A REYNOLDS SEMI-ROBUST AND PRESSURE-ROBUST HYBRID HIGH-ORDER METHOD FOR THE SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON GENERAL MESHES

DANIEL CASTANON QUIROZ AND DANIELE A. DI PIETRO

Abstract

In this presentation we introduce and analyze a novel Reynolds semi-robust and pressure-robust Hybrid High-Order method for the time dependent incompressible NavierStokes equations on general meshes. A numerical scheme is called "Reynolds semi-robust" if its velocity error estimates are independent of the Reynolds number (or ν^{-1}). On the other hand, pressure robustness means that the velocity error estimates are independent of the pressure. The importance of the pressure robustness property is that gives a proper momentum balance for the numerical simulation of the Navier-Stokes equations which is crucial when large rotational body forces are present. The proposed method supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each time iteration. In particular, using polynomials of degree $k \geq 0$ at mesh faces, and polynomials of degree $(k+1)$ at mesh elements, we formally prove a velocity error estimate in the $L^{\infty}\left(\boldsymbol{L}^{2}(\Omega)\right)$-norm of order $h^{k+\frac{1}{2}}$ which equals to the best known velocity error estimate on simplicial meshes.

Keywords: hybrid high-order methods; time-dependent incompressible flow; general meshes; Re-semi-robust error estimates; pressure robustness

Mathematics Subject Classifications (2010): 35Q30, 65M15, 65M60, 76D17, 76M10

[^0]
[^0]: Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, México.

 Email address: daniel.castanon@iimas.unam.mx
 IMAG, Univ Montpellier, CNRS, Montpellier, France.
 Email address: daniele.di-pietro@umontpellier.fr

