Preprint 2023-03
Esteban Henriquez, Manuel Solano:
An unfitted HDG method for a distributed optimal control problem
Abstract:
We analyze a high order hybridizable discontinuous Galerkin (HDG) method for an optimal control problem where the computational mesh does not necessarily fit the domain. The method is based on transferring the boundary data to the computational boundary by integrating the approximation of the gradient. We prove optimal order of convergence in the L2-norm for all the variables of the state and adjoint problems, and the control variable as well. More precisely, order hk+1 if the local discrete spaces are constructed using polynomials of degree at most k on a triangulation of meshsize h. We present numerical experiments illustrating the performance of method.
This preprint gave rise to the following definitive publication(s):
Esteban HENRIQUEZ, Manuel SOLANO: An unfitted HDG method for a distributed optimal control problem. Journal of Computational and Applied Mathematics, vol. 441, article: 115703, (2024).