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Abstract. The Deep Fourier Residual (DFR) method is a specific case of Variational Physics-
Informed Neural Networks (VPINN) [1] among a large range of strategies for solving PDEs
using Neural Networks (NNs). The loss function in the DFR method is an approximation of the
dual norm of the PDE’s weak-residual, that is, R : H → H∗, where H is a Hilbert space of test
functions and H∗ its dual. For many well-posed problems, the dual norm of the weak-residual
corresponds directly to the energy norm of the error, i.e., there exist constants 0 < γ < M ,
such that

1

M
∥R(u)∥H∗ ≤ ∥u− u∗∥H ≤ 1

γ
∥R(u)∥H∗ ,

where u is an approximation to the solution u∗. Therefore, this loss function ensures that
reducing the loss during the training of a NN corresponds to reducing the error in the solution
at the same rate.

In [2, 3], the DFR method was proposed for solving problems in H1
0 (Ω) and H(curl,Ω).

There, the calculation of the dual norm is based on a spectral representation of the dual
norms of the test function space. This spectral representation is well-known on rectangles in
2D or rectangular cuboids in 3D, but constructing an appropriate orthonormal basis in more
general domains is non-trivial.

This talk discusses an extension of the DFR method to the use of adaptive strategies on
general polygonal domains. We decompose the PDE domain Ω into rectangular subdomains
and the loss function is computed as the sum of local loss functions. We then employ a Döfler
marking algorithm to adaptatively refine the initial subdomain decomposition of Ω and increase
the accuracy of the approximated solution on relevant regions of the domain.

Our numerical results show the generation of quasi-optimal refined meshes on several 1D
and 2D problems, including the singular L-shape problem.

Keywords: Deep Learning, Residual minimisation, Physics-informed machine learning, Adap-
tive numerical methods

Mathematics Subject Classifications (2010): 68T05, 65N50

References

[1] E. Kharazmi, Z. Zhang, and GE. Karniadakis VPINNs: variational physics-informed neural networks for
solving partial differential equations. arXiv preprint : arXiv:1912.0087, 2019.

[2] J.M. Taylor, D. Pardo and I. Muga. A Deep Fourier Residual method for solving PDEs using Neural
Networks. Computer Methods in Applied Mechanics and Engineering, vol. 405, p. 115850, 2023.

[3] J.M. Taylor, M. Bastidas, D. Pardo and I. Muga Deep Fourier Residual method for solving time-harmonic
Maxwell’s equations. arXiv preprint : arXiv:2305.09578, 2023.

University of the Basque Country (UPH/EHU), Leioa, Spain.
Email address: manuela.bastidas@ehu.eus

CUNEF Universidad, Madrid, Spain.
Email address: jamie.taylor@cunef.edu

University of the Basque Country (UPH/EHU), Leioa, Spain.
Basque Centre for Applied Mathematics (BCAM), Bilbao, Spain.
Ikerbasque (Basque Foundation For Sciences), Bilbao, Spain.
Email address: david.pardo@ehu.eus

1


