CI²MA - Publications | Preprints

Preprint 2019-38

Eligio Colmenares, Gabriel N. Gatica, Willian Miranda:

Analysis of an augmented fully-mixed finite element method for a bioconvective flows model

Abstract:

In this paper we study a stationary generalized bioconvection problem given by the Navier-Stokes equations coupled to a cell conservation equation for describing the hydrodynamic and micro-organisms concentration of a culture fluid, assumed to be viscous and incompressible, and in which the viscosity might depend on the concentration. The model is rewritten in terms of a first-order system based on the introduction of the shear-stress, the vorticity, and the pseudo-stress tensors in the fluid equations along with an auxiliary vector in the concentration equation. After a variational approach, the resulting weak model is then augmented using appropriate parameterized Galerkin terms and rewritten as fixed-point problem. Existence, uniqueness and convergence results are obtained under certain regularity assumptions combined with the Lax-Milgram theorem, and the Banach and Brouwer fixed-point theorems. Optimal a priori error estimates are derived and confirmed through some numerical examples that illustrate the performance of the proposed technique.

Download in PDF format PDF

This preprint gave rise to the following definitive publication(s):

Eligio COLMENARES, Gabriel N. GATICA, Willian MIRANDA: Analysis of an augmented fully-mixed finite element method for a bioconvective flows model. Journal of Computational and Applied Mathematics, vol. 393, Art. Num. 113504, (2021).

 

 

  CI²MA, CENTER FOR RESEARCH IN MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN - MAILBOX 160-C, CONCEPCIÓN, CHILE, PHONE: +56-41-2661324