COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS

TIMO NEUMEIER, MALTE A. PETER, DANIEL PETERSEIM, AND DAVID WIEDEMANN

ABSTRACT. Based on the characterization of the polyconvex envelope of isotropic functions by their signed singular value representations, we propose a simple algorithm for the numerical approximation of the polyconvex envelope. Instead of operating on the dxd-dimensional space of matrices, the algorithm requires only the computation of the convex envelope of a function on a d-dimensional manifold, which is easily realized by standard methods. The significant speedup associated with the dimension reduction from dxd to d is demonstrated in a series of numerical experiments

INSTITUTE OF MATHEMATICS, UNIVERSITY OF AUGSBURG, UNIVERSITATSSTR. 12A, 86159 AUGSBURG, GERMANY

Email address: timo.neumeier@uni-a.de

INSTITUTE OF MATHEMATICS & CENTRE FOR ADVANCED ANALYTICS AND PREDICTIVE SCIENCES (CAAPS), UNIVERSITY OF AUGSBURG, UNIVERSITÄTSSTR. 12A, 86159 AUGSBURG, GERMANY Email address: malte.peter@uni-a.de

INSTITUTE OF MATHEMATICS & CENTRE FOR ADVANCED ANALYTICS AND PREDICTIVE SCIENCES (CAAPS), UNIVERSITY OF AUGSBURG, UNIVERSITÄTSSTR. 12A, 86159 AUGSBURG, GERMANY Email address: daniel.peterseim@uni-a.de

Institute of Mathematics, University of Augsburg, Universitatsstr. 12a, 86159 Augsburg, Germany

 $Email \ address: \texttt{david.wiedemann} \texttt{Quni-a.de}$