CI²MA - Publicaciones | Prepublicaciones

Pre-Publicación 2020-24

Jessika Camaño, Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes:

A posteriori error analysis of a momentum conservative Banach-spaces based mixed-FEM for the Navier-Stokes problem

Abstract:

In this paper we develop an a posteriori error analysis of a new momentum conservative mixed finite element method recently introduced for the steady-state Navier-Stokes problem in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such us local estimates, and suitable Helmholtz decompositions, we derive a reliable and efficient residual-based a posteriori error estimator for the corresponding mixed finite element scheme on arbitrary (convex or nonconvex) polygonal and polyhedral regions. On the other hand, inverse inequalities, the localization technique based on bubble functions, among other tools, are employed to prove the efficiency of the proposed a posteriori error indicator. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.

Descargar en formato PDF PDF

Esta prepublicacion dio origen a la(s) siguiente(s) publicación(es) definitiva(s):

Jessika CAMAñO, Sergio CAUCAO, Ricardo OYARZúA, Segundo VILLA-FUENTES: A posteriori error analysis of a momentum conservative Banach-spaces based mixed-FEM for the Navier-Stokes problem. Applied Numerical Mathematics, vol. 176, pp. 134-158, (2022).