CI²MA - Publications | Preprints

Preprint 2012-05

Margareth Alves, Jaime Muñoz-Rivera, Mauricio Sepúlveda, Octavio Vera, María Zegarra-Garay:

The asymptotic behaviour of the linear transmission problem in viscoelasticity

Abstract:

Here we consider the transmission problem with localized Kelvin Voigts viscoelastic damping. Our main result is to show that the corresponding semigroup $e^{{cal A}t}$ is not exponentially stable, but the solution decays polynomially to zero as $1/(1+t)^2,$ when the initial data is taken over the Domain $mathcal{D}(mathcal{A}).$ Moreover we prove that this rate of decay is optimal. Finally using a second order scheme that ensures the decay of energy (Newmark-$eta$ method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.

Download in PDF format PDF

This preprint gave rise to the following definitive publication(s):

Margareth ALVES, Jaime MUñOZ-RIVERA, Mauricio SEPúLVEDA, Octavio VERA, María ZEGARRA-GARAY: The asymptotic behaviour of the linear transmission problem in viscoelasticity. Journal of Mathematical Analysis and Applications, vol. 399, 2, pp. 472-479, (2013).

Margareth ALVES, Jaime MUñOZ-RIVERA, Mauricio SEPúLVEDA, Octavio VERA, María ZEGARRA-GARAY: The asymptotic behaviour of the linear transmission problem in viscoelasticity. Mathematische Nachrichten, vol. 287, 5-6, pp. 483-497, (2014).

 

 

  CI²MA, CENTER FOR RESEARCH IN MATHEMATICAL ENGINEERING, UNIVERSIDAD DE CONCEPCIÓN - MAILBOX 160-C, CONCEPCIÓN, CHILE, PHONE: +56-41-2661324