CI²MA - Publications | Preprints

Preprint 2018-27

Ricardo Oyarzúa, Manuel Solano, Paulo Zuñiga:

A high order mixed-FEM for diffusion problems on curved domains

Abstract:

We propose and analyze a high order mixed finite element method for diffusion problems with Dirichlet boundary condition on a domain Ω with curved boundary Γ. The method is based on approximating Ω by a polygonal subdomain Dh, with boundary Γh, where a high order conforming Galerkin method is considered to compute the solution. To approximate the Dirichlet data on the computational boundary Γh, we employ a transferring technique based on integrating the extrapolated discrete gradient along segments joining Γh and Γ. Considering general finite dimensional subspaces we prove that the resulting Galerkin scheme, which is H(div ;Dh)-conforming, is wellposed provided suitable hypotheses on the aforementioned subspaces and integration segments. A feasible choice of discrete spaces is given by Raviart–Thomas elements of order k ≥ 0 for the vectorial variable and discontinuous polynomials of degree k for the scalar variable, yielding optimal convergence if the distance between Γh and Γ is at most of the order of the meshsize h. We also approximate the solution in Dch := Ω\Dh and derive the corresponding error estimates. Numerical experiments illustrate the performance of the scheme and validate the theory.

Download in PDF format PDF

This preprint gave rise to the following definitive publication(s):

Ricardo OYARZúA, Manuel SOLANO, Paulo ZUñIGA: A high order mixed-FEM for diffusion problems on curved domains. Journal of Scientific Computing, vol. 79, 1, pp. 49-78, (2019).

 

 

  CI²MA, CENTER FOR RESEARCH IN MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN - MAILBOX 160-C, CONCEPCIÓN, CHILE, PHONE: +56-41-2661324