CI²MA - Publicaciones | Prepublicaciones

Pre-Publicación 2020-20

Nicolas Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Willian Miranda, Ricardo Ruiz-Baier:

New primal and dual-mixed finite element methods for stable image registration with singular regularization


This work introduces and analyzes new primal and dual-mixed finite element methods for deformable image registration, in which the regularizer has a non trivial kernel, and constructed under minimal assumptions of the registration model: Lipschitz continuity of the similarity measure and ellipticity of the regularizer on the orthogonal complement of its kernel. The aforementioned singularity of the regularizer suggests to modify the original model by incorporating the additional degrees of freedom arising from its kernel, thus granting ellipticity of the former on the whole solution space. In this way, we are able to prove well-posedness of the resulting extended primal and dual-mixed continuous formulations, as well as of the associated Galerkin schemes. A priori error estimates and corresponding rates of convergence are also established for both discrete methods. Finally, we provide numerical examples confronting our formulations with the standard ones, which prove our finite element methods to be particularly more efficient on the registration of translations and rotations, in addition for the dual-mixed approach to be much more suitable for the quasi-incompressible case, and all the above without losing the flexibility to solve problems arising from more realistic scenarios such as the image registration of the human brain.

Descargar en formato PDF PDF

Esta prepublicacion dio origen a la(s) siguiente(s) publicación(es) definitiva(s):

Nicolas BARNAFI, Gabriel N. GATICA, Daniel E. HURTADO, Willian MIRANDA, Ricardo RUIZ-BAIER: New primal and dual-mixed finite element methods for stable image registration with singular regularization. Mathematical Models and Methods in Applied Sciences (M3AS), vol. 31, 5, pp. 979-1020, (2021).