CI²MA - Publicaciones | Tesis de Postgrado

Tesis de Postgrado de Ramiro Rebolledo

Rebolledo, RamiroProgramaDoctorado en Ciencias Aplicadas con mención en Ingeniería Matemática, Universidad de Concepción
Año de Ingreso2013
Año de Egreso2019
Título de la TesisMétodos de Elementos Finitos Adaptativos para Problemas de la Geociencia

Resumen de la Tesis:

En esta tesis estudiamos aspectos matemáticos y numéricos de métodos de elementos finitos adaptativos con aplicaciones a la geociencia. Primero desarrollamos un estimador a posteriori del tipo jerárquico para un esquema de elementos finitos LPS (Local Projection Stabilized) aplicado a las ecuaciones de Navier-Stokes incompresibles. La técnica utiliza la solución de problemas locales puestos en espacios de dimensión finita del tipo funciones burbujas para aproximar el error. A continuación proponemos y analizamos un estimador a posteriori del tipo residual para el método de elementos finitos Mixtos Hibridizados Multiescala (MHM por su nombre en inglés) para las ecuaciones de Stokes y Brinkman. El estimador de error se basa en la estructura multiescala del método MHM y considera la aproximación del segundo nivel del método. Como resultado, el estimador del error está compuesto por un estimador para primer nivel global sobre el esqueleto de la partición y un estimador que considera las contribuciones del segundo nivel. Además, esta nueva estrategia adaptativa sobre el esqueleto de la malla evita cambiar la topología de la malla global. Especialmente diseñado para funcionar en problemas multiescala, el estimador puede ser calculado en forma paralela debido a que los estimadores locales son independientes uno del otro. Por último, consideramos un problema de Stokes no lineal que modela el comportamiento de un glaciar. La no linealidad del problema es debido a la relación entre la viscocidad del fluido y su velocidad, y que en este contexto viene dada por la ley de Glen. Proponemos un método numérico MHM para resolver el problema que está inspirado en el caso lineal previamente estudiado. Para todas las situaciones descritas, se reportan múltiples resultados numéricos que ilustran y confirman los resultados teóricos obtenidos.

Director(es) de Tesis Rodolfo Araya, Frederic Valentin
Fecha de Aprobación Proyecto de Tesis2016, Enero 28
Fecha de Defensa de Tesis2019, Junio 19
Seguimiento Profesional
PDF TesisDescargar Tesis en PDF PDF

Publicaciones Originadas de la Tesis (ISI)

Rodolfo ARAYA, Ramiro REBOLLEDO: An a posteriori error estimator for a LPS method for Navier-Stokes equations. Applied Numerical Mathematics, vol. 127, pp. 179-195, (2018).

<< Volver a listado de Tesis de Posgrado.