Pre-Publicación 2019-17
Veronica Anaya, Bryan Gomez-Vargas, David Mora, Ricardo Ruiz-Baier:
Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
Abstract:
In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity and pressure with non-constant viscosity. The analysis is performed by the classical Babuška-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates which are further confirmed through computational examples.
Esta prepublicacion dio origen a la(s) siguiente(s) publicación(es) definitiva(s):
Veronica ANAYA, Bryan GOMEZ-VARGAS, David MORA, Ricardo RUIZ-BAIER: Incorporating variable viscosity in vorticity-based formulations for Brinkman equations. Comptes Rendus Mathematique, vol. 357, 6, pp. 552-560, (2019).