CI²MA - Publications | Preprints

Preprint 2015-12

Raimund Bürger, Christophe Chalons, Luis M. Villada:

On second-order antidiffusive Lagrangian-remap schemes for multispecies kinematic flow models

Abstract:

This paper focuses on the numerical approximation of the solutions of multi-species kinematic flow models. These models are strongly coupled nonlinear first-order conservation laws with various applications like sedimentation of a polydisperse suspension in a viscous fluid, or traffic flow modeling. Since the eigenvalues and eigenvectors of the corresponding flux Jacobian matrix have no closed algebraic form, this is a challenging issue. A new class of simple schemes based on a Lagrangian-Eulerian decomposition (the so-called Lagrangian-remap (LR) schemes) was recently advanced in [R. Bürger, C. Chalons, L.M. Villada, SIAM J. Sci. Comput. 35 (2013) B1341-B1368] for traffic flow models with nonnegative velocities, and extended to models of polydisperse sedimentation in [R. Bürger, C. Chalons, L.M. Villada; submitted (2015)]. These schemes are supported by a partial numerical analysis when one species is considered only, and turned out to be competitive in both accuracy and efficiency with several existing schemes. Since they are only first-order accurate, it is the purpose of this contribution to propose an extension to second-order accuracy using quite standard MUSCL and Runge-Kutta techniques. Numerical illustrations are proposed for both applications and involving eleven species (sedimentation) and nine species (traffic) respectively.

Download in PDF format PDF

This preprint gave rise to the following definitive publication(s):

Raimund BüRGER, Christophe CHALONS, Luis M. VILLADA: On second-order antidiffusive Lagrangian-remap schemes for multispecies kinematic flow models. Bulletin of the Brazilian Mathematical Society, (New Series), vol. 47, 1, pp. 187-200, (2016).

 

 

  CI²MA, CENTER FOR RESEARCH IN MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN - MAILBOX 160-C, CONCEPCIÓN, CHILE, PHONE: +56-41-2661324