Investigadores
![]() | Nombre | David Mora |
---|---|---|
Unidad Académica | Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío | |
Áreas de Investigación |
Áreas en Ciencias Básicas: - Análisis Numérico de Ecuaciones Diferenciales Parciales |
|
Sitio Web Personal | http://ciencias.ubiobio.cl/dmora | |
Teléfono | +56 - 041 - 3111146 |
*La información mostrada a continuación refleja las contribuciones desarrolladas por el investigador durante su participación en el centro o en colaboración con este. Para detalles adicionales, puede consultar su Sitio Web Personal.
Publicaciones (59) +
Número | Autores, Título y Datos de la Publicación | DOI Link |
---|---|---|
2024-12 | Sarvesh KUMAR, David MORA, Ricardo RUIZ-BAIER, Nitesh VERMA: Numerical solution of the Biot/elasticity interface problem using virtual element methods. Journal of Scientific Computing, vol. 98, 3, Paper No. 53, (2024). |
Link |
2024-07 | Felipe LEPE, David MORA, Jesús VELLOJíN: Discontinuous Galerkin methods for the acoustic vibration problem. Journal of Computational and Applied Mathematics, vol. 441, Paper No. 115700, (2024). |
Link |
2024-06 | Dibyendu ADAK, David MORA, Alberth SILGADO: The Morley-type virtual element method for the Navier-Stokes equations in stream-function form. Computer Methods in Applied Mechanics and Engineering, vol. 419, Paper No. 116573, (2024). |
Link |
2024-05 | Franco DASSI, David MORA, Carlos REALES, Iván VELáSQUEZ: Mixed variational formulations of virtual elements for the polyharmonic operator. Computers & Mathematics with Applications, vol. 158, pp. 150-166, (2024). |
Link |
2023-34 | Dibyendu ADAK, Veronica ANAYA, Mostafa BENDAHMANE, David MORA: Conforming and nonconforming virtual element methods for fourth order nonlocal reaction diffusion equation. Mathematical Models and Methods in Applied Sciences, vol. 33, No. 10, pp. 2035-2083, (2023). |
Link |
2023-03 | Dibyendu ADAK, David MORA, Iván VELáSQUEZ: A C$^0$-nonconforming virtual element methods for the vibration and buckling problems of thin plates. Computer Methods in Applied Mechanics and Engineering, vol. 403, Part B, 115763, (2023). |
Link |
2022-36 | Veronica ANAYA, Arbaz KHAN, David MORA, Ricardo RUIZ-BAIER: Robust a posteriori error analysis for rotation-based formulations of the elasticity/poroelasticity coupling. SIAM Journal on Scientific Computing, vol. 44, 4, pp. B964-B995, (2022). |
Link |
2022-33 | David MORA, Carlos REALES, Alberth SILGADO: A C1-virtual element method of high order for the Brinkman equations in stream function formulation with pressure recovery. IMA Journal of Numerical Analysis, vol. 42, 4, pp. 3632-3674, (2022). |
Link |
2022-30 | Veronica ANAYA, David MORA, Amiya K. PANI, Ricardo RUIZ-BAIER: Error analysis for a vorticity/Bernoulli pressure formulation for the Oseen equations. Journal of Numerical Mathematics, vol. 30, 3, 209-230, (2022). |
Link |
2022-22 | David MORA, Alberth SILGADO: A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean. Computers & Mathematics with Applications, vol. 116, pp. 212–228, (2022). |
Link |
2022-12 | Dibyendu ADAK, David MORA, Sundararajan NATARAJAN: Convergence analysis of virtual element method for nonlinear nonlocal dynamic plate equation. Journal of Scientific Computing, vol. 91, 1, article: 23, (2022). |
Link |
2021-41 | David MORA, Iván VELáSQUEZ: A $C^{1}-C^{0}$ conforming virtual element discretization for the transmission eigenvalue problem. Research in the Mathematical Sciences, vol. 8, 4, Paper No. 56, 21 pp., (2021). |
Link |
2021-38 | Dibyendu ADAK, David MORA, Sundararajan NATARAJAN, Alberth SILGADO: A virtual element discretization for the time dependent Navier-Stokes equations in stream-function formulation. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 5, pp. 2535-2566, (2021). |
Link |
2021-33 | Veronica ANAYA, Ruben CARABALLO, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity. Calcolo, vol. 58, 4, article: 44, (2021). |
Link |
2021-29 | Felipe LEPE, David MORA, Gonzalo RIVERA, Iván VELáSQUEZ: A virtual element method for the Steklov eigenvalue problem allowing small edges. Journal of Scientific Computing, vol. 82, 2, Art. Num. 44, (2021). |
Link |
2021-26 | David MORA, Iván VELáSQUEZ: Virtual elements for the transmission eigenvalue problem on polytopal meshes. SIAM Journal on Scientific Computing, vol. 43, 4, pp. A2425-A2447, (2021). |
Link |
2021-15 | Carlo LOVADINA, David MORA, Iván VELáSQUEZ: A virtual element method for the von Kármán equations. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 55, 2, pp. 533-560, (2021). |
Link |
2021-03 | Raimund BüRGER, Sarvesh KUMAR, David MORA, Ricardo RUIZ-BAIER, Nitesh VERMA: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Advances in Computational Mathematics, vol. 47, 1, article: 2 (37pp), (2021). |
Link |
2020-27 | Felipe LEPE, David MORA: Symmetric and non-symmetric discontinuous Galerkin methods for a pseudostress formulation of the Stokes spectral problem. SIAM Journal on Scientific Computing, vol. 42, No. 2, pp. A698-A722, (2020). |
Link |
2020-24 | Veronica ANAYA, Mostafa BENDAHMANE, David MORA, Mauricio SEPúLVEDA: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology. IMA Journal of Numerical Analysis, vol. 40, 2, pp. 1544-1576, (2020). |
Link |
2020-10 | Veronica ANAYA, Zoa DE WIJN, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. SIAM Journal on Scientific Computing, vol. 42, 1, pp. B225–B249, (2020). |
Link |
2020-06 | David MORA, Gonzalo RIVERA: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA Journal of Numerical Analysis, vol. 40, 1, pp. 322–357, (2020). |
Link |
2020-05 | David MORA, Iván VELáSQUEZ: Virtual element for the buckling problem of Kirchhoff-Love plates. Computer Methods in Applied Mechanics and Engineering, vol. 360, Art. Num. 112687, (2020). |
Link |
2019-45 | Lourenco BEIRAO-DA-VEIGA, David MORA, Giuseppe VACCA: The Stokes complex for virtual elements with application to Navier-Stokes flows. Journal of Scientific Computing, vol. 81, 2, pp. 990-1018, (2019). |
Link |
2019-41 | Veronica ANAYA, Afaf BOUHARGUANE, David MORA, Carlos REALES, Ricardo RUIZ-BAIER, Nour SELOULA, Hector TORRES: Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations. Journal of Scientific Computing, vol. 80, 3, pp. 1577-1606, (2019). |
Link |
2019-39 | Veronica ANAYA, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Incorporating variable viscosity in vorticity-based formulations for Brinkman equations. Comptes Rendus Mathematique, vol. 357, 6, pp. 552-560, (2019). |
Link |
2019-32 | Felipe LEPE, Salim MEDDAHI, David MORA, Rodolfo RODRíGUEZ: Mixed discontinuous Galerkin approximation of the elasticity eigenproblem. Numerische Mathematik, vol. 142, 3, pp. 749-786, (2019). |
Link |
2019-13 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: Vorticity-pressure formulations for the Brinkman-Darcy coupled problem. Numerical Methods for Partial Differential Equations, vol. 35, 2, pp. 528-544, (2019). |
Link |
2019-05 | Veronica ANAYA, Zoa DE WIJN, David MORA, Ricardo RUIZ-BAIER: Mixed displacement-rotation-pressure formulations for elasticity. Computer Methods in Applied Mechanics and Engineering, vol. 344, pp. 71-94, (2019). |
Link |
2019-03 | Lourenco BEIRAO-DA-VEIGA, David MORA, Gonzalo RIVERA: Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Mathematics of Computation, vol. 88, 315, pp. 149-178, (2019). |
Link |
2019-01 | Felipe LEPE, Salim MEDDAHI, David MORA, Rodolfo RODRíGUEZ: Acoustic vibration problem for dissipative fluids. Mathematics of Computation, vol. 88, 315, pp. 45-71, (2019). |
Link |
2018-37 | David MORA, Iván VELáSQUEZ: A virtual element method for the transmission eigenvalue problem. Mathematical Models and Methods in Applied Sciences, vol. 28, 14, pp. 2803-2831, (2018). |
Link |
2018-30 | David MORA, Gonzalo RIVERA, Iván VELáSQUEZ: A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 52, 4, pp. 1437-1456, (2018). |
Link |
2018-14 | Veronica ANAYA, Mostafa BENDAHMANE, David MORA, Ricardo RUIZ-BAIER: On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, vol. 13, 1, pp. 69-94, (2018). |
Link |
2017-39 | David MORA, Gonzalo RIVERA, Rodolfo RODRíGUEZ: A posteriori error estimates for a virtual elements method for the Steklov eigenvalue problem. Computers & Mathematics with Applications, vol. 74, 9, pp. 2172-2190, (2017). |
Link |
2017-36 | Veronica ANAYA, David MORA, Ricardo RUIZ-BAIER: Pure vorticity formulation and Galerkin discretization for the Brinkman equations. IMA Journal of Numerical Analysis, vol. 37, 4, pp. 2020-2041, (2017). |
Link |
2017-18 | Lourenco BEIRAO-DA-VEIGA, David MORA, Gonzalo RIVERA, Rodolfo RODRíGUEZ: A virtual element method for the acoustic vibration problem. Numerische Mathematik, vol. 136, 3, pp. 725-763, (2017). |
Link |
2017-12 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: Mixed methods for a stream-function – vorticity formulation of the axisymmetric Brinkman equations. Journal of Scientific Computing, vol. 71, 1, pp. 348-364, (2017). |
Link |
2016-32 | Veronica ANAYA, David MORA, Ricardo OYARZúA, Ricardo RUIZ-BAIER: A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numerische Mathematik, vol. 133 , pp. 781-817, (2016). |
Link |
2016-22 | Sergio CAUCAO, David MORA, Ricardo OYARZúA: A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density. IMA Journal of Numerical Analysis, vol. 36, 2, pp. 947-983, (2016). |
Link |
2016-09 | Felipe LEPE, David MORA, Rodolfo RODRíGUEZ: Finite element analysis of a bending moment formulation for the vibration problem of a non-homogeneous Timoshenko beam. Journal of Scientific Computing, vol. 66, 2, pp. 825-848, (2016) |
Link |
2016-04 | Salim MEDDAHI, David MORA: Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete and Continuous Dynamical Systems - Series S, vol. 9, 1, pp. 269-287, (2016). |
Link |
2015-20 | Veronica ANAYA, Gabriel N. GATICA, David MORA, Ricardo RUIZ-BAIER: An augmented velocity-vorticity-pressure formulation for the Brinkman problem. International Journal for Numerical Methods in Fluids, vol. 79, 3, pp. 109-137, (2015). |
Link |
2015-18 | Lourenco BEIRAO-DA-VEIGA, Carlo LOVADINA, David MORA: A virtual element method for elastic and inelastic problems on polytope meshes. Computer Methods in Applied Mechanics and Engineering, vol. 295, pp. 327-346, (2015). |
Link |
2015-10 | David MORA, Gonzalo RIVERA, Rodolfo RODRíGUEZ: A virtual element method for the Steklov eigenvalue problem. Mathematical Models and Methods in Applied Sciences, vol. 25, 8, pp. 1421-1445, (2015). |
Link |
2015-09 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: Stabilized mixed approximation of axisymmetric Brinkman flows. Mathematical Modelling and Numerical Analysis, vol. 49, 3, pp. 855-874, (2015). |
Link |
2015-07 | Felipe MILLAR, David MORA: A finite element method for the buckling problem of simply supported Kirchhoff plates. Journal of Computational and Applied Mathematics, vol. 286, pp. 68-78, (2015). |
Link |
2015-06 | Salim MEDDAHI, David MORA, Rodolfo RODRíGUEZ: A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem. IMA Journal of Numerical Analysis, vol. 35, 2, pp. 749-766, (2015). |
Link |
2014-29 | Salim MEDDAHI, David MORA, Rodolfo RODRíGUEZ: Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem. Computers & Mathematics with Applications, vol. 68, 12-A, pp. 1733-1750, (2014). |
Link |
2014-21 | Felipe LEPE, David MORA, Rodolfo RODRíGUEZ: Locking-free finite element method for a bending moment formulation of Timoshenko beams. Computers & Mathematics with Applications, vol. 68, 3, pp. 118-131, (2014). |
Link |
2014-06 | Paola ANTONIETTI, Lourenco BEIRAO-DA-VEIGA, David MORA, Marco VERANI: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis, vol. 52, 1, pp. 386-404, (2014). |
Link |
2013-27 | Veronica ANAYA, David MORA, Ricardo RUIZ-BAIER: An augmented mixed finite element method for the vorticity–velocity–pressure formulation of the Stokes equations. Computer Methods in Applied Mechanics and Engineering, vol. 267, 1, pp. 261-274, (2013). |
Link |
2013-25 | Lourenco BEIRAO-DA-VEIGA, Carlo LOVADINA, David MORA: Numerical results for mimetic discretization of Reissner-Mindlin plate problems. Calcolo, vol. 50, 3, pp 209-237, 2013. |
Link |
2013-11 | Salim MEDDAHI, David MORA, Rodolfo RODRíGUEZ: Finite element spectral analysis for the mixed formulation of the elasticity equations. SIAM Journal on Numerical Analysis, vol. 51, 2, pp. 1041-1063, (2013). |
Link |
2013-02 | Lourenco BEIRAO-DA-VEIGA, David MORA, Rodolfo RODRíGUEZ: Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model. Numerical Methods for Partial Differential Equations, vol. 29, 1, pp. 40-63, (2013). |
Link |
2011-18 | Lourenco BEIRAO-DA-VEIGA, David MORA: A mimetic discretization of the Reissner–Mindlin plate bending problem. Numerische Mathematik, vol. 117, 3, pp. 425-462, (2011). |
Link |
2011-05 | Carlo LOVADINA, David MORA, Rodolfo RODRíGUEZ: A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, 4, pp. 603-626, (2011). |
Link |
2010-11 | Carlo LOVADINA, David MORA, Rodolfo RODRíGUEZ: Approximation of the buckling problem for Reissner-Mindlin plates. SIAM Journal on Numerical Analysis, vol. 48, 2, pp. 603-632, (2010) |
Link |
2009-14 | David MORA, Rodolfo RODRíGUEZ: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Mathematics of Computation, vol. 78, 268, pp. 1891-1917, (2009) |
Link |
Proceedings (1) +
Número | Autores, Título y Datos del Proceeding |
---|---|
2022-03 | David MORA, Alberth SILGADO: Virtual element methods for a stream-function formulation of the Oseen equations. In: Antonietti, P.F., Beirão da Veiga, L., Manzini, G. (eds) The Virtual Element Method and its Applications. SEMA SIMAI Springer Series, vol 31, pp. 321-361, (2022). Springer, Cham |
Prepublicaciones (5+40) +
Prepublicaciones | |
---|---|
Número | Autores y Título |
2022-34 | Nicolás CARRO, David MORA, Jesús VELLOJÍN: A finite element model for concentration polarization and osmotic effects in a membrane channel. |
2022-17 | Felipe LEPE, David MORA, Gonzalo RIVERA, Iván VELÁSQUEZ: A posteriori virtual element method for the acoustic vibration problem. |
2022-15 | Dibyendu ADAK, David MORA, Alberth SILGADO: A Morley-type virtual element approximation for a wind-driven ocean circulation model on polygonal meshes. |
2019-47 | Raimund BÜRGER, Sarvesh KUMAR, David MORA, Ricardo RUIZ-BAIER, Nitesh VERMA: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. |
2017-13 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: A vorticity-pressure finite element formulation for the Brinkman-Darcy coupled problem. |
Prepublicaciones que Dieron Origen a Publicaciónes Definitivas | |
---|---|
Número | Autores y Título |
2021-21 | David MORA, Iván VELÁSQUEZ: A $C^{1}-C^{0}$ conforming virtual element discretization for the transmission eigenvalue problem. |
2021-17 | David MORA, Alberth SILGADO: A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean. |
2021-08 | Veronica ANAYA, Ruben CARABALLO, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity. |
2020-18 | David MORA, Iván VELÁSQUEZ: Virtual elements for the transmission eigenvalue problem on polytopal meshes. |
2020-15 | Felipe LEPE, David MORA, Gonzalo RIVERA, Iván VELÁSQUEZ: A virtual element method for the Steklov eigenvalue problem allowing small edges. |
2019-36 | Carlo LOVADINA, David MORA, Iván VELÁSQUEZ: A virtual element method for the von Kármán equations. |
2019-21 | Veronica ANAYA, Zoa DE WIJN, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. |
2019-18 | Felipe LEPE, David MORA: Symmetric and non-symmetric discontinuous Galerkin methods for a pseudostress formulation of the Stokes spectral problem. |
2019-17 | Veronica ANAYA, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Incorporating variable viscosity in vorticity-based formulations for Brinkman equations. |
2019-16 | David MORA, Iván VELÁSQUEZ: Virtual element for the buckling problem of Kirchhoff-Love plates. |
2018-35 | Lourenco BEIRAO-DA-VEIGA, David MORA, Giuseppe VACCA: The Stokes complex for virtual elements with application to Navier-Stokes flows. |
2018-22 | Veronica ANAYA, Afaf BOUHARGUANE, David MORA, Carlos REALES, Ricardo RUIZ-BAIER, Nour SELOULA, Hector TORRES: Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations. |
2018-15 | Veronica ANAYA, Mostafa BENDAHMANE, David MORA, Mauricio SEPÚLVEDA: A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology. |
2018-11 | David MORA, Iván VELÁSQUEZ: A virtual element method for the transmission eigenvalue problem. |
2018-02 | Felipe LEPE, Salim MEDDAHI, David MORA, Rodolfo RODRÍGUEZ: Mixed discontinuous Galerkin approximation of the elasticity eigenproblem. |
2017-31 | David MORA, Gonzalo RIVERA: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. |
2017-12 | Veronica ANAYA, Zoa DE WIJN, David MORA, Ricardo RUIZ-BAIER: Mixed displacement-rotation-pressure formulations for elasticity. |
2017-02 | David MORA, Gonzalo RIVERA, Iván VELÁSQUEZ: A virtual element method for the vibration problem of Kirchhoff plates. |
2016-34 | Felipe LEPE, Salim MEDDAHI, David MORA, Rodolfo RODRÍGUEZ: Acoustic vibration problem for dissipative fluids. |
2016-32 | David MORA, Gonzalo RIVERA, Rodolfo RODRÍGUEZ: A posteriori error estimates for a virtual elements method for the Steklov eigenvalue problem. |
2016-14 | Lourenco BEIRAO-DA-VEIGA, David MORA, Gonzalo RIVERA: A virtual element method for Reissner-Mindlin plates. |
2016-08 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: Finite element methods for a stream-function – vorticity formulation of the axisymmetric Brinkman equations. |
2015-44 | Lourenco BEIRAO-DA-VEIGA, David MORA, Gonzalo RIVERA, Rodolfo RODRÍGUEZ: A virtual element method for the acoustic vibration problem. |
2015-21 | Veronica ANAYA, David MORA, Ricardo RUIZ-BAIER: Pure vorticity formulation and Galerkin discretization for the Brinkman equations. |
2015-02 | Felipe LEPE, David MORA, Rodolfo RODRÍGUEZ: Finite element analysis of a bending moment formulation for the vibration problem of a non-homogeneous Timoshenko beam. |
2014-27 | David MORA, Gonzalo RIVERA, Rodolfo RODRÍGUEZ: A virtual element method for the Steklov eigenvalue problem. |
2014-21 | Salim MEDDAHI, David MORA: Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. |
2014-20 | Veronica ANAYA, David MORA, Ricardo OYARZÚA, Ricardo RUIZ-BAIER: A priori and a posteriori error analysis for a vorticity-based mixed formulation of the generalized Stokes equations. |
2014-19 | Veronica ANAYA, David MORA, Carlos REALES, Ricardo RUIZ-BAIER: Stabilized mixed finite element approximation of axisymmetric Brinkman flows. |
2014-11 | Veronica ANAYA, Gabriel N. GATICA, David MORA, Ricardo RUIZ-BAIER: An augmented velocity-vorticity-pressure formulation for the Brinkman problem. |
2013-25 | Salim MEDDAHI, David MORA, Rodolfo RODRÍGUEZ: Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem. |
2013-20 | Sergio CAUCAO, David MORA, Ricardo OYARZÚA: Analysis of a mixed-FEM for the pseudostress-velocity formulation of the Stokes problem with varying density. |
2013-17 | Veronica ANAYA, David MORA, Ricardo RUIZ-BAIER: An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations. |
2013-12 | Salim MEDDAHI, David MORA, Rodolfo RODRÍGUEZ: A finite element analysis of a pseudostress formulation for the Stokes eigenvalue problem. |
2012-24 | Felipe LEPE, David MORA, Rodolfo RODRÍGUEZ: Locking-free finite element method for a bending moment formulation of Timoshenko beams. |
2012-06 | Salim MEDDAHI, David MORA, Rodolfo RODRÍGUEZ: Finite element spectral analysis for the mixed formulation of the elasticity equations. |
2010-13 | Lourenco BEIRAO-DA-VEIGA, David MORA, Rodolfo RODRÍGUEZ: Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model. |
2010-07 | Carlo LOVADINA, David MORA, Rodolfo RODRÍGUEZ: A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam. |
2010-03 | Lourenco BEIRAO-DA-VEIGA, David MORA: A mimetic discretization of the Reissner-Mindlin plate bending problem. |
2009-01 | Carlo LOVADINA, David MORA, Rodolfo RODRÍGUEZ: Approximation of the buckling problem for Reissner-Mindlin plates. |
Proyectos (5) +
Libros (0) +
Autores | Título | Descripción |
---|---|---|
(Actualmente, no se han registrado libros publicados del investigador asociados al centro) |
Director/Codirector de Tesis Posgrado (0+8) +
Alumnos Tesistas de Posgrado Actuales | ||||
---|---|---|---|---|
Aprobacion Tesis | Nombre | Título de la Tesis | Programa | Directores |
(Actualmente, no se han registrado tesistas de posgrado asociados al investigador en el centro) |
Alumnos Tesistas de Posgrado Graduados | ||||
---|---|---|---|---|
Defensa de Tesis | Nombre | Título de la Tesis | Programa | Directores |
2024-02-29 | Silgado, Alberth | Conforming and nonconforming virtual element methods for problems in fluid mechanics | Doctorado en Matemática Aplicada, Universidad del Bío-Bío | Lourenco Beirao-Da-Veiga, David Mora |
2019-11-15 | Velásquez, Iván | Virtual Element Methods for Problems in Solid Mechanics | Doctorado en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción | Carlos Lovadina, David Mora, Rodolfo Rodríguez |
2019-11-08 | Silgado, Alberth | Método de Elementos Virtuales para Problemas de Fluidos | Magíster en Matemática, mención Matemática Aplicada, Universidad del Bío-Bío | David Mora, Carlos Reales |
2018-08-09 | Ortega, Juan | Método de Elementos Finitos para Problemas de Vigas. | Magíster en Matemática, mención Matemática Aplicada, Universidad del Bío-Bío | David Mora |
2018-08-09 | Ortega, Juan | Método de Elementos Finitos para Problemas de Vigas. | Magíster en Matemática con mención en Matemática Aplicada, Universidad del Bío-Bío | David Mora |
2018-01-05 | Lepe, Felipe | Problemas de Vibraciones, Acústica y Disipación. | Doctorado en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción | Salim Meddahi, David Mora, Rodolfo Rodríguez |
2016-09-30 | Rivera, Gonzalo | Métodos de Elementos Virtuales para Problemas Espectrales | Doctorado en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción | Lourenco Beirao-Da-Veiga, David Mora, Rodolfo Rodríguez |
2013-03-30 | Lepe, Felipe | Locking-free finite element method for a bending moment formulation of timoshenko beams | Magíster en Matemática, mención Matemática Aplicada, Universidad del Bío-Bío | David Mora, Rodolfo Rodríguez |
Director/Codirector de Tesis Pregrado (0+0) +
Alumnos Tesistas de Pregrado Actuales | ||||
---|---|---|---|---|
Aprobacion Tesis | Nombre | Título de la Tesis | Carrera | Directores |
(Actualmente, no se han registrado tesistas de pregrado asociados al investigador en el centro) |
Alumnos Tesistas de Pregrado Graduados | ||||
---|---|---|---|---|
Defensa de Tesis | Nombre | Título de la Tesis | Carrera | Directores |
(Actualmente, no se han registrado graduados de pregrado asociados al investigador en el centro.) |