CI²MA - Publications | Preprints

Preprint 2016-01

Daniele Boffi, Lucia Gastaldi, Rodolfo Rodríguez, Ivana Sebestova:

Residual-based a posteriori error estimation for the Maxwell eigenvalue problem

Abstract:

We present an a posteriori estimator of the error in the L2-norm for the numerical approximation of the Maxwell eigenvalue problem by means of Nedelec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the L2-orthogonal projection of the exact eigenfunction onto the curl of the Nedelec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.

Download in PDF format PDF

This preprint gave rise to the following definitive publication(s):

Daniele BOFFI, Lucia GASTALDI, Rodolfo RODRíGUEZ, Ivana SEBESTOVA: Residual-based a posteriori error estimation for the Maxwell eigenvalue problem. IMA Journal of Numerical Analysis, vol. 37, 4, pp. 1710-1732, (2017).

 

 

  CI²MA, CENTER FOR RESEARCH IN MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN - MAILBOX 160-C, CONCEPCIÓN, CHILE, PHONE: +56-41-2661324