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Abstract. We introduce a convergence analysis of the finite element method applied to the
Reynolds-Orr eigenvalue problem in wall-bounded shear-driven incompressible flows with ar-
bitrary cross-section. The Reynolds-Orr eigenproblem can be written as a mixed formulation
similar to Stokes flow, but including an extra term involving the strain rate tensor of the un-
derlying laminar flow. The analysis of the resulting discrete eigenproblem must be adapted to
the standard spectral approximation framework, since one of the bilinear forms which is coer-
cive in the Stokes equations is no longer coercive. We demonstrate that the proposed approach
delivers accurate estimates of errors associated with both eigenvalues and eigenfunctions. We
carry out various numerical tests to showcase how well the method performs and to confirm
the accuracy of our theoretical results.
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