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Abstract

We are interested to study the variable coe�cient Burgers' equation

ut + f(x, t)uux + g(x, t)uxx = h(x, t)

focusing on Runge-Kutta second order schemes using Oliver's approach [3]. We want to to im-
prove the accuracy of these schemes in the �eld of nonautonomous systems. The approach does
not demand Ae = c in the Butcher tableau (A,b, c), where e = (1, . . . , 1)T . We extendend
the second order generalized BBKS schemes de�ned in [1], considering di�erent powers for the
gradient modi�er term depending on the negative terms in each stage of the RK schemes. Fol-
lowing the general analysis of MPRK schemes described in [2], positivity and mass conservation
fundamental properties are proven and even conditions concerning the Patankar weights are
given to get second order accuracy.

This presentation is based on joint research with Javier G. González, Universidad Central
del Ecuador, Quito, Ecuador
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Abstract
Multispecies kinematic flow models are defined by systems of N strongly coupled, nonlinear

first-order conservation laws, where the solution is a vector of N partial volume fractions or
densities. These models arise in various applications including multiclass vehicular traffic and
sedimentation of polydisperse suspensions. The solution vector should take values in a set of
physically relevant values (i.e., the components are nonnegative and sum up at most to a given
maximum value). It is demonstrated that this set, the so-called invariant region, is preserved
by numerical solutions produced by a new family of high-order finite volume numerical schemes
adapted to this class of models. To achieve this property, and motivated by [3], a pair of
linear scaling limiters is applied to a high-order central weighted essentially non-oscillatory
(CWENO) polynomial reconstruction [2] to obtain invariant-region-preserving (IRP) high-order
polynomial reconstructions. These reconstructions are combined with a local Lax-Friedrichs
(LLF) or Harten-Lax-van Leer (HLL) numerical flux to obtain a high-order numerical scheme
for the system of conservation laws. It is proved that this scheme satisfies an IRP property under
a suitable Courant-Friedrichs-Lewy (CFL) condition. The theoretical analysis is corroborated
with numerical simulations for models of multiclass traffic flow and polydisperse sedimentation.

This presentation is based on a joint work with Raimund Bürger (Universidad de Concepción,
Chile), Pep Mulet (Universitat de València, Spain) and Luis Miguel Villada (Universidad del
Bío-Bío, Chile).
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Abstract

This contribution is a survey on recent advances on the formulation, mathematical analysis,
and numerical solution for models of solid-liquid or liquid gas multiphase flows in applications of
mineral processing and wastewater treatment. These include batch and continuous sedimenta-
tion, countercurrent decantation, column flotation, and reactive settling. The models are based
on balance equations of continuum mechanics followed by a dimensional analysis and further
simplifications, and can in the widest sense be formulated as convection-diffusion-reaction partial
differential equations. Typically, the sought unknowns are the volume fractions of components
of a disperse phase that may either segregate and form areas of different composition (such
as particles in a polydisperse suspensions that differ in size or density) or undergo reactions
with other components (as occurs in reactive settling involving particles of biomass and various
nutrients dissolved in the liquid). A characteristic property of most of the models developed
is the reduction to one space dimension (aligned with gravity) and to a finite domain, as typ-
ical for unit operations. The latter restriction calls for the expression of boundary conditions
by discontinuities of the governing flux, as well as the description of inlets through singular
source terms. Some specific applications, and their respective main mathematical challenges
that will be addressed include (1) batch and continuous sedimentation of flocculated suspen-
sions in clarifier-thickeners, which are described by a conservation law with discontinuous flux
and strongly degenerating diffusion term [8]; (2) polydisperse suspensions modelled first-order
systems of conservation laws of arbitrary size for which results of hyperbolicity analysis [7, 9]
have recently led to the formulation of invariant-region-preserving high-order WENO schemes
[2, 10, 11, 12]; (3) models of reactive settling in wastewater treatment in secondary settling
tanks (SSTs) and sequencing batch reactors (SBRs) that incorporate reaction terms and in the
case of SBRs, call for incorporating moving boundaries [1, 4]; (4) models of froth flotation in
columns that involve bubbles and particles and that are defined by systems of conservation laws
with discontinuous flux, degenerate diffusion and triangular structure [5, 6]; and (5) settling
with convection in an inclined channel described by a coupled flow-transport model [3].

This presentation is based on joint research with Fernando Betancourt and Lucas Romero
(UdeC), Stefan Diehl (Lund University, Sweden), Juan Barajas-Calonge, Julio Careaga and Luis
Miguel Villada (Universidad del Bío-Bío, Concepción), Pep Mulet and María del Carmen Martí
(Universitat de València, Spain), and Yolanda Vásquez (Universidad Tecnológica de Panamá).
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de Modelamiento Matemático (CMM; BASAL project FB210005), and CRHIAM, projects ANID/Fondap/15130015
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Abstract

In this presentation we show a flux vector splitting approach to solve the shallow water
equation in one and two spatial dimensions. The original ideas came from the work of Toro
and Vázquez applied to the Euler equations [3]. The approach split the full system in two
process called the advection and the pressure system and has been implemented to solve the
Euler system with general equation of state[4], the Baer-Nunziato multiphase models [2] and
shallow water equations [6] [1] [5] between others. The strategy originally developed for the
Euler system does not apply directly to the Shallow Water system therefore a slightly different
technique is used here.

After splitting the conservative flux into an advection and pressure flux (pressure flux name
remains from Euler system) we construct a Riemann solver of the pressure system. This Riemann
solver can be computed exactly with an inexpensive iterative process or approximately following
a two rarefaction assumption for example. With this information the advection flux can be
selected producing an exceedingly simple first order Godunov upwind method.

The presented scheme can be used as a building block for a high order numerical method.
We use it in the framework of a Finite Volume high order ADER schemes on two dimension
unstructured meshes.

We asses the numerical scheme on a suit of test problems with reference solution in one and
two dimensions. For one dimension problems we consider classical initial value problems with
exact solution and steady state solutions for transcritical flow over a bed bump. In two space
dimensions we consider convergence problems with artificial source term, radially symmetric
dam break problems and tsunami wave propagation in realistic bathymetry scenarios.

This presentation is based on joint research with Eleuterio F. Toro (Uni. Trento), Davide
Vanzo (ETH Zurich) and Annunziato Siviglia (Uni. Trento).
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1 Classifying acoustic cavitation with machine
learning trained on multiple physical models

Acoustic cavitation refers to the formation and oscillation of microbubbles in a
liquid exposed to acoustic waves. Depending on the properties of the liquid and
the parameters of the acoustic waves, bubbles behave differently. The two main
regimes of bubble dynamics are transient cavitation, where a bubble collapses
violently, and stable cavitation, where a bubble undergoes periodic oscillations.
Predicting these regimes under specific sonication conditions is important in
biomedical ultrasound and sonochemistry. For these predictions to be helpful
in practical settings, they must be precise and computationally efficient. In
this study, we have used machine learning techniques to predict the cavitation
regimes of air bubble nuclei in a liquid. The supervised machine learning was
trained by solving three differential equations for bubble dynamics, namely the
Rayleigh-Plesset, Keller-Miksis, and Gilmore equations. These equations were
solved for a range of initial parameters, including temperature, bubble radius,
acoustic pressure, and frequency. Four different classifiers were developed to
label each simulation as either stable or transient cavitation. Subsequently, four
different machine-learning strategies were designed to analyze the likelihood of
transient or stable cavitation for a given set of acoustic and material parameters.
Cross-validation on held-out test data shows a high accuracy of the machine
learning predictions. The results indicate that machine learning models trained
on physics-based simulations can reliably predict cavitation behavior across a
wide range of conditions relevant to real-world applications. This approach
can be employed to optimize device settings and protocols used in imaging,
therapeutic ultrasound, and sonochemistry.
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Abstract
The Shallow Water equations together with a mass balance law for the sediment bed load

(Exner equation) forms the Saint Venant equations, of great utility in many areas such as fluid
dynamics, hydraulic, geomorphology, environmental engineering, among others. The resulting
systems of balance laws are hyperbolic with non-conservative terms [4][5], therefore it is inter-
esting to develop appropiate high order schemes to solve and simulate the evolution of these
flows accurately and eficiently. Furthermore, we are interested on schemes able to capture dis-
continuities and wave propagation. Nonlinear reconstructions play a key rol in the development
of high order numerical methods, in particular the ENO type nonlinear interpolation methods
and its variants. In this work, we will explore the novel ENO-ET nonlinear interpolation [1][2]
and its application to shallow water flows in conjunction with high order numerical schemes of
ADER type [3] to solve the Saint Venant Exner system, and study possible extensions to two
dimensions.
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Modelling biofilm in slow sand filters: one- and
two-dimensional models

Jaime Manríquez ∗

Centre for Mathematical Sciences
LTH Faculty of Engineering, Lund University

Abstract

This presentation will consist of a brief overview of recent work on modelling slow sand
filtration systems for drinking water treatment, with an emphasis on the physical modelling and
some discussion on the numerical difficulties of the resulting equations.

In [2], a one-dimensional multi-phase model for the evolution of slow sand filters was intro-
duced, with an emphasis on the growth of the biofilm volume fraction ϕb. The model consists of
mass balances on a domain comprised of a supernatant water region (depth z < 0) on top of a
sand bed (depth z > 0). The biofilm velocity vb presents a spatial discontinuity at depth z = 0.
In the sand bed, vb is assumed to be 0, whereas in the supernatant water it is understood as the
flux of a Cahn–Hilliard type equation with vb = vb(∂

3
zϕb, ∂zϕb). In order to preserve positivity,

a finite-difference discretization is used for the Cahn–Hilliard system coupled with an upwind
scheme for which a CFL condition could be derived.

Recently, [1] introduced a positivity-preserving discontinuous Galerkin scheme for the ho-
mogeneous convective Cahn–Hilliard equation. Using this work as a basis, we are interested in
developing two-dimensional positivity-preserving schemes for solving the mass balances mod-
elling the growth of biofilm purely in the supernatant water.

This presentation is based on joint research with Stefan Diehl and Julio Careaga.
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A universal scheme for hyperbolic PDE in both
conservative and non-conservative form

Gino I. Montecinos∗
Departamento de Ingeniería Matemática
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Abstract

One dimensional partial differential equations of hyperbolic type have a wide range of ap-
plications, they normally describe propagation phenomena where physical constitutive laws are
involved. Even these laws are based on conservation of physical quantities as momentum or
mass, derived model can be non-conservative in the sense of [1], where no physical flux can be
identified as an inverse operator of product between sate variables. On the other hand, con-
servative systems are desirable from theoretical and numerical issues, for instance properties
as entropy, well balance and stability are mainly associated to conservative formulations. The
method of path conservative proposed by Parés in [2], allows to define weak solution and a no-
tion of entropy which allows to extend the definition of Riemann problems to non-conservative
systems.

Riemann problems are the key to build the family of high-order finite volume schemes named
ADER [3, 4]. In which the combination of non-linear interpolations, called reconstructions and
the solver of Riemann problems allows a high-order approximation of fluxes at cell interfaces
and the computation of source terms, if present.

We are interested on finite volume schemes able to solve accurately non-conservative systems.
Furthermore, we are looking for a scheme which can be employed to solve conservative models
expressed as quasilinear form, in such a case the system must reproduce an equivalent flux at cell
interfaces, without any modification of the code, this is the so called universal property. This
is achieved by the use of the path conservative strategy in the frame of the ADER approach,
as reported in [6]. The resulting scheme can solve efficiently, hyperbolic balance laws in both
conservative and non-conservative form. Furthermore, this verifies the well-balanced property
and an empirical convergence rate assessment shows that the expected theoretical orders of
accuracy are achieved up to the fifth order.
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Numerical methods for the compressible
Cahn-Hilliard-Navier-Stokes equations

Pep Mulet ∗
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Abstract
In [5] D. Siano reports a layering phenomenon in experiments of sedimentations of monodis-

perse colloidal particles and conjectures that a spinodal decomposition, governed by the Cahn-
Hilliard equation [2], is the underlying mechanism that explains the layering phenomenon.

Since the Cahn-Hilliard equation cannot explain this phenomenon by itself, the gravitational
force is introduced into the model by means of conservation of mass and momentum, which,
together with conservation of individual species and ignoring temperature changes, yields a
system of equation, the isentropic compressible Navier-Stokes-Cahn-Hilliard equations [3, 1],
which are a system of fourth-order partial differential equations that model the evolution of
mixtures of binary fluids under gravitational effects.

We consider the compressible case for the evolution of, e.g. foams, solidification processes,
fluid-gas interface, although incompressible models for these equations might be more suitable
for explaining the cited layering phenomenon.

The goal of this contribution [4] is the design of implicit-explicit time-stepping schemes to
avoid the severe restriction posed by the high order terms for the efficient numerical solution of
boundary-initial problems with these equations.

We show some two-dimensional experiments to assess the possibilities of obtaining efficient
algorithms.
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Interaction of jamitons in second-order macroscopic
traffic models
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Abstract

Jamitons are self-sustained traveling wave solutions that arise in certain second-order macro-
scopic models of vehicular traffic. A necessary condition for a jamiton to appear is that the
local traffic density breaks the so-called sub-characteristic condition. This condition states that
the characteristic velocity of the corresponding first-order Lighthill-Whitham-Richards (LWR)
model formed with the same desired speed function is enclosed by the characteristic speeds
of the corresponding second-order model. The phenomenon of collision of jamitons in second-
order models of traffic flow is studied analytically and numerically for the particular case of
the second-order Aw-Rascle-Zhang (ARZ) traffic model [1, 3]. A compatibility condition is first
defined to select jamitons that can collide each other. The collision of jamitons produces a new
jamiton with a velocity different from the initial ones. It is observed that the exit velocities
smooth out the velocity of the test jamiton and the initial velocities of the jamitons that collide.
Other properties such as the amplitude of the exit jamitons, lengths, and maximum density are
also explored. In the cases of the amplitude and maximum exit density it turns out that over
a wide range of sonic densities, the exit values exceed or equal the input values. On the other
hand, the resulting jamiton has a greater length than the incoming ones. Finally, the behavior
for various driver reaction times is explored. It is obtained that some properties do not depend
on that time, such as the amplitude, exit velocity, or maximum density, while the exit length
does depend on driver reaction time.

This presentation is based on joint research [2] with Raimund Bürger (Universidad de Con-
cepción) and Sebastián Tapia (Universidad de Chile).
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A new two-dimensional blood flow model with arbitrary
cross-sections
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Abstract

In this contribution, a new two-dimensional model for blood flow in arteries with arbitrary
cross sections is derived [1]. The domain consists of a narrow, large vessel that extends along
an axial direction, with cross sections described by radial and angular coordinates. The model
consists of a system of balance laws for conservation of mass and balance of momentum in the
axial and angular directions. The equations are derived by applying asymptotic analysis to
the incompressible Navier-Stokes equations in a moving domain with an elastic membrane, and
integrating in the radial direction in each cross section. The resulting model is a system of
hyperbolic balance laws with source terms. The main properties of the system are discussed
and a positivity-preserving well-balanced central-upwind scheme is presented. The merits of
the scheme will be tested in a variety of scenarios. In particular, simulations using an idealized
aorta model are shown. We analyze the time evolution of the blood flow under different initial
conditions such as perturbations to steady states, which parametrizes a bulging in a vessel’s
wall. We consider different situations given by distinct variations in the vessel’s elasticity. This
presentation is based on joint research with Gerardo Hernández-Dueñas (IMATE Juriquilla).
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Symplectic Hamiltonian Hybridizable Discontinuous
Galerkin Methods for shallow-water equations
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Abstract

We propose a new hybridizable discontinuous Galerkin method for approximating the lin-
earized shallow-water equations. The discretization aims to preserve relevant physical quantities
such as mass, vorticity, and energy. Specifically, we reformulate the system of equations in a
Hamiltonian form, employing Hybridizable Discontinuous Galerkin Methods (HDG) for spatial
discretization and obtaining a semi-discrete scheme written in Hamiltonian form. By leveraging
on the inherent Hamiltonian structure of the numerical method and implementing symplectic
time-marching schemes, we ensure the conservation properties of the fully discrete system of
equations. We discuss the fundamental properties of our analysis and present numerical exper-
iments to validate its performance.
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Well-posedness and numerical analysis of an elapsed time
model with strongly coupled neural networks
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Abstract

The elapsed time equation is an age-structured model that describes dynamics of inter-
connected spiking neurons through the elapsed time since the last discharge, leading to many
interesting questions on the evolution of the system from a mathematical and biological point of
view. In this work, we first deal with the case when transmission after a spike is instantaneous
and the case when there exists a distributed delay that depends on previous history of the sys-
tem, which is a more realistic assumption. Then we study the well-posedness and the numerical
analysis of the elapsed time models. For existence and uniqueness we improve the previous works
by relaxing some hypothesis on the non-linearity, including the strongly excitatory case, while
for the numerical analysis we prove that the approximation given by the explicit upwind scheme
converges to the solution of the non-linear problem. We also show some numerical simulations
to compare the behavior of the system in the case of instantaneous transmission with the case
of distributed delay under different parameters, leading to solutions with different asymptotic
profiles.

This presentation is based on joint research with Nicolás Torres (Universidad de Granada,
Spain) and Luis Miguel Villada (Universidad del Bío-Bío, Concepción).
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Foam front dynamics in improved oil recovery:
comparing pressure-driven growth with Darcy flow

Carlos Torres-Ulloa ∗
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Abstract

The foam improved oil recovery process is analyzed, focusing on computing the propagating
foam front location in two-dimensions. Two approaches are used, namely the pressure-driven
growth model [1], and a two phase Darcy’s model coupled with fractional flow theory for wa-
ter/gas mass conservation [2]. In the pressure-driven growth model, the foam front is considered
to be contained in a region of extent ϵ relative to overall gas displacement [3]. Within this region,
the foam exhibits a finely-textured structure causing the foamed gas mobility to be orders of
magnitude lower than that of a pure gas or pure liquid [4]. Although pressure-driven growth
usually assumes ϵ to be a small fraction of the distance travelled by the foam [1, 3, 5], a recent
study suggests that ϵ is actually close to unity [6]. In order to determine whether the foam
front location can be predicted accurately using the pressure-driven growth model, despite ϵ
being larger than expected, predictions are compared with the aforementioned Darcy model.
In addition to the foam resistance at the front, to match Darcy’s predictions, it is necessary to
account for the liquid resistance downstream of the front, and the fact that Darcy’s predictions
access liquid saturations with lower mobilities than the pressure-driven growth model considers
by construction via following fractional flow theory. To achieve agreement between the models,
the foamed gas mobility in pressure-driven growth model is treated as a fitting parameter, which
indirectly modifies the relative resistance of the liquid phase downstream. Consequently, adjust-
ments to the foamed gas mobility are necessary for different horizontal extents of the solution
domain to ensure model compatibility and accurate foam front prediction.

This presentation is based on joint research with P. Grassia (TU Eindhoven), J. Hernández-
Montelongo (UCTemuco), Y. Boakye-Ansah (UENR) and P. Zuñiga (UCTemuco).
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Finite volumes scheme for a Kawahara equation with
time-delayed boundary control.

Rodrigo Vejar Asem ∗

Departamento de Matemáticas
Universidad de la Serena

Abstract

This talk is devoted to the proposal and study of a finite volumes scheme for a Kawahara
equation with a delay term as one of the boundary conditions. In particular, we will consider
the following problem for (x, t) ∈ Ω× R+, for Ω := (0, L), L > 0:



∂tu(x, t) + γ1∂xu(x, t) + γ2∂
3
xu(x, t)− ∂5

xu(x, t) + up(x, t)∂xu(x, t) = 0, (x, t) ∈ Ω× R+,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂x(t, L) = 0, t > 0,

∂2
xu(t, L) = F(t, h), t > 0,

∂2
xu(t, 0) = z0(t), t ∈ (−h, 0),

u(0, x) = u0(x), x ∈ Ω,

where γ1 > 0 and γ2 > 0 are physical parameters, p ∈ [1, 2], and F(t, h) is defined as

F(t, h) = α∂2
xu(t, 0) + β∂2

xu(t− h, 0),

for h > 0 and α, β are such that |α|+ |β| < 1. From [2] it is known that this problem is expo-
nentially stable under a specific condition for the length L of the domain. Our main objective
is to propose a numerical scheme that replicates this behavior, which takes ideas from [1], [3]
and [4]. Computational examples are provided.

This is a work in progress, and is a joint research with Roberto Capistrano-Filho and Víctor
Hugo G. Martínez (Universidade Federal de Pernambuco, Brazil).
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Well-posedness of a nonlocal reaction traffic flow model
with on-off ramps
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Abstract

Models of conservation laws with nonlocal flux describe several phenomena such as slow
erosion of granular flow, synchronization, sedimentation, crowd dynamics, navigation processes
and traffic flow. In particular, non-local traffic models describe the behaviour of drivers that
adapt their velocity with respect to what happens to the cars in front of them. In this type of
models, the flux function depends on a downstream convolution term between the density of
vehicles and a kernel function with support on the positive axis [2, 3]. In this talk we present
a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps
[1]. The source term is used to describe the traffic flow over the on-ramp and off-ramps. We
approximate the problem using an upwind-type numerical scheme and we provide L∞ and BV
estimates for the sequence of approximate solutions. Together with a discrete entropy inequality,
we also show the well-posedness of the considered class of scalar balance laws. Some numerical
simulations illustrate the behaviour of solutions in sample cases.

This presentation is based on joint research with Harold Contreras (USS-Chile) and Felisia
Chiarello (L’Aquila University, Italy).
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