Tesis de Postgrado de Eligio Colmenares
Programa | Doctorado en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción | |
---|---|---|
Año de Ingreso | 2013 | |
Año de Egreso | 2016 | |
Título de la Tesis | Métodos de Elementos Finitos Mixtos para el Modelo de Boussinesq Estacionario | |
Resumen de la Tesis:Esta tesis tiene como objetivo desarrollar, analizar matemáticamente e implementar computacionalmente diversos métodos de elementos finitos mixtos para la simulación numérica del fenómeno de convección natural, o problemas de flujos accionados térmicamente, en el marco de aproximación de Boussinesq; un sistema dado por las ecuaciones de Navier-Stokes y de advección–difusión, acopladas no linealmente a través de fuerzas de flotabilidad y transferencia de calor por convección. En primer lugar presentamos dos esquemas mixtos aumentados basados en la incorporación de términos de Galerkin redundantes y la introducción de un tensor de pseudo-esfuerzos modificado en las ecuaciones del fluido. En cuanto a la ecuación del calor, se consideran por separado una formulación primal–mixta y otra completamente mixta, mediante la introducción de la componente normal del gradiente de temperatura como una incógnita adicional sobre la frontera, y de una variable vectorial auxiliar definida en todo el dominio dependiendo de la velocidad del fluido, la temperatura y su gradiente, respectivamente. En ambos casos, se utilizan estrategias de punto fijo para analizar y establecer el buen planteamiento de ambas formulaciones usando el teorema clásico de punto fijo de Banach en combinación con el teorema de Lax-Milgram y la teoría de Babuška-Brezzi, haciendo suposiciones de datos suficientemente pequeños y bajo una elección apropiada de parámetros de estabilización. Se establecen además la solubilidad y convergencia de los esquemas de Galerkin asociados para subespacios de elementos finitos arbitrarios y, en el caso primal-mixto, suponiendo que los correspondientes para aproximar la temperatura y la incógnita en la frontera satisfacen una condición inf–sup. Para cada uno de los métodos mixtos aumentados ya mencionados se realizó un análisis de error a posteriori y se propusieron algoritmos adaptativos asociados en dos y tres dimensiones. Técnicas de dualidad y descomposiciones de Helmholtz estables son las principales herramientas que se han empleado para derivar un indicador de error global y para demostrar su propiedad de confiabilidad. La propiedad de eficiencia se demostró a nivel global a través de técnicas de localización de funciones burbujas y/o resultados conocidos de anteriores trabajos sobre análisis de error a posteriori para esquemas mixtos relacionados. Finalmente proponemos y analizamos dos nuevos métodos duales–mixtos que exhiben la misma estructura clásica de las ecuaciones de Navier-Stokes. Aquí incorporamos el gradiente de la velocidad y un tensor de esfuerzos tipo Bernoulli como incógnitas auxiliares en las ecuaciones del fluido, mientras que en el calor se considera una formulación primal y otra mixta–primal. Sin ningún tipo de restricciones sobre los datos, se derivan estimaciones a priori y la existencia de soluciones continuas y discretas para ambas formulaciones utilizando el principio clásico de Leray-Schauder. Además, la unicidad se demuestra bajo hipótesis de datos suficientemente pequeños. Se demuestra que todas las técnicas descritas anteriormente son cuasi-óptimamente convergentes para subespacios de elementos finitos específicos, y permiten aproximaciones de alto orden, no sólo para las principales incógnitas sino también para varias variables de interés físico que se pueden obtener por un simple post-procesamiento, tales como la presión, la vorticidad del fluido, el tensor de esfuerzos, y los gradientes de velocidad y temperatura. Se proveen también experimentos numéricos que respaldan los resultados teóricos e ilustran la robustez y precisión de cada método, incluyendo problemas clásicos de referencia. | ||
Director(es) de Tesis | Gabriel N. Gatica, Ricardo E. Oyarzua | |
Fecha de Aprobación Proyecto de Tesis | 2015, Enero 05 | |
Fecha de Defensa de Tesis | 2016, Diciembre 16 | |
Seguimiento Profesional | Profesor Asistente, Universidad del Bio-Bio, a partir de Noviembre de 2016. | |
PDF Tesis | Descargar Tesis en PDF | |
Publicaciones Originadas de la Tesis (ISI)Eligio COLMENARES, Gabriel N. GATICA, Ricardo OYARZúA: A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model. Computers & Mathematics with Applications, vol. 77, 3, pp. 693-714, (2019). Eligio COLMENARES, Gabriel N. GATICA, Ricardo OYARZúA: A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model. Calcolo, vol. 54, 3, pp. 1055-1095, (2017). Eligio COLMENARES, Gabriel N. GATICA, Ricardo OYARZúA: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo, vol. 54, 1, pp. 167-205, (2017). Eligio COLMENARES, Michael NEILAN: Dual-mixed finite element methods for the stationary Boussinesq problem. Computers & Mathematics with Applications, vol. 72, 7, pp. 1828-1850, (2016). Eligio COLMENARES, Gabriel N. GATICA, Ricardo OYARZúA: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numerical Methods for Partial Differential Equations, vol. 32, 2, pp. 445-478, (2016). Eligio COLMENARES, Gabriel N. GATICA, Ricardo OYARZúA: Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. Comptes Rendus Mathematique, vol. 354, 1, pp. 57-62, (2016). |