EXISTENCE AND UNIQUENESS OF SOLUTION FOR A FAMILY OF NONLINEAR DEGENERATE MIXED PARABOLIC EQUATIONS AND ITS APPLICATIONS TO EDDY CURRENT MODELS

RAMIRO ACEVEDO, CHRISTIAN GÓMEZ, AND JUAN DAVID SAMBONÍ

ABSTRACT. The aim of this talk is to show an abstract framework to analyze the solvability of a family of nonlinear degenerate mixed parabolic equations. More precisely, we joint the wellknown Babuska-Brezzi theory for stationary mixed problems (see, for instance, [8, Section 1.5]) and the theory for nonlinear degenerate parabolic equations (see [10, Section III.6]), taking also inspiration from the hypothesis satisfied by the nonlinear operator in the three fields abstract framework presented by Gatica in [9, Section 2], to obtain sufficient conditions to guarantee the existence and uniqueness of solution.

Furthermore, we illustrate some applications of the abstract setting through particular problems that arise from a physical model that arises from the electromagnetism: nonlinear eddy current models in a general tridimensional bounded domain including conductors and dielectrics (see, for instance, [1, 2, 4]), and the case of an axisymmetrical domain (see [5, 6]).

We obtain in this work a generalization of the abstract framework proposed in 1985 by Bernardi & Raugel [7], since the problem proposed by the two authors considered a nondegenerate mixed linear parabolic equations and our abstract framework, on the other hand, is degenerate and nonlinear (see also [3]). Moreover, we show that the solutions of our problems have a desired regularity if we wish to approximate the solution by using, for instance, the finite element method.

Keywords: Well-posedness, parabolic degenerate equations, mixed problems, nonlinear problems, time-dependent Stokes problem, eddy current model.

Mathematics Subject Classifications (2010): 35K55, 78A25.

References

- R. Acevedo, S. Meddahi, and R. Rodríguez. An E-based mixed formulation for a time-dependent eddy current problem. *Mathematics of Computation*, 78 (2009), 1929–1949.
- [2] R. Acevedo and S. Meddahi. An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem. *IMA J. Numer. Anal.*, 31 (2011), pp. 667–697.
- [3] R. Acevedo, C. Gómez, and B. López-Rodríguez. Well-posedness for a family of degenerate parabolic mixed equations. J. Math. Anal. Appl., 498 (2021).
- [4] A. Bermúdez, B. López-Rodríguez, R. Rodríguez and P. Salgado. An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions. ESAIM - Mathematical Modelling and Numerical Analysis, 47 (2013), 875–902.
- [5] A. Bermúdez, C. Reales, R. Rodríguez and P. Salgado. Numerical analysis of a finite-element method for the axisymmetric eddy current model of an induction furnace. *IMA Journal of Numerical Analysis*, vol. 30, no. 3, pp. 654-676, July 2010, doi: 10.1093/imanum/drn063.
- [6] A. Bermúdez, C. Reales, R. Rodríguez and P. Salgado. Numerical analysis of a transient eddy current axisymmetric problem involving velocity terms. *Numerical Methods for Partial Differential Equations*, 2012; 28(3), 984-1012.
- [7] C. Bernardi and G. Raugel. A conforming finite element method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 22 (1985), pp.455–473.
- [8] D. Boffi, F Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk and M. Fortin, *Mixed Finite Elements, Com*patibility Conditions, and Applications, Lecture Notes in Mathematics. Springer-Verlag Berlib Heidelberg. 2008.
- [9] G.N. Gatica, Solvability and Galerkin Approximations of a Class of Nonlinear Operator Equations, Zeitschrif fur Analysis und ihre Anwendungen, vol. 21, 3, pp. 761-781, 2002.
- [10] R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys Monogr., vol. 49, Amer. Math. Soc., Providence, RI, 1997.

UNIVERSIDAD DEL CAUCA, POPAYÁN, COLOMBIA Email address: rmacevedo@unicauca.edu.co

UNIVERSIDAD DE LOS LLANOS, VILLAVICENCIO, COLOMBIA *Email address:* chgomez@unillanos.edu.co

UNIVERSIDAD DEL CAUCA, POPAYÁN, COLOMBIA Email address: jdsamboni@unicauca.edu.co