Preprint 2016-01
Daniele Boffi, Lucia Gastaldi, Rodolfo Rodríguez, Ivana Sebestova:
Residual-based a posteriori error estimation for the Maxwell eigenvalue problem
Abstract:
We present an a posteriori estimator of the error in the L2-norm for the numerical approximation of the Maxwell eigenvalue problem by means of Nedelec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the L2-orthogonal projection of the exact eigenfunction onto the curl of the Nedelec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.
This preprint gave rise to the following definitive publication(s):
Daniele BOFFI, Lucia GASTALDI, Rodolfo RODRíGUEZ, Ivana SEBESTOVA: Residual-based a posteriori error estimation for the Maxwell eigenvalue problem. IMA Journal of Numerical Analysis, vol. 37, 4, pp. 1710-1732, (2017).