ñ R3. Next, we introduce the global spaces

PkpΩq :“
!

vh P L2pΩq : vh|K P PkpKq , @K P Th
)

,

PkpΩq :“
!

vh P L2pΩq : vh|K P PkpKq , @K P Th
)

,

PkpΩq :“
!

δh P L2pΩq : δh|K P PkpKq , @K P Th
)

,

RTkpΩq :“
!

ηh P Hpdiv; Ωq : ηh|K P RTkpKq , @K P Th
)

,

RTkpΩq :“
!

τh P Hpdiv; Ωq : τh,i|K P RTkpKq , @ i P t1, . . . , nu , @K P Th
)

,

BkpΩq :“
!

τh P Hpdiv; Ωq : τh,i|K P BkpKq , @ i P t1, . . . , nu , @K P Th
)

,

where τh,i denotes the ith-row of τh. It is clear that PkpΩq and PkpΩq are also subspaces

of L4pΩq and L4pΩq, respectively. In addition, being Hpdiv; Ωq and Hpdiv; Ωq contained in

Hpdiv4{3; Ωq and Hpdiv4{3; Ωq, respectively, we notice that the spaces RTkpΩq and BkpΩq are

both subspaces of Hpdiv4{3; Ωq as well, whereas RTkpΩq is contained in Hpdiv4{3; Ωq.

6.2 Two examples

To begin with, we proceed as in [25, Section 4.4] and [26, Section 4.5], and employ the stable

triplets for linear elasticity derived in [27, Section 4.4], to define two examples of finite element

subspaces rHσ
h , Hu

h , and Hγ
h , satisfying (H.1) up to (H.3). In what follows, ℓ is a non-negative

integer.

The first example for rHσ
h , Hu

h , and Hγ
h , is PEERSℓ, the plane elasticity element with reduced

symmetry of order ℓ ě 0, whose stability for the mixed finite element formulation of the linear
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elasticity problem, within the classical Hilbertian framework, was originally established in [3]

for ℓ “ 0 and n “ 2, and later on proved for ℓ ě 0 and n P
␣

2, 3
(

in [32]. The corresponding

subspaces are defined as follows:

rHσ
h :“ RTℓpΩq ‘ BℓpΩq , Hu

h :“ PℓpΩq , and

Hγ
h :“ rCpsΩqs

nˆn
X L2

skewpΩq X Pℓ`1pΩq .

(6.2)

The second example for rHσ
h , Hu

h , and Hγ
h , is AFWℓ, the Arnold-Falk-Winther element of

order ℓ ě 0, whose corresponding aforementioned stability can be found in [4]. In this case, the

subspaces are given by:

rHσ
h :“ Pℓ`1pΩq X Hpdiv; Ωq , Hu

h :“ PℓpΩq , and Hγ
h :“ L2

skewpΩq X PℓpΩq . (6.3)

Regarding the verification of the hypotheses by the subspaces specified in (6.2) and (6.3),

we first observe that (H.1) is clearly satisfied in both cases. The same holds with (H.2) since

div
`

RTℓpΩq
˘

and div
`

Pℓ`1pΩq
˘

are contained in PℓpΩq, which coincides with Hu
h in the two

examples, whereas, according to (6.1), the tensors in BℓpΩq are divergence-free. In turn, we

recall that the discrete inf-sup condition for b required in the assumption (H.3), was proved

in [27, Lemma 4.8] for PEERSℓ as well as for AFWℓ. We omit further details and refer to the

analysis developed in [27, Section 4.4.2].

On the other hand, specific finite element subspaces Hϕ
h, Ht

h, and Hϑ
h , are set as follows:

Hϕ
h :“ PℓpΩq , Ht

h :“ PℓpΩq , and Hϑ
h :“ RTℓpΩq . (6.4)

Similarly as a previous remark, the fact that div
`

RTℓpΩq
˘

is contained in PℓpΩq “ Hϕ
h, guar-

antees that (H.4) is satisfied. In addition, knowing from (5.17) that, besides being contained

in Hϑ
h “ RTℓpΩq, the vector functions of Z0,h are divergence-free, we deduce, from a particular

argument provided in the proof of [23, Theorem 3.3], that Z0,h Ď PℓpΩq, which confirms (H.5).

Finally, the discrete inf-sup condition required by (H.6), which coincides with [18, eq. (5.64)],
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is basically proved in the last part of [18, Section 5.5] by realizing that it reduces to the vector

version of [18, Lemma 5.5, eq. (5.45)].

6.3 The rates of convergence

In this section we first collect the approximation properties of the finite element spaces defined

in Section 6.2, and then establish the associated rates of convergence of the Galerkin scheme

(5.2).

We begin with the approximation properties of PEERSℓ (cf. (6.2)) and AFWℓ (cf. (6.3)),

which basically follow from the analogue properties of the Raviart–Thomas and AFW interpola-

tion operators, and of the orthogonal projectors Pℓ
h : L1pΩq Ñ PℓpΩq and PPℓ

h : L1pΩq Ñ PℓpΩq

(cf. [21, Proposition 1.135]), along with the use of the commuting diagram properties and of

the interpolation estimates of Sobolev spaces. They read as follows (cf. [27, Section 4.4.3], [25,

Section 4.4.4]):

(APσ
h ) there exists a positive constant C, independent of h, such that for each s P p0, ℓ ` 1s,

and for each τ P HspΩq X H0pdiv4{3; Ωq, with divpτ q P Ws,4{3pΩq, there holds

dist pτ ,Hhq ď C hs
!

}τ }s,Ω ` }divpτ q}s,4{3;Ω

)

,

(APu
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s,

and for each v P Ws,4pΩq, there holds

dist pv,Hu
hq ď C hs }v}s,4;Ω , and

(APγ
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s,

and for each δ P HspΩq X L2
skewpΩq, there holds

dist pδ,Hγ
hq ď C hs }δ}s,Ω .
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Furthermore, regarding the approximation properties of the subspaces defined in (6.4), they

are given as indicated next:

(APϕ
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s,

and for each ψ P Ws,4pΩq, there holds

dist pψ,Hϕ
hq ď C hs }ψ}s,4;Ω ,

(APt
h) there exists a positive constant C, independent of h, such that for each s P r0, ℓ ` 1s,

and for each r P HspΩq, there holds

dist pr,Ht
hq ď C hs }r}s;Ω , and

(APϑ
h ) there exists a positive constant C, independent of h, such that for each s P p0, ℓ ` 1s,

and for each η P HspΩq X Hpdiv4{3; Ωq, with divpηq P Ws,4{3pΩq, there holds

dist pη,Hϑ
h q ď C hs

!

}η}s,Ω ` }divpηq}s,4{3;Ω

)

.

In this way, as a consequence of Theorem 5.1, (5.42), and the approximation properties

(APσ
h ), (APu

h), (APγ
h), (APϕ

h), (APt
h), and (APϑ

h ), we conclude the rates of convergence

of the Galerkin Scheme (5.2) with the finite element subspaces defined in Section 6.2. More

precisely, we have the following result.

Theorem 6.1. In addition to the hypotheses of Theorems 4.6, 5.7, and 5.1, assume that there

exists s P p0, ℓ ` 1s such that σ P HspΩq X H0pdiv4{3; Ωq, divpσq P Ws,4{3pΩq, u P Ws,4pΩq,

γ P HspΩq X L2
skewpΩq, ϕj P Ws,4pΩq, tj P HspΩq, ϑj P HspΩq X Hpdiv4{3; Ωq, and divpϑjq P
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Ws,4{3pΩq, j P
␣

1, 2
(

. Then, there exists a positive constant C, independent of h such that

}pσ, u⃗q ´ pσh, u⃗hq}HˆQ `

2
ÿ

j“1
}pϕ⃗j,ϑjq ´ pϕ⃗j,h,ϑj,hq}

rHˆ rQ

` }p ´ ph}0,Ω ` }∇u ´
`

∇u
˘

h
}0,Ω ` }rσ ´ rσh}0,Ω

ď C hs
!

}u}s,4;Ω ` }σ}s,Ω ` }divpσq}s,4{3;Ω ` }γ}s,Ω

`

2
ÿ

j“1

´

}ϕj}s,4;Ω ` }tj}s,Ω ` }ϑj}s,Ω ` }divpϑjq}s,4{3;Ω

¯)

.

(6.5)



CHAPTER 7

Numerical results

In this chapter we consider the two pairs of finite element subspaces detailed in Chapter 6

to present three examples illustrating the performance of the mixed finite element method

(5.2) on a set of quasi-uniform triangulations of the respective domains. In what follows, we

refer to the corresponding sets of finite element subspaces generated by ℓ “ t0, 1u as simply

PEERSℓ ´ Pℓ ´ Pℓ ´ RTℓ and AFWℓ ´ Pℓ ´ Pℓ ´ RTℓ. The numerical methods have been

implemented using open source finite element libraries: FEniCS [1] and FreeFem++ [29]. We

have used FEniCS for Examples 1 and 2, and FreeFem++ for the Example 3. A Newton–Raphson

algorithm with a fixed tolerance tol “ 1E´06 is used for the resolution of the nonlinear problem

(5.2). As usual, the iterative method is finished when the relative error between two consecutive

iterations of the complete coefficient vector, namely coeffm and coeffm`1, is sufficiently small,

that is,
}coeffm`1

´ coeffm
}DOF

}coeffm`1
}DOF

ď tol ,

where } ¨ }DOF stands for the usual Euclidean norm in RDOF with DOF denoting the total number

of degrees of freedom defining the finite element subspaces rHσ
h ,Hu

h ,H
γ
h ,H

ϕ
h,Ht

h, and Hϑ
h (cf.

56
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(6.2)–(6.4)).

We now introduce some additional notation. The individual errors are denoted by

epσq :“ }σ ´ σh}div4{3;Ω , epuq :“ }u ´ uh}0,4;Ω , epγq :“ }γ ´ γh}0,Ω ,

eppq :“ }p ´ ph}0,Ω , ep∇uq :“ }∇u ´ p∇uqh}0,Ω ,

epϕjq :“ }ϕj ´ ϕj,h}0,4;Ω , eptjq :“ }tj ´ tj,h}0,Ω , epϑjq :“ }ϑj ´ ϑj,h}div4{3;Ω , j P t1, 2u ,

where ph and p∇uqh stand for the post-processed pressure and velocity gradient suggested

by (5.39) and (5.40), respectively. We stress here that we are also able to recover the shear

stress tensor rσ by the post-processing formula (5.41). However, for the sake of simplicity,

in the numerical essays below we will focus only on the pressure field and velocity gradient

tensor. Moreover, for each ‹ P
␣

σ,u,γ, p,∇u, ϕj, tj,ϑj
(

we let rp‹q be the experimental rate of

convergence given by rp‹q :“ log
`

ep‹q{pep‹q
˘

{ logph{phq, where h and ph denote two consecutive

meshsizes with errors e and pe, respectively.

The examples to be considered in this section are described next. In all of them, we take

ϱ “ 1, R1 “ 1, R2 “ 1, and ϕr “ p0, 0q. In turn, in the first two examples the tensors Q1 and

Q2 are taken as the identity matrix I, which satisfy (2.4). In addition, the null mean value of

trpσhq over Ω is fixed via a real Lagrange multiplier strategy.

Example 1: Convergence against smooth exact solutions

in a 2D domain

In this test we corroborate the rates of convergence in a two-dimensional domain. The domain

is the square Ω “ p0, 1q2. We consider the inertial power ρ “ 3, the potential type gravitational

acceleration g “ p0,´1qt, the effective viscosity µpx1, x2q “ expp´x1x2q, and adjust the data



58

f , g1, and g2 in (2.13) such that the exact solution is given by

upx1, x2q “

¨

˝

sinpπx1q cospπx2q

´ cospπx1q sinpπx2q

˛

‚, ppx1, x2q “ cospπx1q sinp0.5 πx2q ,

ϕ1px1, x2q “ 0.5 ` 0.5 cospx1x2q , and ϕ2px1, x2q “ 0.1 ` 0.3 exppx1x2q .

The model problem is then complemented with the appropriate Dirichlet boundary conditions.

Tables 7.1 and 7.2 show the convergence history for a sequence of quasi-uniform mesh re-

finements, including the number of Newton iterations when D “ 1 and F “ 10. As already

announced, we stress that we are able not only to approximate the original unknowns but also

the pressure field and the velocity gradient through the formulae (5.39)–(5.40). The results

confirm that the optimal rates of convergence Ophℓ`1q predicted by Theorem 6.1 are attained

for ℓ “ t0, 1u for both PEERSℓ and AFWℓ based schemes. The Newton method exhibits a be-

havior independent of the meshsize, converging in five iterations in almost all cases. In Figure

7.1 we display some solutions obtained with the mixed PEERS1 ´P1 ´P1 ´RT1 approximation

with meshsize h “ 0.013 and 24, 200 triangle elements (actually representing 1, 260, 602 DOF).

Example 2: Convergence against smooth exact solutions

in a 3D domain

In the second example we consider the cube domain Ω “ p0, 1q3, the model parameter ρ “

3.5, D “ 1, F “ 10, µpx1, x2, x3q “ expp´x1x2x3q, and g “ p0, 0,´1q. The manufactured

solution is given by

upx1, x2, x3q “

¨

˚

˚

˚

˝

sinpπx1q cospπx2q cospπx3q

´2 cospπx1q sinpπx2q cospπx3q

cospπx1q cospπx2q sinpπx3q

˛

‹

‹

‹

‚

, ppx1, x2, x3q “ cospπx1q exppx2 ` x3q ,

ϕ1px1, x2, x3q “ 0.5 ` 0.5 cospx1x2x3q , and ϕ2px1, x2, x3q “ 0.1 ` 0.3 exppx1x2x3q .



59

Similarly to the first example, the data f , g1, g2 and uD, ϕ1,D, ϕ2,D are computed from (2.13) using

the above solution. The convergence history for a set of quasi-uniform mesh refinements using

ℓ “ 0 is shown in Table 7.3. Again, the mixed finite element method converges optimally with

order Ophq, as it was proved by Theorem 6.1. In addition, some components of the numerical

solution are displayed in Figure 7.2, which were built using the mixed PEERS0 ´P0 ´P0 ´RT0

approximation with meshsize h “ 0.087 and 48, 000 tetrahedral elements (actually representing

1, 479, 784 DOF).

Example 3: Flow through a 2D porous media with frac-

ture network.

Inspired by [16, Example 4, Section 6], we finally focus on a flow through a porous medium

with a fracture network considering strong jump discontinuities of the parameters D and F

across the two regions. We consider the square domain Ω “ p´1, 1q2 with an internal fracture

network denoted as Ωf (see the first plot in Figure 7.3), and boundary Γ, whose left, right,

upper and lower parts are given by Γleft “ t´1u ˆ p´1, 1q, Γright “ t1u ˆ p´1, 1q, Γtop “

p´1, 1qˆt1u, and Γbottom “ p´1, 1qˆt´1u, respectively. Note that the boundary of the internal

fracture network is defined as a union of segments. The prescribed mesh file is available in

https://github.com/scaucao/Fracture network-mesh CBF-DD. We consider the coupling

of the convective Brinkman–Forchheimer and double-diffusion equations (2.13) in the whole

domain Ω with inertial power ρ “ 4, µ “ 1, Q1 “ 0.1 I and Q2 “ 0.2 I, but with different values

of the parameters D and F for the interior and the exterior of the fracture, namely

F “

$

&

%

10 in Ωf

1 in ΩzΩf

and D “

$

&

%

1 in Ωf

1000 in ΩzΩf

. (7.1)

The parameter choice corresponds to increased inertial effect (F “ 10) in the fracture and a

high permeability (D “ 1), compared to reduced inertial effect (F “ 1) in the porous medium

and low permeability (D “ 1000). In addition, g “ p0,´1q, the source terms are g1 “ 0 and

https://github.com/scaucao/Fracture_network-mesh_CBF-DD
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g2 “ 0, and the boundaries conditions are

σ ν “

$

’

&

’

%

p´100 px2 ´ 1q, 0qt on Γleft ,

p0, ´100 px1 ´ 1qqt on Γtop ,
σ ν “ p0, 0qt on Γright Y Γbottom ,

ϕ1 “ 0.3 on Γbottom , ϕ1 “ 0 on Γtop , ϑ1 ¨ ν “ 0 on Γleft Y Γright ,

ϕ2 “ 0.2 on Γbottom , ϕ2 “ 0 on Γtop , ϑ2 ¨ ν “ 0 on Γleft Y Γright ,

(7.2)

which drives the flow in a diagonal direction from the left-top corner to the right-bottom corner

of the square domain Ω. We remark that the analysis developed in the previous sections can

be extended, with minor modifications, to the case of mixed boundary conditions considered

in this example.

In Figure 7.3, we display the computed magnitude of the pseudostress tensor, velocity,

velocity gradient, and gradients of the temperature and concentration, and the temperature

and concentration fields, which were built using the fully-mixed AFW0 ´P0 ´P0 ´RT0 scheme

on a mesh with h “ 0.029 and 31, 932 triangle elements (actually representing 576, 216 DOF). As

we expected, the velocity in the fractures is higher than the velocity in the porous medium, due

to smaller fractures thickness and the parameter setting (7.1). In addition, the velocity is higher

in branches of the network where the fluid enters from the left-top corner and decreases toward

the right-bottom corner of the domain. In turn, we observe a sharp velocity gradient across the

interfaces between the fractures and the porous medium. The pseudostress is consistent with

the boundary conditions (7.2) and it is more diffused since it includes the pressure field. In

turn, the temperature and concentration are zero on the top of the domain and go increasing

towards the bottom of it, which is consistent with the behavior observed in the magnitude of the

temperature and concentration gradients. This example illustrates the ability of the method

to provide accurate resolution and numerically stable results for heterogeneous inclusions with

high aspect ratio and complex geometry, as presented in the network of thin fractures. We

notice that the mesh used in this example was built by considering a quasi-uniform refinement.

Nevertheless, this refinement can be improved and automatized by employing a suitable a

posteriori error indicator, as in [14] and [11], that captures the aforementioned discontinuity of
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the parameters and localize the refinement where it is needed. The corresponding a posteriori

error analysis and numerical implementation will be addressed in a future work.

PEERS0 ´ P0 ´ P0 ´ RT0 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

570 0.354 2.2E+00 – 2.3E-01 – 1.6E-01 – 2.8E-01 – 8.6E-01 –
2194 0.177 1.1E+00 0.988 1.2E-01 1.003 5.1E-02 1.666 1.4E-01 0.948 4.5E-01 0.927
8610 0.088 5.5E-01 1.003 5.8E-02 1.063 2.1E-02 1.304 6.9E-02 1.039 2.3E-01 0.973

30002 0.047 2.9E-01 1.004 3.1E-02 1.057 9.2E-03 1.301 3.6E-02 1.037 1.2E-01 0.993
119402 0.024 1.5E-01 1.002 1.6E-02 1.111 3.4E-03 1.422 1.8E-02 1.015 6.2E-02 1.000
400402 0.013 8.0E-02 1.001 8.5E-03 1.059 1.4E-03 1.479 9.7E-03 1.005 3.4E-02 1.001

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.2E-02 – 8.4E-02 – 1.6E-01 – 4.2E-02 – 7.6E-02 – 1.5E-01 – 6
1.1E-02 0.979 5.0E-02 0.736 8.9E-02 0.883 2.1E-02 0.981 4.1E-02 0.904 7.8E-02 0.946 6
5.5E-03 0.997 2.7E-02 0.916 4.6E-02 0.961 1.1E-02 0.995 2.1E-02 0.962 3.9E-02 0.980 5
2.9E-03 1.000 1.4E-02 0.973 2.5E-02 0.988 5.7E-03 0.999 1.1E-02 0.987 2.1E-02 0.993 5
1.5E-03 1.000 7.3E-03 0.991 1.2E-02 0.996 2.8E-03 1.000 5.6E-03 0.996 1.1E-02 0.998 5
8.0E-04 1.000 4.0E-03 0.997 6.7E-03 0.999 1.6E-03 1.000 3.1E-03 0.999 5.8E-03 0.999 5

AFW0 ´ P0 ´ P0 ´ RT0 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

625 0.354 2.0E+00 – 2.3E-01 – 4.0E-01 – 1.5E-01 – 8.2E-01 –
2401 0.177 9.8E-01 1.027 1.2E-01 0.965 2.1E-01 0.944 6.7E-02 1.164 4.2E-01 0.943
9409 0.088 4.9E-01 1.010 5.8E-02 0.991 1.0E-01 0.986 3.2E-02 1.078 2.1E-01 0.987

32761 0.047 2.6E-01 1.003 3.1E-02 0.998 5.6E-02 0.996 1.7E-02 1.024 1.1E-01 0.997
130321 0.024 1.3E-01 1.001 1.6E-02 0.999 2.8E-02 0.999 8.2E-03 1.007 5.7E-02 0.999
436921 0.013 7.0E-02 1.000 8.5E-03 1.000 1.5E-02 1.000 4.5E-03 1.002 3.1E-02 1.000

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.2E-02 – 8.3E-02 – 1.6E-01 – 4.2E-02 – 7.6E-02 – 1.5E-01 – 5
1.1E-02 0.978 5.0E-02 0.731 8.9E-02 0.883 2.1E-02 0.981 4.1E-02 0.905 7.8E-02 0.947 5
5.5E-03 0.997 2.7E-02 0.915 4.6E-02 0.960 1.1E-02 0.996 2.1E-02 0.963 3.9E-02 0.980 5
2.9E-03 1.000 1.4E-02 0.973 2.5E-02 0.987 5.7E-03 0.999 1.1E-02 0.987 2.1E-02 0.993 5
1.5E-03 1.000 7.3E-03 0.991 1.2E-02 0.996 2.8E-03 1.000 5.6E-03 0.996 1.1E-02 0.998 5
8.0E-04 1.000 4.0E-03 0.997 6.7E-03 0.999 1.6E-03 1.000 3.1E-03 0.999 5.8E-03 0.999 5

Table 7.1: [Example 1, ℓ “ 0] Number of degrees of freedom, meshsizes, errors, rates of conver-
gence, and Newton iteration count for the fully-mixed approximations with ρ “ 3, D “ 1, and
F “ 10 .



62

PEERS1 ´ P1 ´ P1 ´ RT1 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1746 0.354 3.4E-01 – 4.1E-02 – 5.7E-02 – 3.4E-02 – 1.3E-01 –
6818 0.177 8.8E-02 1.959 1.1E-02 1.969 1.7E-02 1.733 9.4E-03 1.836 3.6E-02 1.867

26946 0.088 2.3E-02 1.964 2.6E-03 1.992 5.4E-03 1.674 2.6E-03 1.851 1.0E-02 1.861
94202 0.047 6.5E-03 1.979 7.5E-04 1.998 1.7E-03 1.817 7.9E-04 1.912 3.0E-03 1.905

375602 0.024 1.6E-03 1.991 1.9E-04 1.999 4.5E-04 1.926 2.0E-04 1.960 7.8E-04 1.954
1260602 0.013 4.9E-04 1.996 5.6E-05 2.000 1.4E-04 1.973 6.1E-05 1.983 2.3E-04 1.980

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.0E-03 – 1.3E-02 – 2.2E-02 – 3.4E-03 – 7.9E-03 – 1.7E-02 – 6
5.1E-04 2.006 3.7E-03 1.792 6.1E-03 1.878 8.9E-04 1.971 2.2E-03 1.827 4.5E-03 1.926 6
1.3E-04 2.002 9.8E-04 1.919 1.6E-03 1.950 2.2E-04 1.994 5.9E-04 1.929 1.2E-03 1.969 5
3.6E-05 2.001 2.9E-04 1.965 4.5E-04 1.978 6.1E-05 1.999 1.7E-04 1.967 3.3E-04 1.985 5
9.0E-06 2.000 7.2E-05 1.984 1.1E-04 1.990 1.5E-05 2.000 4.3E-05 1.984 8.3E-05 1.993 5
2.7E-06 2.000 2.2E-05 1.992 3.4E-05 1.995 4.5E-06 2.000 1.3E-05 1.992 2.5E-05 1.996 5

AFW1 ´ P1 ´ P1 ´ RT1 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1745 0.354 3.1E-01 – 4.1E-02 – 6.4E-02 – 1.8E-02 – 1.3E-01 –
6817 0.177 7.6E-02 2.010 1.1E-02 1.959 1.7E-02 1.949 4.3E-03 2.042 3.3E-02 1.958

26945 0.088 1.9E-02 2.006 2.6E-03 1.989 4.2E-03 1.980 1.1E-03 1.963 8.4E-03 1.986
94201 0.047 5.3E-03 2.003 7.5E-04 1.997 1.2E-03 1.992 3.2E-04 1.972 2.4E-03 1.995

375601 0.024 1.3E-03 2.001 1.9E-04 1.999 3.0E-04 1.997 8.1E-05 1.984 6.0E-04 1.998
1260601 0.013 4.0E-04 2.001 5.6E-05 2.000 8.9E-03 1.998 2.4E-05 1.992 1.8E-04 1.999

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.0E-03 – 1.3E-02 – 2.2E-02 – 3.4E-03 – 7.9E-03 – 1.7E-02 – 6
5.1E-04 2.006 3.7E-03 1.783 6.1E-03 1.877 8.6E-04 1.971 2.2E-03 1.820 4.5E-03 1.926 5
1.3E-04 2.002 9.8E-04 1.918 1.6E-03 1.950 2.2E-04 1.994 5.9E-04 1.928 1.2E-03 1.969 5
3.6E-05 2.001 2.9E-04 1.965 4.5E-04 1.978 6.1E-05 1.999 1.7E-04 1.968 3.3E-04 1.985 5
9.0E-06 2.000 7.2E-05 1.984 1.1E-04 1.990 1.5E-05 2.000 4.3E-05 1.984 8.3E-05 1.993 5
2.7E-06 2.000 2.2E-05 1.992 3.4E-05 1.995 4.5E-06 2.000 1.3E-05 1.992 2.5E-05 1.996 5

Table 7.2: [Example 1, ℓ “ 1] Number of degrees of freedom, meshsizes, errors, rates of conver-
gence, and Newton iteration count for the fully-mixed approximations with ρ “ 3, D “ 1, and
F “ 10 .
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PEERS0 ´ P0 ´ P0 ´ RT0 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1642 0.866 9.2E+00 – 5.7E-01 – 1.2E+00 – 1.2E+00 – 2.4E+00 –
12376 0.433 4.8E+00 0.953 3.1E-01 0.898 4.3E-01 1.477 6.3E-01 0.881 1.4E+00 0.721
96268 0.217 2.4E+00 1.002 1.6E-01 0.971 1.2E-01 1.793 3.1E-01 1.054 7.6E-01 0.910

509926 0.124 1.4E+00 1.015 8.9E-02 0.994 5.0E-02 1.604 1.6E-01 1.104 4.4E-01 0.968
1479784 0.087 9.4E-01 1.012 6.3E-02 0.998 2.9E-02 1.577 1.1E-01 1.084 3.1E-01 0.987

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.9E-02 – 1.0E-01 – 3.2E-01 – 6.0E-02 – 1.1E-01 – 2.3E-01 – 6
1.6E-02 0.868 8.2E-02 0.295 1.9E-01 0.760 3.1E-02 0.931 6.3E-02 0.849 1.3E-01 0.864 6
8.0E-03 0.971 4.8E-02 0.788 9.9E-02 0.926 1.6E-02 0.982 3.3E-02 0.918 6.6E-02 0.957 6
4.6E-03 0.994 2.8E-02 0.925 5.7E-02 0.975 9.1E-03 0.995 1.9E-02 0.966 3.8E-02 0.986 6
3.2E-03 0.998 2.0E-02 0.965 4.0E-02 0.989 6.4E-03 0.998 1.4E-02 0.983 2.7E-02 0.994 6

AFW0 ´ P0 ´ P0 ´ RT0 approximation
DOF h epσq rpσq epuq rpuq epγq rpγq eppq rppq ep∇uq rp∇uq

1993 0.866 8.7E+00 – 5.6E-01 – 1.1E+00 – 1.0E+00 – 2.1E+00 –
14881 0.433 4.3E+00 1.032 3.0E-01 0.903 6.4E-01 0.727 4.9E-01 1.093 1.3E+00 0.712

114817 0.217 2.1E+00 1.045 1.6E-01 0.959 3.4E-01 0.928 2.2E-01 1.119 6.8E-01 0.922
605641 0.124 1.2E+00 1.019 8.9E-02 0.988 1.9E-01 0.980 1.3E-01 1.050 3.9E-01 0.978

1754401 0.087 8.1E-01 1.008 6.2E-02 0.995 1.4E-01 0.992 8.7E-02 1.021 2.7E-01 0.992

epϕ1q rpϕ1q ept1q rpt1q epϑ1q rpϑ1q epϕ2q rpϕ2q ept2q rpt2q epϑ2q rpϑ2q it
2.9E-02 – 9.9E-02 – 3.1E-01 – 6.0E-02 – 1.1E-01 – 2.3E-01 – 5
1.6E-02 0.869 8.1E-02 0.275 1.9E-01 0.747 3.1E-02 0.934 6.3E-02 0.846 1.3E-02 0.863 5
8.0E-03 0.972 4.8E-02 0.775 9.8E-02 0.917 1.6E-02 0.984 3.3E-02 0.915 6.6E-02 0.954 5
4.6E-03 0.995 2.8E-02 0.922 5.7E-02 0.970 9.1E-03 0.996 1.9E-02 0.965 3.8E-02 0.983 5
3.2E-03 0.998 2.0E-02 0.964 4.0E-02 0.986 6.4E-03 0.998 1.4E-02 0.983 2.7E-02 0.992 5

Table 7.3: [Example 2] Number of degrees of freedom, meshsizes, errors, rates of convergence,
and Newton iteration count for the fully-mixed approximations with ρ “ 3.5, D “ 1, and
F “ 10 .
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Figure 7.1: [Example 1, ℓ “ 1] Computed pseudostress tensor component, magnitude of the
velocity, vorticity component, and pressure field (top plots); temperature field, magnitude of the
pseudoheat vector, concentration field, and magnitude of the pseudodiffusion vector (bottom
plots).
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Figure 7.2: [Example 2] Computed pseudostress tensor component, magnitude of the velocity,
vorticity component, and pressure field (top plots); temperature field, magnitude of the pseu-
doheat vector, concentration field, and magnitude of the pseudodiffusion vector (bottom plots).
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Figure 7.3: [Example 3] Domain configuration, computed magnitude of the pseudostress tensor,
velocity, and velocity gradient tensor (top plots); concentration field, magnitude of the tem-
perature gradient, concentration field, and magnitude of the concentration gradient (bottom
plots).



CHAPTER 8

Conclusions and Future Works

In this chapter we summarize the main contributions of this work and give a brief description

of eventual future works.

8.1 Conclusions

Upon the results presented in this thesis, we can extract the following conclusions:

• We developed a new mixed formulation for the convective Brinkman-Forchheimer equa-

tions, whose analysis made use of diverse tools and abstract results in Banach spaces.

• We showed that the pressure field, the velocity gradient and the shear stress tensor can

be obtained by using a post-processing formula based on the computed variables.

• We proved that both configurations of finite element spaces proposed for fluid variables

achieve optimal convergence, which is confirmed by numerical examples.
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8.2 Future Works

The methods developed and the results obtained here have motivated some posibilities of future

work, which are described below:

• To extend the analysis of the coupled convective Brinkman-Forchheimer and double-

diffusion equations to the case in which the viscosity µ depends on the module of the

strain tensor epuq, namely

´ div
`

µp|epuq|q epuq
˘

` p∇uqu ` D u ` F |u|
ρ´2 u ` ∇p “ f in Ω ,

divpuq “ 0 in Ω , u “ uD on Γ ,
ż

Ω
p “ 0 .

• To couple the convective Brinkman-Forchheimer equations with other models of interest,

such as Darcy’s equation, and analyze it in a Banach spaces framework.

• To develop the corresponding a posteriori error analyses of some of the above models.

• To extend the analysis and results to the unsteady state case of some of the above models.



Bibliography

[1] M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C.

Richardson, J. Ring, M.E. Rognes, and G.N. Wells, The FEniCS project version

1.5. Arch. Numer. Softw. 3 (2015) 9–23.

[2] A.K. Alzahrani, Importance of Darcy–Forchheimer porous medium in 3D convective

flow of carbon nanotubes. Phys. Lett. A 382 (2018), no. 40, 2938–2943.

[3] D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method

for plane elasticity. Jpn. J. Appl. Math. 1 (1984), 347–367.

[4] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear

elasticity with weakly imposed symmetry. Math. Comp. 76 (2007), no. 260, 1699–1723.

[5] G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A new non-

augmented and momentum-conserving fully-mixed finite element method for a coupled flow-

transport problem. Calcolo 59 (2022), no. 1, Paper No. 6, 44 pp.

[6] M.M. Bhatti, A. Zeeshan, R. Ellahi, and G.C. Shit, Mathematical modeling of

heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through

69



BIBLIOGRAPHY 70

a Darcy–Brinkman–Forchheimer porous medium. Adv. Powder Techn. 29 (2018), no. 5,

1189–1197.

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series

in Computational Mathematics, 15. Springer-Verlag, New York, 1991.
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[26] G.N. Gatica, N. Núñez and R. Ruiz-Baier, Mixed-primal methods for natural con-

vection driven phase change with Navier-Stokes-Brinkman equations. J. Sci. Comput. 95

(2023), no. 3, Paper No. 79.
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