

Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática

Estimación a posteriori del error y esquemas adaptativos para la solución por elementos finitos de problemas de electroencefalografía

Memoria para optar al título de Ingeniero Civil Matemático

Felipe Vargas Martínez

Concepción, Enero de 2014

Agradecimientos

En primer lugar, agradezco a Dios por haberme dado la vida y la salud en todos estos años de estudio; sin Él, nada de esto habría sido posible.

También quiero agradecer a mi familia por todo el apoyo brindado, por el respaldo y preocupación en este tiempo que he estado fuera de la casa. A mi mamá Cristina, a mi papá Adolfo, a mi abuelita Ruth y mi hermano Adolfo, muchas gracias.

Tampoco puedo dejar pasar esta oportunidad para agradecer la inmensa ayuda brindada por mis directores de tesis. Ha sido realmente un privilegio y un gusto trabajar bajo la dirección de una persona con tan reconocida trayectoria como es el profesor Rodolfo Rodríguez, e igualmente agradezco la muy buena voluntad y disposición de mi directora Jessika Camaño. De verdad les estoy muy agradecido por todo.

Por último, quiero agradecer también al proyecto Anillo ANANUM, ACT1118, CO-NICYT (Chile) por el financiamiento parcial de este trabajo.

Índice

1.	Introducción	6
2.	Problema Modelo 2.1. Problema Continuo	8 8 10 11
3.	Resultados Preliminares	15
4.	Un estimador de error a posteriori 4.1. Confiabilidad. 4.2. Eficiencia.	23 24 28
5.	El Problema Inverso	33
6.	Experimentos Numéricos 6.1. Problema Directo. 6.2. Problema Inverso.	35 35 47
7.	Conclusiones	56

Índice de cuadros

1.	Los 4 puntos y sus mediciones "exactas" para $\boldsymbol{x}_0 = (0.012634, 0.8696)$	13
2.	Grados de Libertad y número de elementos en las mallas uniformes.	14
3.	Valores calculados y errores puntuales en mallas uniformes usando el método	
	de sustracción para $\mathbf{x}_0 = (0.012634, 0.8696)$.	14
4.	Experimento 1. Los 3 puntos y sus mediciones "exactas".	35
5.	Experimento 1. Grados de Libertad y número de elementos en las mallas ob-	
	tenidas con $\eta_{T,p}$ para $p = 1.25$ y $\boldsymbol{x}_0 = (0.012634, 0.182)$.	36
6.	Experimento 1. Valores calculados y errores puntuales en mallas uniformes para	
	$\boldsymbol{x}_0 = (0.012634, 0.182).$	37
7.	Experimento 1. Valores calculados y errores puntuales en mallas refinadas adap-	
	tativamente para $x_0 = (0.012634, 0.182)$.	38
8.	Experimento 2. Grados de Libertad y número de elementos en las mallas ob-	
	tenidas con $\eta_{T,p}$, para $p = 1.25$ y $\boldsymbol{x}_0 = (0.012634, 0.8696)$	43
9.	Experimento 2. Valores calculados y errores puntuales en mallas refinadas adap-	
	tativamente para $x_0 = (0.012634, 0.8696)$	44
10.	Experimento 3. Aproximaciones de $x_0 = (0.012634, 0.81)$ y $p = (-0.2425, 0.81)$	
	0.9701) en mallas uniformes	48
11.	Experimento 3. Aproximaciones de $x_0 = (0.012634, 0.81)$ y $p = (-0.2425, 0.81)$	
	0.9701) en mallas refinadas adaptativamente.	48
12.	Experimento 4. Aproximaciones de $x_0 = (0.012634, 0.85)$ y $p = (-0.2425, 0.85)$	
	0.9701) en mallas uniformes	49
13.	Experimento 4. Aproximaciones de $x_0 = (0.012634, 0.85)$ y $p = (-0.2425, 0.85)$	
	0.9701) en mallas refinadas adaptativamente	50
14.	Experimento 5. Aproximaciones de $x_0 = (0.012634, 0.86)$ y $p = (-0.2425, 0.86)$	
	0.9701) en mallas uniformes	51
15.	Experimento 5. Aproximaciones de $x_0 = (0.012634, 0.86)$ y $p = (-0.2425,$	
	0.9701) en mallas refinadas adaptativamente	51
16.	Resultados Experimento 6, considerando ruido del 10 %. Los soluciones exactas	
	son $\boldsymbol{x}_0 = (0.012634, 0.86)$ y $\boldsymbol{p} = (-0.2425, 0.9701)$.	53
17.	Resultados Experimento 6, considerando ruido del 1 $\%$. Las soluciones exactas	
	son $\boldsymbol{x}_0 = (0.012634, 0.86)$ y $\boldsymbol{p} = (-0.2425, 0.9701)$.	53
18.	Resultados Experimento 6, considerando ruido del 0.1 %. Las soluciones exactas	
	son $\boldsymbol{x}_0 = (0.012634, 0.86)$ y $\boldsymbol{p} = (-0.2425, 0.9701)$.	54

Índice de figuras

1.	Malla inicial del dominio con sus 3 regiones	13
2.	El soporte ω_{ℓ} de b_{ℓ} , para $\ell \in \mathcal{E}_{h,i}$ y $\mathcal{E}_{h,t}$, respectivamente	16
3.	La definición de F_{ℓ}	17
4.	Definición de \hat{T}_{ℓ} y \hat{T}_{ℓ}^* .	18
5.	Rectángulo debajo de la curva b_{ℓ}	20
6.	Experimento 1. Mallas obtenidas con $\eta_{T,p}$, para $p = 1.25$ y $\boldsymbol{x}_0 = (0.012634,$	
	0.182).	39
7.	Experimento 1. Error en el punto (-1, -0.75).	39
8.	Experimento 1. Error en el punto $(-0.75, 1)$.	40
9.	Experimento 1. Error en el punto $(1, 0.75)$.	40
10.	Experimento 2. Mallas obtenidas con $\eta_{T,p}$, para $p = 1.25$ y $\boldsymbol{x}_0 = (0.012634, 0.8696)$.	41
11.	Zoom a la malla de la figura 10(c).	42
12.	Experimento 2. Error en el punto (-1, -0.75).	45
13.	Experimento 2. Error en el punto $(-0.75, 1)$.	45
14.	Experimento 2. Error en el punto $(1, 0.75)$.	46
15.	Experimento 2. Error en el punto $(0.25, -1)$.	46
16.	Experimento 3. Curvas de error.	49
17.	Experimento 4. Curvas de error.	50
18.	Experimento 5. Curvas de error.	52
19.	Errores al calcular $x_0 = (0.012634, 0.86)$, considerando datos con diferentes	
	porcentajes de ruido.	54
20.	Errores al calcular $p = (-0.2425, 0.9701)$, considerando datos con diferentes	
	porcentajes de ruido.	55

1. Introducción

El funcionamiento del cerebro humano es un fenómeno que aún no se logra comprender en su totalidad. Los primeros acercamientos al estudio del cerebro humano datan de 1870, cuando un par de médicos del ejército prusiano, Fritsch y Hitzig, observaron que al estimular determinadas áreas laterales de cerebros descubiertos, se producían movimientos en el lado opuesto del cuerpo. Posteriormente, varios trabajos en animales permitieron concluir que el cerebro animal poseía propiedades eléctricas muy comparables a la de los nervios o músculos. Cabe destacar que los primeros trabajos fueron realizados en cerebros descubiertos. Dado que los cambios eléctricos eran muy pequeños, la falta de procedimientos de amplificación hacía que resulte imposible registrar todos los impulsos que se producían.

Las primeras discusiones acerca de la electroencefalografía (EEG) clínica ocurrieron en un Laboratorio de Patología en Londres, en 1929. Sin embargo, la falta de evidencias prácticas acerca de la utilidad de la electroencefalografía hizo que el grupo de investigadores ahí reunidos no la tomaran muy en serio. En 1934, durante una reunión de la Sociedad de Fisiología en la ciudad de Cambridge, se hizo una demostración pública de algunos resultados interesantes, como por ejemplo, que cuando un individuo abría los ojos o resolvía un problema mentalmente, se observaban alteraciones en la actividad cerebral. Esto fue corroborado posteriormente por otros investigadores que tenían más conocimientos científicos y mejores técnicas. Años más tarde, creció en importancia el estudio de la electropatología del cerebro, esto es, los aspectos eléctricos de las enfermedades cerebrales. Entre los investigadores comenzó a interesar el estudio de la epilepsia y otras enfermedades mentales. Esto dio evidencia de la complejidad del tema, ya que se mostró que no se debe estudiar el cerebro como un órgano total con funciones bastante complejas.

Producto de toda esta investigación realizada principalmente en el siglo pasado, hoy en día disponemos de algunas herramientas que nos permiten estudiar el cerebro y su funcionamiento. Entre ellas, podemos mencionar la electroencefalografía, la magnetoencefalografía y la resonancia magnética.

La electroencefalografía (que es la herramienta de interés en este trabajo) es una técnica no invasiva, ampliamente usada para la reconstrucción de la actividad electromagnética que ocurre en el cerebro. Esta actividad es generada por el movimiento de iones en las regiones activas del cerebro, lo cual genera la así llamada *corriente impresa* (o corriente primaria), la que a su vez crea corrientes óhmicas en el entorno de estas regiones activas. Esto es lo que se conoce como *corrientes de retorno*. El objetivo de la EEG es determinar la corriente impresa.

En términos matemáticos, esto se reduce a un *problema inverso* en el cual se requiere determinar la fuente que ha producido el campo eléctrico a partir de valores medidos del potencial eléctrico sobre la frontera del dominio. Sin embargo, las técnicas de resolución del problema inverso están basadas en soluciones del correspondiente *problema directo*, es decir, en el cálculo del potencial eléctrico a partir de una fuente dada.

Dado que el espectro de frecuencias para las señales electrofisiológicas usualmente está por debajo de los 1000 Hz (frecuentemente está entre 1 y 100 Hz), la mayor parte

de los trabajos en aplicaciones biomédicas se concentran en la aproximación estática de las ecuaciones de Maxwell. Además, en EEG las corrientes en el cerebro son modeladas típicamente como un dipolo, con lo cual el modelo matemático del problema directo conduce a un problema electrostático con una fuente de corriente dipolar. Éste es un problema singular, ya que el modelo de corriente dipolar involucra derivadas de primer orden de una delta de Dirac. Recientemente, gracias a un argumento de dualidad, se ha demostrado que este problema está bien planteado y que su solución se encuentra en L^p , con $1 \le p < 3/2$ en el caso 3D, y $1 \le p < 2$ en el caso 2D (ver [7]).

Existen dos estrategias bien conocidas para resolver el problema directo: el Método Directo y el Método de Sustracción.

El Método Directo, que consiste en aplicar directamente el método de Elementos Finitos a pesar de la naturaleza singular del problema, ha sido estudiado recientemente en [1], y se ha propuesto un estimador de error a posteriori de tipo residual en norma L^p ($1 \le p < 3/2$ en el caso 3D, y $1 \le p < 2$ en el caso 2D), que resulta ser eficiente y confiable. Dicho estimador ha sido utilizado para guíar un procedimiento adaptativo, el cuál se ha mostrado experimentalmente que conduce a un orden de convergencia óptimo en términos del número total de grados de libertad.

Por otro lado, el Método de Sustracción requiere que exista un entorno alrededor de la posición de la fuente en que la conductividad eléctrica sea constante; en tal caso, se conoce analíticamente una solución fundamental del problema en ese entorno. La sustracción de esa solución analítica a la solución del problema original conduce a un nuevo problema cuya solución es no singular y por lo tanto, en principio, puede resolverse mediante el método de Elementos Finitos sin necesidad de refinamiento adaptativo. Sin embargo, en la práctica, las corrientes fuente suelen producirse muy cerca de las interfaces entre tejidos, es decir, cerca de cambios de conductividad, de manera que el entorno en el que el medio puede suponerse homogéneo (es decir, con conductividad constante) es pequeño. En tal caso, a pesar de que la solución calculada mediante el Método de Sustracción sea suave alrededor de la localización de la fuente, puede esperarse que tenga derivadas de gran tamaño en la vecindad de ese punto, razón por la cual probablemente resulte útil (y a veces indispensable) el uso de mallas refinadas adaptativamente.

Es por esto que en este trabajo se introduce un estimador de error a posteriori para la solución del problema directo mediante el Método de Sustracción, el cual se demuestra que es confiable y eficiente. Luego, este estimador será usado para resolver el problema inverso mediante una estrategia basada en un proceso adaptativo guiado por el estimador.

2. Problema Modelo

En esta sección introducimos el problema modelo, y presentamos su formulación variacional. Luego, consideramos una discretización por elementos finitos y enunciamos un lema técnico que será de interés práctico para nuestro problema.

2.1. Problema Continuo

En casi todos los estudios relacionados a la generación neuronal de campos electromagnéticos, se consideran las ecuaciones de Maxwell estacionarias

$$\begin{cases} \operatorname{div}(\boldsymbol{D}) = \rho, \\ \operatorname{curl}(\boldsymbol{E}) = \boldsymbol{0}, \\ \operatorname{curl}(\boldsymbol{H}) = \boldsymbol{J}, \\ \operatorname{div}(\boldsymbol{B}) = 0, \end{cases}$$
(2.1)

donde E y D son el campo y desplazamiento eléctrico, respectivamente, ρ es la densidad de carga del campo eléctrico, y J es la densidad de corriente eléctrica. A su vez, por H y B denotamos al campo magnético e inducción magnética, respectivamente.

Para tejidos biológicos, podemos asumir que $D = \varepsilon E$ y $B = \mu H$ (ver [6]), donde ε y μ corresponden a la permitividad eléctrica y permeabilidad magnética, respectivamente (estas ecuaciones son llamadas *ecuaciones constitutivas lineales*). Se puede asumir también que μ es constante en todo el espacio, e igual a la permeabilidad en el vacío.

De la segunda ecuación de (2.1), concluímos que existe un potencial escalar u tal que $E = -\nabla u$. De la Ley de Ohm, la densidad total de corriente J es la suma de la corriente primaria y la corriente secundaria:

$$J = J_p + \sigma E = J_p - \sigma \nabla u,$$

donde σ es la conductividad, que es una matriz uniformemente definida positiva, con coeficientes en L^{∞} . Al tomar divergencia a la tercera ecuación de (2.1), se sigue que

$$0 = \operatorname{div}(\boldsymbol{J}) = \operatorname{div}(\boldsymbol{J}_{\boldsymbol{p}} - \boldsymbol{\sigma} \nabla u).$$

Por lo tanto, u es solución de la ecuación

$$\operatorname{div}(\boldsymbol{\sigma}\nabla u) = \operatorname{div}(\boldsymbol{J}_{\boldsymbol{p}})$$

Sea Ω un conjunto abierto, conexo y acotado con frontera Lipschitz continua $\partial\Omega$ contenido en \mathbb{R}^d , con d = 2 ó d = 3 (Ω representa la cabeza humana). Asumimos que J_p tiene soporte en Ω . Dado que $J|_{\Omega} \cdot n = J|_{\mathbb{R}^d \setminus \overline{\Omega}} \cdot n = 0$ y $J_p \cdot n = 0$ en la frontera $\partial\Omega$, entonces $(\boldsymbol{\sigma} \nabla u) \cdot \boldsymbol{n} = 0$ sobre $\partial \Omega$, donde \boldsymbol{n} es el vector normal unitario exterior a $\partial \Omega$. De esta forma, obtenemos el problema

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u) = \operatorname{div}(\boldsymbol{J}_{\boldsymbol{p}}) & \text{en } \Omega, \\ (\boldsymbol{\sigma}\nabla u) \cdot \boldsymbol{n} = 0 & \text{en } \partial\Omega. \end{cases}$$

Además, asumimos que hay una pequeña región activa centrada en un punto x_0 , y que el punto de observación está lejos de él. En este caso, la corriente primaria J_p se modela típicamente como un dipolo. Así, en lo que sigue, consideraremos el siguiente problema electroestático con un término fuente dipolar y condiciones de frontera Neumann homogéneas:

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u) = \operatorname{div}(\boldsymbol{p}\delta_{\boldsymbol{x}_0}) & \operatorname{en} \Omega, \\ (\boldsymbol{\sigma}\nabla u) \cdot \boldsymbol{n} = 0 & \operatorname{en} \partial\Omega, \end{cases}$$
(2.2)

donde x_0 es un punto interior a Ω , $p \neq 0$ el vector de polarización y δ_{x_0} la distribución delta de Dirac centrada en x_0 .

Como ya se mencionó, en este trabajo estamos interesados en estudiar el Método de Sustracción. Para ello, necesitamos asumir que existe un subdominio abierto $\Omega_0 \subset \Omega$ alrededor de la posición de la fuente x_0 con conductividad constante σ_0 (que en general es una matriz). Así, la conductividad se divide en dos partes,

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_s, \tag{2.3}$$

de modo que σ_0 es constante en todo el dominio Ω y σ_s es cero en el subominio Ω_0 , es decir, $\sigma_s(x) = 0$, para todo $x \in \Omega_0$. El potencial total también puede ser dividido en dos partes,

$$u = u_0 + u_s, \tag{2.4}$$

donde u_0 denota la solución en un conductor homogéneo e infinito. El potencial u_0 satisface

$$\operatorname{div}(\boldsymbol{\sigma_0} \nabla u_0) = \operatorname{div}(\boldsymbol{p}\delta_{\boldsymbol{x_0}}) \text{ en } \mathbb{R}^d.$$
(2.5)

Cuando la conductividad σ_0 es homogénea y anisotrópica (es decir, σ_0 es una matriz constante), tenemos

$$u_0(\boldsymbol{x}) = \begin{cases} \frac{\langle \boldsymbol{p}, (\boldsymbol{\sigma_0})^{-1} (\boldsymbol{x} - \boldsymbol{x_0}) \rangle}{2\pi\sqrt{\det(\boldsymbol{\sigma_0})}\langle(\boldsymbol{\sigma_0})^{-1} (\boldsymbol{x} - \boldsymbol{x_0}), (\boldsymbol{x} - \boldsymbol{x_0}) \rangle} & \text{si } d = 2\\ \frac{\langle \boldsymbol{p}, (\boldsymbol{\sigma_0})^{-1} (\boldsymbol{x} - \boldsymbol{x_0}) \rangle}{4\pi\sqrt{\det(\boldsymbol{\sigma_0})}\langle(\boldsymbol{\sigma_0})^{-1} (\boldsymbol{x} - \boldsymbol{x_0}), (\boldsymbol{x} - \boldsymbol{x_0}) \rangle^{3/2}} & \text{si } d = 3 \end{cases}$$

En el caso particular en que la conductividad es homogénea e isotrópica, esto es, $\sigma_0 = \sigma_0 I$, con $\sigma_0 \in \mathbb{R}$, la fórmula analítica para u_0 está dada por

$$u_0(\boldsymbol{x}) = \begin{cases} \frac{\langle \boldsymbol{p}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle}{2\pi\sigma_0 |\boldsymbol{x} - \boldsymbol{x}_0|^2} & \text{si } d = 2, \\ \frac{\langle \boldsymbol{p}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle}{4\pi\sigma_0 |\boldsymbol{x} - \boldsymbol{x}_0|^3} & \text{si } d = 3. \end{cases}$$

Reemplazando (2.3) y (2.4) en (2.2), y usando que u_0 satisface (2.5), obtenemos

$$\operatorname{div}[(\boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_s)\nabla(u_0 + u_s)] = \operatorname{div}(\boldsymbol{p}\delta_{\boldsymbol{x}_0}) = \operatorname{div}(\boldsymbol{\sigma}_0\nabla u_0),$$

y por lo tanto,

$$\operatorname{div}(\boldsymbol{\sigma}\nabla u_s) = \operatorname{div}[(\boldsymbol{\sigma}_0 + \boldsymbol{\sigma}_s)\nabla u_s] = -\operatorname{div}(\boldsymbol{\sigma}_s\nabla u_0).$$

Por otro lado, como

$$0 = (\boldsymbol{\sigma} \nabla u) \cdot \boldsymbol{n} = (\boldsymbol{\sigma} \nabla (u_0 + u_s)) \cdot \boldsymbol{n} \quad \text{en } \partial \Omega,$$

entonces obtenemos la condición de frontera de Neumann

$$(\boldsymbol{\sigma} \nabla u_s) \cdot \boldsymbol{n} = -(\boldsymbol{\sigma} \nabla u_0) \cdot \boldsymbol{n} \quad \text{en } \partial \Omega.$$

En conclusión, u_0 es conocida, y u_s es solución del problema de valores de frontera

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u_s) = -\operatorname{div}(\boldsymbol{\sigma}_s \nabla u_0) & \text{en } \Omega, \\ (\boldsymbol{\sigma}\nabla u_s) \cdot \boldsymbol{n} = -(\boldsymbol{\sigma}\nabla u_0) \cdot \boldsymbol{n} & \text{en } \partial\Omega. \end{cases}$$

Notemos que si tenemos una solución u_s del problema anterior, entonces $u_s + c$ también es solución, cualquiera sea $c \in \mathbb{R}$. Por ello, necesitamos añadir una condición adicional para asegurar unicidad de solución. De esta forma, buscamos la solución u_s del siguiente problema:

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u_s) = -\operatorname{div}(\boldsymbol{\sigma}_s \nabla u_0) & \text{en } \Omega, \\ (\boldsymbol{\sigma}\nabla u_s) \cdot \boldsymbol{n} = -(\boldsymbol{\sigma}\nabla u_0) \cdot \boldsymbol{n} & \text{en } \partial\Omega, \\ \int_{\Omega} u_s = 0. \end{cases}$$
(2.6)

La ventaja de esta formulación (en comparación con (2.2)) es que al usar la representación explícita de u_0 , obtenemos un problema con un término fuente más regular, al eliminar la singularidad en x_0 . Sabemos que u_0 es singular en x_0 , pero suave para cada $x \neq x_0$. De esta forma, el dato de Neumann en (2.6) es suave, y además, σ_s se anula en Ω_0 , lo cual implica que $\sigma_s \nabla u_0 \in L^{\infty}(\Omega)$.

2.2. Formulación Variacional

Multiplicando la ecuación diferencial de (2.6) por $v \in H^1(\Omega)$, integrando por partes en el lado izquierdo, y usando la segunda igualdad de (2.6), obtenemos:

$$\int_{\Omega} \operatorname{div}(\boldsymbol{\sigma} \nabla u_s) v = -\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v + \int_{\partial \Omega} [(\boldsymbol{\sigma} \nabla u_s) \cdot \boldsymbol{n}] v$$
$$= -\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v - \int_{\partial \Omega} [(\boldsymbol{\sigma} \nabla u_0) \cdot \boldsymbol{n}] v$$

A su vez, integrando por partes en el lado derecho,

$$\int_{\Omega} -\operatorname{div}(\boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0) v = \int_{\Omega} \boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0 \cdot \nabla v - \int_{\partial \Omega} [(\boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0) \cdot \boldsymbol{n}] v,$$

y por tanto, tenemos

$$-\int_{\Omega}\boldsymbol{\sigma}\nabla u_{s}\cdot\nabla v - \int_{\partial\Omega}[(\boldsymbol{\sigma}\nabla u_{0})\cdot\boldsymbol{n}]v = \int_{\Omega}\boldsymbol{\sigma}_{s}\nabla u_{0}\cdot\nabla v - \int_{\partial\Omega}[(\boldsymbol{\sigma}_{s}\nabla u_{0})\cdot\boldsymbol{n}]v,$$

de donde

$$\int_{\Omega} \boldsymbol{\sigma} \nabla u_{\boldsymbol{s}} \cdot \nabla v = -\int_{\Omega} \boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0 \cdot \nabla v - \int_{\partial \Omega} [(\boldsymbol{\sigma}_0 \nabla u_0) \cdot \boldsymbol{n}] v.$$

Luego, la formulación variacional del problema (2.6) está dada por: Hallar $u_s \in H^1_*(\Omega)$ tal que

$$\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v = -\int_{\Omega} \boldsymbol{\sigma}_s \nabla u_0 \cdot \nabla v - \int_{\partial \Omega} [(\boldsymbol{\sigma}_0 \nabla u_0) \cdot \boldsymbol{n}] v, \quad \text{para todo } v \in H^1(\Omega), \quad (2.7)$$

 ${\rm donde}$

$$H^1_*(\Omega) := \left\{ w \in H^1(\Omega) : \int_{\Omega} w = 0 \right\}.$$

Definiendo la forma bilineal

$$a(u,v) := \int_{\Omega} \boldsymbol{\sigma} \nabla u \cdot \nabla v, \ \forall u, v \in H^1(\Omega),$$
(2.8)

y el funcional

$$F(v) := -\int_{\Omega} \boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0 \cdot \nabla v - \int_{\partial \Omega} [(\boldsymbol{\sigma}_0 \nabla u_0) \cdot \boldsymbol{n}] v, \ \forall v \in H^1(\Omega),$$
(2.9)

reescribimos nuestro problema como:

Hallar
$$u_s \in H^1_*(\Omega)$$
 tal que: $a(u_s, v) = F(v), \quad \forall v \in H^1(\Omega).$ (2.10)

Teorema 2.1 (Existencia y Unicidad de Solución) El problema (2.10) tiene una única solución $u_s \in H^1_*(\Omega)$.

Demostración: Es inmediata a partir del Lema de Lax-Milgram (ver [8, Theorem 3.7]).

2.3. Problema Discreto

De aquí en adelante, asumiremos que $\Omega \subset \mathbb{R}^2$ es un polígono Lipschitz, y consideraremos una familia regular de triangularizaciones \mathcal{T}_h de Ω (ver, por ejemplo, [4]). Como es usual,

denotaremos por h el tamaño de la malla, es decir, $h := \max_{T \in \mathcal{T}_h} h_T$, siendo h_T el diámetro del triángulo $T \in \mathcal{T}_h$. Consideramos el espacio de elementos finitos lineales a trozos y continuos:

$$H_h := \{ v_h \in \mathcal{C}(\overline{\Omega}) : v_h |_T \in \mathcal{P}_1 \ \forall T \in \mathcal{T}_h \}.$$
(2.11)

Luego, el problema discreto asociado a (2.6) es: Hallar $u_{s,h} \in H_h$ tal que

$$\begin{cases} \int_{\Omega} \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla v_{h} = -\int_{\Omega} \boldsymbol{\sigma}_{s} \nabla u_{0} \cdot \nabla v_{h} - \int_{\partial \Omega} [(\boldsymbol{\sigma}_{0} \nabla u_{0}) \cdot \boldsymbol{n}] v_{h}, \quad \forall v_{h} \in H_{h}, \\ \int_{\Omega} u_{s,h} = 0. \end{cases}$$
(2.12)

Como $H_h \subset H^1(\Omega)$, entonces las soluciones u_s y $u_{s,h}$ satisfacen que

$$a(u_s, v_h) = F(v_h) \quad \mathbf{y} \quad a(u_{s,h}, v_h) = F(v_h), \ \forall v_h \in H_h.$$

Luego, restando obtenemos la condición de ortogonalidad

$$a(u_s - u_{s,h}, v_h) = 0, \quad \forall v_h \in H_h.$$

$$(2.13)$$

La convergencia de $u_{s,h}$ a u_s ha sido estudiada en [8]. En cuanto a nuestra aplicación específica, en dicho artículo se enuncia y demuestra la siguiente propiedad:

Lema 2.1 Sea δ la distancia entre la posición de la fuente x_0 y el salto de conductividad más cercano. Si δ es pequeño, entonces la constante $C(\delta)$ en

$$|F(v)| \le C(\delta) ||v||_{0,\Omega} \quad \forall v \in H^1(\Omega),$$

siendo F el funcional definido en (2.9), es proporcional a $\delta^{-5/2}$.

Demostración: Ver [8, Lemma 3.10].

El lema anterior nos dice que si la posición de la fuente está muy próxima a un salto de conductividad, es decir, si δ es muy pequeño, entonces la constante de la estimación anterior para el funcional F crece (con exponente 5/2). Esto implica que para fuentes cercanas a saltos de conductividad, estamos expuestos a obtener grandes errores numéricos debido a los grandes valores que puede tomar la constante $C(\delta)$ (ver [8]).

Para observar lo anterior empíricamente, se realiza el siguiente experimento. El dominio Ω es un cuadrado centrado en (0,0) y lado de longitud 2, el cual está dividido en tres regiones: $\overline{\Omega}_1 = \overline{\Omega} \setminus (-0.92, 0.92)^2, \ \overline{\Omega}_2 = [-0.92, 0.92]^2 \setminus (-0.87, 0.87)^2 \ y \ \overline{\Omega}_3 = [-0.87, 0.87]^2.$

La conductividad $\boldsymbol{\sigma}$ se asume constante en cada región, siendo $\boldsymbol{\sigma}|_{\Omega_1} = \boldsymbol{\sigma}|_{\Omega_3} = 0.33$, y $\boldsymbol{\sigma}|_{\Omega_2} = 0.0042$. Cabe destacar que estos valores de conductividad no han sido elegidos arbitrariamente o al azar, sino que corresponden a valores reales de conductividad dentro del cerebro humano. Además, usaremos como vector de polarización $\boldsymbol{p} = (-0.2425, 0.9701)$.

Figura 1: Malla inicial del dominio con sus 3 regiones.

El experimento consiste en calcular la solución de (2.6) en 4 puntos específicos de la frontera del dominio. Para determinar el error de estos valores calculados, lo ideal sería disponer de la solución exacta del problema. Sin embargo, en este caso, no hay una expresión analítica de esa solución exacta. Por ese motivo, debemos recurrir a calcular la solución mediante otro método con una precisión superior a la de los valores calculados a los que se quiere estimar sus errores. Con este fin, hemos utilizado la técnica introducida y estudiada en [1], la cual se basa en resolver el problema (2.2) mediante el método directo con mallas refinadas adaptativamente. Para este experimento, se usaron mallas súmamente refinadas, a fin de garantizar 4 dígitos correctos en la solución de referencia.

En este experimento, la posición de la fuente estará ubicada en Ω_3 , cerca de la interfaz con Ω_2 ; más precisamente, consideraremos $\boldsymbol{x}_0 = (0.012634, 0.8696)$ (ubicado a una distancia de 0.0004 del salto de conductividad más cercano) y los puntos observados en la Tabla 1.

Punto	1	2	3	4
x	-1	-0.75	1	0.25
y	-0.75	1	0.75	-1
Valor de $u(x, y)$	0.1968	1.0983	0.1956	0.0551

Tabla 1: Los 4 puntos y sus mediciones "exactas" para $\boldsymbol{x}_0 = (0.012634, 0.8696)$.

Los cálculos para este experimento se realizarán en mallas uniformes, las cuales se detallan en la Tabla 2.

Malla	Grados de Libertad	Elementos	Elem. Reg. 1	Elem. Reg. 2	Elem. Reg. 3
1	362	682	104	120	458
2	638	1210	128	128	954
3	1271	2412	264	240	1908
4	2602	5052	724	508	3820
5	5128	10057	1495	925	7637
6	10330	20389	3251	1990	15148
7	20434	40508	6198	3628	30682
8	40833	81139	12431	7362	61346
9	81211	161583	24736	14652	122195
10	162660	324239	49857	29087	245295

Tabla 2: Grados de Libertad y número de elementos en las mallas uniformes.

Cabe mencionar que estas mallas serán usadas en todos los experimentos posteriores en los que se requiera usar mallas uniformes.

	Punto 1		Punto 2		Punto 3		Punto 4	
Malla	Valor	Error	Valor	Error	Valor	Error	Valor	Error
1	-1.0959	1.2927	11.4789	10.3807	5.4303	5.2348	-1.7072	1.7623
2	-0.9705	1.1673	12.1898	11.0916	5.1765	4.9810	-1.6235	1.6786
3	-1.4323	1.6291	12.5743	11.4761	6.4326	6.2371	-2.0877	2.1428
4	-2.2685	2.4653	19.6924	18.5942	9.8450	9.6495	-3.2520	3.3071
5	1.3180	1.1212	-2.3761	3.4743	-2.1700	2.3656	1.1343	1.0792
6	7.2704	7.0736	-38.0826	39.1808	-21.2596	21.4551	8.2699	8.2148
7	-1.6029	1.7997	7.8566	6.7584	4.4815	4.2860	-1.7792	1.8343
8	-6.9573	7.1541	51.6505	50.5523	25.4537	25.2582	-9.0580	9.1131
9	-0.7524	0.9492	6.5559	5.4577	3.1108	2.9153	-1.0573	1.1124
10	-1.0283	1.2251	9.5068	8.4086	4.4291	4.2336	-1.4853	1.5404

Tabla 3: Valores calculados y errores puntuales en mallas uniformes usando el método de sustracción para $x_0 = (0.012634, 0.8696)$.

Los resultados obtenidos se muestran en la Tabla 3. Al observarlos, podemos concluir que el Método de Sustracción entrega malos resultados al usar estas mallas uniformes, pero no se puede concluir que con mallas uniformes aun más refinadas este método siga entregando malos resultados. A fin corregir este mal comportamiento y obtener mejores resultados numéricos en casos como éste, en la sección 4 se propone un estimador de error a posteriori de tipo residual para el problema (2.2), y se demostrará su eficiencia y confiabilidad.

3. Resultados Preliminares

Para el análisis de error a posteriori, necesitamos introducir algunos resultados previos. Dichos resultados tienen relación con la introducción de funciones burbuja, error de interpolación, y un problema auxiliar. En esta sección presentamos aquellos resultados, los cuales serán usados en lo que sigue más adelante.

Dado $\psi \in L^q(\Omega)$, consideremos el problema auxiliar: Hallar $\varphi \in H^1(\Omega)$ tal que

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla\varphi) &= \psi - \frac{1}{|\Omega|} \int_{\Omega} \psi & \operatorname{en} \Omega, \\ (\boldsymbol{\sigma}\nabla\varphi) \cdot \boldsymbol{n} &= 0 & \operatorname{en} \partial\Omega, \\ \int_{\Omega} \varphi &= 0, \end{cases}$$
(3.1)

el cual está bien propuesto para q > 1 (en el caso 2D).

Teorema 3.1 Sea φ la solución de (3.1). Si Ω es convexo y $\boldsymbol{\sigma} \in [\mathcal{C}^1(\bar{\Omega})]^{2\times 2}$, entonces existe $q_0 > 2$ tal que $\varphi \in W^{2,q}(\Omega)$, $\forall q$ tal que $1 < q < q_0$. Además, se tiene que

$$\|\varphi\|_{2,q,\Omega} \le C \|\psi\|_{0,q,\Omega}.\tag{3.2}$$

Demostración: Ver [5, Corollary 3.12].

Aquí, y desde ahora en adelante, tanto C como C' denotarán una constante genérica estríctamente positiva, no necesariamente la misma en cada vez, pero siempre independiente del tamaño de la malla.

Denotemos por $v^I \in H_h$ a la interpolada de Lagrange de v. Notemos que, en particular, φ^I está bien definida, pues $\varphi \in W^{2,q}(\Omega) \subset C(\overline{\Omega})$ si q > 1 (ver [4]). La siguiente estimación relacionada al error de interpolación será usada más adelante:

Proposición 3.1 Supongamos que $1 < q \leq \infty$ y sea $m \in \mathbb{N}$ tal que $m > \frac{2}{q}$. Entonces, para $0 \leq i \leq m$ y $v \in W^{2,q}(T), T \in \mathcal{T}_h$, se tiene que

$$|v - v^{I}|_{i,q,T} \le Ch_{T}^{m-i}|v|_{m,q,T},$$
(3.3)

Demostración: Ver, por ejemplo, [3, Theorem 4.4.4].

Sean $\mathcal{E}_{h,i}$ y $\mathcal{E}_{h,e}$ los conjuntos de todos los lados interiores y de frontera de \mathcal{T}_h , respectivamente. Para cada lado $\ell \in \mathcal{E}_h := \mathcal{E}_{h,i} \cup \mathcal{E}_{h,e}$, definiremos a continuación una función burbuja, la cual tendrá soporte en $\omega_{\ell} := \{T \in \mathcal{T}_h : \ell \in \partial T\}$ (Figura 2).

Para $\ell \in \mathcal{E}_{h,i}$, definimos b_{ℓ} en ω_{ℓ} por

$$b_{\ell}(\boldsymbol{x}) := \left(\lambda_2^{T_1} \lambda_3^{T_1} \lambda_2^{T_2} \lambda_3^{T_2}\right)^2, \tag{3.4}$$

Figura 2: El soporte ω_{ℓ} de b_{ℓ} , para $\ell \in \mathcal{E}_{h,i}$ y $\mathcal{E}_{h,t}$, respectivamente.

donde $\lambda_i^{T_j}$ es la coordenada baricéntrica de \boldsymbol{x} asociada al triángulo T_j , j = 1, 2, y sus vértices P_i , i = 2, 3 (ver Figura 2). Fuera de ω_ℓ , extendemos b_ℓ por cero. Por su definición, es claro que b_ℓ y ∇b_ℓ se anulan en los cuatro lados exteriores $\overline{P_1P_2}$, $\overline{P_2P_4}$, $\overline{P_4P_3}$ y $\overline{P_3P_1}$, es decir, en $\partial \omega_\ell$.

Resta definir b_{ℓ} para $\ell \in \mathcal{E}_{h,e}$. Para ello, denotemos por T_{ℓ} al triángulo de \mathcal{T}_h que contiene a ℓ , y por $P_i = (x_i, y_i), i = 1, 2, 3$, a sus vértices (ver Figura 2). Sea $F_{\ell} : \mathbb{R}^2 \to \mathbb{R}^2$ la función definida por

$$F_{\ell}\left(\begin{array}{c} \hat{x}\\ \hat{y} \end{array}\right) = \left(\begin{array}{c} x_2\\ y_2 \end{array}\right) + Q\left(\begin{array}{c} \hat{x}\\ \hat{y} \end{array}\right),$$

donde $Q = \begin{pmatrix} x_3 - x_2 & -(y_3 - y_2) \\ y_3 - y_2 & x_3 - x_2 \end{pmatrix}$. Notemos que $Q^t Q = |\ell|^2 I$, donde I es la matriz identidad. Definamos $\hat{T}_{\ell} := F_{\ell}^{-1}(T_{\ell})$, y sean $\hat{P}_2 = (0,0)$, $\hat{P}_3 = (1,0)$ los vértices extremos de $\hat{\ell}$, y $\hat{P}_1 = (a,b)$ el vértice de \hat{T}_{ℓ} que no es un extremo de $\hat{\ell}$. A su vez, sea \hat{T}_{ℓ}^* la reflexión de \hat{T}_{ℓ} con respecto a $\hat{\ell}$ (ver Figura 4). De esta forma, definimos primero

$$\hat{b}(\hat{x},\hat{y}) := \left(\lambda_2^{\hat{T}_\ell} \lambda_3^{\hat{T}_\ell} \lambda_2^{\hat{T}_\ell} \lambda_3^{\hat{T}_\ell^*}\right)^2,$$

donde $\lambda_i^{\hat{T}_\ell}$ y $\lambda_i^{\hat{T}_\ell^*}$ son las coordenadas baricéntricas de (\hat{x}, \hat{y}) asociadas al triángulo \hat{T}_ℓ y \hat{T}_ℓ^* , respectivamente, y sus vértices \hat{P}_i , i = 2, 3. Por su definición, es claro que \hat{b} y $\hat{\nabla}\hat{b}$ se anulan sobre los lados $\hat{P}_1\hat{P}_2$ y $\hat{P}_1\hat{P}_3$. Además, de las coordenadas baricéntricas se sabe que son lineales, y que $\lambda_i^{\hat{T}_\ell}(\hat{P}_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$. Luego, es fácil ver que

$$\lambda_2^{\hat{T}_{\ell}}(\hat{x}, \hat{y}) = -\hat{x} + \frac{a-1}{b}\hat{y} + 1, \quad \lambda_3^{\hat{T}_{\ell}}(\hat{x}, \hat{y}) = \hat{x} - \frac{a}{b}\hat{y},$$

Figura 3: La definición de $F_\ell.$

y de manera totalmente análoga,

$$\lambda_2^{\hat{T}_{\ell}^*}(\hat{x},\hat{y}) = -\hat{x} - \frac{a-1}{b}\hat{y} + 1, \quad \lambda_3^{\hat{T}_{\ell}^*}(\hat{x},\hat{y}) = \hat{x} + \frac{a}{b}\hat{y}.$$

Así, tenemos que

$$\hat{b}(\hat{x},\hat{y}) = \left(\lambda_{2}^{\hat{T}_{\ell}}\lambda_{3}^{\hat{T}_{\ell}}\lambda_{2}^{\hat{T}_{\ell}}\lambda_{3}^{\hat{T}_{\ell}^{*}}\right)^{2} \\
= \left\{\left(-\hat{x} + \frac{a-1}{b}\hat{y} + 1\right)\left(\hat{x} - \frac{a}{b}\hat{y}\right)\left(-\hat{x} - \frac{a-1}{b}\hat{y} + 1\right)\left(\hat{x} + \frac{a}{b}\hat{y}\right)\right\}^{2} \\
= \left(\hat{x}^{2} - \frac{a^{2}}{b^{2}}\hat{y}^{2}\right)^{2}\left((\hat{x} - 1)^{2} - \frac{(a-1)^{2}}{b^{2}}\hat{y}^{2}\right)^{2},$$
(3.5)

y por lo tanto,

$$\begin{split} \frac{\partial \hat{b}}{\partial \hat{y}} &= 2 \Big(\lambda_2^{\hat{T}_{\ell}} \lambda_3^{\hat{T}_{\ell}} \lambda_2^{\hat{T}_{\ell}^*} \lambda_3^{\hat{T}_{\ell}^*} \Big) \frac{\partial}{\partial \hat{y}} \Big(\lambda_2^{\hat{T}_{\ell}} \lambda_3^{\hat{T}_{\ell}} \lambda_2^{\hat{T}_{\ell}^*} \lambda_3^{\hat{T}_{\ell}^*} \Big) \\ &= 2 \Big(\lambda_2^{\hat{T}_{\ell}} \lambda_3^{\hat{T}_{\ell}} \lambda_2^{\hat{T}_{\ell}^*} \lambda_3^{\hat{T}_{\ell}^*} \Big) \left\{ -2 \frac{a^2}{b^2} \hat{y} \Big((\hat{x}-1)^2 - \frac{(a-1)^2}{b^2} \hat{y}^2 \Big) - 2 \frac{(a-1)^2}{b^2} \hat{y} \Big(\hat{x}^2 - \frac{a^2}{b^2} \hat{y}^2 \Big) \right\}. \end{split}$$

Por otro lado, notamos que en $\hat{\ell}$ se tiene que $\hat{y} = 0$, y por lo tanto $\frac{\partial \hat{b}}{\partial \hat{y}} = 0$, y además $\hat{\boldsymbol{n}} = [0, -1]$. En consecuencia,

$$\hat{\nabla}\hat{b}\cdot\hat{n} = \left[\frac{\partial\hat{b}}{\partial\hat{x}},0\right]\cdot[0,-1] = 0 \quad \text{en } \hat{\ell},$$

$$\hat{\nabla}\hat{h}\cdot\hat{n} = 0 \quad \text{en } \partial\hat{T}_{\ell} \tag{3.6}$$

y así

$$\hat{\nabla}\hat{b}\cdot\hat{\boldsymbol{n}} = 0 \quad \text{en } \partial\hat{T}_{\ell}.$$
 (3.6)

Figura 4: Definición de \hat{T}_{ℓ} y \hat{T}_{ℓ}^* .

De esta forma, dado $\ell \in \mathcal{E}_{h,e}$, definimos

$$b_{\ell} := \hat{b} \circ F_{\ell}^{-1}|_{T_{\ell}}, \tag{3.7}$$

extendido por cero fuera de T_{ℓ} . Ahora, podemos demostrar el siguiente lema.

Lema 3.1 Para cada $\ell \in \mathcal{E}_h$, sea b_ℓ definida en (3.4) y (3.7). Entonces:

$$b_{\ell}|_{\ell^*} = 0, \quad \forall \ell^* \in \mathcal{E}_h, \ \ell^* \neq \ell \tag{3.8}$$

$$\nabla b_{\ell} \cdot \boldsymbol{n} = 0 \quad en \; \partial \omega_{\ell} \tag{3.9}$$

$$C|\ell| \le \int_{\ell} b_{\ell} \le C'|\ell|, \qquad (3.10)$$

$$|b_{\ell}|_{m,q,\omega_{\ell}} \le C|\ell|^{-m+2/q}, \quad m = 0, 1, 2.$$
 (3.11)

Demostración: Como b_{ℓ} tiene soporte en ω_{ℓ} , entonces es claro que $b_{\ell}|_{\ell^*} = 0$ para $\ell^* \not\subseteq \omega_{\ell}$. Para $\ell \in \mathcal{E}_{h,i}$, (3.8) es directa de la definición de b_{ℓ} . A su vez, para $\ell \in \mathcal{E}_{h,e}$, si tomamos $\ell^* \subset \partial T_{\ell}, \ \ell^* \neq \ell$, entonces $F_{\ell}^{-1}(\ell^*) = \overline{\hat{P}_1 \hat{P}_2}$, ó $F_{\ell}^{-1}(\ell^*) = \overline{\hat{P}_1 \hat{P}_3}$ (ver Figura 4). Como se dijo antes, en ambos casos $\hat{b} = 0$, con lo cual $b_{\ell} = 0$. Esto prueba (3.8). Por otro lado, para $\ell \in \mathcal{E}_{h,i}$, por su definición sabemos que $\nabla b_{\ell} = \mathbf{0}$ en $\partial \omega_{\ell}$, y por lo tanto, (3.9) también es inmediata en este caso. Para $\ell \in \mathcal{E}_{h,e}$, usando (3.6), se tiene

$$\nabla b_{\ell} \cdot \boldsymbol{n} = \boldsymbol{n}^t \nabla b_{\ell} = |\ell|^{-2} \hat{\boldsymbol{n}}^t \hat{\nabla} \hat{\boldsymbol{b}} = |\ell|^{-2} \hat{\nabla} \hat{\boldsymbol{b}} \cdot \hat{\boldsymbol{n}} = 0,$$

lo cual prueba (3.9).

Ahora, como $0 \le b_{\ell} \le 1$, se tiene fácilmente que

$$\int_{\ell} b_{\ell} \le C|\ell|.$$

Además, para $\ell \in \mathcal{E}_{h,i}$, se tiene que en ℓ , $\lambda_2^{T_1} = \lambda_2^{T_2}$ y $\lambda_3^{T_1} = \lambda_3^{T_2}$, con lo cual, podemos escribir

$$b_{\ell}(\boldsymbol{x}) := \left(\lambda_{2}^{T_{1}}\lambda_{3}^{T_{1}}\lambda_{2}^{T_{2}}\lambda_{3}^{T_{2}}\right)^{2}$$
$$= \left\{\left(\lambda_{2}^{T_{1}}\right)^{2}\left(\lambda_{3}^{T_{1}}\right)^{2}\right\}^{2}$$
$$= \left(\lambda_{2}^{T_{1}}\lambda_{3}^{T_{1}}\right)^{4}, \quad \text{en } \ell$$

Como $\lambda_2^{T_1}(P_2) = 1$, $\lambda_2^{T_1}(P_3) = 0$ y $\lambda_3^{T_1}(P_2) = 0$, $\lambda_3^{T_1}(P_3) = 1$, entonces $\lambda_2^{T_1}\lambda_3^{T_1}$ es un polinomio de segundo grado sobre ℓ que se anula en ambos extremos P_2 y P_3 . De esta forma, si x_{ℓ} es un eje imaginario que contiene a ℓ de modo tal que $x_{\ell} = 0$ corresponde a la posición de P_2 y $x_{\ell} = |\ell|$ a la posición de P_3 , entonces como $\lambda_2^{T_1}$ y $\lambda_3^{T_1}$ son lineales tenemos que

$$\lambda_2^{T_1} = \frac{3}{4}, \quad \text{cuando } x_\ell = \frac{|\ell|}{4}, \\ \lambda_2^{T_1} = \frac{1}{4}, \quad \text{cuando } x_\ell = \frac{3|\ell|}{4}.$$

у

$$\lambda_3^{T_1} = \frac{1}{4}$$
, cuando $x_\ell = \frac{|\ell|}{4}$,
 $\lambda_3^{T_1} = \frac{3}{4}$, cuando $x_\ell = \frac{3|\ell|}{4}$.

De esta forma,

$$b_{\ell} = \left(\frac{3}{16}\right)^4$$
, cuando $x_{\ell} = \frac{|\ell|}{4} \ge x_{\ell} = \frac{3|\ell|}{4}$,

y notemos que el máximo de b_{ℓ} sobre ℓ se alcanza cuando $x_{\ell} = \frac{\ell}{2}$. Luego, podemos encontrar un rectángulo de ancho $\frac{|\ell|}{2}$ y altura $\left(\frac{3}{16}\right)^4$ que está completamente por debajo de la curva

Figura 5: Rectángulo debajo de la curva b_{ℓ} .

que define b_{ℓ} sobre ℓ (ver Figura 5) y así,

$$\int_{\ell} b_{\ell} \ge \frac{1}{2} \cdot \left(\frac{3}{16}\right)^4 |\ell|.$$

El caso de $\ell \in \mathcal{E}_{h,e}$ es análogo, pues \hat{b} cumple las mismas propiedades que b_{ℓ} en el caso anterior. Esto prueba (3.10).

Por último, como $b_{\ell} \leq 1$ y q > 1, entonces

$$|b_{\ell}|_{0,q,\omega_{\ell}} = \left(\int_{\omega_{\ell}} b_{\ell}^q\right)^{1/q} \le |\omega_{\ell}|^{1/q} \le C|\ell|^{2/q},$$

lo cual prueba (3.11) para m = 0. Para demostrar la propiedad para m = 1, 2, necesitamos definir la aplicación afín $F_T : \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$F_T\left(\begin{array}{c} \hat{x}\\ \hat{y}\end{array}\right) = \left(\begin{array}{c} x_1\\ y_1\end{array}\right) + B_T\left(\begin{array}{c} \hat{x}\\ \hat{y}\end{array}\right),$$

donde $B_T = \begin{pmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{pmatrix}$. Notar que F_T es la aplicación afín que lleva el elemento de referencia \hat{T} de vértices (0,0), (1,0) y (0,1) en el elemento $T \in \mathcal{T}_h$, de vértices $P_i = (x_i, y_i)$, con i = 1, 2, 3. Usando la correspondencia

$$(\hat{v}:\hat{T}\to\mathbb{R})\longrightarrow (v=\hat{v}\circ F_T^{-1}:T\to\mathbb{R}),$$

recordamos las siguientes estimaciones (ver [4, Theorem 3.1.2]) válidas para $1 \le q \le \infty$ y para cualquier entero $m \ge 0$:

$$|v|_{m,q,T} \le C ||B_T^{-1}||^m |\det(B_T)|^{1/q} |\hat{v}|_{m,q,\hat{T}} \ \forall v \in W^{m,q}(\hat{T}),$$

у

$$|\hat{v}|_{m,q,\hat{T}} \le C ||B_T||^m |\det(B_T)|^{-1/q} |v|_{m,q,T} \ \forall v \in W^{m,q}(T).$$

Como es usual, también usaremos la siguiente notación:

$$h_T := \operatorname{diam}(T),$$
$$\hat{h} := \operatorname{diam}(\hat{T}),$$

 $n := \operatorname{diam}(r),$

 $\rho_T :=$ diámetro de la circunferencia inscrita en T,

 $\hat{\rho} := \text{diámetro de la circunferencia inscrita en } \hat{T}.$

Luego, se tiene (ver [4, Theorem 3.1.3])

$$||B_T|| \le \frac{h_T}{\hat{\rho}}$$
 y $||B_T^{-1}|| \le \frac{\hat{h}}{\rho_T}$,

y además, de la condición del ángulo mínimo obtenemos la relación $\frac{h_T}{\rho_T} \leq C$.

Por otro lado, sabemos que el espacio de polinomios definidos sobre \hat{T} es un espacio de dimensión finita, y por lo tanto, todas las normas definidas sobre él son equivalentes. En particular, $\|\cdot\|_{m,q,\hat{T}}$, m = 1, 2, son normas equivalentes a $|\cdot|_{0,q,\hat{T}}$.

Con estos resultados, podemos demostrar (3.11). En efecto, para m = 1, 2, como \hat{b}_{ℓ} es un polinomio definido en \hat{T} , se tiene:

$$\begin{aligned} |b_{\ell}|_{m,q,T}^{q} &\leq C^{q} ||B_{T}^{-1}||^{mq} |\det(B_{T})||\hat{b}_{\ell}|_{m,q,\hat{T}}^{q} \\ &\leq C^{q} ||B_{T}^{-1}||^{mq} |\det(B_{T})||\hat{b}_{\ell}|_{m,q,\hat{T}}^{q} \\ &\leq \hat{C} ||B_{T}^{-1}||^{mq} |\det(B_{T})||\hat{b}_{\ell}|_{0,q,\hat{T}}^{q} \\ &\leq \hat{C} ||B_{T}^{-1}||^{mq} |\det(B_{T})| \left\{ ||B_{T}||^{0} |\det(B_{T})|^{-1} |b_{\ell}|_{0,q,T}^{q} \right\} \\ &\leq \hat{C} ||B_{T}^{-1}||^{mq} ||b_{\ell}||_{0,\infty,T}^{q} |T| \\ &\leq \hat{C} \left(\frac{\hat{h}}{\rho_{T}}\right)^{mq} |\ell|^{2} \\ &\leq \hat{C} \rho_{T}^{-mq} |\ell|^{2} \\ &\leq \hat{C} |\ell|^{-mq+2}, \end{aligned}$$

de donde, extrayendo raíz q-ésima, obtenemos

$$|b_{\ell}|_{m,q,T} \le C |\ell|^{-m+2/q}.$$

Así,

$$|b_{\ell}|_{m,q,\omega_{\ell}} = \sum_{i=1}^{2} |b_{\ell}|_{m,q,T_i} \le C|\ell|^{-m+2/q}, \quad \text{si } \ell \in \mathcal{E}_{h,i},$$

у

$$|b_{\ell}|_{m,q,\omega_{\ell}} = |b_{\ell}|_{m,q,T_{\ell}} \le C|\ell|^{-m+2/q}, \quad \text{si } \ell \in \mathcal{E}_{h,e}.$$

Para finalizar esta sección, recordamos una estimación del error para la interpolada de Lagrange $v^I \in H_h$ de una función $v \in \mathcal{C}(\bar{\Omega})$.

Lema 3.2 Dado $\ell \in \mathcal{E}_h$, sea ω_ℓ definido como antes. Entonces se cumple

$$\|v - v^I\|_{0,q,\ell} \le C|\ell|^{2-1/q}|v|_{2,q,\omega_{\ell}}, \quad \forall v \in W^{2,q}(\omega_{\ell}), \quad 1 < q < \infty.$$

Demostración: Ver, por ejemplo, [2, Lemma 3.4].

4. Un estimador de error a posteriori

En esta sección introducimos un estimador de error a posteriori de tipo residual para el problema (2.6), y se probará su confiabilidad y eficiencia, bajo el supuesto que $\boldsymbol{\sigma} \in [\mathcal{C}^1(\bar{\Omega})]^{2\times 2}$, lo cual implica también que $\boldsymbol{\sigma}_s \in [\mathcal{C}^1(\bar{\Omega})]^{2\times 2}$. Recordemos el problema (2.6):

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u_s) = -\operatorname{div}(\boldsymbol{\sigma}_s \nabla u_0) & \text{en } \Omega, \\ (\boldsymbol{\sigma}\nabla u_s) \cdot \boldsymbol{n} = -(\boldsymbol{\sigma}\nabla u_0) \cdot \boldsymbol{n} & \text{en } \partial\Omega, \\ \int_{\Omega} u_s = 0. \end{cases}$$

Definiendo

$$f := \operatorname{div}(\boldsymbol{\sigma}_{\boldsymbol{s}} \nabla u_0) \quad \text{y} \quad g := -(\boldsymbol{\sigma} \nabla u_0) \cdot \boldsymbol{n},$$

entonces u_s satisface

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u_s) = -f & \operatorname{en} \Omega, \\ (\boldsymbol{\sigma}\nabla u_s) \cdot \boldsymbol{n} = g & \operatorname{en} \partial\Omega. \end{cases}$$

Bajo el supuesto de que $\boldsymbol{\sigma}_s \in [\mathcal{C}^1(\bar{\Omega})]^{2\times 2}$, y dado que $\boldsymbol{\sigma}_s$ se anula en un entorno de \boldsymbol{x}_0 , se tiene que $f \in \mathcal{C}(\bar{\Omega})$ y $g \in \mathcal{C}^{\infty}$ en cada lado del polígono Ω , pues u_0 es \mathcal{C}^{∞} en $\bar{\Omega}$, salvo en el punto \boldsymbol{x}_0 .

Multiplicando por $v \in H^1(\Omega)$, integrando por partes en el lado izquierdo y usando la segunda igualdad de (2.6) obtenemos

$$\begin{aligned} -\int_{\Omega} fv &= \int_{\Omega} \operatorname{div}(\boldsymbol{\sigma} \nabla u_s)v \\ &= -\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v + \int_{\partial \Omega} (\boldsymbol{\sigma} \nabla u_s) \cdot \boldsymbol{n}v \\ &= -\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v - \int_{\partial \Omega} (\boldsymbol{\sigma} \nabla u_0) \cdot \boldsymbol{n}v \\ &= -\int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v + \int_{\partial \Omega} gv. \end{aligned}$$

De aquí se obtiene que u_s es solución del problema: Hallar $u_s \in H^1(\Omega)$ tal que

$$(P) \begin{cases} \int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla v &= \int_{\Omega} f v + \int_{\partial \Omega} g v \quad \forall v \in H^1(\Omega), \\ \int_{\Omega} u_s &= 0. \end{cases}$$

Luego, el problema discreto asociado a (P) es: Hallar $u_{s,h} \in H_h$ tal que

$$(P_h) \begin{cases} \int_{\Omega} \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla v_h &= \int_{\Omega} f v_h + \int_{\partial \Omega} g v_h \quad \forall v_h \in H_h, \\ \int_{\Omega} u_{s,h} &= 0. \end{cases}$$

A pesar de que la solución u_s de (2.6) pertenece a $H^1(\Omega)$, cuando la localización del dipolo x_0 se acerca a un cambio de región, dicha solución adquiere un carácter bastante singular, ya que en las cercanías de las interfaces entre las diferentes regiones, u_s tiene pendientes muy elevadas. Este comportamiento se asemeja al de la solución de (2.2) obtenida usando el Método Directo, la cual se sabe que pertenece a $L^p(\Omega)$, $1 \le p < 2$ (en el caso 2D). Es por esto que, pudiendo definir un estimador de error a posteriori en norma H^1 , se ha hecho en norma L^p para capturar mejor la esencia del problema.

En lo que sigue, $p \ge q$ son números tales que $\frac{1}{p} + \frac{1}{q} = 1$. Para todo $T \in \mathcal{T}_h$, definimos los indicadores de error a posteriori locales

$$\eta_{T,p} := \left(h_T^{2p} \| f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h}) \|_{0,p,T}^p + \frac{1}{2} \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,i}} |\ell|^{p+1} \| [\![\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}]\!]\|_{0,p,\ell}^p \right. \\ \left. + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{p+1} \| g - \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} \|_{0,p,\ell}^p \right)^{1/p},$$

$$(4.1)$$

donde $\mathcal{E}(T)$ es el conjunto de lados de T y $\llbracket g \rrbracket$ denota el salto de g a través de un lado interior. Luego, definimos el estimador de error a posteriori global por

$$\eta_p := \left(\sum_{T \in \mathcal{T}_h} \eta_{T,p}^p\right)^{1/p}.$$
(4.2)

4.1. Confiabilidad.

Para mostrar que el estimador η_p definido antes es confiable, se prueba el siguiente teorema usando un argumento de dualidad.

Teorema 4.1 Sea Ω un polígono convexo y Lipschitz, $\boldsymbol{\sigma} \in [\mathcal{C}^1(\bar{\Omega})]^{2 \times 2}$. Sea η_p definido en (4.2), con $p \in \left(\frac{q_0}{q_0-1}, 2\right)$, $q_0 > 2$. Entonces, se tiene la siguiente estima:

$$||u_s - u_{s,h}||_{0,p,\Omega} \le C\eta_p.$$

Demostración: Dado $\psi \in L^q(\Omega)$, sea $\varphi \in W^{2,q}(\Omega)$ la solución de (3.1). Luego, se tiene que

$$\psi = \operatorname{div}(\pmb{\sigma} \nabla \varphi) + \frac{1}{|\Omega|} \int_{\Omega} \psi$$

Notemos que el segundo término del lado derecho de la última ecuación es constante. Luego, usando (2.13), el hecho que tanto u_s como $u_{s,h}$ tienen media nula, e integrando por partes se tiene:

$$\begin{split} \int_{\Omega} (u_{s,h} - u_s)\psi &= -\int_{\Omega} (u_s - u_{s,h}) \left(\operatorname{div}(\boldsymbol{\sigma} \nabla \varphi) + \frac{1}{|\Omega|} \int_{\Omega} \psi \right) \\ &= -\int_{\Omega} (u_s - u_{s,h}) \operatorname{div}(\boldsymbol{\sigma} \nabla \varphi) \\ &= \int_{\Omega} \boldsymbol{\sigma} \nabla (u_s - u_{s,h}) \cdot \nabla \varphi - \int_{\partial \Omega} \underbrace{(\boldsymbol{\sigma} \nabla \varphi \cdot \boldsymbol{n})}_{=0 \text{ en } \partial \Omega} (u_s - u_{s,h}) \\ &= \int_{\Omega} \boldsymbol{\sigma} \nabla (u_s - u_{s,h}) \cdot \nabla \varphi \\ &= \int_{\Omega} \boldsymbol{\sigma} \nabla (u_s - u_{s,h}) \cdot \nabla (\varphi - \varphi^I) \\ &= \int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla (\varphi - \varphi^I) - \int_{\Omega} \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla (\varphi - \varphi^I) \\ &= \int_{\Omega} \boldsymbol{\sigma} \nabla u_s \cdot \nabla (\varphi - \varphi^I) - \sum_{T \in \mathcal{T}_h} \int_T \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla (\varphi - \varphi^I) \end{split}$$

Como u_s es solución de (P), tenemos que

$$\int_{\Omega} \boldsymbol{\sigma} \nabla u_{s} \cdot \nabla (\varphi - \varphi^{I}) = \int_{\Omega} f(\varphi - \varphi^{I}) + \int_{\partial \Omega} g(\varphi - \varphi^{I}) \\
= \sum_{T \in \mathcal{T}_{h}} \int_{T} f(\varphi - \varphi^{I}) + \sum_{\ell \in \mathcal{E}_{h,e}} \int_{\ell} g(\varphi - \varphi^{I}). \quad (4.3)$$

Por otro lado, integrando por partes, tenemos:

$$\int_{T} \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla (\varphi - \varphi^{I}) = -\int_{T} \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})(\varphi - \varphi^{I}) + \int_{\partial T} (\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n})(\varphi - \varphi^{I}).$$
(4.4)

Luego, usando (4.3), (4.4) y la desigualdad de Hölder, se obtiene

$$\begin{split} -\int_{\Omega} (u_{s} - u_{s,h})\psi &= \int_{\Omega} \boldsymbol{\sigma} \nabla u_{s} \cdot \nabla(\varphi - \varphi^{I}) - \sum_{T \in \mathcal{T}_{h}} \int_{T} \boldsymbol{\sigma} \nabla u_{s,h} \cdot \nabla(\varphi - \varphi^{I}) \\ &= \sum_{T \in \mathcal{T}_{h}} \int_{T} f(\varphi - \varphi^{I}) + \sum_{\ell \in \mathcal{E}_{h,e}} \int_{\ell} g(\varphi - \varphi^{I}) \\ &- \sum_{T \in \mathcal{T}_{h}} \left(-\int_{T} \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})(\varphi - \varphi^{I}) + \int_{\partial T} (\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n})(\varphi - \varphi^{I}) \right) \\ &= \sum_{T \in \mathcal{T}_{h}} \int_{T} (f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h}))(\varphi - \varphi^{I}) + \sum_{\ell \in \mathcal{E}_{h,i}} \int_{\ell} [\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}] (\varphi - \varphi^{I}) \\ &- \sum_{\ell \in \mathcal{E}_{h,e}} \int_{\ell} (\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g)(\varphi - \varphi^{I}) \\ &\leq \sum_{T \in \mathcal{T}_{h}} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T} \|\varphi - \varphi^{I}\|_{0,q,T} + \sum_{\ell \in \mathcal{E}_{h,i}} \|[\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}]\|_{0,p,\ell} \|\varphi - \varphi^{I}\|_{0,q,\ell} \\ &+ \sum_{\ell \in \mathcal{E}_{h,e}} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell} \|\varphi - \varphi^{I}\|_{0,q,\ell}. \end{split}$$

Ahora, usando nuevamente la desigualdad de Hölder, la estimación (3.3) y el Lema 3.2, acotamos cada término del lado derecho en la expresión anterior.

$$\begin{split} \sum_{T \in \mathcal{T}_{h}} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T} \|\varphi - \varphi^{I}\|_{0,q,T} &\leq C \sum_{T \in \mathcal{T}_{h}} h_{T}^{2} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T} |\varphi|_{2,q,T} \\ &\leq C \bigg(\sum_{T \in \mathcal{T}_{h}} h_{T}^{2p} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T}^{p} \bigg)^{1/p} \bigg(\sum_{T \in \mathcal{T}_{h}} |\varphi|_{2,q,T}^{q} \bigg)^{1/q} \\ &= C \bigg(\sum_{T \in \mathcal{T}_{h}} h_{T}^{2p} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T}^{p} \bigg)^{1/p} |\varphi|_{2,q,\Omega}, \end{split}$$

$$\begin{split} \sum_{\ell \in \mathcal{E}_{h,i}} \| \llbracket \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell} \| \varphi - \varphi^{I} \|_{0,q,\ell} &\leq C \sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{1+1/p} \| \llbracket \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell} |\varphi|_{2,q,\omega_{\ell}} \\ &\leq C \bigg(\sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{p+1} \| \llbracket \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell}^{p} \bigg)^{1/p} \bigg(\sum_{\ell \in \mathcal{E}_{h,i}} |\varphi|_{2,q,\omega_{\ell}}^{q} \bigg)^{1/q} \\ &= C \bigg(\sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{p+1} \| \llbracket \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell}^{p} \bigg)^{1/p} |\varphi|_{2,q,\Omega}, \end{split}$$

$$\begin{split} \sum_{\ell \in \mathcal{E}_{h,e}} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell} \|\varphi - \varphi^{I}\|_{0,q,\ell} &\leq C \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{1+1/p} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell} |\varphi|_{2,q,\omega_{\ell}} \\ &\leq C \bigg(\sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{p+1} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell}^{p} \bigg)^{1/p} \bigg(\sum_{\ell \in \mathcal{E}_{h,i}} |\varphi|_{2,q,\omega_{\ell}}^{q} \bigg)^{1/q} \\ &= C \bigg(\sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{p+1} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell}^{p} \bigg)^{1/p} |\varphi|_{2,q,\Omega}. \end{split}$$

Luego, de las estimaciones anteriores, y usando (3.2), obtenemos

$$\begin{split} \int_{\Omega} (u_{s,h} - u_s)\psi &\leq C \left(\sum_{T \in \mathcal{T}_h} h_T^{2p} \| f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h}) \|_{0,p,T}^p + \sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{p+1} \| [\![\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}]\!]\|_{0,p,\ell}^p \\ &+ \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{p+1} \| \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g \|_{0,p,\ell}^p \right)^{1/p} |\varphi|_{2,q,\Omega} \\ &\leq C \left(\sum_{T \in \mathcal{T}_h} h_T^{2p} \| f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h}) \|_{0,p,T}^p + \sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{p+1} \| [\![\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}]\!]\|_{0,p,\ell}^p \\ &+ \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{p+1} \| \boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g \|_{0,p,\ell}^p \right)^{1/p} \| \psi \|_{0,q,\Omega}. \end{split}$$

Por lo tanto,

$$\begin{aligned} \|u_{s,h} - u_s\|_{0,p,\Omega} &= \sup_{\psi \in L^q(\Omega)} \frac{\int_{\Omega} (u_{s,h} - u_s)\psi}{\|\psi\|_{0,q,\Omega}} \\ &\leq C \left(\sum_{T \in \mathcal{T}_h} h_T^{2p} \|f + \operatorname{div}(\boldsymbol{\sigma} \nabla u_{s,h})\|_{0,p,T}^p + \sum_{\ell \in \mathcal{E}_{h,i}} |\ell|^{p+1} \|[\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n}]]\|_{0,p,\ell}^p \\ &+ \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{p+1} \|\boldsymbol{\sigma} \nabla u_{s,h} \cdot \boldsymbol{n} - g\|_{0,p,\ell}^p \right)^{1/p}, \end{aligned}$$

lo cual concluye la demostración.

4.2. Eficiencia.

En esta subsección, por simplicidad asumimos que $\boldsymbol{\sigma} = \boldsymbol{\sigma} \boldsymbol{I}, \ \boldsymbol{\sigma} \in \mathbb{R}$, en todo el dominio Ω (y por lo tanto en cada triángulo de \mathcal{T}_h). En tal caso, como $u_{s,h} \in \mathcal{P}_1(T), \ \forall T \in \mathcal{T}_h$, entonces $\boldsymbol{\sigma} \nabla u_{s,h} = \boldsymbol{\sigma} \nabla u_{s,h}$ es constante, y por lo tanto div $(\boldsymbol{\sigma} \nabla u_{s,h}) = 0$ en cada $T \in \mathcal{T}_h$. A su vez, de (2.3) obtenemos que $\boldsymbol{\sigma}_s = \boldsymbol{\sigma} - \boldsymbol{\sigma}_0 = 0$, y así el lado derecho de la ecuación diferencial del problema (2.6) es cero. De esta forma, u_s es solución del problema

$$\begin{cases} \sigma \Delta u_s = 0 & \text{en } \Omega, \\ \sigma \nabla u_s \cdot \boldsymbol{n} = g & \text{en } \partial \Omega, \\ \int_{\Omega} u_s = 0, \end{cases}$$
(4.5)

cuya formulación variacional que
da dada por: Hallar $u_s \in H^1(\Omega)$ tal que

$$\begin{cases}
\int_{\Omega} \sigma \nabla u_s \cdot \nabla v = \int_{\partial \Omega} gv, \quad \text{para todo } v \in H^1(\Omega), \\
\int_{\Omega} \nabla u_s = 0,
\end{cases}$$
(4.6)

y el problema discreto asociado es: Hallar $u_{s,h} \in H_h$ tal que

$$\begin{cases}
\int_{\Omega} \sigma \nabla u_{s,h} \cdot \nabla v_h = \int_{\partial \Omega} g v_h, \quad \text{para todo } v_h \in H_h, \\
\int_{\Omega} u_{s,h} = 0.
\end{cases}$$
(4.7)

De acuerdo a lo anterior, los indicadores de error a posteriori locales se reducen a

$$\eta_{T,p} = \left(\frac{1}{2} \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,i}} |\ell|^{p+1} \| [\![\sigma \nabla u_{s,h} \cdot \boldsymbol{n}]\!]\|_{0,p,\ell}^{p} + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{p+1} \| g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \|_{0,p,\ell}^{p} \right)^{1/p},$$

$$(4.8)$$

y el estimador de error a posteriori global queda como antes,

$$\eta_p = \left(\sum_{T \in \mathcal{T}_h} \eta_{T,p}^p\right)^{1/p}.$$
(4.9)

Probaremos ahora las estimaciones de eficiencia para los indicadores recién mencionados. Lema 4.1 Para cada $\ell \in \mathcal{E}_{h,i}$, se cumple la siguiente estima:

$$|\ell|^{p+1} \| \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell}^p \le C \| u_s - u_{s,h} \|_{0,p,\omega_\ell}^p$$

Demostración: Consideremos $\ell \in \mathcal{E}_{h,i}$ arbitrario, y la función burbuja b_{ℓ} definida en (3.4). Testeando con b_{ℓ} en (4.6) y (4.7), integrando por partes, y usando (3.8) se tiene

$$\int_{\Omega} \sigma \nabla (u_{s} - u_{s,h}) \cdot \nabla b_{\ell} = \int_{\Omega} \sigma \nabla u_{s} \cdot \nabla b_{\ell} - \int_{\Omega} \sigma \nabla u_{s,h} \cdot \nabla b_{\ell} \\
= \int_{\partial \Omega} gb_{\ell} - \sum_{T \in \mathcal{T}_{h}} \int_{T} \sigma \nabla u_{s,h} \cdot \nabla b_{\ell} \\
= -\sum_{T \in \mathcal{T}_{h}} \left(-\int_{T} \sigma \underbrace{\Delta u_{s,h}}_{=0} b_{\ell} + \int_{\partial T} (\sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell} \right) \\
= \int_{\ell} [\![\sigma \nabla u_{s,h} \cdot \boldsymbol{n}]\!] b_{\ell}.$$
(4.10)

Además, integrando por partes, usando (3.9), la desigualdad de Hölder, y (3.11) obtenemos

$$\int_{\Omega} \sigma \nabla (u_s - u_{s,h}) \cdot \nabla b_{\ell} = \int_{\omega_{\ell}} \sigma \nabla (u_s - u_{s,h}) \cdot \nabla b_{\ell}
= \int_{\omega_{\ell}} -\sigma (u_s - u_{s,h}) \Delta b_{\ell} + \int_{\partial \omega_{\ell}} \sigma \underbrace{(\nabla b_{\ell} \cdot \mathbf{n})}_{=0 \text{ en } \partial \omega_{\ell}} (u_s - u_{s,h})
\leq \sigma ||u_s - u_{s,h}||_{0,p,\omega_{\ell}} |b_{\ell}|_{2,q,\omega_{\ell}}
\leq C|\ell|^{-2/p} ||u_s - u_{s,h}||_{0,p,\omega_{\ell}}.$$
(4.11)

Por otro lado, como $[\![\sigma \nabla u_{s,h} \cdot \boldsymbol{n}]\!]$ es constante, usando (3.10) se tiene que

$$\left| \int_{\ell} \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket b_{\ell} \right| = |\llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket| \int_{\ell} b_{\ell} \ge C' |\ell| |\llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket|.$$
(4.12)

Luego, de (4.10), (4.11) y (4.12) se obtiene

$$C'|\ell||\llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket| \le C|\ell|^{-2/p} \|u_s - u_{s,h}\|_{0,p,\omega_{\ell}},$$

de donde

$$|\ell|^{p+2} |\llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket|^p \le C ||u_s - u_{s,h}||^p_{0,p,\omega_\ell}$$

Finalmente, el hecho que

$$\begin{aligned} |\ell|^{p+2} \| \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|^p &= |\ell|^{p+1} (|\ell|| \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|^p) \\ &= |\ell|^{p+1} \| \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\omega_{\ell}}^p \end{aligned}$$

permite concluir que

$$\|\ell\|^{p+1}\|[\![\sigma\nabla u_{s,h}\cdot n]\!]\|^{p}_{0,p,\ell} \le C\|u_{s}-u_{s,h}\|^{p}_{0,p,\omega_{\ell}},$$

lo cual completa la demostración.

Para el siguiente lema, para cada arista $\ell \subset \partial \Omega$ denotemos por $g_{\ell} := \frac{1}{|\ell|} \int_{\ell} g$ a la proyección de g sobre las constantes en ℓ .

Lema 4.2 Para cada $\ell \in \mathcal{E}_{h,e}$, se cumple la siguiente estima:

$$|\ell|^{p+1} ||g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}||_{0,p,\ell}^p \le C \Big(||u_s - u_{s,h}||_{0,p,T_{\ell}}^p + |\ell|^{p+1} ||g_{\ell} - g||_{0,p,\ell}^p \Big),$$

siendo T_{ℓ} el triángulo de \mathcal{T}_h que contiene a ℓ .

Demostración: Consideremos $\ell \in \mathcal{E}_{h,e}$ arbitrario, y la función burbuja b_{ℓ} definida en (3.7). Usando a b_{ℓ} como función test en (4.6) e integrando por partes, obtenemos

$$\begin{split} \int_{\Omega} \sigma \nabla (u_s - u_{s,h}) \cdot \nabla b_{\ell} &= \int_{\Omega} \sigma \nabla u_s \cdot \nabla b_{\ell} - \int_{\Omega} \sigma \nabla u_{s,h} \cdot \nabla b_{\ell} \\ &= \int_{\partial \Omega} g b_{\ell} - \sum_{T \in \mathcal{T}_h} \int_{T} \sigma \nabla u_{s,h} \cdot \nabla b_{\ell} \\ &= \int_{\ell} g b_{\ell} - \sum_{T \in \mathcal{T}_h} \left(- \int_{T} \sigma \underbrace{\Delta u_{s,h}}_{=0} b_{\ell} + \int_{\partial T} (\sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell} \right) \\ &= \int_{\ell} g b_{\ell} - \int_{\ell} (\sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell} \\ &= \int_{\ell} (g - g_{\ell}) b_{\ell} + \int_{\ell} (g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell}, \end{split}$$

de donde, integrando por partes, usando (3.9), (3.11) y la desigualdad de Hölder, se tiene

$$\begin{split} \int_{\ell} (g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell} &= \int_{\ell} (g_{\ell} - g) b_{\ell} + \int_{\Omega} \sigma \nabla (u_{s} - u_{s,h}) \cdot \nabla b_{\ell} \\ &= \int_{\ell} (g_{\ell} - g) b_{\ell} + \int_{T_{\ell}} \sigma \nabla (u_{s} - u_{s,h}) \Delta b_{\ell} + \int_{\partial T_{\ell}} \sigma \underbrace{(\nabla b_{\ell} \cdot \boldsymbol{n})}_{=0 \text{ en } \partial T_{\ell}} (u_{s} - u_{s,h}) \Big) \\ &\leq \|g - g_{\ell}\|_{0,p,\ell} \|b_{\ell}\|_{0,q,\ell} + \sigma \|u_{s} - u_{s,h}\|_{0,p,T_{\ell}} \|\Delta b_{\ell}\|_{0,q,T_{\ell}} \\ &\leq C \Big(|\ell|^{-1/q} \|g - g_{\ell}\|_{0,p,\ell} \|b_{\ell}\|_{0,q,T_{\ell}} + \|u_{s} - u_{s,h}\|_{0,p,T_{\ell}} |b_{\ell}|_{2,q,T_{\ell}} \Big) \\ &\leq C \Big(|\ell|^{-1/q} \|g - g_{\ell}\|_{0,p,\ell} + |\ell|^{-2/p} \|u_{s} - u_{s,h}\|_{0,p,T_{\ell}} \Big) \\ &= C \Big(|\ell|^{1-1/p} \|g - g_{\ell}\|_{0,p,\ell} + |\ell|^{-2/p} \|u_{s} - u_{s,h}\|_{0,p,T_{\ell}} \Big) \end{split}$$

Por otro lado, usando (3.10) y el hecho que $(g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n})$ es constante, tenemos

$$\begin{aligned} \left| \int_{\ell} (g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}) b_{\ell} \right| &= |g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}| \int_{\ell} b_{\ell} \\ &\geq C' |g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}| |\ell| \\ &= C' |\ell|^{1-1/p} ||g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}||_{0,p,\ell}, \end{aligned}$$

lo cual junto a la desigualdad anterior permite concluir que

$$\|g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}\|_{0,p,\ell} \le C \Big(|\ell|^{-1-1/p} \|u_s - u_{s,h}\|_{0,p,T_{\ell}} + \|g - g_{\ell}\|_{0,p,\ell} \Big).$$

Así,

$$\begin{split} \|g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}\|_{0,p,\ell} &\leq \|g_{\ell} - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}\|_{0,p,\ell} + \|g - g_{\ell}\|_{0,p,\ell} \\ &\leq C\Big(|\ell|^{-1-1/p}\|u_s - u_{s,h}\|_{0,p,T_{\ell}} + \|g - g_{\ell}\|_{0,p,\ell}\Big) + \|g - g_{\ell}\|_{0,p,\ell} \\ &= C\Big(|\ell|^{-1-1/p}\|u_s - u_{s,h}\|_{0,p,T_{\ell}} + \|g - g_{\ell}\|_{0,p,\ell}\Big), \end{split}$$

de donde

$$|\ell|^{1+1/p} \|g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}\|_{0,p,\ell} \le C \Big(\|u_s - u_{s,h}\|_{0,p,T_{\ell}} + |\ell|^{1+1/p} \|g - g_{\ell}\|_{0,p,\ell} \Big),$$

y por lo tanto,

$$\begin{aligned} \|\ell\|^{p+1} \|g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n}\|^{p}_{0,p,\ell} &\leq C \Big(\|u_{s} - u_{s,h}\|_{0,p,T_{\ell}} + |\ell|^{1+1/p} \|g - g_{\ell}\|_{0,p,\ell} \Big)^{p} \\ &\leq C \Big(\|u_{s} - u_{s,h}\|^{p}_{0,p,T_{\ell}} + |\ell|^{p+1} \|g - g_{\ell}\|^{p}_{0,p,\ell} \Big), \end{aligned}$$

lo cual completa la demostración.

Para concluir que nuestro estimador es eficiente, sólo resta acotar el término $||g-g_{\ell}||_{0,p,\ell}$. Para ello, recordemos que g_{ℓ} es la proyección de g sobre las funciones constantes. Luego, es claro que $g_{\ell} = g \ \forall g \in \mathbb{P}_0(\ell)$. Por lo tanto, se tiene que ([4, Theorem 3.1.4])

$$||g - g_{\ell}||_{0,p,\ell} \le C|\ell||g|_{1,p,\ell}.$$

De esto último y de los lemas anteriores, tenemos el siguiente resultado.

Lema 4.3 Sea $T \in \mathcal{T}_h$ y $\eta_{T,p}$ definido en (4.8). Entonces se cumple la siguiente estima:

$$\eta_{T,p}^{p} \leq C \left\{ \sum_{T' \in \omega_{T}} \|u_{s} - u_{s,h}\|_{0,p,T'}^{p} + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{2p+1} |g|_{1,p,\ell}^{p} \right\},\$$

donde $\omega_T := \bigcup_{\ell \in \partial T} \omega_\ell.$

Demostración: Para $T \in \mathcal{T}_h$, se tiene que

$$\begin{split} \eta^{p}_{T,p} &= \frac{1}{2} \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,i}} |\ell|^{p+1} \| \llbracket \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \rrbracket \|_{0,p,\ell}^{p} + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{p+1} \| g - \sigma \nabla u_{s,h} \cdot \boldsymbol{n} \|_{0,p,\ell}^{p} \\ &\leq C \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,i}} \| u_{s} - u_{s,h} \|_{0,p,\omega_{\ell}}^{p} + C \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} \left\{ \| u_{s} - u_{s,h} \|_{0,p,T_{\ell}}^{p} + |\ell|^{p+1} \| g - g_{\ell} \|_{0,p,\ell}^{p} \right\} \\ &\leq C \left\{ \sum_{T' \in \omega_{T}} \| u_{s} - u_{s,h} \|_{0,p,T'}^{p} + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{2p+1} |g|_{1,p,\ell}^{p} \right\}. \end{split}$$

El lema anterior nos permite inferir la siguiente estimación:

$$\begin{split} \eta_p &:= \left\{ \sum_{T \in \mathcal{T}_h} \eta_{T,p}^p \right\}^{1/p} &\leq C \left\{ \sum_{T \in \mathcal{T}_h} \left(\sum_{T' \in \omega_T} \|u_s - u_{s,h}\|_{0,p,T'}^p + \sum_{\ell \in \mathcal{E}(T) \cap \mathcal{E}_{h,e}} |\ell|^{2p+1} |g|_{1,p,\ell}^p \right) \right\}^{1/p} \\ &\leq C \left\{ \|u_s - u_{s,h}\|_{0,p,\Omega}^p + \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{2p+1} |g|_{1,p,\ell}^p \right\}^{1/p} \\ &\leq C \|u_s - u_{s,h}\|_{0,p,\Omega} + C \left\{ \sum_{\ell \in \mathcal{E}_{h,e}} |\ell|^{2p+1} |g|_{1,p,\ell}^p \right\}^{1/p}. \end{split}$$

En general, no cabe esperar que el error $||u_s - u_{s,h}||_{0,p,\Omega}$ sea de un orden mejor que $\mathcal{O}(h^2)$. En consecuencia, el último término de la expresión anterior al ser de orden $|\ell|^{2+1/p}$ resulta despreciable respecto del anterior.

5. El Problema Inverso

En esta sección se describe el Problema Inverso, el cual consiste en reconstruir la localización del dipolo x_0 y el vector de polarización p, conociendo de antemano mediciones de la solución de (2.2) en algunos puntos de la frontera del dominio.

Dado que estamos considerando sólo un dipolo, necesitamos encontrar sólo 4 parámetros (las 2 coordenadas del punto y las 2 componentes del vector) que minimicen la función de mínimos cuadrados

$$\phi(\boldsymbol{x},\boldsymbol{q}) = \|\boldsymbol{m} - \boldsymbol{m}_{med}\|_2^2, \ \boldsymbol{x} \in \Omega, \ \boldsymbol{q} \in \mathbb{R}^2,$$
(5.1)

donde x es el punto donde se ubica el dipolo y q es la polarización. En la ecuación anterior,

$$\boldsymbol{m} =: \left(egin{array}{c} u(P_1) \\ dots \\ u(P_n) \end{array}
ight),$$

donde P_1, \ldots, P_n son los puntos de observación en $\partial \Omega$, y u es la solución calculada del problema

$$\begin{cases} \operatorname{div}(\boldsymbol{\sigma}\nabla u) = \operatorname{div}(\boldsymbol{q}\delta_{\boldsymbol{x}}) & \text{en }\Omega, \\ (\boldsymbol{\sigma}\nabla u) \cdot \boldsymbol{n} = 0 & \text{en }\partial\Omega, \end{cases}$$
(5.2)

que a su vez es función de x y de q. Por otro lado, m_{med} son los valores medidos de la solución del problema directo original (2.2).

Notemos que, si bien el problema de minimizar $\phi(\mathbf{x}, \mathbf{q})$ es no lineal en \mathbf{x} , es lineal en \mathbf{q} . Por este motivo, la determinación de $\mathbf{q} \in \mathbb{R}^2$ óptimo para cada $\mathbf{x} \in \Omega$ puede hacerse por cuadrados mínimos lineales. En efecto, dado $\mathbf{x} \in \Omega$, sean u_1 y u_2 las soluciones de (5.2) con $\mathbf{q} = \mathbf{e}_1$ y $\mathbf{q} = \mathbf{e}_2$, respectivamente. Sean

$$oldsymbol{m}_1 = \left(egin{array}{c} u_1(P_1) \ dots \ u_1(P_n) \end{array}
ight), \quad oldsymbol{m}_2 = \left(egin{array}{c} u_2(P_1) \ dots \ u_2(P_n) \end{array}
ight),$$

y $M = (m_1 \ m_2)$. Por lo tanto, los valores de la solución u de (5.2) para $q = q_1 e_1 + q_2 e_2 \in \mathbb{R}^2$ cualquiera se expresa $u = q_1 u_1 + q_2 u_2$, y sus valores en los puntos P_1, \ldots, P_n quedan determinados por

$$\boldsymbol{m} = \left(egin{array}{c} u(P_1) \\ dots \\ u(P_n) \end{array}
ight) = \left(egin{array}{c} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \end{array}
ight) \left(egin{array}{c} q_1 \\ q_2 \end{array}
ight) = \boldsymbol{M} \boldsymbol{q}.$$

Así, para $x \in \Omega$ fijo, el problema de minimización resultante es: Hallar $q_x \in \mathbb{R}^2$ tal que

$$oldsymbol{q}_{oldsymbol{x}} = rg \min_{oldsymbol{q} \in \mathbb{R}^2} \|oldsymbol{M}oldsymbol{q} - oldsymbol{m}_{med}\|_2^2.$$

Por lo tanto, hallar q_x es equivalente a resolver el sistema de ecuaciones normales

$$(\boldsymbol{M}^{t}\boldsymbol{M})\boldsymbol{q}_{\boldsymbol{x}} = (\boldsymbol{M}^{t}\boldsymbol{m}_{med}).$$
(5.3)

Después de haber calculado la polarización óptima para cada posible ubicación del dipolo x, la función a minimizar sólo depende de x, y es

$$\psi(\mathbf{x}) = \|\mathbf{M}\mathbf{q}_{\mathbf{x}} - \mathbf{m}_{med}\|_{2}^{2}.$$
(5.4)

6. Experimentos Numéricos

En esta sección presentamos algunos experimentos numéricos tanto para el problema directo como para el problema inverso. Como se mencionó anteriormente en la Sección 2, el único objetivo de la tercera ecuación en (2.6) (o segunda ecuación en (2.12)), es tener unicidad de solución para esos problemas. Sin embargo, en la práctica es más razonable considerar otra alternativa. Dado que las mediciones en EEG son tipicamente diferencias de potencial con respecto a un electrodo fijo, es más realista (y simple) usar

$$u(\boldsymbol{x}_{ref}) = 0$$

como condición para determinar unicidad de solución para estos problemas, donde \boldsymbol{x}_{ref} es la localización del electrodo fijo. Por ello, en todos los experimentos de esta sección, ésta será la condición usada para garantizar la unicidad de solución.

6.1. Problema Directo.

En esta sección se muestran los resultados obtenidos en diversos experimentos numéricos usando el Método de Sustracción en mallas refinadas adaptativamente en base al estimador (4.2). El procedimiento adaptativo consiste en resolver el problema (2.12) en una secuencia de mallas, siendo cada malla un refinamiento de la anterior, y comenzando con la malla inicial mostrada en la Figura 1. En cada iteración, calculamos los indicadores locales del error a posteriori $\eta_{T,p}$ en cada triángulo T de la malla "antigua", y luego refinamos aquellos elementos T tales que $\eta_{T,p} \geq \frac{1}{2} \max\{\eta_{T,p} : T \in \mathcal{T}_h\}.$

El algoritmo se implementó en un código MATLAB usando el generador de mallas Triangle. En lo que sigue, el dominio Ω , la conductividad σ y la polarización p son los mismos que en el experimento de la Sección 2.

Experimento 1: Este experimento consiste en resolver el problema (2.12), considerando la posición del dipolo cerca del centro del dominio, y comparar los valores obtenidos en los 3 puntos de la frontera mostrados en la Tabla 4, al resolver usando mallas uniformes (ver Tabla 2) y mallas refinadas adaptativamente (ver Tabla 5). Para llevar a cabo el experimento, se consideró $x_0 = (0.012634, 0.182)$.

Punto	1	2	3
x	-1	-0.75	1
y	-0.75	1	0.75
Valor de $u(x, y)$	-0.0760	1.0039	0.5257

Tabla 4: Experimento 1. Los 3 puntos y sus mediciones "exactas".

Malla	Grados de Libertad	Elementos	Elem. Reg. 1	Elem. Reg. 2	Elem. Reg. 3
1	362	682	104	120	458
2	379	709	125	121	463
3	408	760	146	126	488
4	527	992	199	196	597
5	891	1706	394	410	902
6	985	1890	462	444	984
7	1478	2861	624	567	1670
8	1853	3601	786	726	2089
9	2438	4757	1101	1103	2553
10	2825	5522	1265	1250	3007
11	3309	6484	1458	1423	3603
12	3841	7536	1673	1572	4291
13	5502	10811	2390	2305	6116
14	6403	12599	2882	2832	6885
15	7295	14370	3260	3165	7945
16	8469	16685	3728	3481	9476
17	9819	19357	4424	3773	11160
18	13337	26368	5652	5070	15646
19	13950	27591	5895	5489	16207
20	14321	28326	6124	5709	16493
21	16592	32831	7299	6481	19051
22	19767	39113	8503	7214	23396
23	20793	41146	9034	7456	24656
24	25442	50385	10918	8143	31324
25	29110	57685	12007	9384	36294
26	30011	59482	12329	9931	37222

Tabla 5: Experimento 1. Grados de Libertad y número de elementos en las mallas obtenidas con $\eta_{T,p}$ para p = 1.25 y $\boldsymbol{x}_0 = (0.012634, 0.182).$

Las Tablas 6 y 7 muestran los valores obtenidos y los errores de los mismos. Para calcular estos errores se tomó como "solución exacta" los valores de referencia obtenidos resolviendo el mismo problema por el mismo Método de Sustracción con mallas sumamente refinadas de manera tal que pudiera garantizarse cuatro cifras decimales correctamente calculadas de cada valor. La primera tabla corresponde al caso de mallas uniformes, mientras que en la segunda se muestran los valores calculados usando el refinamiento adaptativo.

Observando estas tablas se ve que en el segundo punto se obtiene una solución con cuatro dígitos correctos antes de llegar a la última malla. Como la solución de referencia la conocemos sólo con cuatro dígitos significativos, carece de sentido intentar estimar los errores más allá de esa cifra.

	Punto 1		Punto 2		Punto 3	
Malla	Valor	Error	Valor	Error	Valor	Error
1	-0.0913	0.0153	0.9882	0.0157	0.5395	0.0138
2	-0.0810	0.0050	1.0002	0.0037	0.5307	0.0050
3	-0.0794	0.0034	1.0023	0.0016	0.5290	0.0033
4	-0.0778	0.0018	1.0028	0.0011	0.5277	0.0020
5	-0.0771	0.0011	1.0034	0.0005	0.5270	0.0013
6	-0.0767	0.0007	1.0035	0.0004	0.5264	0.0007
7	-0.0764	0.0004	1.0037	0.0002	0.5262	0.0005
8	-0.0763	0.0003	1.0038	0.0001	0.5260	0.0003
9	-0.0761	0.0001	-	-	0.5259	0.0002
10	-0.0761	0.0001	-	-	0.5258	0.0001

Tabla 6: Experimento 1. Valores calculados y errores puntuales en mallas uniformes para $x_0 = (0.012634, 0.182).$

	Punt	to 1	Pun	to 2	Pun	to 3
Malla	Valor	Error	Valor	Error	Valor	Error
1	-0.0913	0.0153	0.9882	0.0157	0.5395	0.0137
2	-0.0798	0.0039	1.0019	0.0020	0.5308	0.0050
3	-0.0812	0.0052	1.0000	0.0039	0.5300	0.0043
4	-0.0815	0.0055	0.9996	0.0043	0.5301	0.0044
5	-0.0790	0.0030	1.0023	0.0016	0.5292	0.0035
6	-0.0791	0.0031	1.0023	0.0017	0.5292	0.0034
7	-0.0786	0.0027	1.0026	0.0013	0.5281	0.0024
8	-0.0778	0.0018	1.0032	0.0008	0.5277	0.0020
9	-0.0776	0.0017	1.0033	0.0006	0.5274	0.0017
10	-0.0776	0.0016	1.0035	0.0004	0.5273	0.0016
11	-0.0774	0.0014	1.0034	0.0005	0.5269	0.0012
12	-0.0771	0.0011	1.0037	0.0002	0.5267	0.0010
13	-0.0770	0.0010	1.0038	0.0001	0.5266	0.0009
14	-0.0769	0.0010	-	-	0.5266	0.0008
15	-0.0769	0.0009	-	-	0.5264	0.0007
16	-0.0768	0.0008	-	-	0.5264	0.0006
17	-0.0765	0.0005	-	-	0.5262	0.0005
18	-0.0764	0.0005	-	-	0.5261	0.0004
19	-0.0764	0.0005	-	-	0.5261	0.0004
20	-0.0764	0.0004	-	-	0.5262	0.0004
21	-0.0764	0.0004	-	-	0.5261	0.0004
22	-0.0762	0.0003	-	-	0.5260	0.0003
23	-0.0762	0.0003	-	-	0.5260	0.0003
24	-0.0762	0.0002	-	-	0.5260	0.0002
25	-0.0762	0.0002	-	-	0.5259	0.0002
26	-0.0762	0.0002	-	-	0.5259	0.0002

Tabla 7: Experimento 1. Valores calculados y errores puntuales en mallas refinadas adaptativamente para $x_0 = (0.012634, 0.182)$.

En la Figura 6 se muestran algunas de las mallas que permiten ver la forma en que se hace el refinamiento. Observamos que éste se concentra fundamentalmente en las interfaces entre las diferentes regiones, y no alrededor de la posición del dipolo \boldsymbol{x}_0 . Esto es cabalmente predecible, ya que al usar el Método de Sustracción para resolver (2.2), la solución calculada no presenta ninguna singularidad en \boldsymbol{x}_0 .

Los parámetros "iter" y "g.l." hacen referencia al número de la iteración al que corresponde la malla y al número de grados de libertad de la malla respectiva.

Figura 6: Experimento 1. Mallas obtenidas con $\eta_{T,p}$, para p = 1.25 y $\boldsymbol{x}_0 = (0.012634, 0.182)$.

Para observar mejor el comportamiento de los errores puntuales y poder comparar los resultados obtenidos con ambas estrategias, la Figuras 7, 8 y 9 se muestran las curvas de error asociadas a cada punto.

Figura 7: Experimento 1. Error en el punto (-1, -0.75).

Figura 8: Experimento 1. Error en el punto (-0.75, 1).

Figura 9: Experimento 1. Error en el punto (1, 0.75).

De estas Figuras podemos concluir que ambas estrategias de refinamiento entregan errores con una clara tendencia decreciente a medida que aumenta el número de grados de libertad. En todas ellas, la estrategia de refinamiento adaptativo entrega mejores resultados, pero no son mucho mejores que los obtenidos con refinamiento uniforme.

Experimento 2: El objetivo de este experimento es el mismo que el del experimento anterior, pero ahora considerando la posición del dipolo cercana a un cambio de región. A fin de poder comparar con el experimento de la Sección 2, consideraremos $x_0 = (0.012634, 0.8696)$. La Figura 10 muestra algunas de las mallas generadas por el procedimiento adaptativo guíado por los indicadores (4.1).

Figura 10: Experimento 2. Mallas obtenidas con $\eta_{T,p}$, para p = 1.25 y $\boldsymbol{x}_0 = (0.012634, 0.8696)$.

Como se puede observar, el refinamiento en este caso se hace esencialmente en las cercanías de x_0 . Sin embargo, como se observa en la Figura 11, que corresponde a un zoom de la Figura 10(c), el refinamiento también se realiza principalmente en las regiones donde σ es mayor, que en este caso es en las regiones Ω_1 y Ω_3 .

Figura 11: Zoom a la malla de la figura 10(c).

La Tabla 8 muestra en detalle las mallas obtenidas durante el proceso de refinamiento adaptativo, mientras que la Tabla 9 contiene los valores puntuales calculados y sus errores. En este caso, la solución de referencia utilizada para calcular dichos errores fue obtenida al resolver el mismo problema mediante el Método Directo con refinamiento adaptativo, y usando mallas suficientemente refinadas a fin de garantizar cuatro dígitos decimales correctos para cada valor.

Malla	Grados de Libertad	Elementos	Elem. Reg. 1	Elem. Reg. 2	Elem. Reg. 3
1	362	682	104	120	458
2	369	696	104	121	471
3	373	704	104	124	476
4	401	754	136	127	491
5	416	784	136	131	517
6	424	800	136	133	531
7	442	835	145	136	554
8	463	875	151	136	588
9	552	1050	173	161	716
10	630	1200	211	226	763
12	654	1248	211	242	795
13	664	1268	219	244	805
14	785	1509	248	264	997
15	930	1794	325	281	1188
16	1081	2096	353	319	1424
17	1210	2353	387	347	1619
18	1756	3439	583	479	2377
19	1896	3718	617	551	2550
20	2828	5560	919	782	3859
21	3089	6067	1054	854	4159
22	3809	7499	1284	1082	5133
23	4736	9343	1651	1274	6418
24	6585	13018	2225	1676	9117
25	7232	14302	2513	1894	9895

Tabla 8: Experimento 2. Grados de Libertad y número de elementos en las mallas obtenidas con $\eta_{T,p}$, para p = 1.25 y $\boldsymbol{x}_0 = (0.012634, 0.8696)$.

	Punto 1		Punto 2		Punto 3		Punto 4	
Malla	Valor	Error	Valor	Error	Valor	Error	Valor	Error
1	-1.0959	1.2927	11.4789	10.3806	5.4303	5.2347	-1.7072	1.7623
2	2.9269	2.7301	-12.3802	13.4785	-7.8560	8.0516	3.1452	3.0901
3	2.7167	2.5199	-11.4450	12.5433	-7.3315	7.5271	2.9211	2.8660
4	0.1536	0.0432	1.0496	0.0487	0.2096	0.0140	0.0335	0.0216
5	0.2263	0.0295	0.4609	0.6374	-0.0723	0.2679	0.1292	0.0741
6	0.2146	0.0178	0.5224	0.5759	-0.0375	0.2331	0.1158	0.0607
7	1.0409	0.8441	-4.1811	5.2794	-2.6263	2.8219	1.0767	1.0216
8	1.0382	0.8414	-4.1998	5.2981	-2.6265	2.8221	1.0754	1.0203
9	-1.4701	1.6669	11.6927	10.5944	5.7643	5.5687	-1.9569	2.0120
10	-0.6230	0.8198	-1.0232	2.1215	0.2248	0.0292	-0.3641	0.4192
11	-0.5342	0.7310	6.0547	4.9564	2.6913	2.4957	-0.8387	0.8938
12	0.1223	0.0745	2.0604	0.9621	0.6091	0.4135	-0.0671	0.1222
13	0.1221	0.0747	2.0625	0.9642	0.6097	0.4141	-0.0674	0.1225
14	0.3237	0.1269	0.1198	0.9785	-0.2904	0.4860	0.2242	0.1691
15	0.3332	0.1364	0.0521	1.0462	-0.3228	0.5184	0.2358	0.1807
16	0.2370	0.0402	0.7335	0.3648	0.0186	0.1770	0.1151	0.0600
17	0.2207	0.0239	0.8310	0.2673	0.0706	0.1250	0.0960	0.0409
18	0.1785	0.0183	1.2374	0.1391	0.2655	0.0699	0.0315	0.0236
19	0.1874	0.0094	1.1202	0.0219	0.2155	0.0199	0.0468	0.0083
20	0.1847	0.0121	1.1440	0.0457	0.2260	0.0304	0.0434	0.0117
21	0.1765	0.0203	1.2259	0.1276	0.2638	0.0682	0.0311	0.0240
22	0.2012	0.0044	1.0578	0.0405	0.1766	0.0190	0.0621	0.0070
23	0.1997	0.0029	1.0707	0.0276	0.1837	0.0119	0.0597	0.0046
24	0.1961	0.0007	1.0975	0.0008	0.1960	0.0004	0.0550	0.0001
25	0.1961	0.0007	1.0980	0.0003	0.1960	0.0004	0.0550	0.0001

Tabla 9: Experimento 2. Valores calculados y errores puntuales en mallas refinadas adaptativamente para $x_0 = (0.012634, 0.8696)$.

Recordemos que al resolver este mismo problema con el Método de Sustracción en mallas uniformes, se obtuvieron los resultados de la Tabla 3, que muestran que el método no converge en absoluto, aún en mallas de más de 160.000 grados de libertad.

A continuación se muestran algunos gráficos de las curvas de error para los valores calculados en los mismos puntos de la Tabla 1, y considerando los valores exactos que en ella se muestran.

Figura 12: Experimento 2. Error en el punto (-1, -0.75).

Figura 13: Experimento 2. Error en el punto (-0.75, 1).

Figura 14: Experimento 2. Error en el punto (1, 0.75).

Figura 15: Experimento 2. Error en el punto (0.25, -1).

De estas últimas 4 figuras podemos observar que si bien el comportamiento no es monótono, las curvas tienen una tendencia decreciente a medida que crece el número de grados de libertad, lo cual permite concluir que el Método de Sustracción con refinamiento adaptativo permite obtener buenos resultados, aún cuando la posición del dipolo x_0 se encuentre muy cerca de una interfaz (caso en el cual el mismo método con mallas uniformes falla totalmente).

6.2. Problema Inverso.

Los siguientes experimentos tienen por objetivo evaluar dos estrategias para la resolución del problema inverso. Como se mencionó en la Sección 5, el problema inverso tiene asociado un problema de minimización, el cual resolveremos usando el *Algoritmo de Recocido Simulado* (*Simulated Annealing* en inglés), que ya está implementado en MATLAB, y corresponde al comando simulannealbnd.

El algoritmo de resolución del problema inverso funciona, en general, de la siguiente manera: a partir de una malla inicial grosera y una posición $\boldsymbol{x} \in \Omega_3$ aleatoria, mediante *Simulated Annealing* se calcula el \boldsymbol{x}^* que minimiza (5.4). Luego, la primera aproximación \boldsymbol{x}_1 de la posición exacta \boldsymbol{x}_0 es \boldsymbol{x}^* , y la primera aproximación \boldsymbol{q}_1 de la polarización exacta \boldsymbol{p} corresponde a la solución de (5.3), para $\boldsymbol{x} = \boldsymbol{x}_1$. Posteriormente, se refina la malla y se vuelve a resolver el problema de minimización comenzando esta vez con \boldsymbol{x}_1 y se repite el procedimiento anterior, para obtener \boldsymbol{x}_2 y \boldsymbol{q}_2 . Este proceso se itera hasta satisfacer algún criterio de detención.

Las dos estrategias que se quieren evaluar siguen el algoritmo anterior, pero difieren en la forma de hacer el refinamiento.

Por un lado, usamos la estrategia de refinamiento uniforme, la cual consiste simplemente en usar las mallas de la Tabla 2, comenzando con la primera de ellas, y avanzando a la siguiente malla en cada iteración.

Por otro lado, a fin de usar la estrategia de refinamiento adaptativo, una vez conocidos x_i y q_i en la iteración *i*-ésima, se resuelve el problema (2.2) mediante el Método de Sustracción, considerando $x_0 = x_i$ y $p = q_i$, y realizando 4 refinamientos adaptativos en base al indicador $\eta_{T,p}$ definido en (4.1). La última malla obtenida en esta iteración será la malla usada para resolver nuevamente el problema de minimización, y será también la malla inicial para el proceso adaptativo de la iteración siguiente.

Para todos los siguientes experimentos, el vector de polarización exacto es $\boldsymbol{p} = (-0.2425, 0.9701)$, y la localización \boldsymbol{x}_0 cambia de acuerdo al experimento realizado. Tanto el dominio Ω como la conductividad $\boldsymbol{\sigma}$ siguen siendo los mismos que en los experimentos anteriores.

En lo que sigue, denotaremos por x y q a las aproximaciones de las soluciones exactas x_0 y p, respectivamente.

Experimento 3: Consideramos el caso en que la posición exacta del dipolo es $x_0 = (0.012634, 0.81)$, que está ubicado a 0.6 del salto de conductividad más cercano. En la siguientes Tablas se muestran los resultados obtenidos al resolver el problema con mallas uniformes y mallas

refinadas adaptativamente.

Iter.	Grados de Libertad	x	$\ oldsymbol{x}-oldsymbol{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0544, 0.8185)	0.0426	(-0.2575, 1.2989)	0.3291
2	638	(0.0535, 0.8142)	0.0410	(-0.2571, 1.2335)	0.2638
3	1271	(0.0141, 0.8118)	0.0024	(-0.2424, 0.9893)	0.0191
4	2602	(0.0133, 0.8037)	0.0064	(-0.2443, 0.9762)	0.0064
5	5128	(0.0127, 0.8071)	0.0029	(-0.2433, 0.9722)	0.0022
6	10330	(0.0128, 0.8089)	0.0011	(-0.2429, 0.9711)	0.0010
7	20434	(0.0127, 0.8100)	0.0001	(-0.2426, 0.9711)	0.0009

Tabla 10: Experimento 3. Aproximaciones de $\boldsymbol{x}_0 = (0.012634, 0.81)$ y $\boldsymbol{p} = (-0.2425, 0.9701)$ en mallas uniformes.

Iter.	Grados de Libertad	\boldsymbol{x}	$\ m{x} - m{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0542, 0.8179)	0.0423	(-0.2576, 1.2923)	0.3225
2	506	(0.0100, 0.8022)	0.0082	(-0.2442, 0.9676)	0.0030
3	883	(0.0120, 0.8087)	0.0014	(-0.2433, 0.9791)	0.0090
4	2195	(0.0126, 0.8087)	0.0013	(-0.2437, 0.9735)	0.0036
5	5935	(0.0126, 0.8087)	0.0013	(-0.2431, 0.9720)	0.0019
6	11331	(0.0126, 0.8094)	0.0006	(-0.2426, 0.9714)	0.0012
7	21132	(0.0126, 0.8094)	0.0006	(-0.2427, 0.9709)	0.0008

Tabla 11: Experimento 3. Aproximaciones de $x_0 = (0.012634, 0.81)$ y p = (-0.2425, 0.9701) en mallas refinadas adaptativamente.

Para ver más claro el comportamiento de los errores y poder comparar ambas estrategias, mostramos a continuación grafícas de los errores versus los grados de libertad.

Figura 16: Experimento 3. Curvas de error.

Observamos que en mallas más groseras la estrategia de refinamiento adaptativo permite obtener mejores resultados. Sin embargo, a medida que las mallas se hacen más finas, ambas estrategias se equiparan, e incluso el refinamiento uniforme llega a ser mejor que el refinamiento adaptativo, aunque en esos casos los valores obtenidos con la estrategia de refinamiento adaptativo siguen siendo bastante aceptables.

En los siguientes experimentos analizamos los resultados al resolver el problema inverso considerando 2 posiciones del dipolo x_0 , ambas dentro de Ω_3 , y acercándose cada vez más a la interfaz con Ω_2 . Luego de presentar los resultados de los experimentos se discutirán las conclusiones que surgen de los mismos.

Experimento 4: Consideramos el caso en que las mediciones han sido generadas considerando $x_0 = (0.012634, 0.85)$, ubicado a 0.2 de la interfaz con Ω_2 . Las tablas siguientes muestran los resultados obtenidos usando refinamiento uniforme y adaptativo, respectivamente.

Iter.	Grados de Libertad	x	$\ m{x} - m{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0620, 0.8319)	0.0525	(-0.2819, 0.9930)	0.0455
2	638	(0.0620, 0.8319)	0.0525	(-0.2815, 1.0012)	0.0498
3	1271	(0.0120, 0.8505)	0.0008	(-0.2314, 0.7461)	0.2243
4	2602	(0.0212, 0.8404)	0.0129	(-0.2525, 1.1230)	0.1532
5	5128	(0.0139, 0.8457)	0.0045	(-0.2443, 0.9936)	0.0235
6	10330	(0.0126, 0.8483)	0.0017	(-0.2441, 0.9842)	0.0141
7	20434	(0.0126, 0.8503)	0.0003	(-0.2427, 0.9736)	0.0035

Tabla 12: Experimento 4. Aproximaciones de $x_0 = (0.012634, 0.85)$ y p = (-0.2425, 0.9701) en mallas uniformes.

Iter.	Grados de Libertad	\boldsymbol{x}	$\ m{x} - m{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0620, 0.8319)	0.0525	(-0.2819, 0.9930)	0.0455
2	426	(0.0158, 0.8363)	0.0140	(-0.2482, 0.9846)	0.0156
3	762	(0.0120, 0.8474)	0.0027	(-0.2434, 0.9747)	0.0046
4	1950	(0.0132, 0.8482)	0.0019	(-0.2440, 0.9720)	0.0024
5	4909	(0.0125, 0.8491)	0.0009	(-0.2432, 0.9702)	0.0007
6	9279	(0.0126, 0.8492)	0.0008	(-0.2430, 0.9720)	0.0019
7	19297	(0.0127, 0.8497)	0.0003	(-0.2428, 0.9711)	0.0010

Tabla 13: Experimento 4. Aproximaciones de $x_0 = (0.012634, 0.85)$ y p = (-0.2425, 0.9701) en mallas refinadas adaptativamente.

A continuación presentamos los gráficos de los errores.

Figura 17: Experimento 4. Curvas de error.

Experimento 5: Consideramos ahora el caso en que $x_0 = (0.012634, 0.86)$, ubicado a 0.1 de la interfaz con Ω_2 . En las siguientes tablas se muestran las aproximaciones calculadas.

Iter.	Grados de Libertad	\boldsymbol{x}	$\ m{x} - m{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0138, 0.8499)	0.0102	(-0.2519, 0.0810)	0.8892
2	638	(0.0639, 0.8353)	0.0569	(-0.2939, 0.8329)	0.1465
3	1271	(0.0147, 0.8550)	0.0054	(-0.2249, 0.6303)	0.3403
4	2602	(0.0038, 0.8492)	0.0140	(-0.2472, 0.8920)	0.0783
5	5128	(-0.0422, 0.8671)	0.0553	(0.0895, -0.9737)	1.9720
6	10330	(0.0150, 0.8587)	0.0027	(-0.2639, 1.2217)	0.2524
7	20434	(0.0026, 0.8640)	0.0108	(-0.2573, 1.3077)	0.3378

Tabla 14: Experimento 5. Aproximaciones de $x_0 = (0.012634, 0.86)$ y p = (-0.2425, 0.9701) en mallas uniformes.

Iter.	Grados de Libertad	x	$\ m{x} - m{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0137, 0.8499)	0.0102	(-0.2518, 0.0815)	0.8886
2	457	(0.0131, 0.8443)	0.0157	(-0.2482, 0.9723)	0.0060
3	1048	(0.0105, 0.8570)	0.0037	(-0.2436, 0.9673)	0.0031
4	2133	(0.0110, 0.8573)	0.0032	(-0.2437, 0.9669)	0.0034
5	5141	(0.0117, 0.8582)	0.0020	(-0.2444, 0.9755)	0.0056
6	10405	(0.0117, 0.8590)	0.0014	(-0.2440, 0.9749)	0.0049
7	18469	(0.0117, 0.8592)	0.0012	(-0.2439, 0.9739)	0.0040

Tabla 15: Experimento 5. Aproximaciones de $x_0 = (0.012634, 0.86)$ y p = (-0.2425, 0.9701) en mallas refinadas adaptativamente.

Los gráficos de las curvas de error son las siguientes:

Figura 18: Experimento 5. Curvas de error.

De estos últimos dos experimentos podemos concluir que al acercar la posición del dipolo a un cambio de región, la estrategia de refinamiento uniforme entrega cada vez peores resultados, sobre todo para la polarización p, que en el último caso no muestra convergencia, y en los casos en que muestra una tendencia decreciente, es bastante inestable.

A su vez, la estrategia de refinamiento adaptativo permite obtener mejores resultados, aun cuando la posición del dipolo está cerca del cambio de región, y a diferencia del refinamiento uniforme, las curvas de error son bastante monótonas, y muestran una clara tendencia decreciente, lo cual permite concluir que la estrategia de refinamiento adaptativo es una buena herramienta para resolver el problema inverso y obtener buenos resultados numéricos.

Experimento 6: No debemos olvidar que el problema inverso se resuelve a partir de mediciones obtenidas a través de instrumentos altamente especializados. Como es de esperar, el avance de la tecnología en el último tiempo permite obtener mediciones con un alto grado de precisión, pero éstas siempre contienen algún margen de error. Por esta razón, es importante estudiar qué ocurre con la solución obtenida al resolver el problema inverso usando la estrategia de refinamiento adaptativo, cuando se añade un ruido aleatorio a los datos. Para ello, hemos repetido tres veces el experimento anterior, sólo para el caso de refinamiento adaptativo, pero con mediciones perturbadas por errores uniformemente distribuidos, de a lo más un 10%, 1% y 0.1% del mayor valor de los datos. Los resultados obtenidos se muestran en las siguientes tablas. 1. Datos con $10\,\%$ de ruido.

Iter.	Grados de Libertad	x	$\ oldsymbol{x}-oldsymbol{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(-0.0425, 0.7769)	0.0997	(-0.2347, 1.0814)	0.1115
2	490	(-0.0043, 0.8206)	0.0429	(-0.2423, 1.0050)	0.0348
3	908	(-0.0322, 0.8700)	0.0460	(-0.1600, -0.0077)	0.9814
4	952	(0.0995, 0.8518)	0.0872	(-0.3313, 0.7288)	0.2571
5	1152	(0.0128, 0.8519)	0.0081	(-0.2473, 1.0854)	0.1153
6	1569	(0.0658, 0.8306)	0.0607	(-0.2719, 1.0152)	0.0537
7	3256	(0.0527, 0.8647)	0.0403	(-0.2395, 0.8874)	0.0828

Tabla 16: Resultados Experimento 6, considerando ruido del 10%. Los soluciones exactas son $\boldsymbol{x}_0 = (0.012634, 0.86)$ y $\boldsymbol{p} = (-0.2425, 0.9701).$

2. Datos con 1 % de ruido.

Iter.	Grados de Libertad	x	$\ x - x_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0659, 0.8413)	0.0565	(-0.3070, 0.6712)	0.3059
2	424	(-0.0303, 0.8700)	0.0441	(-0.0724, -0.1528)	1.1357
3	494	(0.0078, 0.8697)	0.0108	(-0.2385, 0.3882)	0.5820
4	573	(0.0078, 0.8697)	0.0108	(-0.2543, 0.3008)	0.6694
5	746	(0.0076, 0.8530)	0.0086	(-0.2409, 0.9781)	0.0081
6	1531	(0.0144, 0.8556)	0.0048	(-0.2439, 0.9758)	0.0058
7	3847	(0.0189, 0.8618)	0.0066	(-0.2512, 0.9653)	0.0099

Tabla 17: Resultados Experimento 6, considerando ruido del 1%. Las soluciones exactas son $x_0 = (0.012634, 0.86)$ y p = (-0.2425, 0.9701).

3. Datos con $0.1\,\%$ de ruido.

Iter.	Grados de Libertad	x	$\ oldsymbol{x}-oldsymbol{x}_0\ _2$	q	$\ oldsymbol{q}-oldsymbol{p}\ _2$
1	362	(0.0632, 0.8350)	0.0564	(-0.2905, 0.9092)	0.0776
2	428	(-0.0406, 0.8657)	0.0535	(-0.1788, 0.1813)	0.7914
3	489	(-0.0115, 0.8603)	0.0241	(-0.2359, 0.7824)	0.1879
4	714	(0.0080, 0.8568)	0.0056	(-0.2447, 1.0605)	0.0904
5	1536	(0.0136, 0.8595)	0.0011	(-0.2453, 0.9570)	0.0135
6	3515	(0.0123, 0.8578)	0.0022	(-0.2452, 0.9737)	0.0045
7	6272	(0.0115, 0.8593)	0.0013	(-0.2440, 0.9738)	0.0039

Tabla 18: Resultados Experimento 6, considerando ruido del 0.1 %. Las soluciones exactas son $\boldsymbol{x}_0 = (0.012634, 0.86)$ y $\boldsymbol{p} = (-0.2425, 0.9701)$.

Ahora presentamos las curvas de error de los tres casos anteriores y también la del caso sin ruido, a fin de comparar los resultados obtenidos.

Figura 19: Errores al calcular $\boldsymbol{x}_0 = (0.012634, 0.86)$, considerando datos con diferentes porcentajes de ruido.

Figura 20: Errores al calcular p = (-0.2425, 0.9701), considerando datos con diferentes porcentajes de ruido.

Como se puede ver, en ambos casos la curva más inestable es la correspondiente al ruido del 10%, la cual no muestra convergencia de los valores calculados.

Por otro lado, observamos que en el caso de x_0 , las restantes 3 curvas muestran una clara tendencia decreciente, e incluso la curva correspondiente al 0.1 % tiene valores más bajos que la curva del caso sin ruido. Esto se debe a que el algoritmo tiene una componente aleatoria, ya que el punto de partida para el proceso de minimización es escogido al azar.

A su vez, en el caso del vector \boldsymbol{p} , la curva asociada al 1% de ruido muestra el mismo comportamiento que el error sin ruido. Sin embargo, la curva de error asociada al 0.1% de ruido es más monótona, y alcanza practicamente los mismos valores que la curva del error sin ruido.

7. Conclusiones

Del trabajo realizado y de los resultados obtenidos podemos concluir que:

- 1. La solución del problema (2.2) obtenida mediante el Método de Sustracción es altamente sensible a la ubicación del dipolo, ya que si ésta es muy cercana a un salto de conductividad, la solución numérica puede presentar grandes errores, tal como se observó en el experimento de la Sección 2.
- 2. La resolución del problema (2.6) mediante un proceso adaptativo permite obtener resultados precisos independientemente de la posición del dipolo. En algunos casos, el procedimiento adaptativo resulta ser indispensable si se quiere obtener resultados precisos a un bajo costo computacional (fuentes cercanas a saltos de conductividad), mientras que en otros casos se pueden lograr resultados bastante precisos usando mallas uniformes (fuentes ubicadas lejos de saltos de conductividad).
- 3. Observamos también que los valores obtenidos al resolver el problema inverso tienen un comportamiento similar a los obtenidos al resolver el problema directo, en el sentido que podemos obtener resultados similares usando mallas uniformes o refinadas adaptativamente, cuando la posición de la fuente se encuentra lejos de algún salto de conductividad. A medida que la posición del dipolo (a priori desconocida) se acerca a un cambio de región, los resultados numéricos comienzan a perder precisión, y es ahí donde la estrategia de refinamiento adaptativo cobra real importancia en comparación con el refinamiento uniforme. Esto se observa especialmente en las aproximaciones del vector de polarización.
- 4. Por último, como el algoritmo de resolución del problema inverso comienza con una posición inicial totalmente aleatoria, podemos obtener soluciones levemente diferentes al resolver el mismo problema en dos o más ocasiones. En ese sentido, al añadir un pequeño porcentaje de ruido (por ejemplo, un 0.1%) a los datos, los resultados obtenidos no son muy diferentes al caso sin ruido, pues el mismo algoritmo ya tiene una componente aleatoria. Diferente es cuando se añade un porcentaje mayor de ruido a los datos. Las evidencias numéricas muestran que, si bien con un porcentaje de ruido del 1% los resultados del problema inverso son aún aceptables, con un ruido del 10% la convergencia se deteriora considerablemente, y no se observa que los valores obtenidos se aproximen a las soluciones exactas.

Referencias

- A. ALONSO, J. CAMAÑO, R. RODRÍGUEZ & A. VALLI, A posteriori error estimates for the problem of electrostatics with a dipole source, Preprint DIM 2013-07, Universidad de Concepción.
- [2] R. ARAYA, E. BEHRENS & R. RODRÍGUEZ, A posteriori error estimates for elliptic problems with Dirac delta source terms, Numer. Math., 105 (2006), pp. 193-216.
- [3] S. C. BRENNER & L. R. SCOTT, The Mathematical Theory of Finite Element Methods, Springer, New York, third ed., 2008.
- [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [5] M. DAUGE, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Operator Theory, 15 (1992), pp. 227-261.
- [6] P. MONK, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003.
- [7] A. VALLI, Solving an electrostatics-like problems with a current dipole source by means of the duality method, Appl. Math. Lett., 25(10), 1410-1414 (2012).
- [8] C. H. WOLTERS, H. KÖSTLER, C. MÖLLER, J, HÄRDTLEIN, L. GRASEDYCK & W. HACKBUSCH, Numerical mathematics of the substraction method for the modeling of a current dipole in EEG source reconstruction using finite element head models, SIAM J. Sci. Comput., vol. 30, 1, pp. 24-45 (2007).